31M13NW0053 2. 12175 CATHARIN
010

RECEIVED

EES 91989
mining lands section

```
ASSESSEMENT REPORT
VLF SURVEY
MINING CLAIMS L 893844 and L 893845
LOT \(彐, ~ C O N C E S S I O N ~ I I I\)
CATHARINE TOWNSHIP
DISTRICT OF TIMISKAMING
```

S. A. Gamble December 12, 1988
INTRODUCTION
LOCATION AND ACCESS 1
HISTORY 1
TOPOGRAPHY AND VEGETATION 2
VLF EM SURVEY 3
INTERPRETATION 3
CONCLUSIONS 4
APPENDIX
APPENDIX A. Geonics EM 16 Specifications
LIST OF MAPS
MAP 1 RESULTS OF VLF EM 16 SURVEY
KEY PLAN: LOCATION AND ACCESSPAGE

INTRODUCTION

This report contains the results of a ground VLF-EM survey carried out on Mining Claims $L 893844$ and $L 893845$, Township of Catharine, District of Timiskaming in November, 1988. This claim is held by B. G. Cook, as a part of a group held by B. G. Cook, and S.A. Gamble in Catharine Township.

LOCATION AND ACCESS

The property is reached by travelling north from Englehart on Highway 624 approximately 14 miles to where a well used bush road leaves Highway 624 towards the northwest. This road can be followed by truck for approximately $2 \frac{1}{2}$ miles. Recently a beaverdam which previously blocked the road has been removed, and the beavers have relocated to the south of the bush road, making access possible beyond where the road became impassible in June, 1988. An overgrown logging road leads south approximately $3 / 4$ mile beyond the beaverdam. This overgrown logging road meets the former bush trail to the propeřty approximately $3 / 4$ mile south. Frequent use of the overgrown logging roads, and cutting deadfall with a chainsaw are making the property somewhat more accessible than previously.

HISTORY

The claimshave been held by a number of individuals and companies since 1916. It had been part of a group surcounding the " shaft" claim of. Ostrom Gold Mines and Canora Gold Copper Mines Ltd.
(also Primary Gold Mines Ltd.). In the early 1970's, it was held by Moncreiff Uranium Mines as part of a group called the J.M. French claims. In the early 1980's it was part of a group optioned to Kennco Exploration Ltd.

TOPOGRAPHY AND VEGETATION

The topography of M.C. L 893844 is mostly low lying with some moderately higher areas (to 6 meters) along the northern and western boundaries. Large areas of water occur where two beaverdams influence the topography of the south limit and central section of the claim. Small islands of higher ground occur near the intersections of the base line and $L 4 W$ and the baseline and L8W before again encountering higher ground at approximately LllW.

Mining Claim L 893845 also consists of low ground sharing a common wet boundary with M.C. L 893844. A creek meanders north- south through a large grassy swamp through the center section of the claim, with higher areas (up to 6 meters occurring in the S.E. quadrant of the claim along L2W, L4W, and L6W. The western boundary along L12W and L 14 W also consists of higher ground with some outcrop.

At the time of this survey the large open areas of water in the beaverponds were unsafe, however in shallow areas there was some ice lying under the water making access to some water covered areas possible.

Vegetation consists of alders and swamp grass with evergreen and deciduous trees in the higher areas.

VLF - EM Survey

In 1 ate November, 1988 an $E M-16$ VLF unit was used to take readings at every, accessible station on Mining claims L 893844 and L 893845 on a pre-existing grid (See Magnetometer Report M.C. L 893844 and Le 893845, January, 1988, S. A. Gamble). The grid was established in the fall of 1987 and is presently in excellent condition, having been cut out with a brush cutter and chain saw when originally done. The Tyvek tags used in 1987 have been well preserved as well. The direction of the grid lines exists approximately along the lines of primary magnetic field at right angles to the direction of the station selected for use - Cutler, Maine.

The signal was found to be at a minimum when the EM-16 was oriented sideways and pointed towards the station, thus the magnetic field was confirmed to be at right angles to the receiving coil in the handle.

All readings were taken facing north along the grid lines.

INTERPRETATION

The interpretation of the VLF EM 16 results indicate one strong discrete bedrock conductor is present in the survey area. The conductor axis extends from Line 2 West, Station $4+50$ South to Line 10 West $1+00$ South. The inflection points marking the crossovers from positive to negative in phase \% on IJines 2 West and 6 West are well defined. On Lines 4 West, 8 West
and 10 West the inflection points are water covered and therefore are inferred from the last accessible readings on each line. (See Map 1 at end of report)

North of the baseline in the central part of claim L 893844 the VLF - EM responses are attributed to wet swampy areas, conductive overburden.

CONCLUSIONS

The VLF EM 16 survey revealed one strong bedrock conductive source that extends 800 feet along strike on Mining Claim L 893845, that warrants further investigation.

I, S. A. Gamble, of 70 First Street, Kirkland Lake, Ontario formerly of Kamloops, British Columbia, certify that:

1. I am a prospector residing at the above address and have held an Ontario Prospector's licence since 1979.
2. I am a graduate of the University of ottawa and Simon Fraser University, and I have studied earth science for two years at the University of Ottawa, and one year at Laurentian University.
3. I have more than nine years relevant practical experience relating to prospecting.
4. I have in conjunction with B. G. Cook planned, directed, and carried out the geophysical survey represented by this report. I have interpreted the results of this survey..
5. I hold a 50\% interest in M.C. L 893844.and L 893845.

S. A. Gamble December 12, 1988

APPENDIX A.

Geonics EM 16 Specifications

Areas of VLF Signats
Coverage shown only for wall-known stations. Other reliable, fully operational stations exlst. For full information regarding VLF signals in your area consuit Geonics Limited. Extensive field experience has proved that the circles of coverage shown are very conservative and are actualty much larger in extent.

atlop-selector
of units can be plugged st or. me. A switch selects her slation.

Recelving Colls
Vortical receiving coil circuit in instrument picks up any vertical signal present. Horizomtal recelvIng coll circuit, after automatic 90° signal phase shitt, toeds signal into quadrature dial in series with the receiving coll.

In-Phase Dial shawh the tith-angle of the insfrument for minimum signal. This angle ls the measure of the vertical in-phase signal expressed in parcentage when compared to the horizontal field.

Cuadrature Dial ts callbrafed in percontaga markings and nulls the vertical quadrature signal in the vertical coll circuit.
iselecting a suitable transmitter station as a source, the A 16 user can survey with the most suitable primary field imuth.

- EM 16 has two receiving coils, one for the pick-up of the irizontal (primary) field and the other for detecting any romalous vertical secondary field. The coils are thus orthomal, and are mounted inside the instrument "handle".
id actual measurement is done by first tilting the coll sembly to minimize the signal in the vertical (signal) coil and on further sharpening the null by using the reference signal buck out the remaining signal. This is done by a calibrated ןuadrature' dial.

The tangent of the titt angle is the measure of the vertical in-phase component and the quadrature reading is the signal at ifght angles to the total field. All readinge are oblained in per centages and do not depend on the absolute amplifude of the primary signals present.

The "null" condition of the measurement is detected by the drop in the audio signal emitted from the patented resonance loudspeaker. A jack is provided for those preferring the use of an earphone instead.

The power for the instrument is from $\mathbf{6}$ penlight cells. A battery. tester is provided.

Eny 10

Pionec and patented exclusively by Geonics Limited, the: - VLF method of electromagnetic surveying has been proven to e a major advance in exploration geophysical instrumentation.

Since the beginning of 1965 a large number of mining companies have found the EM16 system to meet the need for a simple, light and effective exploration tool for mining geophysics.

The VLF rnethod uses the military and time standard VLF transmissions as primary field. Only a receiver is then used to, measure the secondary fields radiating from the local conductive targets. This allows a very light, one-man instrument f to do the job. Because of the almost uniform primary field, good response trom deeper targets is oblained.

The EM16 sys:em provides the in-phase and quadrature components of the secondary field with the polarities indicated.

Interpretation technique has been highiy developed particularly to differentiate deeper targets from the many surface indications.

Principle of Operation

The VLF transmitters have vertical antennas. The magnetic signal component is then horizontal and concentric around the transmitter location.

Specifications

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

Type of Survey (s) WE F EM (E M-16)
Township or Area Catharine Township-
Claim Holder(s)_B._G._Cok
6 Wright Hargreaves, Kirkland_Lk.Ont

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer___ Electromagnetic__ Radiometric ___ (enter days per claim)

DATE: \qquad SIGNATURE: \qquad

Res. Geol.
Qualifications

Previous Surveys

SELF POTENTIAL

Corrections made

RADIOMETRIC

Instrument
Values measured \qquad
Energy windows (levels)
Height of instrument \qquad Background Count \qquad
Size of detector \qquad
Overburden

> (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)

Type of survey \qquad
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results) \qquad
\qquad
\qquad

AIRBORNE SURVEYS

Type of survey(s)
Instrument(s) (specify for each type of survey)
Accuracy

> (specify for each type of survey)

Aircraft used \qquad
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude Line Spacing
Miles flown over total area

GEOCHEMICAL SURVEY - PROCEDURE RECORD

Numbers of claims from which samples taken

Total Number of Samples_
Type of Sample (Nature of Material)
Average Sample Weight
Method of Collection_
Soil Horizon Sampled
Horizon Development
Sample Depth
Terrain
Drainage Development
Estimated Range of Overburden Thickness_
SAMPLE PREPARATION (Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis.

General

\qquad
\square

ANALYTICAL METHODS		
Values expressed in:	per cent p. p. m. p. p.b.	\square \square \square
$\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Co}$,	Ag, Mo,	As,-(circle)
Others		
Field Analysis (__tests)		
Extraction Method__		
Analytical Method		
Reagents Used		
Field Laboratory Analysis		
Extraction Method__		
Analytical Method		
Reagents Used		
Commercial Laboratory (__ tests)		
Name of Laboratory____		
Extraction Method_		
Analytical Method_		
Reagents Used		

\qquad
General
\qquad $\bar{\square}$
\qquad
\qquad
\qquad
\qquad \square $\bar{\square}$

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations \qquad Station interval \qquad 100 feet Profile scale 40				
	Contour inter			

Instrument
Accuracy - Scale constant
Diurnal correction method \qquad
Base Station check-in interval (hours)
Base Station location and value \qquad

Instrument Geonics VLT EM 16
Coil configurationorthoconal. Reference coil horizontal Signal coil vertical Coil separation - Catharine Twp. Maine - Cather
Accuracy Inphase 150% guad. Ehase $+40 \%$. Resolution $\pm 1 \%$
Method:
\square F
Fixed transmitterShoot backIn line

Frequency Cutler Maine, (17.8 kHz)
(specify V.L.F. station)
Parameters measured Vertical In Phase, Vertieal out of phase quarature

Instrument
Scale constant \qquad
Corrections made \qquad

Base station value and location

Elevation accuracy

Instrument
Method \square Time Domain \square Frequency Domain
Parameters - On time ___ Frequency \qquad

- Off time____ Range \qquad
\qquad
- Integration time

Power
Electrode array
Electrode spacing
Type of electrode

