63.3665

Report No. 822T N.T.S. 31-M-5 Claims S398701, S398702

1M05NE0113 63.3665 LORRAIN

010

REPOR'.

ON THE

1979 EXPLORATION

OF THE

MCALLISTER OPTION

COBALT AREA, DISTRICT OF TIMISKAMING

ONTARIO

BY

Teck Explorations Limited
Suite 4900, Toronto Dominion Centre
Toronto, Ontario

February 11, 1980

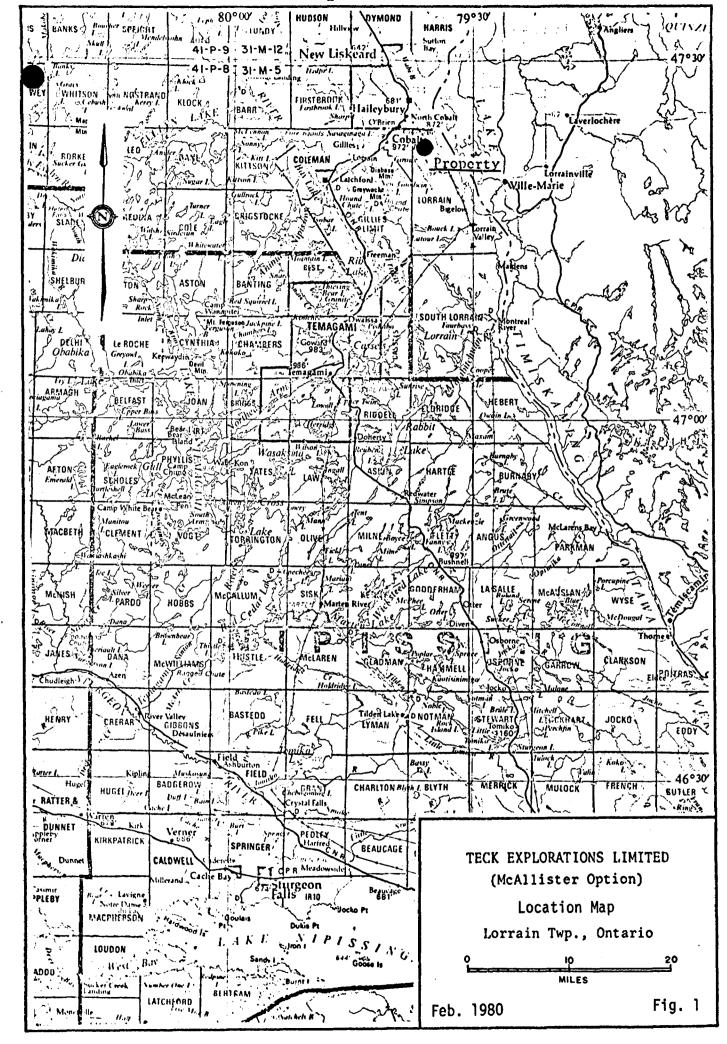
P. Dillon

INTRODUCTION

A two claim property in Lorrain Township was optioned from R. McAllister. After a property examination, 3 diamond drill holes were completed in the area of a silver-bearing calcite vein. Subsequent exploration included trenching mapping and geophysical surveys. The results of these programmes are summarized in this report.

THE PROPERTY

The property consists of 2 unpatented mineral claims; S-398701 and S-398702, locally referred to as the Little Fissure and Big Fissure respectively. These claims were optioned from R. McAllister of Cobalt, Ontario in August 1979 and are in good standing until March 14, 1980. They must be surveyed and brought to lease by March 14, 1985.


LOCATION AND ACCESS

The claims occupy the southwest portion of Lot 3,

Concession 11 in Lorrain Township, District of Timiskaming,

Ontario, latitude 47^o24'N, longitude 79^o36'W, N.T.S. Reference

31-M-5 (Fig. 1).

The property is reached by travelling north on Hwy 11B from Cobalt to North Cobalt then south on Hwy 567 over a distance of 4 miles to a bush road. The bush road is 3.5 miles long and ends on the Big Fissure claim.

TOPOGRAPHY

The property is characterized by an undulating surface reaching a maximum elevation of 940' above sea level. Large outcrop areas are exposed on the generally flat hilltops. The north section of the Big Fissure claim is swampy and is cut by a northwest flowing creek. To the west, a relatively steep cliff marks the edge of a large outcrop exposure.

Poplar and birch are the predominant constituents of the relatively open mature forest.

PREVIOUS WORK

Various government reports written between 1845 and 1949 deal briefly or extensively with the geology of the Cobalt area. Thomson (1960) discusses the geology of the north part of Lorrain Township and describes various properties

in the area;

W.t. s.t

This claim in the early days of the camp was known as the St. Denis and also as the Big Fissure. Extensive surface and some underground work was done about the period of 1906-1909.

In 1946 the surface was examined and mapped by Frederick Yellowknife Mines Limited, the owners of a considerable group in the vicinity at that time. In 1951 Clenor Mining Company Limited re-examined it and pumped out one pit 600 feet south of the Big Fissure shaft but no extensive work was done.

There are three shafts on the claim; of these the one sometimes referred to as the Big Fissure, at about \$50 feet south and \$50 feet east of the northwest claim corner, has the largest dump. It is rumoured to be about 100 feet deep but no authentic information on the extent and position of the underground workings is available to the writer. As indicated by remnants of veins in caved trenches the vein on which the shaft was put down strikes \$5.80°E.; it appeared to have been traced over a length of 500 feet and was no doubt regarded as the most promising one on the claim.

At 250 feet south and 300 feet west of the Big Fissure shaft, another, possibly 50 feet deep, was put down on a vein striking east. In the open cut west of this other shaft cobalt mineralization may be seen and the late W. Forrest, who had been present when the cut was excavated in 1906, reported that silver nuggets were obtained from a mand seam."

At about 30 feet south of the open cut a li-inch calcite vein with similar strike to the one in the cut and containing cobalt mineralization in very small amount is exposed in a trench.

At about 150 feet west and 50 feet north of the Big Fissure shaft another, possibly 50 feet deep, was put down on a vertical vein (strike K.25°W.) traversing Keewatin tuff; (the area of Keewatin here is regarded as a large inclusion in the Nipissing Diabase). NacVeigh reported that a very small showing of silver was found at the pit bottom in his

MacVeigh, E. L., personal communication.

examination for Clenor Mining Company Limited; on the dump the writer saw only chalcopyrite with pyrite mineralization in small amount in the calcite with quartz vein material which is up to 3 inches wide. The walls of the vein show red feldspathic alteration. Gouge and breccia occur along the vein, which has been trenched and pitted to the north and which has been traced into the adjoining claim to the south.

At 300 feet south and 550 feet east of the Big Fissure shaft what the writer interprets to be a microbreceisted quartz vein occupies a fissure striking N.50 W. and 2 to 7 inches wide in the diabase. The microbreceisted vein has the appearance of a sedimentary rock with fragments up to 7 inch. That this quartz is vein quartz is indicated by the mature of the inclusions contained. No metallic minerals were seen in the vein.

SW. 1. S. 1

On this claim, sometimes referred to as the "Little Fissure" the south continuation of the vein, striking K.25 W., in the southwest part of the contiguous claim to the north has been explored by pits and trenches. On the "Little Fissure" the vein dips ? § C. Sparse chalcopyrite and pyrite was the only metallic mineralization seen in yein material on the dumps.

No detailed information is available on exploration conducted on the property during the 1960's. However, McAllister was able to supply the following:

- (i) The drill hole collared just west of L3+00E, 1+35N was completed to an approximate depth of 200' during the early 1960's (DWG 5416).
- (ii) Trend Exploration and Development drilled

 3 or 4 holes on the property in 1964. The
 location of 2 of these holes has been established
 in the field; west of L3+00E, 4+00N and east
 of L1+00E, 4+65N (DWG 5416).

The claims were recorded on March 12, 1974 by

R. McAllister of Cobalt. In 1974, seven backhoe trenches

were opened in the vicinity of the south claim line of the

Big Fissure claim (Appendix I). A rock sample taken from

a 2 inch wide cobalt vein exposed in the northernmost

trench assayed 23 oz Ag/ton. This trench was widened and

lengthened during the 1979 programme, therefore the original

dimensions have been obscured. During the period

November 6-10, 1974, R. McAllister completed one 28' drill

hole on the Big Fissure claim in the area of the vein. The

exact location of this hole has been obliterated by subsequent trenching but it was drilled due west at approximately L2+00W, 0+60N (Appendix I). No mineralization was encountered.

In a further attempt to develop the mineralization exposed in the 1974 trenching, R. McAllister drilled a 103' hole which was collared 5 feet from the 1974 hole (Appendix I). Mineralization was not intersected in this 1977 drilling. Several backhoe trenches were opened on claim S-398701 (Little Fissure) in 1976 and 1977 (Appendix I).

The property was optioned by Teck on August 16, 1979 after a free examination period.

1979 EXPLORATION PROGRAMME

Following a property examination in June 1979, 3 holes totalling 600' were drilled in a northerly direction to test the silver-bearing calcite vein exposed in the trench.

Although no significant mineralization was encountered in the drilling, the fact that a new silver-bearing vein had been found in the Cobalt area indicated that more exploration was warranted.

During July and August, 2 backhoe and rock trenches were opened. In the trench centered on the main showing, the mineralized calcite vein was exposed over a length of 6'. Encouraging assays resulted in a decision to systematically examine the property. Access to the property was improved by upgrading the trail, a grid was cut and picketed, geophysical surveys were conducted on the grid and detailed geological mapping was started. Table I summarized the exploration and related activities undertaken in 1979 and the invoices and billing reports covering the work appear in Appendix II.

TABLE I
SUMMARY OF EXPLORATION AND RELATED ACTIVITIES

DATES	ACTIVITY	co.	PARTICULARS
July 9-July 20	Diamond Drilling	Barron Drilling	3 holes totaling 600'
July 30-Aug. 7	Backhoe Excavating	Laurel Birtch Trucking Ltd.	2 trenches-total of 240' in length 8-10' wide, 5-8 deep
July 30-Aug. 17	Rock Trenching	Sylva Expl. Ltd.	as above
Sept. 11-25	Upgrading Road	Laurel Birtch Trucking Ltd.	3.5 miles
Sept. 17-21	Linecutting	-	5.9 line-miles
Oct.17-27,Nov.5,6	Geophysical Surveys	-	Mag, VLF-EM, EM-15, metal detector
Oct.22-25, Nov. 5, 6	Geological Mapping	-	Big Fissure claim only.
			·

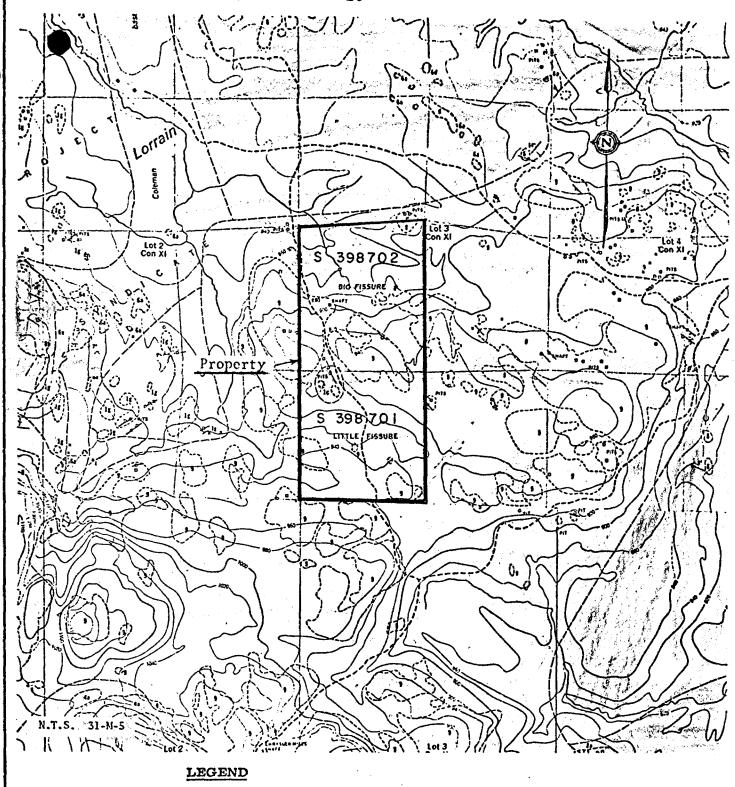
EXPENDITURES

Table II summarizes the expenditures incurred by the 1979 exploration programme. All back up documentation is included in Appendix II.

TABLE II - SUMMARY OF EXPENDITURES

1)	Griding	,	3)	Geological Surveying	
	Linecutting, picketing, chaining ar associated costs.	nd all		Map, report and all associated	costs
	7 days @ \$70 8.9 miles associated costs	\$ 490,00 1780.00 279.52 \$2549.52		-geological mapping -supervision -field & living expenses -travel -drafting	\$3,706.14 2,151.23 404.76 777.77 991.13 \$8,801.03*
2)	Geophysical Surveying		4)	nuilling	
a)	Magnetic map, report and all associa costs. 6 miles @\$70 associated costs	\$ 420.00	• •	Drilling 600 feet @ \$9.75 associated costs	. \$5,850.00 233.00 6,083.00
b)	E.M. map, report and all associated 6 miles @ \$75	\$ 588.38 	5)	Stripping	
	associated costs	37.58 . 487.58		36 hrs & \$20 associated costs	\$ 720.00 20.00 \$ 740.00
c)	Other types, map, report and all assocosts.	ociated	6)	Rock Trenching	
	l day @ \$70 associated costs	\$ 450.00 70.00 267.48 787.48		Plans, report and all associat	\$5,558.38
	•		7)	Assaying	\$ 449.00
time	se totals do not include spent in February 1980 seport preparation		8)	Miscellaneous Road Building	

\$4,856.00


GRAND TOTAL

GEOLOGY

Structurally, the property lies at the south margin of the North Lorrain Diabase Basin, approximately 6,600 feet northeast of the Cross Lake fault. With the exception of a small outlier of Keewatin volcanics which straddles the boundary between the Little and Big Fissure claims, the entire property is underlain by the Nipissing diabase. The diabase dips under the Coleman conglomerate to the north, and under the Lorrain Formation to the east (Fig. 2).

The Keewatin outlier which overlies the diabase consists of mafic tuffs and extends over an area of approximately 300 by 400 feet.

Geological mapping of the two claim property was not completed during the 1979 programme due to the onset of inclement weather. The main purpose of the detailed mapping was to tie in the old trenching, pitting and drilling with the outcrop areas and grid. Mapping of the Big Fissure claim was completed and the findings are summarized on DWG 5416. With the exception of a small area in the southwestern portion, the claim is underlain by massive, fine to coarse grained diabase. No veining was noted but the presence of many long narrow trenches suggests that veins exposed at surface were previously worked and the surface expression of the veins has been removed.

INTRUSIVE CONTACT

Quartz diabase ("Niplssing" sill).

INTRUSIVE CONTACT

HURONIAN

COBALT GROUP LORRAIN FORMATION

8a Arkose. 8b Quartzite.

COLEMAN FORMATION ***

Conglomerate, Greywacke, Well-bedded or "shaiy" greywacke, Arkose, Quartzite,

Ref: O.D.M. Geology Map No. 2050 Cobalt Silver Area Published 1964

ALGOMAN

4a Granite (locally known as Lorrain granite).
4b Felsite (dikes).

UNCONFORMITY PROBABLY

KEEWATIN

table of the state of the state

N
Basalt, andesite.
Pillow lava.
Tulf.
Basalt and andesite breccia.
Sedimentary rocks.
Chert.
Rhyolite.
Rhyolite tulf.
Rhyolite tulf.
Basactial feldspar porphyry (dike).
Basic intrusive rocks probably associated with Keewatin volcanism.

TECK EXPLORATIONS LIMITED (McAllister Option)

Claims & Geological Map Lorrain Twp., Ontario 1"=1000'

Feb. 1980

Fig. 2

In the area of the Keewatin volcanic outlier it is difficult to distinguish between the greenish, fine grained, massive, intermediate-mafic (andesitic?) volcanics and the fine grained diabase. In fact, until the southern claim is mapped and the area of the volcanics re-examined the contact position is questionable.

STRUCTURE

Four joint patterns are visible in the main trench; $118^{\circ}87^{\circ}N$, $72^{\circ}68^{\circ}S$, $113^{\circ}87^{\circ}S$, $45^{\circ}66^{\circ}S$. Two five foot wide fracture zones marked by rusty, friable diabase were noted in the north trending trench 80' east of the main trench. In this same trench, a small north-northeast striking fault possibly related to the fracture zones was mapped.

Although the area is not structurally complex on a large scale, the fracturing and faulting patterns probably control the veining.

MINERALIZATION AND VEINING

The orientation of the old trench workings indicates that two sets of calcite veins striking east-west and north-north-west predominate on the property. No mineralization was noted in the old trenches and pits.

The only mineralization found to date on the property was exposed by trenching in 1974 and extended by trenching in 1979. Dr. J.A. M^CGregor visited the property on August 7, 1979.

. At the high-grade trench all the strongly mineralized material had already been removed and piled at the side of the trench (Perhaps 50 lbs.). In the trench there was abundant green nickel stain together with calcite veining and haematite-coated joints visible on muck. A small part of the western end of the high-grade location was exposed by removing muck, but no significant mineralization was in evidence. The vein appears to be striking slightly south of west so that it will pass out of the trench as presently being extended. The crew were instructed to watch for this and to correct if necessary. The dip appears to be vertical at the exposed point. The high-grade rock fragments are bound by clean joint planes. Several such planes with different attitudes can be observed in the trench, but the state was such that one could not say with certainty which joints bound the vein. The mineralization is understood to occur in a pod upto 3 feet long, 3 % inches wide of unknown depth and plunge. It is quite likely that the current blasting has removed the whole pod. The mineralogy is massive complex nickel-cobalt arsenides with abundant free silver and minor argentite.

A second trench is being dug about 95 feet east of the high-grade locality. Some calcite veining is present and the drillers reported some vuys encountered. No mineralization was observed though some of the calcite is pink which may indicate cobalt impregnation. A brief examination showed diabase much of which is very chloritic, soft and medium to coarse grained in the southern half, and harder finer grained material in the northern half of the trench.

Five rock samples were taken from the main trench; the assay results are summarized in Table III.

TABLE III - MAIN TRENCH - SAMPLE RESULTS

SAMPLE NO.	LOCATION & CHARACTER	Oz Ag/ton	₹ Co	%Ni
12943	bottom of trench massive cobalt in calcite	34.34	10.20	- .
12944	bottom of trench massive cobalt in calcite	12.76	4.90	-
12945	muck pile beside vein-cobalt	56.48	5.80	8.80
12946	vein material	1196.00	7.36	7.28
12947	composite wallrock material from the bottom of the trench	2.20	0.02	-

DIAMOND DRILLING

Three holes were completed for a total footage of 600'. The holes were drilled to test for a downdip extension of the mineralized calcite vein exposed in trenching and to determine if a postulated east-west striking fault occurred to the south of the main trench.

Each of the holes collared in Keewatin tuffaceous andesites in part heavily altered to chlorite and epidote. The Nipissing Diabase intersected below the volcanics is generally grey, medium grained and massive.

Two of the three holes were drilled under the main trench (DWG 5416). No significant mineralization or veining was encountered but many small calcite slips, stringers and breccias and fault zones were intersected. The core assays appear in Table IV and the sludge sample analyses are at the end of the drill logs in Appendix III.

The core is currently stored at the Silverfields Mine site in Coleman Township, Ontario.

TABLE IV - CORE SAMPLE ASSAYS

DDH	SAMPLE #	FROM	TO	LENGTH	ASSI	AYS
		(ft)	(ft)	(ft)	Ag oz/ton .	₹Cu
LT #1	49848	66.4	67.4	.1.0	т	0.03
22 11 2	49849	68.4	70.0	1.6	$ar{ extbf{T}}$	0.006
	49850	72.0	73.0	1.0	$ar{ extbf{r}}$	0.03
	49851	74.8	75.4	0.6	Ť	0.004
	49852	103.	104.0	0.7	Ť	0.04
LT #2	49853	42.8	43.1	0.3	T	_
	49854	79.1	79.6	0.5	${f T}$	0.088
	49855	100.1	101.2	1.1	${f T}$	0.05
	49856	102.2	102.3	0.1	T	0.004
	49857	103.6	103.9	0.3	T	0.066
LT #3	49858	76.4	77.1	0.7	T	0.15
	49859	84.0	84.8	0.8	T	0.02
	49860	104.3	104.8	0.5	${f T}$	0.006
	49861	109.8	110.1	0.3	T	0.09
	49862	131.9	132.4	0.5	T	0.01
	49863	186.7	187.3	0.6	T	0.01

TRENCHING

Two trenches were opened during 1979. The main trench is 90 feet long striking in a southwest direction and 50 feet long striking in a north-northeast direction. This trench is centered on the 1974 trench in which the mineralized calcite vein was exposed and crosses L2+00E at 1+00N (DWG 5416). It is up to 8 feet deep and is now flooded.

The second trench is 95' long and trends north-south.

It is located just east of 3+00E at 1+35N. Fresh unaltered diabase was not exposed. No calcite veins were encountered and no samples were taken.

ANALYSES

The core samples and rock samples taken from the main trench were assayed by Bell White Analytical Laboratories Ltd. in Haileybury, Ontario. The silver content of the samples was determined using the fire assay method. Analysis by the atomic absorption method after solution in hot acid was used to establish the copper and cobalt content of the rocks.

The certificates of analysis are in Appendix IV.

GEOPHYSICAL SURVEYS

Magnetometer, Radem VLF-EM and EM-15 surveys were carried out from the grid. Readings were taken at 50' intervals on all lines except the tie lines. The instruments used include a Crone Radem VLF-EM unit, a Scintrex Fluxgate MF-1 magnetometer, and a Geonics EM -15 unit. For a brief technical description of the instruments used see Appendix V.

The central portion of the property in the vicinity of the showing was tested with a Heathkit GD48 metal detector. Only qualitative data were collected. The instrument indicated two anomalous areas; the showing and LO+50E, 5+60N (DWG 5416).

Dr. Z. Dvorak examined the quantitative geophysical data and made the following observations:

Magnetometer Survey

The results of an MF-1 fluxgate magnetometer survey show that several magnetically active zones are present in the survey area (DWG 5624). Scattered, mostly linear anomalies with amplitudes of up to 900 gammas exist. They are mostly confined to the eastern and southern parts of the survey area. The west-central portion of the area is characterized by a number of anomalies

of relatively small areal extent with peak-topeak amplitudes of up to 1850 gammas.

VLF-EM Survey

A VLF-EM survey delineated two long WNW-ESE trends along the north and south sides of the survey area, and a minor NW-SE trend in its west-central part (DWG 5622). The two anomalies which occur close to the north and south boundaries of the survey area may reflect structural features, such as contacts, faults or ridges. The northern conductor which coincides with a swamp, has produced a broad VLF anomaly. The VLF-EM responses are probably partly caused by the conductive material of the swamp. The VLF-EM responses in the westcentral part of the survey area appear to indicate a poorly conducting slab which may extend outside the survey boundary in a northwestern direction. The west-central anomalous area roughly correlates with the magnetically anomalous zone mentioned above.

EM-15 Survey

The electomagnetic survey was performed using a Geonics EM-15 MKI unit. Its small depth penetration (generally less than 10 feet) makes it suitable for locating and following near-surface conductors.

The data indicates that moderate to thick overburden cover exists over most of the survey area (DWG 5623). A notable exception is the west-central portion of the survey area were several attractive EM anomalies were located.

A double, SW-NE trending anomaly extends from L0+50E, 0+25N to L2+50E, 1+25N. Its double-peak character appears to be confirmed by the existence of a magnetic low which separates two magnetic highs showing a general coincidence with EM peaks. The anomaly has been tested with two to four drill holes.

A narrow, short EM anomaly exists on L0+50E at 2+75N. It correlates with a shaft which makes it suspect for culture.

A double-peak anomaly on L4+50E at 3+25N may reflect a set of short, probably E-W

strike extends from L2+50E, 4+40N to L4+00E, 4+4N. It may reflect a set of narrow conductors.

Other anomalies exist outside the west-central anomalous zone. The most attractive among them is located on line 0+00 at 4+00S.

The lack or correlation between EM-15 and VLF-EM anomalies suggests that the EM-15 anomalous features do not have a great depth and lateral extent. It may be, therefore, advisable not to test these anomalies with drilling, but instead to make use of other techniques such as detailed geologic mapping, trenching, and geochemistry.

CONCLUSIONS

The main trench was successful in further exposing a pod-shaped silver-bearing calcite vein. Geological mapping, although incomplete, failed to locate any additional veins or mineralization. The geophysical surveys delineated several anomalous areas that warrant following-up in the 1980 exploration season.

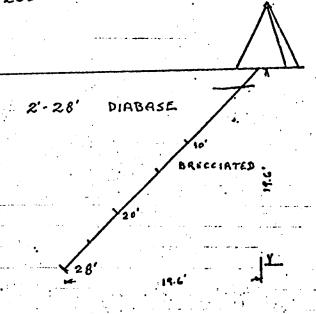
REFERENCES

- Thomson, R., Prelinimary Report on the Geology of the North
 1962 Part of Lorrain Township, (Concessions VII to XI)
 District of Timiskaming, O.D.M. PR 1960-1.
- O.D.M. Map 2050, Cobalt Silver Area, Northern Sheet (1:12,000)
- O.D.M. Provisional Map P-61-Part of Lorrain Township, Concession 196 Il and 12, District of Temiskaming (1"=400').

R. C. McAllister

Dip Tosts

LORRAINTWP. Drill Hole Log


Dip Tosts At 0 ft -45		• • • • • • • • • • • • • • • • • • • •	roporty BIG FISSURE Claim 398702 • E332 11200 from 3-399702	Hole Number Dip45 ⁰			45 - 7	4 -1		
			laim No. 398702		length 28 feet					
•			Vorking Placesurface		2700		t)	·····		
			oseline Footage E332		ollar_51					
			oselino Offsot 1/200		Trace					
			ote Storted Nov. 6th, 1974		raco					
			ote Completed Nov. 10th, 1974				7th, 19	74		
FROM	10		DESCRIPTION					SA NL		
	<u> </u>									
0	2	Overburden - cl								
2	28	diabase coarso								
		14' some bre	ecciation							
:		·	-							
· · · · ·	28	END OF HOLE								
<u> </u>										
						1				
			•							
:							7	1		
		··								
						`	· ·			
· · ·	1									
				•						
• ···										
		·.						7		
 										
				m-j						
			ASSESSMENT WORK							
			Rec's 11000				1	1-		
			3 diaministra mandanta di mana				1			
		•	and the second second	(1: :	1		
			Rept at Groto	73"				1		
						1		1		
		·					1	1		
		END OF HOLE			• •			1		

CLAIM 398702 LORRAID TWP. D.H. 45-74-1

"A' CORE 1.03"

HOVEMBER 6.7.8.9 & 10. 1974
BOYLES X-RAY DRILL
ALTON MCKNIGHT

E 332 N200 FROM 3-398702

SCALE 1"= 10'

DEC 20.1974.

The same of the sa	EX.TPANSPORT
ASSESS!	IENT WORK
Trom.	
and militarian of 2	
Valounit to fair ?	
and activities to the same of	Reid no Gonley.

Bell-White analytical laboratories LTD.

P.O. BOX 187.

HAILEYBURY ONTARIO

TEL: 672-3107

Oertificate of Analysis

NO. 16387

DATE: September 13, 1974

SAMPLE(S) OF: Core(1) Rock(1)

RECEIVED: September 11/74

SAMPLE(S) FROM: Douglas Burton, Esq., Box 293, Cobalt, Ont.

Sample No. Oz. Gold Oz. Silver

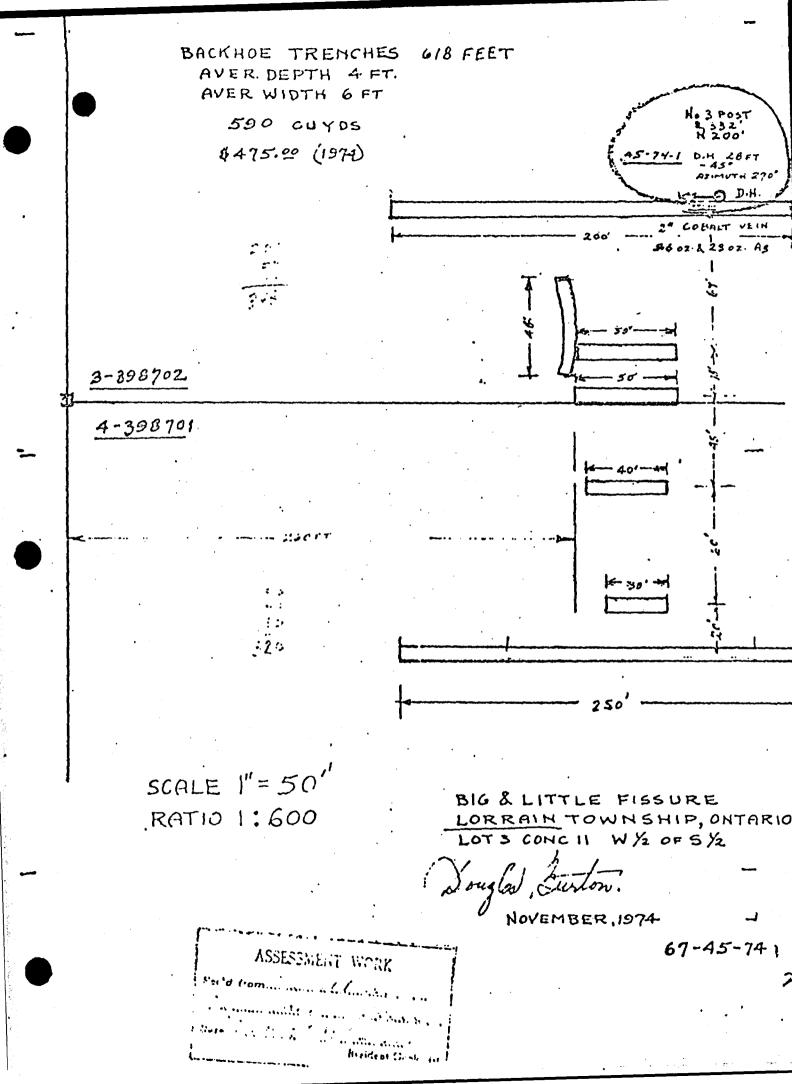
8406 Trace Zien ik.

8407 Trace 23.35 | Dig tike.

Received from Box Cylle Melister

for the sold one Sing fige of Dollars

in 1111.


\$ 475.00. B. Cira. I.

ASSESSIENT WORK

MANGEN DESTABILITE ANALYTICAL LABORATORIES LTD

professional social and business of the professional index and the social action of the social actions of

Complete State Control of the Contro

	Started Finished		orth, oot		Be Di	aringD p : _40	HOLE 1 uo_Ves: _@ Coller	t		
	Dopth	Elevation	*	SAMPLES					SAYS	
	ТО	DESCRIPTION	NO	FROM	то	WIDTH				
.0.	-2.0_	Casing								
-5	702 0	Nipissing Diabase, fine grained,			 					
1.V_	- 105 ° 0	derk green in color	· · · · · · · · · · · · · · · · · · ·							
		į 1.								
		19.9 - 45.2 - coarde grained, mottled								
		green-white in color with a pink cast				ļ				-{-
		From well developed erthoclase				 				· -
		35.0 - 36.0 - possible fault		\ 		 				
		45.2-61.5 - fine grained								
	 .				· · · · · · · · · · · · · · · · · · ·					. -
		61.5-74.0 - mixed coarso and fine grained sections.								•
		Catatada and vania								• -
_		100.0-101.8 - lest core, possible					-			
		foult.				ASS	SSMENT		-	, [_
_					- Ror	Troin	SMINT	HORK.		ļ. ļ.
		_103.0_END_OF_HOLE		-	-A		Town.			-
-			· · · · · · · · · · · · · · · · · · ·	 	-1-7	1 ce		7	<u> </u> -	- -
					Dalon	2	/27//	1	-	+
_					-		, , , , , , , , , , , , , , , , , , ,	1000	121	
			 				THE PERSON AS PER		[= :]	
						 -		<u> </u>		
										-
		1		 		ļ	 			

ASSESSMENT WORK Section D.D.H. 77-1 along 9-398702 Lorenin Tup. Scale: lin = 20 ft. 04.28/17 سر برارو

330' - 30' 20'

3-398702

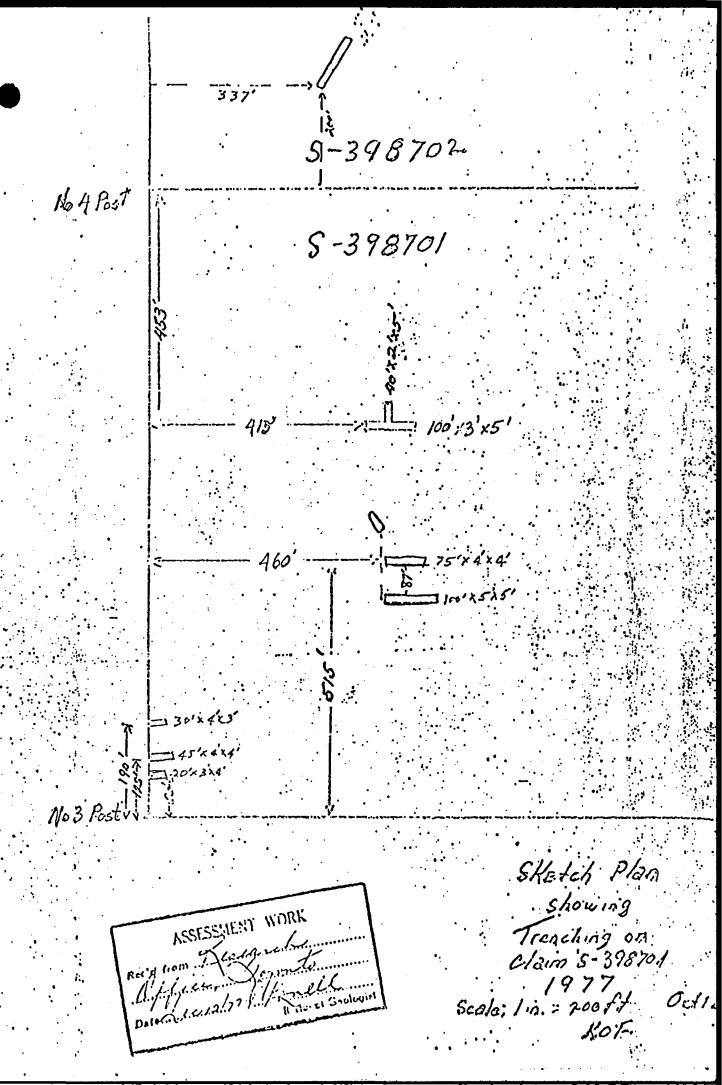
4-398701

ASSESSMENT WORK

Rocid from Leseasch

Office Struts

Date 18/77 Freell


Rochart Goodness

Skotch Plans
chowing
Location DN 12-1

Claims - 39.61-2

Scale: lin=100ff. Lorrent To.C.

colorly Mil

COMPANY SILVERFIELDS MINING CORP. LTD.

PROPERTY McAllister Option

Township	Lorrain Township
----------	------------------

Claim No. <u>S-398702</u>

SHEET No.	1
Started	July 9, 1979
Finished	July 12, 1979
Death	201

Reference #3 Post 398702

Location 35' North 235 East

Elevation 960 deg.

HOLE No. <u>IT #1</u>

Bearing North

Dip:-45 @ Collar; @ _____

			0.5.6.0.1.5.1.0.1		SAMPLES				ASSAYS			
FROM		то	DESCRIPTION	NO	FROM	TO	WIDTH					
0	-	16	Casing									
16.0	_	47	Keewatin andesite & tuffaceous, abundant								I	
			epidote and aplite alteration, abundant									
•			red stain.									
_47			Diabase: Nipissing Medium gray, medium									
			grained to very csq'd highly alteredepidote				<u> </u>				<u> </u>	
			and sericite large phenos								<u> </u>	
28.0			1/2 grey calcite chl & med slip 70 core								ļ	
_30.3			k aplite stringer & slip 60 core				ļ	 				
_35.0			1/8 pink calcite 30 core		<u> </u>		<u> </u>			ļ		
_38		39	series chl slips red stain 30-40 core						ļ		ļ	
_41		43	heavy red stain slip 30 core				↓					
47.5			½ pink aplite 40 core		ļ		<u> </u>				ļ	
_44		46	heavy shearing 10-15 core wall				<u> </u>		;			
			rock altered bleached contact area altered shear zone, rusty broken	ļ				ļ			ļ	
48.5		56.0					<u> </u>		ļ			
			core trend 30 core				ļ				ļ <u>.</u>	
51.7			½ calcite chl 30 core				<u> </u>			·		
52.2			1/8 calcite slip 60 core							i 		
53.8				ipstick s	<u>tain</u>		<u> </u>				ļ	
_53		_55	fine grain section		 						ļ	
54.5		59.0	calcite zone with some fine grain					ļ			 	
			calcite sections top section 6"		 		 -		ļ			
			cobalt breccia 20 core		_		ļ				 	
58.0			3 ½ - 3/8 calcite stringer 70 core					ļ			 	
59.3			2" calcite breccia in contact		 		 					
63.0			with red stain F.Z. 1.0' 1.0 calcite breccia trend 60 core		 		 					
-03.0			Diabase walls very coarse with calcite & pink	altered 6	5.0 11 0	nna	 	 			 	
			DIGOGGE MULLS AGEN CYCLES MICH COTOTTE & BILLY	arcered o	7.0 11 0	W16	1	<u> </u>			<u> </u>	

Drilled by BARRON DRILLING

Core Size AQ 1 ½

Logged by H.A. Moore, Geologist

COMPANY SILVERFIELDS MINING CORP. LITD.

Township	Lorrain	Township	

PROPERTY	-	
Claim No.		

SHEET No.	2	Reference	HOLE No
Started		Location	Bearing
Finished			Dip:@ Collar;@
Depth		Elevation	

50011	7.0	DESCRIPTION		SAMPLES			ASSAYS			
FROM	TO		NO	FROM	TO	WIDTH				
65 -	- 68	fine grain section					Ag	Cu		
66.7		3" calcite stringer 70 core NVM	49848	66.4	67.4		T	.03		
68.6		l" calcite stringer 40 core	849	68.4	70.0		T	.006		
69.6		3/8 & ½ calcite stringer 80 core some zon	ing							
_71	- 73	cobalt zoned calcite	850	72.0	73.0		T	.03		
71.0		2" calcite & slip 10 core NVM	<u> </u>							<u> </u>
72.5		3/8 - ½ calcite stringer 15-30 core good		<u> </u>		<u> </u>				
		zoning	<u> </u>	<u> </u>				<u></u>		<u> </u>
_72.7		1/8 calcite stringer 80 core		<u> </u>						<u></u> _
75.0	***************************************	2" pink calcite breccia 45 core stringer, good zoning, associated fine	851	74.8	75.4		T	.004		<u> </u>
	·····					ļ				
	·	grain section				ļ				ļ
75	- 79	fine grain section		<u> </u>						<u> </u>
77.8		1/2 grey calcite associate 1/2 40 core tr cpy		<u> </u>						<u> </u>
		pink aplite	<u> </u>							
79.8		3/4 pink calcite & chl slip 40 core								<u> </u>
80.5		calcite slips all angles		<u> </u>						<u> </u>
_81.2		½ calcite chl 20 core								<u> </u>
82.8		1/8 calcite pink 5 core				ļ				
_83.6		3" pink calcite breccia 65 core strong c	h1					<u> </u>		<u> </u>
	· · · · · · · · · · · · · · · · · · ·									ļ
84.1 88 +		1/8 pink calcite aplite 65 core				ļ				
88 +		Diabase: more csq abundant,	ļ							ļ
		phenos larger, epidote and								ļ
		sericite with heavy pink inflection								
89.5		3/8 calcite shear & chl 30 core	ļ	<u> </u>		ļ		ļ		
91.5		2 1/16 calcite slip 15 core	↓			 				ļ
_94.0		1/8 pink calcite & chl 70-90 core	<u> </u>	-		ļ				
96.0		chlorite wafer in core	<u> </u>	1		<u> </u>				L

Drilled by	BARRON	DRILLING	Core Size	
,				

Logged by H.A. Moore	
----------------------	--

COMPANY SILVERFIELDS MINING CORP. LID.

Claim No.

Township	Lorrain Township	Claim No.	
			

SHEET No.	#3	Reference	HOLE No. LT #1
Finished		Elevation	Dip:@ Collar;@
Depth		Elevation	

5004 70				SAMPLES				ASSAYS			
FROM	то	DESCRIPTION		NO	FROM	TO	WIDTH				
97		1.0 fine grain section accent	20 core								
		by calcite slips									
98 +		more aplitic inclusion									
		pinkish calcite to 123									
102.6		fresh 3 calcite & red stain	45 core						I		
103.0		fresh 1/16 calcite & red	60 core					Ag	Cu		
		stain									
103.5		½ bleched cpy in core		49852	103.3	104.0		T	.04		
103.8		1/8 calcite slip	70 core								
105.0		fresh calcite find	15 core tr py								
107.2		と calcite stringer	80 core NVM				<u> </u>				
109.5		upper edge of F.Z.								·	
110.0		k calcite & chl	5 core				<u> </u>				
_110.3		4" calcite breccia core	30 core								
		cobalt all angles	30_core				<u> </u>	<u> </u>			
_113.2		weak calcite injection				<u> </u>	ļ				
_114_2		为 fresh calicte	_20_core			·					ļ
119.3	-	为 fresh calicte leather red stain		<u> </u>		·		İ	<u> </u>		
119.3 119.7		leather red stain					ļ		<u> </u>		
120.6		6" epidote & calcite	20 core	<u> </u>					<u> </u>		<u> </u>
		injection						ļ		<u> </u>	
123.0		1/2 calcite	25 core	_			ļ. <u></u>				
124.7		broken oxide chl slip	25 core	<u> </u>			ļ			ļ	
124 +		phenos much larger than nor		<u> </u>			ļ	ļ. <u></u>	<u> </u>		<u> </u>
_126.2		chl slip					ļ				ļ
128.5 130.1		mtn leather calcite	_50 core						<u> </u>		
		え calcite stringer		_			ļ		<u> </u>		
130 +		Diabase: fine grain, uniform,	•	<u> </u>			<u> </u>		ļ		
		regular		1			<u> </u>				

Drilled by		BARRON	DRILING
MILLEG D	,		

COMPANY	SILVERFIELDS	MINING	CORP.	LID
---------	--------------	--------	-------	-----

PROPERIT	
•	
Claim No.	

Township	Iorrain Township	Claim No.	

SHEET No	#4	Reference	HOLE No
Started		Location	Bearing
Finished			Dip: @ Collar; @
Depth		Elevation	

FROM TO		DESCRIPTION		SAMPLES				ASSAYS			
	10			NO	FROM	TO	WIDTH				
135.2		heavy chl shearing	50 core								
139.7		2" calcite breccia	40 core								
140.9		½ pink aplite	40 core				<u> </u>				
143.0		1/64 calcite & red stain	15 core				<u> </u>				<u> </u>
143.9		k altered zone & 1/6 cal.	15 core								
144.7		k calcite & rusty chl slip	15 core							<u> </u>	ļ
_146.0		fresh calcite chl	11 core				<u> </u>				
153.0		为 aplite stringer	60 core associat	ed							
		calcite chl slip	30 core		 						
_153.2		⅓ fresh calcite	30 core shear				ļ				<u> </u>
155.5		series fresh calcite	5 core								
		fractures			<u> </u>						
157.4		calcite & red stain shear	20 core								
_157	- 160	red stained throughout core									
		calcite	45 core				<u> </u>		<u> </u>		
160 +		normal but more coarse									
		diabase with occasional reddi	sh section				<u> </u>				<u> </u>
163.2		½ qtz aplite stringer	45 core								
		associated calcite breccia								l	
168.0		1/8 calcite & red stain	20 core		ļ						
	· · · · · · · · · · · · · · · · · · ·	slip									
		wallrock red 1.0 feet.									
170.4		え calcite & associated slip	20 core							ļ	
_172	174	series 1/8 weak calcite	40 core & 11 cor	e			<u> </u>				Ì
176.0		calcite chl slip	10 core		ļ		<u> </u>	·		 	
177.5		1/8 pink calcite	5 core				ļ				
179.0		heavy chl & red stain	10 core				 				
180.5		2" calcite breccia	5_core			 					
181.7		l" 均 calcite breccia	20 core								

Drilled by _	BARRON	DRILLING
--------------	--------	----------

COMPANY SILVERFIELDS MINING CORP. LID.

Township Lorrain Township

PROPERTY		
Claim No.		

SHEET No	#5	Reference	HOLE No. IT #1
Started		Location	Bearing
Finished			Dip:@ Collar;@
Depth		Elevation	

5004	*^	DESCRIPTION		SAMPL	ES			AS:	AYS	
FROM	TO		NO	FROM	TO	WIDTH				
188.0		3/8 aplitic stringer 70 core								
188 -	198	heavy chl slips 50 core								
193.5		½ calcite in core 40 core								
200		calcite % shear & % aplite 45 70								
201.0		End of Hole				<u> </u>				
			<u> </u>			<u> </u>		<u> </u>		I
			<u> </u>				Ag			<u> </u>
		SLUDGE SAMPLES	49758	0	20	10	.1			
			759	20	30		.1			<u> </u>
			760	30	40	<u> </u>	,2			1
			761	40	50	ļ	T	·		<u> </u>
<u></u>			762	50	60	<u> </u>	T			<u> </u>
			763	60	70		1			<u> </u>
			764	70	80		T			L
			765	80	90	<u> </u>	1			1
			766	90	100 ·	<u> </u>	Т			
			767	100	110	<u> </u>	T	·		<u> </u>
			768	110	120	<u> </u>	T			<u> </u>
			769	120	130	ļ	2			
			770	130	140	<u> </u>	T			↓
			771	140	150	<u> </u>	T	ļ		
			772	150	160	↓				
			773	160	170	 	T			
			774	170	<u> 180</u>		T	ļ		
			775	180	_190		T			ļ
***************************************			776	190	200	<u> </u>	1			
						 	<u> </u>	ļ		+
						 	<u> </u>			
			<u> </u>	<u> </u>		<u> </u>	l	<u> </u>		<u> </u>

Drilled by BARRON DRILLING

Core Size

Logged by H.A. Moore

COMPANY SILVERFIELDS MINING CORP. LITD.

1	?() F	E	₹'	TY	McAllister Option	į

IOWNSHIP EXTRACTOR TOWNSHIP	Township	Lorrain Township
-----------------------------	----------	------------------

Claim No. <u>S-398702</u>

		Reference #3 Post 398702	HOLE No
Started	July 12, 1979	Location 35' North	Bearing North
Finished	July 17, 1979	160.0' East	Dip: <u>-45</u> @ Collar; @
Depth	199	Elevation 965	

5004	**	DESCRIPTION		SAMPLES			AS	SAYS	
FROM	TO	DESCRIPTION	ИО	FROM T	WIDTH				
_0	- 48	Casing				<u> </u>			1
_8.0	20.0	Keewatin: Medium grey massive tuffaceous				ļ	<u> </u>		
		rusty slips pitted out highly altered				ļ			
	·	chlorite				ļ			<u> </u>
_20	··	Diabase: Nipissing medium grey grained				<u> </u>	 	<u> </u>	<u> </u>
		massive some fine grain section and abundant					ļ		<u> </u>
		phenos with csq diabase					<u> </u>	ļ	<u> </u>
_15.0		rusty oxide fracture 15 core				ļ	<u> </u>		<u> </u>
_23.7	······································	1" calcite stringer & shear 30 core				ļ		ļ	<u> </u>
24.1 25		1" calcite stringer & slip 60 core				 	<u> </u>	ļ	<u> </u>
_25	- 28	fine grain section series 50-60 core				ļ	ļ		<u> </u>
		weak calcite				ļ		 	
28.6		½ vugged formed F.Z. 30 core				ļ		ļ	
29.2		⅓ pink calcite stringer 70 core							<u> </u>
30.2	·	4 calcite chloride shear 20 core				<u> </u>	ļ		ļ
_31.9		1/32 calcite wafer 50 core			<u> </u>			<u> </u>	<u> </u>
_36	<u> 45 </u>	fine grain section altered 70 core		<u> </u>			ļ	<u> </u>	
		and calcite banding				<u> </u>	<u> </u>		<u> </u>
40.2		calcite fracture 11 core				<u> </u>	<u> </u>	<u> </u>	ļ
41.0		1/16 pink calcite and altered 60 core					ļ	<u> </u>	<u> </u>
		bank				1		 	<u> </u>
_42.0	···	1/16 pink calcite stringer 30 core				Ag	Cu		<u> </u>
42.9	···	1 calcite & quartz 90 core tr shea	r 49853	42.8 43.1		T	<u> </u>		<u> </u>
		stringer 85 core						ļ	<u> </u>
43.8		1/8 vuggy calcite stringer 70 core					<u> </u>	ļ <u>.</u>	ļ
		& leather				<u> </u>	<u> </u>	ļ	
45.0		contact very sharp				ļ	ļ	<u> </u>	
_45		Diabase: made csq uniform more aplitic,				<u> </u>	 		ļ
		some epidote						<u> </u>	<u> </u>

Orilled by	BARRON DRILLING	Core Size	_AQ_1½	Logged by	H.A. Moore

COMPANY SILVERFIELDS MINING CORP. LITD.

Township	Lorrain	Township	
----------	---------	----------	--

PROPERTY	
Claim No.	

SHEET No	#2	Reference	HOLE No. LT #2
Started		Location	Bearing
Finished			Dip:@ Collar;@
Depth		Elevation	*

			T	SAMPLES				ASSAYS			
FROM	M TO	DESCRIPTION		NO	FROM	TO	WIDTH				
48.3		3/8 pink calcite stringer 90 co	re								
49.0		½ pink aplite stringer 20 co	re								
51	- 53	rusty slip 11 co	re								
52.5		1/2 vuggy red stained calcite 20 co	re								
62		fine grained section calcite cobalt	upper								
		contact sharp									
_66	- 73	Diabase: more regular medium csq and	more								
-		greyish series chl slips 30 co									
_68	70	series & calcite stringer red 30 co									<u> </u>
		stained and chl along slips									<u> </u>
72.8		½ calcite stringer & red 80 co	re								
		aplite									<u> </u>
-73 +		more epidote, and pheon becoming clay	ey								
	· · · · · · · · · · · · · · · · · · ·	Diabase: medium csq more epidote									
73.0		½ pink calcite stringer 70 co	re								
	- 74	3 1/8 calcite stringer all 30 co									
		angles to core	1			 					
		½ pink aplitic calcite stringer20 co	re				<u> </u>				
		1/16 calcite stringer 20 co	re				Aq	Cu		· · · · · · · · · · · · · · · · · · ·	ļ <u>.</u>
79.3		3/4 associated wallrock alt.diss cpy		49854	79.1	79.6	T	.088		······································	
82.0		1/16 leather calcite 30 \propto					ļ <u></u>	ļ ļ			ļ
85.0		片 calcite shear breccia 70 cc	re NVM				ļ				
		½ calcite 30 co	re pink al	tered wall	s						
		calcite chl slip 30 cc	re								ļ
-90.4		3/8 pink calcite slip 70 cc	re				ļ				ļ <u>.</u>
94		series weak 1/8 calcite 70-90 ∞	pre								
_101.0		1½ calcite & slip 30 cc			100.1	101.2		.05			ļ
_102.4		1 calcite stringer & slip 30 cc		856	102.2	102.3	T	.004			ļ
_103.7	I	13 calcite stringer & cpy 70 cc	ore	857	103.6	103.9	T	.066			<u> </u>

Drilled by BARRON DRILLING....

Core Size

COMPANY SILVERFIELDS MINING CORP. LID.

OMPANY	SILVERFIELDS MINING CORP. LID.	PROPERTY
ownship	Iorrain Township	Claim No.

SHEET No	#3	Reference	HOLE No. LT #2
Started		Location	Bearing
Finished	and the state of t		Dip:@ Collar;@_
Depth		Elevation	

						SAMPLES			· · · · · · · · · · · · · · · · · · ·	AS	SAYS	
FROM	TO	DESCRIPTION		N	0	FROM	TO	WIDTH				
113 -	113.8	fine grained section chilled										
114.5 -		fine grained section	60 core					<u> </u>				
122 +		grain sized to normal	30 core									
		typical chl slips										
126.6		2" calcite & pink chl shear	20 core									
		red stains	20 core									
130.6		3/4 calcite aplite breccia	80 core									
130.6 +		heavy epidote like dikelet & p	ink inflect	ion								
		some cobalt stringer pinkish										
131.8 -	133.0	several 4 - 3/8 pink calcite	30 core							<u> </u>		
134.0		calicte chl shear	70 core						·		<u> </u>	
135.9		⅓ - 3/4 pink calcite &	30 core							<u> </u>		
		epidote										
140.2		戈 chl shear	60 core sl	<u>Lickenside</u>								
140 +		Diabase: more normal										
145.5	· · · · · · · · · · · · · · · · · · ·	え calicte chl breccia	45 core s	<u>lickenside</u>							<u> </u>	
147.0		heavy chl leather	10 core								ļ	
150 -	153	heavy calcite leather shear zone rehealed pink calcite bre	30 core					1				
			eccia					ļ		<u> </u>		
<u> 157.3 - </u>	167.6	14" fine grain section	45 core					ļ		ļ		
		associated calcite & aplite sh						<u> </u>				
159.0		3 1" calcite & aplite stringer	65 core NV	M						ļ		
160.5 -	163.5	50% calcite aplite content	60 core NV	M						ļ		
		breccia zone										
_163.0		1/2 vuggy pink calcite shear	_45_core					ļ		 		
166.0		several 1/8 calcite stringer	_40_core					1		ļ		
167.5		l" calcite breccia	5 core				 	ļ		ļ	ļ	
167 +		Diabase: csq						ļl				
170.0		⅓ quartz cb aplite	70 core					1			<u> </u>	

Drilled by BARRON DRILLING

Core Size _____

		Township Lorrain Township		Claim No						
	SHEET No.	#4 Reference Location			Beari		HOLE N			
	Finished Depth	Elevation								
FROM	то	DESCRIPTION	NO	SAMPLES FROM	то	WIDTH		ASS	AYS	
176.7		½ aplite stringer 85 core	10	7 ROM	''' 	WIDIN				1
179		several weak calcite stringer 40 core								
188.5		calcite breccia F.Z. breccia 11 core reheale	- 							
185.0		crystals of calcite with trend 30 core						-		1
188.5		red mud		-			-			
	- 193.5	calcite breccia F.Z. 70 core								
193.5	193.5	2" calcite breccia 70 core								
193.8 197.0		mud slip 70 core 1/8 pink calcite stringer 11 core	······································							1
199.0		End of hole						************************		1
.=										
									,}	
				_						ļ
				<u> </u>						<u> </u>
										<u> </u>
										ļ
										
										ļ
· · · · · · · · · · · · · · · · · · ·										
			a							<u></u>

C	OMPANY SILVERFIELDS MINING COR	P. LID.	PROPERTY _			
• т	ownship Lorrain Township		Claim No			•
SHEET No. Started		•		Receipe	HOLE No.	LT #2
Finished	Excellent			Dis:	@ Coller:	
Depth		n			e contrae	
	D.C.C.O.L.D.T.L.O.M.		SAMPLES			ASSAYS
FROM TO	DESCRIPTION	NO	FROM	ro WIDTH	Aq	
	SLUDGE SA	MPLES 49777	10 20		T	
		778	20 30		.1	
		779	40		1	
		780	50		T	
		781	60		T	
		782	70		T	
		783	70 80		T	
		784	80 90		T	
······································		785	90 100		T	
		786	100 110		1	
		787	110 120		T	
		788	120 130		T	
		789	130140_		T	
		790	140150_		T	
		791	150160		T	
		792	160170_		T	
		<u>7</u> 93	170-180		T	
·		794	180 190		1 1	
		819			T	
					 	
						
					 	
					 	
		-			 	
			- 		 	
			<u> </u>		 	
						
		i	I	ı	1 1	1 1

Drilled by BARRON DRILLING

Core Size

COMPANY SILVERFIELDS MINING CORP. LID.

PROPERTY McAllister Option

Township Lorrain Township

Claim No. S-398702

 SHEET No. #1
 Reference #3 Post 398702
 HOLE No. LT #3

 Storted
 July 17, 1979
 Location 50' North
 Bearing North

 Finished
 July 20, 1979
 285.0' East
 Dip:-45 degs Coller; e

 Depth
 200 feet
 Elevetion 945.0 feet

			1	SAMPLES			A	SSAYS	
FROM	TO	DESCRIPTION	NO	FROM	TO	WIDTH			T
0 -	14.0	Casing							
14 -	23.0	Keewatin: Tuffaceous medium grey grained							
		massive, heavy epidote and chl alteration	<u> </u>	<u> </u>		<u> </u>			1
		possibly fine grain diabase		<u> </u>					<u> </u>
17.4		calcite & rusty stringer 60 core							1
22 -	23.0	highly altered contact zone 45 core		<u> </u>		ļ			<u> </u>
		fresh calcite				ļ		_	<u> </u>
_23.0 -	200	Diabase: Nipissing medium grey, medium							
		to fine grained, highly altered surface		<u> </u>		 		 	
		weathering red stain with strong epidote						<u> </u>	<u> </u>
		phenos small-aplitic inclusion				<u> </u>		<u> </u>	
_27.7		1/2 calcite stringer 70 core				<u> </u>			ļ
_30.0		1/2 fresh calcite 60 core				<u> </u>			
_31.4		1/8 calcite wafer 45 core				.			ļ
_33	42	heavy shearing 40 core				<u> </u>			<u> </u>
_36.0		heavy epidote & shear 40 core		<u> </u>		<u> </u>	ļ		<u> </u>
_38.0		2" calcite breccia 10 core		 					
<u>41.5</u> <u>43</u> -		l" pink calcite breccia 5 core fine grain diabase	 	ļ		·			
	53		ļ	 		_		_	
44.7		2 3/8 pink calcite 20 core rusty				 			
46.4		と pink calcite 5 core	ļ	}		ļ		- 	
47 -	49	3/4 white calcite 11 core vuggy		ļ		 			ļ
50.2		1" pink calcite & chl 30 core				 -		 	
_50.7		첫 white calcite 20 core		ļ		 -	 	<u> </u>	
_58.7		2" rehealed breccia calcite 15 core	ļ			 			
_59.7		3/4 rehealed breccia chl & calcite 70 core		 		 	 		
_64	65	3 series 3/8 - 3 calcite 45 core		}					
		stringer	ļ	\ 		 	 	 -	
_65		Diabase: very cson and 73 + very heavy epidote	e with pin	<u>tish infle</u>	ction t	hrougho	ut l	<u> </u>	<u></u>

Drilled by BARRON DR	ILLING
----------------------	--------

C	Size	ÞΩ	Į,
Lore	2126	a C	7

								•		•	
	(COMPANY SILVERFIELDS MININ	G CORP. LAD.		PROPER	TY		 			
	. •	Township <u>Lorrain Township</u>			Claim No	•			_		
		-	eference						NoI/I		
	Finished Depth		levation			D 	ip:	_e Coll	lar;	e	
5004				SAMPL	ES			AS	SAYS		
FROM	то	DESCRIPTION		NO	FROM	TO	WIDTH				
73.0		2 3/8 calcite stringer	40 core								
73.8		1/16 calcite & chl shear	65 core								
75.6		3/8 calcite stringer	15 core vuggy					Ag	Cu		
77.0		½ calcite stringer	40 core tr cpy	49858	76.4	77.1		T	.15		
78.6		½ calcite stringer	50 core							<u> </u>	1
79.3		3/8 pink calcite	60 core				<u> </u>				<u> </u>
80.0		1/32 wafer & slip	30 core								
81.0		3/8 pink calcite	40 core								
84.2		l" pink calcite stringer	50 core tr NMV	49859	84.0	84.8		T	.02		
88.2		½ calcite	10 core								<u></u>
92.6		1" calcite breccia	70 core								
93 +		pink inflection in core -117					<u>]</u>			<u> </u>	<u> </u>
93.0		3/8 mud F. Z.	60 core					<u> </u>			<u> </u>
94.5 -	96.0	series pink calcite	11 core & 50 cc	re			<u></u>				
100.6		½ pink calcite									
104.3		⅓ fresh rehealed									
104.7		k nink calcite stringer		49860	104.3	104 8		T	.006		1

88.2	calcite							
		10 core	<i>-</i>					
92.6 1"	calcite breccia	70 core			<u> </u>			
_93 + pi	nk inflection in core -117							
93.0 3/	8 mud F. Z.	60_core						
		11 core & 50 cd	re					
100.6	pink calcite	_5_core						
_104.3	fresh rehealed	11 core						
_104.7	pink calcite stringer	30 core cpy NVN	49860	104.3	104.8	T	.006	
_107.2 he		35_core				 		
-110.0 1" 111.0 se		40 core py cry	861	109.8	_110.1	<u> </u>	.09	
						_	 	
	core all angles							
112.0	calcite_breccia	45 core						
_113.0 2'	" calcite breccia	45 core						
	" calcite breccia .	30 core slid	kenside					
	calcite breccia	30 core						
	ore regular diabase							
	" pink calcite breccia	45 core	862	131.9	132.4	T	.01	
	calcite shear	5 core tr d	py & py					
134.0 1	.0 cobalt injection pink					<u></u> _	<u> </u>	

Drilled by BARRON DRILLING

Core Size AQ

COMPANY SILVERFIELDS Township Lorrain Townsh		PROPERTY	_
SHEET No#3 Started Finished	Reference		LE No. LT #3

Elevation ____

Depth

Drilled by BARRON DRILLING

					SAMPL	.E\$		ASSAYS			
FROM	то	DESCRIPTION		но	FROM	TO	WIDTH				
137.3		4" calcite breccia_shear	30 core								
138.0		⅓ - 3/8 calcite stringer	30 core tr cpy								
139.3		र्व calcite stringer	85 core								
140 -	140.5	three 1/2 calcite stringer	50 core								
142.4		l½ calcite shear	10 core NVM								
143.2		1" calcite breccia	40 core wallroo	k altered							I
_145.7		ち pink calcite stringer	20 core								
147.0		hy pink calcite	20 core								
152 -	153	series 3 ½ calcite stringer	40 core NVM								
160.0		考 pink calcite breccia	20 core								
163.0 -	170.0	50% calcite breccia F.Z.	10 core				<u> </u>				
<u>168 + </u>		very large phenos of epidote	& feldspar								<u> </u>
171.1		k calcite & rusty shear	10 core								
176.1		불 pink calcite	20 core					Ag	Cu		
182.2		k pink calcite stringer	15 core								
_187.0		2" calcite breccia	20 core tr cpy	49863	186.7	187.3		T	.01		
_188		fine grained diabase									
_189.0		b pink calcite & quartz	15 core								
_196.7		h pink calcite & quartz 2 % calcite stringer &	50 core								
		wallrock altered									
200		End of hole									
											<u> </u>
· •											
									<u> </u>		
:											
							<u> </u>				
:											

Core Size

COMPANY SILVERFIELDS MINING CORP. LID.

Drilled by _____

PROPERTY _____

Logged by_____

		Township	Iorrain Township			Claim No	0				
	Started	0#4		Reference				Bearing	HOLE No	. IT #3 @	
	Depth			Elevation							
		T		· · · · · · · · · · · · · · · · · · ·		SAMI	PLES			ASSAYS	
FROM	то		DESCRIPTIO	• N	NO	FROM	TO	WIDTH			
			STITE	E SAMPLES	49801	20	30		T		
					802	30	40		T		
					803	40	50		T		
					804	50	60		T		
					805	60	70		T		
					806	70	80		T		
					807	80	90		т		
					808	90	100		T		
					809	100	110		T		
					810	110	120		T		
	· · · · · · · · · · · · · · · · · · ·				811	120	130		T		
					812	130	140		T		
					813	140	150		T		
					814	150	160		T		
					815	160	170		T		
					816	170	180		T		
					817	180	190		T		
				and the state of t	818	190	200		T		
			, , , , , , , , , , , , , , , , , , ,		*****						
											
			andre a grange from the state of	***************************************							
		- 							 		
<u></u>									 		==-

Core Size_____

Bell - White analytical laboratories Ltd.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 11790

DATE: July 17, 1979.

SAMPLE(S) OF: Sludge(41)

RECEIVED: July 16/79.

SAMPLE(S) FROM: Mr. H. Moore, Teck Corporation Ltd., Silverfields Div.

Sample No.	Oz. Silver	Sample No.	Oz. Silver
49734	0.9	49755	0.1
5	0.7	6	Trace
6	0.1	, 7	0.1
7	0.1	8	0.1
8	Trace	9	0.1
. 9	0.1	49760	0.2
49740	0.1	1	Trace
1	0.1	2	Trace
2	0.1	· 3	0.1
3	0.1	4	Trace
4	0.1	5	0.1
5	0.1	6	Trace
6	Trace	7	Trace
7	0.1	8	Trace
8	0.2	9	0.2
9	0.1	49770	Trace
49750	0.1	• 1	Trace
1	0.7	2	Trace
2	0.5	3	Trace
3	Trace	4	Trace
Δ	0.1		

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BLEN ADJUSTED TO COMPEN-BATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PHOCCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

Bell-White analytical laboratories Ltd.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 12110

DATE: July 20, 1979.

SAMPLE(S) OF: Sludge(20)

RECEIVED: July 20/79.

SAMPLE(5) FROM: Mr. H. Moore, Teck Corporation Ltd., Silveriields Div.

Sample No.	Oz. Silver
49775	Trace
6	0.1
7	Trace
8	0.1
` 9	0.1
49780	Trace
1	Trace
. 2	Trace
3	Trace
4	Trace
5	Trace
6	0.1
7	Trace
8	Trace
9	Trace
49790	Trace
1	Trace
2	Trace
3	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD

Bell - White analytical Laboratories LTD.

P.O. BOX 187

HAILEYBURY, ONTARIO

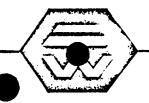
TEL: 672-3107

Certificate of Analysis

NO. 12424

DATE: July 26, 1979.

SAMPLE(S) OF: Sludge(42)


RECEIVED: July 25/79.

SAMPLE(S) FROM: Mr. H. Moore, Teck Corporation Ltd., Silverfields Div.

Sample No.	Oz. Silver	Sample No.	Oz. Silver
49801	Trace	49822	0.2
2	Trace	3	0.1
3	Trace	. 4	0.1
4	Trace	5	0.1
5	Trace	6	Trace
6	Trace	7	Trace
7	Trace	8	Trace
8	Trace	9	Trace
9	Trace	49830	Trace
49810	Trace	1	0.1
1	Trace	2	Trace
2	Trace	3	Trace
3	Trace	4	0.1
4	Trace	5	0.1
5	Trace	6	0.1
6	Trace	7	0.1
7	Trace	8	0.1
8	Trace	9	Trace
9	Trace	49840	Trace
49820	0.2	1	0.5
1	0.1	2	1.7

BELL-WHITE ANALYTICAL LABORATORIES LTD.

m Contraction of the second of

Bell-White analytical laboratories Ltd.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

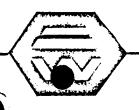
Certificate of Analysis

NO. 13295

DATE:

August 8, 1979.

SAMPLE(S) OF: Rock(3)


RECEIVED: August 7/79.

SAMPLE(5) FROM: Mr. H. Moore, Teck Corporation Ltd., Silverileids Div.

Sample No.	Oz. Silver	% Cobalt	% Nickel
12943	34.34	10.2	
4	12.76	4.90	
5	56 48	5 80	8 8

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Per Coco

Bell - White analytical laboratories LTD.

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

13710 NO.

DATE:

August 17, 1979.

SAMPLE(S) OF: Rock(2)

RECEIVED: August 17/79.

SAMPLE(S) FROM: Mr. H. Moore, Teck Corporation Ltd., Silverfields Div.

Sample No.	Oz. Silver	% Cobalt	% Nickel
12946	1196.0	7.36	7.28
12947	2.20	0.020	

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-BATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

Bell - White analytical laboratories LTD.

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 12982

DATE:

July 31, 1979.

SAMPLE(S) OF: Core(15)

RECEIVED:

July 30/79.

SAMPLE(S) FROM: Mr. H. Moore, Teck Corporation Ltd., Silverfields Div.

Sample No.	Oz. Silver	% Copper
49843	2.1	
4	0.1	
5	Trace	
6	Trace	
. 7	Trace	
8	Trace	0.028
9	Trace	0.006
49850	Trace	0.026
1	Trace	0.004
2	Trace	0.040
3	Trace	
. 4	Trace	0.088
5	Trace	0.048
6	Trace	0.004
7	Trace	0.066

BELL-WHITE ANALYTICAL LABORATORIES LTD.

... Ee

Bell-White analytical laboratories Ltd.

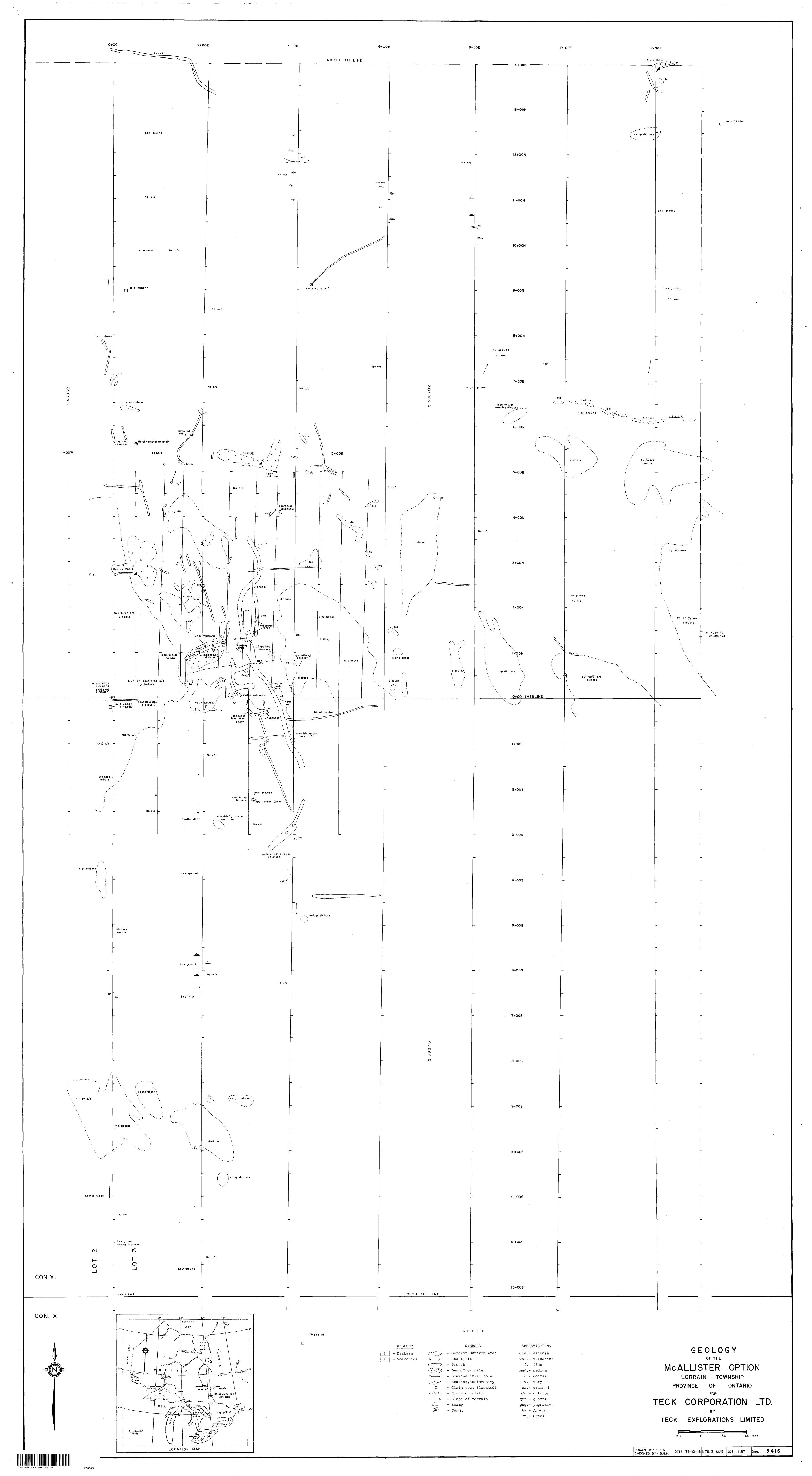
HAILEYBURY, ONTARIO

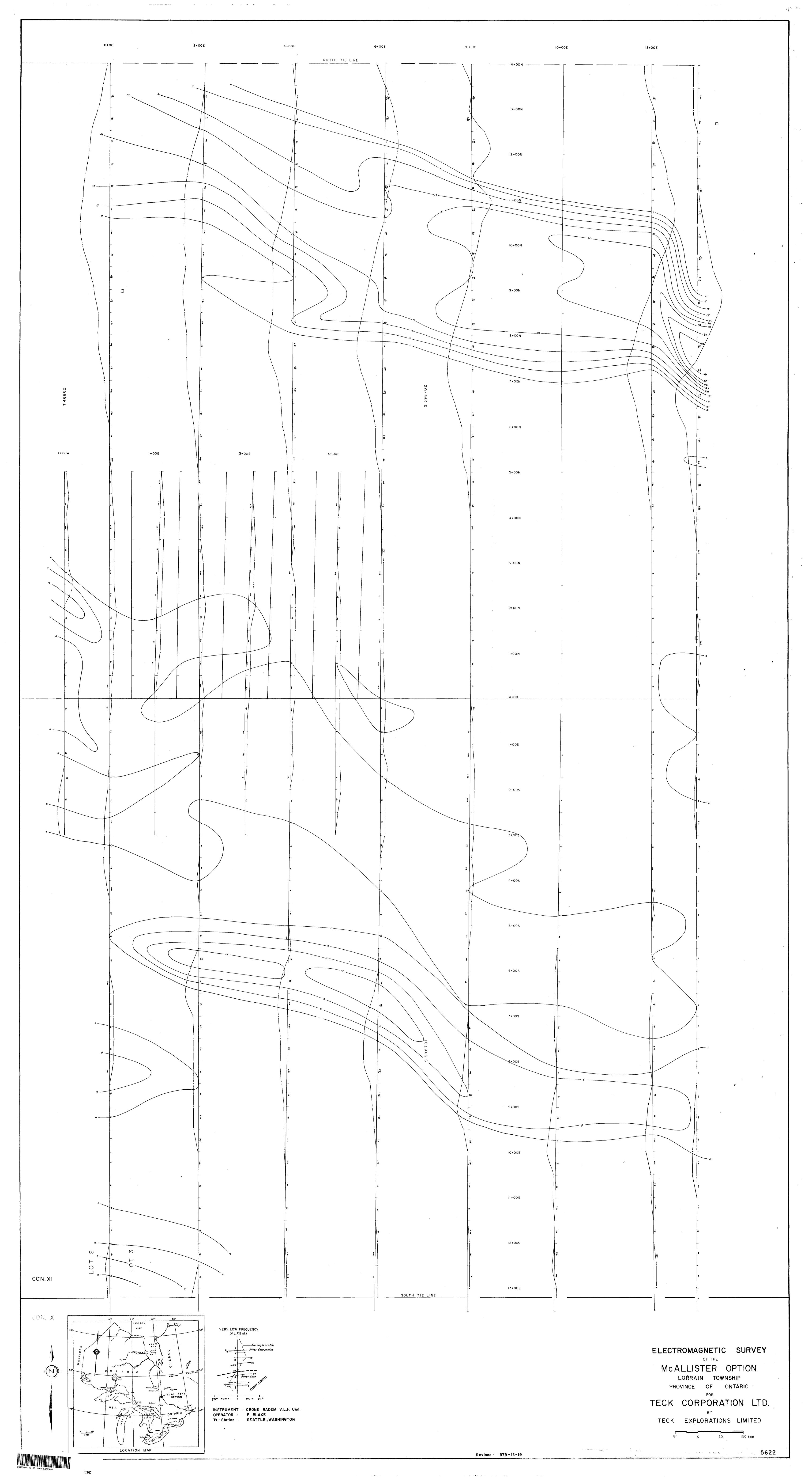
TEL: 672-3107

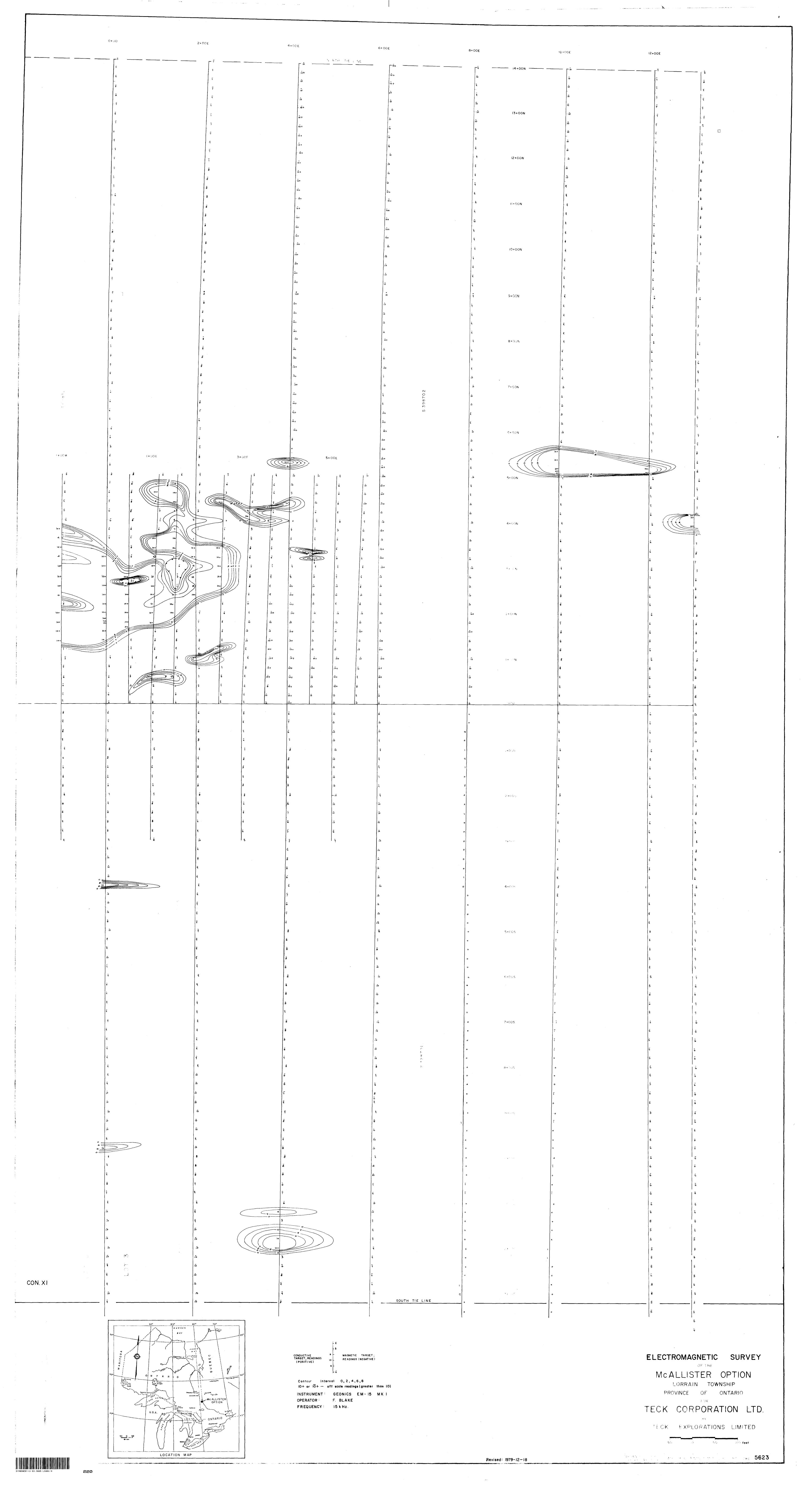
Certificate of Analysis

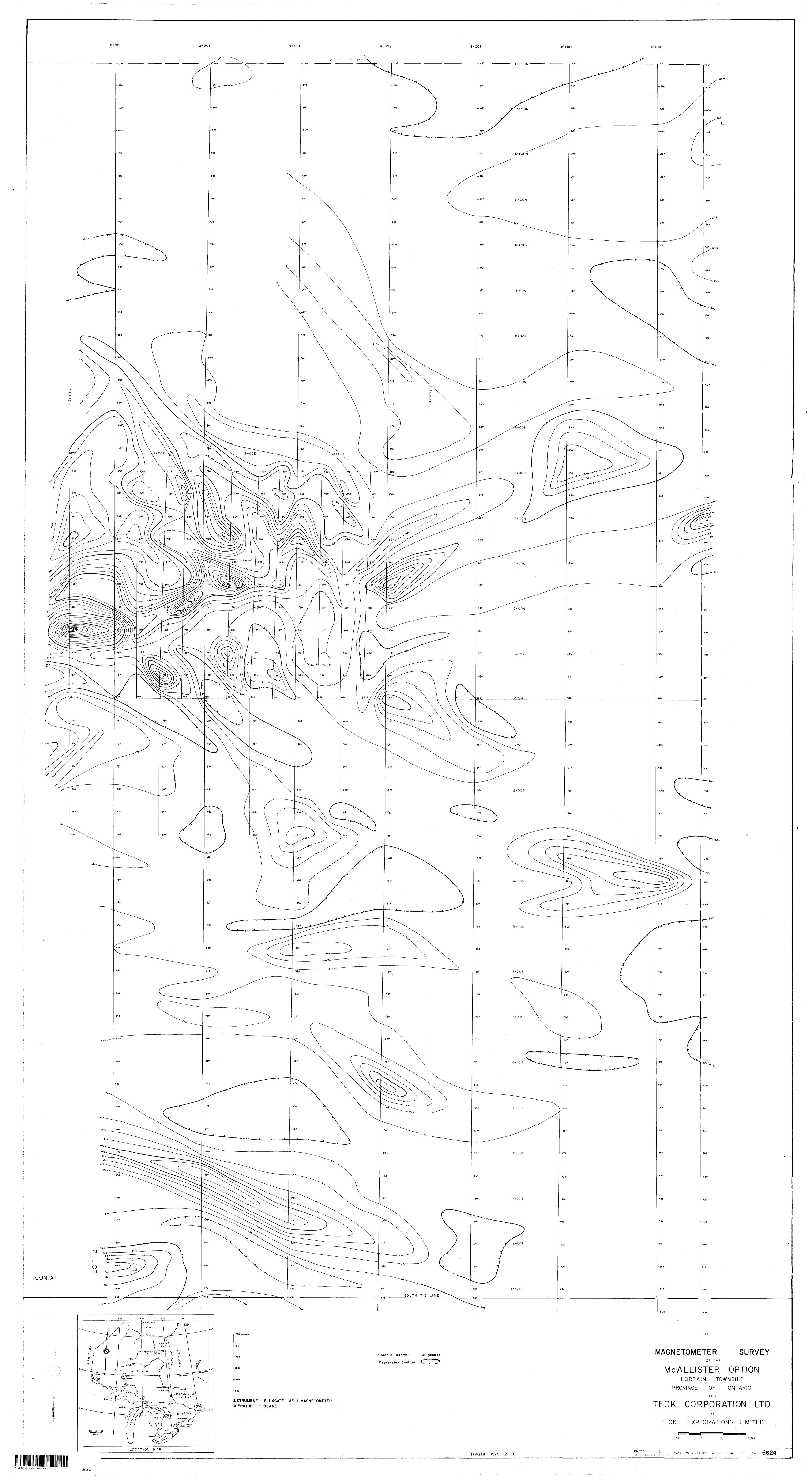
NO. 13066 DATE:

August 2, 1979.


SAMPLE(S) OF: Core(6)


RECEIVED: August 2/79.


SAMPLE(S) FROM: Mr. H. Moore, Teck Corporation Ltd., Silverlields Div.


Sample No.	Oz. Silver	% Copper
49858	Trace	0.15
9	Trace	0.016
49860	Trace	0.006
1	Trace	0.088
2	Trace	0.014
3	Trace	0.010

BELL-WHITE ANALYTICAL LABORATORIES LTD.

