			NUN								
 	Nor	thing: 675.5 4000	NOV	AWEST RESOL	RCES INC BUCKE KIMBERLITE PROJECT		Page: 1 of 1				
	Eas	ting: -21.0			DRILL HOLE RECORD	Drill Hole:	BK00-10				
		vation: 1000.0	\bigcirc	SSESSMENT	*** Dip Tests *** Depth Azi. Dip	Project:	Bucke Kimberlite				
		lar Azi.: 225 lar Dip: -50	<u>е</u> Ц	SMI		Date Begun: Date Finished:	July 9/00 July 22/00				
	Hole		N N N N N N N N N N N N N N N N N N N			Core size: Drilled By:	BQ K. ALLEN				
Ï		e Length: 150	л л	- ASS		Logged By; :	P. Fischer, July 23/00				
	1					Claim:	1186377				
From (m)	TO (m)	•		SCIENCE	Geology						
 	<u> </u>										
				Ü							
.0	60.0	CASING		്							
60.0	101.8	KIMBERLITE									
		Note: Kimberlite described usi	ng a code	. See appen	ded kimberlite legend. Type A 18 a,b,c,e 1.8m. Colour medium green-grev. Detailee	e,g,l alpha beta (epsilon)	Zeta FE2 Corp yorry seft				
i i		too soft to be taken out of b	ox Clact	a 20-40% 1	/2 and a stand a family of the stand a sta	a observations restricted (to upper portion, core is				
		62.2m, 20cm clast of carbona	te sedim	ont buff	and and a set of the s	utolithic kimberlite, 1/10	mafic/ultramafic, vfg at				
		starting at 197m. Garnet, red 2.	2.2.13. 0	vide 1 1 n	7 phlosopite 0.0 a p	n olivine) phenocrysts per	successive 3m intervals.				
		<pre>starting at 197m. Garnet, red 2,2,2,13, oxide 1,1,0,7, phlogopite 2,2,0,7, garnet (lavender) 0,0,1. 73.0 97.5 Very soft core, crumbly, in part rubble. Number of phenocrysts (other than olivine) on upper and lower core surface. Number of phenocrysts per successive 3m intervals starting at 73m. Red garnet 7,13,11,5,4,4,1,10. Oxide 10,13,7,2,4,0,0,0. Phlogopite grains up to 15mm size. Lavender garnet: 2,0. Core very soft and crumbly from %5-97m</pre>									
i i		up to 15mm size. Laven	der garnei	+ · 2 0 Com	Now off and 12	4,1,10. Oxide 10,13,7,2,4,	0,0,0. Phlogopite grains				
		97.5 101.8 Core soft but hard en	ough to ha	andle. Red	garnet: 26, oxide: 9, Phlogopite: 17, la	avender garnet 3 Chrome dir	side. 0				
101.8	128.6	DIABASE									
		Olivine diabase. Massive, med.	ium-graine	ed (0.5-2mi	n grain size), subophitic, approx. 50)% femags. At 102.9m, 2% pv	rite over 10 cm ag 1 Emm				
i i		102.0-113.0 Moderate to strong f:	racturing.	, 20 fract/m	1, 20-60 deg to CA		The over to chi as 1-5mm				
		ristorius weak tracturing. [[]	tract/m								
i i	1				s and actinolite fibres, 30 deg to CA, n calcite filling. Chill phase from fro matrix. Contact not preserved	formal to fault.					
		contact. Contact developed as bre	eccia with	h chlorite n	matrix. Contact not preserved.	nu 123.0-128.6m, gradationa	l to fine chill phase at				
128.6	150.0	SEDIMENTS									
		Gowganda Formation metasediments. Bedded, very fine grained arkose, siltsone. Hard, brittle. 128.6 129.0 Breccia with white calcite matrix.									
i i	ļ	130.0 146.0 Fault, rubble. Strong	ragments, ly varvin	randomly o ng bedding a	priented, 10-20 cm size. Bedding varies	from 30 to 60 deg to CA.	mille calcile matrix.				
	1	150.0 End of Hole. Casing Pulled.		J							
	i	Core stored at farm near Englehar	dt.								
		-									
							A) (2 00) 2 100)				
	1										
	H 11				31M05NE2016 2.						
ľ <u> </u>					31MU3NE2010 2.	23801 BUCKE	010				

Kimberlite Legend

(alpha-numerical) for Bucke-Pipe Proj, ON, for Novawest Res Inc. Summer 2000

For drill holes BK00-01 through BK00-10

RECEIVED

JUN 26 2002

GEOSCIENCE ASSESSMENT OFFICE

Magn Susc_	Type Code	e Groundmass		Lithic Clasts	Phenocry ts		s Fabric	
		Kimberlite: A. Definition of 'Groundmass': <0.1 - 1.0 mm grain size. Ground mass consists of a) matrix b) olivine grains c) lithic clast. All minerals are altered. Colours refer to dry drill core.		General: Almost all lithic clasts are strongly altered, many have reation rims.			NFF= no flow febric, i.e. isotropic, massive	
8.0 - 12	A1	Overall colour light green grey. Core soft, water adsorbent. Ground mass consists of a) matrix (tc, carb?) white - light gray, with 0.5-1 % tiny black grains (oxide?) b) 0.1 - 1.0 mm round olivine, medium green c) almost no < 1 mm lithic clasts	2	white carbonate sediment, unmetamorphosed, dense, in part with bedding preserved; and metamorphosed, recrystallized, marble. Very common	sipha	small olivines (1-2 mm)	FF= Flow Fabric. Local, weak orientation of elongated ofivines and slab-shaped lithic clasts.	
0.5 - 0.7	A2	Overall colour beige, light-ochre-gray. Core is soft, water adsorbent. Groundmass consists of a) matrix (tc, carb?) light gray, b) $0.1 - 1.0$ mm oflvine, light green to medium green, some are brownish. c) other altered Femag minerals (px?) d) < 1 mm size lithic clasts, colour green, white, brown	Б	Non-carbonate sediment, light gray, dense (clay?, aftered sillstone?) Very common	beta	large olivine (2 - 20 mm)		
10.0 - 18.0	A3	Overall colour light to medium green, with slight brownish tinge. Core is solid, fairly hard, not water adsorbent. Ground mass c+C11onsists of a) Matrix, light green b) 0.1 - 1.0 mm olivine medium green (olive colour) with thin ochre coloured rim around each olivine. Larger (0.5 - 1 mm) olivine are dark green/blackish or with black rim c) no or few lithic clasts < 1 mm.	С	UM? Serpentine? Chlorite? Light- to medium green and blueish green, dense, no texture. Very common	gamma	olher Femag (p×7)		
	2 44	Overall colour medium-dark green. Core is harder, consists of a) metrix, light gray, b) 0.1 - 1 mm olivine with light gray core and thin dark green/blackish rim, c) few medium to light green lithic clasts <1 mm.	d	beige coulored, very soft, vuggy, slightly carbonaceous, with clay	delta	gamet		

JUN. 25 2002 09:22PM PS

PAGE. 05

1849

882

905

· 0.9	A5	Overall colour medium to dark green, as Type 4. Rock solid. Consists of a) matrix light gray b) 0.1-1 mm olivine, of solid dark green colour (no black rim) c) few med-light green lithic clasts < 1 mm	e	maîle igneous rocks with relict texture. Minerals: Hornblende, px, plag. Rock types Gabbro, hbl-gabbro, dtab, diorite	epsilon	oxide
6	A8	Overall colour medium greenish brown. Rock hard, solid, not water adsorbent Consists of a) matrix 1/3 white and 2/3 brown, fresh fine phlogopite b) 0.1 - 1 mm olivine medium green o) few green lithic clasts < 1 mm	1	Felsic igneous rocks with relict texture. Colour pink- gray, buff. Rock types; Granite, granodiorite	zeta	phlogopite
15	A7	Overall colour brown with dark green spots. Rock very hard, fresh, solid, not water adsorbent and consists of a) matrix, brown, mainly fine grained, fresh, honey brown mica, phlogopite, b) medium to dark green olivine 0.1 - 1 mm (I.p. fresh?) c) nosmati lithic clasts < 1 mm	g	UM igneous rocks, coarse greined. Oliv, px, garnet. Garnet peridotite, eclogite?	ita	chrom-diopside
11	AB	Overall colour dark green, rock fairfy hard, solid. Consists of a) matrix medium bluelsh green b) dark/blackish green olivine 0.1 - 1 mm c) no/fewilihic clasts < 1 mm	ħ	Mailc-UM, fine grained rock, dark gray, granular, homfelsic, massive. As mm- cm clasts and mm-cm wide reaction rims around lithic clasts, UM clasts	thita	chramile
1	A9	Overal colour dk green, rock fairly hard, solid. Consists of a) dk gy and light gy malox b) dk green/blackish oliv 0.1-1 mm, > 0.5 mm mostly with white core c) few (1-2%) It green and bwn lithic clasts 1mm d) few (2-5%) larger (2-5 mm) sed and mafic subophitic clasts.		Sediment, bedded. Colour buff/light brown, soft. with mm parallel beds of black Femags.		
0.6	A10	Similar to AS but has black-green oliv $0.1 - 2 \text{ mm.}$ Overall colour. Mottled dark brown-green. Consists of a) matrix of 1/2 while, 1/2 dark green material with minor dusty oxide, frace <1mm garnet b) black-green, 'fish-roe' olivine $0.1-1 \text{ mm}$, bimodel, larger 1-3 mm oliv. c) 5-10%, 1-5 mm clasts, various colours, lithic and phenocrysts. d) a total of 25-40% clasts, <1-1.5 cm. Few > 3cm clasts e) 0.5% UM garnet therzolite clasts with Chrome diopside and some with litac garnet.		Prophyrilic and amygdaloidal volcanics, altered. Various colours	·	

PAGE.06

905 882 1849

Kimberlite Legand @

JUN 25 '02 21:52

KIM REPUTE Legens p. 2

JUN. 25 2002 09:23PM P7

Г

Т

			T			
0.4 - 0.5	A11	Similar to A10, but groundmass uniformly brown gray colour. Only fes blackish-green olivine clusters. Consists of a) matric, light gray with abundant liny brown spots and cloudy brown coloration b) medium green (clive-coloured) 0.1-1 mm olivines (fish roe') c) common 0.5-1 mm light green, altered xtls or lithic clasts d) common (10-15 0%) mm - 1 cm sedim and subophilid lithic clasts with dk green rim	k	Black UM hornblendite, feldspathic hornblendite		
0.1 - 0.8	A12	Overall colour dark, blackish green grey. Groundmass made up of a) dark matrix, rare light grey spots b) 0.1-0.5mm fish egg olivine, in part closely packed c) few < 1 mm lithic clasts light grey medium green. Larger phanocrysts mainly olivine fresh green and brown. Lithic clasts 10-20%	1	autolithic kimberlite, vfg, commonly with chilled rim. Sharp outlines		
2.0 - 7.7	A13	Overall colour medium green gray. Core not weler-adsorbent. Matrix of groundmass light gray. Small (< 0.5mm) groundmass olivines have light gray core and thin dark gray/black rim; small olivine phenocrysts (0.5 - 2 mm) the same. Trace dusty oxde in groundmass. 1-2% 1-3 mm light gray sediment clasts.	m			
7.5 - 16.0	A14	Overall colour (dry) medium gray-green. Groundmass made up of: a) matrix, colour (vet) light-green/buff b) oliv (size 0.1 - 0.5mm), colourmedium-dark green and small of/v phenoxts (size 0.5-1mm); c) trace vfg dusty brown meterial, phlogopite(?) << 0.1mm; d) small lithic clast. light gray sediments, gabbro, serpentine (?) e) trace of other small phenocrysts, red garnet, oxide.	 		с	
11.0 - 14.0	A18	Overall colour (dry) medium to dark gray. Groundmass made up of: a) matrix, colour (wet) light-green/buff with a trace of extremely fine, brownish phlogoptie(?) and a trace oxide b) olivine (size <0.1 - 0.5mm), colour medium-dark green and small olivine phenoxts (size 0.5-2mm) with light core and dark rim. Rare (1-2%) large olivine phenocrysts, round and equant. No or rare lithic clasts				
0.25 - 0 4	A16	Overall colour medium green. Core is not water-adsorbent. Groundmass appears dense, green, it is difficult to distinguish between matrix and small groundmass-olivines, 0.1-0.5mm. Phenocrysts (3-5%): Olivine, fresh and altered, 1 - 10 mm; philogopite, ? orthopyroxene?. Lithic clasts: High clast population, 30-40%: Mostly < 1 cm size, rare 30-50cm; > 1/2 sediment, 1/4 gabbro, diorite, 1/4 ultramafics and other.				

JUN 25 '02 21:53

1.5 - 8.0	A17	Overal colour: Dark green-gray, spotled. Groundmass: Dark gray to blackish gray. Matrix dark gray. Groundmass-olivines dark gray, medium gray, medium brown gray. Small penocrysis (0.5-1mm) Olivine, dk green, fresh and elfered. Philogopite rare but present. Minor garnt, oxide. Small lithic clasts, 1mm, 1-2%, white, green. Larger Phenocrysis (1-5mm): Mainly olivine, fresh, with cleavage, 1-10mm, garnet 1%, red, minor lavender, 1- 10mm. Philogopite 0.1-0.5%, 1-4mm. Oxide, <1-3mm. Lithic clasts 5-10%, mainly light coloured sediments, subophilic mafic intrusives, minor UM and dense, dk green clasts			
0.3 - 2.2	A18	Overati colour: medium gray. Groundmass: medium gray-green. Groundmass-olivines, <0.1-0.5mm medium green-gray core, dark rim. Trace other: Oxide, phiogopite. Larger olivines (0.5- 2mm) white and brownish core, medium-dark green rim. Larger lithic clasts: High, 30-40%: Equal proportions of: sediments, gabbro, fg mafic volcanic, other (serpentine, ultramafic)			

.

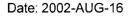
Kimberlite Logma

Work Report Summary

Transaction No: Recording Date:	W0280. 2002-JL	JN-24		Si Work Done					
Approval Date:	2002-Al	01-00			to : 2000	J-JUL-24			
Client(s):									
30018	9 N	OVAWEST R	ESOURCES	SINC.					
30117	1 W	'HELAN, ROE	BIN CLOWA	TER					
Survey Type(s):									
		PDRILL							
<u>Work Report Deta</u> Claim#	<u>iils:</u> Perform	Perform Approve	Applied	Applied Approve	Assign	Assign Approve	Reserve	Reserve Approve	
L 1186377	\$5,953	\$5,953	\$0	\$0	\$3,200	3,200	\$2,753	\$2,753	2005-APR-24
L 1247625	\$0	\$0	\$800	\$800	\$0	0	\$0	\$0	2004-JUL-05
L 1247626	\$0	\$0	\$800	\$800	\$0	0	\$0	\$0	2004-JUL-05
L 1247627	\$0	\$0	\$800	\$800	\$0	0	\$0	\$0	2004-JUL-05
L 1247628	\$0	\$0	\$800	\$800	\$ 0	0	\$0	\$0	2004-JUL-05
	\$5,953	\$5,953	\$3,200	\$3,200	\$3,200	\$3,200	\$2,753	\$2,753	-
External Credits:		\$0							
Reserve:			erve of Worł I Remaining	< Report#: W0	280.01075				

Status of claim is based on information currently on record.

31M05NE2016 2.23801 BUCKE


Ministry of Northern Development and Mines

ROBIN CLOWATER WHELAN

41 PREMIER AVENUE WEST KIRKLAND LAKE, ONTARIO

CANADA

Ministère du Développement du Nord et des Mines

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.23801 Transaction Number(s): W0280.01075

Dear Sir or Madam

P2N 2S7

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

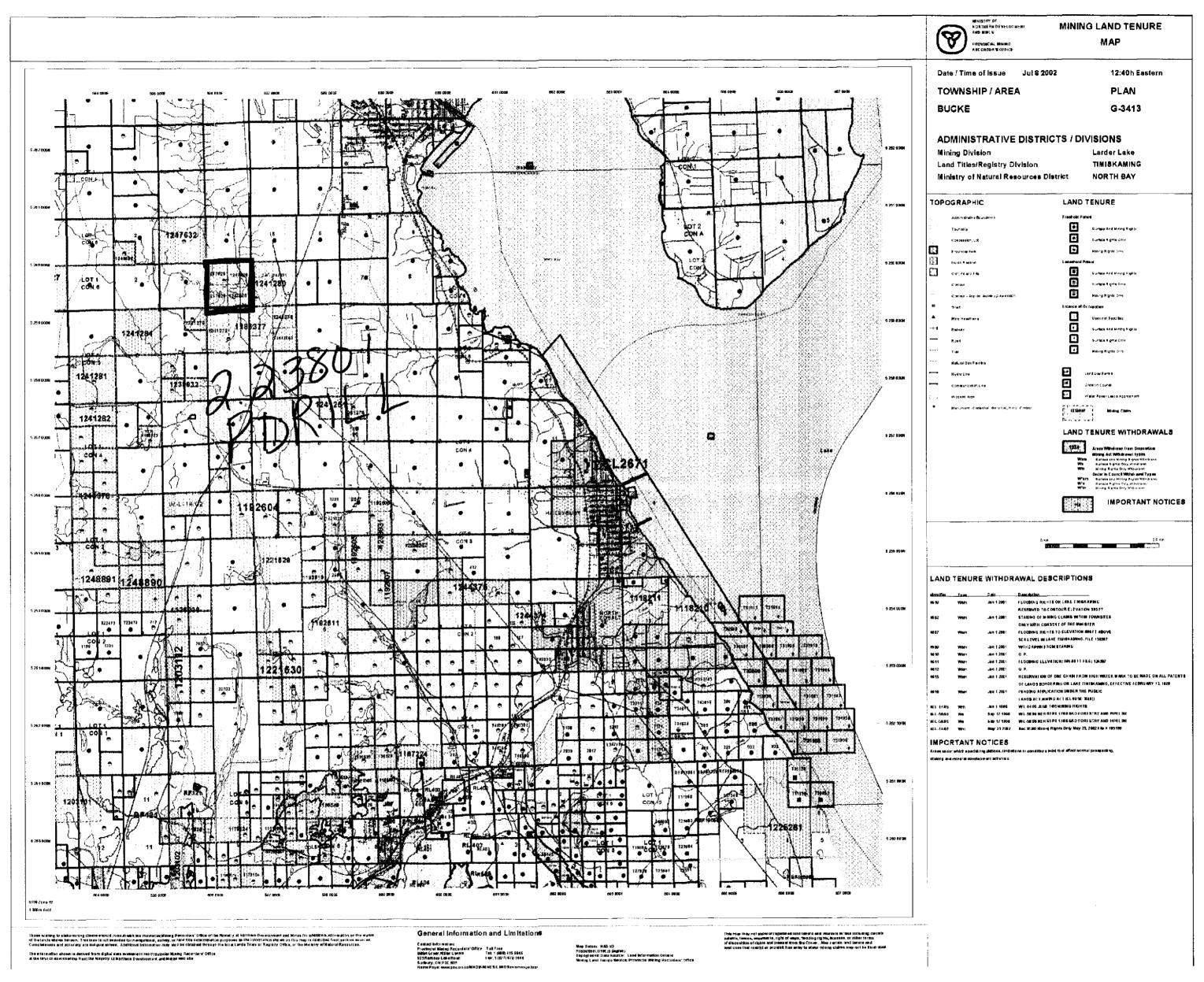
At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

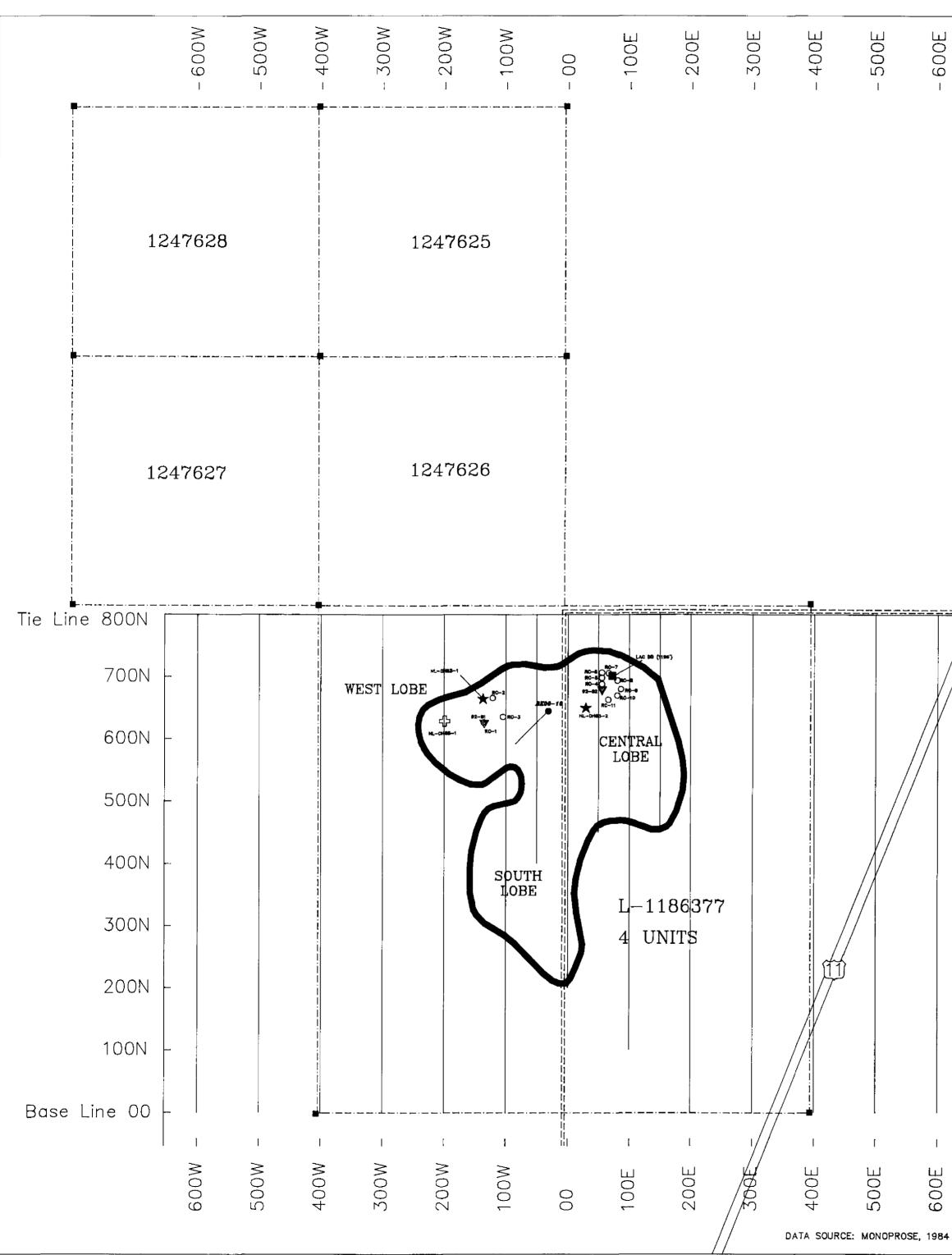
If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

Yours Sincerely,

mechil.

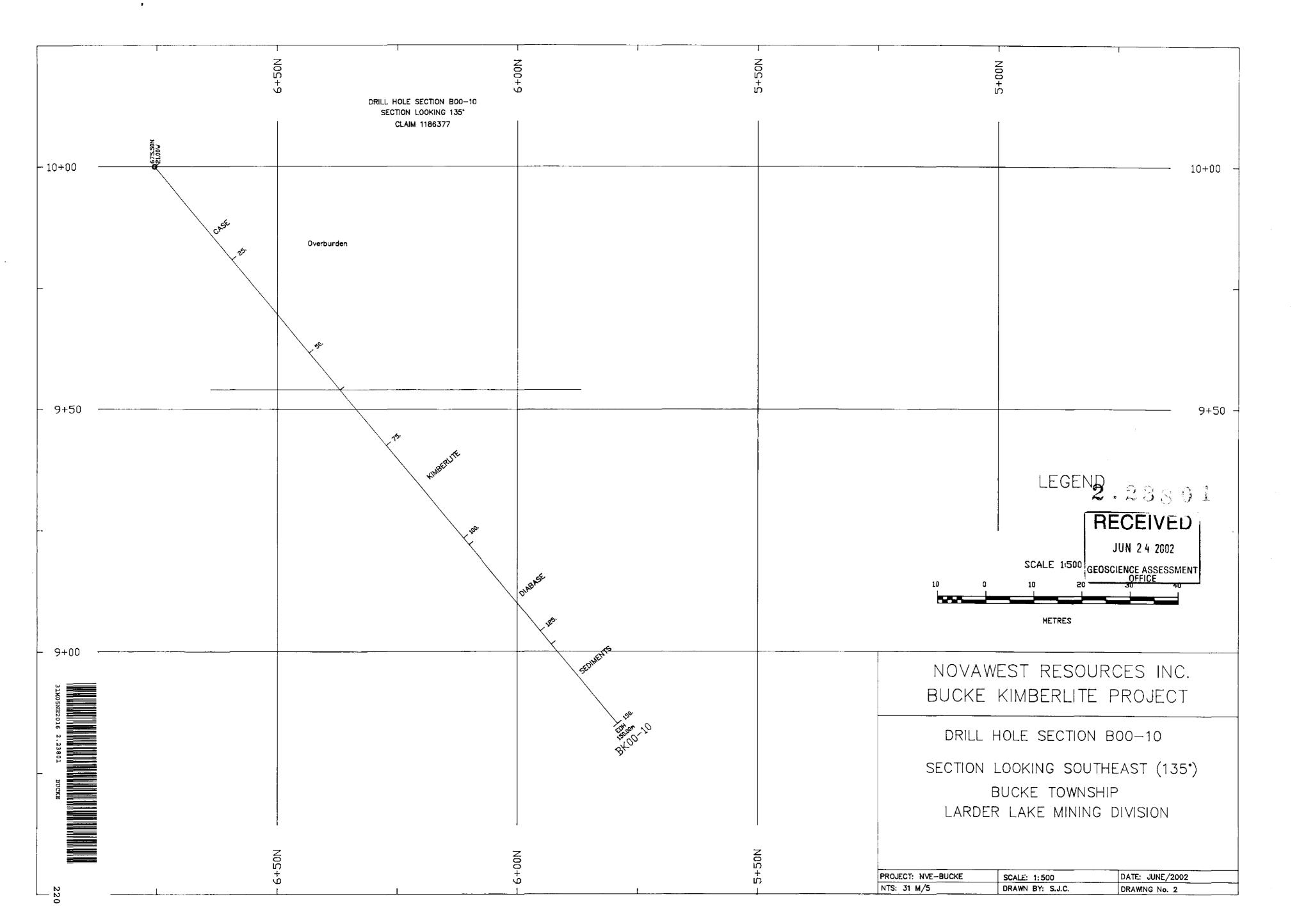
Ron Gashinski Senior Manager, Mining Lands Section


Cc: Resident Geologist


Novawest Resources Inc. (Claim Holder)

Robin Clowater Whelan (Assessment Office)

Assessment File Library


Robin Clowater Whelan (Claim Holder)

- 600E - 700E - 1600N ASTRONOMIC NORTH - 1500N - 1400N - 1300M - 1200N GEOSCIENCE ASSESSMENT OFFICE JUN 24 2002 /1/100N RECEIVED 10023.3 1000N - 900N LEGEND 210 ===- Tie Line 800N NL-DH85-1 MONOPROS 4" DIAMETER CORE - 700N NL-DH83-2 🐋 MONOPROS 6.25" SCHRAMM ROTODRILL (1983) LAC MINERALS 4" DIAMETER CORE - 600N KWG/SPIDER 8" CASED ROTARY HAMMER 92-82 🖤 KWG/SPIDER 5.3" REVERSE CIRCULATION RC-11O - 500N NOVAWEST RESOURCES INC. BQ DIAMETER CORE BK00-10 🌒 INTERPRETED BOUNDARY OF KIMBERLITE PIPE - 400N ROAD _____ CONTOUR INTERVAL: 1 nT/m - 300N 100 100 200 - 200N (meters) NOVAWEST RESOURCES INC BUCKE TWP KIMBERLITE PROJECT - 100N BORE HOLE LOCATIONS - Base Line 00 BUCKE TOWNSHIP 1 DISTRICT OF TIMISKAMING, ONT. 600E 700E LARDER LAKE MINING DIV. PROJECT: NVE/BUCKE SCALE: 1: 5 000 DATE: JUNE, 2002 NTS: 31M/SW DRAWN BY: S.J.C. DRAWING No. 1

