

2. 15337

Proton Magnetic \& Horizontal Lop Electromagnetic
Survey Reports
Pence Township (Map 566)
North and South Grids
1 adder Lake Mining Division
District of Temiskaming, Ontario
NS 31M/13

RECEIVED
 MAR 9-1994

November 20,1993
WINING LANDS BRANCH

$$
\text { Quad.\#: } 63.2370
$$

TABLE OF CONIENTS

SUIBJECI
PAGE NUMBER
Property and ownership 1 and 2
Description of claims (North \& South Cirids)1 and 2
Location and Access 2 and 3
Terrain (within grids) 3
Previous Work (in and local to grids) 4
Grid Cutting 4 and 5
Magnetometer Surveys $5,6, \& 7$
Horizontal Loop Electromagnetic Surveys $7,8, \& 9$
Survey Data $9 \& 10$
Interpretation $10 \& 11$
Conclusion 11
Recommendation 11

Pense Township (Map 566)
North and South Grids
Prolon Magnetic and I Lorizontal Loop Iilectromagnetic Survey Reports
1 arder t ake Mining Division
District of Temiskaming, Ontario
NTS 31M/13

Property and Ownership

The surveyed property consists of 17 unpatented mining claims registered in the mame of Ci.J. Gereghty of Copper Cliff, Ont., one leased claim owned by 'I \& II Resources I.d. of Toronto. Ont., and portions of 9 claim blocks registered in the name of Tyranex Gold Inc., also of Toronto, Ont

When the above survey work was done Tyranex Gold Inc. had a working option on the Gereghty and ' 1 \& II Resources mining claims.
(lai m, and clam block numbers with their respective description of land parcel coverage by fot and concession are listed:

NORTH GRII)

Pense Iwp.	1. 1076182	Sle $1 / 4$ of $\mathrm{S} 1 / 2$	Lot 8 , Con. V	Gereghty
" "	1. 1076183	NIt $1 / 4$ of $S 1 / 2$	Lot 8 , Con. V	"
" "	1. 1076184	NW1/4 of S $1 / 2$	Iot 9, Con. V	"
" "	1. 1076185	NL $1 / 4$ of $\mathrm{N} 1 / 2$	Lot 8 , Con. 1V	"
" "	1. 1076186	NW $1 / 4$ of $\mathrm{N} 1 / 2$	Lot9, Con. IV	"
" "	1. 1076187	Nt $1 / 4$ of $\mathrm{N} 1 / 2$	Lot9, Con. IV	"
" "	L. 1076188	SE $1 / 4$ of S $1 / 2$	Lot9, Con. V	"
" "	1. 1076189	NT: $1 / 4$ of $\mathrm{S} 1 / 2$	Iot 9, Con V	"
" "	I. 1076190	NW $1 / 4$ of S $1 / 2$	Lot 10, Con. V	"
" "	I. 1076191	SW $1 / 4$ of $S 1 / 2$	Lot.10, Con. V	"
" "	1.1076192	NW $1 / 4$ of ${ }^{\text {N } 1 / 2}$	Lot 10, Con. IV	"
" "	I, 1076195	SE $1 / 4$ of $S 1 / 2$	Lot 10, Con. V	"
" "	1. 1076196	NE $1 / 4$ or $\mathrm{S} 1 / 2$	Lot 10, Con. V	"
" "	1. 1076197	SW $1 / 4$ of $\mathrm{N}^{1 / 2}$	Lot 10, Con. V	"
" "	1. 1076198	Sİ $1 / 4$ of $\mathrm{N} 1 / 2$	Lot9, Cons V	"
" "	1.1076199	SW $1 / 4$ of $\mathrm{N} 1 / 2$	Lot 9, Con. V	${ }^{\prime \prime}$
" "	1,1117786	SE $1 / 4$ of $\mathrm{N} 1 / 2$	Lot 10, Con. V	

Page... 2 North Grid continued

Pense Twp.	I, 104660 (lcased)	SW $1 / 4$ of $\mathrm{S} 1 / 2$	Lot 9 ,	Con. V	T\& 11 Res.
" "	(13.1182426	N $1 / 2$ of	Lot 8,	Con. V	Tyranex Gold
" "	CB. 1182427	N $1 / 2$ of ${ }^{\text {c }} 1 / 2$	Lot 9,	Con. V	lyra
" "	(13. 1182429	NLE $1 / 4$ of $\mathrm{N} 1 / 2$.	Lot 10 ,	Con. 1V	" "
	also	$\mathrm{N} 1 / 2$ of $\mathrm{N} 1 / 2$	Lot 11	Con. 1V	" "
Pense Twp.	CB. 1182430	S $1 / 2$ or $\mathrm{N}^{1 / 2}$	Lot 10	Con. IV	" "
	also	S $1 / 2$ of	Lot 10,	Con. 1V	" "
	and	S $1 / 2$ of $\mathrm{N} 1 / 2$	Lot 11,	Con. IV	" "
	and	S $1 / 2$ of $\mathrm{N} 1 / 2$	Lot 11,	Con. IV	" "
Pense Twp	CB. 1182431	SIF $1 / 4$ or $\mathrm{N}_{1 / 2}$	Lot 8,	Con. IV	" "
	also	S $1 / 2$ of $\mathrm{N} 1 / 2$	Jot 9,	Con. 1V	" "
Pense Twp	CB. 1182432	W $1 / 2$ of $\mathrm{S} 1 / 2$	Lot 8 ,	Con. V	" "
	also	W $1 / 2$ of $\mathrm{N} 1 / 2$	1 ot 8 ,	Con. 1V	" "

SOUILI (RRII)

Pense Twp.	C.B. 1182435	whole lots $8 \& 9$	Con. 11	Tyranex Gold
$"$	$"$	C.B. 1182443	whole lots $6 \& 7$	Con. 111
$"$	$"$	C.B. 1182444	N $1 / 2 \operatorname{lots} 6 \& 7$	Con. 11

1 ocalion and Access:
The center of the North grid is at 47049^{\prime} latitude and $79032^{\prime} 30^{\prime \prime}$ longitude, The property is fifteen miles due cast of linglehart, Ontario. Summer access is as follows: two miles north of Hilliardton on llighway \#56 then castward along the common borders of lngram - Hilliard and Peuse-Brethour lownships for a distance of 4 miles on gravelled road. Then north for one mile along Pense 1 of 2-I of 3 line, and one mile eastward along Concession 1 - Con. 2 line to Broderick's abandoned farm house. A tractor road leads from Broderick's northeastward into the center of the North prid a distance of $31 / 2$ miles.

Wimer access to the North grid is also via highway \#569 for $23 / 4$ miles due east of Tomstown then comiming eastward for $43 / 4$ miles along the common boundary of Concessions 111 and IV to the Otterskin (reek in Pense Township. Snow machine access is then necessary following old logging roads in a northcasterly direction for approximately $11 / 4$ miles then due eastward across a vast marsh a distance of $11 / 4$ miles into the west part of the grid. Once in the grid several branching, roads lead cast, north and south providing good access to much of the gridded area.

Page 3... South Grid
The South grid is centered at 470 46 ' latitude 79° o 33 ' longitude. Winter access via snow machine is possible from the previously described tractor road striking northeastward from Broderick's farm. Roughly 1 1/4 miles from Broderick's a branching road crosses the Pontleroy River to the south then strikes ISSI into the sonthwest corner of the south grid, a distance of about one mile from the river crossing.

Summer access in dry weather is possible by 4×4 truck from a concession road in northern Brethour Township. This road can be followed eastward along the common boundary of concessions V \& V1 to a point one half mile west of the eastern border of Brethour Twp. where a north-south striking, road can be followed northward for $21 / 2$ miles to the southeast part of the south grid.

Buring 'yrance's winter exploration program in 1993 the summer access road from Broderick's was bulldozed and allowed to freere solid, thereafter, it was possible to drive 4×4 trucks into the North grid to carry out line cutting and chaining, geophysical surveying and diamond drilling.

Both North and South grids have been superimposed on their respective claims/claim blocks on a recent copy of the Pense Township claim map and is included herewith. The North grid is in the Imperial measurnem system white the South grid is metric.

Terrain (North Grid)
Except for a long high ridge near the west side of the North grid striking NNE - SSW the north half of the grid is relatively flat. The south half of this survey area is gently rolling with steep sided ravines some with associated creeks trending northeast or southeast flowing eastward into the Pontleroy River. Some of these creeks have been dammed by beaver creating sizeable ponds thus providing an ample source of water for winter drilling. Drainage in the north half of this grid is more subtle but it can be stated that from the center of the grid creeks flow westward in the west hatl into the vast matsh area and creeks flow southeastward in the east half dumping into the P'onteroy River.

Terrain (South Grid)

This grid area covers a broad valley with high rock exposed hills on both the north and south sides. The Pontleroy River meanders through the northern half of the grid flowing soulhwestward. A great amount of sediment has accumulated in this valley evident in diamond drill hole T1 13 where 212. feet of sand, clay and gravel were intersected at a 650 angle.

As one approaches the river, particularly from the south side, many steep sided ravines make winter travel miserable. These ravines have a general northwest strike direction some with small associated creeks.

Page 4...

Previous Work (North Grid) Ilighlights of all recorded assessment work done in Pense Township are summarized in "Geology of the linglehart - Iarlion Area" by H. L. Lovell 1977 see Ponse Township pages $12 \& 13$.

Recomaissance geophysical survey work and prospecting were carried out by the writer within the subject claim area from $1969-71$, and six diamond drill holes were cored within the North grid.

Fluxgate magnetometer survey work was filed on part of the North grid in Jamary and December 1990. A Vlit electromagnetic survey was also filed in 1990 covering the same claim area.

Geological mapping was filed for assessment work credits in 1991.

In Jume 1992 gravily and vertical loop electromagnetic survey work, covering only a small portion of the area previously surveyed magnetically, were also filed for work credits.

Previous Work (South Grid)

The nearesi recorded exploration work was conducted roughly one mile northeastward along geological strike where Dominion Gulf filed a magnetometer survey in 1954.
limile Verrier dritled a number of packsack diannond drill holes on a mineralized showing on the east side of the Pontleroy River in the late 1950's. ' Palisman Mines acquired Verrier's clains and staked 18 adjoming, clains which were subsequently surveyed magnetically and electromagnetically covering part of the Dominion Gulf claim area.

During the years 1969.70 Rio Tinto Canadian filed magnetic and horizontal loop electromagnetic surveys and also 3 dianond drill holes on part of the area held previously by Talisman Mines.

In May of 1992 (ieotemex conducted a combined airborne magnetic \& electromagnetic survey over Tyranex's entire claim holdings in Pense Township.

A number of strong. A. li. M. responses remain to be delineated and assessed by ground surveys parlicularly in the area of the "Shortl-Verrier" showings.

Grid I ine Culling (North Cirid)

Origimal grid culting and chaining was done by Glen Me Bride of New Liskeard, Ontario in 1989 and 90 and did nol require re-cutting.

1 arry Salo of ('ommanhti, Ontario was contracted by Tyranex to cut fill-in lines and extend the grid westward and northward into their newly acquired claim blocks.

Page 5... Grid I ine Cuting (North (irid) continued
A total of 13.11 miles of grid lines and 0.64 mile of base and control lines were cut and chained during the period Jamary 25 through February 23, 1993

Grid lime Cutling (South Grid)

1 ine cuiling began l'ebruary 24th. and was completed February 26,1993.
A total of 7 Kilometers of grid line and 0.6 Km . of base line were cut and chained.
Objeclive uagnctometer survey
The uain purpose of the magnetic survey was to outline basic and ultrabasic rock types containing disseminated magnetic minerals such as magnetite and/or pyrrhotite, and also to locate sulphide concentrations with high pyrrhotite content in areas covered with overburden.

Since a large pari of the North grid tad been surveyed with a fluxgate magnetometer during a two year time span it was considered necessary to re-survey all lines with the more accurate proton magnetometer.

Magnetometer Survey Procedure
The instrument used is a (ilM proton magnetometer which measures the earth's total field intensity to an accuracy of 1 gamma when used with the sensor staff in a weak to moderate gradient magnctic field. This hand held magnetometer has a world wide range of from 20,000 to 90,000 gammas. When taking a reading no levelling or special orientation are required; the operator simply presses a switch on the top of the instrument and obtains a 5 digit numeric display readout directly in gammas.

Magnetic base relerence stations were established along the 92 N base line commencing in a magnetic backgromd area al 22W. Stations were read as quickly as possible, travelling either east or west along the 92 N for a 20 minute time period, then these same stations were re-read reluming to the starting poim. Assuming very litle diurnal change (<10 gammas) these stations values would be averaged and retained as fulure base station reference points. As the magnetic survey progressed northward it was necessary to establish more convenient base station reference points along the 124 N tie-line thus avoiding too much time lapse between tie-ins. These base stations were also referenced to base stations on 92 N base line.

Maguctometer readings were taken at 25 foot intervals along all 200 foot spaced grid lines from 82 N to 112 N and from 12 W to 44 W several 400 foot spaced lines were also read at 25 foot spacings to determine if any masnetic features would be missed should the reading spacing be increased to 50 feet. It was decided that 50 foot spaced readings were quite sufficient for this survey.

Payc 6...

During the comrse of the survey magnetic diurnal/ drift variations were determined by starting from, and checking into base stations at time intervals not exceeding two hours. Changes in base station mapnetic values were then applied as progressive corrections distributed throughont the lic in time intervals. Using, this correction method all magnetic readings are made relative to the first reading taken at 22 W .

Mapnetometer Survey Procedure (South (irid)

Magnctic base reference stations were established along 00 base line starting from $1+00 \mathrm{E}$ where the magnetic value is near background intensity. The same procedure as that used in the North grid was applied here.

Magnetometer readings were taken at 12.5 metre intervals along the 100 metre spaced grid lines.
Magnetic Survey Resulis (North Girid)
Magnetic survey resulls are contoured at intervals of $20,200,2000 \mathrm{nll}$ on a single plan drawn on scale of $1: 2400$. Corrected magnetic readings are plotted mumerically at each station location. A legend at the right lower conner of this plan explains the ploting of the magnetics and electromagnetic axes.

ISroad posilive magnetic anomalies of moderate and uniform intensity from +300 to 12000 gammas above magnelic background, form a contimous east-west trending magnetic zone in the southeru part of the grid. These magnetic anomalies continue southward off the grid, however, that section surveyed along the northern flank of this broad zone exceeds 1600 feet in width at the castern end of the grid in claims J. 1076195 and CB 1182429. As this zone is traced westward it bulges northward in claims I, 1076191 and 1,1076188 , then narrows in claims 1. 1076186 and C13 1182431 , only to blossom out and fold northward forming a large uniform magnelic amomaly in the western part of the grid in clams C13 1182432 and CH 1182431 measuring 3200 feet in width.

Immediately norih of the broad anomalous magnetic zone described above are two parallel, positive magnctic amomalies with varying magnetic intensilies from +200 to +3000 gammas. As these narrow anomalies are traced along strike from east to west their distances from the previonsly described broad magnetic zone varies from 400 to 700 feet north, to 900 to 1200 feel north respectively. These parallel anomalies occur in claim I, 1076195 on the east and in clains 1. 1076182 and 1, 1076183 on the west, a strike distance of 4200 feet.

Page 7...

A third magnetic zone, 400 to 600 feet in width and 5000 feet in length, was outlined in claims 1, 1076196, 1.1117786,1,1076190, 1, 1076197, L 1076198 and [, 1076199. The eastern half of this magnetic zone is comprised of a mumber of small spotted magnetic anomalies varying in intensity from 1200 to 11100 gammas. One sizeable bedrock exposure has been mapped in this area so perhaps these spotted magnetic anomalics are a reflection of near surface magnetic bedrock. The western half of the above magnetic zone is quite interesting. It is arcuate in shape, umiform in intensity varying from +200 to +900 gammas, dipping southward in the central section and plunging southwestward at the west end. The eastern part of this magnetic feature foids abruptly southward between lines 16W \& 18W. Both vertical loop and horizontal loop elentromagnefic conductors confomm with the aforementioned abrupt magnetic fold.

In the northwes part of CIS 1182426 and the northeast comer of CB 1182432 a weak positive, noth-soull striking, magnctic anomaly can be traced nearly 3,000 feet. This anomaly may be cansed by a weakly magnetic Matachewan diabase dike.

Magnetic Survey Results (South (irid)

Because of exposed l'ontiac sedimentary rocks in the south part of this small grid, and the magnetic basic and ultra basic rocks encountered in drill hole TP H3, il becomes quite easy to explain the magnelics in this grid area. The north half of the grid covers the southern flank of a broad maguclir fone striking liNF - WSW. This zone varies in intensity from 1000 to 1800 gammas and is known to be composed of a variable suite of basic and ultrabasic rock types imeluding a mapuctic diabate dike. 'The south half of the grid is of background magnetic intensity and is known to be underlain by non magnetic sedimentary rocks.

Objective of the Max Min III IIM Survey

He electromagnetic survey was done to outline ground conductors that might be caused by mineralized sulphide zones, graphitic zones, fault zones, or any combination of the three potential conductors.

Horinontal I oop IIcotromagnelic Survey (Procedure)

The equipment used is an Apex "MaxMin 11" VIIIM unil which can be used in either the vertical or horizontal mode. This paricular survey utilizes only the horizontal mode measuring three of five available frequencies. Pssentially, this is a battery operated portable oscillator delivering allemating signal to a horizontal transmiting coil. The primary electromagnctic field produced by the transmitter produces secondary fields in nearby couductive bodies. The horizontal receiving coil is read at a fixed distance from the transmitter. A connecting cable fects a refermee sienal from the tranmitter to the compensator at the receiver. The receiving coil detects the component of the resultant of the two fields. The in-phase and out-of-phase components are then read directly on the compensator as pereentages of the primary field strength. The length of the conpling cable to be used is determined by the suspected depth of overburden and/or water.

Page R...
The survey procedure is known as an "in -line " method where the transmitter and receiver advance simultaneonsly along the same grid line, at a fixed separation, perpindicular to the peologic strike direction.

During the North grid electromagnetic survey all Max Min readings were taken at 100 foot station intervals and three frequencies were recorded: 444, 888, and 3555 cycles. Reference cable lengths used in the North (irid were 400 feet in length used in areas of shallow overburden, and 600 feet used in the south and west pats of the grid where deep overburden is suspected. The South grid was surveyed using a 150 meire reference cable and readings were taken at 25 metre station intervals. Frequencies read at cach station were also 444, 888 and 3555 cycles and both in and ont-of-phase readings were manally recorded.

IIIIM readings are plotted on a single plau for each grid area on a scale of 1:2400.
In and out out of phase values are plotted numerically and in profile form, for all three frequencies read and each frequency can be observed by the density of the line used to represent it: see the ploting legend at the lower right hand comer of the respective grid plan for an explanation of the ploting procedure used.

The classification of ground conductivity is done using the 888 frequency only. A grading of gromend conductors ranging from 1 to 5 is used with " 1 " representing excellent conductivity and " 5 " being very poor. These grading numbers are arrived at by comparing field strength values and the ratios of ia-plase to out-of-phase readiugs.

Bectromaunetic Survey Results (North (irid)
A total of 5 conductors were ontlined by this survey work.
In the southeast part of the grid, in clams I. 1076195. I, 1076191, and I, 1076188, a good conductive zone has been delincated over an east-west strike length of 2600 feet. This zone is nol directly associated with any positive magnetic anomaly. Diamond drill thole 113 proved this conductor to be primarly a graphitic source.

In the west central part of the grid two paralle III WM conductors occur within 275 feet of one another. striking WNW - 1:SII in claims 1,104660 and 1,1076184 . The more northern condnctor was outlined over 600 fee of strike distance while the southern conductor is roughly 1000 feet in lengith. These medium strengin conductors are directly related to positive magnetic anomalies and both have been drill tested. The conductors are caused mainly by sulphide mineralization, pyrite, pyrthotite and minor chatopyrite.

Pape.. 9

1'fectromagnetic Survey Results (North Chid) (continued)

Near the castem boundary of the grid, in claim L, 1076196, there is a strong HLEM conductive zone in excess of 1200 fect in length, striking NW - St and continuing with excellent conductivity soulheastward ont of the grid area.

This conductor has a hii and miss association with weak positive magnetic anomalies.
A diamond drill hole cored by Canadian Nickel in the late 1960's is believed to have tested this conductor just cast of the grid and explains the conductivity as a graphitic source with minor sulphides.

In chaims I. 1076197 and L. 1076198 there is a 1,000 foot long medium strength IfI IEM conductor, arcuate in shape, which strikes southwestward in the west half and southward at the eastern end. This conductor is known to continue at least another 1400 feet westward from previously conducted vertical loop IM work carried out by the writer. There is a very definite, broad, positive mapnetic anomaly associated with this HI.EM conductor.

Wiamond drill hole $\# 16$ explains this conductive zone as graphitic tuff with minor pyrite, pyrrhotile and chatcopyrite.

I lectromagnetic Survey Results (South Grid)
Λ poor IILAM conductor was traced 6,000 metres WSW - ENE along the southeren flank of the broad magnetic \%one mapped in the South grid.

Diamond drill hole TP 13 did not provide a definite explanation for this weak conductivity, however, the only plausible source is the brecciated contact of the ultramafic and sedimentary rocks

Survey Data
The magnetic surveys in both grid areas were carried out by G.J. Gereghty. The North grid was surveyed during the period liebmary 23 through to March 9,1993 . The South grid was surveyed on February $27 \& 2 \times, 1993$.

Page 10... Surby Data conmimed

Horizontal loop L.M. survey work in both prid areas was conducted by Ted I ang of Copper Cliff, Ontario and Dave Recoskic of'limmins, Ontario. G. Gereghty supervised these electromagnetic surveys which were carried out during the following dates:-

North (irid-Jebruary 23 to 26 th. inclusive. and March 1 to 5th. inchusive.

South Grid-February $27,28,1993$.

All of the above survey persomel lived at the North Star Motel in Ianglehart travelling daily to and from work in Pense 'lownship with a lilden rental 4×4 truck. Travel time was approximatcly two hours per day.

Survey instrumens used for the above work were rented as follows:

Gil:MProton magnetometer rented from JoAnne Salo.
Max Min II HII IM unit rented from Apex Parametrics Ltd.
Survey Coverage (Nomh Grid)
Magnelic Survey 3 a kilometres
III IiM Survey 26 Kilometres

Survey Coverage (South Cirid)
Magnctic Survey 7 kilometres
IIIIM Survey 7 kilometres

Interpretation North Grid

Broad magnetic amomaties in the southern part of the grid are caused by basic and ultra basic: rock types containing disseminated magnetite.

Anomalies along the northem periphery of the above mentioned broad anomaties are believed cansed by pods of mapnelic sulphides and minor magnelite within basic rocks.

I inear magnetic anomalies in the central part of the claim block area known to be cansed by magnetic sulphides with associated pyrite, sphalerite, chatcopyrite, with minor gold and silver.

The main magnetic anomaly in the northern part of the grid is due to basic volcanic rocks with uagnetic sulphides also conlaining sphalerite and minor chalcopyrite with anomalous gold.

TH IIM conductors outlined are all explained by conductive graphitic zones with minor, and somemimes major, amounts of sulphides.

Page ... 11
Interpretation (somh Grid)
The broad anomatons magnetic zone outlined is cansed by disseminated magnetite in basic and ultuabasic rock lypes.

The weak IIISM conductor traced can only be accomnted for by weak conductivity at the breceiated contact of sedimentary and ultrabasic rocks.

Conclusion

Boll geophysical surveys carried on were effective in locating and delineating anomalous zones. The horizontal toop I: M. survey is being hindered by conductive overburden (varved clays).

The anthor knows from havimg done vertical loop F. M. work on this grid that the BIIDM conductors are all extendable using vertical loop electromagnetic equipment.

Recommendation

More diamond drilling is required in the North grid. A drill hole should be cored on either side of old DDII $\# 16$ where a short 3.4% zinc intersection occurred in felsic volcanics. This anomalons matnelis \%ome exhibits some very interesting structural folding conformable with the combucivily.

One short drill hole should test the contorted magnetic zone castward along strike from where mast of the drilling has been done to date.

Ministry of	Ministère du
Northern Development	Développement du Nord
and Mines	et des Mines

March 21, 1994

Geoscience Approvals Office 933 Ramsey Lake Road 6th Floor
Sudbury, Ontario P3E 6B5

Telephone: (705) 670-5853
Fax: (705) 670-5863
Our File: 2.15337
Transaction \#: W9480.00104

Mining Recorder
Ministry of Northern Development and Mines
4 Government Road East Kirkland Lake, Ontario
P2N 1A2
Dear Sir/Madam:
Subject: APPROVAL OF ASSESSMENT WORK CREDITS ON MINING CLAIMS 1076183 ET AL IN PENSE TOWNSHIP

The assessment work credits for Geophysics filed under Section 14 of the Mining Act Regulations have been approved as outlined in the original submission.

The approval date is March 18, 1994.
If you have any questions regarding this correspondence, please contact Lucille Jerome at (705) 670-5855.

Yours sincerely,

Ron C. Gashinski
Senior Manager, Mining Lands Section Mining and Land Management Branch
Mines and Minerals Division
KR/jl
Enclosures:
cc: Resident Geologist Assessment Filessilbrary Cobalt, Ontario

Ministry of $\&$ AD
Northern Development and Mines

Report of Work Conducted After Recording Claim
 mining Act

sonal information collected on this form is obtained under the authority of the Mining Act. This information will be used for correspondence. Questions about $;$ collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines, Fourth Floor, 158 Cedar Street, dbury, Ontario, P3E 6A5, telephone (705) 670-7264.
structions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining Recorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

'ark Performed (Check One Work Group Only)

otal Assessment Work Claimed on the Attached Statement of Costs $\$ 8,845$.
late: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.
ersons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

Name	Address
GERALD J. GEREGHTY	AS ABOVE

attach a schedule if necessary)

Certification of Beneficial Interest * See Note No. 1 on reverse side

I certify that at the time the work was performed, the claims covered in this work report were recorded in the current holder's name or held under a beneficial interest by the current recorded holder.

Sertification of Work Report
I certify that I have a personal knowledge of the facts set forth in this Work report, having performed the work or witnessed same during and/or after its completion 8 mit armexpt remnant is true
Name and Address of Person Corilying
A. DOUGLAS HUNTER, RR 2 MILLBROOK, ONT. LOA EGO (705)932-3130 Jan. 4194 Dasher Anta For Office Use Only Total Value Cr. Recorded

$$
\$ 8545
$$

Statement of Costs for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Minings Lands. Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

Les renseignements personnels contenus dans la présente formule sont recueilis en vertu de la Lol sur les mines et serviront a tenir a jour un registre des concessions minières. Adresser toute quesiton sur la collece de ces renseignements au chef provincial des terrains miniers, ministere du Développement du Nord el des Mines, 159, rue Cedar, 4^{e} étage, Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

2. Indirect Costs/Couts Indirects

* Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work.
Pour le remboursement des travaux de rehabilitation, les coutts indirects ne sont pas admissibles en tant que travaux d'évaluation.

Note : Le litulaire enregistrés sera tenu de vérifier les dépenses demandées dans le présent état des coüts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectúé, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

illing Discounts

Work filed within two years of completion is claimed at 100\% of the above Total Value of Assessment Credit.

Work filed three, four or five years after completion is claimed at 50\% of the above Total Value of Assessment Credit. See calculations below:
otal Value of Assessment Credit
Total Assessment Claimed

```
*0.50=
```


iertification Verifying Statement of Costs

hereby certify:
lat the amounts shown are as accurate as possible and these costs ere incurred while conducting assessment work on the lands shown it the accompanying Report of Work form.
lat as $\frac{\text { Ageat fu Tyuanex Gold } I \text { am authorized }}{\text { (Rededed Holder, Agent, Poltion in Company) }}$ make this certification

Remises pour dépót

1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100% de la valeur lotale susmentionnée du crédit d'évaluation.
2. Les travaux déposés trois, quatre ou cinq ans après leur achévement sont remboursés à 50% de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

Valeur totale du crédit d'évaluation Evaluation totale demandée

$$
\times 0,50=
$$

Attestation de l'etat des couts

J'atteste par la présente :
que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Et qu'a titre de
je suis autorisé (fitulaire enrogistró, roprósentant, poste occupd dans la compagnie)
a faire cette attestation.

