The following report outlines the geophysical survey carried out on claims T-61396, 61397\%61398 310c 10 1. . . Fart Gillies Limit.

After cutting lines in an East-West direction, and picketine at looft. intervals, an EM survey was carried out usino a honka 116 deep penetrating electromagnetic detector. Several interesting responses were detected.

## IOCAPTM OE CLATSS

Ihe claims on which the survey was carried out are located in Fillies Jimit. They are readily accessible from lliphway $J$ alons, a secondary road 2 miles in length, ending on the property.
 throurh until Hay 9 2969. Isines were cut in an East-West airection Srom a baseline commencing at a Survey Post on the North Boundary of the property.

Specins of the picket lines started from the North Boundary of the pronerty at 200 font intervals to and includincthe 2600 foot line, which was 40 feet north of the South 3oundary of Claim 61398

The Em Survey was carried out using a Ronka EM 16 deep penetrating electro-magnetic detector. The instrument is simply a sensitive receiver which picks up VLF transmitting stations operating for communications with submarines

These stations have vertical antennas and as aresult, transmit a concentric magnetic field around them. When these fields meet a conductive body, there is secondary fields in the ground created from these bodies. The EM 16 has a receiver covering the frequency band of the new VLF stations and with means of measuring the vertical field component.

The receiver has two inputs, with two receiving colls built into the instrument. One coill has normally vertical axis while the other is horizontal.

The sienal from one of these coils(vertical axis) is first minimized by tiltins the instrument. The tilt angle is calibrated into percentages. The remaining signal in this coil is finally balanced out by a measured percentage of a signal from the other coil, after being shifted by 90 degrees. This coil is normally parallel to the primary field.

Thus if the secondary signals are small, compared to the primary field, horizontal primary field), the mechanical tilt-angle is an accurate measure of the vertical real component, and the compensation $\pi / 2$ signal from the horizontal coil is a measure of the guadature vertical signal.

In phase and quadrature readings were taken at 100 ft . intervals over the picket lines and plotting wes done using a horiz-
ontal scale of 1 inch per 100 feet and 1 inch per $40 \%$ on the verticoll scale.

LENGT OA CRERED OKTD LIHES

| Base Line | 2640 |
| :---: | ---: |
| $0-0$ Line West | 1835 |
| East | 660 |
| $2 S-W$ | 1880 |
| E | 660 |
| $4 S-W$ | 1920 |
| E | 660 |
| $6 S-\mathrm{N}$ | 1885 |
| E | 660 |
| $8 S-\mathrm{N}$ | 1885 |
| E | 660 |
| $10 S-W$ | 1850 |
| E | 660 |


| $12 S-W$ | 3.415 |
| ---: | ---: |
| E | 660 |
| $14 S-W$ | 720 |
| E | 660 |

$16 S-W$
E $\quad 700$
$185-W \quad 650$

| $20 S-W$ | 600 |
| ---: | ---: |
| E | 660 |


| $223-N$ | 550 |
| ---: | ---: |
| E | 660 |


| $243-W$ | 505 |
| ---: | ---: |
|  | 660 |
| $265-W$ | 450 |
| $E$ | 650 |

28,725 feet ( 5.44 miles)

DECLARATION

I, Theodore D. Brown, hereby certify that I supervised this work and that report and maps are true in every respect.




