V.L.F. Crone Radem
Electromagnetic © Survey
on the Eastern Half of the
Allsopp Property-Catherine and Carter Townships Larder Lake Mining Division.

Submitted by:
J.E. Croxall, P.Eng.

Written:
June 5, 1977

Location and Access

The Allsopp property consists of six unpatented mining claims located in Lot 6 at the Catharine-Marter Township boundary. Four of the claims lie in the south half of Lot 6 Concession 1 of Catharine Township and two lie in the north half of the north half of Lot6 Concession 6 of Marter Township.

The survey was carried out on the three eastern claims of the group, namely:
\#477396--NE $\frac{1}{4}$ of $S \frac{1}{2}$ of Lot 6 Con. 1-Cath. Twp.
\#477196--SE $\frac{1}{4}$ of $S \frac{1}{2}$ of Lot 6 Con. 1-Cath. Twp.
\#477397-NE $\frac{1}{4}$ of $N \frac{1}{2}$ of Lot 6 Con. 6-Marter Twp.
Access to the claim group is best obtained from highway 624 from Larder Lake. A narrow road heads north from a point on the highway one half mile south of the Catharine-Marter boundary and swings west along the township boundary. From this point, access is by foot only along the grown-in road to the east edge of the property-a distance of one-half mile.

The recorded holder of the property is A. Allsopp, 116 Woods St., Kirkland Lake. The survey was performed and the maps and report were
of Keewatin age-specifically dacite and andesite, including pillow lavas.
A report ${ }^{\prime}$ tten by W.S. Savage, Resident Geologist, on July 30, 1948 refers to a former claing group here called the Short-Netherton Claims. He describes the main showing on claim \#53596 (presently \#477196) as a shear zone replaced by quartz and sulphides in a draw between a ridge of pillow lava to the east and a hill of basaltic lava to the west. The one-foot vein strikes $\mathrm{N} 5^{\circ} \mathrm{W}$ and the sulphides are concentrated in two $4^{\prime \prime}$ to $6^{\prime \prime}$ bands on either side which are heavily disseminated with pyrite and contain stringers of massive chalcopyrite. The more massive sulphides extend into the wall rocks in irregular stringers. Pyrite, chalcopyrite and sphalerite occur in these stringers.

The following grab sample assays were reported by Savage:

$$
\left(\mathrm{o} \frac{\mathrm{Au}}{\mathrm{Z} / \mathrm{T})\left(\frac{\mathrm{Ag}}{\mathrm{OZ} / \mathrm{T}}\right)} \frac{\mathrm{Cu}}{(\%)} \quad \frac{\mathrm{Pb}}{(\%)} \quad \frac{\mathrm{Zn}}{(\%)}\right.
$$

O.D.M.	0.05	4.49	27.14	5.09
		5.88		
Swastika Lab.	0.01	0.20	21.25	2.52
Beattie Gold	0.01	0.27	0.88	0.42
	Tr.	4.03	6.69	0.56

Four drill holes were recorded on the property around 1.970. Three were drilled by Moncrieff Uranium Mines (MC-2,3,4) and one was drilled by Midnorth Engineering (MN-1) for Nickel Rim Mines Ltd. The three former holes have been located in the field and are shown on the plans.

Grab samples taken from the walls and dump of the pit on the above showing (about 100^{\prime} north from $4+50 \mathrm{E}$. on XL $0+00$) by the author yielded the following results:

$$
\left(\mathrm{oz} \frac{\mathrm{Au}}{7 \mathrm{~T}}\right) \quad\left(\mathrm{oz} \frac{\mathrm{Ag}}{7 \mathrm{~T}}\right) \quad\left(\frac{\mathrm{Cu}}{\%}\right) \quad(\% \mathrm{Zn})
$$

$\begin{array}{lllll}\text { dump sample (mass. sulph.) } & 0.02 & 1.38 & 6.34 & 1.89\end{array}$ east wall sulph. stringer $0.02 \quad 1.20 \quad 4.25 \quad 5.84$

The drill logs refer to "scattered" sulphide mineralization (pyrite, chalco-pyrite and sphalerite over 140^{\prime} and pyrite, chalco - pyrite over 234') in MN-1 and MC-4 respectively. There was an apparent lack of mineralization both in MC-3 (directly beaneath the strongly mineralized main showing) and in MC-2 to the north of it. The structure reportedly dips east at 65°. The holes dip at 50° to the east.

It was noted from'a preliminary reconnaissance of the area that several creeks flowed in a southerly direction toward the main easterly flowing creek near the township boundary. It was felt that these might be the surface expression of parallel north-south shear zones.

The absence of any recorded, detailed geophysical work promted the holder and author to acquire the property.

Radem Survey

(A) Purpose

The purpose of this Radem Survey was to establish a guide for further prospecting work by checking for and locating:

1) the extent, in the north-south direction, of the mineralized shear zone evident in the pit and
2) other mineralized shear zones lying parallel to that exposed in the pit.
(B) Scope

A north-south baseline was cut across the centre of the three claims. Crosslines were established at 400^{\prime} intervals and cut to the ciaim boundaries.

In all, $16,325^{\prime}$ of grid lines were cut, chained and picketed at 100^{\prime}
intervals. This consists of $3,800^{\prime}$ of baseline and $12,525^{\prime}$ of crosslines. An additional $4,385^{\prime}$ of lines were traversed (not cut and picketed) by pace and compass methods with readings taken at 100^{\prime} intervals. (These are indicated by dotted lines on the plans and include the north claimline boundary of 477396 , the western end of XL $16+00 \mathrm{~N}$, an intermediate XL about 140^{\prime} north of XL $0+00$ and east of the baseline, and short western extensions of XL 's $12+00 S, 4+00 S$ and $4+00 \mathrm{~N}$. The 490^{\prime} traverse extension of the baseline north from $X L 16+00 N$ was not read.

A total of 180 readings were obtained at locations indicated on the profile plan.
(C) Instrumentation and Method

The E-M survey was carried out with a Crone Radem V.L.F. unit using Annapolis, Maryland as the transmitter station (21.4 KHz). The receiver measures the dip angle of the direction of the resultant V.L.F. field in degress from the horizontal.

To measure the dip angle, the unit was first held with the instrument face horizontal and rotated until a "null" is obtained (visual minimum on the field strength meter and audio null). The Radem was then held vertically and tilted from right to left until another null was obtained. In this position, the dip angle is readfrom the inclinometer.

An anomaly is represented as a "cross-over" when positive readings (shown on the north side of the grid lines) change to negative readings (shown on the south side of the grid lines).
(D) Interpretation of Results

Conductor axes, as indicated by cross-overs, are plotted on the profile plan. The north-south conductive trends are more evident from the contour plan which was derived by the application of the Fraser filtering method to the raw data.

A very strong north-south anomaly is observed to exist across claim \#477396. It extends across the north-west corner of claim \#477196 as well. It coincides very closely with the creek which runs south, south-west into the beaver pond near the west end of XL $0+00$. This anomaly could be the reflection ofaconductive, clay-filled depression occupied by the creek. There is an indication, however, (from the contours which are available at the ends of the crosslines south of the pond) that the anomaly may continue to the south into areas of higher ground.

Another anomaly, but of much lower intensity, is observed to exist in the vicinity of the small creek along the baseline at XL $0+00$.

An anomalous response was observed on higher ground in the pit area (Cu-Zn showing) and drill hole MC-2.

A response of similar intensity was obtained to the south of the pit on XL $4+00 S$ between the creek and the fork in the road. This conductor extends in a south, south-west direction across the baseline toward XL $16+00 s$.

A broad but weak response was found to cross lines $12+00 \mathrm{~N}$ and $16+00 \mathrm{~N}$ east of the baseline.

Conclusion

Several, generally north-south anomalous zones were found to exist on the claims surveyed.

A response was obtained over the mineralize showing;
An equally intense response was found to extend for some 1400 ' in-line with but to the south of the showing.

Two possibly creek-related responses were obtained.
A magnetometer survey is required to validate all responses, particularly the latter.

KIRKIAND LAKE

Type of Survey (s) ELECTROMAGNETIC
Township or Area CATHARINE-MARTER TWPS.
Claim Holder (s) \qquad A. ALLSOPP
\qquad
Survey Company \qquad N/A
Author of Report \qquad
Address of Author 376 CHERRY ST., TIMMNS,ONT.
Covering Dates of Survey APRIL 24 to JuNE (inecutting to office) 1977
Total Miles of Line Cut 3.1 MILES $\left(16,325^{\prime}\right)$

SPECIAL PROVISIONS	
CREDITS REQUESTED	Geophysical
ENTER 40 days (includes line cutting) for first	-Electromagnetic _40
survey.	-Magnetometer_-
ENTER 20 days for each	-Radiometric_
additional survey using same grid.	-Other

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric \qquad (enter days per claim)

LID.
Res. Geol. \qquad Qualifications \qquad 2.2164

MINING CLAIMS TRAVERSED List numerically

\qquad
Previous Surveys

Claim Holder

GEOPHYSICAL TECHNICAL DATA
GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations \qquad 180 Number of Readings \qquad
Station interval \qquad 100 FT . Line spacing \qquad
Profile scale \qquad ONE INCH = 20 DEGREES
Contour interval \qquad 10 DEGREES
y Instrument \qquad
Accuracy - Scale constant \qquad
Diurnal correction method \qquad
Base Station check-in interval (hours)
Base Station location and value \qquad
\qquad

Instrument \qquad
CRONE RADEM
Coil configuration VERTICAL LOOP
Coil separation 600 MILES OR INFINITY

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy \qquad

Instrument \qquad
MethodTime DomainFrequency Domain
Parameters - On time \qquad Frequency \qquad

- Off time \qquad Range \qquad
- Delay time \qquad
-- Integration time \qquad
Power \qquad
Electrode array \qquad
Electrode spacing \qquad
Type of electrode \qquad

McELROY TP M． 366

400＇surface rights
 takes and reservation along the shores of all

 lakes and rivers．Areas withdrawn from staking under Section
43 of the Mining Act ins s

DATE OF，ISSUE
JUL 151977
SURVEYS AND MAPPING
BRANCH

MINISTRY Or ：＇バ八URAL RFSOURCES SURVEYS ANE MAMH：I：BRANC．

