TELEDYNE CANADA, LIMITED
BUCK TOWNSHIP COBALT PROJECT

REPORT ON DRILLING RESULTS
August-October, 1979

Toronto, Ontario October 15, 1979
G.R. Cunningham-Dunlop, P. Eng. Pioneer Consultants Limited

SUMMARY

Teledyne Canada, Limited has completed six surface drill holes on a 200 acre property in Bucke and Lorrain Townships in the Cobalt district of Ontario. The drilling has clearly indicated an important zone of cobalt mineralization extending from ore zones mined in previous years on the Agaunico property, the most important former cobalt producer in the district.

The recent drilling suggests that a zone of 60,000 tons of cobalt mineralization, at a grade of 0.5% cobalt, may reasonably be developed over a known length of 640 feet on the Teledyne property. Potential for extensions of this zone, for parallel zones, and for important silver occurrences, may be considered to be very good.

A program of underground exploration and development is recommended, as pre-production costs are minimal, due to the location of the property and accessibility of the shallow mineralization.

INTRODUCTION

Teledyne Canada, Limited holds a lease, executed July 4, 1979, on five patented mining claims, comprising 200 acres, located in Bucke and Lorrain Townships in the vicinity of Cobalt, Ontario. The lease provides Teledyne the right to explore, develop and mine all metals and minerals from the property for a five-year period (renewable), subject to a royalty of 10% of net smelter returns payable to the lessor, Consolidated Professor Mines Limited.

The leased property adjoins the south and west boundaries of claims owned by Agnico-Eagle Mines Limited, on which the Agaunico Mine was successfully operated for production of cobalt and silver ore during the period 1905-1961. Notable as the most important producer of cobalt in the district, the Agaunico Mine produced a total of $4,350,000$ lbs. of cobalt and 980,000 ounces of silver, as reported in publications of the Ontario Department of Mines. An important part of the cobalt production was derived from mineralized structures extending to the north boundary of claim 372 , the most northerly claim of the property leased by Teledyne Canada, Limited.

The cobalt ores of the Agaunico Mine consist of massive cobalt sulpharsenides and diarsenides (cobaltite and smaltite) in steeply dipping veins, together with extensive disseminations of similar mineralization in the Huronian sedimentary host rocks alongside the veins. The average cobalt content of the ores mined in the period 1951 to 1957 was approximately 0.5%.

Maximum production was achieved in 1955 when 526,000 lbs. of cobalt, 146,000 ounces of silver, 117,000 lbs. of nickel and $81,000 \mathrm{lbs}$. of copper were extracted from 62,000 tons of ore and concentrate shipped by Agaunico. Much of the silver production at that time was derived from high grade veins on other parts of the Agaunico property.

In 1953, Big Agaunico Mines Limited (now Consolidated Professor) carried out a drilling program to locate the extension of the south-striking Agaunico cobalt veins. Two intersections, in drill holes No. 8 and No. 12 , grading $0.58 \% \mathrm{Co} / 5^{\prime}$, and 0.46% Co. $/ 3^{\prime}$, located 350 feet and 600 feet south of the Agaunico boundary, indicated the continuation of the Agaunico cobalt zone on the Consolidated Professor property. Serious consideration was given to sinking a shaft on claim 372 in 1957, but the producer price of cobalt of $\$ 1.60$ per pound at that time precluded further development.

During the period August lst to October 3rd, 1979, Teledyne Canada has completed six drill holes on claim 372 which have more clearly defined a zone of cobalt mineralization extending 640 feet southward on claim 372 from the Agaunico boundary. The zone is similar in grade and nature of occurrence to the Agaunico No. 15 vein and undoubtedly represents a continuation of this important structure. The most southerly Teledyne drill hole, No. T-6, indicates that the zone continues farther to the south.

PROPERTY, LOCATION AND ACCESS

The five patented mining claims, as shown on plans accompanying this report, are located within two miles of the village of North Cobalt and five miles by road from the towns of Cobalt and Haileybury, Ontario. An all-weather gravel road crosses the north part of claim 372. Power is readily available within a half-mile of the property and a light-duty power line traverses claim 372. Surface rights of eight acres are held on the western boundary of claim 372. The remaining part of the 200 acres are uncultivated land, covered with scrub timber, whose surface rights are owned by a local farmer.

Detailed location of the mining claims are as follows: Mining claim 229; Part of SW part lot 15, Con. I, Bucke Twp. Mining claim 372; Part of SW part lot 15, Con. I, Bucke Twp. Mining claim 429; SE1, $\mathrm{S} \frac{1}{2}$, lot 14, Con. I, Bucke Twp. Mining claim Parcel 4254; NE $\frac{1}{4}$, $N \frac{1}{2}, \operatorname{lot} 2$, Con. XII, Lorrain Twp. Mining claim T-32348; SW $\frac{1}{4}, N \frac{1}{2}$, lot 3, Con. XII, Lorrain Twp.

The claims and surface rights are registered in the Land Registry office in Haileybury, Ontario. The writer has confirmed by search in August, 1979, that the titles, registered in the name of Consolidated Professor Mines Limited, are free of any liens or encumbrances, and that current taxes have been paid.

GEOLOGY

The surface of the property is immediately underlain by Nipissing diabase, which in turn is underlain by conglomerate, greywacke, quartzite and slate of the Huronian (Cobalt Series). The Huronian overlies Keewatin volcanics, generally composed of andesite.

The Cobalt Series of sediments occurs in a broad trough which trends south from the adjoining Agaunico property where it contained the large cobalt deposits mined to the boundary in 1957. Similar structures of Huronian rocks, sandwiched between overlying Nipissing diabase and underlying Keewatin, have produced a large portion of the silver mined in the Cobalt district.

The cobalt ores of the Agaunico mine, including vein 15 mined to the north boundary of claim 372, displayed distinct characteristics in extent and distribution of mineralization. Extending usually for a maximum height of 125 feet into the Huronian sediments in steeply-dipping veins above the Keewatin basement, the cobalt minerals may occur in narrow massive veins of several inches in width, usually in the lower conglomerate and may spread in fine disseminations and fracture-filling seams in the slate and quartzite horizons. Stoping widths of up to 50 feet were not unusual in these horizons on the Agaunico property. The mineralization may be erratic along strike, with higher grade concentrations crossing the general strike in transverse fractures and zones influenced by flow directions of the underlying Keewatin volcanics. Thus, in cross-section, stoping widths
may vary from a minimum mining width of 5 feet to a maximum of 50 feet. The average width of the Agaunico stope, mined to the boundary, was 15 feet.

Diamond drilling from surface on this zone must be accurately directed to intersect the mineralized structure within 100 feet of the Keewatin basement. Above this elevation, only weakly mineralized fracturing may be encountered and, in the Keewatin below the zone, cobalt content is rapidly diminished and the zone may be indicated only by concentrations of pyrite and pyrrhotite. Underground drilling can detail ore shoots in a much more definitive manner and exploration of the flat-lying sediments can be conducted by flat drill holes which can be drilled entirely within the limited productive horizon.

The Huronian series, approximately 250 feet thick in the area of the present drilling, can be expected to diminish in thickness to the south where the Huronian is eventually completely cut off by the south-dipping Nipissing diabase intrusive. It is reasonable to anticipate, subject to investigative drilling, that the Huronian sediments will extend for at least 1000 feet to the south of hole T-6, and will provide a favourable host for continuation of the known zone in mineable dimensions, i.e. a thickness of Huronian of at least 100 feet, for a minimum distance of 500 feet to the south.

DIAMOND DRILLING RESULTS

Sections and logs of drill holes T-1 to T-6 are included with this report with results of sampling for cobalt and silver. The sections also display pertinent drill holes from previous work and holes $M-7$ to $M-10$ drilled in 1978. It is clearly evident that some of the holes, such as $M-8, M-9$, D.D.H. 10, 9, and 7, crossed the structure at an elevation too high or too low to encounter the important horizon within 100 feet above the Keewatin. Other holes, such as $M-7, M-10, T-3$ and $T-4$, were in the favourable horizon but intersected fault zones, which apparently disrupted or displaced the cobalt mineralization. These negative holes are typical in the Cobalt district due to the erratic distribution of mineralization.

Results of holes T-1 to T-6 are summarized as follows:

In addition, hole T-1 cut a narrow one inch cobalt vein in the underlying Keewatin basement, with a sampled grade of 0.59% Co., and 18.8 oz . $\mathrm{Ag} /$ ton over a width of six inches.

CONCLUSIONS

The recent drill holes, $T-1$ to $T-6$, have more clearly defined the extension of the Agaunico zone over a length of 640 feet on claim 372. The mineralization is similar to that of the Agaunico ore zone and can be expected to vary in distribution to greater widths. The horizontal continuity can only be completely investigated during underground development by drifting on the zone. Six drill holes have now cut mineralization grading from 0.16% Co. over 5.5 feet, to 0.53% Co. over 17 feet. The latter intersection is probably less than the true width of mineralization which, in this case, is distributed laterally in a relatively thin slaty horizon. Silver values in this zone are expected to average between 1 and 2 oz . per ton, as experienced in the Agaunico Mine.

While it is not possible to measure the dimensions or grade of ore shoots indicated by the drilling to date, it is reasonable to expect that an average mining grade of 0.4% to 0.5% cobalt could be maintained with strict geological and sampling control. Assuming a minimum ore grade width of 5 feet, and a maximum of 25 feet, and allowing for barren or low grade sections, it can reasonably be anticipated that the zone indicated to date would contain a minimum of 20,000 tons of material grading 0.5% Co., if a mineable length of 300 feet and height of 50 feet were assumed. From the results and comparison to the Agaunico zone, this tonnage appears much too conservative. Without the strong possibility of additional parallel or transverse zones as indicated east of the main zone, a mineable tonnage of 60,000 tons grading 0.5% Co. may be considered as a very good possibility.

It is recommended that an underground exploration and development program be carried out to develop sufficient ore for a continuous mining operation at a minimum rate of 100 tons per day. If the program indicates 50,000 tons or more, a mining rate of 200 tons per day would be a reasonable objective.

Consideration should be given to development by a trackless decline to gain access to the zone from a surface location roughly 325 feet above the lowest elevation of the zone. A trackless drift could then be extended along the strike of the structure for a length of 650 feet or more. At an inclination of 15%, the decline would have a total length of 2160 feet and would provide for truck haulage at an efficient inclination. At a 20% grade, the development cost for 1625 feet of ramp would be lower, but truck haulage more costly. A study of probable sinking and operating costs would determine the optimum slope for the proposed ramp. Diamond drilling, raising and sampling, would take place concurrently with development drifting, and a raise to surface for ventilation would be essential.

Since the old Agaunico shaft is in poor condition, and track haulage would be increasingly costly with added distance, access and mining from the Agaunico Mine is considered a less attactive, although initially cheaper, alternative. If a joint cost-sharing arrangement can be made with

Agnico-Eagle Mines Limited, rehabilitation of the Agaunico shaft should be studied.

Further studies of development and mining costs, custom milling, and smelter treatment costs, should be undertaken prior to a final decision on underground development. Preliminary estimates are now being compiled for this purpose.

Respectfully submitted,

PIONEER CONSULTANTS LIMITED

Toronto, Ontario
October 15, 1979

G.R. Cunningham-Dunlop, P. Eng.

COMPANY Peledyne Canada \qquad
PROPERTY Big Agaunico \qquad

HOLE NO. T-1

\qquad Sheet no. 2 of 2
date

COMPANY . ledyne:Canada
DIAMOND [LL RECORD
HOLE NO. I-2
PROPERTY ...Big_Agaunico \qquad shet no. 1
date August 28, 1979

\qquad hole no. \qquad T-3
PROPERTY .-Big Agaunico \qquad SHEET NO. 1
DATE August 29, 1979

COMPAN Teledyne Canada DIAMOND TILL RECORD
hole no. T-4
PROPERTY \qquad
\qquad sheet no. 1
oate Sept. 15, 1979

compan Teledyne Canada
PROPERTY ...-Big Agaunice

DIAMOND "`ILL RECORD
hole no. T-4
sheet no. 2
date Sept. 15, 1979

COMPAN Teledyne Canada
PROPERTY ...Big Agaunice

DIAMOND - - ILL RECORD
hole no. T-5
sheet no. 1
date Sept. 21, 1979

COMPANY ELEDYNE CANADA \qquad
PROPERTY BIG AGAUNICO

原度期 NIPISSING DIABASE
ANIMIKEAN ICOBALT SERIES）
\square CONGLOMERATE，GREYWACKE，SLATE
KEEWATIN
\square LAVAS，BASALTS
big agaunico mines ltd． COBALT AREA－ONTARIO

D．D．H．II，M 7，M8，M9 \＆T2 SCALE：1＂＝100＇AUG． 1979

TELEDYNE CANADA, UIMITED BUCKE TOWNSHIP CUBALI PROJECT

REPORT ON DRILLING RESULTS
September-December, 1980

Cobalt, ontario
April 27. 1981
R. E. Bresee Project Engineer Teledyne Cobalt

SURMARY

Abstract

Teledyne Canada,Limited completed 22 underground diamond drill holes on it's cobalt property in Bucke 'lownship, District of Timiskaming on December 19, 1980.

This drilling confirmed the original estimate of $40-60,000$ tons of cobalt mineralization at an average grade of $0,40-0.50 \%$ cobalt outlined by the 6 surface holes drilled in the late summer and early fall of 1979. The drilling better defined a strike length of at least 950 feet in what appears to be two separate zones: the first is some 500 feet in length, and quite possibly,is an extension of the old Agaunico Ore Zone. The second zone is approximately 450 feet in length and is trending towards the south east boundary of claim \#372;adjoining Agnico-Eagle Mines, Limited property.

The diamond drilling was accomplished from 4 drill stations located in pre-determined Re-lhuck excavations on the 2300 foot Access Decline driven to intersect the ore zone.

INTHOLUCTION

Teledyne Canada holds a lease on 5 patented mining claims, comprising 200 acres, from Consolidated Professor Mines, Iimited of Toronto: The lease was executed on July, 4, 1979 on these claims located in Bucke and Lorraine Townships, Timiskaming Mining District.

Surface drilling results of the August - October, 1979 programme indicated further development of the ore zone should be initiated. As a result; Teledyne Canada opted to drive an Access Decline to reach the delineated ore zone: The ramp was driven between April and November of 1980 to a length of approximately: 2300 feet:

Towards the end of the ramp development atage, a decision pas made to pursue more diamond drilling from the ramp to better delineate the ore zone and define structures. This would facilitate preparation of a mining plan in the event that a production decision was reached:

In lieu of this; 22 underground drill holes were drilled by: Barron Diamond Drilling of Haileybury between September 2 and December 19, 1980. The drilling more clearly defined structure and also confirmed the original strike length of the mineralized zone with an added surprise. the drilling indicated the possibility of another 450 feet of mineralized area in what seems to be a separate
zone to the one outlined by surface diamond drilling. Essentially. therefore; it can be concluded that there could be two separate mineralized zones with the most southerly end trending. towards the east boundary of claim \#372; which borders on Agnico-Eagle Mines. property.

PROPEKTYe LOCATION AND ACCESS

The 5 patented mining claim parcels - \#229, \#372; \#429, \#4254; \#t-32348 - are located within 2 miles of the village of North Cobalt and 5 miles by paved highway from the towns of Cobait and Haileybury Ontario: An all weather gravel road traverses the north part of claim \#372 where the Access Decline is located. The mining rights for the 5 parcels plus 8 acres of surface rights on claim \#3'12 are leased from Consolidated Professor Mines; Limited of Toronto as already mentioned. The remainder of the suface rights are leased from a local farmer.

Please refer to the drill logs and cross sections and assay. results accompanying this report for a summary of underground diamond drill holes UT-ifl to UT-if22 inclusive: 18 of the 22 holes drilled or 82% encountered cobalt mineralization which could potentially make ore grade. This is an excellent success ratio for: diamond drilling in the cobalt camp. The negative results of the remaining 4 holes or 18% can easily be explained as follows. Hole UT-价 missed the ore zone; this is typical in the Cobalt camp due to the erratic distribution of mineralization. Fole OT-\#7 entered the Keewatin basement rocks before it had reached the ore zone horizon. Hole UT-\#IO encountered a fault zone and heavy water flow and was abandoned as it was not a hole critical to the drill programme. Hole UT-\#17 encountered a fault zone and heavs water flow also and yas abandoned due to the time remaining for the drill programme.

Results of holes UT-\#l to UT-\#22 are summarized on the following pages.

Hole NO.	Sample width	C0, \%	ASe Oz/ton	Remarks
UT-1	Negligible values:			Missed ore zone
UT-2	$\begin{array}{rl} 2.0 & \mathrm{ft} \\ 3.0 \\ 3.0 \\ 55.3 & \mathrm{ft} \end{array}$	$\begin{aligned} & 2.44 \\ & 6.90 \\ & 0.644 \end{aligned}$	$\begin{aligned} & .06 \\ & .22 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{2}{2} \text { vein } \\ & 5 .-\frac{1}{2}{ }^{2} \text { veins\&crystal } \\ & \text { Av. zone } \end{aligned}$
UT-\#3	1.0 ft .	10.20	. 69	$\begin{aligned} & 8^{\prime \prime} \text { massive vein \& } \\ & -\therefore \text { diss. } \end{aligned}$
	1.0 ft.	1.48 1.18	.05 .03	Diss: co. ${ }_{\text {Narrow }}$ seams 60.
	or 28.6 ft .	0.74	-	Av. zone
	5.0 ft 1.0 ft	$\begin{aligned} & 0.18 \\ & 0.049 \end{aligned}$	1.02	Narrow seams Co. 1" Sulph. vein
UT-4	4.8 ft.	0.238	-	Co. threads
UT-5	4.0 ft 。	0.16	:03	Fine diss. Co:
UT-6	11.0 ft.	0.10	-	Av: zone: Fine sulph: threads
UT-7	Negligible values:			Entered Keewatin before reach zone
UT-8	$\begin{aligned} & 1.0 \mathrm{ft} \\ & \text { or } \\ & 7.0 \mathrm{ft} \end{aligned}$	$\begin{aligned} & 1.46 \\ & 0.41 \end{aligned}$	$\begin{aligned} & \dot{41} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \frac{1}{4} \text { " vein } \\ & \text { Ay: zone } \end{aligned}$
	or1.5 4.0 1.0 ft ft.	$\begin{aligned} & 0.097 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 4: 21 \\ & 1.77 \end{aligned}$	Eighth inch vein Ag. AV. zone
UT-9	1.0 ft .	0.68	. 06	Eighth inch string: Co.
UT-10	Negligible values.			Fault zone \& heavy water. flow.
UT-11	5.0 ft.	0.166	-	Av: zone
	13.0 ft:	0.369	-	Av. zone
	$\text { or } \begin{aligned} & 2.5 \mathrm{ft.} \\ & 6.5 \mathrm{ft.} \end{aligned}$	$\begin{aligned} & 1.80 \\ & 0.446 \end{aligned}$	$\begin{array}{r} 3.06 \\ .88 \end{array}$	\&" Co. vein \& Galena Av. zone
	or 3.5 ft ft.	0.68 0.44	$\begin{array}{r} 1.30 \\ .2^{\prime 2} \end{array}$	4" vein \& stringers AT. zone

CONCLUSIONS

The undergcound diamond drilling confirmed the extension of the Agaunico Ore Zone onto claim \#372 for a strike length of approximately 500 feet. The programme also unearthed what appears to be a separate zone with a strike length of approximately 450 feet trending towards the property boundary with Agnico-Eagle Mines . Limited to the south - east. Results are encouraging with intersections like $0.644 \% \mathrm{Co}$. over 55.3 feet, and $0.74 \% \mathrm{Co}$: over 28.6 feet, and $2.59 \% \mathrm{Co}$: over 8 feet with many smaller low and high grade sections as outlined in the preceeding pages. Note that these intersections are not true widths.

Diamond Drill Indicated reserves show at least 40-50,000 tons: of $0.4 \%-0.5 \%$ Cobalt with minor Silver values. If and when a production decision is reached, this grade could be maintained quite easily with strict geological and sampling control.

In the writers' opinion, it would not be unreasonable to assume that with further underground development these reserves could be increased considerably - possibly in excess of 100;000 tons of ore grade material. Reserves are very difficult to calculate from drill holes in the cobalt camp as has been proven time and again
over the years: The most effective exploration method is drifting or raising on the ore zones indicated by diamond drilling;

Respectfully submitted;

TELEDYNE CANADA LIMITED
R. Proce
R. E. Bresee Project Engineer

Cobalt, ontario
April 27, 1981

- ompany .-.teledyne Cobalt
date Sept. 23, 1980

PROPERTY ...Bucke'Township
shet no. 1
oare October 8, 1980

COMPANY ...Teledyne. Cobal.t \qquad DIAMOND DRILL RECORD
PROPERTY ...Bucke Township

SHEET NO. 1

HOLE NO. .-UT-4
date October 5, 1980

Teledyne cobalt
DIAMOND DRILL RECORD
HOLE NO. UT-5
PROPERTY Bucke Township \qquad
dip angles
SHEET NO. 1
date October 9, 1980

\qquad Sheet No. 1
date October 17, 1980

COMPANY, Teledyne Cobalt
DIAMOND DRILL RECORD
HOLE NO. UT-7
PROPERTY ...Bucke Townshi.p. \qquad shett no. 1
date October 17, 1980

company Teledyne Cobalt
hole no.
UT-8
PROPERTY
Bucke Township

PROPERTY ..-. Bucke Township
\qquad

sheet no. 1
date Dec. 4, 1980

dip angles		$\begin{aligned} & \text { Bearing } \text { Az. } 71^{\circ} \\ & \hline \text { Length } 133^{\prime} \\ & \hline \end{aligned}$		Latitude 10023.90 N				SIArted October 28. 1980					
		departure 9970.02 E	STOPPED October 30, 1980										
		location	Alimak Station	elevation			LOGGED by G.R.C-Dunlop						
ROCK						CORE SAMPIES							
footage	NAME OF ROCK			description				SAMPLE NO.	WIDIH	footage	ASSAY	ASSAY	ASSAY
0-55	Conglomerate	Scattered pebbles and boulders to 6". Grades to impure quartzite at about 55^{\prime}. Grey, mottled, occasional quartz fragments and stringers. Some pebbles in conglomerate sections 80'-93'. More massive from 93'-120'. Water flow at 71 .											
55-124	Quartzite												
124-133	Slate	Grading from banded siliceous rock to spotted and banded slate. and cave Hole encountered heavy water flowfat 133', stopped with grout plug pending possible deepening. The hole may have been too steep to encounter cobalt zone before reaching Keewatin. Additional samples assayed after Dec. 31/80 not include											
133	End												

COMPANY Telédyne Cobalt
DIAMOND DRILL RECORD

HOLE NO. UT-11
SHEET NO. 2
date

DIAMOND DRILL RECORD
hOLE NO. UT-13
sheet no. 1
date Dec. 5, 1980

DIP ANGIES
Dip -33^{0}
Bottom -33°

PROPERTY ... Bucke Township \qquad SHEET NO. 1
date Dec. 5, 1980

SHEET NO. 2
date Dec. 5, 1980

PROPERTY .-. Bucke Township \qquad shet no. 1
date Dec. 5, 1980

dip anglesDip -20°Bottom -22°	bearing AZ. 65°	Latitude $9,749.39$	started November, 1980
	LENGTH 335'	DEPARTURE $10,014.31$	STOPPED
	LOCATION 1^{\prime} from 15	Elevation 422.49	LOGGED BY G.R.C-Dunlop

ROCK			CORE SAMPLES					
footage	NAME Of ROCK	DESCRIPTION	$\begin{aligned} & \text { SAMPILE } \\ & \text { No. } \end{aligned}$	WIDTH	FOOTAGE	ASSAY	ASSAY	ASSAY

(1)

DIAMOND DRILL RECORD
\qquad
Bucke Township \qquad SheEt No. 1
HOLE NO.
UT-18
PROPERTY
es

\qquad
\qquad

COMPANY "Teqedyne cobalt
DIAMOND DRILL RECORD
HOLE NO. \qquad
PROPERTY ...- Bucke Township \qquad sheet no. 1 date Dec. 30, 1980

Bucke Township \qquad sheet no. 1
date Dec. 31, 1980

DIP ANGLES		$\begin{aligned} & \text { BEARING } \mathrm{Az} \cdot 52^{\circ} \\ & \hline \text { IENGTH } \end{aligned}$	Lativode $10,451.96$			Started December 18, 1980				
		departure $9,800.98$	STOPPED D	December 20, 1980						
		location $\angle \mathrm{rt} 104^{\circ}$ Sta 21 BS18	elevation $531.18{ }^{\prime}$		logeed by					
Rock				CORe Samples						
footage	NAME OF ROCK		DESCRIPTION		SAMPLE	WIDTH	footage	ASSAY	ASSAY	ASSAY
0-157.5	Conglomerate	Mottled, dark green, altered with chlorite. Scattered pebbles and boulders of various composition.		4699	$3.0{ }^{\prime}$	142-145		. 05	. 003	
				4657	$5.0{ }^{1}$	145-150		. 12	. 008	
				4658	$5.0{ }^{1}$	150-155		. 03	. 056	
		Fracturing from 75'-95'. Breccia zone at 91'.		4659	$5.0{ }^{1}$	155-160		. 02	. 014	
		Smaller pebbles increasing in frequency from 120^{\prime}. Scattered chalcopyrite 147'-155'. Water zones at								
		$16^{\prime} \text { and } 24^{\prime} \text {. }$		4700	4.01	160-164		. 07	. 051	
157.5-169	Quartzite	Dark grey, impure, containing some pebble zones.		4660	4.01	164-168		. 07	. 24	
				4701	4.0^{1}	168-172		. 02	. 084	
169-172	Slate	Breccia at contact. 171'-172' - typical spotting.								

TELEDYNE CANADA: LIMTTTED
 BUCKE TOPNSHIP COBALT PROJECT

LOG OF RAMP PROGRESS
February-November, 1980

Cobalt, Ontario Miay 25, 1981
R. E. Bresee Pro ject Engineer Teledyne Cobalt

SURMARY

The portal was collared at an azimuth of 251 degrees, 19 mimites; 30 seconds and the decline was completed after four turns at an azimuth of 71 degrees; 19 minates just prior to crosscutting the ore zone. The general strike of the ramp configuration was north 18 degrees west, as shown on the map accompanying this report. The strike length was approximately 880 feet. The decline was driven parallel to the proposed ore zone for a total length of 2225.09 feet: Contract footage totalled 2305.09 feet which included a 45 foot raise access cross-cut and the 35 foot south ramp extension. The present face is 337 feet below the portal entrance in elevation.

The contractor excavated 2 sumps; 3 muck transfer bays, 8 safety stations, and several other slashes for a total of 29;857 cubic feet of ramp widening: Approximately 32,000 tons of rock were removed from the decline during the development stage and deposited within. 1000 feet of the portal entrance:

Total ground support consisted of 5820-6 foot rockbolts, 519 8 foot bolts, 2l0-8 foot resin rebars; ll-10 foot rebars, 1773
 mesh screen. This made for a safe haulageway. A total of 815 bags of portland cement were used in grouting the flow of water encountered on the ramp during the months of June and July, 1980.

INTRODUCTION

On February 22, 1980 a cokract was let to MacIsaac Mining and Tunneling of Sudbury; Ontario to drive a 10 foot by 13 foot access decline at a grade of minus 15% for a length of approximately 2500 feet to reach the delineated mineralized zone. The contractors commenced mobilizing for the job on February 1, 1980 and started driving the ramp full scale by early April. The decline was completed on October 31; 1980 followed by final demobilization on Jamary 28; 1981:

Equipment used on the ramp and for support covisisted of $3-$ 5 cubic yard L. H. D.'s, 1-3boom Pneumatic-Jumbo Drill; I-Saissor Lift Truck; 1-Service Tractor; 1-D-7 Bulldozer, 3-Electric Flygt Pumps; mumerous Sandpiper Pumps, and related grouting equipment.

As a precaution, the contractors drilled test holes at 20 foot intervals for about 200 feet along the azimuth of the proposed decline to define overburden depth and therefore, to facilitate chosing of a portal location: The decline was then driven with an assured safe back overhead.

Underground Diamond Drilling commenced on September 2, 1980 and was completed on December 22, 1980: A total of 6167 feet was. drilled in 22 holes from 4 different stations, as shown on the accompanying maps.

RAMP GEOLOGY

Refer to the map accompanying this report for a picture of the geology of the decline.

The decline was collared in the Keweenavan Nipissing Diabase Sill formation. The group is composed mainly of coarse and medium grained quartz nateriai. The main structural feature is the vertical and horizontal jointine which made for overbreak conditions and required more ground support; as a result. After driving the ramp in Diabase for 790 feet; we encountered the Kuronian Cobalt Series Sediments contact.

Locally referred to as the Coleman formation, it consists of a conglomerate rock of pebbles and boulders in a matrix of sand like material and is intermixed with slate and quartzite beds: Structuraly, the Conglomerate was the best ground encountered on the ramp. Rounds broke well and stayed to size in this acea. The ramp advanced 1222 feet in Conglomerate and then encountered a Slate horizon.

The Slate material is still classified as Cobalt Series Sediments; The formation consists of gently dipping slate bands; which in themselves make quite stable ground. But, for the remaining 213 feet; the ramp traversed the slate bands at a conflicting angle and as aresult, ground conditions became very poor in this area:
bolts had to be installed parallel to the beds or they just would not hold. Most of our trouble that we did have driving the ramp was encountered in this area: The Slates contained spotted chloritic altarations as did some of the Quartzite bands encountered in the Conglomerate and Slate horizons:

The Quartzites came in and out at various times in both formations and are also classified as Cobalt Series Sediments; This type of rock was fine grained and hard and itself caused no problems: But, occassionally it was associated with small fault zones which encouraged a tricky back:

The basement rocks in the area consist of Archean age Keewatin Volcanics is the oldest rocks in Canada. The decline did not traverse this formation; but from diamond drill information and related interpolations; it can be assumed that the Keewatin rocks are just below the present location of the ramp bottom:

RAMP LOG

Please note here that figures related in the following resumes may not coincide with figures in the introduction as the latter are exact survey results; whereas the former are compiled from estimates contained in the Companies internal weekly reports:

Thie following is a sumaxy of monthly progress of the ramp excavation as performed by MacIsaac Mining and Tunneling of Sudbury, Ontario.

February 1280

Many delays were encountered this montb during portal excavation due to the inherent weak jointing in the Diabase Sill rooks; and surface weathering. As a result, double the volume of rock - as compared to original estimates - had to be exaavated to make the portal entrance safe: Cold weather further hampered the start of the ramp.

The ramp was driven 24.5 feet and $80-8$ foot resin rebar vere installed from surface vertically and horizontally into the portal face to consolidate the loose ground. The rounds were partially blasted then squared up later. As mentioned; very slow progress was made this month due to mobilization delays; cold temperatures; and
bad ground conditions. Concurrently, grouted rebar was installed in the first 24.5 feet of back on the ramp to make it safe.

March 1980

A' cement collar. (90 yards of concrete) was constructed at the portal during the month - allowing full efforts to be applied to driving the decline by April 1, 1980. As a result of this construction, very little work was done on the decline itself this month. Collar construction had to be completed along with other surface facilities before water; compressed air; and ventilation air could be made available for contimed decline excavation;

The ramp was driven 37.5 feet during the month and threaded rockbolts replaced grouted rebar as ameans of ground support as conditions improved somewhat. 82-6 foot rockbolts were installed as ground support along with 360 square feet of wire mesh soreen: The walls were being systematiosily bolted in the Diabase rock formations; or the first 800 feet of the ramp:

April 1980

Full efforts concentrated on driving the ramp this month. Overbreak conditions in the Diabase started to make ground support a much more costly, operation than originally budgeted for:

The overbreak condition also initiated installation of steel straps and some resin rebar occasionally to compliment the systematic bolting pattern.

The ramp was advanced 210 feet during the month and progressed around the first 90 degree turn: Ground support consisted of 601-6 bolts; 163-8 foot bolts; 173 straps; and 72 square feet of screen; The crevs excavated a safety bay and a sump for a total of 3245 cubic feet of slash:

Hay 1980

Progress was slon during the month due to blocky: and fractured ground inherent in the Diabase Sill which resulted in time consuming extra mucking and extra ground support. Conditions improved towards month end with the approach of the lower contact of the Diabase Sill: The rounds had been cut down to 8 or: 10 feet deep as the 12 foot round just would not break properly:

The decline was advanced 310 feet this month: Ground support consisted of 1191-6 foot bolts; 88-8 foot bolts; 418 straps; 74i8 foot rebar; and 168 square feet of screen. 2 safety stations and part of a muck transfer bay: were excavated for a. total of 1150 cubic. feet of slash.

June 1980

The ramp passed the lower Diabase contact into the Cobait Series Sediments and aithough tricky at first, much better ground conditions finally prevailed. Fowards months end another problem developed which again slowed advance: Water was encountered during the last week of the month and had to be grouted with cement, resulting: in a weeks delay importing the proper equipment from Sudbury: The ramp progressed around the first 180 degree curve slowly due to the water flow encountered and subsequent grouting proceedures:

The ramp advanced 287.5 feet during the month. Ground support consisted of 969-6 foot bolts; 26-8 foot bolts; 281 straps; and 366 square feet of screen. A. muck transfer station was completed and 2 safety bays were excavated for a to tal of 4405 cubic feet of slash: 151 bags of cement were consumed in grouting procedures:

Juzy 1980

Generally, ground conditions were very good during this month except for encounters with horizontal and vertical calcite strimgers which made for blocky ground conditions; Water flow and subsequent grouting slowed advance significantly again this month: The ramp passed the 1000 foot mark in length and was approximately 172 feet dom in elevation; still in Colvalt Series Sediments. A second sump
was excavated and would also serve as the first underground diamond drill station

The decline advanced 271 feet this month: Ground support consisted of $678-6$ foot bolts, 173 straps; and 120 square feet of screen: A sump excavation was started for a total of 3755 cubic feet of slash: 604 bags of cement were used for grouting: By month's end, encounters of sienificant water flow at the face had just about ceased.

August 1980

Thie water problem seemed to have hated abruptiy. This fact; coupled with cutting down to a 10 foot round, allowed advance to improve impressively for the month: Ground conditions were fairly competent; but systematic bolting was contirued with strapping used in the faulted areas: A 45 foot deep cross-cut was driven to serve as a.muck transfer bay initially. Erentually; it would serve as access to the future ventilation-escapeway raise to surface:

The ramp advanced 405 feet this month; including the 45 foot raise access cross-cut. Ground support consisted of 939-6 foot bolts; 265 straps, and 60 square feet of screen: Slashing for the month totalled 9538 cubic feet which included 1 safety bay; 1 muck transfer bas; completion of a sump, and slashing required for the raise access
cross-cut. Both the raise aecess cross-cut and the muck transfer bay were also used for diamond drilling stations.

September 1980

Progressing well, the ramp was still in Conglomerate with some slatey inclusions requiring extra ground support. The final Large diameter turn (204 degrees) was made this month and the final muck transfer station was excavated: A major fault was traversed towards the end of the month and slowed advance somewhat. Dune to the results of early underground diamond drilling (started on Sept. 2. 1980), the length of the last large diameter turn had to be shortened to accomodate completion of the ramp at the desired elevation before intersecting the ore zone - as indicated from new information.

The decline was advanced 388 feet plus 35 feet of south ramp extension for a total of 423 feet of advance - the best month of the entire programe: Ground support consisted of 730-6 foot bolts; 221 straps, and some small sections of screen; Ramp widening consisted of 2303 cubic feet of slash including: 2 safety bays and the slash for the south ramp extension.

0ctober 1980

The ramp started encountering slate and quartzite beds in the

Conglomerate and during the second week of the month we had passed completely into the Slate horizon of the Sediments", As a result; back and wall conditions became tricky and required much time and extra material (including rebars) to make them: safe. The ramp passed the 2000 foot mark during the second week of October and was down approximately 300 feet in elevation: Numerous faults were encountered this month compounding the problems of ground control: Nater flow became prominent in the face once more for the last two weeks of October; but was not severe enough to require grouting: The final. settling sump was excavated this month also." We were preparing to winterize the ramp for the oncoming cold weather but stapped short of completion due to a head office decision to stop development for this year on October 31, 1980* The final tum (approximately 70 degrees) was completed on this date and left the ramp face perpendicular to the ore zone and 2225 feet from the portal entrance and 337 feet dom in elevation from the collar. This was at a point just above the projected Keewatin Basement contact; The Keewatin rocks were not evident in the face:

The decline advanced 333.5 feet this month: Increased ground support consisted of 565-6 foot bolts; 242-8 foot bolts; 136-8 foot resin rebar, 11-10 foot resin rebar; 238 straps; and 1491 square feet of screen: Ramp widening consisted of 5556 cubic feet of slash which was used as a muck transfer bay and the final ramp sump.

The contractors cleaned up and finished ground support by November 7; 2980 at which time all the miners were laid off: A small crew was kept on the property until December 22, 1980 to service the diamond drill crews underground; After this date MacIsaac began demobilization procedures which ended on January 28; 1981.

During the month of November the crews installed 65-6 foot bolts; 4 straps; and 1580 square feet of screen to complete the ground support mork.

At this: stage; development to the ore zone had been completed:

General Comment

A greater knowledge was gained by. Teledyne and MacIsaac as a result of driving this Access Decline in the Cobalt Camp: Large; heavily blasted rounds had to be shyed away from in this area due to the ground conditions: Generally the ramp excavation progressed well once the 'Cobalt' ground had educated us. fuch more ground support was used than was originally planned for; thus adding an unexpected additional cost burden:

Respectfully submitted

TELEDYNE CANADA LIMITED

R. E. Bresee Project Engineer

Cobalt, Ontario
May 25; 1981

