ST. JOSEPH EXPLORATION LIMITED

REPORT OF GROUND EM AND MAGNETIC SURVEYS ON THE GREEN LAKE CLAIMS AND BURTON OPTION

PARTS OF LOTS 8 AND 9, CONC. IV and V COLEMAN TOWNSHIP, COBALT AREA, ONTARIO
A. W. BEECHAM

JUNE 28, 1978
N.T.S. 31-M-5

INTPRODUCTION

The Green Lake property consists of six 40 acre claims and three 20 acre claims staked in May 1977. In ardition two 40 acre claims were optioned the 3re of August 1977, from Douglas Burton of Coleman Township.

Claim details are tabulated relow:

,
The claims form two separate rlocks as shown in Fig. l. The claims were acquired to cover a number of INPUT (airtorne EM) responses locatec in a survey of 1977. The purpose of this work was to locate on the ground and evaluate conductors, mainly for their rase metal potential.

In August 1977, à grid of north - south, 400 ft. - spaced lines was cut on all of tre claims on the Burton Option, claims S462876 and S462877, fill-in lines were cut to produce a 200 ft . spacect grid.

LOCATION AND ACCESS
Whe claims are located mainly in Lot 8 and 9 of Concossion V, Coleman "ownship. Highway lib passes through the middle of the croup. mhe eastern end is easily accessikle via a motorakle track which leads southwest parallel to the railway from the Coleman Poad at Mileage 102.

The N.W. corner is accessible from the clear Lake - Sharp Lake road.

TOPOGRAPHY

The property is of more moderate relief than usual for the Cobalt area, the area being underlain mainly by Archean volcanics with neither Gowganda Formation conglomerates nor Nipissing DiaKase, which usually form prominent hills. The maximum relief is in the northern part, ahout 100 ft . There are few scarps and outcrop is only moderately akundant.

GENERAT. GEOLOGY
The claims occur almost entirely within the S.W. portion of the Sasaginaga - Clear Lake Archean inlier, and are underlain predominantly ly mafic volcanics. Minor'interflow' sediments are reported here and there, especially at the north. The interflow sediments typically contain graphite and varying amounts of pyrrhotite and pyrite and in places minor base metal sulphides.

The volcanics strike WNW - ESE and according to Thomson (1948-61) a major synclinal axis passes through the middle of the area.

The Archean volcanics are overlain on the east and west edges of the property by Proterozoic Gowganda Formation conglomerates.

PREVIOUS WORK \& MINFRAL PROSPECTS

As elsewhere in the main part of the cobalt camp, intensive prospecting is indicated $b y$ the numerous trenches, pits, and prospect shafts. of most of this work, there is no record. However, Thomson (1960) has descrihed the underground workings and more important pits. Most of the following section is from Thomson (1960):

EAST PARM - S.E. $\frac{1}{4}$ Of S. $\frac{1}{2}$ LOT 8 CONC. IV: This is part of: a group that was explored 1908 - 1910 by Argentite Cobalt Ltd. In the area known as the south shaft, at the east side of claim S473519, a N. - S. striking carkonate-colalt rearing vein was explored by a deep trench and a shaft (South shaft). Minor silver is reported, rut not in economic amounts. A second shaft the Midale shaft, was sunk near the north koundary of this claim presumably to explore a calcite vein. In 1938 Page Exploration and Mining syndicate Ltc. formed to explore for colalt, carried out some work arounc the South Shaft. The South shaft was dewatered in 1951 by Aunite Mining Corporation Ltd., and an underground examination made, and some prospecting and diamond drilling done. More recently, presumably in the late $1960^{\prime} \mathrm{s}$ or early $1970^{\prime} \mathrm{s}$ as evidenced from core found on the property, the south shaft vein was tested ry two drill holes. This work is filed under the name of Craig - McConnell.
N.W. $\frac{1}{4}$ of S. $\frac{1}{2}$ LOT 9, CONC. VCl. S473513: A pit 300 ft. south and 50 ft . west of the N.E. corner of the claim exposed a zone of disseminated pyrite and with massive pyrite up to 15 inches (on the dump). The zone strikes N. 72° E. and dips E. at 75°.
S.E. $\frac{1}{4}$ of So $\frac{1}{2}$ LOT 9, CONC. VCl. S462876: Some 450 ft . W. and 200 ft . N. of the $\mathrm{S} . \mathrm{E}$. Corner of this claim (100 ft. south of Highway 11B) a 50 ft. shaft was sunk in rlack slaty (presumarly graphitic) material.
N. $\frac{1}{2}$ of N. $1 / 2$ LOT 9, CONC. V, CLAIMS S473511, 473512: A number of pits and small shafts were sunk. 'Interflow' sediments contain minor pyrite and chalcopyrite.

DESCFIPTION OF MAGNETIC SURVEY

Whe entire picket line grid was covered. Readings were taken at 50 ft. stations and 25 ft . stations in anomalous areas. The area was covered in two separate surveys, not tied together except
by one common line L. 4 W . S. of D. L. Here descrepencies of 10 - 30γ occur. Claims S473511, 473512, 462876, 462877 and 473516 were covered in December 1977. In the December 1977 survey a Barringer GM-122 total field proton magnetometer was used with a Scintrex MBS-2 hase station recorder. The hase station recorder was located near the core shed of Canadaka Mines Ltd., on the Bailey property at Glen Lake (Coleman Township). This base station level was 59055 . The remaining area was covered using a Scintrex MP-2 total field proton magnetometer with diurnal corrections being made to a base station located on the Green Lake grid at the base line and 6+00E. The level of this base station is 58939 .

The descrepencies between the two surveys (10-30) is probably not significant as anomalies located are of the order of a few hundred gammas or more.

The results of the surveys are shown in Fig. 4.

DFSCRIPTION OF ELECTRO-MAGNETIC SURVEY

A horizontal loop EM survey was run over all of the north south picket lines. The only area not covered was a small corridor along Highway llB. The reference cable could not be safely stretched across the highway because of the traffic. The instrument used was the Max-Min II Horizontal loop system ky Apex Parametrics. Technical details of the instrument are appended. The coil separation was 100 metres. The survey was run with the receiver in front of the transmitter. Readings were taken with transmitter at an even 100 foot picket and the reference cable pulled tight. The plotting point is mid-way hetween transmitter and receiver (i.e. 50 metres or 164 ft . 'in front' of the transmitter).

Readings were taken at 1777 Hz . for the entire grid. In anomalous areas readings at a second frequency 444 Hz . were taken
to be able to ketter evaluate conductivities of the conductors. PESULTS AND INPERPREMATION

Nine separate conductors were outlined. Most have considerable strike length. All appear to be genuine fecrock conductors. Most of the profiles are relatively sharp with high shoulders and represent relatively shallow conductors. Nearly all hevesymetrical profiles indicatingnear vertical to steep south dips. Characteristics of the various anomalies are listed below: CONDUCTOR A: $1600 \mathrm{Ft}$. plus, etrike length; shows appreciarle width, perhaps 70', at westend; moderate amplitude and moderate conductivity; parallel flanking magnetic high 50 to 200 ft . to the north.

CONDUCTOR B: (North of property under Clear Lake) strike length unknown, moderate to strong amplitude, good conductivity.

CONDUCROR C: Short strike length; weak response; moderate conductivity; could be deep, or between line source; associated with a more extensive magnetic anomaly.

CONDUCTOR D: Anomaly partly okscured by power and telephone wires and highway lib. Separateraresponse to telephone and power line as anomalous reacings occur before first coil crosses wires; strike length at least $600 \mathrm{ft}$. ; moderate amplitude and conductivity; flanking magnetic high to north.

CNNDUCTOR E: Strike length at least 800 ft . Moderate amplitude response; poor in-phase to out-of-phase ratios and poor response at 444 Hz . indicatos only moderate to weak conductivity.

CONDUC'OR E : Parallel conductor to 'E' and some interference on profiles on lines 4 and 8 W ; strike length at least 900 ft . with width probably over 50 ft . at east end; moderate to weak response; in-phase to out-of-phase ratios and greatly diminished response at 444 Hz . indicates fairly low conductivity.

CONDUCTOR G: Strike length up $101200 \mathrm{ft} .$, moderate to good amplitude with fairly good conductivity; 200γ coincident magnetic anomaly.

CONDUCPOR II: Occurs just to the south of proporty; moderately good amplitude and cood conductivity.

CONDUC!OR I: Short strike lengt?, arout 200 to 300 ft ; narrow conductor; strong amplitude and concuctivity; excellent cojncident magnctic anomaly up to 3000γ.

The magnetic survey was done to help evaluate EM conductors, as noted above. However, it also produces a good deal of structural information. Especially in the area north of Highway llb,it appears to trace out litho logy more continuously than the EM.
?wo weakly magnetic features are discordant with the EM conductors. These are N.E. trends through L4W; $10 N$ and at 32E; 1+50S. They may be weakly magnetic dykes.

CONCTUSIONS AND RECOMMENDATIONS

There are seven genuine kedrock conductors on the property. However, in light of the abundance of graphite in the interflow' sediments in the cohalt area, $\&$ the long strike length of most of the conductors, it is likely that most, especially those with no coincident magnetic response, are caused by graphite.

There are two good EM anomalies with good coincide magnetic highs. These are "G" and "I". "I" is especially interesting because of the short strike length and strong magnetics and almost certainly is at least in part caused by pyrrhotite. Even though the geolocical sotting, dominantly mafic flows is not typical of host rocks for volcanogenetic base metal doposits, anomalies "I" and "G" reguire special attention.

It is recommened that all of the anomalies be checked for fase metal and silver content ${ }^{1} y$ soil sampling. Bedrock is sufficiently shallow that tho soil should reflect metals in the tills.

Sampling should be done slightly 'up ice', over and well 'down ice' from the EM conductors.

June 30, 1978
A. W. Beecham,

Sr. Geologist

Thomson, R. (1948-61)	Cobalt Silver Area Map 2050,2051 Ont. Dept of Mines
Thomson, R. (1960)	Preliminary Report on Parts of Coleman Jownship and Gilles Limit to the south and South- west of Cobalt P.R. 1960-3 Ont. Dept. of Mines

APPENDIXI

Maxmin II EM Systom

The Maxmin if is a two-man continuously portable WM system. It is dosigned fo musure both the vertical and horipontal in-phase (IP) and quadrature (QP) components of the anomalous field from electrically conductive zones.

The plane of the transmittor (rx) is kept parallel to the mean slope between the transmitter and receiver (Rx) at all times. The Maxmin II is a horizontal loop (HL) system when the receiver measures anomalous components perpendicular to the mean slope between the coils. It is a minimum coupled (Min C) system when the receiver measures anomalous components parallel to the mean slope between the coils.

SPECIFICATIONS

OPERATING FREQUENCIES: MODES OF OPFRATION:

COIL SEPARATIONS: (modes a and b)

PARAMETERS MFASURED:

222, 444, 888, 1777 and 3555 Hz .
a) Transmitter coil plane and receiver coil plane horizontal (Max-coupled; Horizontal loop mode). Used with reference cable.
b) Transmitter coil plane horizontal and receiver coil plane vertical (Mincoupled mode). Used with reference cable.
c) Transmitter coil plane vertical and receiver coil plane horizontal, tilted for null in the receiver output. (Vertical loop mode). Used without reference cable, in parallel lines.

25, 50, 100, 150, 200 and 250 mm (MM II) or 100, 200, 300, 400, 600 and 800 ft. (MM II F). Coil separations in mode c) not restricted to fixed values.
a) In-Phase and Quadrature components of the secondary field in modes a) and b).
b) Tilt-angle of the total field in mode c).

READOUTS:

BCAIE RANCH:S:

RUAMTNG RHPFATABCJ,TTY:
'HRDNSMITMFR DTPOT,F MOMPNT:

RFCFIVFR BATIFRIES:

MTANSMTITER BAMVFRILES:

RFFFRFNCE CABTE:

InIJCAMOR THGimes:

OPFRATING 'IWIPPERA'URF: WH TGHC OF RWCEIVER UNIT: WFICHT OF JRANSMTTMER UNTT:

VOJCH J, JHK:
a) Autonatic, direct readout on 90 mm (3 edgewise meters in modes a) and b). nulling or compensation necessary.
b) Tilt-angle and null on 90mu ($3 \frac{1}{\Sigma^{\prime \prime}}$) edgewise meters in mode c).
Tn-phase: $\pm 20 \%$ normal, $\pm 100 \%$ by switc Quadrature: $\pm 20 \%$ normal, $\pm 100 \%$ by swi Tilt: $\pm 75 \%$ slope Null: Null sensitivity adjustable by soparation switch.
$\pm \frac{1}{2} \%$ to $\pm \%$ normally, depending on conditions, frequency and coil separatio: used.
$150 \mathrm{Atn}^{2} @ 222 \mathrm{~Hz}, 150 \mathrm{Atm}{ }^{2}$ @ $4441 \mathrm{z}, 90 \mathrm{~A}$ @ 888Hz, 40 Atm ${ }^{2}$ @ 1777 Hz and 30 Atm ${ }^{2}$ @ 3555 Hz .
9 V transistor radio type, 4 batteries Iife: approx. 35 hrs . continuous duty (alkaline; . 5 Ah), less in cold weather.
a) 12 V 7.5 Ah Gel-Cell rechargeable batterics ($2 \times 6 \mathrm{~V}$ in series)
b) 18V21Ah alkaline lantern batteries (3 x 6 V in series). Transmitter current drain 0.5 A to 2.2 A depending on operating frequency.
fight weight, special teflon cable for minimum friction. Unshiclded. All reforence cables option at extra cost. Please specify.
Built-in intercom system for voice comunication betwoen receiver and transmitter operators.

Builf-in signal and reference warning lights to indicate crroneous readings. $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
6kg (13 lhs.)
Typically 65 kg (143 lbs.), depending on quantities of reference cable and batteri included. Shipped in two shipping/field cases.

Builet-in intercom system for voice comnunication between receiver and trans mitter operators.

SPECIFICATIONS	
Range:	20,000 to 99,999 in 12 ranges
Accuracy:	$\pm 1 \gamma$ through operating temperature range
Sensitivity:	1γ
Gradent Tolerance:	$600 \mathrm{r} / \mathrm{ft}$.
Power:	
Fower Consumption:	< 50 Joules (Vsec) per reading
Polarizing Power:	0.8 A e 13.5 V for 1.5 sec . (3 second cycle)
	0.8 A e 13.5 V for 3 sec . (6 second cycle)
Number of Readings with 1 Battery Set:	2,000-10,000 depending on type of batteries
Frequency of Readings:	1 every 3 seconds 1 every 6 seconds
Controls:	Pushbutton switch Range Selection switch - Slide switch for 3 and 6 sec . located on P/C Board
Output:	5 digit incandescent filament. readout
Indicators:	LED point Lock Indicator - last three digits of the display blanked off when phaselock not achieved Segment function Indicator - all segments light up to permit visual inspection of the display function
Mechanical:	
Instrument: Dimensions - $7^{\prime \prime} \times 3.5^{\prime \prime} \times 11^{\prime \prime}$ ($18 \mathrm{~cm} \times 9 \mathrm{~cm} \times 28 \mathrm{~cm}$)	
Weight	- $8 \mathrm{lbs} \mathrm{(} 3.6 \mathrm{~kg}$) including batterics
Sensor:	Omidirectional noise cancelling toroidal sensing head
$\begin{aligned} \text { Dimensions } & -47 / 8^{\prime \prime}(12 \mathrm{~cm}) \text { diameter } \\ & -43 / 8^{\prime \prime}(11 \mathrm{~cm}) \text { height } \end{aligned}$	
Weight - $3 \mathrm{lbs}(1.4 \mathrm{~kg}$)	
Anbient Conditions:	Operating Temperature Range -$-40^{\circ} \mathrm{F}$ to $131^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
	Relative Rumidity - 0 to 100%
Pnvironmental:	Instrument and sensor case made of high impact plastic

SPECIFICATTONS:

Resolution
Total Field Accuracy Operating Range

Gradiont Tolerance
Sensor

Sampling Rate
clock Accuracy and Stabiłity
Visual Outputs

External Outputs

Time Marker

1 gamma
± 1 gamma over full operating range 20,000 to 100,000 gammas in 25 overlapping switch selectable steps

Up to 5000 gammas/metre
Omnidirectional, shielded, noisecancelling, dual coil

Internal control: switch selectable every $2,4,10,30$ seconds or $1,2,10$ minutes
External control: manual command or by external clock at any rate longer than 2 seconds. For external trigger, a positive transition from 0 to $+4 V$ or greater initiates one reading
$\pm 10 \mathrm{ppm}$ over full temperature range

5 digit light emitting diode numerical display lasting 0.1 seconds in automatic recycle mode and 1.7 seconds in manual mode.

Internal strip chart recorder with 65 mm chart width and 100 or $600 \mathrm{~mm} / \mathrm{hr}$ chart speed. Inkless recording. Switch selectak at 10 , 100 or 1000 gammas full scale

5 digit, 1-2-4-8 BCD DTL, TTL compatible (2 loads) with $0.5 \mathrm{msec}, 5 \mathrm{~V}$ pulse for synchronization of MBS-2 and external recorder.

Analogue recorder output of 1 V at 1 mA max. Switch selectable for 10,100 or 1000 gammas full scale.
A 1.5 second pulse every 10 minutes generates a time mark on the internal or on external. analogue recorders.

For an external analogue recorder, a switc to ground is provided (NPN transistor, 40V max., 250 mA max). No side pen is required for continuously writing recorders as the pen returns to zero at every event mark.

Intervals of less than 10 minutes are optional.

Operating Temperature Range

Dimensions

Weights

Shipping weight
Optional Accessories

50 m length is standard
The internal batteries of the MP-2, (8 "D" cells) are used to power all functions of the MBS-2. This power source lasts approximately 80 hours, at $25^{\circ} \mathrm{C}$ and a once per minute sampling interval.

An external 10 to 32 V DC supply may alternatively be used.

Current drain is approximately 0.9A durinc polarize time and 35 mA during standby, depending upon supply voltage.

Digital readout of normalized internal battery voltage activated by touching switch.

Console: o to $50^{\circ} \mathrm{C}$
Sensor: - 35 to $50^{\circ} \mathrm{C}$
Console: $140 \mathrm{~mm} \times 310 \mathrm{~mm} \times 390 \mathrm{~mm}$ Sensor: 80 mm diameter : 150 mm length Tripod: 130 mm extended length

Console: 7.7 kg
Sensor with cable: 5.5 kg Tripod: 1.5 kg .

Approximatcly 18 kg
Sensor monopod, harness, sensor backpack and 2 m sensor cable allow field portable survey use of MP-2 magnetometer. See MP-2 specification sheet.

GEOPI

31 M05NW0401 2.2733 COLEMAN
900

Type of Surveys) Ground EM \& Magnetic
Township or Area Coleman

Survey Company St. Joseph Exploration Ltd.
Author of Report _A. W. Beecham
Address of Author - Box 867; Haileybury, Ontario_
Covering Dates of Survey_ Dec. $\frac{1977}{\text { (lineculting to office) }} 1978$
Total Miles of Line Cut

SPECIAL PROVISIONS	
CREDITS REQUESTED	Geophysical
ENTER 40 days (includes	-Electromagnetic
DAYs cu s line cutting) for first survey.	-Magnetometer
ENTER 20 days for each additional survey using same grid.	-Radiometric
	-Other

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Magnetometer___ SIGNATURE: | Electromagnetic |
| :---: |
| (enter days per claim) |
| LID. |

Res. Geol. \qquad Qualifications

Previous Surveys

GROUND SURVEYS -- If more than one survey, specify data for each type of survey

	EM	Magnetics
Number of Stations		
618	1741	

Station interval $100 \mathrm{ft} . \& 50 \mathrm{ft}$ 。 50 ft \& \& 25 ftine spacing 200 ft \& 400 ft Profile scale_EM $1^{\prime \prime}=20 \%$
Contour interval 200γ

Instrument Dec 77 Survey - Barringer GM-122, Scintrex MBS-2 Base sta, recorder Accuracy - Scale constant $\pm 1 \gamma$
Diurnal correction method Dec. 77 Survey with basie sta. recorder ${ }^{\text {. }}$
Base Station check-in interval (hours)_Max 2 hours - Mar. 78 Survey
Base Station location and value Dec. 1977 Survey Bailey Core Shed Canadaka Mines Ltd. Level 59055γ, March 1978 Survey, Baseline \& ${ }^{6+0 \text { PE }}$ level 58939 .

Coil configuration Co-planar			
Coil separation 100 metres			
Accuracy $\pm 1 \%$			
Method: $\quad \square$ Fixed transmitter	\square Shoot back	[XIn line	\square Parallel line
Frequency	(ecify V.L.F. station)		

Parameters measured in-phase and out-of-phase component (in percentages) of secondary EM field.

Instrument \qquad
Scale constant \qquad
Corrections made \qquad
\qquad
Base station value and location \qquad

Elevation accuracy

Instrument \qquad

Method\square Time Domain \square Frequency Domain Parameters On time Frequency Off time Range Delay time Integration time	

Power
Electrode array
Electrode spacing
Type of electrode

