

TEMEX RESOURCES LTD. SAVARD, WILSON LAKE, CHRISTY LAKE, MANN LAKE GROUPS AND MILLER LAKE AREA TEMAGAMI, ONTARIO

NTS 31L/13, 31M/4

Geoterrex-Dighem, A division of CGG Canada Ltd.
Mississauga, Ontario
November 1, 1999

Douglas G. Garrie Geophysicist

SUMMARY

This report describes the logistics and results of a DIGHEM ${ }^{V}$ airborne geophysical survey carried out for Temex Resources Ltd., over two properties located near Temagami, Ontario. Total coverage of the survey blocks amounted to 1161 km . The survey was flown from October 2 to October 5, 1999.

The purpose of the survey was to detect anomalous zones in both the magnetic and electromagnetic data which may reflect kimberlite sources. It was also to provide information which could be used to map the geology and structure of the survey areas. This was accomplished by using a DIGHEM $^{\mathrm{V}}$ multi-coil, multi-frequency electromagnetic system, supplemented by a high sensitivity cesium magnetometer. The information from these sensors was processed to produce maps which display the magnetic and conductive properties of the survey areas. A GPS electronic navigation system, utilizing a satellite (UHF) link, ensured accurate positioning of the geophysical data with respect to the base maps. Visual flight path recovery techniques were used to confirm the location of the helicopter where visible topographic features could be identified on the ground.

The survey properties contain several anomalous features, many of which are considered to be of moderate to high priority as exploration targets. Most of these features may warrant further investigation using appropriate surface exploration techniques. Areas of interest may be assigi ed priorities on the basis of supporting geophysical, geochemical and/or geological
information. After initial investigations have been carried out, it may be necessary to re-evaluate the remaining anomalies based on information acquired from the follow-up program.

CONTENTS

Section

INTRODUCTION 1.1
SURVEY EQUIPMENT 2.1
PRODUCTS AND PROCESSING TECHNIQUES 3.1
SURVEY RESULTS 4.1
General Discussion 4.1
Savard, Wilson Lake, Christy Lake, Mann Lake Group 4.9
Miller Lake Area 4.11
CONCLUSIONS AND RECOMMENDATIONS 5.1

APPENDICES

A. List of Personnel
B. Statement of Cost
C. Background Information
D. EM Anomaly List
E. Archive Description

INTRODUCTION

A DIGHEM ${ }^{\text {V }}$ electromagnetic/resistivity/magnetic survey was flown for Temex Resources Ltd., from October 2 to October 5, 1999, over two survey blocks located near Temagami, Ontario. The survey areas can be located on NTS map sheets 31L/13 and 31M/4 (Figure 1).

Survey coverage consisted of approximately 1161 line-km, including tie lines. The breakdown of kilometres per block and line spacing is given below in Table 1-1.

Table 1-1

Block	Line Direction	Line Separation (m)	Traverse Lines $(\mathrm{km}$	Tie Lines (km)
Savard, Wilson Lake, Christy Lake and Mann Lake Groups	$90^{\circ} / 270^{\circ}$	100	945	33
Miller Lake Area	$90^{\circ} / 270^{\circ}$	100	172	11

The survey employed the DIGHEM ${ }^{V}$ electromagnetic system. Ancillary equipment consisted of a magnetometer, radar altimeter, video camera, analog a! 1 digital recorders, and an electronic navigation system. The instrumentation was installed in an AS350B2 turbine helicopter (Registration CFZTA) which was provided by Helicopters

Ltd. The helicopter flew at an average airspeed of $128 \mathrm{~km} / \mathrm{h}$ with an EM sensor height of approximately 30 m .

Section 2 provides details on the survey equipment, the data channels, their respective sensitivities, and the navigation/flight path recovery procedure. Noise levels of less than 2 ppm are generally maintained for wind speeds up to $35 \mathrm{~km} / \mathrm{h}$. Higher winds may cause the system to be grounded because excessive bird swinging produces difficulties in flying the helicopter. The swinging results from the $5 \mathrm{~m}^{2}$ of area which is presented by the bird to broadside gusts.

Due to the presence of cultural features in the survey area, any interpreted conductors which occur in close proximity to cultural sources, should be confirmed as bedrock conductors prior to drilling.

FIGURE 1
TEMEX RESOURCES LTD.
SAVARD, WILSON LAKE, CHRISTY LAKE, MANN LAKE GROUPS AND MILLER LAKE AREA JC B \#2012

SURVEY EQUIPMENT

This section provides a brief description of the geophysical instruments used to acquire the survey data and the calibration procedures employed.

Electromagnetic System

Model: DIGHEM ${ }^{\text {V }}$
Type: \quad Towed bird, symmetric dipole configuration operated at a nominal survey altitude of 30 metres. Coil separation is 8 metres for 900 Hz , 5500 Hz and 7200 Hz , and 6.3 metres for the $56,000 \mathrm{~Hz}$ coil-pair.

Coil orientations/frequencies:

Channels recorded:

Sensitivity:

orientation	nominal		actual
coaxial	$/$	900 Hz	$1,069 \mathrm{~Hz}$
coplanar	$/$	900 Hz	869 Hz
coaxial	$/$	$5,500 \mathrm{~Hz}$	$4,828 \mathrm{~Hz}$
coplanar	$/$	$7,200 \mathrm{~Hz}$	$7,030 \mathrm{~Hz}$
coplanar	/	$56,000 \mathrm{~Hz}$	$55,443 \mathrm{~Hz}$

5 in-phase channels
5 quadrature channels
2 monitor channels
0.06 ppm at $\quad 900 \mathrm{~Hz} \mathrm{Cx}$
0.12 ppm at $\quad 900 \mathrm{H} \cdot \mathrm{Cp}$
0.12 ppm at $5,500 \mathrm{~Hz} \mathrm{Cx}$
0.24 ppm at $7,200 \mathrm{~Hz} \mathrm{Cp}$
0.60 ppm at $56,000 \mathrm{~Hz} \mathrm{Cp}$

Abstract

Sample rate: 10 per second, equivalent to 1 sample every 3 m , at a survey speed of $110 \mathrm{~km} / \mathrm{h}$.

The electromagnetic system utilizes a multi-coil coaxial/coplanar technique to energize conductors in different directions. The coaxial coils are vertical with their axes in the flight direction. The coplanar coils are horizontal. The secondary fields are sensed simultaneously by means of receiver coils which are maximum coupled to their respective transmitter coils. The system yields an in-phase and a quadrature channel from each transmitter-receiver coil-pair.

The Dighem calibration procedure involves four stages; primary field bucking, phase calibration, gain calibration, and zero adjust. At the beginning of the survey, the primary field at each receiver coil is cancelled, or "bucked out", by precise positioning of five bucking coils.

The phase calibration adjusts the phase angle of the receiver to match that of the transmitter. The initial phase calibration is conducted with a ferrite bar on the ground, and subsequent calibrations are conducted in the air using a calibration coil in the bird. A ferrite bar, which produces a purely in-phase anomaly, is positioned near each receiver coil. The bar is rotated from minimum to maximum field coupling and the responses for the in-phase and quadrature componerts for each coil-pair/frequency are
measured. The phase of the response is adjusted at the console to return an in-phase only response for each coil-pair. Phase checks are performed daily.

The ferrite bar phase calibrations measure a relative change in the secondary field, rather than an absolute value. This removes any dependency of the calibration procedure on the secondary field due to the ground, except under circumstances of extreme ground conductivity

Calibrations of the gain, phase and the system zero level are performed in the air, before, after, and at regular intervals during each flight. The system is flown to an altitude high enough to be out of range of any secondary field from the earth (the altitude is dependent on ground resistivity) at which point the zero, or base level of the system is measured. Calibration coils in the bird are activated for each frequency in turn by closing a switch to form a closed circuit through the coil. The transmitter induces a current in this loop, which creates a secondary field in the receiver of precisely known phase and amplitude. The phase and gain of the system are automatically adjusted by the digital receiver to set the measured calibration signal to the known values for the system

Magnetometer

Model:	Picodas 3340 processor with Scintrex CS2 sensor
Type:	Optically pumped cesium vapour
Sensitivity:	0.01 nT
Sample rate:	10 per second

The magnetometer sensor is housed in the EM bird, 30 m below the helicopter.

Magnetic Base Station

Model: GEM Systems GSM-19T
Type: Digital recording proton precession
Sensitivity: $\quad 0.10 \mathrm{nT}$
Sample rate: $\quad 0.2$ per second

A digital recorder is operated in conjunction with the base station magnetometer to record the diurnal variations of the earth's : agnetic field. The clock of the base station is synchronized with that of the airborne system to permit subsequent removal of diurnal drift.

Radar Altimeter

Manufacturer:	Honeywell/Sperry
Model:	AA 330
Type:	Short pulse modulation, 4.3 GHz
Sensitivity:	0.3 m

The radar altimeter measures the vertical distance between the helicopter and the ground. This information is used in the processing algorithm which determines conductor depth.

Barometric Pressure and Temperature Sensors

Model:	DIGHEM D 1300
Type:	Motorola MPX4115AP analog pressure sensor AD592AN high-impedance remote temperature sensors
Sensitivity:	Pressure: Temperature: $\quad 150 \mathrm{mV} / \mathrm{kPa}$
Sample rate:	10 per second

The D1300 circuit is used in conjunction with one barometric sensor and up to three temperature sensors. Two sensors (baro and temp) are installed in the EM console in the aircraft, to monitor pressure and internal operating temperatures.

Analog Recorder

Manufacturer: RMS Instruments
Type: DGR33 dot-matrix graphics recorder
Resolution: $\quad 4 \times 4$ dots $/ \mathrm{mm}$
Speed: $\quad 1.5 \mathrm{~mm} / \mathrm{sec}$

The analog profiles are recorded on chart paper in the aircraft during the survey.
Table 2-1 lists the geophysical data channels and the vertical scale of each profile.

Table 2-1. The Analog Profiles

Channel Name	Parameter	Scale units $/ \mathrm{mm}$	Designation on Digital Profile
1X9I	coaxial in-phase (900 Hz)	2.5 ppm	CXI900
1X9Q	coaxial quad (900 Hz)	2.5 ppm	CXQ900
3P9I	coplanar in-phase (900 Hz)	2.5 ppm	CPI900
3P9Q	coplanar quad (900 Hz)	2.5 ppm	CPQ900
2P7I	coplanar in-phase (7200 Hz)	5 ppm	CPI7200
2P7Q	coplanar quad (7200 Hz)	5 ppm	CPQ7200
4X7I	coaxial in-phase (5500 Hz)	5 ppm	CXI5500
4X7Q	coaxial quad (5500 Hz)	5 ppm	CXQ5500
5P5I	coplanar in-phase (56000 Hz)	10 ppm	CPI56K
5P5Q	coplanar quad (56000 Hz)	10 ppm	CPQ56K
ALTR	altimeter (radar)	3 m	ALTR
MAGC	magnetics, coarse	20 nT	MAG
MAGF	magnetics, fine	2.0 nT	MAG
CXSP	coaxial sferics monitor		CXSP
CPSP	coplanar sferics monitor		CPSP
CXPL	coaxial powerline monitor		CXPL
CPPL	coplanar powerline monitor		CPPL

Digital Data Acquisition System

Manufacturer:
RMS Instruments
Model:
DGR 33
Recorder:
Iomega Zip Plus drive

The data are stored on a 100 Mb Zip disk and are downloaded to the field workstation PC at the survey base for verification, backup and preparation of in-field products.

Video Flight Path Recording System

Type: Panasonic VHS Colour Video Camera (NTSC)
Model: AG 2400/WVCD132

Fiducial numbers are recorded continuously and are displayed on the margin of each image. This procedure ensures accurate correlation of analog and digital data with respect to visible features on the ground.

Navigation (Global Positioning System)

Airborne Receiver	
Model:	Ashtech Glonass GG24
Type:	SPS (L1 band), 24-channel, C/A code at 1575.42 MHz,
Sensitivity:	S code at 0.5625 MHz, Real-time differential.
Accuracy:	Manufacturer's stated accuracy is better than 10 metres real-time
Base Station	Marconi Allstar OEM, CMT-1200
Model:	Code and carrier tracking of L1 band, 12-channel, C/A code at $1575.42 ~ M H z ~$
Type:	-90 dBm, 1.0 second update

The Ashtech GG24 is a line of sight, satellite navigation system which utilizes time-coded sign is from at least four of forty-eight available satellites. Both Russian GLONASS and American NAVSTAR satellite constellations are used to calculate the position and to provide real time guidance to the helicopter. The Ashtech system can be
combined with a RACAL or similar GPS receiver which further improves the accuracy of the flying and subsequent flight path recovery to better than 5 metres. The differential corrections, which are obtained from a network of virtual reference stations, are transmitted to the helicopter via a spot-beam satellite. This eliminates the need for a local GPS base station. However, the Marconi Allstar OEM (CMT-1200) was used as a backup to provide post-survey differential corrections.

The Marconi Allstar OEM (CMT-1200) is operated as a base station and utilizes time-coded signals from at least four of the twenty-four NAVSTAR satellites. The base station raw XYZ data are recorded, thereby permitting post-survey processing for theoretical accuracies of better than 5 metres.

The Ashtech receiver is coupled with a PNAV navigation system for real-time guidance.

Although the base station receiver is able to calculate its own latitude and longitude, a higher degree of accuracy can be obtained if the reference unit is established on a known benchmark or triangulation point. The GPS records data relative to the WGS84 ellipsoid, which is the basis of the revised North American Datum (NAD83).

Field Workstation

Manufacturer:	Dighem
Model:	FWS: V5.18
Type:	Pentium PC

A portable PC-based field workstation is used at the survey base to verify data quality and completeness. Flight data are transferred to the PC hard drive to permit the creation of a database. This process allows the field operators to display both the positional (flight path) and geophysical data on a screen or printer.

PRODUCTS AND PROCESSING TECHNIQUES

Table 3-1 lists the maps and products which have been provided under the terms of the survey agreement. Other products can be prepared from the existing dataset, if requested. These include magnetic enhancements or derivatives, percent magnetite, digital terrain or resistivity-depth sections. Most parameters can be displayed as contours, profiles, or in colour.

Base Maps

Base maps of the survey area have been produced from published topographic maps. These provide a relatively accurate, distortion-free base which facilitates correlation of the navigation data to the UTM grid. The original topographic maps are scanned to a bitmap format and combined with geophysical data for plotting the final maps. All maps are created using the following parameters:

Projection Description:

Datum:	NAD83
Ellipsoid:	Geodetic Reference System 1980
Projection:	UTM (Zone: 17)
Central Meridian:	81° W
False Northing:	0
False Easting:	500000
Scale Factor:	0.9996

Table 3-1 Survey Products

1. Final Transparent Maps (+3 prints) @ $1: 10,000$

Dighem EM anomalies
Total magnetic field
Calculated vertical magnetic gradient
Apparent resistivity (7200 Hz)
Apparent resistivity $(56,000 \mathrm{~Hz})$
2. Colour Maps (2 sets) @ $1: 10,000$

Total magnetic field
Calculated vertical magnetic gradient
Apparent resistivity (7200 Hz)
Apparent resistivity $(56,000 \mathrm{~Hz})$
3. Additional Products

Digital XYZ archive in Geosoft format (CD-ROM)
Digital grid archives in Geosoft format (CD-ROM)
Survey report (3 copies)
Multi-channel stacked profiles
Analog chart records
Flight path video cassettes
Note: Other products can be produced from existing survey data, if requested.

Electromagnetic Anomalies

Abstract

EM data are processed at the recorded sample rate of 10 samples/second. If necessary, appropriate spheric rejection median or Hanning filters are applied to reduce noise to acceptable levels. EM test profiles are then created to allow the interpreter to select the most appropriate EM anomaly picking controls for a given survey area. The EM picking parameters depend on several factors but are primarily based on the dynamic range of the resistivities within the survey area, and the types and expected geophysical responses of the targets being sought.

Anomalous electromagnetic responses are selected and analysed by computer to provide a preliminary electromagnetic anomaly map. The automatic selection algorithm is intentionally oversensitive to assure that no meaningful responses are missed. Using the preliminary map in conjunction with the multi-parameter stacked profiles, the interpreter then classifies the anomalies according to their source and eliminates those that are not substantiated by the data. The final interpreted EM anomaly map includes bedrock, surficial and cultural conductors. A map containing only bedrock conductors can be generated, if desired.

Apparent Resistivity

The apparent resistivity in ohm-m can be generated from the in-phase and quadrature EM components for any of the frequencies. A resistivity map portrays all the EM information for that frequency over the entire survey area. This contrasts with the electromagnetic anomaly map which provides information only over interpreted conductors. The large dynamic range makes the resistivity parameter an excellent mapping tool.

The preliminary resistivity maps and images are carefully inspected to locate any lines or line segments which might require levelling adjustments. Subtle changes between in-flight calibrations of the system can result in line to line differences, particularly in resistive (low signal amplitude) areas. If required, manual levelling is carried out to eliminate or minimize resistivity differences which can be caused by changes in operating temperatures. These levelling adjustments are usually very subtle, and do not result in the degradation of anomalies from valid bedrock sources.

EM Magnetite (optional)

The apparent percent magnetite by weight is computed wherever magnetite produces a negative in-phase EM response. This calculation is more meaningful in resistive areas.

Total Magnetic Field

The aeromagnetic data are corrected for diurnal variation using the magnetic base station data. Manual adjustments are applied to any lines that require levelling, as indicated by shadowed images of the gridded magnetic data or tie line/traverse line intercepts. The IGRF gradient can be removed from the corrected total field data, if requested.

Calculated Vertical Magnetic Gradient

The diurnally-corrected total magnetic field data are subjected to a processing algorithm which enhances the response of magnetic bodies in the upper 500 m and attenuates the response of deeper bodies. The resulting vertical gradient map provides better definition and resolution of near-surface magnetic units. It also identifies weak
magnetic features which may not be evident on the total field map. However, regional magnetic variations and changes in lithology may be better defined on the total magnetic field map.

Magnetic Derivatives (optional)

The total magnetic field data can be subjected to a variety of filtering techniques to yield maps of the following:
enhanced magnetics
second vertical derivative
reduction to the pole/equator
magnetic susceptibility with reduction to the pole
upward/downward continuations
analytic signal

All of these filtering techniques improve the recognition of near-surface magnetic bodies, with the exception of upward continuation. Any of these parameters can be produced on request. Dighem's proprietary enhanced magnetic technique is designed to
provide a general "all-purpose" map, combining the more useful features of the above parameters.

Multi-channel Stacked Profiles

Distance-based profiles of the digitally recorded geophysical data are generated and plotted by computer. These profiles also contain the calculated parameters which are used in the interpretation process. These are produced as worksheets prior to interpretation, and are also presented in the final corrected form after interpretation. The profiles display electromagnetic anomalies with their respective interpretive symbols. Table 3-2 shows the parameters and scales for the multi-channel stacked profiles.

In Table 3-2, the log resistivity scale of 0.06 decade $/ \mathrm{mm}$ means that the resistivity changes by an order of magnitude in 16.6 mm . The resistivities at 0,33 and 67 mm up from the bottom of the digital profile are respectively 1,100 and 10,000 ohm-m.

Contour, Colour and Shadow Map Displays

The geophysical data are interpolated onto a regular grid using a modified Akima spline technique. The resulting grid is suitable for generating contour maps of excellent quality. The grid cell size is usually 25% of the line interval.

Colour maps are produced by interpolating the grid down to the pixel size. The parameter is then incremented with respect to specific amplitude ranges to provide colour "contour" maps. Colour maps of the total magnetic field are particularly useful in defining the lithology of the survey area.

Monochromatic shadow maps or images are generated by employing an artificial sun to cast shadows on a surface defined by the geophysical grid. There are many variations in the shadowing technique. These techniques can be applied to total field or enhanced magnetic data, magnetic derivatives, resistivity, etc. The shadow of the enhanced magnetic parameter is particularly suited for defining geological structures with crisper images and improved resolution.

Table 3-2. Multi-channel Stacked Profiles

Channel Name (Freq)	Observed Parameters	Scale Units/mm
MAG	total magnetic field (fine)	5 nT
MAG	total magnetic field (coarse)	25 nT
ALTM	EM sensor height above ground	6 m
CXI900	vertical coaxial coil-pair in-phase (900 Hz)	2 ppm
CXQ900	vertical coaxial coil-pair quadrature (900 Hz)	2 ppm
CPI900	horizontal coplanar coil-pair in-phase (900 Hz)	4 ppm
CPQ900	horizontal coplanar coil-pair quadrature (900 Hz)	4 ppm
CXI5500	vertical coaxial coil-pair in-phase (5500 Hz)	4 ppm
CXQ5500	vertical coaxial coil-pair quadrature (5500 Hz)	4 ppm
CPI7200	horizontal coplanar coil-pair in-phase (7200 Hz)	8 ppm
CPQ7200	horizontal coplanar coil-pair quadrature (7200 Hz)	8 ppm
CPI56K	horizontal coplanar coil-pair in-phase ($56,000 \mathrm{~Hz}$)	10 ppm
CPQ56K	horizontal coplanar coil-pair quadrature ($56,000 \mathrm{~Hz}$)	10 ppm
CXPL	coaxial powerline monitor	
CPPL	coplanar powerline monitor	
	Computed Parameters	
DIFI (900 Hz)	difference function in-phase from CXI and CPI	2 ppm
DIFQ (900 Hz)	difference function quadrature from CXQ and CPQ	2 ppm
RES900	log resistivity	. 06 decade
RES7200	log resistivity	. 06 decade
RES56K	log resistivity	06 decade
DP900	apparent depth	6 m
DP7200	apparent depth	6 m
DP56K	apparent depth	6 m
CDT	Conductance	1 grade

Resistivity-depth Sections (optional)

The apparent resistivities for all frequencies can be displayed simultaneously as coloured resistivity-depth sections. Usually, only the coplanar data are displayed as the close frequency separation between the coplanar and adjacent coaxial data tends to distort the section. The sections can be plotted using the topographic elevation profile as the surface. The digital terrain values, in metres a.m.s.l., can be calculated from the GPS zvalue or barometric altimeter, minus the aircraft radar altimeter.

Resistivity-depth sections can be generated in three formats:
(1) Sengpiel resistivity sections, where the apparent resistivity for each frequency is plotted at the depth of the centroid of the in-phase current flow ${ }^{1}$; and,
(2) Differential resistivity sections, where the differential resistivity is plotted at the differential depth ${ }^{2}$.

[^0](3) Occam 3 or Multi-layer ${ }^{4}$ inversion.

Both the Sengpiel and differential methods are derived from the pseudo-layer halfspace model. Both yield a coloured resistivity-depth section which attempts to portray a smoothed approximation of the true resistivity distribution with depth. Resistivity-depth sections are most useful in conductive layered situations, but may be unreliable in areas of moderate to high resistivity where signal amplitudes are weak. In areas where in-phase responses have been suppressed by the effects of magnetite, the computed resistivities shown on the sections may be unreliable. The differential resistivity technique was developed by Dighem. It is more sensitive than the Sengpiel section to changes in the earth's resistivity and it reaches deeper.

Both the Occam and Multi-layer Inversions compute the layered earth resistivity model which would best match the measured EM data. The Occam inversion uses a series of thin, fixed layers (usually $20 \times 5 \mathrm{~m}$ and $10 \times 10 \mathrm{~m}$ layers) and computes resistivities to fit the EM data. The multi-layer inversion computes the resistivity and thickness for each of a defined number of layers (typically 3-5 layers) to best fit the data.
${ }^{3}$ Occam's inversion: a practical al orithm for generating smooth models from electromagnetic sounding data: Geophysics, 52, 289-300.

4 Huang H., and Palacky, G.J., 1991, Damped least-squares inversion of time domain airborne EM data based on singalar value decomposition: Geophysical Prospecting, 39, 827-844.

Digital Terrain (optional)

The radar altimeter values (ALTR - aircraft to ground clearance) were subtracted from the differentially corrected GPS-Z values, which were transformed to the local datum, to produce profiles of the height above mean sea level along the survey lines. These values were gridded to produce contour maps showing approximate elevations within the survey blocks. The resulting digital terrain contours were compared against published topographic maps. The data were manually adjusted to remove differences between the two. The data were then subjected to a microlevelling algorithm to remove any remaining small line-to-line discrepancies.

The accuracy of the elevation calculation is directly dependent on the accuracy of the two input parameters, ALTR and GPS-Z. The ALTR value may be erroneous in areas of heavy tree cover, where the altimeter reflects the distance to the tree canopy rather than the ground. The GPS-Z value is primarily dependent on the number of available satellites. Although post-processing of GPS data will yield X and Y accuracies in the order of 5 metres, the accuracy of the Z value is usually much less, sometimes in the ± 20 metre range. Further inaccuracies may be introduced during the interpolation and gridding process.

$$
-3.13-
$$

Because of the inherent inaccuracies of this method, no guarantee is made or implied that the information displayed is a true representation of the height above sea level. Although this product may be of some use as a general reference, THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES.

SURVEY RESULTS

GENERAL DISCUSSION

The survey results are presented on a separate map sheet for each parameter at a scale of 1:20,000 for the Savard Group and 1:10,000 for the Miller Lake Area. Tables 41 and 4-2 summarize the EM responses in the survey areas, with respect to conductance grade and interpretation.

The anomalies shown on the electromagnetic anomaly maps are based on a nearvertical, half plane model. This model best reflects "discrete" bedrock conductors. Wide bedrock conductors or flat-lying conductive units, whether from surficial or bedrock sources, may give rise to very broad anomalous responses on the EM profiles. These may not appear on the electromagnetic anomaly map if they have a regional character rather than a locally anomalous character. These broad conductors, which more closely approximate a half space model, will be maximum coupled to the horizontal (coplanar) coil-pair and should be more evident on the resistivity parameter. Resistivity maps, therefore, may be more valuable than the electromagnetic anomaly maps, in areas where broad or flat-lying conductors are considered to be of importance. Contoured resistivity maps, based 0.1 the 7200 Hz and $56,000 \mathrm{~Hz}$ coplanar data are included with this report.

TABLE 4-1

EM ANOMALY STATISTICS

SAVARD, WILSON LAKE, CHRISTY LAKE, MANN LAKE GROUPS

CONDUCTOR
GRADE 7
6 5
4 3
2 1
TOTAL
CONDUCTOR
MODEL
B DISCRETE BEDROCK CONDUCTOR 6
CONDUCTIVE COVER 476
CULTURE 348
TOTAL 830

TABLE 4-2

EM ANOMALY STATISTICS

MILLER LAKE AREA

CONDUCTOR	CONDUCTANCE RANGE			
GRADE	SIEMENS (MHOS)			NUMBER OF
:---:				
RESPONSES				

(SEE EM MAP LEGEND FOR EXPLANATIONS)

Excellent resolution and discrimination of conductors was accomplished by using a fast sampling rate of 0.1 sec and by employing a common frequency (900 Hz) on two orthogonal coil-pairs (coaxial and coplanar). The resulting "difference channel" parameters often permit differentiation of bedrock and surficial conductors, even though they may exhibit similar conductance values.

Anomalies which occur near the ends of the survey lines (i.e., outside the survey area), should be viewed with caution. Some of the weaker anomalies could be due to aerodynamic noise, i.e., bird bending, which is created by abnormal stresses to which the bird is subjected during the climb and turn of the aircraft between lines. Such aerodynamic noise is usually manifested by an anomaly on the coaxial in-phase channel only, although severe stresses can affect the coplanar in-phase channels as well.

Magnetics

A GEM Systems GSM-19T proton precession magnetometer was operated at the survey base to record diurnal variations of the earth's magnetic field. The clock of the base station was synchronized with that of the airborne system to permit subsequent removal of diurnal drift.

The total magnetic field data have been presented as contours on the base maps using a contour interval of 5 nT where gradients permit. The maps show the magnetic properties of the rock units underlying the survey areas.

The total magnetic field data have been subjected to a processing algorithm to produce maps of the calculated vertical gradient. This procedure enhances near-surface magnetic units and suppresses regional gradients. It also provides better definition and resolution of magnetic units and displays weak magnetic features which may not be clearly evident on the total field maps.

There is some evidence on the magnetic maps which suggests that the survey areas have been subjected to deformation and/or alteration. These structural complexities are evident on the contour maps as variations in magnetic intensity, irregular patterns, and as offsets or changes in strike direction.

If a specific magnetic intensity can be assigned to the rock type which is believed to host the target mineralization, it may be possible to select areas of higher priority on the basis of the total field magnetic data. This is based on the assumption that the magnetite content of the host rocks will give rise to a limited range of contour values which will permit differentiation of various lithological units.

The magnetic results, in conjunction with the other geophysical parameters, have provided valuable information which can be used to effectively map the geology and structure in the survey areas.

Apparent Resistivity

Apparent resistivity maps, which display the conductive properties of the survey area, were produced from the 7200 Hz and $56,000 \mathrm{~Hz}$ coplanar data. The maximum resistivity values, which are calculated for each frequency, are 8,000 and 20,000 ohm-m respectively. These cutoffs eliminate the erratic higher resistivities which would result from unstable ratios of very small EM amplitudes.

Electromagnetic Anomalies

The EM anomalies resulting from this survey appear to fall within one of three general categories. The first type consists of discrete, well-defined anomalies which yield marked inflections on the difference channels. These anomalies are usually attributed to conductive sulphides or graphite and are generally given a " B " interpretive symbol, denoting a bedrock source.

The second class of anomalies comprises moderately broad responses which exhibit the characteristics of a half space and do not yield well-defined inflections on the difference channels. Anomalies in this category are usually given an "S" interpretive symbol. The lack of a difference channel response usually implies a broad or flat-lying conductive source such as overburden. Some of these anomalies may reflect conductive rock units, zones of deep weathering, or the weathered tops of kimberlite pipes which can often yield "non-discrete" signatures.

The effects of conductive overburden are evident over portions of the survey area. Although the difference channels (DFI and DFQ) are extremely valuable in detecting bedrock conductors which are partially masked by conductive overburden, sharp undulations in the bedrock/overburden interface can yield anomalies in the difference channels which may be interpreted as possible bedrock conductors. Such anomalies usually fall into the "S?" or "B?" classification.

The "?" symbol does not question the validity of an anomaly, but instead indicates some degree of uncertainty as to which is the most appropriate EM source model. This ambiguity results from the combination of effects from two or more conductive sources, such as overburden and bedrock, gradational changes, or moderately shallow dips. The presence of a conductive upper layer has a tendency to mask or alter the characteristics of
bedrock conductors, making interpretation difficult. This problem is further exacerbated in the presence of magnetite.

In areas where EM responses are evident primarily on the quadrature components, zones of poor conductivity are indicated. Where these responses are coincident with magnetic anomalies, it is possible that the in-phase component amplitudes have been suppressed by the effects of magnetite. Most of these poorly-conductive magnetic features give rise to resistivity anomalies which are only slightly below background. If it is expected that poorly-conductive economic mineralization may be associated with magnetite-rich units, most of these weakly anomalous features will be of interest. In areas where magnetite causes the in-phase components to become negative, the apparent conductance and depth of EM anomalies may be unreliable. Magnetite effects usually give rise to overstated (higher) resistivity values and understated (shallow) depth calculations.

The third class consists of cultural anomalies which are usually given the symbol "L" or "L?".

It is impractical to assess the relative merits of EM anomalies on the basis of conductance. It is recommended that an attempt be made to compile a suite of geophysical "signatures" over any known areas of intere it. Anomaly characteristics are clearly
defined on the computer-processed geophysical data profiles which are supplied as one of the survey products.

A complete assessment and evaluation of the survey data should be carried out by one or more qualified professionals who have access to, and can provide a meaningful compilation of, all available geophysical, geological and geochemical data.

Savard, Wilson Lake, Christy Lake, Mann Lake Group

The data are dominated by cultural features throughout the survey area. Two gas pipelines extend approximately north/south across the centre of the survey area. They are clearly visible in the EM, resistivity and magnetic data. Several other cultural features, e.g., roads and powerlines, have also adversely affected the EM data. Due to the numerous cultural features in this area, all anomalies should be confirmed as bedrock before additional work is performed.

The magnetic data are fairly complex, suggesting the area is structurally and/or lithologically complex. Several magnetic dykes extend across the survey block. These dykes display two predominant strike directions, north-northwest/south-southeast and west-northwest/east-southeast. Several breaks and minor changes in strike direction along these dykes indicate they have been subject.d to some structural changes.

Numerous breaks are evident within the magnetic data, suggesting the presence of faults. In some instances, small shifts in background magnetic values occur across these breaks, suggesting the presence of thrust faults. These changes in background values are also evident across some of the magnetic dykes

The magnetic signature over a kimberlite pipe is highly variable. It may yield a strong positive or negative circular-shaped response or may yield a very subtle magnetic response. These weakly magnetic responses may be masked by any magnetic units in close proximity to the pipe. Several of the cultural features within the survey area also yield a circular magnetic high or low. As a result of this, caution should be used when interpreting these features.

The resistivity data are strongly influenced by surficial features evident from the close correlation of the resistivity patterns and the lake outlines. The majority of the most conductive zones displayed by the 7200 Hz data can be attributed to conductive lake-bottom sediments or cultural features.

Numerous small, circular resistivity lows are evident throughout the survey area. This is the expected geophysical signature of a pipe-like source. All of these features should be viewed as potential targets and may require follow-up work. Any
circular-shaped resistivity low with a coincident magnetic high or low may be considered as a priority target.

Miller Lake Area

The majority of the resistivity lows correspond well to the lakes and swamps within the survey area and there is little agreement between the magnetic and resistivity patterns. This suggests that the EM data is strongly influenced by conductive overburden, rather than bedrock sources.

Most of the EM responses are broad and poorly defined, and have been given an " S " or " S ?" interpretive symbol. In the search for kimberlites, the " S " or " S ?" type anomalies should not be ignored. These anomalies may reflect the weathered top of the kimberlite. Due to the possible broad, poorly-defined response, a kimberlite pipe may not display a discrete EM anomaly.

There was only one EM anomaly within the survey block that suggests the presence of a bedrock conductor. Anomaly 10380A yields a well-defined EM anomaly shape. Its shape suggests the presence of a vertical cylinder-type conductor. Refer to Figure C-1 for typical Dighem aromaly shapes. It corresponds to a single-line magnetic
high. This conductive/magnetic anomaly is located on the northern flank of a northeast/southwest trending magnetic unit.

The magnetic data are highly complex. Many of the magnetic units are elongated in a northeast/southwest direction. Several single or double-line magnetic highs and lows are evident on the total field magnetic maps. Many of these anomalies are quite small and do not yield an EM response. A few of these have a coincident EM anomaly which may make them of more interest in the search for kimberlite pipes.

CONCLUSIONS AND RECOMMENDATIONS

This report provides a very brief description of the survey results and describes the equipment, procedures and logistics of the survey.

There are several anomalies in the survey blocks which may require further investigation as possible kimberlite targets. The various maps included with this report display the magnetic and conductive properties of the survey areas. As kimberlite sources may give rise to resistivity lows with or without magnetic correlation, or magnetic responses with no EM association, all isolated features may be of interest. It is recommended that the survey results be reviewed in detail, in conjunction with all available geophysical, geological and geochemical information. Particular reference should be made to the computer generated data profiles which clearly define the characteristics of the individual anomalies.

The interpreted bedrock conductors defined by the survey should be subjected to further investigation, using appropriate surface exploration techniques. Anomalies which are currently considc.ed to be of moderately low priority may require upgrading if follow-up results are favourable.

It is also recommended that image processing of existing geophysical data be considered, in order to extract the maximum amount of information from the survey results. Current software and imaging techniques often provide valuable information on structure and lithology, which may not be clearly evident on the contour and colour maps. These techniques can yield images which define subtle, but significant, structural details.

Respectfully submitted,

GEOTERREX-DIGHEM

SAame
Douglas G. Garrie Geophysicist

DGG/sdp
R2012NOV. 99

APPENDIX A

LIST OF PERSONNEL

The following personnel were involved in the acquisition, processing, interpretation and presentation of data, relating to a DIGHEM ${ }^{\vee}$ airborne geophysical survey carried out for Temex Resources Ltd., near Tamagami, Ontario.

Greg Paleolog	Manager, Helicopter Operations
Doug McConnell	Manager, Data Processing and Interpretation
Philip Miles	Senior Geophysical Operator
Mike Cain	Field Geophysicist
Luke Kukovica	Pilot (Questral Helicopters Ltd.)
Gordon Smith	Data Processing Supervisor
Mike Cain	Interpretation Geophysicist and Computer Processor
Douglas Garrie	Interpretation Geophysicist
Lyn Vanderstarren	Drafting Supervisor
Mike Armstrong	Draftsperson (CAD)
Susan Pothiah	Word Processing Operator
Albina Tonello	Secretary/Expeditor

The survey consisted of 1161 km of coverage, flown from October 2 to October 5, 1999 .

All personnel are employees of Geoterrex-Dighem, except for the pilot who is an employee of Questral Helicopters Ltd.

APPENDIX B

STATEMENT OF COST

Date: November 1, 1999

IN ACCOUNT WITH GEOTERREX-DIGHEM

To: Dighem flying of Agreement dated September 24, 1999, pertaining to an Airborne Geophysical Survey in the Temagami area, Ontario.

Survey Charges

1085 km of flying @ $\$ 65.00 / \mathrm{km}$
plus mobilization costs of
$\$ 4,500.00$

Allocation of Costs

- Data Acquisition
- Data Processing (10\%)
- Interpretation, Report and Maps

- Appendix C. 1 -

BACKGROUND INFORMATION

Electromagnetics

DIGHEM electromagnetic responses fall into two general classes, discrete and broad. The discrete class consists of sharp, well-defined anomalies from discrete conductors such as sulphide lenses and steeply dipping sheets of graphite and sulphides. The broad class consists of wide anomalies from conductors having a large horizontal surface such as flatly dipping graphite or sulphide sheets, saline water-saturated sedimentary formations, conductive overburden and rock, and geothermal zones. A vertical conductive slab with a width of 200 m would straddle these two classes.

The vertical sheet (half plane) is the most common model used for the analysis of discrete conductors. All anomalies plotted on the geophysical maps are analyzed according to this model. The following section entitled Discrete Conductor Analysis describes this model in detail, including the effect of using it on anomalies caused by broad conductors such as conductive overburden.

The conductive earth (half space) model is suitable for broad conductors. Resistivity contour maps result from the use of this model. A later section entitled Resistivity Mirpping describes the method further, including the effect of using it on anomalies caused by discrete conductors such as sulphide bodies.

Geometric Interpretation

The geophysical interpreter attempts to determine the geometric shape and dip of the conductor. Figure C-1 shows typical DIGHEM anomaly shapes which are used to guide the geometric interpretation.

Discrete Conductor Analysis

The EM anomalies appearing on the electromagnetic map are analyzed by computer to give the conductance (i.e., conductivity-thickness product) in siemens (mhos) of a vertical sheet model. This is done regardless of the interpreted geometric shape of the conductor. This is not an unreasonable procedure, because the computed conductance increases as the electrical quality of the conductor increases, regardless of its true shape. DIGHEM anomalies are divided into seven grades of conductance, as shown in Table C1. The conductance in siemens (mhos) is the reciprocal of resistance in ohms.

The conductance value is a geological parameter because it is a characteristic of the conductor alone. It generally is independent of frequency, flying height or depth of burial, apart from the averaging over a greater portion of the conductor as height increases. Small anomalies from deeply buried strong conductors are not confused with

- Appendix C. 3 -

small anomalies from shallow weak conductors because the former will have larger conductance values.

Table C-1. EM Anomaly Grades

Anomaly Grade	Siemens	
	$50-100$	
6	$20-50$	
5	$10-20$	
4	$5-10$	
3	$1-$	
2	$<$	
1		

Conductive overburden generally produces broad EM responses which may not be shown as anomalies on the geophysical maps. However, patchy conductive overburden in otherwise resistive areas can yield discrete anomalies with a conductance grade (cf. Table C-1) of 1,2 or even 3 for conducting clays which have resistivities as low as 50 ohm-m. In areas where ground resistivities are below $10 \mathrm{ohm}-\mathrm{m}$, anomalies caused by weathering variations and similar causes can have any conductance grade. The anomaly shapes from the multiple coils often allow such conductors to be recognized, and these are indicated by the letters S, H, and sometimes E on the geophysical maps (see EM legend on maps).

For bedrock conductors, the higher anomaly grades indicate increasingly higher conductances. Examples: DIGHEM's New Insco copper discovery (Noranda, Canada)

- Appendix C. 4 -

yielded a grade 5 anomaly, as did the neighbouring copper-zinc Magusi River ore body; Mattabi (copper-zinc, Sturgeon Lake, Canada) and Whistle (nickel, Sudbury, Canada) gave grade 6; and DIGHEM's Montcalm nickel-copper discovery (Timmins, Canada) yielded a grade 7 anomaly. Graphite and sulphides can span all grades but, in any particular survey area, field work may show that the different grades indicate different types of conductors.

Strong conductors (i.e., grades 6 and 7) are characteristic of massive sulphides or graphite. Moderate conductors (grades 4 and 5) typically reflect graphite or sulphides of a less massive character, while weak bedrock conductors (grades 1 to 3) can signify poorly connected graphite or heavily disseminated sulphides. Grades 1 and 2 conductors may not respond to ground EM equipment using frequencies less than 2000 Hz .

The presence of sphalerite or gangue can result in ore deposits having weak to moderate conductances. As an example, the three million ton lead-zinc deposit of Restigouche Mining Corporation near Bathurst, Canada, yielded a well-defined grade 2 conductor. The 10 percent by volume of sphalerite occurs as a coating around the fine grained massive pyrite, thereby inhibiting electrical conduction. Faults, fractures and shear zones may produce anomalies which typically have low conductances (e.g., grades 1 to 3). Conductive rock formations can yield anomalies of any conductance grade. The

- Appendix C. 5 -

conductive materials in such rock formations can be salt water, weathered products such as clays, original depositional clays, and carbonaceous material.

For each interpreted electromagnetic anomaly on the geophysical maps, a letter identifier and an interpretive symbol are plotted beside the EM grade symbol. The horizontal rows of dots, under the interpretive symbol, indicate the anomaly amplitude on the flight record. The vertical column of dots, under the anomaly letter, gives the estimated depth. In areas where anomalies are crowded, the letter identifiers, interpretive symbols and dots may be obliterated. The EM grade symbols, however, will always be discernible, and the obliterated information can be obtained from the anomaly listing appended to this report.

The purpose of indicating the anomaly amplitude by dots is to provide an estimate of the reliability of the conductance calculation. Thus, a conductance value obtained from a large ppm anomaly (3 or 4 dots) will tend to be accurate whereas one obtained from a small ppm anomaly (no dots) could be quite inaccurate. The absence of amplitude dots indicates that the anomaly from the coaxial coil-pair is 5 ppm or less on both the in-phase and quadrature channels. Such small anomalies could reflect a weak conductor at the surface or a stronger conductor at depth. The conductance grade and depth estimate illustrates which of these possibilities fits the recorded data best.

- Appendix C. 6 -

The conductance measurement is considered more reliable than the depth estimate. There are a number of factors which can produce an error in the depth estimate, including the averaging of topographic variations by the altimeter, overlying conductive overburden, and the location and attitude of the conductor relative to the flight line. Conductor location and attitude can provide an erroneous depth estimate because the stronger part of the conductor may be deeper or to one side of the flight line, or because it has a shallow dip. A heavy tree cover can also produce errors in depth estimates. This is because the depth estimate is computed as the distance of bird from conductor, minus the altimeter reading. The altimeter can lock onto the top of a dense forest canopy. This situation yields an erroneously large depth estimate but does not affect the conductance estimate.

Dip symbols are used to indicate the direction of dip of conductors. These symbols are used only when the anomaly shapes are unambiguous, which usually requires a fairly resistive environment.

A further interpretation is presented on the EM map by means of the line-to-line correlation of bedrock anomalies, which is based on a comparison of anomaly shapes on adjacent lines. This provides conductor axes which may define the geological structure over portions of the survey area. The absence of conductor axes in an area implies that anomalies could not be correlated from line to line with reasonable confidence.

Typical DIGHEM anomaly shapes
Figure C-1

- Appendix C. 8 -

DIGHEM electromagnetic anomalies are designed to provide a correct impression of conductor quality by means of the conductance grade symbols. The symbols can stand alone with geology when planning a follow-up program. The actual conductance values are printed in the attached anomaly list for those who wish quantitative data. The anomaly ppm and depth are indicated by inconspicuous dots which should not distract from the conductor patterns, while being helpful to those who wish this information. The map provides an interpretation of conductors in terms of length, strike and dip, geometric shape, conductance, depth, and thickness. The accuracy is comparable to an interpretation from a high quality ground EM survey having the same line spacing.

The attached EM anomaly list provides a tabulation of anomalies in ppm, conductance, and depth for the vertical sheet model. The EM anomaly list also shows the conductance and depth for a thin horizontal sheet (whole plane) model, but only the vertical sheet parameters appear on the EM map. The horizontal sheet model is suitable for a flatly dipping thin bedrock conductor such as a sulphide sheet having a thickness less than 10 m . The list also shows the resistivity and depth for a conductive earth (half space) model, which is suitable for thicker slabs such as thick conductive overburden. In the EM anomaly list, a depth value of zero for the conductive earth model, in an area of thick cover, warns that the anomaly may be caused by conductive overburden.

Since discrete bodies normally are the targets of EM surveys, local base (or zero) levels are used to compute local anomaly amplitudes. This contrasts with the use of true zero levels which are used to compute true EM amplitudes. Local anomaly amplitudes are shown in the EM anomaly list and these are used to compute the vertical sheet parameters of conductance and depth. Not shown in the EM anomaly list are the true amplitudes which are used to compute the horizontal sheet and conductive earth parameters.

Questionable Anomalies

DIGHEM maps may contain EM responses which are displayed as asterisks $\left(^{*}\right)$. These responses denote weak anomalies of indeterminate conductance, which may reflect one of the following: a weak conductor near the surface, a strong conductor at depth (e.g., 100 to 120 m below surface) or to one side of the flight line, or aerodynamic noise. Those responses which have the appearance of valid bedrock anomalies on the flight profiles are indicated by appropriate interpretive symbols (see EM legend on maps). The others probably do not warrant further investigation unless their locations are of considerable geological interest.

Appendix C. 10 -

The Thickness Parameter

DIGHEM can provide an indication of the thickness of a steeply dipping conductor. The amplitude of the coplanar anomaly (e.g., CPI channel on the digital profile) increases relative to the coaxial anomaly (e.g., CXI) as the apparent thickness increases, i.e., the thickness in the horizontal plane. (The thickness is equal to the conductor width if the conductor dips at 90 degrees and strikes at right angles to the flight line.) This report refers to a conductor as thin when the thickness is likely to be less than 3 m , and thick when in excess of 10 m . Thick conductors are indicated on the EM map by parentheses "()". For base metal exploration in steeply dipping geology, thick conductors can be high priority targets because many massive sulphide ore bodies are thick, whereas non-economic bedrock conductors are often thin. The system cannot sense the thickness when the strike of the conductor is subparallel to the flight line, when the conductor has a shallow dip, when the anomaly amplitudes are small, or when the resistivity of the environment is below 100 ohm-m.

Resistivity Mapping

Resistivity mapping is useful in areas where broad or flat lying conductive units are of interest. One example of this is the clay alteration which is associated with Carlintype deposits in the south west United States. The Dighem system was able to identify
the clay alteration zone over the Cove deposit. The alteration zone appeared as a strong resistivity low on the 900 Hz resistivity parameter. The $7,200 \mathrm{~Hz}$ and $56,000 \mathrm{~Hz}$ resistivities show more of the detail in the covering sediments, and delineate a range front fault. This is typical in many areas of the south west United States, where conductive near surface sediments, which may sometimes be alkalic, attenuate the higher frequencies.

Resistivity mapping has proven successful for locating diatremes in diamond exploration. Weathering products from relatively soft kimberlite pipes produce a resistivity contrast with the unaltered host rock. In many cases weathered kimberlite pipes were associated with thick conductive layers which contrasted with overlying or adjacent relatively thin layers of lake bottom sediments or overburden.

Areas of widespread conductivity are commonly encountered during surveys. These conductive zones may reflect alteration zones, shallow-dipping sulphide or graphite-rich units or conductive overburden. In such areas, anomalies can be generated by decreases of only 5 m in survey altitude as well as by increases in conductivity. The typical flight record in conductive areas is characterized by in-phase and quadrature channels which are continuously active. Local EM peaks reflect either increases in conductivity of the earth or decreases in survey altitude. For such conductive areas, apparent resistivity profiles and contour maps are necessary for the correct interpretation of the airborne data. The advantage of the resi tivity parameter is that anomalies caused
by altitude changes are virtually eliminated, so the resistivity data reflect only those anomalies caused by conductivity changes. The resistivity analysis also helps the interpreter to differentiate between conductive bedrock and conductive overburden. For example, discrete conductors will generally appear as narrow lows on the contour map and broad conductors (e.g., overburden) will appear as wide lows.

The apparent resistivity is calculated using the pseudo-layer (or buried) half space model defined by Fraser (1978) ${ }^{5}$. This model consists of a resistive layer overlying a conductive half space. The depth channels give the apparent depth below surface of the conductive material. The apparent depth is simply the apparent thickness of the overlying resistive layer. The apparent depth (or thickness) parameter will be positive when the upper layer is more resistive than the underlying material, in which case the apparent depth may be quite close to the true depth.

The apparent depth will be negative when the upper layer is more conductive than the underlying material, and will be zero when a homogeneous half space exists. The apparent depth parameter must be interpreted cautiously because it will contain any errors which may exist in the measured altitude of the EM bird (e.g., as caused by a dense tree

[^1]Appendix C. 13 -
cover). The inputs to the resistivity algorithm are the in-phase and quadrature components of the coplanar coil-pair. The outputs are the apparent resistivity of the conductive half space (the source) and the sensor-source distance. The flying height is not an input variable, and the output resistivity and sensor-source distance are independent of the flying height when the conductivity of the measured material is sufficient to yield significant in-phase as well as quadrature responses. The apparent depth, discussed above, is simply the sensor-source distance minus the measured altitude or flying height. Consequently, errors in the measured altitude will affect the apparent depth parameter but not the apparent resistivity parameter.

The apparent depth parameter is a useful indicator of simple layering in areas lacking a heavy tree cover. The DIGHEM system has been flown for purposes of permafrost mapping, where positive apparent depths were used as a measure of permafrost thickness. However, little quantitative use has been made of negative apparent depths because the absolute value of the negative depth is not a measure of the thickness of the conductive upper layer and, therefore, is not meaningful physically. Qualitatively, a negative apparent depth estimate usually shows that the EM anomaly is caused by conductive overburden. Consequently, the apparent depth channel can be of significant help in distinguishing between overburden and bedrock conductors.

Interpretation in Conductive Environments

Environments having low background resistivities (e.g., below 30 ohm-m for a 900 Hz system) yield very large responses from the conductive ground. This usually prohibits the recognition of discrete bedrock conductors. However, DIGHEM data processing techniques produce three parameters which contribute significantly to the recognition of bedrock conductors in conductive environments. These are the in-phase and quadrature difference channels (DFI and DFQ, which are available only on systems with common frequencies on orthogonal coil pairs), and the resistivity and depth channels (RES and DP) for each coplanar frequency.

The EM difference channels (DFI and DFQ) eliminate most of the responses from conductive ground, leaving responses from bedrock conductors, cultural features (e.g., telephone lines, fences, etc.) and edge effects. Edge effects often occur near the perimeter of broad conductive zones. This can be a source of geologic noise. While edge effects yield anomalies on the EM difference channels, they do not produce resistivity anomalies. Consequently, the resistivity channel aids in eliminating anomalies due to edge effects. On the other hand, resistivity anomalies will coincide with the most highly conductive sections of conductive ground, and this is another source of geologic noise. The recognition of a bedrock condactor in a conductive environment therefore is based on the anomalous responses of the tw o difference channels (DFI and DFQ) and the resistivity
channels (RES). The most favourable situation is where anomalies coincide on all channels.

The DP channels, which give the apparent depth to the conductive material, also help to determine whether a conductive response arises from surficial material or from a conductive zone in the bedrock. When these channels ride above the zero level on the digital profiles (i.e., depth is negative), it implies that the EM and resistivity profiles are responding primarily to a conductive upper layer, i.e., conductive overburden. If the DP channels are below the zero level, it indicates that a resistive upper layer exists, and this usually implies the existence of a bedrock conductor. If the low frequency DP channel is below the zero level and the high frequency DP is above, this suggests that a bedrock conductor occurs beneath conductive cover.

Reduction of Geologic Noise

Geologic noise refers to unwanted geophysical responses. For purposes of airborne EM surveying, geologic noise refers to EM responses caused by conductive overburden and magnetic permeability. It was mentioned previously that the EM difference channels (i.e., channel DFI for in-phase and DFQ for quadrature) tend to eliminate the response of conductive overburden.

- Appendix C. 16 -

Magnetite produces a form of geological noise on the in-phase channels of all EM systems. Rocks containing less than 1% magnetite can yield negative in-phase anomalies caused by magnetic permeability. When magnetite is widely distributed throughout a survey area, the in-phase EM channels may continuously rise and fall, reflecting variations in the magnetite percentage, flying height, and overburden thickness. This can lead to difficulties in recognizing deeply buried bedrock conductors, particularly if conductive overburden also exists. However, the response of broadly distributed magnetite generally vanishes on the in-phase difference channel DFI. This feature can be a significant aid in the recognition of conductors which occur in rocks containing accessory magnetite.

EM Magnetite Mapping

The information content of DIGHEM data consists of a combination of conductive eddy current responses and magnetic permeability responses. The secondary field resulting from conductive eddy current flow is frequency-dependent and consists of both in-phase and quadrature components, which are positive in sign. On the other hand, the secondary field resulting from magnetic permeability is independent of frequency and consists of only an in-phase component which is negative in sign. When magnetic permeability manifests itself by decreasing the measured amount of positive in-phase, its presence may be difficult to recognize. However, when it manifests itself by yielding a

Appendix C. 17 -

negative in-phase anomaly (e.g., in the absence of eddy current flow), its presence is assured. In this latter case, the negative component can be used to estimate the percent magnetite content.

A magnetite mapping technique was developed for the coplanar coil-pair of DIGHEM. The method can be complementary to magnetometer mapping in certain cases. Compared to magnetometry, it is far less sensitive but is more able to resolve closely spaced magnetite zones, as well as providing an estimate of the amount of magnetite in the rock. The method is sensitive to $1 / 4 \%$ magnetite by weight when the EM sensor is at a height of 30 m above a magnetitic half space. It can individually resolve steep dipping narrow magnetite-rich bands which are separated by 60 m . Unlike magnetometry, the EM magnetite method is unaffected by remanent magnetism or magnetic latitude.

The EM magnetite mapping technique provides estimates of magnetite content which are usually correct within a factor of 2 when the magnetite is fairly uniformly distributed. EM magnetite maps can be generated when magnetic permeability is evident as negative in-phase responses on the data profiles.

Like magnetometry, the EM magnetite method maps only bedrock features, provided that the overburden is characterized by a general lack of magnetite. This

- Appendix C. 18 -

contrasts with resistivity mapping which portrays the combined effect of bedrock and overburden.

Recognition of Culture

Cultural responses include all EM anomalies caused by man-made metallic objects. Such anomalies may be caused by inductive coupling or current gathering. The concern of the interpreter is to recognize when an EM response is due to culture. Points of consideration used by the interpreter, when coaxial and coplanar coil-pairs are operated at a common frequency, are as follows:

1. Channels CXP and CPP monitor 60 Hz radiation. An anomaly on these channels shows that the conductor is radiating power. Such an indication is normally a guarantee that the conductor is cultural. However, care must be taken to ensure that the conductor is not a geologic body which strikes across a power line, carrying leakage currents.
2. A flight which crosses a "line" (e.g., fence, telephone line, etc.) yields a centrepeaked coaxial anomaly and an m-shaped coplanar anomaly. ${ }^{6}$ When the flight

[^2]crosses the cultural line at a high angle of intersection, the amplitude ratio of coaxial/coplanar response is 8 . Such an EM anomaly can only be caused by a line. The geologic body which yields anomalies most closely resembling a line is the vertically dipping thin dike. Such a body, however, yields an amplitude ratio of 4 rather than 8 . Consequently, an m-shaped coplanar anomaly with a CXI/CPI amplitude ratio of 8 is virtually a guarantee that the source is a cultural line.
3. A flight which crosses a sphere or horizontal disk yields centre-peaked coaxial and coplanar anomalies with a CXI/CPI amplitude ratio (i.e., coaxial/coplanar) of $1 / 8$. In the absence of geologic bodies of this geometry, the most likely conductor is a metal roof or small fenced yard. ${ }^{7}$ Anomalies of this type are virtually certain to be cultural if they occur in an area of culture.
4. A flight which crosses a horizontal rectangular body or wide ribbon yields an mshaped coaxial anomaly and a centre-peaked coplanar anomaly. In the absence of geologic bodies of this geometry, the most likely conductor is a large fenced area. ${ }^{5}$ Anomalies of this type are virtually certain to be cultural if they occur in an area of culture.

[^3]
- Appendix C. 20 -

5. EM anomalies which coincide with culture, as seen on the camera film or video display, are usually caused by culture. However, care is taken with such coincidences because a geologic conductor could occur beneath a fence, for example. In this example, the fence would be expected to yield an m-shaped coplanar anomaly as in case \#2 above. If, instead, a centre-peaked coplanar anomaly occurred, there would be concern that a thick geologic conductor coincided with the cultural line.
6. The above description of anomaly shapes is valid when the culture is not conductively coupled to the environment. In this case, the anomalies arise from inductive coupling to the EM transmitter. However, when the environment is quite conductive (e.g., less than 100 ohm-m at 900 Hz), the cultural conductor may be conductively coupled to the environment. In this latter case, the anomaly shapes tend to be governed by current gathering. Current gathering can completely distort the anomaly shapes, thereby complicating the identification of cultural anomalies. In such circumstances, the interpreter can only rely on the radiation channels and on the camera film or video records.

Appendix C. 21 -

Magnetics

Total field magnetics provides information on the magnetic properties of the earth materials in the survey area. The information can be used to locate magnetic bodies of direct interest for exploration, and for structural and lithological mapping.

The total field magnetic response reflects the abundance of magnetic material, in the source. Magnetite is the most common magnetic mineral. Other minerals such as ilmenite, pyrrhotite, franklinite, chromite, hematite, arsenopyrite, limonite and pyrite are also magnetic, but to a lesser extent than magnetite on average.

In some geological environments, an EM anomaly with magnetic correlation has a greater likelihood of being produced by sulphides than one which is non-magnetic. However, sulphide ore bodies may be non-magnetic (e.g., the Kidd Creek deposit near Timmins, Canada) as well as magnetic (e.g., the Mattabi deposit near Sturgeon Lake, Canada).

Iron ore deposits will be anomalously magnetic in comparison to surrounding rock due to the concentration of iron minerals such as magnetite, ilmenite and hematite.

Changes in magnetic susceptibility often allow rock units to be differentiated based on the total field magnetic response. Geophysical classifications may differ from geological classifications if various magnetite levels exist within one general geological classification. Geometric considerations of the source such as shape, dip and depth, inclination of the earth's field and remanent magnetization will complicate such an analysis.

In general, mafic lithologies contain more magnetite and are therefore more magnetic than many sediments which tend to be weakly magnetic. Metamorphism and alteration can also increase or decrease the magnetization of a rock unit.

Textural differences on a total field magnetic contour, colour or shadow map due to the frequency of activity of the magnetic parameter resulting from inhomogeneities in the distribution of magnetite within the rock, may define certain lithologies. For example, near surface volcanics may display highly complex contour patterns with little line-to-line correlation.

Rock units may be differentiated based on the plan shapes of their total field magnetic responses. Mafic intrusive plugs can appear as isolated "bulls-eye" anomalies. Granitic intrusives appear as sub-circular zones, and may have contrasting rings due to

Appendix C. $23-$

contact metamorphism. Generally, granitic terrain will lack a pronounced strike direction, although granite gneiss may display strike.

Linear north-south units are theoretically not well-defined on total field magnetic maps in equatorial regions due to the low inclination of the earth's magnetic field. However, most stratigraphic units will have variations in composition along strike which will cause the units to appear as a series of alternating magnetic highs and lows.

Faults and shear zones may be characterized by alteration which causes destruction of magnetite (e.g., weathering) which produces a contrast with surrounding rock. Structural breaks may be filled by magnetite-rich, fracture filling material as is the case with diabase dikes, or by non-magnetic felsic material.

Faulting can also be identified by patterns in the magnetic total field contours or colours. Faults and dikes tend to appear as lineaments and often have strike lengths of several kilometres. Offsets in narrow, magnetic, stratigraphic trends also delineate structure. Sharp contrasts in magnetic lithologies may arise due to large displacements along strike-slip or dip-slip faults.

APPENDIX D

EM ANOMALY LIST

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C X} \\ \mathbf{9 0 0 H Z} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
LINE 10010														
A 190.6	L	591313,5208896				13.4	8.6	15.0	6.5	27.2	28.6	20.9	38	0
B 215.1	S	592265,5208900				1.4	2.2	1.1	5.7	0.4	37.5	-	-	0
C 230.8	L	592792, 5208900				2.9	0.8	5.2	1.6	8.0	7.2	-	-	0
D 253.4	S	593533, 5208898				4.0	18.6	3.0	59.6	122.2	476.5	1.2	13	0
E 258.0	L	593682, 5208898				7.2	11.8	3.3	54.0	24.0	424.7	2.6	19	0
LINE 10020														
A 440.0	L	591284, 5208800				13.9	7.6	12.7	6.4	28.4	19.3	24.1	37	0
B 389.1	L	592744,5208793				2.5	2.2	4.7	1.7	4.9	8.0	9.8	56	0
C 361.6	S	593524, 5208800				5.1	20.9	8.7	70.5	165.0	537.2	1.7	15	0
D 355.7	L	593710,5208801				12.0	14.9	1.0	2.5	10.7	20.0	6.1	43	0
LINE 10030														
A 522.6	L	591217,5208693				10.9	5.7	13.1	4.4	21.3	19.1	26.7	41	0
B 548.6	S	592207, 5208699				2.4	2.2	3.7	7.2	17.4	22.8	-	-	0
C 562.1	L	592698,5208694				6.5	3.8	4.1	2.8	5.1	3.3	-	-	0
D 586.1	S	593527, 5208696				3.7	10.5	2.3	31.6	53.4	246.2	-	-	0
E 591.2	L	593711,5208697				8.3	9.2	0.3	5.5	4.6	179.5	5.5	50	0
LINE 10040														
A 1029.2	L	591207,5208599				11.6	7.6	12.7	7.2	17.7	21.0	17.8	39	0
B 983.0	L	592689,5208599				6.5	5.9	4.7	1.8	4.1	6.0	-	-	0
C 951.9	S	593566,5208601				3.4	8.5	9.4	21.6	15.5	177.4	-	-	0
D 945.1	L	593780, 5208600				11.2	15.3	11.3	17.0	32.3	85.4	5.6	41	0
LINE 10050														
A 1102.0	L	591156,5208496				13.2	9.2	16.4	12.9	28.4	24.0	15.8	38	0
B 1141.4	L	592667,5208503				1.5	5.0	2.4	3.6	3.9	1.9	1.9	26	0
C 1176.2	L	593932, 5208503				2.2	2.5	4.9	5.2	19.3	18.0	-	-	0
LINE 10060														
A 1356.0	S	590366,5208402				3.5	17.3	5.5	44.4	45.4	360.3	1.3	15	0
JOB 2012		CX=COAXIAL CP=COPLANAR	Note: EM values shown above are local amplitudes		${ }^{*}$ Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 1														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	$\begin{aligned} & \text { LONG } \\ & \text { (deg.) } \end{aligned}$	Secs. After Midnight	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	CP 7200 HZ Real (ppm)	$\begin{gathered} \hline \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
B 1352.5	L	590470, 5208403				13.3	15.1	1.4	11.1	14.0	78.5	6.1	43	0
C 1331.3	L	591132,5208402				14.5	10.3	15.5	10.1	29.0	29.2	16.8	36	0
LINE 10070														
A 1447.6	S	590261, 5208303				3.9	26.7	4.1	70.1	94.3	581.4	1.0	9	0
B 1451.5	L	590395, 5208302				13.8	17.3	15.0	61.9	135.5	581.4	3.9	35	0
C 1464.0	S	590852, 5208297				1.5	3.6	0.7	11.1	12.7	88.2	1.3	33	0
D 1471.6	L	591120, 5208297				12.7	9.5	16.8	9.6	30.4	26.5	16.2	38	0
LINE 10080														
A 2236.0	S	590271, 5208199				8.0	52.2	36.0	165.8	402.0	1208.3	2.1	8	0
B 2232.8	L	590369,5208199				34.6	48.7	10.2	49.7	99.2	257.8	6.1	27	0
C 2216.0	S	590861, 5208198				3.9	2.7	0.2	7.7	6.3	59.3	4.7	67	0
D 2207.5	L	591098, 5208198				16.5	13.9	23.8	13.8	55.8	61.7	15.5	34	0
LINE 10090														
A 2322.6	S	590236,5208093				3.5	21.6	6.5	69.5	120.0	445.0	1.1	9	0
B 2324.3	L	590298, 5208093				25.8	45.2	15.6	76.2	154.5	445.0	5.4	17	0
C 2345.7	L	591090, 5208096				9.4	11.1	14.0	9.4	33.8	21.3	8.4	40	0
D 2375.3	S	592163, 5208093				3.1	1.8	0.8	7.3	1.9	69.3	4.8	71	0
LINE 10100														
A 2548.6	S	590173,5208000				2.7	22.6	6.7	70.8	103.3	547.9	0.9	10	0
B 2545.7	L	590267,5208000				29.7	42.1	7.3	32.7	52.0	178.5	6.0	30	0
C 2520.0	L	591119, 5207999				13.6	10.8	21.7	20.6	47.2	23.5	13.0	33	0
D2472.8	L	592645,5207999				12.7	6.6	12.7	11.7	1.3	6.3	20.0	29	0
LINE 10110														
A 2626.0	L	590285, 5207908				22.3	17.9	164.4	37.1	207.4	126.3	52.0	22	0
B 2646.8	L	591080,5207895				20.9	17.0	31.9	37.1	91.8	59.3	13.4	29	0
LINE 10120														
A 207.8	L	590139,5207794				9.2	11.1	9.2	3.8	27.1	39.1	8.0	43	0
B 233.2	L	591041,5207799				18.8	12.0	31.2	30.4	69.8	55.2	17.6	31	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 2														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C X} \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Real }(\mathrm{ppm}) \end{array}\right\|$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) }) \\ \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
LINE 10130														
A 450.5	L	590122,5207702				15.2	20.4	15.9	16.1	28.0	85.4	7.1	36	0
B 443.2	S	590359,5207699				0.5	5.6	1.3	19.9	6.1	169.5	0.5	18	0
C 420.3	L	590989,5207703				27.6	22.6	83.0	79.4	269.1	201.3	16.7	27	0
LINE 10140														
A 523.0	L	590056,5207604				12.3	9.2	0.7	10.6	14.0	77.3	9.5	42	0
B 530.7	S	590311, 5207597				1.3	4.9	0.2	14.5	22.0	143.4	0.9	24	0
C 539.1	B	590607, 5207597				7.7	3.5	37.9	27.2	87.9	30.6	20.6	39	0
D 546.1	L	590835,5207600				7.8	4.9	18.7	13.8	56.1	30.2	15.6	44	0
LINE 10150														
A 765.6	L	590023,5207507				13.2	10.1	7.3	6.7	9.3	23.5	13.4	40	0
B 758.9	S?	590259,5207508				5.8	3.5	5.7	9.7	21.0	26.8	9.9	54	0
C 743.7	L	590772,5207511				17.7	14.1	16.4	12.5	51.4	34.0	14.9	34	0
D 687.2	L	592549, 5207504				4.4	4.9	5.3	0.8	13.8	15.3	-	-	0
LINE 10160														
A 828.1	L	589963,5207401				19.2	11.6	2.2	14.2	13.9	59.1	15.1	38	0
B 837.1	S?	590292,5207395				3.6	1.5	11.3	7.5	19.7	7.4	17.5	58	0
C 848.2	L	590672,5207396				26.1	15.0	25.4	24.7	60.6	83.7	22.4	30	0
D 898.4	L	592515,5207399				3.2	9.7	5.2	5.4	8.1	1.5	2.6	24	0
LINE 10170														
A 1314.2	L	589930,5207301				21.7	9.4	11.4	5.6	5.5	17.2	36.6	34	0
B 1303.1	S?	590301, 5207302				5.8	2.4	25.1	23.9	67.7	33.0	14.7	45	0
C 1292.8	L	59063? 5207299				27.2	13.8	70.8	24.2	120.2	77.1	44.3	26	0
D 1286.6	L	590860, 5207297				6.3	11.8	4.0	8.6	10.4	53.0	2.8	54	0
E 1237.1	L	592512,5207301				2.7	7.6	16.8	8.7	3.9	1.1	4.3	46	0
LINE 10180														
A 1368.4	L	589856,5207197				12.4	7.7	4.9	16.3	15.4	3.9	11.1	41	0
B 1386.5	L	590516,5207199				11.0	8.2	20.8	15.2	43.5	35.6	14.8	38	0
JOB 2012		$\begin{aligned} & \text { CX=COAXIAL } \\ & \text { CP=COPLANAR } \end{aligned}$	Note: EM shown ab local amp	values ve are tudes	${ }^{*}$ Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 3														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LATT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\mathbf{C P}$ $\mathbf{9 0 0 H Z}$ Real (ppm)	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \end{gathered}$	$\left\|\begin{array}{c} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{array}\right\|$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
C 1395.0	L	590793,5207196				14.2	15.5	7.8	4.7	23.7	13.3	9.2	38	0
D 1443.0	L	592424, 5207186				0.4	6.7	4.6	5.4	12.0	4.9	-	-	0
LINE 10190														
A 1612.1	L	589840, 5207102				14.8	9.0	7.2	7.6	15.9	25.4	17.7	40	0
B 1600.2	S	590263,5207100				2.2	6.7	4.3	18.8	19.7	175.8	1.8	31	0
C 1593.0	L	590493,5207099				18.2	13.0	40.8	20.4	70.6	40.5	22.2	31	0
D 1585.0	L	590762, 5207102				7.0	3.4	5.0	5.1	13.8	69.5	13.6	52	0
E 1576.5	S	591085,5207098				1.9	5.1	1.4	9.9	11.9	119.0	1.6	37	0
F 1534.3	L	592474,5207097				2.4	7.9	4.5	1.6	0.7	0.9	2.5	31	0
LINE 10200														
A 1673.1	L	589767,5207008				7.9	4.6	1.1	3.0	4.0	7.0	14.2	49	0
B 1691.2	L	590386, 5206999				17.2	13.2	19.5	15.7	52.7	52.4	15.4	34	0
C 1705.2	S	590835,5206995				1.4	9.9	1.0	26.8	14.8	248.4	0.6	16	0
D 1748.5	L	592424, 5206999				1.6	6.9	19.6	17.1	5.4	5.5	3.1	42	0
LINE 10210														
A 1921.3	L	589748, 5206904				10.4	5.0	4.5	5.3	6.3	9.3	20.5	45	0
B 1900.3	L	590410, 5206901				25.2	16.5	13.7	15.4	46.3	38.2	19.0	32	0
C 1894.6	L	590585, 5206899				12.3	13.9	3.1	0.3	4.1	0.7	8.1	41	0
D 1885.9	S	590873, 5206900				2.3	8.9	0.2	18.3	24.8	191.1	1.1	22	0
E 1870.9	S	591417, 5206903				3.5	9.2	6.3	24.5	45.0	198.2	2.3	30	0
F 1839.7	L	592456, 5206899				8.5	5.6	8.2	5.3	4.6	0.4	-	-	0
LINE 10220														
A 1989.9	L	589667,5206798				7.5	3.8	3.1	1.0	9.9	1.7	21.8	52	0
B 2010.0	L	590368, 5206795				20.1	13.9	15.1	13.4	46.0	33.0	17.5	33	0
C 2015.8	L	590564, 5206795				12.5	15.3	6.3	4.5	18.4	4.7	7.2	42	0
D 2020.9	S	590751,5206794				1.4	6.8	2.7	15.7	10.8	149.0	-	--	0
E 2046.1	S	591764, 5206801				1.2	5.5	2.5	15.5	19.7	127.2	1.1	27	0
F 2062.8	L	592359,5206798				3.9	4.1	2.2	2.9	9.2	2.7	-	-	0
JOB 2012		$\begin{gathered} \mathrm{CX}=\mathrm{COAXIAL} \\ \mathrm{CP}=\text { COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 4														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \mathbf{C X} \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{CP} \\ \mathbf{9 0 0 \mathrm { HZ }} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ \mathbf{7 2 0 0 \mathrm { HZ }} \\ \text { Real (ppm) } \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
G 2077.0	S	592736,5206792				4.8	18.1	9.3	59.0	95.7	460.2	1.8	15	0
LINE 10230														
A 2232.3	L	589628,5206701				15.3	7.2	5.3	12.8	3.2	3.4	19.2	40	0
B 2212.1	L	590333, 5206701				15.3	9.5	6.4	9.0	24.1	29.1	16.6	37	0
C 2206.2	L	590531,5206703				9.9	10.7	12.2	5.1	25.0	2.3	10.0	43	0
D 2197.3	S	590851,5206697				1.5	9.7	0.9	17.0	5.9	195.8	0.7	18	0
E 2170.5	S	591823, 5206707				4.7	6.3	3.2	15.5	15.5	137.4	2.7	61	0
F 2151.4	L	592420, 5206696				3.4	7.0	2.8	0.8	12.0	2.5	2.7	50	0
G 2137.9	S	592842,5206704				8.0	4.3	22.8	10.3	26.5	67.4	-	-	0
LINE 10240														
A 2363.4	L	589569,5206598				16.4	6.3	4.5	1.8	4.5	4.3	39.8	38	0
B 2382.8	L	590254, 5206603				12.2	8.6	15.7	19.1	69.4	47.4	12.5	37	0
C 2394.0	S	590670,5206601				2.8	8.6	0.2	16.5	12.9	182.3	1.4	27	0
D 2419.1	S	591585,5206601				2.2	7.7	2.4	19.1	15.5	153.3	1.4	26	0
UNE 10250														
A 2604.2	L	589577, 5206501				11.7	3.3	7.5	7.2	8.4	5.0	37.2	43	0
B 2586.3	L	590245,5206498				21.1	13.6	31.4	42.6	129.1	183.5	15.1	29	0
C 2577.7	S	590562,5206499				1.7	6.8	2.7	17.6	15.8	116.0	1.3	25	0
D 2544.6	S	59157:,5206503				3.5	7.0	0.2	17.0	5.8	121.4	2.0	32	0
E 2516.9	L	592391,5206497				2.6	6.4	3.3	1.5	4.6	9.3	-	-	0
LINE 10260														
A 2657.1	L	589520, 5206402				12.5	4.1	4.5	3.7	11.0	4.2	39.6	40	0
B 2674.1	L	590093,5206397				37.3	25.4	50.2	29.9	123.3	82.1	25.6	24	0
C 2685.4	S	590472,5206395				7.1	16.2	0.6	28.4	45.3	217.9	2.5	24	0
D 2719.3	S	591583,5206400				1.7	5.2	0.7	10.0	2.5	88.1	1.3	33	0
E 2744.7	L	592372, 5206403				1.5	8.5	3.8	3.8	5.1	3.2	1.5	19	0
LINE 10270														
A 2922.1	L	589538,5206302				15.7	6.0	14.0	2.1	21.2	15.7	49.7	39	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 5														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \mathbf{9 0 0 \mathrm { HZ }} \\ \begin{array}{c} \text { Quad } \\ \text { (ppm) } \end{array} \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{C P} \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{array}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
B 2915.0	S	589771,5206304				2.5	10.0	3.1	29.4	11.9	210.7	1.3	20	0
C 2906.2	L	590076,5206306				34.3	22.1	30.2	31.6	88.0	83.6	21.3	25	0
D 2892.3	S	590557,5206302				2.8	4.8	2.2	13.4	7.0	102.1	2.4	41	0
E 2835.1	L	592366,5206300				8.2	6.5	2.2	6.8	1.0	1.1	-	-	0
LINE 10280														
A 2973.7	L	589514,5206205				9.5	3.3	3.1	4.2	2.4	3.8	28.5	45	0
B 2986.9	L	590002,5206199				27.3	24.6	36.8	37.5	104.9	94.7	13.9	27	0
C 3021.7	S	591270,5206201				5.1	3.3	10.6	6.7	9.1	50.8	14.2	54	0
D 3054.6	S	592320,5206201				6.3	2.5	7.6	5.4	1.7	3.0	23.2	47	0
LINE 10290														
A 3223.8	L	589560,5206105				21.9	13.3	13.8	5.6	17.3	24.9	24.5	35	0
B 3211.6	L	589953,5206098				21.3	18.5	26.9	20.0	41.3	44.8	14.9	28	0
C 3205.7	3	59017 2 5206104				4.0	15.1	3.7	46.4	61.9	348.8	1.4	14	0
D 3178.2	S	591191,5206102				4.9	7.9	9.8	21.9	28.3	186.3	3.0	54	0
E 3143.2	L	592338,5206098				15.5	11.4	1.7	4.3	3.1	4.3	13.6	32	0
LINE 10300														
A 816.2	S	589524,5206001				11.8	6.7	6.9	9.3	10.2	47.0	16.2	41	0
B 814.8	L	589571, 5206002				11.8	6.7	0.0	7.9	2.2	17.3	13.5	43	0
C 804.2	L	589918, 5205999				23.4	23.4	35.6	41.4	83.2	111.8	11.3	27	0
D 801.0	L	590021,5205997				27.3	22.1	10.6	24.7	54.0	532.7	12.8	31	0
E 798.0	S	590117,5205998				3.3	19.1	6.8	74.3	175.8	532.7	1.1	9	0
F 764.8	S	591165,5206001				3.1	10.9	6.9	32.5	41.5	265.2	1.8	24	0
G 723.1	L	592333,5206000				18.6	21.8	5.0	3.3	7.7	0.3	8.4	26	0
LINE 10310														
A 540.7	L	589926, 5205897				33.2	30.4	64.4	42.2	115.0	79.4	18.2	25	0
B 542.3	L	589987, 5205897				19.5	18.1	64.4	42.9	115.0	83.4	17.0	28	0
C 544.6	S	590074,5205898				2.5	18.4	13.7	44.4	103.2	168.3	1.6	14	0
D 576.9	S	591204,5205899				0.1	4.6	2.5	13.8	5.5	102.1	0.5	17	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 6														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \hline \mathbf{C X} \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
E 608.7	L	592258,5205897				25.1	38.8	3.9	0.7	11.9	5.4	6.2	21	0
LINE 10320														
A 459.2	L	589893,5205807				29.4	25.9	53.4	38.2	104.0	84.0	17.4	24	0
B 455.8	L	590010, 5205804				10.7	15.6	38.6	60.5	189.1	156.5	5.6	36	0
C 381.9	L	592284, 5205801				6.2	16.2	3.5	3.8	3.2	1.8	3.1	18	0
LINE 10330														
A 222.5	S?	590406,5205705				0.4	6.0	0.8	21.6	12.3	194.9	0.5	18	0
B 275.5	L	592215,5205696				6.4	13.3	8.0	2.5	12.1	4.8	3.6	41	0
C 295.4	S	592837,5205699				0.8	4.8	2.0	14.4	1.0	116.5	0.8	27	0
LINE 10340														
A 280.2	L	589803,5205607				11.7	11.5	21.0	14.4	22.2	58.7	11.5	34	0
B 285.3	L	589944, 5205608				13.3	18.2	44.9	41.6	128.5	77.9	8.8	30	0
$\bigcirc 521.5$	3	5911495205599				3.6	2.6	5.9	4.3	5.9	28.2	-	-	0
D 356.4	L	592206,5205601				2.3	7.2	8.2	5.4	7.1	11.1	-	-	0
E 377.5	S	592864,5205594				0.7	3.4	0.2	11.6	4.7	81.6	-	-	0
LINE 10350														
A 526.7	L	589758,5205501				22.0	13.7	14.6	14.0	50.5	58.9	20.0	29	0
B 522.6	L	589886,5205502				4.0	8.1	21.4	35.9	89.9	69.1	3.3	49	0
C 514.1	L	590166,5205503				18.2	19.7	118.2	74.1	269.9	161.9	19.0	26	0
D 492.7	B?	590831, 5205504				3.0	9.3	7.6	36.1	52.0	302.2	1.9	22	0
E 472.9	S	591441, 5205500				4.7	4.3	13.1	11.6	18.1	103.6	8.7	54	0
F 446.0	L	592227,5205501				10.3	22.0	11.1	2.2	36.1	40.9	4.0	36	0
G 425.4	S	592875,5205503				0.3	6.8	0.7	22.3	5.7	166.2	-	-	0
LINE 10360														
A 610.8	L	589758,5205408				22.8	16.3	10.8	21.4	20.9	88.4	14.1	31	0
B 614.2	L	589868, 5205402				13.6	12.0	55.3	37.8	107.2	123.5	16.4	32	0
C 625.7	L	590262,5205395				18.0	26.3	81.6	65.3	208.6	144.8	11.0	27	0
D 641.9	S?	590832,5205401				2.4	6.5	6.6	21.8	39.6	166.9	2.2	30	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		${ }^{*}$ Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 7														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	$\begin{aligned} & \text { LONG } \\ & \text { (deg.) } \end{aligned}$	Secs. After Midnight	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ \mathbf{9 0 0 \mathrm { HZ }} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{array}$	$\begin{gathered} \hline \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	Cond. (siemens)	DIKE (m) (m)	Mag. Corr (nT)
E681.0	L	592191, 5205395				8.5	7.0	6.5	1.4	25.1	17.6	13.0	38	0
F699.8	S	592837,5205400				1.3	3.7	2.1	13.0	6.0	90.5	1.4	35	0
LINE 10370														
A 839.8	L	589798, 5205302				29.7	27.1	24.4	48.5	101.2	111.1	10.9	27	0
B 824.8	L	590328, 5205297				4.6	3.5	73.3	52.5	214.1	140.9	17.2	36	0
C 808.2	S	590868,5205305				3.4	4.0	4.0	4.5	5.2	56.4	-	--	0
D 765.1	L	592242, 5205299				5.6	6.2	5.8	19.3	20.8	8.6	-	-	0
E 747.6	s	592817 <205297				1.0	5.9	3.8	19.3	6.2	135.7	1.0	26	0
LINE 10380														
A 928.4	L	589805,5205202				11.7	9.7	11.1	24.8	67.2	67.9	8.1	39	0
B 941.6	L	590282, 5205198				27.4	22.2	135.6	112.8	318.7	158.6	19.9	21	0
C 945.8	L	590437, 5205200				34.3	24.4	62.9	39.9	165.2	118.2	24.2	24	0
D 954.1	S	590737,5205198				6.8	3.3	14.3	6.7	16.4	55.9	-	-	0
E 1012.7	S	592764,5205199				0.1	3.3	2.3	8.9	3.7	73.7	-	-	0
F 1018.9	S?	592996, 5205199				7.1	4.5	24.4	16.3	53.2	15.9	-	-	0
LINE 10390														
A 1152.5	L	589891, 5205098				12.2	11.9	35.4	39.0	114.5	81.5	10.0	31	0
B 1147.3	S	590070,5205095				12.7	13.4	71.9	84.3	230.3	102.6	10.0	31	0
C 1136.4	S	590453, 5205099				43.5	22.2	98.4	38.3	219.0	86.9	47.0	22	0
D 1084.1	L	592167,5205098				7.6	6.8	3.9	4.5	20.2	14.9	-	-	0
E 1063.1	S	592792,5205098				0.8	2.3	5.2	7.5	5.0	46.0	1.7	90	0
LINE 10400														
A 1565.0	L	589890, 5205001				13.9	7.7	33.1	19.4	64.8	43.6	24.4	32	0
B 1584.2	L	590575,5204996				16.5	9.7	76.6	44.7	162.5	147.3	27.1	30	0
C 1629.5	L	592156,5204995				5.2	5.2	5.5	2.9	6.6	11.2	-	-	0
D 1647.0	S	592720,5204996				0.0	2.2	1.1	7.7	0.7	58.1	-	-	0
LINE 10410														
A 1812.2	S?	589313,5204899				1.3	2.1	3.3	5.4	4.5	44.0	2.5	85	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 8 [

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	CX 900HZ Quad (ppm)	$\begin{gathered} \text { CP } \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\left\|\begin{array}{c} \mathrm{CP} \\ 7200 \mathrm{HZ} \\ \operatorname{Real}(\mathrm{ppm}) \end{array}\right\|$	$\begin{array}{c\|} \hline \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{array}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
B 1792.7	L	589937, 5204891				22.1	10.9	9.9	6.5	31.8	27.8	29.5	33	0
C 1728.3	L	592153,5204899				5.4	10.1	3.3	4.3	10.6	20.8	2.9	51	0
LINE 10420														
A 1891.5	L	589947, 5204800				8.8	5.9	4.6	6.9	9.0	13.9	12.1	42	0
B 1915.3	L	590810, 5204800				9.2	13.5	35.7	61.5	178.1	175.5	5.0	37	0
C 1950.7	L	592091, 5204801				1.6	1.7	8.0	0.1	36.0	5.6	8.7	64	0
D 1972.9	S?	592890, 5204803				1.6	3.5	4.6	11.0	23.7	58.7	-	-	0
Live 10430														
A 2122.7	L	589994, 5204699				20.2	12.7	4.4	16.2	19.3	17.7	14.8	36	0
B 2094.0	L	590848,5204703				30.3	19.7	47.1	21.0	96.1	58.7	28.2	26	0
C 2063.5	B	591741, 5204707				8.3	7.9	19.4	22.1	59.3	67.2	8.7	45	0
D 2048.9	L	592134, 5204701				4.2	13.7	5.1	6.6	14.2	28.1	2.5	20	0
E 2024.1	B	592914, 5204706				1.1	10.4	3.7	37.1	108.5	234.8	-	-	0
LINE 10440														
A 214.4	S	589926,5204600				3.0	3.4	7.8	18.5	21.1	91.0	3.1	60	0
B 217.5	L	590018,5204600				14.6	8.8	10.6	16.7	29.2	76.2	14.8	37	0
C 244.8	L	590838,5204596				37.7	30.1	50.8	38.1	119.7	108.8	19.9	25	0
D 277.0	S?	591864,5204604				0.1	8.6	5.5	8.2	24.4	29.3	0.8	13	0
E 284.1	L	592077, 5204602				7.1	3.9	2.8	2.9	10.0	7.2	8.0	40	0
F311.5	B	592965,5204600				1.0	6.4	3.5	20.4	49.0	113.9	1.0	23	0
LINE 10450														
A 465.4	S	589908, 5204500				2.7	13.2	1.7	39.7	34.9	325.9	1.0	14	0
B 459.2	L	590139,5204499				17.9	12.7	15.7	10.2	14.9	71.2	17.9	34	0
C 438.5	L	590876, 5204502				27.9	25.8	37.8	38.7	101.7	122.0	13.7	27	0
D 405.1	L	592061, 5204500				4.8	6.8	15.8	8.8	21.5	13.5	7.4	43	0
E 376.0	S	593012, 5204512				0.6	2.7	1.2	5.0	2.5	47.1	-	-	0
LINE 10460														
A 585.6	S	589956, 5204402				2.2	4.0	9.7	11.1	10.6	83.0	3.6	64	0
JOB 2012		$\begin{aligned} & \text { CX=COAXIAL } \\ & \text { CP=COPLANAR } \end{aligned}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 9														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C X} \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{C P} \\ \mathbf{7 2 0 0 \mathrm { HZ }} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{array}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
B 595.4	L	590263,5204401				1.1	3.5	5.6	6.5	25.9	29.4	4.6	67	0
C 651.3	L	592060, 5204401				8.0	8.9	5.3	7.1	7.1	4.5	6.5	39	0
D 660.7	B	592359, 5204401				7.4	6.5	42.0	20.8	60.7	32.6	18.3	40	0
E 677.1	\checkmark	5929665204396				1.0	3.9	2.1	13.6	19.2	88.7	1.1	32	0
LINE 10470														
A 848.5	S	588638, 5204301				3.8	7.8	6.5	24.0	32.0	196.9	2.7	32	0
B 821.3	S	589643,5204295				2.0	8.9	5.3	24.2	15.8	239.3	1.4	25	0
C 799.5	L	590401, 5204296				6.8	7.8	3.3	25.7	33.4	89.0	3.7	49	0
D 783.3	L	590997, 5204297				14.1	15.6	15.3	15.3	41.5	25.6	8.8	35	0
E 752.3	L	592052, 5204299				10.4	7.8	7.0	2.3	3.2	5.4	-	-	0
LINE 10480														
A1161.0	S	588624, 5204193				2.5	14.2	3.5	44.8	79.5	351.5	1.0	13	0
B 1184.0	S	589411, 5204199				2.2	17.3	10.6	49.3	66.3	395.1	-	-	0
C 1210.7	L	590347, 5204203				1.9	7.6	3.1	17.9	62.4	130.8	-	-	0
D 1212.7	S	590417, 5204203				0.9	5.0	12.5	18.7	48.5	99.5	-	-	0
E 1231.1	L	591059, 5204197				17.4	18.5	50.0	46.5	117.8	72.7	11.6	30	0
F 1261.4	L	592026, 5204200				13.5	5.7	5.1	1.9	10.2	8.4	33.6	35	0
G 1274.8	S?	592458, 5204198				3.4	3.3	11.6	17.8	48.9	51.7	5.2	58	0
H 1295.0	S	593193, 5204199				1.5	3.8	1.0	6.8	2.2	56.9	-	-	0
LINE 10490														
A 1520.1	S	588634,5204096				2.3	13.2	5.0	38.9	53.0	308.1	1.1	15	0
B 1510.8	S	588950, 5204103				0.8	12.4	2.3	31.3	7.0	262.4	-	-	0
C 1495.9	S	589392, 5204098				4.3	17.9	5.8	48.6	61.5	382.9	1.5	16	0
D 1465.4	S	590387,5204104				5.3	16.7	16.3	50.4	107.1	431.2	2.8	21	0
E 1461.8	L	590507,5204103				4.2	9.0	18.8	18.3	49.1	71.5	-	-	0
F 1452.0	L	590827,5204097				7.2	5.8	16.7	3.3	18.7	0.6	18.6	46	0
G 1441.6	L	591177, 5204097				11.2	8.6	40.9	30.5	91.4	42.4	15.8	35	0
H 1414.6	L	592029,5204097				3.9	7.2	7.8	10.0	1.1	6.6	-	-	0
JOB 2012		$\begin{gathered} C X=\text { COAXIAL } \\ C P=\text { COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 10														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{CP} \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\left\|\begin{array}{c} \mathrm{CP} \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{array}\right\|$	$\begin{gathered} \hline \mathbf{C P} \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	Cond. (siemens)	DIKE (m)	Mag. Corr (nT)
I 1387.4	S	592949, 5204098				0.3	3.0	1.2	6.8	1.8	62.3	-	-	0
J 1381.1 1	S	593183,5204100				0.4	3.6	1.2	11.2	2.8	94.1	-	-	0
LINE 10500														
A 1584.1	S	588560,5204002				2.3	8.9	0.1	24.8	26.8	202.9	1.0	18	0
B 1599.9	S	589021, 203996				1.5	13.8	7.7	36.9	28.0	309.6	1.1	16	0
C 1607.8	S	589291, 5204001				1.8	11.8	7.4	32.7	62.1	273.9	1.3	18	0
D 1638.4	S	590293,5204001				5.2	11.3	7.9	15.0	38.6	120.9	3.5	33	0
E1643.2	L	590450,5203998				4.6	2.6	13.4	8.3	21.0	66.1	-	-	0
F 1656.0	L	590861,5204000				5.7	1.5	25.6	3.7	31.5	13.7	75.7	66	0
G 1668.2	L	591295,5204005				14.6	13.8	45.6	45.9	120.7	162.6	11.6	33	0
H 1689.2	L	592005,5203999				9.6	6.6	11.7	5.4	7.9	3.6	17.0	36	0
I1715.9	S?	592840,5204004				2.2	2.4	7.0	9.4	19.3	45.9	4.5	69	0
J1724.3	S	593128, 5204002				2.5	3.2	0.9	9.9	4.1	80.3	2.5	51	0
LINE 10510														
A 1953.0	S	588690, 5203902				2.4	2.9	1.6	8.8	8.2	64.7	-	-	0
B 1935.2	S	589316, 5203902				3.5	16.6	9.2	50.4	103.7	381.3	-	-	0
C 1907.7	L	590203,5203898				8.9	7.3	9.1	5.9	18.0	37.0	12.0	45	0
D 1883.6	L	591035,5203900				13.9	8.9	17.9	0.9	32.4	10.1	27.7	38	0
E 1872.5	L	591417,5203901				8.1	12.7	11.8	41.3	114.3	135.4	4.0	27	0
F 1855.0	L	591959,5203898				4.7	6.1	2.3	6.6	8.9	13.2	-	-	0
LINE 10520														
A 2015.7	S	588660, 5203798				2.0	3.1	4.8	9.7	11.5	64.3	2.4	70	0
B 2036.1	S	589322,5203801				2.8	18.1	8.9	54.6	110.1	414.0	-	-	0
C 2061.5	L	590111, 5203798				9.7	10.4	9.3	6.3	14.9	40.6	8.8	42	0
D 2063.0	S	590163,5203798				9.6	10.4	8.5	18.7	37.8	90.8	5.9	42	0
E 2077.1	S	590638, 5203803				1.1	3.4	13.4	5.5	11.6	40.2	5.7	65	0
F 2090.0	L	591063,5203803				10.8	5.7	9.7	0.3	11.0	11.6	29.6	43	0
G 2102.5	L	591480, 5203797				13.3	17.4	5.9	48.3	103.7	185.7	3.3	40	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 11														

EM Anomaly List

Letel Fid	Intern\|	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \hline \mathbf{C X} \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	CX $900 H Z$ Quad (ppm)	$\begin{gathered} \hline \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{CP} \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	CP 7200 HZ Real (ppm)	$\begin{gathered} \hline \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
H2117.6	L	591975,5203801				9.8	12.3	3.2	0.5	2.4	0.1	6.6	34	0
I 2139.5	S	592733,5203803				3.0	3.0	10.4	8.9	10.4	80.1	7.5	62	0
LINE 10530														
A 2365.6	S	589471, 5203699				3.4	16.3	8.2	48.0	100.4	376.8	1.5	16	0
B 2345.5	S	590115,5203699				1.7	8.4	14.8	41.4	90.0	203.9	2.1	25	0
C 2330.5	S	590672,5203700				3.2	3.9	11.2	8.2	11.3	45.2	7.0	56	0
D 2318.5	L	591128, 5203703				12.0	9.2	42.4	3.1	20.7	119.1	35.1	35	0
E 2306.3	L	591575, 5203703				21.8	21.5	63.8	48.4	143.0	101.1	15.1	27	0
F 2294.0	L	591967, 5203697				3.5	6.8	6.0	4.5	4.2	3.5	3.2	52	0
LINE 10540														
A 2482.8	S	589494, 5203603				3.9	14.8	4.8	43.1	82.2	332.8	-	-	0
B 2496.1	L	589941, 5203601				6.4	10.5	4.7	20.4	36.8	152.2	-	-	0
C 2515.6	S?	590597, 5203599				6.5	14.4	1.3	53.4	48.6	441.4	2.0	19	0
D 2531.7	L	591182,5203601				17.1	2.3	1.2	3.3	5.6	30.0	96.7	55	0
E 2545.2	L	591633,5203596				25.4	41.4	47.9	54.9	163.6	105.9	7.1	28	0
F 2556.2	L	591970,5203602				13.8	3.8	19.4	1.4	22.8	4.0	-	-	0
LINE 10550														
A 2788.5	S	589670, 5203498				4.2	14.4	16.9	43.8	98.6	360.4	2.7	24	0
B 2776.8	S	590131, 5203499				2.1	7.9	2.2	22.0	15.7	176.4	1.2	24	0
C 2746.1	L	591275,5203500				7.1	7.1	12.8	10.3	21.1	80.5	9.0	46	0
D 2735.3	L	591671, 5203504				24.2	36.0	36.1	42.6	119.6	104.9	7.4	28	0
LINE 10560														
A 3022.4	S	589721, 5203398				4.2	16.3	7.3	48.5	83.7	383.6	1.7	18	0
B 3050.3	S	590722, 5203404				2.5	3.9	2.4	9.6	2.3	68.8	2.7	49	0
C 3067.4	L	591310,5203396				26.8	14.2	32.1	34.0	13.0	83.2	23.1	30	0
D 3078.4	L	591698,5203394				25.1	33.0	35.2	56.8	107.4	361.6	7.5	27	0
E 3087.2	L	591944, 5203408				17.7	6.7	12.5	4.6	12.9	0.5	43.3	20	0
LINE 10570														
A 3618.1	S	589674, 5203299				2.6	6.4	6.9	20.6	16.7	169.3	2.4	35	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM shown a local am	$\begin{aligned} & \text { alues } \\ & \text { re are } \\ & \text { tudes } \end{aligned}$	*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 12														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\underset{\text { (deg.) }}{\text { LAT }}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \text { CP } \\ \text { 7200HZ } \\ \text { Real }(\mathrm{ppm}) \end{array}\right\|$	$\begin{gathered} \hline \mathbf{C P} \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	Cond. (siemens)	DIKE (m)	Mag. Corr (nT)
B 3626.8	S	52997S, 5203298				4.2	11.4	11.0	34.4	45.0	302.4	2.4	26	0
E 3650.4	S	590711, 5203299				1.6	9.1	0.3	28.5	7.6	245.8	-	-	0
K 3671.2	L	591401, 5203297				18.7	13.3	19.7	47.3	49.1	314.9	9.9	34	27
L 3680.3	L	591723,5203300				10.7	10.8	11.7	13.8	22.9	35.1	8.4	36	85
N 3688.4	L	591962,5203291				7.9	3.3	18.7	1.6	17.1	3.4	15.6	35	0
LINE 10580														
A 3914.3	S	590109,5203202				2.5	6.0	9.9	15.1	11.0	138.9	2.3	62	0
B 3907.9	S	590337,5203200				2.7	2.8	12.9	11.6	14.6	86.3	-	-	0
C 3901.9	S	590555,5203199				6.0	4.6	19.0	14.1	22.3	108.9	12.4	49	0
D 3875.5	L	591452,5203201				6.7	9.6	13.4	5.7	27.3	32.9	7.1	48	0
E 3865.2	L	591767,5203200				10.1	11.1	16.6	22.1	24.9	22.6	7.4	39	0
F3859.1	L	591937,5203199				11.4	20.4	24.9	1.3	13.5	3.3	7.8	24	0
LINE 10590														
A 4059.4	S	590294,5203102				1.0	15.8	4.6	45.5	61.2	371.4	0.7	13	0
B 4094.6	L	591535,5203099				9.2	1.4	8.3	13.8	19.4	20.9	29.3	47	0
C 4107.5	L	591934,5203097				1.5	2.4	8.3	3.8	2.4	18.8	-	--	0
D 4113.9	S	592139,5203099				5.4	4.4	20.9	6.1	22.3	57.8	-	-	0
E 4134.0	S	592869,5203098				3.2	2.4	0.3	7.6	3.3	58.0	3.8	72	0
LINE 10600														
A 4329.5	S	590246,5202997				0.7	9.5	1.1	28.2	69.0	211.3	-	-	0
B 4322.1	S	590519,5202999				3.1	14.5	5.4	43.9	91.7	329.6	1.3	15	0
C 4290.2	L	591598,5203003				19.7	8.2	11.3	12.5	29.3	30.2	29.1	35	0
D 4284.2	L	591786,5203000				11.9	13.3	11.0	11.8	29.8	11.5	8.0	36	0
E 4269.6	S	592201,5203003				3.8	4.4	0.1	16.2	5.1	129.9	-	-	0
F 4249.2	S	592837,5203001				3.9	4.7	15.2	19.9	37.0	167.2	5.3	51	0
LINE 10610														
A 4559.3	S	589937,5202900				1.3	3.9	1.7	14.0	4.4	116.9	1.2	33	0
B 4575.5	S	590537,5202899				2.6	15.6	15.2	47.0	106.3	342.2	1.9	18	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 13														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) }) \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
C 4613.1	L	591821, 5202902				7.3	5.6	7.3	7.5	7.1	5.8	-	-	0
D 4624.0	S	592150,5202900				2.9	5.4	2.1	10.1	2.1	72.3	2.5	40	0
E 4646.0	S	592891, 5202897				1.4	3.7	3.9	11.8	14.7	113.1	1.9	39	0
LINE 10620														
A 4834.5	S	590370,5202799				0.3	6.9	1.2	21.3	21.2	177.1	0.5	18	0
B 4827.1	S	590659,5202800				3.9	13.1	9.6	42.2	78.6	329.4	2.1	21	0
C 4792.7	L	591872,5202799				7.1	4.5	4.7	4.6	11.5	9.6	13.7	44	0
LINE 10630														
A 5004.4	S	590322,5202699				1.4	8.3	0.7	25.6	12.0	204.2	0.6	17	0
B 5013.7	S	590675,5202691				1.3	10.6	3.0	31.5	37.4	262.4	0.7	13	0
C 5041.2	S	591637,5202700				3.0	2.1	4.4	8.6	15.8	44.5	5.6	60	0
D 5049.8	L	591893,5202699				2.6	1.0	5.0	0.8	4.1	4.2	-	-	0
E 5092.1	S	593351, 5202699				1.4	1.1	5.0	6.5	8.4	52.7	-	-	0
LINE 10640														
A 5279.2	S	589910,5202599				0.1	2.1	0.1	7.3	2.9	54.3	-	-	0
B 5256.8	S	590723, 5202605				2.8	7.7	5.3	20.4	15.1	185.2	2.1	31	0
C 5233.6	S	591579, 5202600				5.9	5.2	2.4	17.0	27.0	133.8	4.0	53	0
D 5226.0	L	591833,5202605				5.1	2.2	8.4	5.7	10.3	9.2	-	-	0
E 5189.2	S	593068, 5202601				1.9	1.2	0.9	4.8	7.1	26.0	-	-	0
LINE 10650														
A 5450.9	S	591295,5202498				1.5	6.7	8.1	16.9	19.6	140.9	2.0	32	0
B 5468.9	L	591877, 5202496				2.0	4.5	1.9	7.6	3.0	4.8	-	-	0
C 5522.5	S?	593738, 5202499				1.0	3.5	6.7	14.0	6.9	123.9	2.1	40	0
LINE 10660														
A 5652.4	S	591453,5202406				1.2	15.5	3.4	54.8	90.5	431.2	0.7	11	0
E 5646.8	L	$59164^{\text {¢ }} 5202402$				12.9	15.7	11.2	16.1	35.8	39.1	6.8	38	0
C 5641.3	L	591814, 5202399				3.8	6.3	6.4	9.3	1.4	5.8	3.3	51	0
D 5633.1	L	592077, 5202400				7.3	7.4	5.9	12.2	23.1	33.5	6.0	48	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: E shown a local am	values ve are tudes	*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 14														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{gathered}\right.$	$\begin{gathered} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
LINE 10670														
A 6096.5	S?	588791, 5202300				2.8	6.1	4.1	21.2	26.3	185.0	2.1	31	0
B 6176.5	L	591616,5202295				9.7	7.8	4.7	1.0	14.7	22.5	12.8	41	0
C 6181.2	L	591767,5202295				8.1	3.8	13.4	8.2	19.0	0.7	22.9	37	0
D 6192.1	L	592129,5202294				11.1	11.5	7.7	18.5	11.5	82.7	6.5	41	0
E 6248.9	S?	594096, 5202301				3.0	8.5	2.2	30.4	17.4	251.4	1.5	22	0
LINE 10680														
A 6461.3	S	588956, 5202200				1.6	4.3	0.6	13.5	3.6	123.3	1.2	31	0
B 6382.6	L	591648, 5202204				14.5	10.4	17.3	17.5	22.6	28.9	14.3	35	0
C 6377.2	L	591807, 5202199				5.3	6.7	15.2	8.3	9.7	1.7	-	-	0
D 6364.5	L	592223,5202205				14.5	7.3	22.0	17.4	23.8	46.8	22.7	36	0
E 6294.1	S?	594083, 5202206				1.4	5.2	1.7	15.5	10.7	140.0	1.1	26	0
LINE 10690														
A 6542.4	S	588528,5202097				1.9	1.3	1.6	4.6	0.2	43.6	-	-	0
B 6635.5	L	591755,5202100				19.0	2.5	7.4	6.7	14.0	8.6	91.0	39	0
C 6652.0	L	592289,5202100				14.3	8.9	9.7	8.0	11.1	7.7	18.0	40	0
D 6713.6	S	593992, 5202101				1.6	3.4	1.6	5.5	1.3	48.2	-	-	0
LINE 10700														
A 6928.4	S	588571, 5202000				2.1	1.1	1.4	4.2	3.6	33.1	-	-	0
B 6843.7	L	591625,5202000				11.1	9.3	4.9	15.0	34.2	16.1	8.1	40	0
C 6839.3	L	591749, 5201997				5.9	11.6	18.5	4.9	26.1	7.1	5.6	34	0
D 6820.8	L	592389,5202000				14.1	6.5	3.5	10.2	8.1	38.6	19.3	42	0
E6803.8	S	592997,5201998				1.0	3.2	1.8	9.3	15.5	88.3	1.3	41	0
F 6792.7	S	593358,5201999				0.7	3.7	1.9	13.1	4.5	95.9	0.8	28	0
LINE 10710														
A 7055.1	S	590070,5201901				1.1	9.4	1.5	32.9	48.6	255.5	0.6	16	0
B 7060.0	S	590257, 5201900				1.3	9.4	2.6	31.7	37.7	260.1	0.7	16	0
C 7101.2	L	591731,5201895				8.1	2.9	5.3	2.3	10.4	8.1	27.8	35	0
JOB 2012		CX=COAXIAL $\mathrm{CP}=$ COPLANAR	Note: EM shown a local am	$\begin{aligned} & \text { alues } \\ & \text { re are } \\ & \text { tudes } \end{aligned}$	*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 15														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	LAT (deg.)	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \hline \mathrm{CX} \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{CX} \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	CP 900 HZ Quad (ppm)	$\begin{gathered} \mathrm{CP} \\ 7200 \mathrm{HZ} \\ \text { Real }(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
D 7111.2	S	592040, 5201898				3.2	19.0	4.1	54.8	124.3	440.2	1.0	10	0
E 7122.9	L	592448, 5201898				12.2	10.7	5.4	11.4	27.7	58.6	9.0	40	0
F 7133.4	L	592839, 5201898				2.0	5.4	8.4	2.8	12.6	28.8	--	-	0
G 7138.5	S	593031, 5201898				0.7	3.9	13.6	12.0	6.4	87.1	-	-	0
LINE 10720														
A 7327.1	S	590202, 5201802				0.4	4.5	1.3	15.7	14.3	130.6	0.5	18	0
B 7319.5	S	590486,5201803				2.8	7.1	11.7	26.3	37.5	211.9	2.9	35	0
C 7307.8	S	590922, 5201800				2.4	8.1	16.6	25.4	10.2	224.1	-	-	0
D 7283.2	L	591704, 5201799				10.0	2.4	11.8	2.4	3.1	1.5	76.8	29	0
E 7270.4	S	592107,5201802				0.8	19.4	2.5	63.0	115.4	497.0	0.6	15	0
F 7257.7	L	592545,5201799				21.3	17.9	9.1	7.3	27.3	39.1	11.5	37	0
G 7215.7	S	594016, 5201801				1.6	2.1	2.6	6.6	1.6	52.8	-	-	0
LINE 10730														
A 7506.6	S	590464, 5201696				3.5	5.5	0.4	11.4	7.8	86.6	-	-	0
B 7517.7	S	590829, 5201693				3.4	8.3	1.3	20.9	19.6	179.4	-	\cdots	0
C 7531.4	S	591303,5201699				0.0	12.1	11.4	28.4	25.8	273.8	1.0	16	0
D 7542.7	L	591661, 5201697				4.0	8.6	6.6	1.9	9.8	8.5	3.3	41	0
E 7548.2	L	591820, 5201693				9.2	8.3	11.5	6.1	10.7	22.9	11.8	43	0
F 7556.9	S	592135,5201694				2.0	7.2	3.2	13.8	5.9	119.0	-	-	0
G 7561.5	S	592315,5201696				2.3	15.0	6.8	48.2	55.3	420.1	1.1	14	0
H 7568.8	L	592595,5201696				10.0	8.2	2.2	14.3	29.7	38.4	7.0	44	0
LINE 1074v														
A 7785.4	S	590508, 5201612				4.3	4.4	0.8	11.4	7.0	84.4	3.1	65	0
B 7770.6	S	590979, 5201604				2.8	6.2	7.1	11.5	5.0	95.3	-	-	0
C 7762.6	S	591256, 5201601				5.1	12.0	14.0	26.2	23.9	227.4	3.6	32	0
D 7748.5	L	591704, 5201600				10.2	6.2	25.3	2.2	23.4	26.4	-	-	0
E 7744.2	L	591828, 5201602				16.7	12.0	23.8	10.7	45.2	19.5	20.2	33	0
F 7719.8	S	592603, 5201598				20.2	10.8	3.3	34.3	27.4	282.3	11.8	37	0
JOB 2012		$\begin{aligned} & \text { CX=COAXIAL } \\ & \text { CP=COPLANAR } \end{aligned}$	Note: EM shown ab local amp		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 16														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \mathrm{CX} \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C P} \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C P} \\ 900 \mathrm{HZ} \\ \text { Quad } \\ (\mathrm{ppm}) \end{gathered}$	$\left\lvert\, \begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}\right.$	$\begin{gathered} \hline \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
G7716.9	L	592708, 5201598				20.2	33.1	14.2	27.2	50.0	148.4	5.1	33	0
H 7692.5	L	593373, 5201484				0.4	3.1	1.3	8.6	15.7	57.5	0.6	25	0
LINE 10750														
A 8269.5	S	590498, 5201494				3.3	5.3	0.8	12.6	4.6	100.9	-	-	0
B 8277.5	S	590796, 5201501				1.1	4.2	2.3	16.3	23.5	101.0	1.1	29	0
C 8281.9	L?	590953,5201504				1.1	2.4	16.5	13.4	33.1	12.3	5.7	62	0
D 8287.6	S	591148, 5201503				1.3	13.8	0.7	32.3	22.8	294.5	0.6	16	0
E8303.2	L	591626,5201501				8.4	5.4	9.4	3.0	8.6	5.3	18.8	32	0
F 8311.3	L	591845, 5201494				14.5	16.2	24.9	16.9	53.7	36.0	10.6	34	0
G 8340.4	L	592772, 5201480				10.6	11.2	5.2	1.8	2.7	1.5	8.9	38	0
H 8357.1	L	593298, 5201429				3.2	3.8	5.9	5.2	13.0	18.1	5.6	61	0
LINE 10760														
A 8531.6	S	590501, 5201396				2.7	5.9	1.5	9.2	8.5	80.1	-	-	0
B 8525.9	S	590703, 5201399				2.0	5.2	2.7	12.5	10.1	94.8	1.8	34	0
C 8512.1	S	591202, 5201399				3.4	12.9	5.1	33.7	40.7	308.0	1.6	20	0
D 8490.0	L	591946, 5201401				20.2	24.3	35.5	19.8	67.4	37.9	11.5	30	0
E 8463.6	L	592813, 5201398				16.1	13.1	15.8	12.0	24.1	13.2	14.1	37	0
F 8446.2	L	593363,5201381				4.0	13.0	0.7	11.4	4.4	79.2	-	-	0
LINE 10770														
A 8720.5	S	590508, 5201299				1.5	8.3	2.9	21.8	12.7	176.0	1.0	21	0
B8725.5	S	590704, 5201297				2.0	10.2	1.5	25.7	21.3	212.1	0.9	17	0
C8739.0	S	$59119^{\circ} 5201296$				3.2	16.3	2.7	39.9	56.0	337.1	1.1	15	0
D 8751.7	L	591583, 5201298				16.5	13.4	4.8	5.1	12.8	6.8	9.5	26	0
E 8761.2	L	591863, 5201296				29.9	24.6	16.8	16.7	43.3	66.7	15.7	29	0
F 8764.6	L	591980, 5201297				22.6	17.1	32.8	23.9	62.6	105.2	18.1	30	0
G 8776.0	S	592375, 5201298				2.5	3.6	6.4	8.9	6.5	65.8	3.7	66	0
H 8788.9	L	592827, 5201297				12.8	9.8	7.3	3.6	28.2	27.2	14.7	40	0
LINE 10780														
A 8978.6	S	590539, 5201194				1.3	20.6	0.8	55.4	51.0	453.4	-	-	0
JOB 2012		$\begin{aligned} & \text { CX=COAXIAL } \\ & \text { CP=COPLANAR } \end{aligned}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetit//overburden effects.									
Page 17														

EM Anomaly List

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C X} \\ \text { 900HZ } \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ (\mathrm{ppm}) \end{gathered}$	$\left\|\begin{array}{c} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{array}\right\|$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
C 9882.5	S	591814,5200888				7.8	3.3	12.4	11.2	19.4	67.4	19.5	43	0
D 9896.1	L	592193, 5200903				35.9	28.5	59.4	39.8	121.5	79.8	21.0	25	0
E 9914.6	S	592827, 5200901				2.5	15.6	10.5	56.8	83.1	464.4	1.4	13	0
F 9918.4	L	592961, 5200899				12.6	9.9	14.5	14.8	83.1	461.8	12.5	38	0
G 9933.5	S	593511, 5200899				1.3	2.2	0.8	7.7	3.0	58.9	-	-	0
LINE 10820														
A 10101.5	S	590531,5200806				3.1	8.8	4.3	31.1	13.5	262.0	1.7	25	0
B 10070.9	L	591526, 5200798				7.0	5.8	2.5	6.1	10.9	9.7	7.9	43	0
C 10060.0	S	591884, 5200801				5.7	1.6	15.0	8.7	21.0	46.0	-	-	0
D 10049.4	L	592237, 5200799				32.2	23.5	42.2	30.2	101.8	86.8	21.1	26	0
E 10030.5	S	592931,5200803				0.9	11.0	3.1	33.1	42.6	297.0	0.6	12	0
F 10027.1	L	593055,5200802				11.7	17.2	17.1	7.0	9.4	46.1	7.4	39	0
G 10011.8	S	593584, 5200801				3.9	1.0	1.8	5.8	3.8	37.2	-	-	0
LINE 10830														
A 226.8	S	590816,5200695				2.4	10.0	2.6	32.4	22.2	273.7	1.1	18	0
B 250.0	L	591506,5200700				3.7	8.2	8.2	2.8	40.3	30.9	-	-	0
C 267.0	S	591972,5200701				26.1	4.7	0.5	10.5	6.3	56.6	73.3	33	0
D 274.6	L	592205, 5200693				42.3	29.8	119.5	43.3	168.2	214.7	36.4	22	0
E 301.0	S	592942, 5200702				1.1	6.1	3.0	18.9	12.5	147.4	-	-	0
F 306.3	L	593115,5200703				21.1	18.7	9.4	24.8	20.8	55.5	10.0	35	0
LINE 10840														
A 538.4	S	588939, 5200603				6.8	0.7	27.1	4.2	19.6	31.5	-	-	0
B 486.6	S	590911, 5200601				3.0	1.5	0.5	5.1	7.9	43.6	-	-	0
C 468.2	L	591515,5200601				8.3	4.0	1.9	2.7	11.3	9.7	19.9	43	0
D 446.1	L	592157, 5200603				9.2	25.4	25.9	59.5	185.6	244.7	3.8	19	0
E415.3	S	593013,5200606				3.8	5.6	7.9	22.1	13.8	172.0	2.6	59	0
F 409.4	L	593205, 5200603				9.5	7.3	8.0	4.2	11.8	41.0	13.7	46	0
G 390.0	S	593897, 5200604				1.5	2.1	2.3	5.9	4.6	45.8	-	-	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 19														

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	CX 900HZ Quad (ppm)	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	CP 900HZ Quad (ppm)	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
LINE 10850														
A 626.3	S	588266, 5200500				6.0	4.7	19.5	12.2	21.1	99.7	-	-	0
B 656.8	S	589351,5200495				5.9	1.9	12.4	8.0	10.2	62.7	-	-	0
C 714.0	L	591470,5200501				19.4	2.7	3.0	6.3	8.0	12.9	101.3	32	0
D 732.1	L	592078, 5200503				17.9	26.9	33.1	34.4	132.0	98.3	7.2	31	0
E 764.4	L	593297, 5200498				7.6	4.8	2.7	2.4	1.0	26.0	14.5	52	0
F 782.5	S?	593989, 5200499				1.5	31.9	6.4	112.7	296.3	855.9	0.8	10	0
LINE 10860														
A 983.9	S	588230,5200400				5.6	5.8	14.7	15.0	26.3	111.5	-	-	0
B 895.0	L	591457,5200395				7.3	4.2	1.0	3.0	18.0	19.3	-	-	0
C 877.7	L	592070,5200402				19.0	16.2	36.8	23.4	97.9	57.5	16.5	31	0
D 849.3	S?	593100, 5200403				1.7	6.7	0.8	20.5	5.2	159.1	0.9	21	0
E 838.9	L	593444, 5200405				8.6	8.8	7.7	7.3	3.5	29.7	8.3	49	0
F 820.9	S?	594064, 5200405				0.5	9.8	3.0	25.4	34.2	212.9	0.6	15	0
LINE 10870														
A 1143.5	L	591424, 5200300				7.7	4.7	2.3	3.1	13.1	19.5	13.8	40	0
B 1160.9	L	591934, 5200297				15.3	14.2	53.3	29.4	76.3	116.2	17.5	30	0
C1196.2	S?	593150,5200300				2.4	8.0	7.4	31.7	31.6	245.3	1.8	23	0
D 1207.0	L	593537,5200302				7.3	5.1	0.7	12.2	10.0	23.6	6.6	51	0
E 1224.0	S	594111, 5200305				3.4	4.0	3.1	10.3	7.2	81.8	3.0	62	0
LINE 10880														
A 1434.0	S	588331, 5200202				3.2	6.6	11.1	21.8	27.5	167.3	-	-	0
B 1345.8	L	591463,5200199				1.1	7.3	14.6	5.6	12.8	31.5	-	-	0
C 1333.4	L	591898, 5200203				13.9	13.5	48.4	25.0	79.3	42.9	16.7	31	0
D 1307.0	S	592749, 5200202				5.7	2.1	17.8	9.7	26.2	86.6	-	-	0
E 1291.7	S?	593235, 5200203				1.8	5.7	3.0	20.5	14.4	155.0	-	-	0
F 1279.4	L	593686, 5200201				5.0	3.0	3.5	9.0	9.1	20.2	8.0	60	0
LINE 10890														
A 1872.5	S	588338, 5200101				13.8	10.1	34.6	30.8	73.5	246.4	-	-	0
JOB 2012		CX=COAXIAL $\mathrm{CP}=\mathrm{C} \cap \mathrm{PLANAR}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 20														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \mathbf{9 0 0 \mathrm { HZ }} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C P} \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{gathered}\right.$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
B 1880.2	S	588635, 5200099				13.3	5.5	57.2	17.4	60.7	125.6	-	-	0
C 1905.0	s	58943 ¢ 5200094				18.2	5.1	74.7	16.2	79.5	137.0	-	-	0
D 1918.7	S	589924, 5200100				14.3	5.8	37.6	14.0	37.6	118.9	-	-	0
E 1960.1	L	591398, 5200103				18.9	8.6	3.4	1.7	6.5	1.4	32.3	28	0
F 1971.3	L	591749,5200087				27.6	14.5	30.1	17.2	58.1	32.8	31.0	29	0
G 2026.0	L	593775,5200100				4.9	5.8	8.1	8.2	1.5	17.9	6.1	50	0
LINE 10900														
A 1749.4	S	588295, 5199997				9.6	7.9	37.0	22.3	47.4	182.6	-	-	0
B 1788.6	S	589536, 5200000				6.8	5.8	21.8	14.4	26.5	130.0	-	-	0
C 1800.5	S	589976, 5199997				5.9	11.9	18.1	33.7	71.1	272.9	3.1	48	0
D 1806.8	S	590220, 5199991				2.8	11.7	10.8	34.4	25.6	81.8	2.0	23	0
E 1841.3	L	591394, 5200004				8.9	9.7	3.8	5.2	8.0	2.2	-	-	0
F 1851.8	L	591713,5199997				22.9	20.8	43.7	24.7	81.0	40.1	17.0	28	0
LINE 10910														
A 2101.1	S	589597,5199902				18.5	4.0	64.8	11.0	64.6	85.2	-	-	0
B 2088.7	S	590025,5199901				11.7	11.2	59.4	35.1	84.2	290.2	17.0	34	0
C 2077.0	S	590462,5199900				10.3	4.3	23.3	10.8	4.0	90.2	-	-	0
D 2050.3	L	591380,5199905				10.4	22.0	5.1	2.3	10.8	1.2	-	-	0
E 2040.4	L	591671, 5199906				15.7	14.7	26.3	22.4	67.0	94.6	12.2	32	0
F 1970.1	L	594010,5199901				3.4	6.6	6.9	12.6	2.2	14.4	2.5	62	0
LINE 10920														
A 2252.8	S	590022,5199802				0.5	4.7	10.5	16.0	17.3	109.7	2.1	38	0
B 2269.4	S	590597,5199804				7.7	3.5	10.6	13.6	16.5	112.8	-	-	0
C 2292.9	L	591362,5199790				9.4	2.7	7.1	5.2	10.9	6.0	38.4	37	0
D 2302.0	S	591647,5199791				5.5	6.2	3.3	19.0	35.7	115.3	3.1	57	0
E 2350.8	S	593335,5199799				2.7	2.3	1.3	6.5	5.1	53.6	3.8	73	0
F 2372.0	L	594056,5199803				1.5	0.9	9.9	1.9	12.1	8.2	8.3	71	0
LINE 10930														
A 2506.3	L	591346,5199696				3.4	25.3	14.1	8.9	23.5	12.4	2.1	8	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 21														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LATT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{CP} \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{gathered}\right.$	$\begin{gathered} \hline \mathrm{CP} \\ \text { 7200HZ } \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
B 2497.3	S	591622, 5199705				3.6	5.0	3.0	16.2	22.3	107.6	2.9	43	0
LINE 10940														
A 3084.8	S?	590711, 5199598				7.2	2.5	22.8	13.7	32.9	105.4	-	-	0
B 3065.3	L	591357,5199602				5.9	14.6	8.8	4.6	8.1	0.7	2.8	40	0
C 3057.9	S	591592,5199598				2.5	2.1	0.8	7.5	8.5	65.1	-	-	0
D 3040.3	S?	592197,5199602				1.5	2.8	2.1	12.2	8.0	98.3	1.8	43	0
E 3026.2	S	592687, 5199607				10.0	9.4	28.9	29.9	66.0	245.4	10.0	39	0
LINE 10950														
A 3302.5	L	591313,5199498				7.8	10.3	14.1	12.1	33.0	25.9	6.7	38	0
B 3333.3	S	592515,5199500				1.6	11.5	1.7	35.0	29.5	282.7	0.6	14	0
C 3338.8	S	592743,5199499				7.9	12.7	31.5	40.3	92.7	337.3	5.5	41	0
LINE 10960														
A 3522.2	L	591145,5199406				24.4	21.4	38.6	22.4	85.2	55.2	17.2	28	0
B 3517.3	L	591286, 5199403				12.7	4.6	5.2	5.5	23.5	20.6	31.7	36	0
C 3495.6	S	592036,5199400				2.0	2.8	1.1	12.3	19.2	94.2	2.0	46	0
D 3486.6	S	592358, 5199393				2.8	6.2	0.7	19.0	8.7	161.6	-	-	0
E 3472.5	S	592864, 5199402				9.3	15.6	32.4	48.0	101.2	393.1	5.0	39	0
LINE 10970														
A 3893.1	S	588485,5199298				12.0	2.9	42.8	4.1	46.3	39.7	-	-	0
B 3954.8	S	590810, 5199297				4.5	4.4	1.8	16.0	9.7	122.5	3.0	62	0
C 3968.8	L	591253,5199301				7.5	5.4	10.6	8.3	35.9	42.3	12.8	38	0
D 3984.7	S	591814,5199301				2.6	12.0	2.0	38.7	43.2	299.6	1.0	16	0
E 3998.0	S	592318, 5199299				2.1	10.0	3.5	34.3	38.3	296.1	-	-	0
F 4012.0	S	592847, 5199302				6.1	15.5	21.9	46.0	71.8	382.0	3.7	27	0
G 4017.5	S	593051, 5199299				2.7	4.6	12.8	11.8	11.7	114.8	4.9	59	0
H 4040.1	S	593860, 5199300				1.7	3.7	9.9	9.6	18.8	89.2	3.4	66	0
LINE 10980														
+ 4282.6	S	587917.5199200				4.7	6.3	12.2	17.6	29.0	149.6	4.7	53	0
JOB 20		$\begin{gathered} C X=C O A X I A L \\ C P=C O P L A N A R \end{gathered}$	Note: EM shown ab local am	values ve are tudes	*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 22														

EM Anomaly List

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	CP 900HZ Quad (ppm)	$\left\|\begin{array}{c} \mathrm{CP} \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{array}\right\|$	$\begin{gathered} \hline \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
LINE 11040														
A 5821.8	S	588718,5198602				9.9	10.0	43.1	25.8	41.7	222.6	14.6	39	0
B 5814.5	S	588979, 5198606				6.2	10.2	43.9	26.9	41.4	221.6	10.0	41	0
C 5772.8	S	590367,5198602				4.1	2.5	16.2	3.4	16.3	32.7	-	-	0
D 5750.6	L	591076,5198597				9.7	1.9	7.2	15.3	9.7	0.8	23.3	37	0
E 5688.1	S	593184,5198606				0.9	2.8	0.8	8.8	1.7	73.7	1.0	38	0
F 5680.4	S	593455,5198603				12.6	2.7	49.3	9.0	51.9	56.3	-	-	0
LINE 11050														
A 5963.7	S	589341, 5198498				4.9	9.1	15.4	27.4	30.0	87.2	---	-	0
B 5980.1	S	589906,5198496				4.3	5.7	9.6	16.0	22.1	122.5	4.2	54	0
C 6000.6	S	590631,5198498				9.4	7.7	33.0	20.6	33.8	92.2	-	-	0
D 6012.7	L	591025,5198497				5.8	6.6	71.4	69.0	15.6	0.3	10.8	19	0
E 6026.2	S	591486,5198501				2.8	13.7	22.4	54.1	58.9	321.7	2.6	22	0
F6069.3	S	593101,5198503				2.9	3.3	2.2	7.8	1.9	55.4	\cdots	-	0
LINE 11060														
A 6278.4	S	589395,5198402				3.4	11.2	10.9	33.5	48.1	258.1	2.4	27	0
B6261.3	S	589963,5198395				3.1	17.6	9.8	54.2	70.6	436.7	-	-	0
C 6256.2	S	590153,5198394				13.7	14.2	48.9	46.4	100.1	388.1	11.3	36	0
D 6246.5	S	590509,5198402				5.0	3.7	17.1	10.5	12.6	86.2	13.8	52	0
E6230.8	L	591011,5198399				5.3	4.4	9.6	5.1	5.0	3.5	11.6	40	0
F 6170.4	S	593103,5198400				3.2	4.8	5.8	10.5	11.5	99.5	3.1	62	0
LINE 11070														
A 6421.0	S	588541,5198298				3.5	1.8	12.3	4.7	14.1	31.3	-	-	0
B6445.5	S	589486,5198300				3.7	7.8	6.3	23.8	39.5	189.4	2.6	33	0
C 6460.0	S	590014,5198302				2.5	13.8	12.2	33.0	44.7	280.4	1.9	22	0
D 6488.3	L	591031,5198298				6.7	7.4	13.9	5.1	25.8	11.2	10.4	38	0
E 6549.1	S	593175,5198301				3.1	3.4	9.3	8.3	10.5	68.0	6.5	60	0
LINE 11080														
A 6782.2	S	588466,5198194				2.4	7.3	6.3	25.2	38.7	220.6	1.9	27	0
JOB 2		$\begin{aligned} & \text { CX=COAXIAL } \\ & \text { CP=COPLANAR } \end{aligned}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 24														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	CP $\mathbf{9 0 0 H Z}$ Real (ppm)	$\begin{gathered} \text { CP } \\ \mathbf{9 0 0 H Z} \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \hline \end{gathered}$	$\left\|\begin{array}{c} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{array}\right\|$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
B 6754.9	S	589464,5198200				3.6	8.5	5.5	23.6	28.5	199.6	2.4	31	0
C 6739.0	S	590052,5198197				0.1	17.4	5.2	44.4	38.1	370.7	0.6	17	0
D 6712.7	L	590928,5198194				9.3	13.9	13.7	6.8	4.6	6.6	6.6	32	0
LINE 11090														
A 7115.7	S	588251,5198100				3.7	6.7	13.3	23.5	29.8	183.9	3.1	54	0
B 7120.8	S	588455,5198099				5.4	5.2	20.4	13.9	26.2	122.9	-	-	0
C 7148.7	S	589560,5198101				0.7	5.2	0.8	15.3	4.3	117.9	-	-	0
D 7164.0	S	590080,5198095				2.5	7.5	6.5	19.5	16.3	163.6	2.2	32	0
E 7189.9	L	590951,5198099				22.1	3.9	18.7	5.3	11.6	7.6	100.0	41	0
LINE 11100														
A 7469.7	S	588914,5197999				4.7	7.0	8.8	24.1	13.7	193.9	2.8	55	0
B 7413.2	L	590859,5197998				16.8	8.4	30.5	6.9	26.5	9.0	40.0	23	0
C 7373.2	S	592240,5198000				0.8	7.3	1.9	20.8	15.3	183.8	0.6	16	0
D 7368.7	S	592408,5197998				0.6	6.1	0.9	19.6	9.0	163.6	0.5	18	0
LINE 11110														
A 7630.6	S	589571,5197896				4.1	8.7	13.0	26.6	26.9	207.9	3.5	36	0
B 7654.0	S	590328,5197900				3.5	4.3	12.3	13.0	16.3	110.2	5.8	56	0
C 7670.9	L	590872,5197899				10.2	10.1	25.0	6.0	27.5	7.1	16.0	30	0
D 7712.4	L	592368,5197897				1.9	16.9	0.7	61.5	83.8	499.1	0.7	12	0
LINE 11120														
A 7984.0	S	588098, 5197804				2.2	4.3	8.5	16.0	9.5	119.9	2.3	65	0
B 7943.3	S	589475,5197803				0.5	10.8	0.6	33.4	29.6	277.3	0.5	20	0
C 7906.5	L	590799,5197800				8.7	7.5	29.1	7.8	32.2	10.7	20.6	28	0
LINE 11130														
A.9143.4	S	590427, 5197701				3.3	3.8	13.8	10.6	14.2	91.4	7.6	57	0
B 8154.7	L	590799, 5197702				17.0	19.0	76.0	5.3	64.2	3.1	22.4	20	0
C 8212.4	S	593019,5197696				3.7	3.3	7.8	7.9	10.5	65.0	7.6	59	0
LINE 11140														
A 8475.5	S	587762,5197598				7.4	4.4	21.1	10.8	28.8	95.6	-	-	0
JOB 2		$\begin{aligned} & \text { CX=COAXIAL } \\ & \text { CP=COPLANAR } \end{aligned}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 25														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE (m)	Mag. Corr (nT)
B 8398.9	S	590409,5197599				4.0	2.9	5.4	10.0	11.3	57.2	6.5	63	0
C 8387.2	L	590787,5197599				8.2	10.0	30.6	9.6	43.2	8.3	13.6	29	0
D 8326.2	S	592974, 5197602				9.7	16.0	32.5	51.0	67.7	439.3	4.9	39	0
LINE 11150														
A 8867.9	L	590742,5197501				10.4	8.2	7.9	16.6	34.5	14.9	8.9	35	0
LINE 11160														
A 9197.6	S	587714, 5197398				4.0	2.3	13.9	5.5	19.8	46.9	-	-	0
B 9132.7	S?	589867, 5197391				2.3	7.7	1.5	25.9	15.8	207.9	-	-	0
C 9107.7	L	590689,5197403				13.4	18.8	12.2	11.2	18.8	13.4	8.3	27	0
D 9037.4	S	593023,5197401				7.9	5.2	21.9	11.6	19.9	95.8	18.8	43	0
LINE 11170														
A 9287.4	S	588156,5197294				1.9	1.9	2.1	7.1	5.6	46.9	-	-	0
B 9353.6	L	590647, 5197293				7.4	3.8	11.4	17.8	22.1	4.6	11.3	33	0
C 9368.6	S	591184,5197297				5.4	5.8	17.3	17.2	29.3	152.9	7.6	50	0
D 9415.6	S	593000,5197297				4.3	10.2	10.0	29.4	43.4	243.6	2.9	28	0
LINE 11180														
A 9603.6	L	590632,5197198				10.0	5.2	8.3	12.2	20.1	0.5	15.0	38	0
B 9589.9	S	591128,5197201				4.3	7.4	20.7	21.4	26.5	191.7	5.2	48	0
C 9583.3	S	591374,5197205				1.7	11.2	1.9	33.6	31.2	286.6	0.7	16	0
D 9534.9	S	593056,5197199				9.8	12.9	26.8	37.8	63.0	314.4	6.2	39	0
LINE 11190														
A 9775.5	S	588119,5197098				3.7	3.2	4.2	4.7	5.9	41.5	--	-	0
B 9841.3	L	590596,5197105				5.6	2.1	28.9	3.6	27.3	41.0	75.5	37	0
C 9853.8	S	591073,5197101				6.1	4.6	16.4	10.2	24.0	84.7	13.6	48	0
D 9867.3	S	591587,5197100				2.8	10.5	9.5	31.9	36.1	258.1	2.0	25	0
E 9906.7	S	593066,5197099				4.4	9.3	8.2	27.2	36.1	227.7	-	-	0
LINE 11200														
A 10168.1	S	588114,5196999				3.2	3.4	10.4	8.4	12.9	67.1	7.4	61	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP }=\text { COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 26														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	$\begin{aligned} & \text { LONG } \\ & \text { (deg.) } \end{aligned}$	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { CX } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) }) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	Cond. (siemens)	$\begin{gathered} \text { DIKE } \\ \text { DEPTH } \end{gathered}$ (m)	Mag. Corr (nT)
B 10094.7	L	590580, 5196997				2.8	7.6	12.9	6.4	31.4	22.7	3.1	49	0
C 10063.8	S	591612,5197005				7.2	6.8	16.5	19.8	28.7	166.2	-	-	0
D 10053.9	S	591959,5196999				3.1	5.1	5.5	19.7	15.5	156.2	2.8	41	0
E 10020.5	S	593133,5197003				6.9	9.7	28.6	25.0	38.1	202.8	7.6	43	0
F 9988.0	S	594142,5197006				0.0	0.0	0.0	0.0	0.0	0.0	-	-	0
LINE 11210														
A 10247.5	S	588062,5196896				6.1	2.6	10.3	8.7	11.6	69.8	-	-	0
B 10294.3	S	589910,5196899				1.4	2.5	13.0	7.0	13.2	52.9	-	-	0
C 10313.5	L	590618,5196901				6.2	2.1	6.9	4.5	9.5	2.4	-	--	0
D 10344.0	S	591720,5196900				6.3	4.8	17.6	11.3	23.5	88.1	-	-	0
E 10381.4	S	593135,5196897				5.1	7.2	17.2	16.1	47.4	134.0	-	-	0
F 10408.7	S	594053,5196904				1.3	2.3	1.7	8.2	6.1	59.5	-	-	0
LINE 11220														
A 10568.5	L	590572,5196793				2.0	7.7	16.3	6.8	14.2	6.1	3.7	44	0
B 10547.4	S	591306,5196799				0.2	2.7	0.9	8.7	1.5	74.5	-	-	0
C 10534.6	S	591745,5196797				5.7	12.2	13.0	37.1	36.1	309.3	3.4	29	0
D 10509.0	S	592677,5196798				1.2	2.6	1.4	7.3	0.9	64.6	1.6	48	0
E 10495.4	S	593164,5196800				7.0	11.1	23.8	32.5	58.2	268.9	4.9	44	0
LINE 11230														
A 298.6	L	590612,5196703				14.5	5.2	35.9	9.9	48.5	25.5	55.8	32	0
B 330.5	S	591806, 5196696				7.3	18.2	21.3	57.5	69.0	466.9	-	-	0
C 357.1	S	5928(n, 5196700				0.8	7.8	0.1	23.6	10.2	193.5	-	-	0
D 367.0	S	593189, 5196700				12.2	15.4	40.1	45.2	120.2	356.4	8.1	35	0
LINE 11240														
A 607.3	S	588405,5196604				1.9	2.0	0.4	8.0	2.4	60.0	2.4	59	0
B 544.1	L	590559, 5196600				23.1	4.6	63.7	6.1	68.5	10.2	129.9	20	0
C 476.6	S	592869,5196594				1.0	9.2	4.0	29.2	31.3	237.3	-	-	0
D 471.0	S	593066,5196590				5.3	17.3	16.9	51.5	100.1	410.9	2.8	22	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 27														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \hline \mathbf{C X} \\ \mathbf{9 0 0 \mathrm { HZ }} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C P} \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\mathbf{C P}$ 7200 HZ Real (ppm)	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
E 442.8	S	593929, 5196621				0.9	4.2	2.9	13.4	8.0	114.1	1.1	30	0
LINE 11250														
A 782.4	L	590552, 5196498				21.5	5.9	48.0	4.6	14.7	15.5	124.2	20	0
B 836.3	S?	592527,5196493				1.8	7.0	4.8	29.9	48.0	241.4	1.3	21	0
C 851.2	S	593074,5196491				6.2	15.4	23.9	41.1	90.0	347.4	4.1	28	0
D 871.2	S	593844, 5196499				6.0	16.4	22.4	56.0	92.2	448.9	3.4	24	0
LINE 11260														
A 1109.0	S	587954, 5196401				2.3	4.6	6.8	14.8	12.5	112.0	2.9	43	0
B 1079.8	S	589026, 5196398				0.6	2.2	0.7	8.9	4.0	63.3	-	-	0
C 1033.0	L	590608, 5196400				7.7	4.2	29.0	8.4	42.6	3.1	16.6	29	0
D 962.9	S	593099, 5196396				15.6	19.9	68.3	46.9	138.2	294.4	12.7	31	0
E 946.1	S	593711, 5196397				5.8	12.2	20.4	39.0	72.2	309.2	4.2	31	0
LINE 11270														
A 1571.3	S	587934,5196300				6.7	10.0	6.7	30.7	17.4	260.3	3.7	33	0
B 1617.6	S	589633,5196299				1.0	2.4	0.6	8.1	1.9	70.7	-	-	0
C 1648.0	L	590590, 5196298				6.0	38.0	39.2	7.3	13.5	24.2	3.9	11	0
L 1695.5	S	59225! 5196298				6.1	4.0	13.9	11.6	16.7	105.1	-	-	0
E 1720.4	S	593128,5196300				9.6	18.8	41.6	50.1	99.4	393.1	5.3	37	0
F 1731.1	S	593552,5196299				10.4	10.7	41.9	30.3	48.5	242.1	12.7	38	0
LINE 11280														
A 1908.4	S	590574,5196203				12.8	24.3	34.6	8.9	77.7	22.2	-	-	0
B 1856.8	S	592204,5196202				12.8	8.1	42.6	26.1	60.9	211.3	-	-	0
C 1833.1	S	593022,5196200				5.3	19.7	21.8	50.8	103.1	398.6	3.0	20	0
D 1823.0	S	593412,5196201				2.1	13.8	3.6	36.5	28.0	310.2	0.9	15	0
LINE 11290														
A 2859.4	S	588269,5196102				2.6	2.7	1.4	8.5	0.0	75.6	-	-	0
B 2790.5	L	590643,5196102				5.4	2.4	24.4	9.6	51.2	16.7	30.8	36	0
C 2741.4	S	592270,5196099				11.6	11.4	37.7	38.3	80.6	316.5	--	-	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 28														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) }) \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C P} \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C P} \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\left\|\begin{array}{c} \mathrm{CP} \\ 7200 \mathrm{HZ} \\ \text { Real }(\mathrm{ppm}) \end{array}\right\|$	$\begin{array}{c\|} \hline \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{array}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
D 2718.0	S	593098, 5196107				5.4	16.1	26.5	50.2	114.6	367.1	3.7	25	0
E 2712.6	S	593312,5196105				2.7	13.5	3.0	36.8	28.1	299.7	1.1	18	0
LINE 11300														
A 3115.9	L	590605,5196000				10.1	10.2	3.3	10.3	19.8	26.5	5.6	36	0
B 3163.3	S	592273, 5195997				9.6	16.0	28.2	52.5	103.7	422.0	-	-	0
C 3187.7	S	593065,5195998				3.5	24.3	10.7	77.9	236.3	515.5	1.2	11	0
LINE 11310														
A 3367.0	S	590592,5195901				14.1	22.2	16.2	15.6	16.0	22.6	5.8	31	0
B 3365.7	L	590629,5195900				5.4	11.6	16.9	2.6	13.1	13.9	6.0	37	0
C 3316.8	S	592260,5195902				4.5	13.2	12.8	42.1	60.6	343.8	-	-	0
D 3280.6	S	593603,5195903				2.3	6.5	1.3	18.9	9.6	159.4	-	-	0
LINE 11320														
A 3580.5	S	586193,5195799				4.6	3.1	12.0	8.1	8.6	71.3	13.3	54	0
B 3699.7	L	590604,5195800				29.2	13.8	12.3	9.0	21.0	0.4	33.3	28	0
C 3747.7	S	592273,5195796				8.6	7.0	21.7	19.7	28.8	159.5	-	-	0
D 3771.3	S	593110,5195804				3.8	20.2	12.2	66.7	209.8	453.1	-	-	0
E 3783.4	S	59366, , 5195801				0.3	8.4	3.5	27.5	25.9	224.0	-	-	0
LINE 11330														
A 4062.8	S	586132,5195703				3.1	3.4	7.1	9.3	11.0	85.0	5.1	62	0
B 4032.6	S	587232,5195704				2.8	4.8	1.2	11.5	6.9	97.2	-	-	0
C 3940.4	L	590614,5195700				22.3	17.6	13.8	1.8	10.5	14.4	16.9	22	0
D 3878.4	S	592852,5195700				2.6	5.5	3.5	15.4	2.1	149.3	2.3	39	0
E 3871.7	S	593090,5195704				5.4	11.5	18.2	36.3	44.9	297.7	3.9	32	0
LINE 11340														
A 4392.1	S	587155,5195593				2.4	6.5	3.1	13.6	11.7	123.8	2.0	33	0
B 4483.7	L	590641, 5195601				14.8	23.0	10.9	8.2	16.8	13.4	5.8	28	0
LINE 11350														
A 4848.0	S	586275,5195497				4.4	4.1	12.8	15.1	20.5	123.8	7.1	54	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 29														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{gathered} \text { LAT } \\ \text { (deg.) } \end{gathered}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{array}\right\|$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
B 4823.1	S	587156,5195502				4.0	3.5	10.0	6.9	15.5	62.8	9.9	57	0
C 4773.5	S	588964,5195495				3.3	3.5	10.8	12.0	13.7	104.1	6.0	60	0
D 4725.5	L	590648,5195497				10.7	14.4	1.2	3.7	16.6	31.6	5.7	36	0
E 4627.5	S	594132,5195502				4.1	7.6	19.4	26.8	48.2	214.3	3.9	51	0
LINE 11360														
A 4998.5	S	588958,5195399				2.5	2.6	1.3	9.2	2.8	76.9	2.3	77	0
B 5045.4	L	590670,5195402				12.0	61.5	2.2	5.5	45.0	39.8	2.1	1	0
C 5134.0	S	594002, 5195400				6.1	11.5	21.1	36.5	77.9	303.6	3.5	46	0
LINE 11370														
A 5361.1	S?	588287,5195298				0.4	1.6	1.3	6.1	0.6	43.1	-	-	0
P 5294.9	L	590674, 5195287				20.3	3.8	3.2	5.2	21.5	11.4	22.6	28	0
C 5202.3	S	593760, 5195298				3.8	9.2	7.9	25.3	27.9	218.1	2.6	31	0
D 5196.1	S	593986, 5195301				0.7	3.9	3.7	10.0	13.1	73.3	1.3	38	0
LINE 11380														
A 2381.0	S	588968,5195199				2.2	1.9	3.9	5.1	1.1	38.3	-	-	0
B 2328.5	L	590686,5195197				63.9	33.2	4.5	8.4	6.3	9.2	37.1	14	0
C 2262.1	S?	592842,5195199				4.7	3.8	20.1	8.8	18.6	81.2	16.5	50	0
D 2235.6	S	593751, 5195199				7.6	25.8	26.0	87.3	232.6	639.4	3.0	16	0
LINE 11390														
A 2530.6	S	585943, 5195098				0.6	1.9	2.7	6.4	3.4	49.4	-	-	0
B 2650.3	L	590696,5195101				26.9	8.3	5.0	9.1	18.1	7.0	48.5	23	0
C 2728.2	S	593742,5195099				8.7	11.1	35.6	35.4	94.9	288.8	8.2	37	0
LINE 11400														
A 2954.4	S?	588176, 5194999				1.3	1.6	12.2	5.8	14.4	47.2	-	-	0
B 2884.2	L	590726, 5194999				17.6	33.5	8.1	11.8	20.9	6.2	4.1	27	0
C 2830.4	S	592575,5195000				6.2	4.3	17.5	12.2	24.2	102.3	-	-	0
D 2796.9	S	593715,5195000				3.4	3.6	9.9	8.9	11.8	83.6	-	-	0
LINE 11410														
A 3122.3	S?	588172,5194898				1.2	1.7	1.7	6.3	3.3	56.4	2.2	63	0
JOB 2012		$\begin{aligned} & \mathrm{CX}=\mathrm{COAXIAL} \\ & \mathrm{CP}=\text { COPLANAR } \end{aligned}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 30														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LATT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE (m)	Mag. Corr (nT)
B 3184.0	L	590743, 5194899				48.7	88.4	9.8	3.6	17.3	10.7	6.2	15	0
C 3225.1	S	592445, 5194898				3.3	12.7	12.4	41.4	74.8	342.1	2.2	21	0
LINE 11420														
A 3402.4	L	590705, 5194800				97.0	70.5	8.5	3.2	17.4	11.7	28.3	11	0
B 3356.7	S	592364, 5194800				7.7	18.8	24.2	60.6	81.2	492.4	3.8	24	0
C 3337.7	S	593048, 5194802				3.3	5.3	6.9	13.7	8.6	121.1	2.9	63	0
LINE 11430														
A 3934.0	L	590741, 5194699				40.2	0.7	2.6	1.5	9.7	13.2	999.0	33	0
B 3937.3	L	590863,5194697				36.7	39.0	27.0	20.2	68.4	50.3	13.1	23	0
C 3993.0	S	593025, 5194697				2.4	9.8	20.8	27.7	23.3	234.8	-	\cdots	0
D 4008.2	S	593569, 5194702				0.7	4.8	13.7	14.4	18.8	121.7	2.9	46	0
ANE 114 ${ }^{\text {A }}$														
A 4234.2	S	587621, 5194604				6.5	5.7	21.3	17.0	37.9	149.3	11.2	45	0
B4155.3	L	590747,5194594				3.2	38.3	6.0	6.3	6.7	0.3	1.0	0	0
C 4151.2	L	590901, 5194597				9.6	9.3	16.7	13.4	45.5	29.1	10.3	37	0
D 4121.3	S	592070,5194599				9.6	2.7	25.6	7.0	27.1	58.7	-	-	0
E 4097.0	S	593003, 5194605				6.3	11.5	26.8	36.6	70.0	287.6	4.5	44	0
F 4086.4	S	593350,5194603				5.5	6.7	17.7	16.6	7.7	144.6	7.1	50	0
G 4072.9	S	593762,5194601				3.7	2.1	4.2	6.9	4.2	56.1	--	-	0
LINE 11450														
A 4375.3	S	587651, 5194498				11.4	13.8	37.3	45.4	95.7	375.1	7.8	36	0
B 4455.6	L	590769,5194500				35.3	46.0	5.0	5.0	18.4	12.0	8.6	20	0
C 4460.2	L	590933,5194499				76.1	29.3	39.1	29.9	101.0	77.3	57.7	19	0
D 4475.7	S	591532,5194498				2.5	9.4	1.2	33.9	40.9	285.5	1.0	16	0
E 4486.4	S	591961,5194499				3.5	7.4	7.1	24.0	23.1	204.4	2.7	33	0
F 4513.5	S	593027,5194498				7.9	7.7	2.5	25.2	36.5	201.5	3.7	51	0
G 4521.9	S	593386,5194501				9.0	4.2	31.2	10.7	34.4	98.6	-	-	0
H 4531.4	S	593722,5194495				4.5	4.3	2.2	12.5	5.4	102.5	3.7	62	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 31														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \mathrm{CX} \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
LINE 11460														
A 4757.1	S	587713,5194400				7.1	7.6	24.4	16.5	40.7	132.2	---	--	0
B 4677.6	L	590749, 5194394				45.7	37.0	5.2	4.1	13.5	3.7	18.7	19	0
C 4671.2	L	590975,5194401				12.0	21.5	33.9	38.1	106.9	124.8	5.6	32	0
D 4657.0	S	591521,5194400				3.3	1.5	1.8	5.4	3.3	42.2	8.9	69	0
E 4646.1	S	591935,5194402				6.4	8.5	19.6	28.2	55.5	236.0	5.4	46	0
F 4619.6	S	592950 5194399				4.4	8.7	11.8	23.6	43.2	194.8	2.6	35	0
G 4606.8	S	593401,5194400				3.3	5.3	12.9	15.1	11.3	126.6	4.4	56	0
H 4596.3	S	593733,5194401				3.6	4.6	1.4	14.8	10.4	120.0	2.8	43	0
LINE 11470														
A 5218.0	L	590772,5194303				14.7	19.4	2.8	4.7	7.6	8.6	6.2	29	0
B 5225.7	L	591037,5194296				20.3	17.1	26.3	47.6	129.2	214.8	10.1	30	0
C 5248.3	S	591898,5194301				3.8	11.7	12.0	37.2	61.9	318.1	2.5	25	0
D 5274.8 .	S	592917,5194301				5.2	7.0	15.1	21.2	37.5	159.6	4.9	49	0
E 5287.4	S	593413,5194300				5.7	1.5	20.1	6.1	18.9	42.5	-	-	0
F 5295.2	S	593696,5194296				3.4	6.4	1.0	16.6	9.4	137.2	-	-	0
LINE 11480														
A 5532.7	S	587736,5194200				2.3	9.8	12.7	30.3	32.6	252.0	-	-	0
B 5445.1	L	590759,5194198				31.0	30.2	6.6	4.5	13.3	13.5	-	-	0
C 5435.1	L	591074,5194204				13.8	18.3	22.3	34.9	112.6	63.2	6.2	32	0
D 5414.6	S	591674,5194200				3.9	3.4	4.1	11.1	3.5	100.8	4.6	62	0
E 5406.0	S	591978,5194202				10.7	3.0	39.9	8.1	44.8	59.3	-	-	0
F 5378.9	S	592935,5194198				4.1	6.3	11.3	21.2	31.3	156.5	3.4	54	0
G 5358.5	S	593675,5194201				1.3	8.2	2.2	22.5	22.1	184.4	0.8	18	0
LINE 11490														
A 5632.1	S	585844,5194102				2.0	4.3	4.4	13.5	10.1	118.0	-	-	0
B 5761.9	L	590756,5194100				24.2	53.9	4.9	3.8	6.3	6.2	4.5	22	0
C 5774.3	L	591160,5194097				36.8	48.5	31.2	39.1	100.8	75.5	9.1	25	0
JOB 2012		$\begin{aligned} & \text { CX=COAXIAL } \\ & \text { CP=COPLANAR } \end{aligned}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 32														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LATT } \\ & \text { (deg.) } \end{aligned}$	$\begin{aligned} & \text { LONG } \\ & \text { (deg.) } \end{aligned}$	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{CP} \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	Cond. (siemens)	DIKE (m)	Mag. Corr (nT)
D 5827.3	S	592911, 5194100				5.9	7.0	17.4	19.4	39.0	152.8	6.6	48	0
E 5844.5	S	593575,5194098				3.4	9.1	2.3	27.6	35.8	215.8	-	-	0
LINE 11500														
A 6126.7	S	585871,5194001				4.4	2.5	7.0	4.1	8.9	35.2	-	-	0
B 5990.0	L	590792, 5193998				28.9	44.0	3.6	1.7	2.8	6.5	6.5	18	0
C 5978.3	L	591156, 5194001				23.1	43.7	27.4	50.9	142.8	124.4	4.6	29	0
- 5924.2	S	592910.5193995				4.1	6.6	6.0	20.9	30.7	164.7	3.2	37	0
E 5903.9	S	593641, 5193997				1.2	10.2	1.6	32.5	50.6	259.9	0.6	15	0
LINE 11510														
A 6416.2	L	590756, 5193903				0.7	10.2	4.3	3.0	7.7	7.5	0.9	8	0
B 6429.8	L	591187, 5193896				23.8	33.9	19.5	65.8	126.9	388.5	5.0	30	0
C 6478.5	S	592901,5193900				2.4	5.9	9.5	17.0	32.7	138.5	3.0	39	0
D 6496.9	S	593640,5193889				1.4	10.0	3.6	31.4	45.6	253.5	0.8	16	0
LINE 11520														
A 6655.5	S	590321, 5193804				4.5	4.5	1.2	10.3	4.0	99.6	-	-	0
B 6640.8	L	590814,5193802				25.8	43.4	3.5	1.0	5.1	6.3	6.1	21	0
C6629.1	L	591193,5193804				22.3	26.1	10.3	16.9	39.3	80.9	8.3	31	0
D 6581.1	S	592847,5193800				3.3	7.1	10.4	19.8	33.0	170.6	3.3	38	0
E6558.2	S	593679,5193806				2.0	10.1	2.8	27.2	32.5	224.2	1.0	18	0
LINE 11530														
A 6861.4	S	587015,5193698				22.3	13.6	77.9	47.4	135.0	397.6	-	-	0
B6914.5	S	588766,5193701				4.5	0.7	5.2	3.1	4.8	14.0	-	-	0
C 6955.9	S	590296,5193697				1.3	4.1	1.3	9.8	3.3	84.1	1.3	36	0
D 6970.1	L	590801,5193705				26.9	8.0	5.1	2.2	5.5	14.5	66.6	21	0
E6983.6	L	591194,5193699				16.6	18.5	7.7	10.4	22.0	49.6	8.2	35	0
F 7029.5	S	592861,5193702				5.6	8.9	12.6	27.2	43.2	224.1	3.3	51	0
G 7052.2	S	593700,5193700				0.1	7.6	0.1	22.9	16.6	188.7	-	-	0
LINE 11540														
A 7298.5	S	586996,5193599				2.6	7.5	9.4	22.0	16.5	181.9	-	-	0
JOB 2012		$\begin{gathered} \mathrm{CX}=\mathrm{COAXIAL} \\ \mathrm{CP}=\mathrm{COPLANAR} \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 33														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	$\begin{aligned} & \text { LONG } \\ & \text { (deg.) } \end{aligned}$	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{CP} \\ \text { 7200HZ } \\ \text { Real (ppm) } \end{gathered}\right.$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE (m)	Mag. Corr (nT)
B 7275.9	S	587803,5193599				3.6	3.1	15.0	5.9	16.5	42.6	14.6	52	0
C 7242.1	S	589042,5193605				5.2	1.5	1.0	3.0	1.4	38.8	-	-	0
D 7209.7	S	59029: , 5193600				2.0	5.2	0.9	10.5	3.1	100.4	1.6	37	0
E 7193.6	L	590845,5193592				13.0	20.0	2.3	1.9	5.2	7.4	-	-	0
F7181.9	L	591218,5193602				11.6	11.3	5.7	5.6	15.7	19.4	9.3	41	0
G 7135.2	S	592850,5193601				1.6	7.6	4.2	22.2	27.2	178.2	-	-	0
LINE 11550														
A 7652.2	S	587757,5193498				9.8	9.0	33.0	25.3	81.5	209.3	12.6	36	0
B 7716.6	S	590195,5193500				1.4	10.1	1.1	25.3	12.6	219.6	0.6	15	0
C 7722.9	S	590440,5193501				5.3	10.4	2.7	29.6	36.0	188.8	2.5	27	0
D 7735.9	L	590873, 5193503				4.5	4.5	3.9	3.1	9.7	9.2	7.2	49	0
E 7746.9	L	591197, 5193498				18.0	11.2	17.4	10.0	31.1	19.1	21.6	36	0
F 7787.9	L	592841,5193502				3.2	8.9	6.7	28.3	44.5	225.2	2.2	27	0
G 7815.6	S	593875,5193499				2.6	5.3	1.2	14.2	5.4	123.4	1.9	36	0
LINE 11560														
A 8086.9	S	585869,5193401				2.5	5.1	4.6	13.3	14.5	108.6	2.6	39	0
B 8035.0	S	587739,5193400				7.1	5.6	22.2	15.9	34.6	128.6	13.3	43	0
C 7970.3	S	590172,5193398				1.0	11.7	1.9	35.3	38.0	294.6	-	-	0
D 7962.8	S	590450, 5193399				1.7	9.9	2.9	27.7	39.4	229.9	0.9	17	0
E 7949.7	L	590860, 5193395				13.6	18.1	3.0	1.1	3.9	8.6	6.3	28	0
F 7939.0	L	591205, 5193402				17.0	10.1	6.8	5.0	19.8	13.6	21.0	37	0
G 7912.9	S	592155, 5193399				7.6	2.5	30.1	5.7	30.3	57.6	-	--	0
H 7895.6	S	592797, 5193398				5.6	9.3	17.6	29.4	57.5	240.6	3.8	48	0
I7864.9	S	593904, 5193395				0.8	3.5	0.5	8.7	1.5	79.4	-	-	0
LINE 11570														
A 8148.7	S	585825,5193302				0.8	7.4	3.4	20.7	23.2	174.8	-	-	0
B 8202.4	S	587739, 5193299				6.8	6.8	16.1	15.6	20.0	128.9	8.5	46	0
C 8258.3	S	589790,5193301				0.4	10.0	1.6	31.3	20.8	262.6	-	-	0
JOB 2012		$\begin{aligned} & \text { CX=COAXIAL } \\ & \text { CP=COPLANAR } \end{aligned}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 34														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{gathered}\right.$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
D 8265.0	S	590061,5193302				2.4	15.4	2.6	45.8	62.5	270.5	0.8	12	0
E 8288.8	L	590838, 5193304				23.5	19.9	3.1	2.3	4.0	10.3	14.1	21	0
F 8301.4	L	591199, 5193301				28.5	16.1	18.9	13.5	40.9	30.3	26.6	31	0
G 8320.0	S	591875,5193298				2.9	2.4	2.9	8.3	4.5	69.1	4.4	70	0
H 8341.1	S	592654,5193301				9.2	7.3	35.9	24.1	64.9	197.3	15.6	40	0
I 8373.4	S	593857,5193299				4.0	3.8	1.5	9.7	4.3	72.1	3.7	66	0
LINE 19010														
A 1510.2	S	587201,5195544				0.6	3.6	1.9	12.8	4.7	92.4	0.8	28	0
B 1505.4	S	587255,5195713				1.2	4.2	7.9	12.9	10.0	104.7	2.5	43	0
C 1455.9	S	587752,5197331				4.3	5.2	18.7	14.9	25.1	137.0	-	-	0
D 1367.7	S	588619,5200177				11.8	5.6	42.2	16.1	58.7	127.3	36.3	36	0
E 1259.3	S	589626,5203510				3.4	12.5	9.2	37.5	81.7	297.7	2.0	21	0
F 1227.6	S	589935, 5204509				2.3	6.6	25.3	25.2	31.4	200.4	4.3	50	0
G 1222.8	L	589984, 5204671				9.1	6.4	11.0	7.8	15.8	23.6	14.4	46	0
H 1198.1	L	590227, 5205464				34.5	36.7	42.4	27.6	103.3	65.4	14.2	24	0
I 1167.7	S	590512,5206409				0.9	8.0	0.9	28.1	35.7	213.4	0.5	18	0
J 1128.2	L	590882, 5207642				6.3	4.5	28.0	27.9	93.7	54.2	11.0	44	0
LINE 19020														
A 9323.7	S	592801, 5193396				1.2	7.2	1.2	22.0	32.2	175.4	0.7	16	0
B 9332.0	S	592801, 5193751				2.7	3.7	9.5	11.3	27.2	92.8	-	-	0
C 9365.5	S	592801, 5195161				6.4	2.1	16.1	5.5	17.3	40.9	-	-	0
D 9382.7	S	592801, 5195848				3.0	2.3	1.4	9.6	2.7	72.5	3.4	73	0
E 9402.3	S	592799,5196612				2.6	8.4	5.3	23.0	20.2	193.6	1.8	27	0
F 9425.0	S	592802,5197570				2.8	3.0	1.1	4.9	0.5	39.2	-	-	0
G 9469.8	S	592803,5199391				3.1	16.6	6.6	53.6	82.9	435.3	-	-	0
H 9507.8	S	592810,5200897				1.9	10.1	0.4	39.1	38.7	275.2	0.7	11	0
I 9559.1	S	592802, 5202998				2.9	3.5	3.1	12.9	11.9	106.9	2.3	67	0
J 9651.7	S	592801,5206760				4.0	4.4	10.5	16.7	31.2	130.3	-	-	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 35														

EM Anomaly List

Ladeil Fid	inte ${ }^{\text {P/ }}$	XUTM (${ }^{\text {- }}$ YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \hline \mathrm{CX} \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ (\text { ppm }) \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \mathrm{CP} \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{array}\right\|$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE (m)	Mag. Corr (nT)
K 9699.7	S	592807, 5208482				0.6	4.7	3.8	12.1	11.0	107.7	1.0	31	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP=COPLANAR } \end{gathered}$	Note: EM values shown above are local amplitudes		${ }^{*}$ Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 36														

EM Anomaly List

Label Fid	Lnierpl\|	XUTM (m' YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \hline \mathbf{C X} \\ \text { 900HZ } \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C X} \\ \text { 900HZ } \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Real }(\mathrm{ppm}) \end{array}\right\|$	CP 7200HZ Quad (ppm)	Cond. (sie.nens)	DIKE (m)	Mag. Corr (nT)
LINE 20010														
A 8621.0	S	597054,5192999				3.3	1.7	0.3	5.6	0.5	45.7	--	-	0
LINE 20020														
A 8788.6	S	596928, 5192902				1.9	5.6	0.4	17.8	4.5	161.4	1.1	27	0
B 8735.6	S	598838,5192899				10.6	7.6	44.3	24.2	49.4	205.3	-	-	0
LINE 20030														
A 8924.8	S	596763,5192797				3.8	2.4	0.7	6.6	2.2	58.8	5.7	69	0
B 8977.7	S	598746,5192804				4.1	5.8	21.0	20.0	23.8	168.6	-	-	0
LINE 20040														
A 9110.5	S	596598,5192701				5.1	1.6	2.3	3.4	3.8	31.0	-	-	0
B 9072.2	S	597991,5192699				6.2	2.0	15.7	6.2	17.7	48.7	-	-	0
LINE 20050														
A 412.4	S	596436,5192600				6.1	1.7	4.4	3.7	4.3	30.7	-	-	0
B 450.7	S	597912,5192597				4.0	2.6	5.9	3.5	7.4	37.0	-	-	0
LINE 20060														
A 618.1	S	596318,5192502				4.5	3.4	6.1	10.9	13.0	95.8	6.8	56	0
LINE 20070														
A 713.0	S	596159,5192400				2.3	14.9	1.6	55.4	53.9	450.4	0.7	11	0
B 758.1	S	597760,5192397				2.3	2.3	1.4	7.4	3.1	61.5	2.7	80	0
LINE 20100														
A 1153.5	S	598593,5192103				4.1	1.1	9.3	2.3	8.6	23.3	\cdots	-	0
LINE 20110														
A 1294.5	S	595673,5191999				1.9	1.5	2.1	7.4	0.6	36.0	-	-	0
LINE 20120														
A 1520.0	S	595594,5191904				2.6	1.7	6.0	3.5	5.6	27.6	-	-	0
B 1448.8	S	598142,5191899				1.5	5.5	2.6	15.6	4.2	120.8	-	-	0
LINE 20130														
A 1789.4	S	598121, 5191802				2.6	18.1	3.9	58.7	90.8	478.5	0.8	10	0
JOB 2012		$\begin{aligned} & \mathrm{CX}=` \text { 〇AXIAL } \\ & \mathrm{CP}=\text { COPLANAR } \end{aligned}$	Note: EM shown ab local am		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 1														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \end{gathered}$	$\begin{array}{\|c} \hline \mathbf{C P} \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{array}$	$\begin{gathered} \text { CP } \\ \mathbf{9 0 0 H Z} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{CP} \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{gathered}\right.$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
LINE 20140														
A 1932.2	S	596713,5191701				2.7	1.6	1.4	4.7	1.0	43.7	6.4	78	0
B 1897.5	S	597948, 5191699				1.8	11.0	1.1	32.3	20.1	269.7	-	-	0
C 1893.0	S	598115,5191699				2.4	9.7	1.9	31.1	27.6	266.6	-	-	0
LINE 20150														
A 2087.3	S	597919,5191598				1.1	3.6	0.1	8.2	4.5	66.6	1.0	35	0
LINE 20160														
A 2263.0	S	595675,5191507				1.4	2.3	2.0	8.0	2.8	53.5	2.1	53	0
B 2204.9	S	597890,5191502				3.6	1.7	1.7	4.0	0.4	31.5	-	-	0
C 2196.8	S	598164,5191499				2.5	2.0	1.3	5.7	0.8	38.0	4.1	79	0
D 2184.1	S	598608, 5191503				0.8	1.3	2.9	3.2	2.6	41.0	-	-	0
LINE 20170														
A 2326.0	S	595560,5191403				1.0	3.0	0.2	6.3	2.0	55.2	1.0	39	0
P ? 386,4	c	598028.5191404				0.6	4.2	1.0	11.7	2.9	87.7	-	-	0
LINE 20180														
A 2532.2	S	596630,5191299				0.7	2.1	1.3	6.2	2.1	58.4	-	-	0
B 2495.8	S	597961,5191297				1.5	1.0	1.8	4.5	2.3	26.4	4.1	91	0
C 2473.4	S	598806,5191300				1.4	2.9	1.6	7.2	1.1	56.0	-	-	0
LINE 20190														
A 2629.1	S	595886,5191204				1.6	14.0	0.5	40.4	14.8	341.7	0.6	16	0
B 2678.5	S	597879,5191198				3.5	4.3	0.0	9.6	2.3	90.9	-	-	0
LINE 20200														
A 2848.0	S	595796,5191100				0.5	10.5	0.8	34.7	34.0	282.8	-	-	0
B 2822.4	S	596773,5191096				3.0	1.1	0.8	4.8	1.9	39.6	-	-	0
C 2790.8	S	597917,5191102				3.9	17.7	1.7	53.6	38.5	424.3	1.1	14	0
D 2780.6	S	598268,5191096				3.2	5.1	0.5	15.3	4.8	121.7	2.3	39	0
LINE 20210														
A 2954.0	S	596822,5190998				1.0	1.3	2.0	3.7	0.7	35.4	2.5	97	0
JOB 2012		$\begin{gathered} \text { CX=COAXIAL } \\ \text { CP }=\text { COPLANAR } \end{gathered}$	Note: EM shown ab local am	values ve are tudes	${ }^{*}$ Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 2														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LATT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Real }(\mathrm{ppm}) \end{array}\right\|$	CP 7200HZ Quad (ppm)	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
B 2979.7	S	597856,5191006				0.9	17.6	2.2	57.0	111.4	453.0	0.6	15	0
C 2989.6	S	598266,5191000				1.4	6.3	1.0	18.0	14.5	154.7	0.9	22	0
LINE 20220														
A 3095.3	S	597914, 5190902				3.4	6.8	0.1	20.8	10.9	158.2	-	-	0
B 3081.5	S	598382,5190900				2.7	7.3	0.6	19.7	10.7	163.9	1.4	27	0
LINE 20230														
A 3290.5	S	596208, 5190802				1.4	8.6	6.5	25.7	21.5	221.9	-	-	0
LINE 20240														
A 3488.8	S	596234,5190700				0.3	9.3	2.6	35.0	14.1	278.2	0.5	20	0
B 3422.8	S	598849,5190706				1.8	3.6	0.3	11.4	5.5	88.3	1.5	38	0
LINE 20250														
A 3617.0	S	597903,5190593				4.0	4.1	1.3	10.5	3.4	88.9	3.2	66	0
LINE 20260														
A 3740.0		$597901 \quad 5190505$				3.8	11.3	0.7	35.2	33.3	294.4	-	-	0
LINE 20270														
A 3917.0	S	597874, 5190402				2.4	28.5	3.4	94.5	162.0	760.5	0.8	10	0
LINE 20280														
A 4070.9	S	596368,5190309				2.5	8.5	1.5	23.2	33.0	201.5	1.3	23	0
B 4067.3	S	596514, 5190306				3.3	7.6	2.3	30.7	33.0	242.4	1.7	25	0
C 4031.3	S	597892, 5190301				2.7	11.6	2.4	41.2	57.6	333.4	1.0	14	0
D 4013.9	S	598552,5190303				2.4	1.4	2.9	6.6	2.1	34.9	-	-	0
LINE 20290														
A 323.8	S	596306,5190201				1.6	7.5	4.3	28.1	28.2	221.4	1.1	20	0
B 364.5	S	597895,5190198				0.8	4.6	0.2	13.5	4.3	113.7	-	-	0
LINE 20300														
A 540.4	S	596181, 5190099				6.8	9.1	28.0	30.5	24.1	265.5	-	-	0
B 511.2	S	597247,5190098				1.2	3.2	0.1	7.8	1.2	69.5	1.1	40	0
LINE 20310														
A 622.0	S	596140,5190001				1.8	5.6	5.9	15.5	10.5	144.3	2.1	37	0
JOB 2012		$\begin{gathered} \mathrm{CX}=\mathrm{COAXIAL} \\ \mathrm{CP}=\mathrm{COPLANAR} \end{gathered}$	Note: EM shown ab local am	values e are tudes	*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 3														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LATT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \hline \text { CX } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	Cond. (siemens)	DIKE (m)	Mag. Corr (nT)
B 648.9	S	597259,5189999				1.7	1.9	0.5	3.8	4.9	31.8	2.3	91	0
LINE 20320														
A 825.0	S	596077,5189903				1.5	2.7	7.4	8.1	2.8	71.1	3.5	75	0
B 814.2	S	596475,5189904				0.1	1.5	1.4	4.9	0.1	37.9	-	-	0
C 773.2	S	597945,5189900				1.6	3.8	1.9	10.5	7.1	98.9	1.7	40	0
LINE 20330														
A 910.6	S	596437,5189800				1.8	3.0	5.8	12.6	5.2	107.0	-	-	0
- 926.1	3	$59704{ }^{\circ} 5189801$				1.6	3.2	1.3	9.8	4.0	90.7	1.7	42	0
C 948.9	S	597931, 5189798				1.9	3.6	4.0	11.7	9.8	104.6	2.5	46	0
LINE 20340														
A 1101.3	S	596381, 5189701				1.6	1.9	1.6	4.7	0.7	39.1	-	-	0
B 1084.6	S	596986,5189698				1.0	3.1	0.5	8.1	3.0	73.7	-	-	0
C 1058.3	S	597909, 5189701				3.4	2.4	5.5	5.9	5.0	48.2	-	-	0
LINE 20350														
A 1206.6	S	596876,5189601				1.4	1.6	0.9	4.1	2.5	42.7	-	-	0
LINE 20360														
A 1378.7	S	596852,5189499				1.7	5.8	0.0	19.9	5.3	162.5	0.9	23	0
B 1348.9	S?	597918,5189498				1.7	1.9	4.8	7.7	6.8	72.7	3.7	78	0
LINE 20370														
A 1612.9	S	597905, 5189403				3.4	1.4	9.4	5.4	11.6	41.9	-	-	0
LINE 20380														
A 1748.7	B?	597274,5189299				3.1	2.8	8.5	11.5	9.3	103.7	5.9	63	0
B 1726.4	S	598066,5189302				0.8	2.5	2.8	6.6	4.3	50.5	-	-	0
LINE 20390														
A 1906.7	S	598083,5189198				1.7	3.1	1.7	8.7	1.5	85.3	2.0	51	0
LINE 20400														
A 2054.0	S	596198,5189095				1.0	2.2	2.6	5.8	5.0	55.3	-	-	0
B 2036.5	S	596878, 5189102				4.9	0.8	13.4	3.3	14.6	24.5	-	-	0
JOB 2012		$\begin{gathered} \mathrm{CX}=\mathrm{COAXIAL} \\ \mathrm{CP}=\mathrm{COPLANAR} \end{gathered}$	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 4														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	$\begin{aligned} & \text { LONG } \\ & \text { (deg.) } \end{aligned}$	Secs. After Midnight	$\begin{gathered} \text { CX } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ 900 \mathrm{HZ} \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\left\|\begin{array}{c} \mathrm{CP} \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{array}\right\|$	$\begin{gathered} \text { CP } \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
C 2003.7	S	598150, 5189101				2.9	2.6	4.4	6.0	5.7	56.5	5.8	71	0
LINE 20410														
A 2133.0	S	596125,5189003				3.3	6.4	7.8	22.4	21.0	198.5	2.9	36	0
B 2181.2	S	598046,5189004				2.8	2.2	3.5	6.2	3.0	47.8	-	-	0
LINE 20420														
A 2332.8	S	596074, 5188905				2.1	4.7	2.2	13.3	11.1	125.9	1.9	37	0
B 2262.1	S	598834, 5188900				1.4	3.3	0.7	12.3	6.8	108.0	1.3	36	0
LINE 20430														
A 2408.8	S	596015, 5188804				3.2	6.7	5.6	27.0	30.5	228.4	2.3	30	0
B 2473.7	S	598666, 5188801				2.3	3.7	6.7	13.3	12.4	117.6	2.5	67	0
LINE 20440														
A 2605.1	S	596007,5188700				1.7	1.9	7.0	5.4	10.2	41.7	-	-	0
B 2562.3	S	597695,5188701				2.1	2.2	5.2	8.0	10.1	75.2	4.1	72	0
C 2537.2	S	598680, 5188700				3.1	1.2	9.3	5.1	7.7	41.5	-	-	0
LINE 20450														
A 2913.3	S	595865,5188601				2.7	2.4	1.8	8.4	8.8	65.1	3.4	69	0
B 2948.9	S	597386, 5188598				0.8	4.0	4.1	13.0	5.4	113.4	1.3	35	0
C 2952.6	S	597540,5188597				1.2	6.2	4.1	20.3	13.6	168.7	1.2	25	0
D 2965.0	S?	598035,5188604				3.2	3.9	4.5	12.6	8.2	110.5	3.0	65	0
LINE 20460														
A 3123.3	S	595933, 5188498				0.6	10.5	0.9	32.9	31.0	267.1	0.5	19	0
B 3100.5	S	596755,5188499				1.7	2.1	4.0	6.4	6.5	53.5	-	-	0
C 3081.3	S	597454, 5188499				2.7	3.1	8.5	9.4	7.5	87.2	5.3	64	0
D 3065.7	S?	598045,5188499				1.9	3.7	1.9	11.2	6.1	87.5	1.9	41	0
LINE 20470														
A 3186.2	S	595963, 5188403				2.6	13.7	1.0	41.2	50.4	336.9	0.8	14	0
B 3254.8	S	598577, 5188399				5.2	1.7	8.0	5.2	17.8	55.0	-	-	0
LINE 20480														
A 3414.7	S	596007, 5188305				2.7	8.2	4.4	24.5	23.2	196.4	1.7	26	0
JOB 2012		$\begin{aligned} & \mathrm{CX}=\text { COAXIAL } \\ & \text { CP=COPLANAR } \end{aligned}$	Note: EM shown ab local am	values	*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 5														

EM Anomaly List

Label Fid	Interp	XUTM (m.) YUTM (m.)	$\begin{aligned} & \text { LAT } \\ & \text { (deg.) } \end{aligned}$	LONG (deg.)	Secs. After Midnight	$\begin{gathered} \mathrm{CX} \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CX } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { CP } \\ \mathbf{9 0 0 H Z} \\ \text { Real } \\ (\mathrm{ppm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { CP } \\ \text { 900HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{CP} \\ 7200 \mathrm{HZ} \\ \text { Real (ppm) } \end{gathered}\right.$	$\begin{gathered} \hline \mathrm{CP} \\ \text { 7200HZ } \\ \text { Quad } \\ \text { (ppm) } \\ \hline \end{gathered}$	Cond. (siemens)	DIKE DEPTH (m)	Mag. Corr (nT)
LINE 29010														
A 3586.6	S	596001, 5189981				0.1	2.0	0.4	5.3	4.8	43.4	-	-	0
$\square 3024.3$	S	5959945191737				2.4	1.4	1.7	5.3	4.4	27.3	-	-	0
C 3647.4	S	596004, 5192770				2.1	0.1	11.5	0.5	12.0	1.5	-	-	0
LINE 29020														
A 3901.0	S	598498, 5188421				3.8	1.8	12.8	3.9	14.7	29.2	-	-	0
B 3889.0	S	598503,5188855				5.0	2.0	16.6	4.1	16.1	30.6	-	-	0
C 3887.9	S	598502,5188896				5.0	2.0	16.6	3.7	15.9	27.1	-	-	0
D 3828.0	S	598504, 5190996				1.2	2.9	1.7	4.9	1.6	39.7	1.9	51	0
E 3809.3	S	598499,5191671				0.8	1.3	0.3	2.9	1.0	22.6	-	-	0
F 3788.2	S	598501, 5192444				5.2	0.4	25.8	1.2	23.9	0.1	-	-	0
JOB 2012		CX=COAXIAL $\mathrm{CP}=$ COPLANAR	Note: EM values shown above are local amplitudes		*Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects.									
Page 6														

APPENDIX E

ARCHIVE DESCRIPTION

APPENDIX E

ARCHIVE DESCRIPTION

```
DIGHEM Reference: CCDO1246
Voiume Labels: "992012"
Archive Date: 1999-NOVEMBER-3
This archive contains FINAL DATA ARCHIVES
of an airborne geophysical survey conducted by GEOTERREX-DIGHEM
on behalf of TEMEX RESOURCES LTD., IN the TEMAGAMI AREA, ONTARIO.
during OCTOBER 1999.
DIGHEM Job # 992012
This archive comprises }80\mathrm{ files contained in 5 directories
    A Block - Savard, Wilson, Christy & Mann Lakes Groups
    B Block - Miller Lake Area
GRIDS\
    Grids in Geosoft binary (2-byte) format
    MAG_a.GRD - Total Magnetic Field
    MAG_b.GRD - Total Magnetic Field
    CVG-a.GRD - Magnetic Vertical Gradient
    CVG b.GRD - Magnetic Vertical Gradient
    RES\overline{7200_a.GRD - Apparent Resistivity 7200 Hz coplanar}
    RES7200_b.GRD - Apparent Resistivity 7200 Hz coplanar
    RES56K a.GRD - Apparent Resistivity 56 kHz coplanar
    RES56K_b.GRD - Apparent Resistivity 56 kHz coplanar
LINEDATA\
    2012_A.XYZ - ASCII line data archive in Geosoft XYZ format for area A
    2012-A.TXT - ASCII text description file for the XYZ data archive
    2012 B.XYZ - ASCII line data archive in Geosoft XYZ format for area B
    2012-B.TXT - ASCII text description file for the XYZ data archive
    AN20I2A.XYZ - ASCII EM anomaly listing in Geosoft format for area A
    AN2012B.XYZ - ASCII EM anomaly listing in Geosoft format for area B
TOPOBASE\
    Windows Bitmap
    2012topa.bmp - scanned topographic base
    2012topa.bpw - reference file
    2012topb.bmp - scanned topographic base
    2012topb.bpw - reference file
The coordinate system for all grids and XYZ files is projected as follows:
\begin{tabular}{ll} 
Datum & NAD83 \\
Spheroid & WGS84 \\
Projection & UTM Zone 17 N \\
Centrat meridian & 81 W
\end{tabular}
```

False easting

500000

False nortring
0.9996

Scale factor
N/A
Northern parallel
N/A

If you have any problems with this archive please contact:
Processing Manager
Geoterrex-Dighem (A Division of CGG Canada itd.)
2270 Argentia Road, Unit 2
Mississauga, Ontario
Canada L5N 6A6
Tel (905) 812-0212
Eax (905) 812-1504
E-mail dighem@dighem.com

STATEMENT OF QUALIFICATIONS

I, Douglas Garrie of the City of Toronto, Province of Ontario, do hereby certify that:

1. I am a geophysicist, residing in Toronto, Ontario.
2. I am a graduate of York University, with a B.Sc. in Earth and Atmospheric Sciences (1990).
3. I have been actively engaged in geophysical exploration since 1990.
4. I have no direct or indirect financial interest in the property described in this report.
5. I am presently employed by Geoterrex-Dighem, a division of CGG Canada Ltd.

Douglas Garrie, B.Sc.
Geophysicist

Declaration of Assessment Work Performed on Mining Land
 Mining Act, Subsection 65(2) and 86(3), R.S.O. 1090

rity of subsections 65(2) and 66(3) of the Mining Act. Under section 8 of the d to review the assessment work and correspond with the mining land holder ing Recorder. Ministry of Northern Development and Mines. Gin Floor.

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240. - Please type or print in ink.

1. Recorded holders) (Attach a list if necessary)

2. Type of work performed: Check (\sim) and report on only ONE of the following groups for this declaration.

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;
- complete and attach a Statement of Costs, form 0212;
- provide a map showing contiguous mining lands that are linked for assigning work;
- include two copies of your technical report.
$\frac{5}{6}, \lll$

3. Person or companies who prepared the technical report (Attach a list if necessary)

4. Daniel Peter Sinner do hereby certify that I have personal knowledge of the facts set
forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

L6king
deemed:

${ }_{\text {ax a }}^{\text {Dar Number }} 8 / 99$ loomed! tanh a 1 Inn
ine mining tand where work was pertormed, at the lime work was pertormed. A map showing the comiguous link muet accompany this form.

Mnins Climin Number. Or 4 work wat done on ather eliglbte mining tand, show in this column sho nocsition number indicated on the claim map.			Vdue of mert pertonmed on thin faim or othe monng and.	vaive of sort typiliod in this cteim	Yatw of med reirinat to ornal miving chams.	Bonk. Value of work to DO fisinmuted at allure date.
-9	тв 7827	16 ha	\$28. 825	N/A	524.000	28.825
08	1224567	12 (al	7) 0	\$24,000	0	0
og	1234588	2	S8.892	\$4,000	0	4,892
1	51219535	22	48 2-56	800	0	0
2	51219536	2210	$2^{43}+256^{10}$	800	0	0
3	5,219537	2216	. 48.258^{10}	800	0	0
4	51219538	2219	${ }^{47} 358$	800	0	0
5	51219539	229	${ }^{-18} 25 t^{+0}$	809	0	0
6	S1219544	2	$2^{48} 2585$	800	0	0
7	51219553	$4{ }^{4}$	$44^{96}, 546$	1600	0	0
8	51219556	$2 \quad 21$	2.44 258	800	0	0
9	51219557	$2 \quad 21$	2.48 2880	800	0	0
110	51219558	8849	92 4032.40	3200	0	0
11	51214559	22	$2^{48}-258$	800	0	0
12	51219565	88	9.921032.40	3200	0	0
13	S1219567	220	2.44 258 -ro	800	0	0
14	51219568	44^{2}	4.9654 .20	1600	0	0
15	S1219569	18 191	$2.322322^{* 0}$	7200	0	0
		Column totals	Peasf	Refter	5 ADO	to SHEL

 subsection 7 (1) of the Ascessment Work Aegutation $6 / 96$ for assignment to contiguous otaims or for application to the claim where the work was done.

	Nov $8 / 99$

6. Inatrucilons for cuting back ceactite that are not approved.

Some of the credits claimed in this declaration may be cut back. Please ohack (r) in the bores below to show how you wish to prioritize the deletion of credits:

- 1. Cresits are to be cut back from the Bank frrt, followed by aption 2 or 3 or 4 as indicated
- 2. Crodits are to be cun baok starting with the ctaims listed last, working beckwards, or
\square 3. Credils are to be cut back equally over all eleims listed in this deolaration: or
[-4. Credits are to be cut hack as priorilized on the arached appendix of as follows (describo): Cut buck from clare $N_{0} .1230803$ folloued by 1230801 and then the last clain, working backwands

Note: If you have nol indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 II neceassary.

Cirt oack from claim No. 1250803 tolloned by $123080 /$ and then the last clain, working backwands

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first. followed by option number 2 if necessary.

For Office Use Only
Received Stamp

Deemed Approved Date	Date Notification Sent
Date Approved	Total Value of Credit Approved
Approved for Recording by Mining Recorder (Signature)	

* Amendment * -
W9970. 00307
SHEET 2

$10579 .-$

T-ij) P 03/07 J00-51?

Wa970.00307 SHEET 3
20^{6}
Mining Claim No.

Statement of Costs for Assessment Credit

Transaction Number (office use)

Personal information collected on this form is obtained under the authority of subsection $8(1)$ of the Assessmem Work Regulation 6 (ebb. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines. 6 th Floor, 933 Ramsey Lake Road. Sudbury, Ontano. P3E 685.

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.
2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:
TOTAL VALUE OF ASSESSMENT WORK
Note:

- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/elarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs;
I. \qquad Daniel Pita Bummer
please print full name) do hereby certify, that the amounts shown are as accurate as may reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as \qquad Senior Geologist I am authorized to make this certification.

Ministry of
Northern Development and Mines

Ministère du
Développement du Nord et des Mines

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor
Sudbury, Ontario P3E 6B5
Telephone: (888) 415-9845
Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Submission Number: 2.19845

Status

W9970.00307 Approval After Notice

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection $6(7)$ of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section \#6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact BRUCE GATES by e-mail at bruce.gates@ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

ORIGINAL SIGNED BY
Blair Kite
Supervisor, Geoscience Assessment Office
Mining Lands Section

Submission Number: 2.19845

Date Correspondence Sent: March 01, 2000	Assessor:BRUCE GATES			
Transaction	First Claim			Approval Date
Number	Number	Township(s) / Area(s)	Status	Approval After Notice

Section:

15 Airborne Geophy AGR
15 Airborne Geophy AEM
15 Airborne Geophy AMAG
The revisions outlined in the Notice dated January 27, 2000 have been corrected. Accordingly, assessment work credit has been approved as outlined on the Declaration of Assessment Work Form accompanying this submission.

Correspondence to:

Resident Geologist
Kirkland Lake, ON

Assessment Files Library
Sudbury, ON

```
Recorded Holder(s) and/or Agent(s):
Daniel Peter Bunner
OAKVILLE, ONTARIO, CANADA
TEMEX RESOURCES LTD.
BURLINGTON, ONTARIO
DIANE GAUTHIER
ORLEANS, ONTARIO
```


[^0]: 1 Approximate Inversion of A: borne EM Data from Multilayered Ground: Sengpiel, K.P., Geophysical Prospecting 36, 446-459, 1988.
 2 The Differential Resistivity Method for Multi-frequency Airborne EM Sounding: Huang, H. and Fraser, D.C , presented at Intern. Airb. EM Workshop, Tucson, Ariz., 1993.

[^1]: ${ }^{5}$ Resistivity mapping with an airborne multicoil electromagnetic system: Geophysics, v. 43, p.144-172

[^2]: " See Figure C-1 presented earlier.

[^3]: It is a characteristic of EM that geometrically similar anomalies are obtained from: (1) a planar conductor, and (2) a wire which forms a loop having dimensions identical to the perimeter of the equivalent planar conductor.

