

31M05SE2029 2.20929 LORRAIN

010

2.20 9 29

REPORT ON GEOLOGICAL MAPPING AND ROCK SAMPLING ON THE NEW LAKE PROPERTY COBALT AREA, ONTARIO for Cabo Mining Corp.

Feb 20, 2001

Seymour M. Sears

RECEIVED FEB 2 6 2001 GEOSCIENCE ASSESSMENT OFFICE

SUMMARY

The geological mapping and rock sampling program carried out over the New Lake grid area, a part of Cabo Mining Corp's Cobalt Area properties has outlined an area of zinc-copper-silver mineralization confined within a 400 metre wide belt that extends across the New Lake grid. This belt contains favourable felsic and silicified lithologies and shear structures that has a good potential for hosting economic mineralization. Numerous zinc occurrences were located and sampled. Grab samples from boulders assayed up to 1.56 % Zn, 0.66 % Pb.

A work program involving soil sampling, stripping and dimond drilling is recommended to follow up this trend.

Wawa, Ontario February 20, 2001 Respectfully submitted,

Seymour M. Sears, B.A., B.Sc. Geologist

LORRAIN

31M055E2029 2.20929

010C

TABLE OF CONTENTS

PAGE

SUMMARY	i
INTRODUCTION	1
OVERVIEW	1
PROPERTY LOCATION AND ACCESS	2
TOPOGRAPHY AND VEGETATION	5
EXPLORATION HISTORY	8
REGIONAL AND PROPERTY GEOLOGY	9
2000 WORK PROGRAM & RESULTS	10
CONCLUSIONS AND RECOMMENDATION	13
REFERENCES	15

TABLE OF FIGURES

Fig. 1. REGIONAL LOCATION MAP	3
Fig. 2. CLAIM LOCATION MAP	4
Fig. 3. REGIONAL GEOLOGY	10

LIST OF MAPS

Man	1 NEW LAKE (GRID	Back Pocket
Iviap	I NEW LAKE	JND	 Datk I Utkel

APPENDIX

SAMPLE DESCRIPTION	Appendix I
ASSAY RESULTS.	Appendix II

INTRODUCTION

This work report on mining claims in the Cobalt area of northeastern Ontario, Canada (Figures 1, 2), has been prepared on behalf of Cabo Mining Corp. (Cabo) of Vancouver, British Columbia. The contents of the report is based on work carried out between August 1st and October 10th, 2000 by S. Sears and J. Partington of Sears, Barry and Associates Ltd.

OVERVIEW

The Cobalt project was acquired by Cabo early in 1999 under an agreement with Branchwater Resources Ltd. of Calgary, Alberta. Currently the project lands total approximately 9087 hectares under option agreements with three separate holders. These include Outcrop Explorations Limited (Outcrop) - a Cobalt based private company, Consolidated Professor Mines Ltd. (Professor) - a public company controlled by local individuals and a local prospecting partnership consisting of Murray Simpson and Simon Wareing (Simpson & Wareing).

The project encompasses a relatively large land position in a mining camp that dates to the early 1900's. Traditionally, the camp is known as the "Silver Capital of Canada". The area is dotted with many small past-producing mines from which the following metals have been produced - 450 million oz of silver, 24.8 million lbs of cobalt, 3.2 million lbs of copper, 3.1 million lbs of nickel and 1.2 million lbs of lead.

Most of this production was from small vein hosted deposits intimately associated with a rock structure known as the Nipissing Diabase sill. This sill intrudes all of the three main rock types in the area - Archean aged metavolcanics (Keewatin volcanics), granitic rocks (Lorrain granite) and Huronian aged metasediments. The Keewatin rocks form a major greenstone belt in the Cobalt area. The primary target of Cabo's Cobalt Area Project is to investigate this greenstone belt for potential base metal and gold deposits. The Timmins, Kirkland Lake and Noranda base metal - gold camps all lie within similar geological settings a short distance from Cobalt.

The New Lake area is underlain by Archean mafic to felsic metavolcanic rocks. It was targeted because of regionally mapped structural features and reported base metal mineralization (Thompson, 1962).

PROPERTY LOCATION AND ACCESS

The Cabo properties consist of 580 claim units covering parts of five townships - Gillies Limit North, Lorrain, South Lorrain, Coleman and Bucke. For discussion purposes, these can be grouped together in three separate areas - North Cobalt Group (Bucke Twp. and the north part of Lorrain Twp.), Gillies Limit Group (Gillies Limit North and Coleman Twp's) and South Group (south part of Lorrain and north part of South Lorrain Townships). All are located within the Larder Lake Mining Division, Ontario. They are shown on Figure 2 where they are numbered as follows (claims included or proximal to this work program indicated with a number symbol - #):

TABLE 1

CABO MINING CORP. LIST OF CLAIMS - COBALT PROJECT, ONTARIO

Claim No. NORTH COBA	Township LT GROUP	Units	Hectares	Anniversary
Simpson/Wareing				
1118210 1118211	Bucke Bucke	6 4	96 64	July 04 July 04
1193780 1193781	Bucke Bucke	1 1	16 16	July 29 July 29
1225261	Lorrain	9	144	October 23
Consolidated Profe	ssor			
12249SST* 23647SST*	Bucke Bucke	1 1	16 16	
23718SST* 10413SST*	Bucke Bucke	1	4 16	
T229* T372*	Bucke Bucke	1 1	16 12	
T429* T32348*	Bucke Lorrain	1 1	16 16	
T4254ST*	Lorrain	1	16	

Fig. I: Regional Location Map of Ontario.

ì

Figure 2: Claim Location Sketch Showing New Lake Grid - Cabo Mining Corp Gillies Limit North Township, Ontario.

(Table 1 - Cabo List of Cobalt Claims, Cont...)

Claim No. GILLIES LIMIT	Township GROUP	Units	Hectares	Anniversary
Cabo Joint Interest				
1174340	Gillies Limit	1	16	*
1174762	Gillies Limit	1	16	*
1229442	Gillies Limit	1	16	*
Simpson/Wareing				
1193782	Coleman	1	16	July 29
1217689	Gillies Limit	2	32	December 12
1217688	Gillies Limit	2	32	December 21
1217754	Gillies Limit	3	48	December 21
1217735	Gillies Limit	15	240	December 26
1217800	Gillies Limit	15	240	January 25
1210891	Gillies Limit	6	96	March 24
1229441	Gillies Limit	8	128	January 10
1193779	Gillies Limit	14	224	January 25
1193777	Gillies Limit	7	112	January 25
1193778	Gillies Limit	16	256	March 24
1238966	Gillies Limit	1	16	September 22
Outcrop Exploration				
1212225	Gillies Limit	2	32	September 30
1212226	Gillies Limit	4	64	October 07
1212231	Gillies Limit	1	16	November 21
1212233	Gillies Limit	7	112	November 04
1210889	Gillies Limit	7	112	January 03
1210890	Gillies Limit	1	16	January 03
1210893	Gillies Limit	1	16	August 06
1217456	Gillies Limit	1	8	September 30
1229623	Gillies Limit	12	190	March19
1229626	Gillies Limit	4	63.2	March 24
1229652	Gillies Limit	5	79.2	March 02
1229653	Gillies Limit	1	15.8	March 04
1229654	Gillies Limit	1	15.8	March 04
1229655	Gillies Limit	1	15.8	March 04
1229657	Gillies Limit	1	15.8	March 09
1229658	Gillies Limit	1	15.8	March 04
1229659	Gillies Limit	16	252.8	March 19
1229660	Gillies Limit	14	221.2	March 24
1229661	Gillies Limit	9	142.4	March 04
1229662	Gillies Limit	14	221.2	March 24
1231080	Gillies Limit	4	63.2	February 18
1231081	Gillies Limit	1	15.8	Feburary 25
1231082	Gillies Limit	2	31.6	February 25
1231083	Gillies Limit	8	126.4	February 25

(Table 1 - Cabo L	ist of Cobalt (Claims, Cont)				
Claim No.	Town	ship	Units	Hectares	5	Anniversary
1001004	Cilling	T :	12	205 (F 1 - 27
1231084 1231085		s Limit s Limit	13	205.6		February 25
1229619		s Limit	1 16	15.8		November 12 March 15
1229620		s Limit	16	252.8 252.8		March 19
1229621		s Limit	14	221.2		March 15
1229622		s Limit	14	217.6		March 19
1210883 #	Gillies	s Limit	2	31.6		June 04
1231092	Gillies	s Limit	1	15.8		June 10
1231094 #	Gillies	s Limit	2	31.6		June 23
1240227	Gillies	s Limit	3	40		October 15
1240228	Gillies	s Limit	5	80		October 15
1240229	Gillies	s Limit	2	24		October 15
1240230	Gillies	s Limit	12	192		October 15
1240231	Gillies	s Limit	1	12		October 15
Consolidated P	rofessor					
194734 (L02634)	•	s Limit	0	0		
1219335		s Limit	14	224		December 06
1219335		s Limit	15	240		December 06
1219337 #		s Limit	5	240 80		December 06
1219338 #		Limit	8	128		December 06
1219339 #		Limit	1	8		December 06
A96*		Limit	1	7.8		December 00
A99(T19086)*		Limit	1	7.8		
A98(T25837)*	Gillies		1	7.8		
A97(T25838)*	Gillies		1	7.8		
A100*	Gillies		1	6.8		
C976*	Gillies		1	7.5		
C949-1/2* #	Gillies	Limit	1	7.5		
C1000*	Gillies	Limit	1	9.5		
C1376*	Gillies	Limit	1	9.3		
C1383*	Gillies	Limit	1	8.3		
C1384* #	Gillies	Limit	1	7.6		
T19473* #	Gillies	Limit	1	7.8		
T19492 * #	Gillies	Limit	1	8.8		
Claim No. L	ease No.	Parcel No.	Township	Units	Hectares	
T27896** 13	8856	3799LT	Gillies Limit	1		
T27897** 1	8857	3800LT	Gillies Limit	1		
T28097** # 13	8858	3801LT	Gillies Limit	1		
T43065** 18	8859	4527LT	Gillies Limit	1		
T43066** 18	8860	4528LT	Gillies Limit	1		
	8861	4529LT	Gillies Limit	1		
	[/ A					
	i/A					
T25146** 82	798					

* PATENTED CLAIM ** LEASED CLAIM

Claim No. Township Units Anniversarv Hectares SOUTH GROUP Simpson/Wareing 1230444 Lorrain 256 July 21 16 1230445 Lorrain 16 256 July 21 July 21 1230448 Lorrain 16 256 November 06 1227322 Lorrain 4 64 November 06 12 192 1227323 Lorrain November 06 1227324 Lorrain 16 256 South Lorrain 1 16 November 06 1227317 November 06 South Lorrain 5 80 1227318 11 176 November 06 1227319 South Lorrain 13 208 November 06 1227320 South Lorrain 10 160 November 06 1227321 South Lorrain **Outcrop Explorations Limited** 1230446 Lorrain 16 256 July 21 256 July 21 Lorrain 1230447 16 1230449 Lorrain 16 256 July 21 July 21 1230454 Lorrain 16 256

The properties are generally located south and southeast of the towns of Cobalt and Haileybury on the west side of Lake Temiskaming (Figures 1 & 2). The Montreal River passes through the western part of the Gillies Limit and South groups. Because of the area being part of an old mining camp, gravelled roads and old trails are relatively common. Some of these have been maintained to provide access to forests and hydroelectric resources. Many are in bad condition and can be used with ATV's or on foot. The Hound Chutes road, Santa Maria road and Lorrain Valley road provide the main arteries into the Gillies Limit and South properties. The North Cobalt properties are virtually within the town limits of Haileybury.

Access to the New Lake grid is obtained by travelling southeast from Cobalt along what is locally referred to as the Mayfair Mine Road. This road passes south through Coleman Township to the abandoned Mayfair Mine. From this point an old logging trail extends to the southeast corner of new Lake. An ATV trail also extends from the abandoned West Columbus minesite (along the Mayfair Mine road) to Ibsen Pond, on the northeast end of New Lake. During the 2000 work program, a canoe was placed o New Lake and utilized for better access to the west and southwest portions of the grid.

TOPOGRAPHY AND VEGETATION

Topography on the New Lake Grid is generally rolling with local steep ledges and rare cliffs. Relief on the grid is quite modest ranging up to 10 metres locally. Most of the grid is well

(Table 1 - Cabo List of Cobalt Claims, Cont...)

drained with the exception of local cedar swamps. New Lake creek is the main drainage system exiting into Montreal River which becomes part of the Ottawa River and drains ultimately into the Atlantic Ocean.

Overburden is variable, being relatively shallow over much of the property. Glaciation trends relatively north-south through the grid area.. Vegetation consists mainly of poplar, birch, maple and dense underbrush in the higher ground, jackpine spruce and fir in lower ground. Cedar swamps occur locally.

EXPLORATION HISTORY

The Cobalt mining camp dates back to 1903 when silver was first discovered in the area. Literally thousands of prospectors and hundreds of small companies have carried out work in the area. The area undoubtedly ranks # 1 in Canada for the amount of trenches, pits and shafts that dot the landscape. Many of the old shafts are unmarked and have become quite hazardous. From an exploration viewpoint, most of the available assessment work data is very old and lacking in detail. Drill logs, when available do not include original assay data and the locations are often vague. In the field, trenches and pits are typically overgrown. Fortunately, several government publications, the maps and records of Robert Thompson for example, have documented a large amount of information in the areas held by Cabo.

The main target in the past has been vein hosted silver - cobalt mineralization. Thus work has been focused in close proximity to Nipissing Diabase dykes and sills. Work carried out on the New Lake property includes hundreds of pits and trenches, many of which are undocumented. Two companies completed significant work for which results are available in the MNDM Assessment files. These include:

- 1950 Mayfair Mines Limited: Completed at least 1277 feet of drilling in three holes centred near the southeast corner of New Lake; commodities sought - Ag/Co; Zn mineralization reported.
- 1950 to 1952 Silver Lake Mines Ltd.: Completed at least 12 drill holes for 9,246.5 feet centred on the core of the New Lake structure on the west side of the Lake as well as on several vein systems on the East side; the main target was Ag/Co although zinc mineralization was noted including one hole that encountered 23 feet of "...much sphalerite".

Since acquiring the properties, Cabo has carried out a systematic exploration program that has included an airborne geophysical survey (1998) and a ground UTEM survey over the New Lake grid (1999).

REGIONAL AND PROPERTY GEOLOGY

The Cobalt property is located within a geological area known as the Cobalt embayment. The rocks that underlie the project area include basement forming Keewatin mafic to felsic metavolcanics and Algoman granitic rocks overlain by relatively flat lying Huronian metasediments. A Nipissing aged diabase unit, in the form of sills and dykes, intrudes all of

Figure 3) Map Showing Regional Geological Setting of the New Lake Grid area, Cabo Mining Corp. Cobalt Area, Ontario

these rock types. Younger diabase dykes locally cross cut all of these rocks. Lamprophyre dykes of various ages intrude the Keewatin and Algoman rocks. Very young kimberlite dykes and pipes have also been discovered immediately north of the project area.

The rocks in the project area are strongly influenced by at least four major northwest trending regional scale fault structures. These include the Timiskaming Fault, the Crosswise Lake Fault, the Montreal River Fault and the Latchford Fault. Numerous cross-faults connect these major structures. The rocks that are observed at surface in the project area result from tectonic activity along these structures, differential erosion patterns and related variations in elevation. The Keewatin volcanic rocks that are the target of the Cabo exploration program underlie a large part of the project area but exposure is limited to outliers within the younger rocks. As a result, the exploration program has been focused on several of these Keewatin outliers including the New Lake Diabase Basin. The New lake grid covers basin like area of Archean rocks. The basin is formed by a Nipissing diabase sill.

Th New Lake grid area was included in the Ontario Ministry of Mines mapping program carried out by Robert Thompson (ODM Map 2052 - 1962) along with numerous preliminary reports and field notes. A recently flown airborne geophysical survey (OGS Map 82067) has also provided very useful geophysical coverage of the grid area.

Numerous mineral occurrences occur on the New Lake grid. Most of these are typical calcite vein hosted silver/cobalt prospects (Cobalt type).

2000 WORK PROGRAM AND RESULTS

TABLE 1 - Work Summary

2000 Work Program

- Grid and shoreline mapping, rock sampling (73 samples) (33 man days).

- Drafting, Interpretation & Report - (4 man days)

Geological Mapping

The following rocks were observed on the New Lake Grid:

Table of Lithologies

- 10) Olivine Diabase *(Keweenawan)*: Relatively young diabase locally cutting all volvanic rocks; Narrow where observed; dark grey-green, fine to medium grained, relatively undeformed.
- 9) Quartz Diabase (*Nipissing*): dark green to black, fine to very coarse grained, recognized most easily by their varied texture; locally weakly magnetic: fine grained chilled margins often with epidote; minor pyrite locally; occasional calcite +/- quartz stringers.
- 6) Coleman Formation (*Huronian*): Conglomerate with very minor greywacke where observed on grid; clasts vary from a tiny to in excess of 2 metres; clasts are angular to rounded; occurs as a linear outlier passing along the south side of New Lake; relatively flat lying; relatively thin on grid (less than 25 metres).

- 5) Lamprophyre Dyke (*Algoman or Older*): Dark grey-green to brownish; weathers brown and very tough to bread; often highly amphibolitized; rarely carbonated; often appearing gabbroic in hand specimen.
- 4) Granitic Rocks (*Algoman*): Buff to pinkish orange, very fine grained to quartz and feldspar porphyritic; occurs as dykes and irregular masses within the core of the New Lake anticlinal structure; often pyritic; three subdivisions recognized.
 - 4a) Feldspar Porphyry: as above, feldspar phenocrysts up to 1 cm, often altered cloudy.
 - 4b) Quartz and Feldspar Porphyry: similar to 4a but containing variable amounts of quartz eyes up to 1 cm across;
 - 4c) Felsite: similar to above but very fine grained with no evidence of feldspar or quartz phenocrysts at the hand specimen level.
- 3) Metasedimentary Rocks *(Archean)*: Fine grained, grey to black siliceous rocks, often containing sulphides; occur as narrow bands between volcanic flows; occasionally brecciated; broken down into two divisions based upon silica content.
 - 3a) Argillaceous Rocks: dark grey to, fine grained, rarely recognized.
 - 3a) Chert: light grey to black, sulphide bearing including sphalerite, chalcopyrite; often associated with the old workings.
- 2) Felsic Metavolcanic Rocks *(Archean)*: Exposures of felsic volcanic rocks are scarce within the New Lake grid area; confined to the axis of the New Lake anticlinal structure; observed as small, discontinuous lenses, often pyritic; can easily be confused with cherty sediments and with the felsite (unit 4c); when brecciated, are host to sulphides; three subdivisions.
 - 2a) Rhyolite: light grey, foliated; occasionally brecciated; sulphide bearing.
 - 2b) Tuff: fine to lapilli size tuffs; light to medium grey; pyritic; occur as small lenses.
 - 3c) Mica Schist: sheared version of above; observed only along edges of massive units; often quartz porphyritic.
- 1) Mafic Metavolcanic Rocks *(Archean)*: medium to dark grey-green, fine grained; massive to pillowed; variably altered from chlorite-carbonate to amphibolite-epidote (when approaching contact with diabase sill); represent 90 % of the bedrock exposed within the grid area; four units proposed.
 - 1a) Massive Flows: dark green to black; massive texture; exposure represent minor amount of section relative to the pillowed flows.
 - 1b) Pillowed Flows: medium to dark green; variably deformed from highly stretched in the center of the property to fresh looking in the north; often contain calcite stringers and carbonate alteration +/- sulphides; frequently very siliceous.
 - 1c) Pillow Breccia: similar to and associated with 1b; often carbonated.
 - 1g) Gabbro (probable intrusive): dark green to black; included with volcanic rocks because it is impossible to differentiate between sills and massive flows; often weakly magnetic.

The New Lake grid is underlain by an extensive sequence of mafic volcanic rocks, associated interflow sediments and minor felsic intrusive and extrusive rocks. These rocks appear to form an anticlinal structure centred on the south side of New Lake. The axis of the anticlinal structure strikes approximately 120 degrees in the west but appears to arc or splay to a 100 degree trend in the east. It extends from 00 on Line 0 in the west in a shallow arc to 400 South on Line 2100 East. The core of this structure contains variable amounts of felsic rock as extrusive and intrusive forms as well as interflow sediments. These felsic units occur as lenses and layers within deformed mafic volcanics. Silicified zones with sulphides occur

within this core and along a 300 to 400 metre wide zone on the north flank of the anticline. These zones appear to occur between mafic flows.

To the north of this 400 metre wide corridor, the grid is mainly underlain by interlayered massive and pillowed mafic flows. Interflow sedimentary rocks and felsic volcanics were not observed in this area. The south limb of the anticline contains scattered narrow felsic units as well as interflow sediments between massive and pillowed flows. A large mafic dyke identified as an amphibolitized lamprophyre extends from 700 S on Line 600 E to 1250 E on 1200 S. The south side of New Lake is occupied by a shallow, narrow band of conglomerate of the Huronian aged Coleman Formation. This arcs into the property around 100 south on line 500 E and pinches out around 500 S on Line 1800 E.

Mineralization observed on the grid includes numerous occurrences of sphalerite, chalcopyrite and pyrite associated with silicified zones between pillowed sequences. The majority of these are within a 400 metre band on the north side of the New Lake anticlinal structure. The New Lake anticlinal structure has been known since the early days of the Cobalt mining camp. Early workers considered it a fault zone along which Cobalt type Ag/Co veins might have developed proximal to the underlying diabase sill. In 1950-51, Silver Lake Mining completed 12 drill holes primarily in search of Cobalt type veins. One of these encountered a 23.5 foot intersection described as containing "...much sphalerite". This mineralization occurs in siliceous rocks that are located within the contact zone between rhyolite (as reported in drill holes) and a pillowed mafic volcanic sequence. This geological setting is very favourable for base metal deposition. Because the mineralization is mainly sphalerite and the host is a siliceous rock (thus sulphide grains and patches are likely to be isolated), one may not assume that there will be an obvious geophysical response using standard electromagnetic methods. The target area should be covered by a 50 metre spaced grid followed with prospecting, soil geochemistry, stripping if possible and diamond drilling. About half of the favourable zone is under New Lake and therefore can only be tested by winter drilling.

The best occurrence located was a boulder of a brecciated chert/rhyolite (the Boulder Prospect) (400 S, L 1700 E) that contained 5 % sulphides as matrix material. Two samples assayed as follows:

NL-40 - 0.29% Cu; 0.69 % Zn; 0.37 % Pb NL-70 - 1.56 % Zn, 0>66 % Pb

Several other similar boulders were located in the immediate area. This mineralization may be similar to that intersected by Silver Lake Mines Ltd.

Several minor sulphide occurrences were located to the south of the anticlinal structure as well. Seventy three samples were assayed. These are described in Appendix I. Assay results are found in Appendix II.

CONCLUSIONS AND RECOMMENDATIONS

The work program carried out over a portion of Cabo's Cobalt Area properties has outlined a 400 metre wide by 2100 metre long target area containing favourable siliceous rocks that warrant more advanced exploration. It is referred to as the New Lake zinc/copper/silver prospect. The next phase of work should be designed to explore this target area in detail. Such a program should involve and cost the following:

- A) Prospecting, mapping, ground geophysics and soil geochemistry on the Boulder Prospect (\$10,000).
- C) Stripping (several days on the Boulder Prospect) to expose known surface showings and attempt to locate the boulder mineralization in place (\$5,000).
- D) Drilling Minimum of six holes totalling 1000 metres on the New Lake structure; (\$80,000).
- G) Management and supervision of the above programs including a base of operations and core logging facility in the Cobalt area and a 10% contingency on all costs (\$15,000)

This program would cost a total of \$110,000. Additional funding for further drilling programs would be required if the results from any of the above work is encouraging.

Wawa, Ontario Feb 20, 2001

*

Respectfully submitted,

Seymour M. Sears, B.A., B.Sc. Geologist

APPENDIX I

(Sample Descriptions)

- -

NEW LAKE SAMPLING - 2000

- NL-1 Float 2000E, 500S
- NL-2 825E, 875S Diabase, siliceous
- NL-3 L-900E, 1000S
- NL-4 L-900E, 1025S
- NL-5 L-1000E, 1175S Deformed, Py, Sph
- NL-6 Pit#3 L-0/L1 area (150N)
- NL-7 475E, 125S
- NL-8 Pit#2 025E,150N?
- NL-9 L-1150E, 525S Qtz, Sulphides
- NL-10 L-1175E, 525S Py/Cpy
- NL-11 L-1185E, 600S Sulphides
- NL-12 L-1185E, 600S Sulphides
- NL-13 L-1185E, 600S Sulphides
- NL-14 L-1200E, 775S Sulphides
- NL-15 L-1200E, 775S Sulphides
- NL-16 L-1175E, 1025S Sulphides
- NL-17 L-1200E, 1025S Sulphides
- NL-18 L-1200E, 1175S Sulphides
- NL-19 L-1200E, 1200S Sulphides
- NL-20 L-1125E, 1175S Sulphides
- NL-21 L-1100E, 925S Sulphides
- NL-22 L-1100E, 925S Sulphides?
- NL-23 L-1450E, 390S?
- NL-24 050E150N? Sulphides Thin section?
- NL-25 L-800E, 875S Sulphides
- NL-26 L-700E, 500S Sulphides
- NL-27 L-6E, 9+00N Felsic dike in pit (2-4 cm wide, 270 280 deg, near vertical)
- NL-28 L-6E, 9+00N Hanging wall in pit
- NL-29 L-775E, 800N Pit calcite stringers
- NL-30 1325E, 725S Py
- NL-31 650S, 1320S Muck pile
- NL-32 L-1500E, 800S Thin section?
- NL-33 1545E, 1175S Sulphides
- NL-34 1700E, 425S Po, Cpy, anthrophylite
- NL-35 225E 90N (Float?)
- NL-36 L0, 130N. Sulphides & stringer sulphides in silicified mafic.
- NL-37 L1E, 100N. Sulphides in silicified rock.
- NL-38 L1E, 100N Sulphides in siliceous mafic.
- Whole rock sample siliceous pillowed mafic? or chert? or felsic tuff?
- NL-39 1E, 150N Pit

NEW LAKE SAMPLING - 2000 (continued)

- NL-40 Float 1700E, 400S Sulphides Cpy Pb Py Sph
- NL-41 L-1050E, 225N Sulphides
- NL-42 L-700E, 175S. Silicified pillows with sulphides
- NL-43 L-700E, 175S. Felsic intrusive (QP) with Py
- NL-44 L-650E, 200S. Rhyolitic rock (felcite?) with Py, QP
- NL-45 L-650E, 200S. Rhyolitic rock (felcite?) with abundant sulphides
- NL-46 L-650E, 200S. Chips from felsic tuff? or silicified mafic with intermixed felsic intrusive.
- Closest rock observed to the point of a tuff.
- NL-47 L-675E, 037N Sulphides
- NL-48 L-175E, 100N Calcite vein
- NL-49 L-525E, 1150S Sulphides
- NL-50 L-475E, 1450S Sulphides
- NL-51 L-550E, 1750S Sulphides
- NL-52 L-600E, 1800S
- NL-53 L-0,450N, Sulphides (Pb?)
- NL-54 L-0, 325N Alt, ccc
- NL-55 L-0, 175N Py, Pb, Sph, altered, ep, ccc
- NL-56 L-0, 125N Sulphides
- NL-57 L-1, 075N, 2-3% sulphides
- NL-58 L-1, 100N Sulphides
- NL-59 L-2E, 525N Sulphides
- NL-60 L-2E, 850N Sulphides
- NL-61 L-3E, 825N Sulphides
- NL-62 675E, 640N Qtz vein on lakeshore
- NL-63 Float? 1700E, 350S Sulphides
- NL-64 L-1800E, 725S Deformed pillows, scattered sulphides.
- NL-65 L-1800E, 400S Po
- NL-66 L1E 100N (Thin section)
- NL-67 L0 130N Thin section
- NL-68 600E, 1800S Sulphides
- NL-69 L-Mapped as 'TUFF' 675E, 200S Thin section
- NL-70 Float boulder 1700E, 400S Heavy sulphide-rich breccia (Ryolite?) For thin section
- NL-71 Chips from boulder chert breccia, minor sulphides (1750E, 300S)
- NL-72 Boulder of chert with sulphide patches (TL 400S, 1650E)

APPENDIX II

(ASSAY RESULTS)

Barra a

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

to: CABO MINING INC.

502 - 595 HOWE ST. VANCOUVER, B.C. V6C 2T5

Comments: ATTN: SEYMOUR SEARS CC: JOHN VERSFELT

С	ERTIF	ICATE	A0031447			ANALYTICAL	PROCEDURES		
(MUD)- (Project: P.O. # :	CABO MIN COB	ING INC.		 CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
Samples	submitt port was	ed to cur lab i printed on 18-	n Mississauga, ON. OCT-2000.	384 301 312 316	1 1 1 6	Ag g/t: Gravimetric Cu %: Conc. Nitric-HCl dig'n Pb %: Conc. Nitric-HCl dig'n En %: Conc. Nitric-HCl dig'n	FA-GRAVINETRIC AAS AAS AAS	3 0.01 0.01 0.01	3500 100.0 100.0 100.0
******	SAM	PLE PREPA	RATION						
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION						
212	8	Overlimit pul	p, to be found						

A0031447

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CABO MINING INC.

502 - 595 HOWE ST. VANCOUVER, B.C. V6C 2T5 Page ! er :1 Total F. .s. :1 Certificate Date: 18-OCT-2000 Invoice No. :10031447 P.O. Number : Account :MUD

Project : COB Comments: ATTN: SEYMOUR SEARS

CC: JOHN VERSFELT

ų.

CERTIFICATE OF ANALYSIS A0031447

~*

SAMPLE	PREI	P Ag FA E g/t	Cu %	Pb	Zn %						
NL-14 NL-15 NL-18 NL-37 NL-40	212 212 212 212 212 212	31	0.77		 0.71 0.69 0.70		•				
NL-53 RI-59 NL-70	212 212 212	-		0.66	0.92 0.81 1.56						
						•					
								ERTIFICATION	$\sim Q$	e loz	l. Na

OVERLIMITS from A0030690

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 CABO MINING INC.

502 - 595 HOWE ST. VANCOUVER, B.C. V6C 2T5 Page Nu · :1-A Total Pa :2 Certificate µate: 13-OCT-2000 Invoice No. :10030690 P.O. Number : Account :MUD

Project : COB Comments: ATTN: SEYMOUR SEARS

CC: JOHN VERSFELT

_*

							<u> </u>	L	CE	RTIFI	CATE	OF A		/SIS	A	0030	690				
SAMPLE	PREP CODE	Au p FA+		Ag pp n	<u>) </u> %	As ppn	B	Ba ppm	Be ppz	Bi ppm	Ca %	Cd ppm	Co pp a	Cr ppa	Cu ppm	Fe %	Ga pp n	Hg ppm	K %	La ppm	Mg %
NL-1	205 22		5	0.2	1.56	< 2	< 10	10	< 0.5	< 2	0.86	< 0.5	25	78	141	3.21	< 10	< 1	0.06	< 10	0.88
ML-2	205 22		5	0.2	2.17	< 2	< 10	< 10	< 0.5	2	0.80	0.5	26	21	121	3.73	< 10	< 1	0.02	< 10	1.56
NL-3 NL-4	205 22		5	0.2	1.44	< 2	< 10	10	< 0.5	< 2	0.88	< 0.5	16	14 74	113 1345	2.65	< 10 < 10	< 1	0.08	< 10	0.99
NL-5	205 22 205 22		30 5	2.6 0.6	1.86 3.10	4370 16	< 10 < 10	10 10	0.5 < 0.5	< 2	0.10 0. 49	1.0 6.0	124 46	114	59	4.11 6.36	< 10	< 1 < 1	0.03	< 10 < 10	1.39 2.33
NL-6	205 22		5	1.0	0.94	14	100	40	< 0.5	4	3.10	< 0.5	32	68	93	3.15	< 10	< 1	0.17	< 10	0.10
NL-7	205 22		5 <		1.62	< 2	< 10	10	< 0.5	2	10.55	0.5	10	59	23	3.89	< 10	< 1	0.03	< 10	0.98
NL-8	205 22		5	1.0	1.21	20	< 10	30	< 0.5	< 2	3.78	< 0.5	46	127	133	3.75	< 10	< 1	0.14	< 10	0.20
NL-9 NL-10	205 22 205 22		15 5 <	0.2	4.16 0.32	6 28	< 10 < 10	< 10 40	< 0.5 < 0.5	4 < 2	0.41 0.04	1.0 < 0.5	43 1	146 120	177 293	6.89 1.84	< 10 < 10	< 1 · < 1	0.01 0.15	< 10 < 10	3.35 0.02
NL-11	205 22		20	3.2	2.52	286	< 10	< 10	< 0.5	10	0.99	1.5	238	70	39	8.89	< 10	< 1	0.03	< 10	1.68
NL-12	205 22		80	7.0	1.46	38	< 10	14	< 0.5	16	1.25	0.5	69	92	231	7.21	< 10	< 1	0.01	< 10	1.16
NL-13	205 22		10	0.2	3.28	42	< 10	< 10	< û.5	2	0.77	2.0	60	65	195	8.87	< 10	< 1	0.02	< 10	2.60
NL-14 NL-15	205 22			16.8 29.8	2.86 2.42	< 2 76	< 10 < 10	< 10 10	< 0.5 < 0.5	8 56	3.39 0.33	1.0 < 0.5	15 28	49 91	7440 1025	5.57 5.46	< 10 < 10	< 1 < 1	0.01 0.05	10 < 10	2.54 2.07
NL-16	205 22	6 <	5	0.4	3.06	26	< 10	10	< 0.5	6	0.57	5.5	32	132	48	5.73	< 10	< 1	0.03	< 10	2.36
NL-17	205 22		10	3.2	2.03	16	510	50	< 0.5	< 2	1.49	9.5	20	108	252	3.25	< 10	< 1	0.05	< 10	1.45
NL-18	205 22		5	2.8	2.39	54	< 10	20	< 0.5	< 2	0.46	19.5	40	61	159	4.52	< 10	< 1	0.01	< 10	1.89
NL-19	205 22		5	0.8	2.38	34	40	10	< 0.5	< 2	0.48	0.5	- 41	85	88	4.16	< 10	< 1	0.03	< 10	1.96
NL-20	205 22	6 <	5 <	: 0.2	3.26	20	< 10	10	< 0.5	6	1.48	1.5	34	81	18	6.58	< 10	< 1	0.06	< 10	2.17
NL-21 NL-22	205 22		5 30	1.0	2.44 1.76	26	< 10 < 10	30 10	< 0.5 < 0.5	10 < 2	0.63	0.5	61 19	649 31	24 872	6.12 3.33	< 10 < 10	< 1 < 1	0.01 0.06	< 10 < 10	2.73 1.26
NL-23	205 22		10	2.2	4.58	234	< 10	< 10	2.5	8	0.30	2.0	90	701	474	8.00	< 10	< 1	0.04	< 10	4.80
NL-24	205 22		5	0.6	1.09	50	< 10	< 10	< 0.5	< 2	0.06	< 0.5	15	75	39	1.80	< 10	< 1	0.07	< 10	0.85
NL-25	205 22		5 <		3.22	12	< 10	10	< 0.5	< 2	0.36	0.5	24	101	89	5.81	< 10	< 1	0.02	< 10	2.94
NL-26	205 22		5	0.4	5.23	< 2	< 10	< 10	0.5	12	1.17	3.0	36	43	556	9.00	< 10	-	< 0.01	< 10	4.01
NL-27 NL-28	205 22		5	9.0	0.33	10	< 10	10	< 0.5	< 2	0.76	< 0.5	15	84	510 1360	0.66 3.06	< 10 < 10	< 1	0.18 0.06	< 10 < 10	0.16
NL-29	205 22		10 5 <	3.8	1.94	2 < 2	< 10 < 10	10 < 10	< 0.5 < 0.5	< 2 R	0.82	< 0.5 2.0	18 42	117 268	93	6.42	< 10	< 1 < 1		< 10	3.92
NL-30	205 22		10	5.4	3.34	48	< 10	10	< 0.5	2	0.37	2.5	142	116	119	9.55	< 10	< 1	0.03	< 10	2.95
NL-31	205 22		25	0.2	1.84	20	< 10	10	0.5	6	0.09	< 0.5	70	78	33	5.11	< 10	< 1	0.15	< 10	1.15
NL-32	205 22		5	0.6	1.03	8	< 10	10	< 0.5	6	2.19	0.5	23	102	60	1.98	< 10	< 1	0.03	< 10	1.05
NL-33 NL-34	205 22		5	0.2	1.13	< 2	< 10	10	< 0.5	< 2	1.10	< 0.5	14	39	128	3.16	< 10	< 1	0.13	< 10	0.50
NL-35	205 22 205 22		5 5 <	1.2	2.37 0.77	18 14	< 10 < 10	10 < 10	< 0.5 < 0.5	< 2 < 2	0.85 12.50	° 0.5 < 0.5	108 14	71 48	284 47	7.01 1.57	< 10 < 10	< 1 < 1	0.12 0.01	< 10 < 10	1.55 0.71
NTL-36	205 22	6	15	4.6	2.29	222	< 10	10	< 0.5	< 2	0.38	1.0	76	125	419	7.70	< 10	< 1	0.08	< 10	1.62
NL-37	205 22		20	4.8	4.04	324	< 10	< 10	0.5	6	0.78	19.5	69	324	254	7.42	< 10	< 1	0.04	< 10	3.36
NL-38	205 22			17.2	2.09	50	< 10	< 10	0.5	12	0.14	0.5	٦ 6	95	124	7.43	< 10	< 1	0.04	< 10	1.61
NL-39 NL-40	205 22		5 5	0.4	2.07	8	< 10	< 10	< 0.5	< 2	2.86	0.5	1 e 22	60 101	172 2900	4.50 3.02	< 10 < 10,-	< 1 ~ < 1	0.02	< 10 < 10	1.39 1.25
	205 22	۲ ۲	5	10.4	1.45	168	< 10	< 10	< 0.5	4	0.23	22.5		7.77	2700	3.01	1	2	0.03	~ < 10	1.43
																			\mathcal{L}		-1

Г

CERTIFICATION:

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CABO MINING INC.

502 - 595 HOWE ST. VANCOUVER, B.C. V6C 2T5

Project : COB Comments: ATTN: SEYMOUR SEARS

ł

1

.

Г

_*

MUD Account CC: JOHN VERSFELT

Page Nu :1-B Total Page :2 Certificate Date: 13-OCT-2000 Invoice No. :10030690

										CE	RTIFI	CATE	OF A	NALY	'SIS	4	003069	0	
SAMPLE	PREI CODE		Mn ppm	мо	Na %	Ni ppm	P ppm	Pb ppm	8 %	SD ppm	Sc ppm	Sr ppm	Tİ %	Tl ppm	U PPR	A bbw	W ppm	Zn ppn	
NL-1	205 2		435	< 1	0.05	219	370	2	0.16	< 2	3	10	0.31	< 10	< 10	73	< 10	32	
NL-2 NL-3		226	465 635	< 1	0.05	67	290	< 2	0.10	2	3	10	0.30	< 10	< 10	64	< 10	40	
NL-4	205 2	226	300	< 1 < 1	0.09 0.07	49 48	270 330	12 742	0.05 0.64	< 2 16	4	13 3	0.25 0.02	< 10 < 10	< 10 < 10	63 61	< 10 < 10	76 308	
NL-5	205	226	1760	< 1	0.07	91	360	438	0.28	< 2	5	1	0.13	< 10	< 10	108	< 10	2040	
正-6 正-7		226	595 1050	2	0.03	36	330	10	0.52	< 2	5	4	0.16	< 10	< 10	146	< 10	10	
11-7 11-8		226	565	<1	0.05 0.04	30 40	190 390	10 · 10	< 0.01 0.27	< 2 < 2	4 15	112 12	0.17 0.21	30 < 10	< 10 < 10	90 176	< 10 < 10	66 30	
ш-9		226	600	< 1		79	180	6	0.06	< 2	28	3	0.11	< 10	< 10	209	< 10	60	
NL-10		226	25	ī	0.02	6	40	2	2.17	< 2	1	-	0.01	< 10	< 10	1	< 10	14	
TL-11		226	1045	< 1	0.03	43	130	856	0.13	< 2	12	6	0.08	< 10	< 10	127	< 10	118	
IL-12 IL-13	205 2	226	765 1310	< 1 < 1	0.03	39 57	130	620	0.13	2	6	10	0.08	< 10	< 12	102	< 10	106	
11-14 11-14	205		1165	< 1	0.05	37	470 230	36 102	0.16 0.66	< 2	7 3	3 12	0.18 0.09	< 10 10	< 10 < 10	208 96	< 10 < 10	152 144	
L-15	205		705	< 1	0.03	40	570	172	0.41	2	3	4	0.12	< 10	< 10	109	< 10	122	
L-16		226	2030	1	0.06	53	330	924	0.10	6	4	23	0.18	< 10	< 10	90	< 10	1600	
L-17	205 2		1860	1	0.03	41	160	336	0.23	< 2	4	• 13	0.14	< 10	< 10	58	< 10	2830	
L-18 L-19	205 2		1430 1370	14	0.06 0.05	49 47	330 240	2120 152	0.39 0.23	8 < 2	4	2	0.16	< 10 < 10	< 10 < 10	102 93	< 10 < 10	6810 190	
ш-19 ц-20	205 2		3660	1	0.06	49	260	794	0.09	< 2	4 10	4	0.24	< 10	< 10	142	< 10	368	
L-21	205 2	226	935	< 1	0.05	163	1690	26	2.52	2	2	3	0.11	< 10	< 10	89	< 10	194	
IL-22	205 2		1100	< 1	0.07	40	250	434	0.24	2	4	12	0.12	< 10	< 10	60	< 10	1440	
ГL-23 ГL-24	205 2		555	10	0.03	194	190	222	0.53	< 2	24	< 1	0.09	< 10	< 10	223	< 10	144	
NL-25	205 2 205 2		140 705	< 1 < 1	0.12 0.04	23 41	40 220	40 8	0.04	2 4	4 5	3 < 1	0.01 0.20	< 10 < 10	< 10 < 10	20 131	< 10 < 10	44 106	
L-26	205 2	226	1145	1 .	0.01	37	280		0.06	< 2	17	- 8	0.04	< 10	< 10	197	< 10	120	
L-27	205 2		190	1	0.05	8	50	38	0.10	< 2	4	1	0.07	< 10	< 10	53	< 10	18	
L-28	205 2		720	< 1	0.09	43	140	76	0.17	2	3	19	0.14	< 10	< 10	52	< 10	80	
L-29 L-30	205 2		1310 1165	< 1 < 1	0.03 0.03	84 67	210 250	< 2 · 268	< 0.01 3.00	< 2 4	27 6	8 < 1	0.25 0.13	< 10 < 10	< 10 < 10	200 115	< 10 < 10	108 270	
L-31	205 2	26	170	< 1	0.04	68	110		2.44	2	6	1	0.02	< 10	< 10	57	< 10	16	
L-32	205 2		495	< 1	0.04	28	100	72	0.17	2	4	7	0.05	< 10	< 10	50	< 10	220	
L-33	205 2	26	350	< 1	0.14	17	520	< 2	0.05	< 2	5	11	0.25	< 10	< 10	125	< 10	86	
n24 n35	205 2 205 2	26	1165 1000	< 1 < 1	0.09 0.03	105 17	300 140	16 22 -	1.50 < 0.01	< 2	7 3	1 157	0.16 0.08	< 10 40	< 10 < 10	86 55	< 10 < 10	66 88	
L-36	205 2	126	1055	< 1	0.06	98	370	578	3.04		7	1	0.14	< 10	< 10	129	< 10	356	
L-37		26	915	ì	0.03	80	1150	298	0.99	2	15	10	0.02	< 10	< 10	153	< 10	5850	
L-38		126	690	30	0.06	72	400	188	4.44	2	12	3	0.04	< 10	< 10	110	< 10	145	
11-39 - 10		126	1185	1	0.06	51	280	2	0.18	2	5	8	0.15	< 10	< 10	102	< 10	62	
IL-40	205 2	26	175	< 1	0.08	49	660	3730	1.14	14	6	4	0.01	< 10	< 10	52	< 10	9 6900	
			<u>.</u>														+		
														(CERTIFIC	ATION:	in 2		2214

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 D: CABO MINING INC.

502 - 595 HOWE ST. VANCOUVER, B.C. V6C 2T5 Page i er :2-A Total F. 3 :2 Certificate Date: 13-OCT-2000 Invoice No. : 10030690 P.O. Number : Account : MUD

Project : COB Comments: ATTN: SEYMOUR SEARS

CC: JOHN VERSFELT

2

~*

										<u>l</u>	CE	RTIFI	CATE	OF A	NAL	YSIS	4	10030	690		
SAMPLE	PREP CODE	λu p Fλ+	-	λg ppm	A1 *	As ppn	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppn	Cr ppa	Cu ppm	Fe X	Ga ppm	Hg ppm	K %	La ppm	X
ГL-41	205 22	6 <	5	< 0.2	5.18	< 2	< 10	10	0.5	6	0.26	2.5	44	61	84	8.39	< 10	< 1	0.08	< 10	4.(
L-42	205 22		5	0.8	1.56	10	< 10	30	< 0.5	4	0.18	2.5	Ŝ	60	44	2.28	< 10	< 1	0.14	< 10	1.
ц-43	205 22	6 <	5	0.4	1.19	14	< 10	30	< 0.5	2	0.38	1.5	7	.80	22	1.73	< 10	< 1	0.11	< 10	ο.
TL-44	205 22		5	0.2	0.26	12	< 10	< 10	< 0.5	< 2	0.02	< 0.5	3	84	57	0.30	< 10	< 1	0.17	< 10	٥.
EL-4 5	205 22	6 <	5	< 0.2	0.22	18	< 10	30	< 0.5	< 2	0.27	< 0.5	10	85	41	0.48	< 10	< 1	0.15	< 10	0.
L-46	205 22	6 <	5	1.6	1.54	50	< 10	30	< 0.5	< 2	0.08	< 0.5	22	86	489	2.15	< 10	< 1	0.17	< 10	1.
L-47	205 22		5	< Û.2	3.77	2	< 10	< 10	< 0.5	< 2	2.65	1.5	30	139	66	6.26	< 10	< 1		< 10	2.
IL-48	205 22		5	0.2	2.41	30	< 10	< 10	< 0.5	< 2	5.76	5.5	29	101	65	4.68	< 10	< 1	0.04	< 10	4.
IL-49	205 22			< 0.2	2.33	< 2	< 10	< 10	< 0.5	< 2	1.07	< 0.5	23	106	158	4.42	< 10	< 1	0.01	< 10	2.
IL-50	205 22	6	15	1.0	1.94	50	< 10	< 10	< 0.5	2	0.67	1.5	91	40	127	5.89	< 10	< 1	0.03	< 10	1.
TL-51	205 22		5	< 0.2	2.77	16	< 10	< 10	2.0	2	0.95	1.0	81	170	882	5.85	< 10	< 1	0.10	< 10	2.
L 52	205 22		5	< 0.2	2.69	< 2	< 10	10	< 0.5	2	0.72	< 0.5	23	122	96	4.07	< 10	< 1	0.03	< 10	2.
11-53	205 22		5	2.2	1.88	110	< 10	20	0.5	4	0.14	27.5	26	75	98	3.28	< 10	< 1	0.10	< 10	1.
IL-54	205 22		5	1.8	2.40	10	< 10	10	< 0.5	2	1.16	0.5	32	81	294	4.87	< 10	< 1	0.02	< 10	1.
ri - 55	205 22	6	20	0.8	3.53	14	< 10	10	< 0.5	2	1.01	5.0	34	111	117	7.04	< 10	< 1	0.03	< 10	2.
П-56	205 22		5	0.2	2.45	30	< 10	10	< 0.5	< 2	0.62	2.0	36	119	63	4.92	< 10	< 1	0.03	< 10	1.
NL-57	205 22		5	0.8	3.16	14	10	10	< 0.5	4	0.92		26	117	197	6.62	< 10	< 1	0.03	< 10	2.
NL-58	205 22		5	1.8	1.75	6	80	20	< 0.5	< 2	1.12	1.0	13	52	242	3.00	< 10	< 1	0.03	< 10	0.
иц-59 Ид-60	205 22		10	2.8	1.38 1.65	48 10	80 < 10	30 < 10	< 0.5 < 0.5	6 < 2	0.93 1.43	21.5	57 26	78 75	341 102	2.99 2.98	< 10 < 10	< 1 < 1	0.07 0.01	< 10 < 10	0. 0.
									~ • • • •						104		<u> </u>				
NL-61	205 22		5	1.4	1.17	30	< 10	10	< 0.5	2	2.13	9.5	26	82	56	2.29	< 10	< 1	0.04	< 10	٥.
NL-62	205 22		25	1.6	1.60	16	< 10	10	< 0.5	< 2	0.44	< 0.5	39	139	236	3.79	< 10	< 1	0.09	< 10	0.
NL-63	205 22		10	8.0	1.64	164	< 10	10	< 0.5	2	0.11	< 0.5	16	92	549	3.18	< 10	< 1	0.10	< 10	1.
8L-64 7. 65	205 22		15	0.2	4.61	< 2	< 10	10	< 0.5	< 2	0.20	1.5	37 41	242	541	7.19	< 10	< 1	0.03	< 10	5.
ш-65 	205 22	°	10	< 0.2	1.05	< 2	< 10	10	< 0.5	< 2	0.98	< 0.5	41	70	150	2.73	< 10	< 1	0.07	< 10	0.
L-66	205 22		5	< 0.2	0.95	56	< 10	20	< 0.5	< 2	1.76	< 0.5	47	44	22	0.89	< 10	< 1	0.07	< 10	Ο.
L-67	205 22		5	0.2	3.25	56	< 10	40	< 0.5	6	0.25	2.5	28	143	7	5.69	< 10	< 1	0.23	< 10	2.
IL-68	205 22		5	< 0.2	2.96	< 2	< 10	30	< 0.5	< 2	1.52	0.5	19	45	116	2.54	< 10	< 1	0.29	< 10	1.
ц- 69 ц-70	205 22		5 5	0.2 11.0	1.65 1.10	2 194	< 10 < 10	10 < 10	< 0.5 < 0.5	2	1.11 0.24	0.5 45.5	19 36	42 89	188 118	2.64 2.70	< 10 < 10	< 1 < 1	0.04	< 10 < 10	0.
																					~
压-71 F-72	205 22		5	< 0.2	2.19	< 2	< 10	160	< 0.5	< 2	0.61	< 0.5	21	455	21	2.81	< 10	< 1	1.95	< 10	2.
ц-72 ц-73	205 22		5	1.4	1.88 1.56	70 < 2	< 10 < 10	< 10 10	0.5	< 2	0.14	2.5	48 3	130 59	109 25	3.67 3.29	< 10 < 10	< 1 < 1	0.03	< 10 < 10	1.
<u></u> -13	405 44	" ົ		~ 0.4	T*34	× 4	< 10	10	- 0.3	× 4	0.13	× 0.3		23	43	3.43	< 10	` 1	0.04	~ 10	۰.
		i																			

CERTIFICATION: 12

No.

AL S Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CABO MINING INC.

_*

502 - 595 HOWE ST. VANCOUVER, B.C. V6C 2T5

Г

Page NL :2-B Total Pag__ :2 Certificate Date: 13-OCT-2000 Invoice No. : P.O. Number : :10030690 MUD Account

Project : COB Comments: ATTN: SEYMOUR SEARS

CC: JOHN VERSFELT

					<u> </u>			-		CE	RTIF	CATE	OF A	NALY	'SIS	/	40030690
SAMPLE	PREP CODE	Min ppm	No ppn	Na %	ni ppm	P ppm	Pb ppm	8	Sb pp=	Sc ppm	Sr ppa	Tİ X	T1 ppm	U ppm	V ppm	W	Zn ppm
L-41 L-42 L-43 L-44 L-45	205 226 205 226 205 226 205 226 205 226 205 226	235 200 20	< 1 1 2 < 1 < 1	0.03 0.06 0.06 0.10 0.07	53 14 16 7 7	400 250 180 < 10 < 10	10 196 236 16 22	0.01 0.21 0.21 0.12 0.16	2 2 < 2 < 2 < 2 < 2	29 1 < 1 < 1	6	0.08 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	229 17 15 < 1 < 1	< 10 < 10 < 10 < 10 < 10 < 10	158 940 660 12 24
L-46 L-47 L-48 L-49 L-50	205 226 205 226 205 226 205 226 205 226 205 226	1345 2540 1560	1 < 1 < 1 < 1 < 1 < 1	0.04 0.01 0.04 0.08 0.09	18 43 66 86 52	200 120 230 1200 520	960 < 2 64 6 188	0.08 0.31 0.12 0.02 1.40	< 2 < 2 < 2 2 2 < 2	1 15 14 5 5	3 4 12 26 11 3	<pre> 0.01 0.12 0.25 0.25 0.27 </pre>	< 10 < 10 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 117 146 101 129	< 10 < 10 < 10 < 10 < 10 < 10	104 72 1700 170 298
L-51 L-52 L-53 L-54 L-55	205 226 205 226 205 226 205 226 205 226 205 226	705 370 1305	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.06 0.06 0.05 0.05	63 47 40 87 105	640 200 390 280 270	2 8 1575 10 1210	0.16 0.15 0.69 0.18 0.15	< 2 < 2 2 2 4	18 4 6 5 8	6 19 2 17 11	0.13 0.25 0.04 0.18 0.30	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	128 82 59 76 170	< 10 < 10 < 10 < 10 < 10 < 10	40 84 9080 154 1290
L-56 L-57 L-58 L-59 L-60	205 226 205 226 205 226 205 226 205 226 205 226	2110 910 1355	< 1 < 1 3 3 < 1	0.06 0.05 0.04 0.05 0.06	68 75 40 71 86	250 280 180 230 310	76 92 290 2160 554	0.08 0.15 0.11 0.84 0.19	2 < 2 2 4 < 2	8 6 4 5 8	4 - 8 22 24 23	0.24 0.24 0.26 0.17 0.33	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	119 151 58 60 91	< 10 < 10 < 10 < 10 < 10 < 10	536 254 344 7740 896
L-61 L-62 L-63 L-64 L-65	205 226 205 226 205 226 205 226 205 226 205 226	640 150 570	< 1 52 4 < 1 < 1	0.07 0.01 0.09 0.03 0.14	45 46 17 79 70	210 80 490 330 290	2120 36 2320 8 10	0.21 0.81 0.20 0.05 0.46	< 2 < 2 6 < 2 < 2 < 2	6 6 26 7	13 5 5 2 12	0.19 0.07 0.01 0.10 0.21	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	79 59 65 200 65	< 10 < 10 < 10 < 10 < 10 < 10	3910 58 188 66 30
L-66 L-67 L-68 L-69 L-70	205 226 205 226 205 226 205 226 205 226 205 226	555 265 570	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.06 0.27 0.08 0.09	54 66 43 42 29	260 420 210 230 680	2 78 2 142 6370	0.14 0.03 0.08 0.11 1.55	< 2 < 2 2 < 2 18	6 18 4 4 5	21 1 32 11 4	0.21 0.15 0.09 0.15 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	28 137 94 43 51	< 10 < 10 < 10 < 10 < 10	8 648 72 178 >10000
L-71 L-72 L-73	205 226 205 226 205 226	190	< 1 3 1	0.06 0.09 0.09	139 51 2	1870 500 810	24 388 6	0.01 0.93 1.03	2 4 2	1 9 5	32 5 13	0.24 0.01 0.15	< 10 < 10 < 10	< 10 < 10 < 10	80 78 1	< 10 < 10 < 10	86 836 78
																A	1.

Ministry of Northern Development and Mines

Declaration of Assessment Work Performed on Mining Land

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Transaction Number (office use) WOIBO. 00092 Assessment Files Research Imaging

900

osections 65(2) and 66(3) of the Mining Act. Under section 8 of the w the assessment work and correspond with the mining land holder. order, Ministry of Northern Development and Mines, 6th Floor,

Instructions:	- For work performed on Crown Lands before recording a claim, use form 0240.
	- Please type or print in ink.

1. Recorded holder(s) (Attach a list in	f necessary)	2.20929					
Outcrop Exploration	s Ltd	Client Number					
12 Martin Duie		Telephone Number 505) 679 - 5403					
Ont POJ 10	LO R	Fax Number Gos) 679 - 5360					
Consolidated Professe	or Mines Ltd)						
Address . Po. Bog 2010 Timm	\cdot	Telephone Number					
Ont P4N 7X7		Fax Number					
	see attached)	Murray Sempson					
2. Type of work performed: Check () and report on only ONE of the	e following groups for this declaration.					
Geotechnical: prospecting, surveys, assays and work under section 18 (, stripping, i Rehabilitation					
Work Type		Office Use					
Geology i	assans	Commodity					
	<u> </u>	Total \$ Value of Work Claimed 17, フタフ					
Dates Work Performed From 01 08 2000 Day Month Year	To 10 10 2.000 Day Month Year	NTS Reference					
	Gelle's Limit North	Mining Division harder Lake					
M c	or G-Plan Number G 3429	Resident Geologist District Kirkland Lake					
- provide proper no - complete and atta - provide a map sh	Please remember to: - obtain a work permit from the Ministry of Natural Resources as required; - provide proper notice to surface rights holders before starting work; - complete and attach a Statement of Costs, form 0212; - provide a map showing contiguous mining lands that are linked for assigning work; - include two copies of your technical report.						
3. Person or companies who prepare	d the technical report (Attach :	a list if necessary)					
Name (A		Telephone Number					
	crates Ltd	(705) 856-2018					
Box 2058 War C	Intono Posiko	Fax Number (70 S) 856-1147					
Name	Telephone Number						
Address		Fax Number					
Name		Telephone Number					
Address	FEB 26 2001	Fax Number					
	GEOSCIENCE ASSESSMENT OFFICE						

Certification by Recorded Holder or Agent 4.

Sears <u>Dey mour</u> (Print Name) , do hereby certify that I have personal knowledge of the facts set ١,

forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent Date 60 2 Agent's Address Telephone Number Numb Ont 2017 2058 Warna -114 1300 es/ko 2018 70

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

				<u>9.20000</u>			
work wining column	Claim Number. Or if as done on other eligible land, show in this the location number ed on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date.	
eg	TB 7827	16 ha	\$26, 825	N/A	\$24,000	\$2,825	
eg	1234567	12	0	\$24,000	0	0	
əg	1234568	2	\$ 8, 892	\$ 4,000	0	\$4,892	
1	e 1219 338	8	10,138	þ	10,138	q	
2	e 1219337	5	3,203	þ.	3,203	•	
3	e 1219336	15	356	ø	356	¢	
4	1210883	2.	356	Ø	356	ø	
5	e 1219335	14	356	p	356	9	
6	T43066		1,07,4	ø	1,074	ø	
1627	· T43067		712	ø	712	ø	
8 ماما	1728097		534	6	534	ø	
0 9	C1384	7.6	534	ø	534	¢	
oD 10	· T43085		534	đ	534	Ø	
11	20/193777	7	÷.¢.	2800	ø	Ø	
12	e 1217800		- 6	5684	¢	è	
13	1231081		Ø	400	ø	Ø	
14	1231082	2	Ø	800	¢	Ø	
15	1231083	.8	¢	3200	Ø	ø	
		Column Totals	17,797	\$ 12,884	17797	ø	
		-		cont		Cont	

I, _______ Cont cont (Print Full Name) subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to

Date

Feb 25/01

the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\sim) in the boxes below to show how you wish to prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Us Received Stamp		Deemed Approved Date	Date Notification Sent
	RECEIVED	Date Approved	Total Value of Credit Approved
	FEB 2.6 2001	Approved for Recording by Mining R	ecorder (Signature)
0241 (02/96)	GEOSCIENCE ASSESSMENT OFFICE		

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

ork wi nining lumn	Claim Number. Or if as done on other eligible land, show in this the location number ed on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank: Value of wor to be distributed at a future date
	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
	1234567	12	° O	\$24,000	0	0
	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
	C	anyo	17797	12884	-	
	1231084	13	ę	4913	¢	ø
	· ·					
					· · ·	
			•			
	Column Totals		17797	17,797	17.797.	Ø

subsection 7 +1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim

where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing	Date	Se 25/01

6. Instruction for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 9 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be out back from the Bank first, followed by option number 2 if necessary.

For Office Use Only			
Received Stamp		Deemed Approved Date	Date Notification Sent
		Date Approved	Total Value of Credit Approved
		Approved for Recording by MinIn	ig Recorder (Signature)
0241 (03/97)	RECEIVED	L	
	FEB 26 200		
	GEOSCIENCE ASSESSMENT OFFICE		

YYI (INTARIA North	ary of hern Development Mines	Statement of Costs for Assessment Credit	W0180.00092	
fining Act, this information is a public re	cord. This informati	er the authority of subsection 6 (1) of the Assest on will be used to review the assessment work incial Mining Recorder, Ministry of Northern De assest	k and correspond with the mining	b land holder.
Work Type	hours/day	Units of work on the type of work, list the number of worked, metres of drilling, kilometres of umber of samples, etc.	Cost Per Unit of work	Total Cost
Geology		33 Mandays @	350	/1,550
Assaning		73 Sandle e	10.842	791.70
Report , Dulty		4 Mon Day of	350	1400 **
Associated Costs (e.g. su	ipplies, mobiliz	zation and demobilization).		
	Insportation Co			*
Vehicle	(33 2	-p O	50	- 1650
Food	and Lodging (Costs		
Accom & r	Nert 37		45	\$ 2405

alculations of Filing Discounts:

. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work. . If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total

Value of Assessment Work. If this situation applies to your claims, use the calculation below:

\$ value of worked claimed.
I

ote:

Work older than 5 years is not eligible for credit.

A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for erification and/or correction/clarification is not made, the Minister may reject all r part of the assessment work submitted.

ertification verifying costs	:			
Seymour M.	Sears, do hereby certify	y, that the amounts show	n are as accurate as	may reasonably
(please print full name) e determined and the costs v ع	vere incurred while conducting	assessment work on the	a lands indicated on th	e accompanying
eclaration of Work form as _	(recorded holder, agent, distate compar		I am authorized to m	ake this certification.
	(recorded norder, agent, or state compar	y position with signing autionty)		
12 (03/97)		Signature		Date 25/01
	RECEIVED			
	FEB 2.6 100			
	GEOSCIENCE ASSESSMENT OFFICE			

7,797

Total Value of Assessment Work

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

March 30, 2001

OUTCROP EXPLORATIONS LIMITED 12 MARTIN DRIVE COBALT, ONTARIO P0J-1C0

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Submission Number: 2.20929

Status
Subject: Transaction Number(s): W0180.00092 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact LUCILLE JEROME by e-mail at lucille.jerome@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

Purille Jerome

ORIGINAL SIGNED BY Lucille Jerome Acting Supervisor, Geoscience Assessment Office Mining Lands Section

Work Report Assessment Results

Submission Nun	nber: 2.20929						
Date Correspond	dence Sent: March 3	30, 2001	Assessor:LUCIL	LE JEROME			
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date			
W0180.00092	1219338	GILLIES LIMIT (N.)	Approval	March 29, 2001			
Section: 12 Geological GE	OL						
Correspondence	e to:		Recorded Hold	er(s) and/or Agent(s):			
Resident Geologi			Seymour Sears				
Kirkland Lake, Of	N		WAWA, ONTARIO, CANADA				
Assessment Files	s Library		OUTCROP EXPLORATIONS LIMITED				
Sudbury, ON			COBALT, ONTARIO				
			CABO MINING	CORP			
			VANCOUVER,				
			CONSOLIDATE	ED PROFESSOR MINES LIMITED			
			KIRKLAND, WA	ASHINGTON			
			MURRAY D SI	IMPSON			
			LATCHFORD, (ONTARIO			

