010

NORTHERN DYNASTY EXPLORATIONS LTD.

VIRGINIATOWN PROPERTY BOUDREAULT-SPADETTO OPTION

1987-88 SUMMARY REPORT

Written by :

George Gorzynski, M.A.Sc., P.Eng.

Larder Lake Mining Division (Kirkland Lake Office)

Claim Map : McGarry Township / M-369

N.T.S. 32D/4 79°34'W Long., 48°09' N Lat. U.T.M. 5 334 000 mN, 606 000 mE

March, 1988

SUMMARY

The Virginiatown Property comprises 16 contiguous claims under option to Northern Dynasty Explorations Ltd. of Vancouver, B.C. from local co-owners B. Boudreault and G. Spadetto. The property is located immediately north of the Kerr Gold Mine of Golden Shield Resources Ltd. at Virginiatown. The property is underlain by Timiskaming metasediments and lesser metavolcanics overprinted by zones of alteration and shearing. Quartz veining and gold values up to 0.26 oz/ton (9.1 g/t) are locally associated with these alteration zones.

This report discusses the 1987-88 field program which included prospecting, geological mapping, geochemical (soil and rock) sampling, and ground magnetic and electromagnetic (EM-16) surveys followed by 6,346 ft. (1,934.3 m) of diamond drilling.

RESULTS: No economically significant zones of gold mineralization were found in the course of the 1987-88 fieldwork and follow-up diamond drilling on the property. It is recommended that no further work be done by Northern Dynasty.

32004NE0414 63.5184 MCGARRY

Ø10C

TABLE OF CONTENTS

SUMMARY	i
1.0 BACKGROUND INFORMATION 1.1 Introduction 1.2 Location and Access 1.3 Physiography 1.4 Claim Status and Titles 1.5 Personnel and Survey Dates	1 1 3 3
1.6 History	3
2.0 GEOLOGICAL REPORT 2.1 Introduction 2.2 Regional Geology 2.3 Regional Structure 2.4 Property Geology 2.4.1 Introduction 2.4.2 Descriptions of Lithologies 2.4.2.1 Conglomerates and Agglomerates 2.4.2.2 Greywackes, Siltstones, and Shales 2.4.2.3 Basalts and Andesites 2.4.2.4 Felsic Volcanics and Serecite Schists 2.4.2.5 Syenites and Granites 2.4.3 Quaternary Geology 2.5 Property Structural Geology 2.6 Property Alteration 2.7 Property Mineralization	7 10 10 10 11 11 11 12 12 12 13 13
3.0 GEOCHEMICAL REPORT 3.1 Introduction 3.2 Soil Geochemistry - Discussion of Results 3.3 Rock Geochemistry - Discussion of Results	16 17 20
4.0 GROUND MAGNETICS REPORT 4.1 Introduction 4.2 Ground Magnetics - Discussion of Results	21 21
5.0 GROUND ELECTROMAGNETICS (VLF) REPORT 5.1 Introduction 5.2 Ground Electromagnetics (VLF) - Discussion of Results	23 23
6.0 DIAMOND DRILLING REPORT 6.1 Introduction 6.2 Drillhole Summaries	26 26
7.0 REFERENCES	31

TABLE OF CONTENTS (continued)

FIGURES

	······································	
2. 3.	Property Location Map Claim Map Regional Geology Regional Setting	2 4 8 9
	TABLES	
	Claim Status Drillhole Technical Data	5 27
	<u>PLATES</u> (in back pocket)	
2. 3. 4. 5. 6. 7.	Property Geology Soil Geochemistry - Gold Sample Location Map Off Grid Geochemistry - Gold Ground Magnetometer Survey Ground Electromagnetic Survey - In-Phase Profiles Ground Electromagnetic Survey - Quadrature Profiles Ground Electromagnetic Survey - Fraser Filter Plot	
	<u>APPENDICES</u>	

1	Property	Rolders
1 .	FIODELLA	notuers

- 2. Table of Assessment Credits
- Personnel and Survey Dates
 Technical Data Statements and Procedure Records
- 5. Chemical Analyses
- 6. Author's Certification
- 7. Drill Logs and Sections

63.5184

OM87-6-C-068

Please Note:

Similar diamond drilling logs can be found in the following record series:

D.D. H * VT-87-01 } see Toronto diamond drilling # VT-87-02 } file # 37 McGarry Tp.

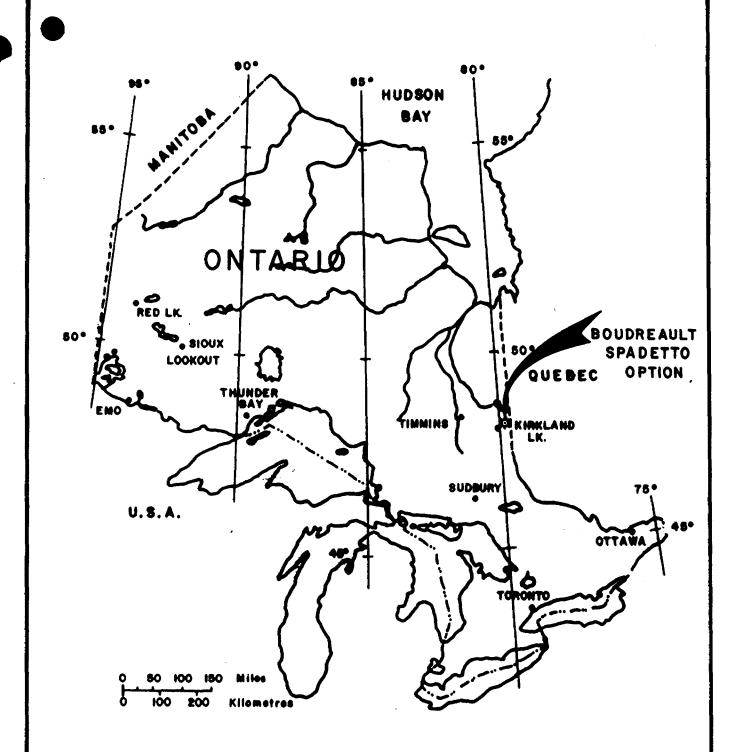
VIRGINIATOWN PROPERTY BOUDREAULT-SPADETTO OPTION

1987-88 SUMMARY REPORT

1.0 BACKGROUND INFORMATION

1.1 INTRODUCTION

The Virginiatown Property comprises 16 contiguous claims held under option by Northern Dynasty Explorations Ltd. from local prospectors Bernard Boudreault and Gabrielle Spadetto. The option commenced April 1, 1987 and is due for renewal April 1, 1988. The property was optioned on the basis of its very close proximity to the large Kerr Gold Mine (over ten million ounces past production) of Golden Shield Resources Ltd. and its similar structural setting.


1.2 LOCATION AND ACCESS

The property is located 1.2 miles (2 km) north of Virginiatown, Ontario, and three miles (5 km) west of the Quebec-Ontario provincial border (Figure 1). The center of the property is at $79^{\circ}34$ W Long / $48^{\circ}09$ N Lat. on N.T.S. sheet 32D/4.

All season road access is available to the property via the Cheminis Lumber Road which runs north from North Virginiatown on Highway 66. The Ontario Northlands Railroad passes through the northern part of the property and an electrical powerline corridor cuts the southern part of the property (Figure 2, Plate 1).

1.3 PHYSIOGRAPHY

Much of the area is characterized by bedrock hills and ridges separated by swampy gullies. Other areas are flat and underlain by sandy till and clay.

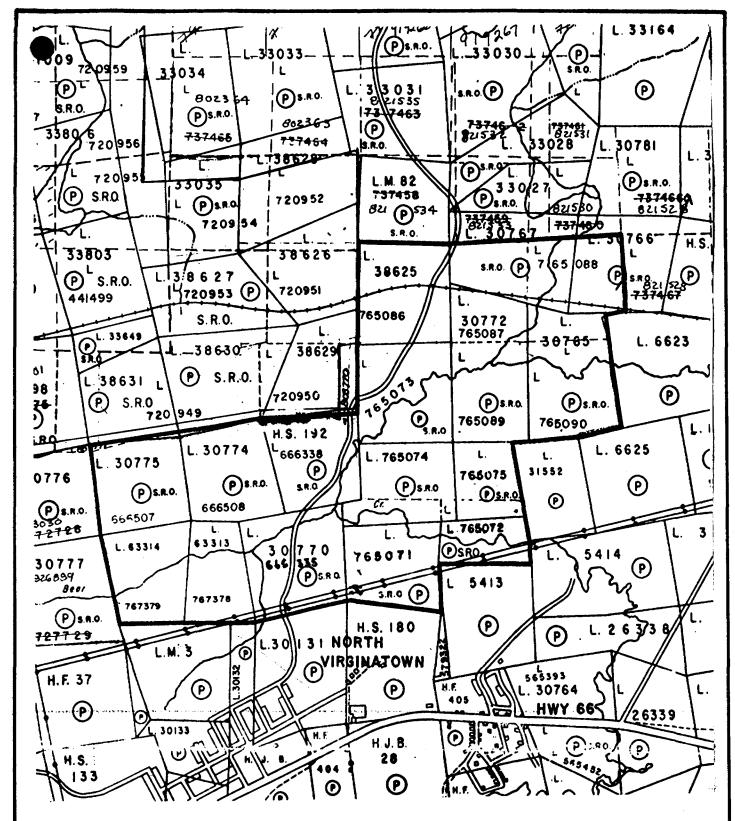
VIRGINIATOWN PROJECT

NORTHERN DYNASTY EXPLORATIONS LTD.

PROPERTY LOCATION MAP

1.4 CLAIM STATUS AND TITLES

The property is located in the Larder Lake Mining Division of Ontario with recording offices in Kirkland Lake. It comprises 16 contiguous claims (Figure 2) owned equally by Bernard Boudreault of Larder Lake and Gabrielle Spadetto of Swastika The property is under option to Northern Dynasty Explorations Ltd. of Vancouver, British Columbia (see Appendix 1 for addresses). All claims have been brought to lease pending land surveys (Table 1 and Appendix 2).


1.5 PERSONNEL AND SURVEY DATES

The work recorded in this report was completed in several phases between June 9, 1987 and February 29, 1988. A detailed breakdown of the work periods and personnel involved is in Appendix 3.

1.6 HISTORY

- 1902-25: Various studies on the geology and mineral deposits of the area were carried out by the Ontario Bureau of Mines and the Geological Survey of Canada (Thomson, 1943).
- 1906: Dr. Reddick makes original gold discoveries near the present site of the Kerr Gold Mine just south of the Virginiatown Property, which lead to a large staking rush.
- 1936 : First large tonnage of ore found at the Kerr Gold Mine (Thomson, 1943).
- 1938: The Hay-Thompson Claims which cover much of the present Virginiatown Property, were consolidated. Thomson (1943) reports the discovery of "a few small quartz veins and stringers ... but no gold discovery of economic importance."
- 1938-40: J.E. Thomson (1943) carried out a comprehensive geological mapping program which also included detailed examination of the mineral deposits in McVittie and McGarry Townships.
- 1930-50 ? : Numerous overgrown pits, trenches, and shallow shafts sunk on quartz veins are present on the Virginiatown Property.

 There is no known record of this work.

VIRGINIATOWN PROJECT

NORTHERN DYNASTY EXPLORATIONS LTD.

CLAIM MAP

Mc GARRY TWP. M 369

2

TABLE 1

VIRGINIATOWN PROPERTY

CLAIM STATUS *

CLAIM NUMBER	NUMBER OF CLAIMS	EXPIRY DATE		
L.666335	1	Lease - Survey by March 11, 1989		
L.666338	1	Lease - Survey by March 11, 1989		
L.666507-666508	2	Lease - Survey by March 11, 1989		
L.765071-765075	5	Lease - Survey by May 10, 1989		
L.765086-765090	5	Lease - Survey by May 17, 1989		
L.767378	1	Lease - Survey by Nov. 4, 1989		
L.767379	1	Lease - Survey by Nov. 7, 1989		
T	OTAL 16 claims	- ·		

^{* -} See Appendix 2 - Table of Assessment Credits - for details.

- 1948 : Geological Survey of Canada (1951) flew airborne magnetics over the area as part of a large regional program.
- 1959: H.S. Hay (1959) drilled two short holes (101 ft. and 103 ft.) on the property at approximate grid locations 38+50W,21+50S (collar found) and 48+50W,23+00S (collar not found in field) respectively.
- 1950-70 ? : Seven other drill collars on the Virginiatown Property were found by the author or reported to the author by G. Spadetto. There is no known record of this work. The collars are plotted on Plate 1 and located at : 0+00/4+00N ? (2 collars reported, none found); 33+50W/7+00S "Waterhole" (2 collars found); 34+80W/0+60S (1 collar found); 43+00W/20+00S (1 collar reported, not found); 54+15W/1+40S (1 collar found).
- 1979: Jensen (1979) and Jensen and Langford (1985) geologically re-mapped the general Kirkland Lake area in an attempt to unravel the stratigraphy.
- 1979: Questor Surveys Limited (1979) flew airborne magnetics and electromagnetics over the area as part of a large regional survey for the Ontario Geological Survey.
- 1981: Lampe Resource Co. Ltd. carried out ground magnetic and VLF electromagnetic surveys over the west half of the Virginiatown Property (Forbes and Leahy, 1981).
- 1984: The Virginiatown Property was staked by B. Boudreault and G. Spadetto. Ground magnetic and VLF electromagnetic surveys were carried out over the entire property (Leahy, 1984A,B).
- 1985 : B. Boudreault and G. Spadetto carried out local trenching and stripping (Spadetto, 1985).
- 1986: Hamilton (1986) re-mapped the geology and structure of the area with emphasis on understanding the gold deposits as part of a Master of Science thesis project.

2.0 GEOLOGICAL REPORT

2.1 INTRODUCTION

The geology of the Virginiatown Property was compiled from mapping during the summer and autumn of 1987, and drilling (see Section 6.0) during the winter of 1987-88 (Plate 1). The property is traversed by a cut grid with 300 foot-spaced (90 m) cross-lines. Mapping was initially conducted on every second cross-line due to time constraints and select areas were later mapped in more detail.

2.2 REGIONAL GEOLOGY

The Virginiatown Property is located in the southern Abitibi greenstone belt which is the largest and economically important belt of the Superior Province in the Canadian Shield. The Virginiatown area is mainly underlain by Early Precambrian (Archean) metavolcanics, metasediments, and plutonic rocks. To the southeast, remnants of Middle Precambrian (Huronian) metasedimentary rocks unconformably overlie the Archean rocks (Figure 3).

The metavolcanic rocks in the western Abitibi greenstone belt comprise successive volcanic piles, each composed of komatiitic flows at the base overlain by tholeiitic and calc-alkaline rocks, and capped by alkalic rocks (Jensen, 1979). In the Virginiatown area, the Upper Supergroup of Jensen (1980) is dominant and comprises one such volcanic pile (Figure 4). The basal komatiitic section of the pile is called the Larder Lake Group which is conformably succeeded by the tholeiitic basaltic to rhyolitic flows of the ten kilometre thick Kinojevis Group. This is overlain by the ten kilometre thick Blake River Group which consists of calc-alkaline and tholeiitic basalts, and calc-alkaline andesites to rhyolites. The pile is capped by a three kilometre thick section of Timiskaming Group alkalic metavolcanics and associated metasediments.

The Virginiatown Property is located in a metasedimentary dominant portion of the Timiskaming Group.

MEFADDEN

- 48°15'

48°00'

BOUDREAULT SPADETTO

OPTION

LEGEND

CENOZOIC

PLEISTOCENE AND RECENT

Till, varved clay, sand, gravel, peat.

UNCONFORMITY

MESOZOIC

---19---

19 Kimberlite: dikes.

INTRUSIVE CONTACT

PALEOZOIC

LOWER AND MIDDLE SILURIAN

18 Thornloe Formation: limestone, dolomite, sandstone. Wabi Formation: limestone, shale.

MIDDLE AND UPPER ORDOVICIAN

17 Dawson Point Formation: shale. Farr Formation: limestone. Bucke Formation: limestone, shale. Guigues Formation: sandstone UNCONFORMITY

PRECAMBRIAN

LATE PRECAMBRIAN MAFIC INTRUSIVE ROCKS

16 Diabase: dikes.

INTRUSIVE CONTACT

MIDDLE PRECAMBRIAN ALKALIC INTRUSIVE ROCKS

15 Syenite, nepheline syenite.

MAFIC INTRUSIVE ROCKS

14 Diabase, granophyre: sheets and

INTRUSIVE CONTACT

HURONIAN SUPERGROUP

COBALT GROUP Lorrain Formation

13 Quartzite, arkose.

Gowganda Formation

12 Unsubdivided. 12a Firstbrook Member: argillite, grey-wacke, siltstone, arkose.

12b Coleman Member: conglomerate, arkose, greywacke, quartzite, argil-

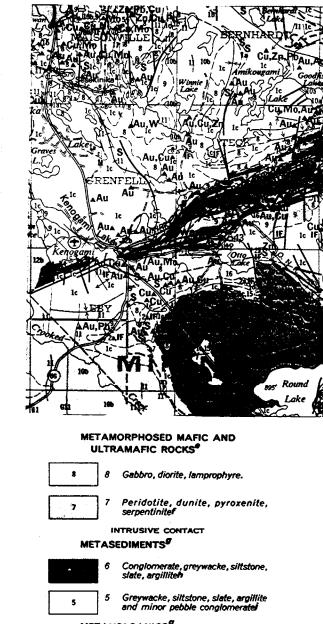
UNCONFORMITY

EARLY PRECAMBRIAN MAFIC INTRUSIVE ROCKS

11 Diabase: dikes.

INTRUSIVE CONTACT

FELSIC INTRUSIVE ROCKS



10a Quartz porphyry, quartz-feldspar porphyry, feldspar porphyry, gran-ophyre, felsited 10b Trondhjemite, granodiorite, quartz monzonite: simple batholiths and

10c Trondhjemite, granodiorite, quartz monzonite, quartz diorite, aplite, pegmatite, migmatite: complex batholiths.

Syenite, monzonite, feldspar porphyryd

METAVOLCANICS 9 ALKALIC METAVOLCANICS*

4 Trachyte, leucitic trachyte; flows, tuff, breccia.

ULTRAMAFIC METAVOLCANICS

Serpentinized dunitic and peridotitic flows.

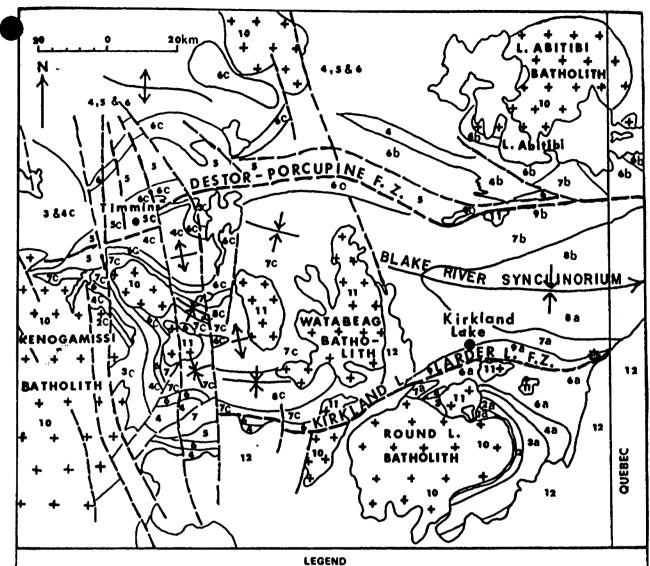
FELSIC METAVOLCANICS

2 Unsubdivided. 2a Pyroclastic rocks. 2b Flows.

INTERMEDIATE AND MAFIC METAVOLCANICS!

Unsubdivided. Intermediate flows.

Intermediate pyroclastic rocks. 1c Mafic flows and pyroclastic rocks.


Iron formation and ferruginous chert units 1, 2, 4, and 5).

Sulphide mineralization.

VIRGINIATOWN PROJECT NORTHERN DYNASTY EXPLORATIONS LTD.

REGIONAL GEOLOGY

FEB 1988

Proterozoic

Keeweenawan diabase (not shown)

12 Cobelt Group

Archeen

Matachewan diabase (not shown)

Grenitic rocks

- 11 Granodiorite, monzonite, quartz monzonite, syenite
- 10 Massive to gneissic quartz diorite, tonalite, trondhjemite

- Upper Supergroup
 9 9e* Timiskeming Group, 9b** Destor-Porcupine Complex
 - 8a, 8n, Blake River Group, 8c*** Blake River (Upper Fm., Tisdele Group)

- 7 7e, 7b, Kinojevis Group, 7c Kinojevis Group, (Middle Fm., Tiedele Group)
 6 6e Larder Lake Group, 6b Stoughton Roquemeure Group, 6c Lower Fm., Tiedele Group
- 5 Sc Porcupine Group

Lower Supergroups

- 4 4a Skeed Group, 4b Hunter Mine Group, 4c Upper Fm., Deloro Group 3 3e Cetherine Group, 3c Middle Fm., Deloro
- Group

 2 2s Webewews Group, 2c Lower Fm. Deloro
- Group
 1 1a Paceud tuffs****

BOUDREAULT SPADETTO OPTION

REGIONAL SETTING (FROM JENSEN 1980)

2.3 REGIONAL STRUCTURE

This portion of the Abitibi greenstone belt is marked by three dominant structural features : the Blake River Synclinorium, the Destor-Porcupine Deformation Zone (DPDZ) and the Kirkland Lake-Larder (KLDZ) (Figure 4). Deformation Zone The Blake River Synclinorium is a major broad east-west structure which trends down axis of the greenstone belt and has deformed most of the the central Archean stratigraphy. The DPDZ and the KLDZ are two subparallel strong deformation several kilometres wide. synclinorium and two flanking deformation zones are thought to be the product of downwarping in the crust under the weight of successive volcanic piles - the synclinorium formed along the basin center axis the thickest volcanic deposits and maximum downwarping occurred, and the deformation zones formed sympathetic basin margin faults with long histories of repeated movement (Jensen and Langford, 1985).

The DPDZ and KLDZ are marked by abundant and often intense metasomatic alteration, and play host to most of the gold deposits of the district. The well known Larder Lake Break is a distinct ductile fault zone which occurs within the KLDZ and is characterized by intense chromium mica alteration.

The Virginiatown Property is located entirely within the KLDZ north of the Larder Lake Break.

2.4 PROPERTY GEOLOGY

2.4.1 INTRODUCTION

The Virginiatown Property is characterized by a complex of Timiskaming Group metasediments and lesser metavolcanics with local mafic dikes and sills, and very minor small syenitic to granitic intrusives (Plate 1). Numerous faults and folds of several generations deform these lithologies. The mapping was not carried out in sufficient detail to either support or contradict the structural domains outlined by Hamilton (1986).

Metamorphic grade on the property is probably sub- to lower greenschist as indicated by analogy with the studies of Jolly (1978) in the Kirkland Lake area and the noted lack of higher grade metamorphic minerals on the property.

2.4.2 DESCRIPTIONS OF LITHOLOGIES

A variety of interdigitated and repetitive rock units occur on the property. The following general descriptions of each rock type are based on observations in outcrop and drillcore. More detailed descriptions of these lithologies can be found in the drill logs of Appendix 7.

2.4.2.1 Conglomerates and Agglomerates

Conglomerates and agglomerates form the wide prominent 100 ft. (30m) high ridge that trends from the southwest corner of the property to the intersection of the railroad and the eastern property boundary (Plate 1). Several other parallel conglomerate horizons occur to the north.

The unaltered conglomerates are typically massive and polymictic with dark to medium grey open greywacke matrix. Weathered surfaces are light grey to buff brown. Clasts are usually a variety of pebbles and cobbles — most common are pink syenite/trachyte clasts but a large variety of other lithologies are evident including various sandstones, greywackes, siltstones, basalts, tuffs, and red jasper.

Locally these conglomerates grade into sections with only one or two clast types in a purple-grey tuffaceous (euhedral crystalbearing) matrix. These sections have been called agglomerates and are most common along the main Conglomerate + Agglomerate ridge noted above.

2.4.2.2 Greywackes, Siltstones, and Shales

Greywackes are common throughout the property. They are invariably interbedded with lesser siltstones and sandstones, and locally shales and conglomerates on scales of centimetres to metres. Siltstone and shale dominant units were distinguished in places (Plate 1).

The greywackes are typically dark to light grey and show a variety of primary depositional textures such as flame structures, crossbedding, scourmarks and graded beds with stratigraphic tops consistently oriented to the south.

Siltstones are typically light grey and serecitic. They are normally thinly bedded to laminated where not associated with greywackes. Shales vary from serecitic light grey to carbonaceous black sections interbedded with siltstones and greywacke Where found in abundance they form recessive weathering bedded to laminated units $(\underline{e},\underline{g},-drillhole\ VT-88-5$, Appendix 7).

2.4.2.3 Basalts and Andesites

Dark and medium greyish green units of igneous rocks have been called basalts and andesites respectively. Massive to locally pillowed sections occur in metavolcanic units. Massive basaltic to gabbroic units showing only minor deformation and alteration, in contrast to most other lithologies on the property, have been labelled dikes and sills.

2.4.2.4 Felsic Volcanics and Serecite Schists

A rock unit on the west side of the property has been called a felsic volcanic. It comprises light grey to light green, highly serecitic, often schistose rocks associated with basalts and andesites. Locally it contains sparse euhedral feldspar crystals. The unit appears in gradational contact with basalt at 48+00W, 1+00N, and thus may be, at least in part, an altered mafic volcanic. Diagnostic evidence of felsic volcanism in this unit has yet to be noted.

Elsewhere, serecite schists intercalated with siltstones and greywackes on a centimetre scale and larger, are altered metasediments as indicated by partially altered sections where primary textures are still discernable (see Section 2.6).

2.4.2.5 Syenite and Granite Intrusives

Felsic intrusives are rare on the property. A small granitic body occurs at 11+70E/22+00N. A possible syenite body was intersected over 90 ft. (28 m) in drillhole VT-88-4. Small (less than 4 inch (10 cm)) felsic dikelets occur elsewhere (e.g. - drillhole VT-87-2, Appendix 7).

2.4.3 QUATERNARY GEOLOGY

Topography on the property is bedrock controlled with more massive rock units usually marked by rock knobs and ridges, and schistose units occurring in low lying areas. Glacial striations generally trend 167-177^{cs} Azimuth. Valleys are typically underlain by clay and locally matrixless boulder deposits. Poplar flats (Plate 1) are underlain by boulder and sand till, and in places, clay.

2.5 PROPERTY STRUCTURAL GEOLOGY

The property is located within the Kirkland Lake-Larder Lake Deformation Zone (KLDZ) and has experienced a varied and complex history of deformation, the bulk of which remains unresolved.

The most prominent structural feature on the property is a well developed pervasive penetrative foliation which normally varies 040-055° Azimuth with subvertical dip (Plate 1). This foliation is poorly developed in more massive, unaltered rock units and toward the north and southeast corners of the property. It becomes strongly foliated to schistose along the southwest-northeast central axis of the property. A second penetrative foliation is locally developed at a small angle to the main foliation.

The schistose sections are often moderately to highly altered shear zones up to 250 ft. (75 m) wide and subparallel to the central axis of the property (see Section 2.6). The offset on these zones is not known. These altered shears on the property are parallel to the shears which appear to control gold mineralization at the Kerr Mine just to the south.

High angle cross-faults are ductile to brittle structures and, in the case of the Beaver Dam Fault, show significant alteration (see drillhole VT-87-3, Appendix 7). Northeast trending structures such as the Beaver Dam Fault host gold mineralization in the Kirkland Lake Mining Camp and elsewhere, and are considered to be important exploration targets. The northeast trending Highway Fault on the west side of the Kerr Mine orebodies, may be continuous with the Beaver Dam Fault.

Other major airphoto lineaments such as the Hamilton Fault (Plate 1), are late brittle structures and occur as wide grey mud seams in drillcore (see drillhole VT-87-4, Appendix 7).

2.6 PROPERTY ALTERATION

Alteration zones on the property are varied and often intense - iron carbonate, bleaching/serecite, potassium feldspar, and chromium mica alteration all occur, often in combination. Local zones of silicification and sulphidization are also present. Alteration is usually most intense in zones of shearing but also occurs in more massive units such as the conglomerates, where it may form patchy mosaics on scales of centimetres to metres.

Iron carbonate alteration is pervasive throughout most of the property (Plate 1). It occurs as fine to coarse disseminated grains of ankerite (?) in all lithologies and weathers to a distinctive rusty rind. It typically comprises less than 10% of individual outcrops but in more schistose sections it often increases to 40%.

Bleaching is widespread and is especially visible in drillcore. greywackes, siltstones, and shales, bleaching is reflected by a colour change from grey to light (serecitic) green and off-white. The colour change is a reflection of carbon loss and possible serecite (potassium) addition with partial to complete destruction of primary textures. In conglomerates similar colour changes and carbon loss occur; serecite addition is more intense and obvious in these units as matrix and clasts of varying primary composition are partially or wholly altered to homogenous sections of light green serecite (e.g.- drillhole VT-88-2, Appendix 7). Similar partial colour bleaching and serecite addition have been observed locally in (e.g.- at 48+00W, 1+00N); "felsic volcanics" in this vicinity basalts in fact, be highly bleached and serecitized mafic volcanics. large units of serecite schist on the property (Plate 1) are probably altered shales, siltstones, and greywackes which appear to be most susceptible to this type of alteration.

Potassium feldspar alteration is localized as patchy zones and is most prominent on the quartz stockworked rock knob on the powerline west of the Cheminis Lumber Road (48+00W, 23+00S). The alteration here is best seen in drillholes VT-87-1, 88-2, and 88-3 which tested this zone. Patches of semi-massive potassium feldspar alteration up to 50 cm diameter occur over a 250 ft. (75 m) interval in proportions ranging from nil to 40%. It typically overprints iron carbonate and serecite alteration, and is usually unfoliated indicating that it is a late stage product of the hydrothermal system. A similar pink alteration occurs at the Lakeshore Gold Mine in Kirkland Lake where it is attributed to hematization.

Chromium mica alteration is locally present. It typically occurs as disseminated flakes (normally less than 2%) in serecite schist and felsic volcanics. Elsewhere chromium mica is present in greywackes and conglomerates but appears to be in the form of primary depositional grains or pebbles (e.g. - 29+90W/9+20S). Kerr Mine-type "green carbonate" alteration was not found on the property.

Silicification is usually present as envelops on quartz veins and stockworks. It does not occur in large zones nor is it widely distributed.

Magnetite occurs as disseminated grains in some sections of conglomerate. Where these conglomerates have been affected by moderate to intense alteration, magnetite and locally chlorite have been sulphidized to pyrite and rarely pyrrhotite (see Section 4.2 - Anomalies VM-4 and VM-5).

2.7 PROPERTY MINERALIZATION

No economic gold mineralization was found on the property but, locally, encouraging gold assays were obtained. A grab sample taken from quartz + tourmaline veinlets exposed in an old trench at 17+40W/17+00N assayed 0.26 oz/ton Au (9.1 g/t); subsequent chip sampling failed to extend this zone. In drillhole VT-87-1 a 3.9 ft. (1.2 m) half core sample in altered conglomerate assayed 0.05 oz/ton Au (1.6 g/t); further assaying and drilling failed to extend or upgrade this section.

Anomalous gold values were also obtained from altered shears and quartz veins in a number of other locations (Plate 4). Many old pits, trenches, and shallow shafts tested quartz veins on the cliff marking the southern contact of the main Conglomerate + Agglomerate ridge and numerous other locations (Plate 3). A few anomalous gold values were obtained from these sites. In other areas, quartz + iron carbonate + tourmaline veins and stockworks, some hosting minor pyrite and chalcopyrite (e.g.- trench at 36+80W/1+50N), did not return appreciable gold values. Quartz + tourmaline stockwork veins in a possible small syenite intrusive (drillhole VT-88-1, Appendix 7) also did not return appreciable gold values.

Zones of sulphide mineralization are sparse. Locally up to 10% disseminated pyrite occurs in greywackes but appears to be of sedimentary origin and has no significant associated gold values. Sulphidization of magnetite to pyrite in conglomerates (see Section 2.6) does not appear to have associated gold values.

In summary, many zones of encouraging alteration and quartz veining occur on the property. Some of these zones host low anomalous gold values. Higher gold values also occur but few were found in the course of the 1987-88 program.

3.0 GEOCHEMICAL REPORT

3.1 INTRODUCTION

Selective geochemical sampling was carried out on the Virginiatown Property during the 1987 field season. Full technical data statements and procedure records are included in Appendix 4. Results for all chemical analyses are listed in Appendix 5 and on Plates 2, 3, and 4.

Grid soil samples were collected along ten grid lines spread over the entire property (Plate 2). Off-grid soil samples were collected at the discretion of field personnel (Plates 3 & 4). Rusty brown to brownish red 8-horizon samples were preferentially collected. Where 8-horizon samples were not available, decomposed A-horizon samples were collected. In areas underlain by dense clay, few if any soil samples were taken.

Rock samples were collected at the discretion of field personnel (Plate 3 & 4). Most of these samples are grab and representative samples from old excavations and other alteration zones.

Extensive half-core sampling was done on drillcore from the winter drill program (Section 6.0). All alteration and mineralization deemed to be of any possible significance was sampled.

Soil samples were sieved to -80 mesh and rock and drillcore samples were crushed to -100 mesh for analysis. All samples were analysed for gold (fire assay / atomic absorption finish) by Accurassay Laboratories Ltd. of Kirkland Lake. Precision and accuracy of these assays were good based on inhouse checks on every tenth sample by Accurassay, and blind external checks by Acme Analytical Laboratories of Vancouver, B.C. Select soil, rock, and drillcore samples were analysed for 30 elements by Induced Cation Plasma (I.C.P.) Spectometry by Acme Analytical (Appendix 5).

Most sample pulps and rejects are stored with the drillcore in the abandoned theatre in Larder Lake.

3.2 SOIL GEOCHEMISTRY - DISCUSSION OF RESULTS

Gold assays for soil samples are plotted on Plates 2 and 4. Threshold values for gold in soils were not rigorously determined but assumed to be 15 ppb based on experience elsewhere. Priority was given during follow-up prospecting to multi-station anomalies with values well above this threshold.

In general anomalous results in precious and base metals are commonly higher in soils than in local bedrock and it is suspected that the source of at least some of the soil anomalies lies in the smokestake at the Kerr Gold Mine mill 1.2 miles (2 km) to the south.

The soil gold anomalies discussed below are plotted on Plate 2.

Anomaly VS-1

Location : 60+00W, 21+00S

This anomaly overlies a topographic bedrock high and adjacent cliff area. The only mineralization noted in the area was large (up to 6 ft. (2 m) diameter) bull quartz boulders. These boulders did not return significant gold values nor did they host sulphides. No other mineralization was seen.

This anomaly is probably cultural and associated with the Kerr smokestake.

Anomaly VS-2

Location: 48+00W. 24+00S

This anomaly is coincident with a prominent bedrock knob on the hydroelectric powerline. The most significant alteration (iron carbonate, bleaching, serecite, and potassium feldspar) found on the property occurs here as well as significant quartz + carbonate veins and stockworks (see drill logs for holes VT-87-1, 88-2, and 88-3 in Appendix 7 for details). Despite this encouraging geology, none of the surface rock samples returned anomalous gold values (Plate 4) and with the exception of a single value of 0.05 oz/ton Au (1.6 g/t) over 3.9 ft. (1.2 m) in drillhole VT-87-1, no other significant gold values were found in drillcore.

This soil anomaly may, in part, be due to sparse elevated bedrock gold values and, in part, be due to cultural contamination from the Kerr mill smokestack.

Anomaly VS-3

Location : 36+00W, 21+00S

This anomaly overlies the next prominent bedrock knob east of anomaly VS-2. It too hosts significant alteration with associated quartz veining but not as extensive nor intense as that associated with anomaly VS-2. Similarly, no significant bedrock gold values were obtained here (Plate 4).

This anomaly may, in part, be due to erratic bedrock gold values, but is probably mainly cultural contamination from the Kerr mill smokestack.

Anomaly VS-4

Location: 21+00W, 20+00S

This anomaly is also situated on a bedrock hill. Some mineralization is locally present. Downhill and Just east of the anomaly, a series of trenches and pits expose a 3 ft. (1 m) wide quartz vein (Plate 1); no significant gold values were obtained from this vein. On the powerline at the northwest end of the anomaly a soil sample returned 1,253 ppb Au; this sample was taken over a 2 inch (5 cm) wide iron carbonated shear; two rock samples from the shear ran less than 5 ppb Au. Thus no bedrock source for the gold anomaly was found in the area.

This anomaly is probably due to cultural contamination from the Kerr mill smokestack.

Anomaly VS-5

Location: 48+00W, 2+50S

This anomaly occurs in a relatively flat area of poplars with moderate outcrop. It is partially coincident with electromagnetic anomalies VE-2 (see Section 5.2). Both the electromagnetic anomalies and the glacial up-ice portion of the soil gold anomaly were tested by drillhole VT-88-4; local alteration and quartz veining were noted but no significant gold values were encountered (see drill log VT-88-4 in Appendix 7 for details).

The source of this anomaly is not known. It is probably not, however, a reflection of local bedrock mineralization.

Anomaly VS-6

Location: 36+00W, 1+00N

This cluster of low soil gold anomalies occurs in an area of moderate outcrop. Some alteration is present in the area but not in significant abundance. A recent large bedrock trench was blasted in the area (Spadetto, 1985) to expose a quartz + carbonate + tourmaline vein 1 - 30 inches (3 - 75 cm) wide with associated minor pyrite and chalcopyrite; no significant gold values are associated with the vein. Other samples of veins and alteration zones in the area did not return significant gold values (Plate 4).

The source of this anomaly remains unknown. No significant bedrock mineralization was found in the area.

Anomaly VS-7

Location: 0+00, 1+50N

This anomaly is located on a wide flat alder and spruce valley bottom. It is underlain by sandy till and clay. Drillhole VT-88-5 located 600 ft. (180 m) to the west tested this section of the stratigraphy and found it to be underlain mainly by greywackes and carbonaceous shales and siltstones (Appendix 7).

The source of this anomaly is not known but it is probably not derived from local bedrock.

Numerous single station soil gold anomalies were also detected. All anomalies over 50 ppb Au and several anomalies less than 50 ppb Au were investigated during the field season. Most of these anomalies were in overburden-covered areas with little or no outcrop their source is not known. Some of the anomalies occur in areas of outcrop but no significant bedrock mineralization was found to be associated with any of them.

3.3 ROCK GEOCHEMISTRY

Although a number of anomalous gold values were obtained from rock samples, only two are considered to be noteworthy.

An old trench at 17+40W, 17+00N exposed a 3 ft. (1 m) section of 5% small quartz + carbonate + tourmaline veins in sheared greywacke with 10% iron carbonate and minor chromium mica. An initial grab sample of vein material returned 0.26 oz/ton Au (9.1 g/t) but later more thorough grab and chip samples returned only 180 ppb Au at best (Plate 4). The zone was traced 50 ft. (15 m) along strike to the west where the veins pinch out; overburden covers the zone to the east.

An assay of 0.05 oz/ton Au (1.6 g/t) over 3.9 ft. (1.2 m) was obtained form a serecite-altered conglomerate in drillhole VT-87-1 at 115.5-119.4 ft. (35.2-36.4 m) (see Appendix 7 for drill log). The lack of significant results from surface rock sampling and two other drillholes (VT-88-2 and 88-3) in the area suggests this is an isolated gold value.

Some 30 element Induced Cation Plasm (I.C.P.) spectrometric analyses were carried out on selected surface rock and drillcore samples from alteration zones throughout the property (Appendix 5). Based on the work of Fyon and Crocket (1983), these analyses were used in an attempt to identify alteration zones with anomalous values in pathfinder elements indicative of gold mineralizing systems. Weak anomalies in some pathfinder elements (As, Mo, Cu, Pb, Zn, and Ag) were detected in the vicinity of 48+00W, 23+00S and 30+00W, 7+00S; these zones were tested by drillholes VT-87-1/88-2/88-3 and VT-87-3 respectively. With the exception of the single value of 0.05 oz/ton Au (1.6 g/t) in drillhole VT-87-1, no significant gold values were found in either surface bedrock or drillcore sampling. Some weak pathfinder element anomalies continued to be detected in drillcore from these areas (Appendix 5).

In summary, anomalous bedrock gold values are associated with quartz veins and alteration zones. The gold values of significance found in the 1987-88 program, were few and erratic.

4.0 GROUND MAGNETICS REPORT

4.1 INTRODUCTION

A ground vertical gradient magnetic survey was carried out over the Virginiatown Property during the 1987 field season. Grid lines were surveyed at 600 ft. (180 m) spacings and tightened to 300 ft. (90 m) spacing in geologically more complex areas. Results of the survey appear on Plate 5. Technical data statements and procedure records are included in Appendix 4.

4.2 GROUND MAGNETICS - DISCUSSION OF RESULTS

The magnetic signature on the property is generally flat with only a few notable anomalies (Plate 5).

Anomaly VM-1

Location: 60+00W, 3+00S to 6+00E, 22+00N

This long and continuous anomaly traverses the entire property and roughly follows a magnetic basalt unit and adjacent conglomerate units.

Anomaly VM-2

Location: 60+00W, 12+50S to 24+00W, 2+50N

This moderately strong continuous anomaly follows a mafic dike which forms a bedrock ridge for much of its length. The eastern end of the dike abuts against the Beaver Dam Fault (Plate 1).

Anomaly VM-3

Location: 54+00W, 12+50S to 48+00W, 12+50S

This anomaly occurs in an overburden-covered area and crosscuts the general bedding and foliation trends on the property. It appears to splay off anomaly VM-2 and thus may also represent a mafic dike.

Anomalies VM-4 & VM-5

Locations : 60+00W, 23+00S to 54+00W, 21+00S and 24+00W, 3+25S to 6+00W, 7+00N

These prominent anomalies occur over the main Conglomerate + Agglomerate unit along the central axis of the property and are attributable to disseminated magnetite (commonly 1%). The gap between anomalies VM-4 and VM-5 may be due in part, to a decrease in primary magnetite content of the conglomerates, and due in part, to destruction of magnetite by sulphidization to pyrite as observed in the alteration zones of drillholes VT-87-1, 88-2, and 88-3 (see Appendix 7).

Anomaly VM-6

Location: 6+00E, 14+00N to 12+00E, 17+00N

This broad anomaly outlines an area of andesite outcrops along the eastern property boundary. The anomaly is presumably due to disseminated pyrrhotite or magnetite in the andesites.

Anomaly VM-7

Location: 18+00W, 27+00N

This strong anomaly occurs along the northern property boundary and is due to an unknown source north of the property.

5.0 GROUND ELECTROMAGNETICS (VLF) REPORT

5.1 INTRODUCTION

A ground electromagnetic (EM-16) survey was carried out over the entire grid at 600 ft. (180 m) spacings with fill-in lines at 300 ft. (90 m) spacing in areas of complex geology. Results of the survey are plotted on Plates 6 (in-phase readings and profiles), 7 (quadrature readings and profiles), and 8 (Fraser Filter contours). Technical data statements and procedure records are included in Appendix 4.

5.2 GROUND ELECTROMAGNETICS (EM-16) - DISCUSSION OF RESULTS

The anomalies discussed below are outlined on the Fraser Filter Plot (Plate 8).

Anomalies VE-1

Location: 60+00W, 17+00S to 0+00, 11+00S

This large cluster of strong subparallel anomalies follow, in part, Bear Creek which is underlain by dense grey clay. The quadrature component (Plate 7) of these anomalies in many cases, shows reverse polarity to the in-phase readings (Plate 6) indicating a shallow probably overburden source to the anomalies (Geonics Ltd, 1973). The anomalies all trend about east-west in contrast to the 040-055° Azimuth trend of the bedrock geology.

It is concluded that these anomalies, for the most part, reflect overburden clay deposits and are unrelated to bedrock geology except to indirectly outline the linear topographic depressions which mark the Bear Creek Fault and other possible subparallel faults.

Anomalies VE-2

Location: 48+00W, 0+50S and 48+00W, 2+50S

These strong one line anomalies are in part coincident with the glacial up-ice portion of geochemical soil gold anomaly VS-5. Both electromagnetic anomalies were tested by drillhole VT-88-4.

These anomalies may reflect two small unmineralized shears encountered in drillhole VT-88-4 (see Section 6.0 and Appendix 7).

Anomaly VE-3

Location: 30+00W, 0+75S

This isolated anomaly is over a topographic low with no outcrop.

The anomaly probably reflects an overburden conductor.

Anomaly VE-4

Location: 12+00W, 0+25S to 6+00E, 2+00N

This anomaly is in a low overburden covered area. It trends east-west across the strike of the local geology. It was tested by drillhole VT-88-5.

This anomaly probably reflects, in part, an overburden clay deposit and, in part, carbonaceous shales encountered in drillhole VT-88-5 (see Appendix 7).

Anomaly VE-5

Location: 6+00E, 6+50N to 12+00E, 6+75N

This small anomaly is in a low overburden covered area. It is marked by reversed quadrature and in-phase polarities.

The anomaly probably reflects an overburden conductor.

Anomaly VE-6

Location: 18+00W, 2+50N to 0+00, 9+50N

This anomaly follows a low area of deep overburden (see drillholes VT-87-5 & 87-6, Appendix 7) near Hamilton Creek and the Hamilton Fault.

The anomaly probably reflects an overburden clay deposit and possibly an underlying zone of unconsolidated fault gouge associated with the Hamilton Fault.

Anomaly VE-7

Location: 6+00E, 13+00N to 12+00E, 12+50N

This small anomaly lies in an overburden covered area and trends east-southeast across local bedrock geology trends. It is characterised by reversed in-phase and quadrature polarities.

The anomaly probably reflects an overburden conductor.

Anomaly VE-8

Location: 12+00W, 23+00N

This anomaly lies in a wide flat poplar stand with no local outcrop.

The source of the anomaly is not known.

Anomaly VE-9

Location: 6+00W, 17+00N to 0+00, 18+75N

This anomaly is located in a flat largely overburden covered area. It's definition is uncertain due to the presence of railway tracks.

The source of the anomaly is not known.

Anomaly VE-10

Location: 15+00E, 6+25N

This anomaly is in a flat overburden covered area on the eastern property boundary.

The source of the anomaly is not known.

A number of other small isolated anomalies also occur (Plate 8). They have not been investigated.

6.0 DIAMOND DRILLING REPORT

6.1 INTRODUCTION

Twelve BQ wireline diamond drillholes totalling 6346 ft. (1934.3 m) were drilled on the Virginiatown Property between November 22, 1987 and February 8, 1988 (Table 2). The holes tested a variety of geological, geophysical, and geochemical targets as described below. Drill logs with assays are attached as Appendix 7. Drillhole collars and surface projections of the holes are plotted on Plates 1 to 8.

Drillcore from all holes is stored in the abandoned theatre in Larder Lake.

6.2 DRILLHOLE SUMMARIES

Drillholes VI-87-1, 88-2, and 88-3

Locations : VT-87-1 - 47+80W, 24+60S

VT-88-2 - 52+00W, 20+20S VT-88-3 - 45+60W, 22+05S

Purpose :

- 1. To test a large zone of intense alteration and quartz veining with accompanying geochemical soil gold anomaly VS-2 (see Section 3.2) and weak gold lithogeochemical pathfinder element anomalies (see Section 3.3).
- 2. To test the intersection of topographic linears with these alteration and shear zones.

Results :

- 1. A 250 ft. (75 m) thick section of sheared conglomerates with abundant bleaching, serecite, iron carbonate, and potassium feldspar alteration and many sections of quartz veining, were encountered.
- 2. Only a single significant gold value of 0.05 oz/ton (1.6 g/t) in drillhole VT-87-1 was detected.

TABLE 2

VIRGINIATOWN PROPERTY

DRILLHOLE TECHNICAL DATA

DRILL HOLE NUMBER	CLAIM NUMBER	GRID LOCATION	DEPTH (ft./m)	DRILL COLLAR AZIMUTH /ANGLE
VT-87-1	L.767378	47+80W/24+60S	549/167.3	320~/-44~
VT-87-2	L.666338	30+75W/ 3+50S	449/136.9	1400/-469
VT-87-3	L.666338	30+30W/ 6+45S	849/258.8	1400/-500
VT-87-4	L.765073	18+60W/ 8+85N	499/152.1	1409/-459
VT-87-5	L.765073	14+50W/ 8+10N	87/ 26.5	1400/-500
VT-87-6	L.765073	12+00W/10+00N	55/ 16.7	1409/-519
VT-88-1	L.765073	14+15W/11+80N	809/246.6	3200/-530
VT-88-2	L.767378	52+00W/20+20S	539/164.3	1409/-609
VT-88-3	L.666335	45+60W/22+05S	399/121.6	3200/-450
VT-88-4	L.666508	49+20W/ 0+17N	599/182.5	1409/-459
VT-88-5	L.765075	6+20W/ 2+10S	810/247.0	3200/-450
VT-88-6	L.765089	9+60W/ 1+80N	709/216.1	3209/-469

Notes

- 1. Drill logs and sections are attached as Appendix 7.
- 2. Drillhole collars and surface projections plotted on Plates 1-8.
- 3. Drill contractor Langley Drilling 49 Jayfield Road Brampton, Ontario L6S 3G3

Drillholes VT-87-2 and 87-3

Locations : VT-87-2 - 30+75W, 3+50S

VT-87-3 - 30+30W, 6+45S

Purpose :

- 1. To test wide intense zones of surface bleaching and iron carbonate alteration and shearing.
- 2. To test the intersection of the Beaver Dam Fault with these zones of alteration and shearing.
- 3. To test an area of weakly anomalous gold pathfinder elements in surface bedrock sampling.

Results :

- 1. Most of the section is marked by moderate to intense bleaching, serecite, and iron carbonate alteration.
- 2. No significant gold mineralization was encountered.

Drillhole VT-87-4

Location: 18+60W, 8+85N

Purpose :

1. To test the Hamilton Fault in the vicinity of its intersection with the Beaver Dam Fault.

Results :

- 1. The Hamilton Fault is a late brittle (unconsolidated gouge) structure with no associated mineralization.
- 2. No significant mineralization was encountered.

Drillhole VT-87-5, 87-6, and 88-6

Locations : VT-87-5 - 14+50W, 8+10N

VT-87-6 - 12+00W, 10+00N VT-88-6 - 9+60W, 1+80N

Purpose :

1. To test a zone of alteration and local sulphides near the northern contact of the main Conglomerate + Agglomerate unit.

Results :

- 1. Drillholes VT-87-5 and 87-6 were both abandoned in deep overburden.
- 2. Drillhole VT-88-6 intersected local significant bleaching, serecite, iron carbonate, and potassium feldspar alteration. Only minor sulphides were encountered.
- 3. No significant gold mineralization was found.

Drillhole VT-88-1

Location: 14+15W, 11+80N

Purpose :

- 1. To test the basalt-conglomerate contact.
- 2. To test a weak electromagnetic conductor.
- 3. To test a small gold occurrence in a trench at 17+40W, 17+00N.

Results:

- 1. Several zones of slight to moderate alteration were intersected.
- 2. A number of syenite dikes, some with abundant quartz + tourmaline veins, were intersected.
- 3. The weak electromagnetic conductor may be due to one of several water-filled fracture zones intersected in the hole.
- 4. No significant gold mineralization was encountered.

Drillhole VT-88-4

Location : 49+20W, 0+17N

Purpose :

- 1. To test two restricted but strong electromagnetic conductors (VE-2).
- 2. To test the glacial up-ice portion of soil gold anomaly VS-5.
- 3. To test alteration zones projected from the west.

Results:

- 1. Several zones of moderate to intense alteration with local quartz veins were intersected.
- 2. The electromagnetic conductors are probably due to two small shear zones intersected in the hole.
- 3. No significant mineralization was encountered.

Drillhole VT-88-5

Location : 6+20W, 2+10S

Purpose :

東京の意見のでは、日本でも大阪でして、

- 1. To test strong electromagnetic conductor VE-4.
- 2. To test a zone of alteration, shearing and quartz veins along the southern contact of the main Conglomerate + Agglomerate unit.

Results :

- 1. Moderate bleaching, serecite, iron carbonate, and potassium feldspar alteration was intersected along the southern contact of the Conglomerate + Agglomerate unit.
- 2. The electromagnetic conductor is due in part, to a recessive weathering unaltered unit of carbonaceous shales and siltstones.
- 3. No significant gold mineralization was encountered.

In summary, despite the favourable structural setting and alteration in close proximity to the large Kerr Gold Mine, significant gold values from drilling and surface bedrock sampling on the property were few and erratic.

7.0 REFERENCES

Forbes, C.P., and Leahy, M.

1981 : Report of Geophysical Surveys during March, 1981 on "The West Grid" and "The East Grid"; Lampe Resource Company Ltd., Assessment Report 2.3861, Larder Lake Mining Division - Ontario, McGarry Township, N.T.S. 32 D/4, 13p./ 4 maps (scale 1 inch = 400 ft.)

Fyon, J.A., and Crocket, J.H.

1983 : Gold Exploration in the Timmins Area using Field and Lithogeochemical Characteristics of Carbonate Zones; Ont. Geol. Surv., Study 26, 56p. / 2 charts / 2 maps.

Geonics Ltd.

1973 ?: EM-16 Operating Manual; Geonics Ltd., Toronto, Ontario, 16p.

Geological Survey of Canada.

1951 : Larder Lake - Aeromagnetic Series - Sheet 32 D/4; Geol. Surv. Canada, Map 47G (scale 1:63 360).

Hamilton, J.V.

1986 : The Structural and Stratigraphic Setting of Gold Mineralization in the Vicinity of Larder Lake, south-central Abitibi Greenstone Belt, Northeast Ontario; unpub. M.Sc. thesis, Queen's University, 154p.

Hay, H.S.

1959: No. 1 and No. 2 Diamond Drill Holes; Assessment Report 3-2-43, Larder Lake Mining Division - Ontario, McGarry Township, N.T.S. 32 D/4, 2 brief drill logs and location maps.

Jensen, L.S.

1979: No. 15 Larder Lake Synoptic Mapping Project, Districts of Cochrane and Timiskaming; in Summary of Field Work, 1979; Milne V.G., White, O.L., Barlow R.B., and Kustra, C.R., (eds.), Ont. Geol. Surv., Misc. Paper MP90, p.64-69/ 2 figures.

Jensen, L.S.

1980: No. 13 Kirkland Lake-Larder Lake Synoptic Mapping Project, Districts of Cochrane and Timiskaming; in Summary of Field Work, 1980; Milne V.G., White, O.L., Barlow R.B., Robertson, J.A., and Kustra, C.R., (eds.), Ont. Geol. Surv., Misc. Paper MP96, p.55-60/2 figures.

Jensen, L.S., and Langford, F.F.

1985 : Geology and Petrogenesis of the Archean Abitibi Belt in the Kirkland Lake Area, Ontario; Ont. Geol. Surv., Misc. Paper MP123, 130p./ 2 maps (scale 1:63 360) / 1 microfiche.

Jolly, W.T.

1978 : Metamorphic History of the Archean Abitibi Belt; in Metamorphism in the Canadian Shield, Geol. Surv. Canada, Paper 78-10, p.63-78.

Leahy, M.

1984A: Report on Magnetic Survey, Boudreault-Spadetto Property, McGarry Township; Assessment Report 2.2689, Larder Lake Mining Division - Ontario, McGarry Township, N.T.S. 32 D/4, 5p./ 1 map (scale 1 inch = 200 ft.).

Leahy, M.

1984B : VLF-EM Survey, Boudreault-Spadetto Claims; Assessment Report, Larder Lake Mining Division - Ontario, McGarry Township, N.T.S. 32 D/4, 2 maps (scale 1 inch = 200 ft.).

Questor Surveys Limited

1979: Airborne Electromagnetic and Total Intensity Magnetic Survey, Kirkland Lake Area, McGarry Township; Ont. Geol. Surv. Map P.2267, (scale 1:20,000).

Spadetto, G.

1985 : Mechanical and Manual Labour, Boudreault-Spadetto Claims; Assessment Report, Larder Lake Mining Division - Ontario, McGarry Township, N.T.S. 32 D/4, 1 map (scale 1 inch = 200 ft.).

Thomson, J.E.

1943 : Geology of McGarry and McVittie Townships, Larder Lake Area; Ont. Dept. Mines Annual Report, 1941, v.50, pt.7, 99p. / 2 maps (scale 1 inch = 1,000 ft.).

APPENDIX 1 PROPERTY HOLDERS

APPENDIX 1

PROPERTY HOLDERS

VENDORS:

Bernard Boudreault & Gabrielle Spadetto P.O. Box 324 Larder Lake, Ontario POK 1L0

UNDER OPTION TO :

Northern Dynasty Explorations Ltd. 844 West Hastings Street Vancouver, British Columbia V6C 1C8

APPENDIX 2 TABLE OF ASSESSMENT CREDITS

APPENDIX 2

TABLE OF ASSESSMENT CREDITS 252522252225225252525252

VIRGINIATOWN PROPERTY

Claim No.		ord'g ate 			Credits Approved	Expiry Date	: : :	Filing Date	Geologic max 40	Geochem max 40	Geophys max 80	Drill:	ing	Manual	Expend. Credits
66633	5 Mar	11/8	3 2	10.89	210.89	Lease Pdg	:	March 5/84	!	Extension	to Aug 3	1/84			
						Survey by	. :	Aug 20/84			40				
						Mar 11/89	:	March 7/85		G.Spadetto) transfe	r 50%	inte		8.Boudreault
							:	March 7/85						26	
							:	Feb 25/86		Extension	to Dec 3	1/86			
							:	Sept 29/88						2.63	
							:	Sept 29/88						33.2	
							:	Sept 29/86						9.06	
							:	March 6/8			20				
							;	March 6/87			20				
							:	Feb 16/88					60		•
666338	8 Mar	11/8	3 2	10.89	210.89	Lease Pdg	:	March 5/84	1	Extension	•				
						Survey by	:	Aug 20/84			40				
						Mar 11/89	:	Sept 28/84		Order for				ing	
							:	Oct 16/84		Complied :		•			
							:	March 7/8		G.Spadetto	o transfe	r 50%	inte		B. Boudreau 1
							:	March 7/8						24	
							:	March 7/8						2	
							;	Feb 25/86		Extension	to Dec 3	1/86			
							:	Sept 29/86						2.63	
							:	Sept 29/8						33.2	
							:	Sept 29/86						9.06	
							:	March 6/8			20				
							:	March 6/8	l		20				
							:	Feb 16/88					60		
66650	7 Mar	11/8	3 2	10.89	210.89	Lease Pdg	:	Dec 20/83		Order for				ing	
						Survey by	:	Jan 18/84		Complied		_	der		
						Mar 11/89	:	March 6/8	4	Extension					
							:	Aug 20/84		۸ ا		MAG	1.	.	
							:	Sept 28/8	4	Order for				nng	
							:	Oct 16/84	•	Complied					
							:	March 4/8		b.bouorea	uit trans	iter ou	חוד מאי		to G.Spadett
							:	March 7/8						24	
							:	March 7/8	•	Fukaaada.	4- N S	1 /00		2	
							:	Feb 25/86 Sept 29/8	\$	Extension	ro nec s	1/00	•	2.63	
							•	Sept 29/8						33.2	
								Sept 29/8						9.06	
							:	March 6/8			20	FM		3.00	
							:	March 6/8			20				

Claim No.	Record'o		1 Credits or Approved	Expiry Date	: : :	Filing Geolog Date max 4	ic Geochem Geophys Orilling Manual Expend. O max 40 max 80 Credits
666508	Mar 11/8	33 210.8	9 210.89	Lease Pdg	;	Dec 20/83	Order for correction in staking
				Survey by	:	Jan 18/84	Complied with staking order
				Mar 11/89	:	March 6/84	Extension to Sept 11/84
				·	:	Aug 20/84	40 MAG
					:	Sept 28/84	Order for correction in staking
					:	Oct 16/84	Complied with staking order
					:	March 4/85	8.Boudreault transfer 50% interest to G.Spadette
					:	March 7/85	26
					:	Feb 25/86	Extension to Dec 31/86
					:	Sept 29/86	2.63
					:	Sept 29/86	33.2
					:	Sept 29/86	9.06
					:	March 6/87	20 EM
					:	March 6/87	20 EM
					:	Feb 16/88	60
765071 May	May 10/8	3 208.8	9 208.89	Lease Pdg	:	May 3/84	Extension to Oct 31/84
				Survey by	:	Aug 20/84	40 MAG
			May 10/89	:	Sept 28/84	Order for correction in staking	
				•	:	Oct 16/84	Complied with staking order
					:	March 7/85	G.Spadetto transfer 50% interest to 8.8oudreau?
					:	March 7/85	24
					:	April 30/86	Extension to Sept 30/86
					:	Sept 29/86	2.63
					:	Sept 29/86	33.2
					:	Sept 29/86	9.06
					:	March 6/87	20 EM
					:	March 6/87	20 EM
					:	Feb 16/88	60
165072	May 10/8	33 208.	9 208.89	Lease Pdg	:	May 3/84	Extension to Oct 31/84
				Survey by	:	Aug 20/84	40 MAG
				May 10/89	:	March 7/85	6.Spadetto transfer 50% interest to B.Boudreau}
					:	March 7/85	24
					:	April 30/86	Extension to Sept 30/86
					:	Sept 29/86	2.63
					:	Sept 29/86	33.2
					:	Sept 29/86	9.06
					:	March 6/87	20 EM
					:	March 6/87	20 EM
					;	Feb 16/88	60

Claim No.		•		Credits Approved	Expiry Date	:	-	logic x 40	Geochem max 40	Geophys max 80	Drilling	Manua 1	Expend. Credits
765073	May	10/83	3 210.89	210.89	Lease Pdg	:	May 3/84	1	Extension.	to Oct 3	1/84		
					Survey by	:	Aug 20/84			40 1			
					May 10/89	:	Sept 28/84	(Order for	correcti	on in sta	king	
						:	Oct 16/84	(Complied w	ith stak	ing order		
						:	March 7/85	(G.Spadetto	transfe	r 50% int	erest to	B.Boudreau
						:	March 7/85					24	
						:	March 7/85					2	
						:	April 30/86	1	Extension	to Sept	30/86		
						:	Sept 29/86					2.63	
					:	Sept 29/86					33.2		
						:	Sept 29/86					9.06	
						:	March 6/87			20 1			
						:	March 6/87			20	EM		
						:	Feb 16/88				60		
765074 M	May	10/83	210.89	210.89	Lease Pdg	:	May 3/84	1	Extension	to Oct 3	1/84		
					Survey by	:	Aug 20/84			40 1	MAG		
					May 10/89	:	March 7/85	(G.Spadetto	transfe	r 50% int	erest to	8.8oudreau
						:	March 7/85					24	
						:	March 7/85					2	
						:	April 30/86	1	Extension	to Sept	30/86		
						:	Sept 29/86					2.63	
						:	Sept 29/86					33.2	
						:	Sept 29/86					9.06	
						:	March 6/87			20	EM		
						:	March 6/87			20	EM		
						:	Feb 16/88				60		
165075	May	10/83	208.89	208.89	Lease Pdg	:	May 3/84	1	Extension	to Oct 3	1/84		
					Survey by	:	Aug 20/84			40	MAG		
					May 10/89	:	March 7/85	(G.Spadetto	transfe	r 50% int	erest to	B. Boudreau
					•	:	March 7/85		•			24	
						:	April 30/86	1	Extension	to Sept	30/86		
						:	Sept 29/86					2.63	
						:	Sept 29/86					33.2	
						:	Sept 29/86					9.06	
						:	March 6/87			20	EM		
						;	March 6/87			20	EM		
						:	Feb 16/88				60		

Claim No.		-			Credits Approved	Expiry Date	: :	Date	Geologic max 40	Geochem max 40	Geophys max 80	Drilling	Manual	Expend. Credits
65086	May	17/83	208	.89	208.89	Lease Pdg	:	May 3/84	********	Extension	to Oct 3	1/84		
						Survey by	:	Aug 20/84			40 1	MAG		
						May 17/89	:	Sept 28/84	, (Order for	correction	on in stai	king	
							:	Oct 16/84	(Complied w	ith stak	ing order	-	
							:	March 4/85	5	B.Boudreau	ilt trans	fer 50% in	nterest t	o G.Spadetto
							;	March 7/85					24	,
							:	April 30/8		Extension	to Sept	30/86		
							:	Sept 29/88			•		2.63	
							:	Sept 29/86					33.2	
							:	Sept 29/88					9.06	
							:	March 6/87			20	EM		
							:	March 6/87			20			
							:	Feb 16/88				60		
765087	Mau	17/02	140	00	140 00	Lease Pdg		May 2/04	ı	Extension	ta Nav 1	0/04		
00001	ricy	11703	140	.03	140,03	•	:	May 3/84	1	CXCEIIS ION	40	-		
						Survey by May 17/89	:	Aug 20/84		P. Paudaasi			stanast 1	o G.Spadetto
						may 11/03	:	March 4/85		b. bouureau	ii trans	iei. 204 li		.o o.spadetto
							:	March 7/85		Extension	to Cont	20/06	24	
							:	April 30/8		EXCENSION	to sept	30/00	2 62	
							:	Sept 29/86					2.63	
							:	Sept 29/88					33.2	
							:	Sept 29/88				- 14	9.06	
							:	March 6/87			20			
							:	March 6/83 Feb 16/88	ſ		20	t M		
		17 (00			040.00			,			. 11 4			
765088	may	11/83	210	.89	210.89	Lease Pdg	:	May 3/84		Extension		-		
						Survey by	:	Aug 20/84		0 0	40			
						May 17/89	:	March 4/8		g.gonalegi	iit trans	ter out 1		to G.Spadetto
							:	March 7/85					24	
							:	March 7/8					2	
							:	April 30/8	_	Extension	to Sept	30/86		
							:	Sept 29/86					2.63	
							:	Sept 29/88					33.2	
							:	Sept 29/86				_	9.06	
							:	March 6/8			20			
							:	March 6/8	7		20			
							:	Feb 16/88				60		
765089	May	17/83	208	8.89	208.89	Lease Pdg	;	May 3/84		Extension	to Nov 1	9/84		
						Survey by	:	Aug 20/84			40	MAG		
						May 17/89	;	March 4/8	5	8. Boudreau	lt trans	fer 50% i	nterest	to G.Spadetto
						•	:	March 7/85					24	·
							;	April 30/8		Extension	to Sept	30/86		
				~			:	Sept 29/86			• *	•	2.63	
							;	Sept 29/8					33.2	
							:	Sept 29/81					9.06	
							:	March 6/8			20	EM	• •	
							:	March 6/8			20			
							•				• •			
							;	Feb 16/88				60		

Claim No.		•		Credits Approved	Expiry Date	: :	Filing Geologi Date max 40	c Geochem Geophys Drilling Manual Expend. max 40 max 80 Credits
765090	May	17/83	3 208.89	208.89	Lease Pdg	;	May 3/84	Extension to Nov 19/84
					Survey by	:	Aug 20/84	40 MAG
					May 17/89	:	March 4/85	B.Boudreault transfer 50% interest to G.Spadet
						:	March 7/85	24
						:	April 30/86	Extension to Sept 30/86
						:	Sept 29/86	2.63
						:	Sept 29/86	33.2
						:	Sept 29/86	9.06
						:	March 6/87	20 EM
						:	March 6/87	20 EM
						;	Feb 16/88	60
767378	Nov	4/83	208.89	208.89	Lease Pdg	:	Aug 20/84	40 MAG
					Survey by	:	March 7/85	G.Spadetto transfer 50% interest to B.Boudreau
			Nov 4/89	:	March 7/85	24		
						:	Sept 29/86	2.63
						:	Sept 29/86	33.2
						:	Sept 29/88	9.06
						;	March 6/87	20 EM
						:	March 6/87	20 EM
						:	Feb 16/88	60
767379	Nov	7/83	246.89	246.89	Lease Pdg	:	Aug 20/84	40 MAG
		•			Survey by	:	March 7/85	G.Spadetto transfer 50% interest to B.Boudreau
					Nov 7/89	:	March 7/85	24
						:	Sept 29/86	2.63
						:	Sept 29/86	33.2
						:	Sept 29/86	9.06
						:	March 6/87	20 EM
						:	March 6/87	20 EM
						:	Feb 16/88	98

TOTALS

3334.24 3334.24

0

1280

938 1116.24

0

APPENDIX 3 PERSONNEL AND SURVEY DATES

APPENDIX 3

PERSONNEL AND SURVEY DATES

VIRGINIATOWN PROPERTY

PERSONNEL

M4C 4G2

WORK PERIODS

GEORGE GORZYNSKI 3836 West 16th Ave. Vancouver, 8.C. V6R 3C7 Field: August 27 - October 12, 1987

November 22, 1987 - February 8, 1988

Office: February 10 - 29, 1988

H. ERIC EWEN 3239 Ganymede Dr. Burnaby, B.C. V3J 1A5 Field: August 27 - October 12, 1987

Office: October 15, 1987 - February 29, 1988

JERRY W. HO 1334 Woodbine Ave. Toronto, Ont. Field: August 27 - October 12, 1987

November 22, 1987 - February 8, 1988

Office : February 10 - 29, 1988

BERNARD BOUDREAULT P.O. Box 324 Larder Lake, Ont. POK 1L0

Field: June 9 - July 20, 1987

GABRIELLE SPADETTO P.O. Box 324 Larder Lake, Ont. POK 1L0

Field: June 9 - July 20, 1987

LANGLEY DRILLING 49 Jayfield Rd. Brampton, Ont. L6S 3G3 Drilling: November 22, 1987 - February 8, 1988

APPENDIX 4

TECHNICAL DATA STATEMENTS AND PROCEDURE RECORDS

837 (85/12)

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

					
				<u> 4-16)</u>	AND GEOCHEMISTRY
Township o	r Area <u>//</u>	C GARR	y TOWNSHIP		MINING CLAIMS TRAVERSED
			PULT & G. SPANETTO]	List numerically
	**********			<u> </u>	
			DYNASTY EXPLORATIONS L	TD.	L. 666.335
Author of F	Report	EORGE	GORZYNSKI, P. ENG.		(prefix) (number)
Address of	Author 3/2	36 WEST	16th AVE, VANCOUVER, B.		
Covering Da	ates of Surve	ey JUNE	15 1987 - F-TSRUARY 29,19 (linecutting to office)	188	666507
		21.5			666508
				_	765071
SPECIAL	, PROVISIO	NS	DAYS		765072
	S REQUEST		Geophysical per claim	lŀ	
n., mnn			-Electromagnetic	-	71,507.3
ł	10 days (incl ng) for first	ludes	-Magnetometer		765074
survey.	6) 101 11130		-Radiometric	1 1	765075
ENTER 2	20 days for e	each	-Other		
	l survey usin	ng	Geological	 	76,5086
same grid	•		Geochemical		76,5087
AIRBORNE	E CREDITS	(Special provis	ion credits do not apply to airborne surveys)		765088
Magnetome	ter		eticRadiometric	[765089
<i>λ.</i> /	1. 110	B	/ H Ma		
DATE: _//	19 1/8	2_ SIGNA	TURE: Author/of Report or Agent	-	765090
					767378
					767379
Res. Geol		Qualif	ications		
Previous Su		_		ļ	
File No.	Туре	Date	Claim Holder	I	
	•••••		•••••		
	•••••		•••••••		
			•••••••••••		
			•••••••••••••••••		

					TOTAL CLAIMS

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey _____Number of Readings 1978 MAG/1980 x 2 1=M Number of Stations _____ METRES @ 25 FIFT Line spacing 300 - 600 FEET Station interval _ Profile scale FM > 1cm = 100 = 101. Contour interval 50 (FRASOR FILTOR EM) \$ 56,5008, 567508, 575008, 580008 MAG. DIGITAL FLUXGATE MAGNETOMETER Diurnal correction method ONE HOUR BASE STATION TIE-INS WERE ALL WITHIN Base Station check-in interval (hours) <u>IAO</u> GAMMAS - No CORRECTION A PPLIED Base Station location and value MAIN BASE STATION AT 33+00 W, 6+255 EADING: 56870 ± 40 GAMMAS Coil separation 2 Accuracy ___ ☑ Fixed transmitter Method: ☐ Shoot back ☐ In line ☐ Parallel line EATTLE, WASHINGTON. U.S. Instrument ___ Scale constant ___ Corrections made _____ Base station value and location _____ Elevation accuracy__ Instrument _____ ☐ Frequency Domain Parameters - On time ______ Frequency _____ - Off time ______ Range _____ - Delay time _____ - Integration time Power __ Electrode array Electrode spacing ______ Type of electrode _____

DUCE COLARIZATION PLEISTIVITY

GEOCHEMICAL SURVEY - PROCEDURE RECORD

Numbers of claims from which samples taken_ALL	
Total Number of Samples 537 3011 8,87 ROCKS, 501	DRILLCORE ANALYTICAL METHODS
Type of Sample Soil, Rock (Nature of Material)	Values expressed in: per cent [년
Average Sample Weight 0.3 kg.	p. p. m. ☑ p. p. b. ☑
Method of Collection MATTOCK, ROCK HAMMER, CHISEL.	(Cu) (Pb) (Zn, (Ni) (Co) (Ag) (Mo) (As) (circle)
Soil Horizon Sampled $B_2 + (A_z)$	Others SEE BELOW
Horizon Development $A_1 - A_2 + B_1 - B_2 - C$	Field Analysis (tests)
Sample Depth 1-120 cm	Extraction Method
Terrain BEDROCK, GLACIACTILL, SWAMP	Analytical Method
	Reagents Used
Drainage Development Poor To MODERATE	Field Laboratory Analysis
Estimated Range of Overburden Thickness	No. (tests)
0-50m?	Extraction Method
	Analytical Method
	Reagents Used
SAMPLE PREPARATION	Commercial Laboratory (tests)
(Includes drying, screening, crushing, ashing)	Commercial Laboratory (
Mesh size of fraction used for analysis	Extraction Method Agus REGIA
Dours - 100 MESH	Analytical Method SEE BELOW
KOCKS: -100 MESH PULP	Reagents Used
General INDUCAD CATION PLASMA (I.C.P.)	General DTHER I. C.P. ELEMENTS:
30 ELEMENT ANALYSIS!	Mn, Fe, U, Th, Sr, Cd, Sb, Bi, V,
0.5 g SAMPLE DIGESTED IN	Ca, P, La, Cr, Mg, Ba, Ti, B, Al,
3ml OF 3-1-2 HCl-HNO2-H20 AT	Na, K, W, Au
95°C FOR 1 HOUR, THEN DILUTED TO	1 10
10 ml WITH HOD FOR T.C.P.	AU: 10 a SAMPLE: FIRE ASSAY
ANALYSIS.	WITH AN ATOMIC ABSORPTION
	FINISH.

APPENDIX 5 CHEMICAL ANALYSES

GOLD ASSAYS FOR

SURFACE BEDROCK SAMPLES

AND

SOIL SAMPLES

Geochemical Sample Identification Code :

Example - GK7-R-152

G = Sampler

K = Virginiatown Property

7 = 1987

R = Rock sample (S = Soil sample)

152 = Sequential sample number

SAMES

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.


Certificate of Analysis

8211 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8

Page #1

Work Order 870562

	SAMPLE N		Gold .
Acc	curassay		ppb
	5582Ø	L21+00W 3+00N	16
	55821	3+5ØN	⟨ 5
	55822	4+ØØN	< 5
	55823	4+5ØN	<5
	55824	5+ØØN	24
	55825	5+5ØN	<5 /2
()	55826	6+ØØN	< 5
	55827	6+5ØN	<5
	55828	7+5ØN	<5
,	55829	8+ØØN	<5
	55829	8+ØØN	6 Check
	55830	8+5ØN	<5
	55831	9+ØØN	<5
	55832	9+5ØN	<5
	55833	1Ø+ØØN	₹5 15
	55834	10+50N	<5
	55835	11+00N	₹5
	55836	11+5ØN	₹ 5
	55837	12+ØØN	∢5
	55838	12+5ØN	. <5
	55838	12+5@N	<5 Check
	55839	13+00N	47 - 10 Variable
	55840	13+5ØN	₹5
	55841	14+ØØN	<5
	55842	14+5ØN	₹5
	55843	15+ØØN	< 5
	55844	15+5ØN	<5
	55845	16+ØØN	<5
	55846	16+5ØN	<5
	55847	17+ØØN	7
	55848	17+5ØN	8
	55849	18+ØØN	7
	5585ø	18+5ØN	< 5
	5555		••

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.


Certificate of Analysis

8212 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8

Work Order 870562

SAMPLE N	IUMBER		Gold
Accurassay	Custome	r	ppb
55851		19+ØØN	< 5
55852		20+00N	<5
55853		2Ø+5ØN	< 5
55854		21+ØØN	< 5
55855		21+5ØN	<5
55856		22+ØØN	<5
55857		22+5ØN	142
55858		23+ØØN	<5
55859		23+5ØN	<5
55860		24+ØØN	<5 ←
55861		24+5ØN	<5
55862		25+ØØN	6
55863		25+5@N	5
55864	L18+00W	11+00N	<5
55865		11+5ØN	<5
55866		12+00N	<5
55867		12+5ØN	<5
55868		13+00N	<5
55869		13+5ØN	<5
55870		14+ØØN	<5
55871		14+5ØN	34
55872		15+ØØN	<5
55873		15+5ØN	11
55874		16+ØØN	<5
55875		16+5ØN	<5
55876		17+ØØN	13 -
55877		17+5ØN	<5
55878		18+ØØN	<5
55879		18+5ØN	<5
5588ø		19+ØØN	11
55881		19+5ØN	<5
55882		20+00N	8
55883		2Ø+5ØN	52 \

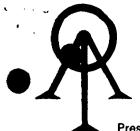
er:	 	 	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.


Certificate of Analysis

8213 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8 Page #3

Work Order 870562

SAMPLE NU	IMBER		Gold
Accurassay	Customer	•	ppb
55884	L6Ø+ØØW	Ø+ØØN	<5
55885		Ø+5ØN	5
55886		1+ØØN	< 5
55887		1+5ØN	<5
55888		2+ØØN	9
55889		2+5ØN	5
5589Ø	L63+ØØW	Ø+ØØS	<5
55891		Ø+5ØS	<5
55892		1+005	33
55893		1+5ØS	<5
55894		2+005	<5
55895		2+5#S	<5
55896		3+ØØS	5
55897		3+5ØS	<5
55898		4+005	5
55899		4+5ØS	7
55900		5+005	<5
559ø1		5+5Ø\$	<5
559#2		6+Ø#S	<5
559Ø3		6+5ØS	<5
559ø4		7+ØØS	11
55905		7+5ØS	176
55906		8+00S	< 5
55907		8+5#S	<5
55908		9+005	<5
55909		9+5#5	5
55910		10+005	10
55911		18+585	< 5
55912		11+005	<5
55913		11+505	10
55914		12+005	< 5
55915		12+5ØS	<5
55916		13+005	< 5

er:	
V1 •	

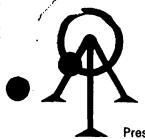
P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis


Work Order 870562

Assay results are as follows:

SAMPLE N	NUMBER	Gold
Accurassay	Customer	ppb
55917	13+5ØS	10
55918	14+005	<5
55919	14+5ØS	<5
55920	15+ØØS	<5
55921	15+5ØS	< 5
55922	16+ØØS	< 5
55923	16+5ØS	< 5
55924	17+ØØS	<5
55925	L63+00W 17+50S	< 5
55926	GK7-S100	6
55927	GK7-S1Ø1	65
55928	GK7-R100	<5
55929	GK7-R1Ø1	< 5
55 93 Ø	GK7-R1Ø2	7
55931	JK7-S1	<5
55932	JK7- S 2	13
55933	JK7- S 3	12
55934	JK7-R1	< 5
55935	JK7-R2	56
55936	JK7-R3	7
55937	JK7-R4	5
55937	JK7-R4	<5 Check

NOTE: Some Checks on the tenth sample were not performed due to Insufficient Sample.

er:	

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

8277 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8

Page #1

Work Order 870575

SAMPLE I	NUMBER		Gold
Accurassay	Customer		ppb
575ø5	63+ØØW	19+00S	12
57506		19+505	10
57507		20+005	7
57508		20+505	7
575ø9		21+005	8
5751Ø		21+5ØS	15
57511		22+ØØS	11
57512		22+5ØS	12
57513		23+005	15
57514		23+5ØS	12
57515		24+00S	13
57516	6Ø+ØØW	17+00S	29
57517		18+ØØS	84
57518		18+5ØS	22
57519		19+ØØS	35
5752Ø		19+5ØS	19
57521		2Ø+ØØS	28
57522		2Ø+5ØS	19
57523		21+00S	29
57524		21+505	26
57525		22+ØØS	16
57526		22+5ØS	21
57527		23+005	17
57528		23+5ØS	16
57529		24+005	14
5753ø	6466	W Ø+ØØS	19
57531		Ø+5ØS	19
57532 57533		1+005	19
57533 57534		1+5ØS	6
57534 57535		2+00S 2+50S	< 5
57536 57536		2+505 3+00S	<5 <5
57530 57537		3+5ØS	\ \$
5,337		J+3W3	\5

_	
er:	

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.


Certificate of Analysis

8278 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8

Work Order 870575

SAMPLE N	UMBER	Gold
Accurassay	Customer	ppb
57538	4+ØØS	8
57539	4+5ØS	21
57540	5+ØØS	<5
57541	5+5ØS	6
57542	6+ØØS	13
57543	6+5 Ø \$	12
57544	7+ØØS	7
57545	7+5ØS	6
57546	8+005	5
57547	8 +5 ØS	<5
57548	9+ 06 S	8
57549	9+5 # S	11
5755Ø	1 #+## S	6
57551	1#+5#S	23
57552	11+005	5
57553	11+5ØS	17
57554	12+06S	9
57555	12+5 0 S	45
57556	13+ 66 5	11
57557	14 +8 65	24
57558	14+5ØS	16
57559	Ø+ØØW Ø+5ØN	12
5756Ø	1+66N	16
57561	1+50N	213
57562	2+0 6 N	13
57563	2+5ØN	9
57564	3+#ØN	7
57565	3+5ØN	8
57566	4+ØØN	<5
57567	4+5ØN	<5
57568	5+ØØN	6
57569	5+5ØN	7
5757ø	6+##N	14

er:	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

8279 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8

te: _________19 _____

Page #3

Work Order 870575

SAMPLE N	IUMBER	Gold
Accurassay	Customer	ppb
57571	6+5ØN	9
57572	7+##N	9
57573	7+5#N	7
57574	8+ 00 N	9
57575	8+5 0 N	21
57576	9+ØØN	16
57577	9+5#N	10
57578	1 <i>0+66</i> N	6
57579	1Ø+5ØN	< 5
5758Ø	11+86N	6
57581	11+5ØN	19
57582	12+66N	< 5
57583	12+5#N	6
57584	13+ 66 N	<5
57585	21+06W 6+06 N	53
57586	Ø+5ØN	16
57587	1+00N	12
57588	1+5#N	18
57589	2+86N	6
5759ø	21+06W 0+50S	< 5
57591	1+66S	10
57592	1+505	<5
57593	2+##S	8
57594	2+5ØS	44
57595	3+66S	6
57596	3+5ØS	9
57597	4 +6 65	93
57598	4+5ØS	9
57599	5+00S	6
57600	5+5 0\$	16
576ø1	6+ØØS	< 5
57602	6+5ØS	10
576#3	7+ØØS	8

er:	
er:	

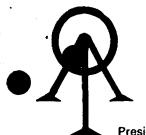
P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis


Northern Dynasty Explorations
844 West Hastings Street
Vancouver B.C.
V6C 1C8

Page #4

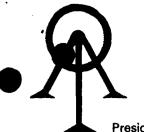
Work Order 878575

,			
SAMPLE NUMBER		Gold	
Accurassay	Customer	ppb	
576#4	7+505	· . <5	
57605	8+005	<5	
57606	8+5#S	8	
57607	9+005	13	
57608	9+5#S	12	
576#9	10+00S	7	
5761#	1Ø+5ØS	Missing	
57611	33+00W 0+50S	<5	
57612	1+##S	< 5	
57613	1+5ØS	<5	
57614	2+ 60 S	7	
57615	2+5ØS	8	
57616	3+ 06 S	24	
57617	3+5#S	13	
57618	4+ØØS	31	
57619	4+5ØS	9	
5762 ø	5+ØØS	<5	
57821	5+5#\$	8	
57622	6+005	7	
57623	33+00W 6+00N	16,	
57624	Ø+5ØN	5	
57625	1+00N	26	
57626	1+5#N	5	
57627	2+00N	<5 7	
57628	2+5#N		
57629	3+00N	13	
5763#	3+5#N	8	
57631	4+86N		
57632 57633	4+5ØN 36+00W 0+00N	9 24	CO GUALT ROPPIA
57633 57634		11	The state of the state of
57634 57635	0+50N	19	• •
57635	1+00N	19	
57636	1+5ØN	16	

Per:		
PAr.		

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.


Certificate of Analysis

Northern Dynasty Explorations
844 West Hastings Street
Vancouver B.C.
V6C 1C8

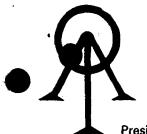
Work Order 870575

SAMPLE N	UMBER		Gold
Accurassay	Customer		ppb
57637		2+##N	19
57638		2+5#N	13
57639		3+66N	8
57640		3+5ØN	35
57641		4+88N	9
57642		4+5ØN	<5
57643	36+00W	Ø+5ØS	<5
57644		1+888	12
57645		1+5#\$	<5
57646		2+668	< 5
57647		2+5 #\$	15
57648		3+888	18
57649		3+5#5	<5
5765Ø		4 +88 5	< 5
57651		4+5#8	20
57652		5+ 00\$	12
57653		5 +5# \$	11
57654		6+##\$	<5
57655		8+5 0 S	16
57656		7+888	19
57657		7+5#S	18
57658		8+965	7
57659		8+5#\$	6
5766Ø		9+665	6
57661		11+665	7
57662		11+5#5	<5
57663		12+00S	11
57664		12+5#\$	13
57665		13+065	11
57666		13+508	8
57667		14+665	6
57668		14+505	<5
57669		15+ØØS	9

Per:		

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.


Certificate of Analysis

8282 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8

Work Order 87#575

SAMPLE NU	MBER		Gold
	Customer		ppb
5767Ø		15+5#5	5
57671		18+885	<5
57672		16+5#S	₹5
57673		17+885	<5
57874		17+505	<5
57675		18+##S	<5
57676		18+5#\$	5
57677		19+865	36
57678		19+5#S	51
57679		20+665	69
57680		20+505	85
57681		21+005	22
57682		21+5#5	28
57683		22+005	161
57684		22+5#\$	29
5 76 85		23+665	15/
57686	36+00W	12+6 # S	< 5
57687	21+00W	11+005	6
57688		11+505	8
57689		12+665	<5
5769ø		12+505	11
57691		13+005	15
57692		13+505	25
57693		14+865	18
57694		14+505	<5
57695		15+005	<5
57696		15+5#\$	<5
57697		16+665	<5
57698 57698		16+505	51
57699 57700		17+665 17+565	1 #
577Ø1		18+88S	7
577Ø1 577Ø2		18+5ØS	16
51102		10.40.00	10

_	
Per:	
- 41	

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8 Work Order 870575

SAMPLE N	UMBER	Gold
Accurassay	Customer	ppb
577Ø3	121 19+0 0 S	62 \
57704	19+5#\$	9
57705	2Ø+ØØ\$	55
577 Ø 6	2Ø+5ØS	14 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
577 Ø 7	21+005	81
577 ø 8	21+5ØS	102
577Ø9	22+##S	125/
5771Ø	48+00W 0+50S	38 🦠
57711	1+00S	5
57712	1+5 # S	<5 /
57713	2+ØØS	58 ∤
57714	2+5 Ø S	28
57715	3+00S	5 6 (
57716	3+5ØS	54 /
57717	4+ 6 65	15
57718	4+5 ¢ S	19 ¹
57719	5+ 6 0S	73 🕴
57720	5+ 5Ø S	26 j
57721	6 +00 S	16
57722	6+5ØS	< 5
57723	7+ 0 0S	<5
57724	7+5#8	6
57725	8+00\$	1.0
57726	8+5 Ø \$	<5
57727	9+005	<5
57728	9+5ØS	<5
57729	1 0 +00S	45
5773ø	10+50S	<5
57731	11+665	257
57732	11+50\$	7
57733	12+805	<5
57734	12+5ØS	5
57735	13+ 0 0S	5

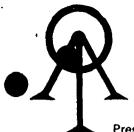
Per:	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.


Certificate of Analysis

8284 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8 Work Order 870575

Assay results are as follows:

SAMPLE N	UMBER	Gold
Accurassay	Customer	ppb
57736	13+5#S	13
57737	14+005	6
57738	14+5ØS	15
57739	15+008	<5
57740	15+5ØS	₹5
57741	16+005	7
57742	16+5 # S	<5
57743	17+0 8 S	16
57744	17+566	<5
57745	18 +66 5	<5
57746	18+5 # S	11
57747	19+885	<5
57748	19+5 <i>0</i> S	7
57749	20+005	37
5775ø	2Ø+5ØS	15
57751	21+00S	7
57752	21+5 08	16
57753	22 +00 S	19) - 10 5 6 25
57754	22+5 0 S	3 6
57755	23 +00 \$	7 ·
57756	2 3 +5 Ø S	114
57757	24 +6 65	42,
57758	48+00W 0+50 N	₹ 5
57759	1+00N	<5
5776 ø	1+5 0 N	5
57761	2+00N	<5
57762	2+5#N	<5
57763	3+06N	< 5
57764	3+5#N	8
57765	4+96N	16
57766	GK7-S-15Ø	137) NOT 1-ROM
57767	151	988 \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
57768	152	669 VIRGINIATOWN
		137 NOT FROM 988 VIRGINIATOWN PROPERTY

ORIGINAL

P.O. BOX 604 '
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

8285 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8

Page #9

Work Order 87#575

SAMPLE N	UMBER	Gold
Accurassay	Customer	ppb ,
57769	153	18) NOT FROM
5777Ø	154	
57771	155	512 VIRGINIATOWN
57772	156	
57773	157	25 PROPERTY
57774	158	(5)
57775	GK7 S-1#2	7
57776	163	15
57777	164	32
57778	105	8
57779	106	12
5778Ø	107	8
57781	168	199
57782	109	67
57783	JK7-S-4	6
57784	5	9
57785	6	13
5 7786	7	63
57787	8	7
57788	GK7-R-15 <i>6</i>	6 \
57789	151	16
577 9 0	152	19 NOT FROM
57791	159	53 VIRGINIATOWN
57792	154	89 (TIKGINIII 10 WI
57793	155	45 PROPERY
57793	155	45 CHECK
57794	156	1130
57795	157	337
57796	158	1532
57797	GK7- R-1#3	41
57798	104	8
57799	105	< 5
578 # Ø	1 ø 6	<5

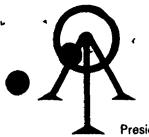
er:	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.


Certificate of Analysis

8286 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8

Work Order 870575

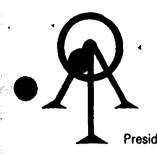
SAMPLE N	UMBER	Gold	
Accurassay	Customer	ppb	
57801	107	₹5	
578ø2	168	< 5	
57802	1 5 8	<5	Check
578#3	1#9	<5	
578#4	116	5	
57805	111	<5	
578Ø6	112	< 5	
578#7	113	6	
578#8	114	19	
578#9	115	16	
57810	JK7-R-5	6	
57811	6	. 8	
57811	6	7	Check
57812	7	9	
57813	8	< 5	
57814	9	< 5	
57815	10	6	
576 16	Ø+00W 13+5 0S	17	
57817	L48+06W 6+60	9	
57817	L48+69W 6+66	7	Check

^	
er:	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343


President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

8497 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8 Page #1

d	Gold		NUMBER	SAMPLE N
b	ppb	ner	Custo	Accurassay
	6	8E Ø+ØØB		
5	<5	Ø+5ØN		59080
4	24	1+00N		59081
5	15	1+5ØN		59082
	6	2+ØØN		59ø83
5	<5	2+5ØN		59Ø84
missing	sample mi	3+ØØN		59085
6	6	3+5ØN		59ø86
5	<5	4+ØØN		59087
6	6	4+5ØN		59ø88
5 Check	< 5	4+5ØN		59088
4	14	5+ØØN		59089
7	27	5+5ØN		59090
	5	6+ØØN		59091
	< 5	6+5ØN		59092
-	6	7+ØØN		59ø93
	23	7+5ØN		59ø94
	7	8+ØØN		59095
7		8+5ØN	•	59ø96
	10	9+ØØN	•	59097
	10	9+ØØN	•	59ø97
	11	9+5ØN		59098
	14	10+00N		59099
	10	10+50N		59100
	. 13	11+00N		59101
7 .		11+5ØN		59102
_	<5	12+ØØNB		59103
	37			59104
	18	14+5ØN		59105
	<5	15+ØØN		59106
5 Check 7	15	15+ØØN		59106
	, (5	15+5ØN		59107

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

8498 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8 Page #2

Work Order 870590

SAMPLE N	IUNBER	Gold	
Accurassay	Customer	ррь	
59109	16+5ØN	7	
59110	17+ØØN	7	
59111	17+5 0 N	7	
59112	18+ØØN	8	
59113	18+5#N	6	
59114	19+ØØN	8	
59115	19+5 ø N	8	
59115	19+5 0 N		Check
59116	2Ø+ØØN	16	
59117	2Ø+5ØN	12	
59118	21+00N	7	
59119	21+5ØN	<5	
59120	22+00N	8	
59121	22+5ØN	<5	
59122	23+ØØN	8	
59123	23+5ØN	11	
59124	24+86N	18	
59124	24+ØØN		Check
59125	24+5ØN	9	
59126	25+00NB	5	
	L9+00W 10+00NB	<5	
59128	10+50N	1.6	
59129	11+00N	6	
59130	11+5@N	<5	
59131	12+86N	12	
59132	12+5ØN	10	-
59133	13+66NB	16	A 11.
59133	13+88NB	36	Check
59134	13+5ØN	< 5	
59135	14+ØØN	<5	
59136	14+5ØN	5	
59137	15+ØØN	<5	
59138	15+5ØN	<5	

Per	
C	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

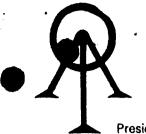
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Northern Dynasty Explorations
844 West Hastings Street
Vancouver B.C.
V6C 1C8

Page #3


. Ø9/18/87

10

Work Order 870590

SAMPLE N	IUMBER	Gold
Accurassay	Customer	ppb
59139	16+ 6 0N	<5
59140	16+5ØN	6
59141	17+ØØN	7
59142	17+5ØN	< 5
59142	17+5ØN	<5 Check
59143	18+ØØN	<5
59144	18+5ØN	<5 ,
59145	19+ØØN	< 5
59146	19+5ØN	<5
59147	20+00N	< 5
59148	2Ø+5ØN	sample missing
59149	21+ØØN	14
5 9 15Ø	21+5ØN	<5
59151	22+ØØN	<5
59151	22+ØØN	<5 Check
59152	22+5ØN	<5
59153	23+ØØN	< 5
59154	23+5ØN	< 5
59155	24+00N	< 5
59156	24+5ØN	< 5
59157	25+ØØNB	< 5
59158	L18+00W 21+50NB	6
59159	22+ØØN	< 5
59160	22+5ØNB	10
5916Ø	22+5@NB	5 Check
59161	23+ØØN	11
59162	23+5#N	7
59163	24+ØØN	9
59164	24+5ØN	22
59165	25+ØØN	10
59166	25+5ØN	11
59167	26+ØØN	7
59168	26+5ØNB	11

•			
er:			
\sim .	 	 	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

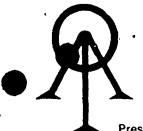
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Northern Dynasty Explorations
8500 844 West Hastings Street
Vancouver B.C.
V6C 1C8

Page #4


te: Ø9/18/87

10

Work Order 870590

SAMPLE N	UMBER	Gold	
Accurassay	Customer	ppb	
59169	GK7-S-110	6	
59169	GK7-S-110	10	Check
5917Ø	GK7-S-111	10	
59171	GK7-S-112	7	
59172	GK7-S-113	12	
59173	EK7-S-1	56	
59174	EK7-S-2	16	
59175	EK7-S-3	17	
59176	EK7-S-4	< 5	
59177	EK7-S-5	20	
59178	EK7-S-6	21	
59178	EK7-S-6		Check
59179	EK7-S-7	65	
59180	EK7-S-8	20	
59181	EK7-S-9	217	
59182	EK7-S-10	102	
59183	EK7-S-11	75	
59184	EK7-S-12	25	
59185	EK7-S-13	24	
59186	EK7-S-14	29	
59187	EK7-S-15	7	
59187	EK7-S-15	15	Check
59188	EK7-S-16	56	
59189	EK7-S-17	< 5	
5919ø	JK7-S-9	982	
59191	JK7-S-10	51	
59192	JK7-S-11	1253	
59193	JK7-S-12	8	
59194	JK7-S-13	12	
59195	GK7-R-116	7	
59196	GK7-R-117	<5	. .
59196	GK7-R-117	<5	Check
59197	GK7-R-118	<5	

er:	

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

8501 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8

Page #5

Work Order 870590

в	JMBI	ER.					Gold	
u	Cus	tom	er				ррb	
		GK7	-R	-11	9		<5	
		GK7	-R	-12	Ø		<5	
		E	K7	-R-	1		166	
		E	K7	-R-	2		292	
		E	K7	-R-	3		40	
		E	K7	-R-	4		180	
		E	K7	-R-	5		21	
		E	K7	-R-	6		<5	
		8	K7	-R-	6		<5	Check
		E	:K7	-R-	7		<5	
		Jk	(7-	R - 1	. 1		6	
		JK	7-	R-1	2		23	
		Jk	(7-	R - 1	.З		7	
		JK	(7-	R-1	4		<5	
		Jk	(7-	R-1	4		13	Check
		Jk	(7-	R - 1	.5		<5	
		.T &	7-	R - 1	5		<5	Check

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1C8 Assay results are as follows:

SAMPLE !	NUMBER	Gold	
Accurassay	Customer	ppb	
59416	EK7-S18	557	
59417	EK7-S19	8	
59418	EK7-S2Ø	<5	
59419	EK7-S21	16	
59420	EK7-S22	19	
59421	EK7-S23C	9	
59422	L48+00W 24+50S	< 5	
59423	L18+00W 20+50N	<5	
59424	L21+00W 22+50N	< 5	
59425	GK7-S114	56	
59425	GK7-S114	32	Check
59426	GK7-S115	132	
59427	GK7-S116	9	
59428	GK7-S117	17	
59429	GK7-S118	<5	
5943Ø	GK7-S119	<5	
59431	GK7-S12Ø	84	
59432	GK7-S121	<5	
59433	EK7-R8	11	
59434	EK7-R9	8	
59434	EK7-R9	14	Check
59435	EK7-R10	7	
59436	EK7-R11	9	
59437	EK7-R12	<5	
59438	GK7-R121	<5	
59439	GK7-R122	<5	
59440	GK7-R123	<5	
59441	GK7-R124	5	
59442	GK7-R125	< 5	
59443	GK7-R126	< 5	C1 1
59443		<5	Check
59444	GK7-R127	<5	
59445	GK7-R128	7	

er:	
~	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Northern Dynasty Explorations
8496 844 West Hastings Street
Vancouver B.C.
V6C 1C8

Page #2

Work Order 870603

Assay results are as follows:

SAMPLE N	UMBER	Gold
Accurassay	Customer	ppb
59446	GK7-R129	< 5
59447	GK7-R13Ø	<5
59448	GK7-R131	< 5
59449	GK7-R132	< 5
59450	GK7-R133	<5
59451	GK7-R134	8
59452	GK7-R135	<5
59452	GK7-R135	<5 Check
59453	GK7-R136	12
59454	GK7-R137	16
59455	GK7-R138	< 5
59456	GK7-R139	8
59457	GK7-R148	8
59458	GK7-R141	< 5
59459	GK7-R142	< 5
5946ø	GK7-R143	<5
59461	GK7-R144	<5
59461	GK7-R144	<5 Check
59462	GK7-R145	10
59463	GK7-R146	14
59464	GK7-R147	13
59465	GK7-R148	< 5
59466	GK7-R149	8
59467	GK7-R18#	173
59468	GK7-R181	6
59469	GK7-R182	<5
59470	GK7-R183	<5
5947ø	GK7-R183	<5 Check
59471	GK7-R184	6
59472	GK7-R185	<5
59473	GK7-R186	12
59474	GK7-R187	9
59474	GK7-R187	13 Check

~	
Per:	

INDUCED CATION PLASMA (I.C.P.) SPECTROMETRIC ANALYSES

FOR SURFACE BEDROCK SAMPLES

AND

SOIL SAMPLES

Geochemical Sample Identification Code :

Example -GK7-R-152

G = Sampler

K = Virginiatown Property

7 = 1987

R = Rock sample (S = Soil sample)
152 = Sequential sample number

ACME ANALYTICAL LABORATORIES

852 E. HABTINGS ST. VANCOUVER B.C. VAA 1R6

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED MITH SML 3-1-2 MCL-MNO3-M20 AT 95 DEG.C FOR ONE MOUR AND IS DILUTED TO 10 ML MITH MATER.

THIS LEACH IS PARTIAL FOR NN FE CA P LA CR MG BA TI B M AND LIMITED FOR MA AND K. AU DETECTION LIMIT BY ICP IS 3 PPN.

- SAMPLE TYPE: P1-SOIL P2-ROCK

AUIS AMALYSIS BY FA-AA FROM 10 GRAM SAMPLE.

DATE	RECEI	VEDI	10	NE 3 1	1987	DAT	E RE	EF:OR	T MA	ILE	D:	Jun	e 9	187	7 .	ASS	AYER	₹	().	14	% . DE	EAN	TOYE	. с	ERT I	FIE	DB.	.ε.	ASSA	YER	
						NOF	RTHE	RN I	DYNA	STY	PRO	JECI	-кі	RKL	AND	LAKE	: 1	Filo	*	87-	1571		F'aq	e 1							
SARPLES	NO PPM	CU PPR	PB PPR	2N PPR	A6 PPR	N! PPN	CO PPR	MN PPN	FE 1	AS PPR	U PPM	AU PPN	TH PPN	SR PPN	CD PFM	SB PPN	8 I PP JL	V PPN	CA Z	P	la PPN	CR PFM	#6 1	BA PPM	11	B FF N	AL 1	NA Z	K I	N PPN	AU11 PP3
6x7-S-1	1	18	14	48	.1	20	5	98	2.00	24	5	KD	1	12	1	2	2	25	.17	.032	4	31	.35	20	.09	2	1.08	.01	.03	1	1
6K7-S-2	1	103	49	161	.4	160	58	489	3.23	218	5	ND	4	267	1		7	2	1.07	. 064	17	12	.71	18	.01	9	. 20	.01	.04	1	44
6K7-S-3	1	242	75	316	.3	189	67	902	5.60	250	5	ND	1	190	1		2	4	.66	.111	19	15	.44	28	.01	- 11	.32	.01	.04	2	84
6K7-S-4	2	45	32	143	.3	48	17	710	2.57	\$2	5	ND	ĺ	41	1	10	2	- 11	.17	.055	24	10	.09	55	.01	2	.49	.01	.03	1	32
6K7-S-5	1	21	14	68	.2	28	9		2.97	28	5	ND	2		1	2	2	25	.11	.044	15	56	.35	21	.03	4	1.45	.01	.03	1	ı
6k7-S-6	1	9	11	29	.1	10	3	90	.77	2	5	ND	1	•	1	2	3	17	.14	.018	•	26	.18	26	.05	2	.57	.01	.01	1	ı
6K7-5-7	1	5	2	12	.1	4	1	15	.19	5	5	MD	1		1	2	3	7	.04	.012			.02	35	.02	2	.24	.01	.01	1	4
6K7-S-8	3	62	43	94	.1	93	29	507	10.43	239	5	KD	3	32	1	2	3	31	.41	.048	23	62	.41	66	.03	- 11	1.84	.01	. 05	1	3
STD C/AU-	S 18	55	42	130	6.8	64	27	972	3.09	37	15	•	32	46	17	17	23	40	.43	.087	34	58	.90	171	.08	34	1.71	.06	.13	12	49

NODTHEDN	DVNACTV	PROJECT-KIRKLAND	LAVE	CTIC A	07-1571
NUKIREKN	DINHBII	PRUJECIERIKKLAND	LHKE	PILE W	8/~15/1

SAMPLEE	XO	EU	PB	2 N	A 6	N1	CO	MN	FE	AS	U	AU	TH	SR	CO	\$8	BI	٧	CA	P	LA	CR	116	BA	11	•	AL	NA	K	¥	AUSS
	PPM	PPN	PPN	PPM	PPH	PPH	PPN	PPM	1	PPN	PPH	PPH	PPN	PPH	PPN	PPK	PPN	PPN	1	1	PPN	PPN	1	PPM	t	PPN	1	1	1	PPH	PFB
6K7-R-1	1	11	19	44	.1	35	4	251	2.00	14	5	MD	2	44	1	3	3	9	.40	.025	ě	14	.70	27	.01	3	.84	.01	.06	1	7
6K7-R-2	1	11	7	24	.2	14	4	154	1.10	15	5	MD	2	176	- 1	6.	2	1	.75		4	7	.31	17	.01	2	.07	.02	.03	1	2
6K7-R-3	1	9	44	82	.3	10	1	298	1.19	11	5	ND	2	507	1	2	2	1	1.88		2	3	.48	11	.01	5	.06	.01	.03	1	1
6K7-R-4	i	9	10	22	.2	9	1	271	.96	8	7	ND	2	298	ı	2	2	1	.97		2	5	.37	•	.01	2	.04	.01	.02	1	1
6K7-R-5	1	48	18	42	.1	32	5	221	1.97	22	5	ND	Ī	151	1	4	4	3	.51		4	0	. 53	17	.01	2	.26	.02	.05	1	1
6K7-R-6	2	52	14	72	.1	81	20	474	4.29	69	5	ND	5	35	1	2	2	13	.21	.081	19	89	.65	27	.01	2	1.25	.01	.10	1	5
6K7-R-7	1	72	15	45	. 1	36	9	673	2.62	44	5	M)	3	385	1	2	3	8	5.68	.048	10	32	1.97	26	.01	3	.70	.01	.08	- 1	4
6×7-R-8	i	33	14	47	.1	ė	7	508	2.13	3	5	ND	4	1332	1	2	2	4	2.01	.093	25	5	.60	935	.01	10	.23	.03	. 07	1	1
6K7-R-9	1	166	14	61	.1	4	7	541	2.61	2	6	MD	3	1522	1	2	2	2	5.75	.035	5	2	1.76	619	.01	14	.05	.02	.01	1	ı
6K7-R-10	i	10	10	40	.1	3	4	338	1.43	2	5	ND	1	150	1	2	2	ı	1.39	.031	7	4	.47	396	.01	2	.12	.02	.03	1	1
6K7-R-11	1	23	5	11	.1	3	4	224	.75	2	5	MĎ	2	166	1	2	2	1	. 95		•	4	.32	1640	.01	3	.05	.02	.04	1	1
6K7-R-12	1	9	17	27	.1	9	9	575	1.77	2	5	KD	5	315	1	2	2	4	3.36	.086	22	5	1.11	277	.01	3	.22	.02	.16	1	1
6K7-R-13	9	1035	24	36	3.8	3	4	182	1.11	28	5	ND	1	106	- 1	16	21	1	.09	.024	2	3	.02	1894	.01	8	.03	.02	.01	- 1.	9150
6x7-R-14	2	22	13	54	.1	12	9	556	2.19	2	5	ND	4	85	- 1	2	2	4	. 90	.072	17	6	.34	650	.01	2	.22	.02	.10	- 1	1
6K7-R-15	1	15	7	13	.1	11	2	332	1.13	3	5	ND	1	173	1	2	2	1	1.83	.017	3	5	.64	36	.01	2	.03	.02	.01	1	1
6K7-R-16	1	18	2	75	.1	67	19	725	3.21	7	8	KD	3	202	1	2	4	19	3.14	.068	14	46	1.00	65	.01	2	1.01	.02	. 07	1	1
6K7-R-17	1	10164	2	19	.1	3	8	1952	2.52	5	5	MD	4	72	1	2	2	41	20.24	.001	5	3	.40	- 11	.01	2	.59	.01	.01	5	1
STD C/AU-R	20	58	39	139	7.2	43	29	1045	3.79	42	19	9	35	49	18	17	23	64	.47	.101	37	58	.90	184	.08	36	1.73	.07	.13	12	510

Fage 2

ACME ANAL CAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 MCL-MNO3-H2O AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI D W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: P1-SOIL P2-ROCK AUSS ANALYSIS BY FA+AA FROM 10 GM SAMPLE.

DATE RECEIVED: 001 19 1987 DATE REPORT MAILED: Nov 2/87 ASSAYER. A SHAPE DEAN TOYE, CERTIFIED B.C. ASSAYER

NORTHERN DYNASTY PROJECT-KIRKLAND LT. File # 87-5084 Page 1

SHULL FE &	лŲ	LU	rı	£4	MD	M.	LU	na.	76	73	v	#U	I II	24	UV	90	ÐI	. •	ŲM	r	LR	LK	กอ	BR.	14		ML.	764			RUIT
	PPM	PPM	PPM	PPH	PPN	PPM	PPH	PPN	1	PPM	PPN	PPH	PPH	PPH	PPH	PPN	PPH	PPH	1	1	PPH	PPH	1	PPH	1	PPM	1	1	1	PPH	PPS
EX7-S-50	i	20	7	39	.3	,	5	162	1.86		5	KD	2	38	1	2	2	14	.26	.034	13		.09	140	.01	4	.45	.02	.02	2	4
6K7-\$-200																															
6K7-S-201	1	7	5	34	.2	7	2	92	1.75	- 4	5	ND	2	14	1	2	2	31	.14	.020	ŧ	22	.15	39	.10	2	.74	.01	.04	1	ł

١.	
0.0	2

SAMPLE		CU PPM		ZN PPH	AG PPN	NI PPH	CO PPM	KN PPM		AS PPH	U PPM	AU PPK	TH PPM				B! PPH			ř	LA PPK	CR PPM	#6 1	BA PPM	7! 1	g PPM	AL I		K 1	-	AUE E PPB
EX2-R-50 EX7-R-51 EX7-R-52 EX7-R-53 JK7-R-16	1 1		14 14 4	45 51 39	.1 .4 .7	3 6 5	5 5 6	402 613 464	1.81 2.78	4 2 2	5 5 5	ND ND	2 3 18	101 502 359	1 1	2 2 2	2 2 2	3	.26 3.56 1.97	.024 .038 .179	7 8 69	2	.08 .93 .81	816 1586 194	.01 .01 .01	39 16 11	.08 .12 .54	.03 .04 .07	.02 .04 .17	2 1 2	1 10 8 1

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-MHO3-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B M AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP 18 3 PPM. - SAMPLE TYPE: Pulp AUTE ANALYSIS BY FA+AA FROM 10 6M SAMPLE.

ž.								- 34	enr'l E	1176	i Lat	p	AUIT A	MKL 13	13 11 1				,				Λ	1														
\$. \$	E	DATE	E RE	CEIV	ED:	NON	V 18 1	987		DAT	re I	REPO	ORT 1	MAII	LED:	N	bu.	27,	187	AS	SAY	ÆR.	.A.	cas	1.27.	DEA	N TO	YE,	CER	rifi	ED 1	B.C.	ASS	AYE	R			
													NOF	RTHE	ERN I			•		• #	87-	570	o.	Pag	e 1													
が 100 100 		SAMPI	LEI	MO PPM	CU PPM	P8 PPN	ZI PPI	N :	A6 PM	NI PPH	CO PPM		_			A(PPI		-			_	-	, K	A !	LA L PPH				71 1	9 PPM	AL I	NA I	K	V PPH	AU11 PP9			
		6K7-F		6	27 65	35	43		.4	28 50	11 21			2	3 5	ME ME		316 487		2		2 2 1	4 5.4 5 4.3				2.24 2.10			7	. 14	.02	.04	1	٠<5			
as 17		6K7-F	1-111	9	37	8	72	?	.4	57	13	868	3.59	:	2 5	NC		300	1	2		2	7 3.8	2 .091	19	1	1.69	251	.01	2	. 36	.03	.05	1	· 5 · 45			
a.		6K7-R		25 2	19 19	7 11	82 82		.1	21 37	2 17		1.33	;	4 5 3 5	XX In	-	12 529		. 2		2 2 2	2 .0 6 4.8		_				.01 .01	3		.01	.01	1	- 45 - 6			
r.		5K7-9	-115	5	151	8	20) ,	. !	21	3	292	2.31	1	3 5	MŽ	. 1	459	ı	2		2	3 .4	6 .013	. 2	52	2 .13	710	.01	2	.08	.05	.02	1	- 16			
		6K7-R	-117	2	24	69	56	,	.5	19	7	607	2.21	į	5	N	į	499		ž			4 1.2	3 .052	19	20	.50	1601	.01	7	.11	.06	.04	i	- 25			
1 3		6K7-R		2	65 12	11	63 99		.5 .4	112 92	25 25		5.36	124		OK On	12			2 2	7	} }	7 .2: 7 3.7:					46 98	.01	10	.40 2.29	.03	.10	1	- 45 • 45			
4		6K7-R		1		7	63		. 5	28	11		3.26	(NO		188		2	1			8 .083					.01	3	,26	.06	.06	1	- 45			
6 5-		6K?-R		2	48	15	46		.4	16	8		2.67	11		ND	3		!	2	2			.040		23		1840	.01	18	.11	.06	.02	1	ج ٠			
		SK7-R SK7-R		1	19 62	11 17	56 88	-	, 4 . 6	16 97	12 21	879 880		104	-	ON Ok	6 10	154 380	i 1	2 2	2		6 3.20 8 1.53		15 33			308 88	.01	2	.33	.04	.10	1	- 45 - 45			
5 2 2	1	6K7-#	-127	2	32	25	82		7	26	4	544	2.62	9	5	ND	2	1681	i	Ā	2		7 4.51	.023	ě	25	2.06	26	.01	14	.06	.04	.02	1	- 15			
#. ~ * (V	6 K?-R	-128	2	43	10	69	•	. 6	56	17	864	4.35	37	5	ND	7	785	1	2	2	17	7 4.0	.079	26	20	2.30	43	.01	8	.27	.05	.12	ı	- 7			
•		6K7-R 6K7-R		3 2	63 63	37 13	98 89		8	47 90	11 22		3.84 5.12	25 67		ND ND	4	1961 572	1	5	2	1 1			12 27		3.40	42 80	.01	4	.13	.02	.04	!	• 45°			
7 1 2	- 1	6K.7-9	-131	3	78	52	58		6	40	7	488	2.78	18	-	ND	2	371	i	ž	2	•	1.03	.055	•	31	.45	31	.01	2	.15	.04	.04	1	ر من ا			
•		678 -C 6K7-9:		19	- 57 - 30	 8	- 120 72		7	-66 42		-1027 - 1064	3,91- 3,91	4 <u>1</u> 3	18	ND	37-	48 333		16	20 2	·\$	• • • •		36 31		1.59	166 644	.07	6	·1·.02 ·	.09	.09	13 I	- 45	•		
} ,	(6K?-R-	-133	3	37	16	33		1	20	4	1109	3.39	139	5	ND	1	101	1	2	2		1.03	.020	2	36	.20	29	.01	2	.04	.04	.02	2	- 45			
÷ • • •		6K7-9- 6K7-8-		2	57 52	69	110 82	-	6	50 10			9.82	97	\$ 5	ND On	•	85 384	!	10 2	2 2	• • •			29 27	24		63 130	.01 .01	4	.25 .23	.06 .06	.07	1	- E - 45			
4		6K7-8-		2	52 61		84		3 5	11	12 15		3.87 3.72	5	5	ND	;	174	1	2	2	20			29	14 19		148	.01	2	.32	.03	.15	i	- 8			
	6	6K.7-R-	-147	2	35	11	98	•	6	33	14	915	4.23	2	5	ND	8	226	t	2	2	15	2.72	.091	24	31	1.15	844	.01	4	.19	.06	.07	1	-13 /	COR	125£p	• (
PARKS ()	, (K7-9-	149	2	47	27	129		3	61	16	_	4.82	32	5	ND	1	39	1	2	2	7			16	20	.14	103	.01	4	. 38	.05	.08	1	• 25	Av.		₹ .
-YIN ZA	,,, (W.?-8- W7-P-	-150 -151	6 7	54 21	54 13	30 55	• !		486 459		2733 1754	5.17 5.08	132	5 5	ND DK	1	103 84	1	19	2		14.99		2 2	1196	3.07 7.31	10 4	.01	3 2	.98 2.04	.01 .01	.01	1	å 3	16	į	3
* Y.MWIS	2	¥7.8.	152	5	57	32	49		-	646		1453		711	5	ND	i	150	i	i	ż		8.57		ž		6.64	20	.01		1.10	.01	.06	i	13		T	5
WARE IN	7 6	K7-P-	153	11	58	13	63	46		198		1128		539	5	ND	4	455	İ	2	2	13			•	217		53	.01	2	.40	.03	.11	1	71	53 /	\$ 3	3 (
w. H'20	_			7	110	22	157	E		58	-		6.84	46	5	ND	25	346	1	2	2	127	1.01		91	126		418	.02		2,41	.16	,49			37}	OT FROM TOWN DONDERS	•
3N F. S	44 6	K7-P-	155	17	64	13	166	.1		126	-		6.45	49	5	KD	12	199	ı	2	2	135			39	296	4.16	234	.02		2.75	.05	.13	1		30	∟≸	(
N-L'14	⊶eह ⇔e	₹7-₽- ¥7-8-	156 157	10 45	127 48	47 38	38 16	C.9		32 18	19 12		5.32 4.77	257 88	\$ 5	MD	13	162 62	1	2	10	1		.119	24 42	29	.13	23 79	.01	5 31	.21 .17	.02 .02	.12	2 1		37	かを	
· MAN B	ζ 6	K7-P-	158	70	35	47	22	1:1		31	7		2.92	17	\$	ND	4	141	i	2	2	10			21	44	.60	250	.01	1	. 16	.05	.09			32.	Z Y	
11-2	_			3	563	23	101	. 6		45		1952		5	5	ND	•	87	1	2	2	15		.107	30	23			.01	4	.27		.05	1	- 173	-		,
他:		K7-R-		1	11	ļ	22	.5		18	6		2,49	2	\$	ND ND	10	54	Į	2	2		1.39		36	18	.07	86 86	.01	12	.25	.05	.07	1	- 6			(
#	ы	K7-P-	122	2	53	5	28	.1	ı	19	8	434	2.14	3	5	RU	3	83	1	2	1	2	.94	.045	•	22	.20	854	.01	3	.10	.04	.02	1	- 45			

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .SOO GRAN SAMPLE IS DIGESTED WITH SML 3-1-2 MCL-MW03-M20 AT 95 BEC. C FOR ONE MOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B # AND LIMITED FOR MA K AND AL. AU BETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Pulp Aus Analysis by AA FROM 10 GRAN SAMPLE.

	DATE RE	CEIV	ED:	MOV	18 198	37	DAT	TE F	REPO	RT I	1AILI	ED:	No	υZ	7/8	37	AS	BAYE	R	Ø.	Tex	%.D	EAN	TOY	Έ, (CERT	IFI	ED E	.ç.	ASS	AYEF	₹			
										NOF	RTHEF	N D	YNAS	TY	, E	110	# 6	37-5	700		Page	2													
	SAIPLES	MO PPN	CU PPH	PB PPH	ZN PPN	A6 PPM	NI PPH	CO PPM	MN PPN	FE I	AS PPM	U PPH	AU PPN	TH PPH	SR PPM	CB PPH	SB Kqq	31 PPH	PPN	CA I	?	LA PPN	CR PPH	M6 I	BA PPH	TI I	B PPN	AL 1	MA I	K	¥ PPH	AU1 PPB	Accura	15904	
i	√ 6K7-5-109		117	59	86	1	16	5	233	2.26	48	. 5	ND	3	12	1	2	2	14	.04	.074	22	, ,	.04	. 72	.01	2	.40	.01	.04	1	• ;	67 Au.	_	
	0/C 6K7-5-150	1	46	12	59	.3	236	29	984	3.58	172	5	ND	\$	38	1	3	2	38	.73	.040	14	188	1.03	52	.08	4	1.64	.05	.08	2	125	/37) &	
W4 74	PARE 6K7-5-151	2	296	29	140	. 6	2711	161		16.15	3107	\$	ND	2	16	l	94	2	21	_	.051	4	309	. 65	61	.01	6	.61	.03	.02	!	990	980		
}; ™	₩ 6 K7-5-152	1	174	22	75	.5	1411	165	6954	24.63	4169	5	ND	5	20	1	12	2	80	.15	.032	34	364	.40	125	.01	3	1.31	.02	.02	1	725	669	E 15	
iii .	· * 6K7-9-153	1	33	2	21	.1	380	22	312	1.53	93	5	ND	3	10	1	2	2	23	.24	. 028	7	97	.48	21	.06	3	.93	.03	.01	1	4	10	\$ 8	
STIT OF	Prt 6K7-5-154	1	38	2	32	.1	75	10	188	2.17	12	5	KD	2	17	ı	2	2	32	.24	.042	7	117	.41	21	.07	2	1.52	.03	.02	21	12	12 (T T	
4 07 1	" " 6K7-S-155	1	181	94	156	.4	470	58	909	8.62	10405	5	ND	2	217	i	2	2		.96	.066	12	62	1.26	37	.01	9	.50	.03	.01	1	510	512	Şi	
₩. 'H	Z-U6K7-5-156	1	11	2	13	.1	15	3	58	.93	27	Š	MD	3	4	i	2	2	14	di	.016	5	19	.15	12	.05	3	1.12	.01	.02	i	1	15	5.1	
W'L'	SAUGK7-5-157	1	7	4	25	. 8	7	3	90	1.62	7	5	ND	i	i	i	Ĭ	2	30	.08	.020	ě	21	.09	15	.08		1.13	.02	.02	1	2	25	017	
A. 1	'sausK7-5-158	1	6	1	11	2	10	3	83	1.06	2	5	ND	3	i	i	2	2	21		.017	i	21	.11	17	.06	14	.75	.02	.01	i	i	35)	マシ	
	9-114\7 672	10	58	41	132	7.0	47	27	1074	4. OR	41	26	7	38	41	18	18	26	44	.48	AGS	17	₹0	.05	170	OR.	19	1.90	.00	. 14	10	190			

GOLD ASSAYS FOR DIAMOND DRILLCORE SAMPLES

 $^{^{\}star}$ - Assays recorded on drill logs and on sections in Appendix 7.

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

V.L.

Certificate of Analysis

10207

Page: 1

Northern Dynasty Explorations 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Work Order # : 870982

Date: December 10

Project :

SAMPLE	NUMBERS	Gold	
Accurassay	Customer	dqq	
86015	7001	90	
86016	7002	< 5	
86017	7003	<5	
86018	7004	<5	
86019	7005	11	
86020	7006	< 5	
86021	7007	<5	
86022	7008	< 5	
86023	7009	< 5	
86024	7010	<5	
86024	7010	₹5	Check
86025	7011	<5	•
86026	7012	7	
86027	7013	< 5	
86028	7014	11	
86029	7015	6	
86030	7016	5	
86031	7017	₹5	
86031	7017	₹5	Check

er:	
٠	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

10227

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Page: 1

Date: December 11 1987

Work Order # : 870970

Project

SAMPLE Accurassay	NUMBERS Customer	Gold Oz/T	Gold ppb		
8 5768	7301	<0.001	⟨5		
85769	7302	<0.001	< 5		
85770	7303	(0.001	< 5		
85771	7304	<0.001	16		
85772	7305	0.047	1603		
85773	7306	<0.001	18		
85774	7307	<0.001	16		
85775	7308	<0.001	< 5		
85776	7309	<0.001	13		
85777	7310	<0.001	< 5		
85777	7310	<0.001	₹5	Check	
85778	7311	<0.001	< 5		
85779	7312	<0.001	⟨5		
85780	7313	<0.001	< 5		
85781	7314	<0.001	11		
85782	. 7315	<0.001	12		
85783	7316	<0.001	12		
85784	7317	<0.001	26		
85785	7318	<0.001	< 5		
85786	7319	<0.001	< 5		
8578 6	7319	<0.001	< 5	Check	
85787	7320	<0.001	< 5		
8578 8	7321	<0.001	₹5		
85789	7322	<0.001	<5		
85790	7323	<0.001	<5		
85791	7324	0.002	84		
85792	7325	<0.001	<5		
85793	7326	<0.001	10		
85794	7327	<0.001	6		
8579 5	7328	<0.001	< 5		
5795	7328	<0.001	9	Check	

ORIGINAL

P.O. BOX 604 KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

10228

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Page:

December 11

Work Order # : 870970

Project

SAMPLE	NUMBERS	Gold	Gold	
Accurassay	Customer	Oz/T	dqq	
85796	7329	<0.001	10	
85797	7 330	<0.001	5	
8579 8	7331	<0.001	9	
85799	7332	<0.001	< 5	
8580 0	7333	<0.001	<5	
8 5801	7334	<0.001	7	
85802	7335	<0.001	< 5	
85803	7336	<0.001	7	
8 5804	7337	<0.001	7	
85804	7337	<0.001	7	Check
85805	7338	<0.001	8	
85 806	7339	<0.001	7	•
85807	7340	<0.001	16	
8 5808	7341	<0.001	8	
85 809	7342	<0.001	< 5	
85810	7343	<0.001	₹5	
85811	7344	<0.001	8	
85812	7345	(0.001	₹5	
85813	7346	<0.001	< 5	
8581.3	7346	<0.001	<5	Check

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

16523

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C. V6C-1C8

Page: January 5 _ 193<u>8</u> Date: _

Work Order # : 871030

Project

	SAMPLE	NUMBERS	Gold	Gold		
	Accurassay	Customer	Oz/T	ppb		
	89234	7018	<0.001	14		
	89235	7019	<0.001	8		
	89236	7020	<0.001	7		
	89237	7021	<0.001	<5		
	89238	7022	<0.001	13		
	89239	7023	<0.001	7		
	89240	7024	<0.001	<5		
	89241	7025	<0.001	< 5		
	89242	7026	<0.001	7		
	89243	7027	<0.001	<5		
	89243	7027	<0.001		Check	
	89244	7028	<0.001	7		
	89245	7029	<0.001	5		
	89246	7030	<0.001	8	4	
	89247	7031	<0.001	13		
	89248	7032	<0.001	9		
	89249	7033	<0.001	8		
	89250	7034	<0.001	12		
	89251	7035	<0.001	10		
	89252	7036	<0.001	15		
	89252	7036	0.001		Check	
	89253	7037	<0.001	9	1	
	89254	7038	<0.001	12		
	89255	7039	<0.001	7		
	89256	7040	<0.001	9		
	89257	7041	<0.001	9		
	89258	7042	<0.001	10		
	89259	7043	<0.001	11		
	89260	7044	<0.001	10		
	89261	7045	<0.001	17		
ì	89261	7045	<0.001	19	Check	

|--|

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

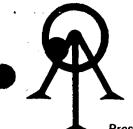
Certificate of Analysis

Page:

16524

Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C.

V6C-1C8


January 5 Date:

Work Order # : 871030

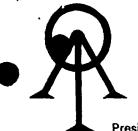
Project

SAMPLE	NUMBERS	Gold	Gold
Accurassav	Customer	Oz/T	ppb

ACCULASSAY	Cuscomer	U2/ I	սվվ	
89262	7046	<0.001	⟨5	
89263	7047	<0.001	8	
89264	7048	<0.001	15	
89265	7049	<0.001	14	
89266	70 50	<0.001	32	
89267	7051	<0.001	<5	
89268	7052	<0.001	20	
89269	7053	<0.001	30	
89270	7054	<0.001	<5	
89270	7054	<0.001	30	Check
89271	7055	<0.001	6	
89272	7056	<0.001	<5	
89273	7057	<0.001	9	
89274	7058	<0.001	⟨5	
89275	7059	<0.001	<5	
89276	7060	<0.001	<5	
89277	7061	0.004	142	
89278	7062	<0.001	<5	
89279	7063	<0.001	12	
89279	7063	<0.001	11	Check
89280	7064	<0.001	6	
89281	7065	<0.001	16	
89282	7066	<0.001	14	
89283	7067	<0.001	9	
89284	7068	<0.001	<5	
89285	7069	<0.001	₹5	
89286	7070	<0.001	₹5	
89287	7071	<0.001	₹5	
89288	7072	<0.001	₹5	
89288	7072	<0.001	₹5	Check
89289	7073	<0.001	<5	

P.O. BOX 604 KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343


President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

				Pa	ige: 3
	Northern Dynasty E 844 West Hastings Vancouver, B.C.		Date:Januar	ry 5	19 ⁸⁸
	V6C-1C8		Work Order # Project	: 871030 :	
SAMPLE	NUMBERS	Gold	Gold		
Accurassay	Customer	Oz/T	ppb	•	
89290	7074	<0.001	< 5		
89291	7075	<0.001	< 5		
89292	7076	<0.001	9 7		
89293	7077	<0.001	7		
89294	7078	<0.001	<5		
89295	7079	<0.001	17		
89295	7079	<0.001	<5 Check		

er: ______

DRIGINA

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA . P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

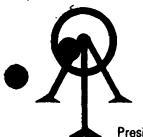
17121

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

1988 January 25 Date: _


Work Order # : 880036

Project

Page:

Gold SAMPLE NUMBERS Gold Oz/T ppb Customer Accurassay <0.001 10 94596 7080 <0.001 <5 94597 7081 <5 7082 <0.001 94598 <5 7083 <0.001 94599 <5 94600 7084 <0.001 6 <0.001 94601 7085 17 94602 7086 <0.001 **<**5 <0.001 94603 7087 22 <0.001 94604 7088 9 <0.001 94605 7089 94605 7089 <0.001 23 Check 9 <0.001 94606 7090 ⟨5 7091 <0.001 94607 **<**5 <0.001 94608 7092 7093 <0.001 21 94609 <0.001 6 94610 7094 <0.001 18 7095 94611 7 <0.001 94612 7096 12 7097 <0.001 94613 0.005 173 7098 94614 0.003 95 Check 7098 94614 129 7099 0.004 94615 7100 <0.001 8 94616 83 0.002 94617 7101 7102 0.003 94 94618 17 94619 <0.001 7103 7104 <0.001 32 94620 17 7105 <0.001 94621 ⟨5 7106 <0.001 94622 7107 <0.001 6 94623 94623 7107 <0.001 Check

Per:	
rer.	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

17122

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Date: January 25 19 88

Page: 2

Work Order # : 880036

Project

SAMPLE	NUMBERS	Gold	Gold	
Accurassay	Customer	Oz/T	ppb	
94624	7108	<0.001	⟨5	
94625	7108	<0.001	<5	
94626	7109	<0.001	\ 5	
94627	7111	<0.001	\\ \\ \\ \\ \\ \	
94628	7112	<0.001	<5	
94629	7112	<0.001	\ 5	
94630	7114	<0.001	(5	
94631	7115	<0.001	\ 5	
94632	7116	<0.001	10	
94632	7116	<0.001	9	Check
94633	7117	<0.001	<5	Onecz
94634	7118	<0.001	\ 5	
94635	7119	<0.001	10	
94636	7120	<0.001	< 5	
94637	7121	<0.001	\ 5	
94638	7122	<0.001	₹5	
94639	7123	<0.001	(5	
94640	7124	(0.001	₹ 5	
94641	7125	<0.001	₹5	
94641	7125	<0.001	8	Check
94642	7126	<0.001	< 5	
94643	7127	<0.001	<5	
94644	7128	<0.001	5	
94645	7129	<0.001	<5	
94646	7130	<0.001	6	
94647	7131	<0.001	<5	
94648	7132	<0.001	< 5	
94649	7133	<0.001	<5	
94650	7134	<0.001	< 5	
94650	7134	<0.001	<5	Check
94651	7135	<0.001	<5	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

17123

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

January 25

Work Order # : 880036

Check

Project

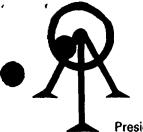
Page:

Gold SAMPLE NUMBERS Gold Customer Oz/T ppb Accurassay <0.001 94652 7136 7137 <0.001 ⟨5 94653 <5 94654 7138 <0.001 **<**5 94655 7139 <0.001

7140 <0.001 16 94656 <0.001 6 94657 7141 16 7142 <0.001 94658 0.003 96 94659 7143

94659 7143 0.008 283 78 94660 7144 0.002 0.005 187 94661 7145 11 94662 7146 <0.001 94663 7147 <0.001 **<**5

8 7148 <0.001 94664 (5 <0.001 94665 7149 <5 7150 <0.001 94666


<5 7151 <0.001 94667 ₹5 <0.001 94668 3251

<5 3251 <0.001 Check 94668 ₹5 3252 <0.001 94669

⟨5 3253 94670 <0.001 ⟨5 3254 <0.001 94671 <0.001 ⟨5 94672 3255

Check 3255 <0.001 94672

Per:	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

17335

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Date: February 1 1988

Page:

Work Order # : 880075

Project

SAMPLE 1	IUMBERS	Gold	Gold	
Accurassay	Customer	Oz/T	ppb	
97156	3264	0.004	140	
97157	3265	<0.001	34	
97158	3266	0.002	80	
97159	3267	0.002	65	
97160	7231	<0.001	26	
97161	7232	<0.001	14	
97162	7233	<0.001	11	
97163	7234	<0.001	10	
97164	7235	<0.001	6	
97165	7236	<0.001	23	
97165	7236	<0.001	12	Check
97166	7237	<0.001	16	
97167	7238	<0.001	18	
97168	7239	<0.001	15	
97169	7240	<0.001	15	
97170	7241	<0.001	32	
97171	7242	<0.001	17	
97172	7243	<0.001	15	
97173	7244	<0.001	8	
97174	7245	<0.001	< 5	
97174	7245	<0.001	<5	\mathtt{Check}
97175	7246	<0.001	<5	
97176	7247	0.009	311	
97177	7248	0.003	112	
97178	7249	<0.001	5	
97179	72 50	0.002	60	
97180	7251	0.002	55	
97181	7252	<0.001	15	
97182	7253	<0.001	9	
97183	7254	<0.001	7	
97183	7254	<0.001	11	Check

er:	
٠	

OBIGINA

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

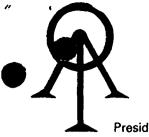
17336

Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C.

V6C-1C8

Date: <u>February 1</u> 19 <u>88</u>

Page:


Work Order # : 880075

Project :

SAMPLE Accurassay	NUMBERS Customer	Gold Oz/T	Gold ppb	
	o de o o me i	<i>OD</i> , .	PPC	
97184	7255	<0.001	11	
97185	7256	<0.001	< 5	
97186	7257	<0.001	7	
97187	7258	<0.001	8	
97188	7259	<0.001	9	
97189	7260	<0.001	<5	
97190	7261	<0.001	<5	
97191	7262	<0.001	8	
97192	7263	<0.001	10	
97192	7263	<0.001	<5	Check
97193	7264	<0.001	<5	
97194	7265	<0.001	< 5	
97195	7266	<0.001	< 5	
97196	7267	<0.001	₹5	
97197	7268	<0.001	< 5	
97198	7269	<0.001	13	
97199	7270	<0.001	9	
97200	7271	<0.001	6	
97201	7272	<0.001	10	
97201	7272	<0.001	< 5	Check
97202	7273	<0.001	8	
97203	7274	<0.001	11	
97204	7275	<0.001	5 6	
97205	7276	<0.001		
97206	7277	<0.001	<5	.
97206	7277	<0.001	9	Check

er:	

ADIOMAL

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

17331

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Date: ___February 1

Page:

Work Order # : 880068

Check

<5

18

<5

8 9

<5

<5

Project

SAMPLE NUMBERS Gold Gold Customer Oz/T Accurassay daa

<0.001 96885 3256 17 96886 <0.001 3257 <5 96887 3258 <0.001 (5 96888 3259 <0.001 7 96889 3260 <0.001 96890 3261 0.004 137 96891 <0.001 3262 <5

96892 0.003 114 3263 96893 7152 <0.001 (5 96894 7153 <0.001 (5

96894 <0.001 **<**5 7153 96895 7154 <0.001 ⟨5 96896 <0.001 <5 7155

<5 <0.001 96897 7156 96898 7157 <0.001 ⟨5 **<**5 96899 7158 <0.001 <5

96900 7159 <0.001 <0.001 96901 7160 96902 7161 <0.001

96903 <0.001 11 7162 96903 <0.001 Check 7162 <5

96904 <0.001 7163 96905 7164 <0.001 96906 7165 <0.001

96907 7166 <0.001 96908 <0.001 7167 96909 7168 <0.001

<5 96910 7169 <0.001 ⟨5 96911 <0.001 <5 7170 96912 <0.001 12 7171

96913 7172 (0.001

ORIGINA

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.-

Certificate of Analysis

17332

Northern Dynasty Expl. Ltd. 844 Vest Hastings Street

Vancouver, B.C.

V6C-1C8

February 1 Date: .

Page:

Project

SAMPLE NUMBERS Gold Gold ppb Accurassay Customer Oz/T 96914 7173 <0.001 <5 <5 96915 7174 <0.001 96916 7175 <0.001 <5 7176 <0.001 96917 96918 7177 <0.001 96919 7178 <0.001 96920 7179 <0.001 96921 7180 <0.001

<0.001 96921 7180 96922 7181 <0.001 96923 7182 <0.001 96924 7183 <0.001 <0.001 96925 7184

96926 7185 <0.001 <0.001 96927 7186 96928 7187 <0.001 <0.001 96929 7188 <0.001 96930 7189


96930 7189 <0.001 7190 <0.001 96931 7191 <0.001 96932 7192 <0.001 96933 96934 7193 <0.001

7194 <0.001 96935 96936 7195 <0.001 7196 <0.001 96937 7197 <0.001 96938 96939 7198 <0.001

7198 <0.001 96939 96940 7199 0.002 7200 <0.001 96941

lork	Order	#	:	880068
} 4 -	4			

Per:	

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

17333

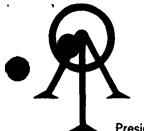
Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Date: <u>February 1</u> 19 88

Page:


Work Order # : 880068

Project

SAMPLE	NUMBERS	Gold	Gold		
Accurassay	Customer	Oz/T	ppb		
96942	7201	<0.001	< 5		
96943	7202	<0.001	11		
96944	7203	<0.001	8		
96945	7204	<0.001	<5		
96946	7205	<0.001	22		
96947	7206	<0.001	7		
96948	7207	<0.001	<5		
96948	7207	<0.001	12	Check	
96949	7208	<0.001	8		
96950	7209	<0.001	<5		
96951	7210	<0.001	23		
96952	7211	<0.001	6		
96953	7212	<0.001	10		
96954	7213	<0.001	10		
96955	7214	<0.001	<5		
96956	7215	<0.001	11		
96957	7216	<0.001	8		
96957	7216	<0.001	9	Check	
96958	7217	<0.001	17		
96959	7218	<0.001	15		
96960	7219	<0.001	<5		
96961	7220	<0.001	7		
96962	7221	<0.001	< 5		
96963	7222	<0.001	10		
96964	7223	<0.001	7		
96965	7224	<0.001	9		
96966	7225	<0.001	< 5	0 1 1	
96966	7225	<0.001	12	Check	
96967	7226	<0.001	< 5		
96968	7227	<0.001	9		
96969	7228	<0.001	⟨5		

_			
Per:			
Test:			

ADIGINAL

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Page: 17334 Northern Dynasty Expl. Ltd. February 1 _ 19 <u>88</u> 844 West Hastings Street Vancouver, B.C. V6C-1C8 Work Order # : 880068 Project Gold Gold SAMPLE NUMBERS Oz/T ppb Accurassay Customer <0.001 10 96970 7229 <0.001 7230 **<5** 96971 **<**5 Check 96971 7230 <0.001

'er: _____

P.O. BOX 604 KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Page:

Date: February 5

17478

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Work Order # : 880097

Project

	NUMBERS	Gold	Gold	
Accurassay	Customer	Oz/T	ppb	
98288	3268	<0.001	< 5	
98289	3269	<0.001	9	
98290	3270	<0.001	7	
98291	3271	<0.001	9	
98292	3272	<0.001	10	
98293	3273	<0.001	7	
.98294	3274	<0.001	< 5	
98295	3275	<0.001	13	
98296	3276	<0.001	15	
98297	3277	<0.001	15	
98297	3277	<0.001	10	Check
98298	3278	<0.001	21	
98299	3279	<0.001	16	
98300	3280	<0.001	24	
98301	3281	<0.001	< 5	
98302	3282	<0.001	< 5	
98303	3283	<0.001	<5	
98304	3284	<0.001	9	
98305	3285	<0.001	<5	
98306	3286	<0.001	< 5	
98306	3286	<0.001	14	Check
98307	3287	<0.001	< 5	
98308	3288	<0.001	20	
98309	3289	<0.001	10	
98310	3290	<0.001	< 5	
98311	3291	<0.001	7	
98312	3292	<0.001	10	
98313	3293	<0.001	5	
98314	3294	<0.001	15	
98315	3295	<0.001	20	
98315	3295	<0.001	8	Check

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

17479

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Page:

Work Order # : 880097

Project

SAMPLE NU	MBERS	Gold	Gold		
Accurassay	Customer	Oz/T	ppb		
98316	3296	<0.001	13		
98317	7278	<0.001	10		
98318	7279	<0.001	<5		
98319	7280	<0.001	6		
98320	7281	<0.001	14		
98321	7282	<0.001	18		
98322	7283	<0.001	17		
98323	7284	<0.001	15		
98324	7285	<0.001	8		
98324	7285	<0.001	. 8	Check	
98325	7286	<0.001	8		
98326	7287	<0.001	<5		
98327	7288	<0.001	7		
98328	7289	<0.001	8		
98329	729 0	<0.001	< 5		
98330	7291	<0.001	5 7		
98331	7292	<0.001			
98332	7293	<0.001	10		
98333	7294	0.002	81		
98333	7294	<0.001	21	Check	
98334	7295	<0.001	6		
98335	7296	<0.001	<5		
98336	7297	<0.001	< 5		
98337	7298	<0.001	8		
98338	7299	<0.001	8 5		
98339	7300	<0.001	5		
98339	7300	<0.001	16	Check	

Per: J. Muncan

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Page:

17506

99223

99223

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

February 8 Date: .

Work Order # : 880118

Project

SAMPLE Accurassay	NUMBERS Customer	Gold Oz/T	Gold pph	
			12 12 17	
99196	97501	<0.001	< 5	
99197	97502	<0.001	`9	
99198	97503	⟨0.001	< 5	
99199	97504	<0.001	`9	
99200	97505	<0.001	17	
99201	97506	<0.001	ĩż	
99202	97507	<0.001	15	
99203	97508	<0.001	21	
99204	97509	<0.001	25	
99205	97510	<0.001	14	
99205	97510	<0.001	10	Check
99206	97511	<0.001	22	01001
99207	97512	<0.001	25	
99208	97513	<0.001	27	
99209	97514	<0.001	50	
99210	97515	<0.001	26	
99211	97516	<0.001	24	
99212	97517	<0.001	23	
99213	97518	<0.001	33	
99214	97519	<0.001	28	
99214	97519	<0.001	34	Check
99215	97520	<0.001	15	
99216	97521	<0.001	10	
99217	97522	<0.001	14	
99218	97523	<0.001	19	
99219	97524	<0.001	18	
99220	97525	<0.001	17	
99221	97526	<0.001	15	
99222	97527	0.001	36	

97528

97528

Check

<0.001

0.001

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

17507 Northern Dynasty Rynl, Ltd.

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Date: February 8 1988

Page:

Work Order # : 880118

Project

SAMPLE	NUMBERS	Gold	Gold	
Accurassay	Customer	Oz/T	ppb	
99224	97529	<0.001	13	
99225	97530	<0.001	22	
99226	97531	<0.001	18	
99227	97532	<0.001	18	
99228	97533	<0.001	19	
99 229	97534	<0.001	23	
99230	97535	<0.001	34	
99231	97536	<0.001	26	
99232	97537	<0.001	22	
99232	97537	<0.001	25	Check
99233	97538	<0.001	12	
99234	97539	<0.001	10	
99235	97540	<0.001	15	
99236	97541	<0.001	18	
99237	97542	<0.001	14	
99237	97542	<0.001	16	Check

Per: J. Muncan

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

17708

Northern Dynasty Expl. Ltd. 844 West Hastings Street

Vancouver, B.C.

V6C-1C8

Date: February 15 19 88

Page:

Work Order # : 880134

Project

	NUMBERS	Gold	Gold	
Accurassay	Customer	Oz/T	ppb	
100266	97543A	<0.001	13	
100267	97544A	<0.001	14	
100268	97545A	<0.001	19	
100269	97546A	<0.001	6	
100270	97547A	<0.001	<5	
100271	97548A	<0.001	<5	
100272	97549A	<0.001	<5	
100273	97550A	<0.001	<5	
100274	97551A	<0.001	<5	
100275	97552A	<0.001	5	
100275	97552A	<0.001	<5	Check
100276	97553A	<0.001	⟨5	
100277	97554A	<0.001	<5	
100278	97555A	<0.001	10	
100279	97556A	<0.001	<5	
100280	97557A	<0.001	<5	
100281	97558A	<0.001	<5	
100282	97559A	<0.001	<5	
100283	97560A	<0.001	<5	
100284	97561A	<0.001	<5	
100284	97561A	<0.001	26	Check
100285	97562A	<0.001	18	
100286	97563A	<0.001	12	
100287	97564A	<0.001	8	
100288	97565A	0.001	48	
100289	97566A	<0.001	20	
100290	97567A	<0.001	< 5	
100291	97568A	<0.001	< 5	
100292	97569A	<0.001	27	
100293	97570A	0.002	64	
100293	97570A	<0.001	<5	Check

Per: <u>G. Muncan</u>

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Page:

17709

Northern Dynasty Expl. Ltd.

844 West Hastings Street

Vancouver, B.C.

V6C-1C8

February 15

Work Order # : 880134

Project

	SAMPLE	NUMBERS	Gold	Gold	l
	Accurassay	Customer	Oz/T	ppb	
	100001	000011	10 001		•
	100294	97571A	<0.001	6	
	100295	97572A	<0.001	9	
	100296	97573A	<0.001		
	100297	97574A	<0.001	<5	
	100298	97575A	<0.001	<5)
	100299	97576A	<0.001	8	
	100300	97577A	<0.001	<5	<u> </u>
	100301	97578A	<0.001	•	5
	100302	97579A	<0.001	8	
	100302	97579A	<0.001	•	
	100303		Result to		
	100304	97581A	<0.001	11	
	100305	97582A	<0.001		
	100306	97583A	<0.001	12	
	100307	97584A	<0.001	13	
	100308	97585A	<0.001	10	
	100309	97586A	<0.001		5
	100310	97587A	<0.001	24	
	100311	97588A	<0.001	30	
	100311	97588A	<0.001	10	
	100312	97589A	<0.001	15	
	100313	97590A	(0.001	19	
	100314	97591A	<0.001	1.	
	100315	97592A	(0.001	10	
	100316	97593A	(0.001	10	
	100317	97594A		1:	
	100318	97595A		2:	
	100319	97596▲		4	
	100320	97597A			
	100320	97597A			
1	100321	97598A	0.002	5	2

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Gold

<0.001

<0.001

Page:

17710

100333

100333

SAMPLE NUMBERS

Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

February 15

Work Order # : 880134

Project

Gold

Accurassay	Customer	Oz/T	ppb
100322	97599A	0.001	51
100323	97600A	<0.001	11
100324	97601A	<0.001	15
100325	97602A	<0.001	11
100326	97603A	<0.001	<5
100327	97604A	<0.001	< 5
100328	97605A	<0.001	⟨5
100329	97606A	<0.001	< 5
100329	97606A	(0.001	9 C
100330	97607A	<0.001	10
100331	97608A	<0.001	10
100332	97609A	<0.001	ğ
20000	3100311	.0.001	3

97610A

97610A

Check

Check

ORIGINAL

INDUCED CATION PLASMA (I.C.P.) SPECTROMETRIC ANALYSES
FOR DIAMOND DRILLCORE SAMPLES

6

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 MCL-MNO3-M20 AT 95 BEC. C FOR ONE MOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Pulp

				_								^		100					١ -	1										
DATE RE	CEIV	ED:	KAL	06 198	18 E	ATE	REF	ORT	MAI	LED	٠ /	au	"/	198	6	SSA'	YER.	.Д	Kak	repa	. DEA	N T	OYE,	CE	RTIF	IED	в. С). A	SSAY	'ER
									Į	NOR1	HER	N DY	'NAS	TY	F	i l e	# 8	8-00	64											
SAMPLE	MO PPM	CU PFM	P3 PPM	2N PPN	A6 FFM	N] PPM	CO FPM	nn FFM	-	AS PPH	U PPM	AU PPK	th PFH	SR PPM	CD PFM	S) PPM	DI PPH	V FPM	CA T	ř	LA PPR	CR PFM	#6 1	BA PPM	71 1	PPM	AL 1	na I	ĸ	FPM
7021	2	54	•	72	.1	67	29	997	4.30	7	5	ND	5	642	ı	2	3	13	4.32	. 092	32	125	2.47	137	.01	3	.25	.02	.10	1
7038	2	13		50	.1	31	15	700	3.42	4	5	ND	3	146	- 1	3	2	11	1.34	.071	21	215	.73	660	.01	4	.30	.04	.12	1
7043	2	28	6	77	.1	32	17	1276	5.25	5	5	ND	7	405	- 1	2	7	13	2.43	.115	32	149	.92	612	.01	8	.35	.04	.13	1
7045	2	57	7	83	.1	38	43	1377	5.88	10	5	MD		151	1	2	•	19	. 70	. 102	25	254	.50	110	. 01	4	. 39	.05	.13	2
7054	2	18	13	59	.1	42	13	1735	4.33	30	5	ND	3	159	1	4	5	17	1.75	.120	23	262	.85	63	.01	7	.29	.03	.09	5
7061	1	37	4	31	.1	13	•	521	2.20	4	5	ND	3	85	1	2	5	7	3.05	.074	19	140	.92	71	.01	25	. 32	.02	.10	1
7064	2	33	5	67	. 1	24	15	826	3.75	2	5	ND	3	597	1	2	,	13	3.55	. 083	22	167	1.71	725	.01	31	. 31	.04	. 12	1
7067	1	43	2	49	.1	21	10	529	2.58	3	5	ND	å	866	1	2	2	å	1,94	.083	29	126	1.11	281	.01	32	. 38	.04	.13	1
7074	2	29	å	32	.1	58	18	552	2.67	36	5	ND		302	ı	?	2	4	3.89	.037	26	99	2.06	32	.01	9	.30	.03	.08	1
3678			10	46	•	111	11	173	1 62	4.4		M.S.	1	771		•	•	•	1 00	444	10	174	1 12	17	۸ı		10	Δ1	- 11	1

KLK -

ACME ANALYTICAL LABORATORIES LTD.

DATE

STD C

17 57 40 127 6.8 68 28 1026 4.19 39

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 BEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK PULP

RECEIVED): !	IAR 08	1988	I	DATE	REF	PORT	MA	ILED	٠, ٨	lan	η	દુદ	•	ASSA	YER.	<u>(</u> .:	4.0	~~.	D.	TOYE	OR:	c.ı	EON9	s, c	ERT	IFIE	D B	.с.	ASSAYI
								i	NORTI	HERN	I DÝ	NAST	Y	Fi	10	# 85	3-06	80	<i>9</i>	age	1									
SAMPLES	HO PEM	CU FPM	PB FFM	IN PPH	A6 PPM	NI PPH	CO PPM	MN PPM	FE 1	AS PPH	U PPM	AU PPN	TH PPM	SR PFM	CO PFM	SB PFM	BI PFM	V PFH	CA 1		LA PPM	ER PPM	M6 1	BA PPM	Ti 1	B PPM	AL I	NA I	K	W PPM
7001 7005	2 2	58 44	23 23	54 42	.3	45 49	19 13	786 481	4.45 2.87	3 45	8	ND ND	5	801 640	1	2 2	2		3.85 2.16	. 125	25 29		2.48 1.48	83 57	.01	5 2	.36	.04	.15	1
7012 7101	3	60 37	17 5	41 24	.2	102 18	19		4.20 2.23	94	7 5	ND ND	4	700 86	1	1 2	2 2	7	2.47	.100	17 14	19	2.16	54 80	.01	2	.23 .56	.02	.09	i i
711é	1	3	ó	33	.2	21	8		2.12	2	5	ND	4	128	1	2	2			.062	18		1.26	404	.01	3	.48	.04	.11	1
7130 7143	2	11 51	3 10	60 43	.1 .3	6 3	22 35		4.47 3.79	10 13	5 5	ND ND	2 3	74 194	1	2 2	2 2			.043	4		1.43	54 32	.01 .01		1.27	.04	.09	1 2
7159	1	72	5	75	.3	65	30	1225	4.80	3	5	ND	4	109	1	2	2	18	2.79	.092	18	163	1.45	74	.01	3	1.01	.04	.17	!
7178 7185	1	61 24	5 7	78 59	.3 .1	39 27	25 14	1227 672	3.18	5	5 6	ND ND	5	173 248	1	2	2			.132	32 29		1.22		.01 .01	6	.3a .37	.04	.15	1
7189	1	26	10	<u> </u>	.2	30	15		3.24	4	9	ND	5	337	!	2	2			.065	20		1.62	996	.01	5	.27	.03	.10	!
7193 7194	1	35 29	12 6	62 42	.2 .2	41 29	20	1708 691	4.38 3.43	5 2	11 5	ND ND	5 6	557 250	1	2	2			.097	20 34	123 114	2.19	283	.01	4	. 18	.02	.10	2
7199	ı	32	8	54	.2	33	16	897	3.60	3	6	ND	5	335	1	2	2	13	4.18	.084	23	203	1.76	755	.01	5	.30	.03	.11	i
7202	1	19	8	46	.2	35	17	1008	3.80	4	9	ND	5	361	1	2	2	17	2.31	.073	17	278	1.97	659	.01	5	.42	.02	.12	1
7210	1	77	7	47	. 2	36	29		3.79	4	5	ND	é	282	1	2	3		2.93		27		1.31	734	.01	7	.47	.03	.14	2
7217	1	22	10	69	.2	39	29		4.17	2	10	ND ND	6	689 366	1	2	?		3.23 4.68		31 27		1.50	635 110	.01	4	.41	.04	.17	l I
7219 7222	1	12	7	46 59	.2 .3	32 38	15 18		4.08	4	5	ND	å	300 159	1	2 2	2		1.71		30		1.04	319 266	.01	ó	.53 .39	.04	.19	1
7225	i	28	4	55	, 2	37		1134		Ŷ	5	ND	5	157	i	2	2			.112	23		1.51	97	.01	3	.46	.04	.16	i
7229	1	56	51	55	.4	41		1425		38	5	ND	5	131	!	2	7		2.46		22		1.73	102	.01	3	.59	.06	. 20	2
7230 7236	2 2	44 58	40 46	77 63	.3 .3	85 94	26 25		4.06 5.10	123 130	5 5	ND ND	7 5	84 107	-	2	3		1.00		21 20		1.04	åB 7å	.01 .01	4	. 43	.03	. 15 . 15	1
7241	2	66	á	58	.2	18		1535		7	i	ND	ă	312	i	2	2		5.90		14		1.33	273	.01	3	.40	.04	.13	i
7247	2	23	9	74	.4	34		1909			5	ND	3	370	1	2	2	17	4.61	.084	1	177	1.38	108	.01	2	.13	.02	.05	1
7255	2	27	6	49	.4	25		1289		ė	8	ND	4	338	1	2	3		5.52		18	137 97	1.62	226 879	.01 .01	3	.18	.02	.05 .15	1
7259 7247	ı,	43	8 7	62 49	.3	31 35		1000		2	5 5	ND ND	6 5	570 163	1	2	3		1.80		34 26	115	.08 1.05	241	.01	4	.29	.03	.13	1
7263 7274	i 1	22 98	6	57	.3	46	25	944		i	5	ND	Ĭ	349	i	ž	3		3.16		13	100		917	.01	2	.43	.02	. 13	i
7281	i	41	7	48	.3	14	17	898		4	5	ND	4	171	1	2	3		4.15		24	\$ 5	1,49	133	.01	6	. 56	.02	.12	2
7299	\$	79	12	35	.4	12		1175		13	11	NĎ	2	334	1	2	2		1.55		10	137 336	2.51	634 1245	.01	2 13	.36 .53	.01	.12	2
7293 7294	1	26 17	10 7	38 30	.2 .1	25 20	11		2.39 2.03	3	8	ND ND	4	374 223	1	2	2		3.88 3.71	.075	22 17		1.47	488	.01 .01	2	.36	.02	.09	2
7299	1	26	Ś	14	.2	23	14	546		3	5	MD	i	120	i	2	2		3.93		21	127	.97		.01	7		.04	.09	1

SAMPLES	MO PPM	CU PPM	PB PPM	ZN PPH	AG PPM	NI PPM	CO PPM	AN PPH	FE 1	AS PPH	U PPM	AU PPH	TH FPN	SR PPH	CD PPM	SB PPM	BI PPM	V PFM	CA I	? 1	LA PPH	CR PPM	M6 1	BA PPM	T1 1	B PPM	AL 1	NA I	K I	¥ PPM
3273	!	36	8	57	.2	14	12	670	2.83	5	5	MD	2	144	1	2	2	14	3.51	.097	12	161	1,42	68	.01	é	.67	.01	. 16	1
3284	1	56	4	46	.2	13	18	729	2.82	3	7	MD	3	401	1	2	2	- 11	4.07	.082	14	96	1.65	494	.01	4	.50	.04	.19	3
3288	4	36	é	57	.2	31	14	927	3.59	5	7	ND	3	372	1	2	2	15	5.43		18	316		329	.01	3	.59	.02	.11	i
3294	1	41	5	38	.1	8	14	727	2.68	4	5	ND	4	294	1	3	Ż	16	4.03	. 121	32	69		419	.01	3	. 28	.03	.14	2
97522	1	56	12	80	.2	49	24	1340		16	5	ND	3	217	1	2	2	21	2.87	. 121	19	64		55	.01	4	.51	.04	.10	Ĭ
97527	1	69	á	72	.3	44	21	1438	6.76	3	5	MÔ	5	187	1	3	3	21	2.99	. 132	19	84	1.57	67	.01	5	. 36	.04	.13	ı
97531	2	112	4	38	.1	17	16	954	3.63	3	5	ND	4	360	1	2	2	11	5.01	.105	26	66	1.63	675	.01	8	.31	.02	.15	1
97533	1	50	2	37	. 2	17	13	937	3.36	5	5	ND	3	340	ı	2	2	12	4.28	. 097	22	134	1.39	745	.01	2	. 29	.05	.11	1
97535	i	9	3	64	.2	44	14	780	3.74	4	5	ND	4	424	i	2	2	28	3.23	.091	28	136		678	.01	2	1.41	.06	.16	1
97545A	1	57	11	94	.1	43	22	1178		3	5	ND	3	249	1	3	2	30	2.68	.125	18	90	1.49	247	.01	3	. 34	.03	.14	1
97546A	1	13	9	85	.3	40	19	1304	5.76	2	5	ND	4	309	ı	3	3	22	2.91	. 125	18	60	1.55	214	.01	3	.39	.04	. 17	1
97557A	1	11	á	37	.2	26	13	1266	3.87	5	5	ND	3	250	1	2	2	10	5.05	.082	16	126	1.42	56	.01	2	. 27	.01	.12	1
97565A	2	74	12	20	.2	31	32		2.92	42	5	XD	1	140	1	2	2	14	4.80	.088	11	256	1.76	54	.01	3	.24	.01	.11	1
97570A	1	26		38	.3	25	12		3.62	5	5	ND	i	358	i	ž	2		4.14	.115	30	69	1.26	154	.01	1	.64	.02	.38	ì
97571A	3	67	5	17	.3	23	18		2.31	10	5	ND	3	195	i	2	2	11	2.84	.115	19	163	.84	97	.01	6	.35	.01	.23	i
97588A	1	23	5	69	.2	41	17	839	4.30	5	5	ND	4	336	1	2	2	66	3.22	.098	29	252	3.09	311	.02	2	1.58	.11	.15	1
97596A	1	34	6	44	.2	26	13	898	3.32	7	5	ND	5	612	1	2	2	23	3.85	.101	28	112	1.94	1263	.01	3	.82	.04	.21	1
97598A	1	27	ó	49	.3	32	18	844	3.82	8	5	ND	- 4	515	1	2	2	21	3.86	.090	23	89	2.03	109	.01	2	.96	.05	.27	1
ATR C	13	20	77	173	7 1	10	22	1851	1 15	46	94	•	91	49	17	10	16	28	46	ABI	77	22	67	175	Α.	78	1 57	۸٥	+4	10

`

ſ

.

.

(

APPENDIX 6 AUTHOR'S CERTIFICATION

AUTHOR'S CERTIFICATION

- I, George Gorzynski, of 3836 West 16th Avenue, Vancouver, British Columbia, hereby certify as follows:
- 1. That I am a registered Professional Engineer in the Province of British Columbia.
- 2. That I graduated from the University of Toronto with a Bachelor of Applied Science Degree in Geological Engineering/ Mineral Exploration in 1978, and from the University of British Columbia with a Master of Applied Science Degree in Economic Geology in 1986.
- 3. That I have practised my profession since 1978.
- 4. That I supervised or personally carried out the fieldwork and then authored this report based on the 1987-88 program on the Virginiatown Property.

George obrzypski, P.En

G. A. GORZYNSK

APPENDIX 7

NORTHERN DYNASTY EXPLORATIONS LTD.

VIRGINIATOWN PROPERTY

1987-88 DIAMOND DRILL PROGRAM

DRILL LOGS AND SECTIONS

FOR HOLES VT-87-1 TO VT-87-6

AND VT-88-1 TO VT-88-6

To accompany '1987-88 Summary Report' by G. Gorzynski, P.Eng.

March, 1988

Pb (ppm)

DIAMOND DRILL RECORD

Hole Survey VT 87-01 Started: November 25, 1987 Hole No.: DIp Property: Virginiatown Completed: November 27, 1987 Meterage Azīmuth Method (corrected) L767378 Logged by: Claim No.: G. Gorzynski, J. Ho -44° 320° 0.0 Compass Ref. Co-ord.: Drill Contractor: Langley Drilling, Brampton, Ontario -41° 60.7 Acid -30° Elevation: Assayer: Accurassay Laboratories, Kirkland Lake, Ontario 121.6 Acid -30° 167.3 Acid Surveyed: No

Grid Co-ord.: L47+80W, 24+60S

Purpose:

123.6 Sericitic conglomerate: moderately bleached, < 2% disseminated pyrite-chalcopyrite throughout.

1. To test surface gold anomalles.

2. To test cross faults.

Core Size:

109.1

Casing Left: 1

rom	To	DESCRIPTION			SAMPLE				ASSAY	ŝ
(Metr	(c)		From	То	Length	No.	Rec	Au	Ag	•
		HOLE SUMMARY					1	(ppb)	(ppm)	
0.0	1.7	Casing.								
1.7	26.0	Sandstone/s11tstone.								
26.0	36.4	Sericitic conglomerate: bleched, local Cr-mica, locally 1-2% Py.	35.2	36.4	1.2	7305		1,603 (0.05 oz./†)		
36.4	39.0	Unaltered conglomerate with common quartz veins.						(010) 021/1/		
39.0	40-0	Sericite-K-feldspar altered conglomerate.								
40.0	41-2	Unaltered conglomerate.								
41.2	54.8	Sericite-K-feldspar altered conglomerate: 12% quartz cargonate-tourmaline veins, local Cr-mica and <1% pyrite/chalcopyrite.								
54.8	83.5	Locally altered conglomerate with 10% quartz carbonate veins at 54.8-57.6, decreasing downhole.								
83.5	95.8	Sericite-K-feldspar altered conglomerate with local quartz veins, Cr-mica and <1% pyrite.								
95-8	109.1	Locally altered conglomerate.								

Page	2	of	6
DOH	YT	87-	-0

From	To	DESCRIPTION	SAMPLE					 ASSA	rs	•		
(Metr	ric)		From To Length No. Rec				Au (ppb)	Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)	
		HOLE SUMMARY - (Cont'd)										
123.6	125.8	Locally altered conglomerate.										
125.8	136-1	Sandstone/siltstone: local K-feldspar, bleaching, silica alteration.										
136.1	167.3	Locally altered conglomerate: sparse K-feldspar, bleaching, and silica alteration, becoming weaker downhole.										
	167.3	END OF HOLE										

• -

.

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

November 25, 1987 Hole Survey VT 87-01 Started: Hole No.: DIp Method Property: Virginiatown Completed: November 27, 1987 Meterage Azimuth (corrected) G. Gorzynski, J. Ho Claim No.: L767378 Logged by: 320° -44° 0.0 Compass Drill Contractor: Langley Drilling, Brampton, Ontario 60.7 -41 Ref. Co-ord.: Acid -30° 121.6 Acid Accurassay Laboratories, Kirkland Lake, Ontario Elevation: Assayer: -30° 167.3 Acid

Surveyed:

Grid Co-ord.: L47+80W, 24+60S

Purpose:

1. To test surface gold anomalies.

2. To test cross faults.

Core Size:

Casing Left: No

From	То	DESCRIPTION		SAMPLE			ASSAY	rs		
(Metr	ic)		From	To Length No.	Rec \$	Au (ppb)	 Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)

0.0 Casing - no recovery.

1.7 26.0 SANDSTONE/SILTSTONE: Mainly banded light to dark grey: bedding typically ≤2 cm thick - several massive sandstone beds ≤ 50 cm; rare scours and graded beds indicate stratigraphic tops downhole; non-mag; non-catc; several limonitic fractures to 9.4 m; predominantly phyllitic; bedding/ foliation at: 40° to core exis at 1.7-18.0; 45° to core exis at 18.0-26.0 m; basal contact gradational over 1.8 m: ALTERATION: 11.7 - 16.0: slight bleaching/sericitization?

16.0 - 26.0: highly bleached light green sericite bands intercalated with light grey

sandstone.

MINERALIZATION: 20.4-20.6: 80% white quartz veins; trace chalcopyrite.

26.0 SERICITIC CONGLOMERATE: Polymictic, matrix supported, clast size ranges from 1/3 cm to 3 cm; 26.0 27.5 1.5 7301 generally angular to subangular, ratio of clasts to matrix 35-65. Clast type dominated by fine 27.5 30.2 2.7 7302 grained syenitic intrusive (90%). Lesser amounts of fine-grained volcanic/sedimentary clasts 30.2 32.9 2.7 7303 (5%) and pink quartz. Overall colour, light green, generally soft. Non-magnetic, non-calcareous. 32.9 35.2 2.3 7304 16 Bedding/foliation; highly variable - 60-40 to core axis. 1603 35.2 36.4 1.2 7305

ALTERATION: Both matrix and clasts altered to a sericite dominant alteration assemblage. Lesser amounts of irregularly formed zones of silicification. 5% emerald green Cr-mica fragments(?) and wisps. Not pervasively developed.

MINERALIZATION: 1-2% euhedral pyrite cubes up to 1/2 cm in size. Appear to be localized between 27.5-32.9 m. Dominantly in the matrix but some pyrite found in quartz fragments. Basal contact gradation over ~ 20 cm. *Coincidence with mag spike.*

Page 4 of 6 DDH VT 87-01

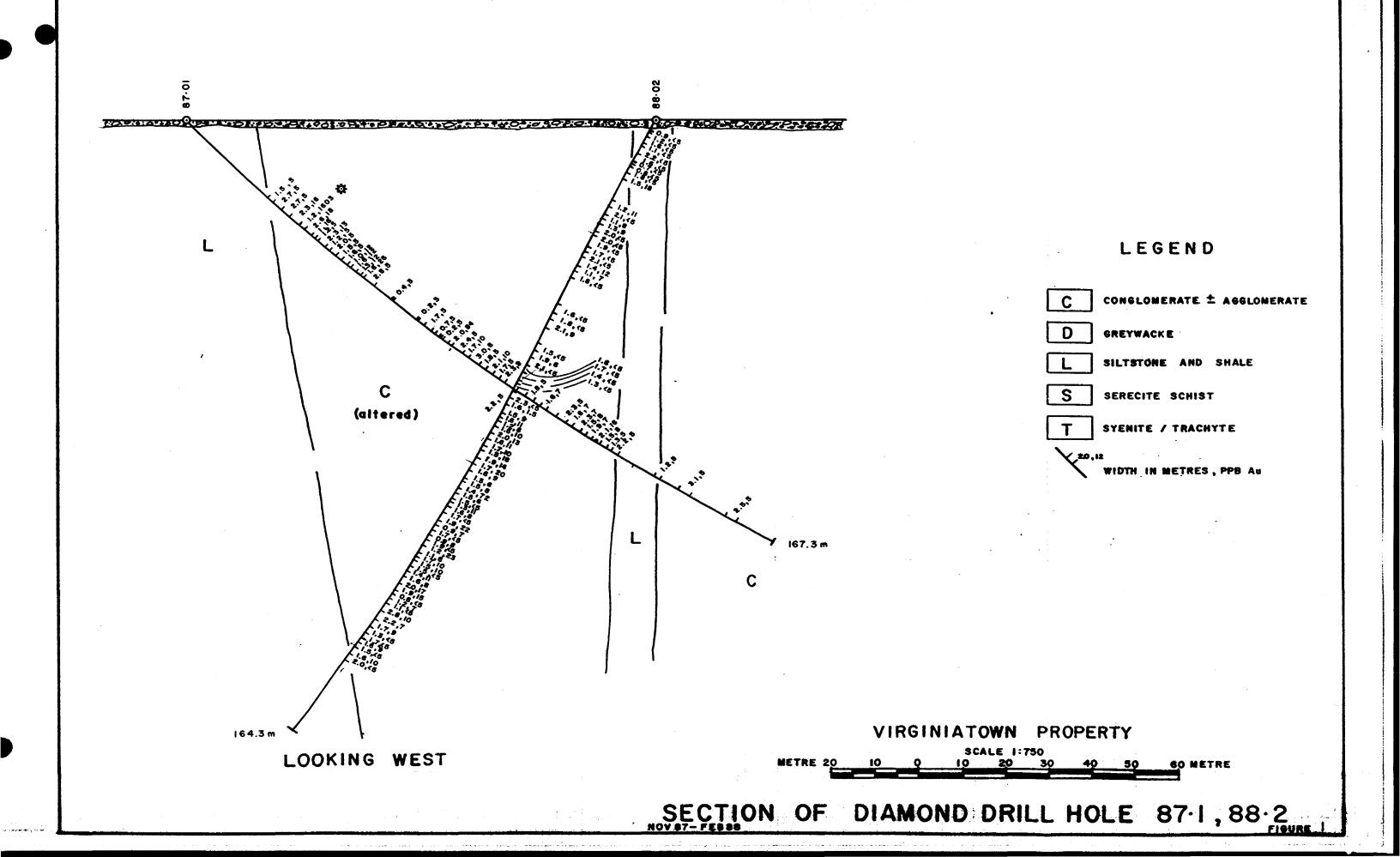
From	To	DESCRIPTION			SAMPLE				ASSA	YS		•
(Metr	lc)		From	To	Length	No.	Rec	Au	٨g	Zn	Pb	Cu
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
36.4	39.0	CONGLOMERATE: Polymictic, matrix supported, similar clast assemblage as sericitic conglomerate. Dark grey in colour. MINERALIZATION: Commonly cut by quartz veins oriented about 90° to clasts, clasts foliation	36.4	39.0	2.6	7306		18				
		parallel. Also some quartz veins have inclusions (xenoliths) of host - hydrostatic breccia- tion. Overall not highly altered. Foliation to core axis: 37.0 m - 45°, 39.8 m - 40°. Basal contact gradational over 5 cm.					-					
39.0	40.0	SERICITE, K-FELDSPAR ALTERED CONGLOMERATE: Sericite 25%, K-feldspar 25%. Primary fragments not easily recognized. 39-38-39-52 - quartz-iron-carbonate veins, sharp but irregular margins. Foliation to core axis: 39-8 - 50°. Basal contact gradational over 10 cm.	39.0	40.0	1-0	7307		16				
40.0	41.2	CONGLOMERATE: same as 36.4 - 39.0 m. 40.68 - 40.80 - quartz veins with carbonate (Ca) halo. Basal contact gradational over 10 cm.	40-0	41.2	1.2	7308		5				
41.2	54.8	SERICITIC, K-FELDSPAR CONGLOMERATE: same as 39.0 - 40.0 m. Primary structures again, difficult to	41 - 2	43.5	2.3	7309		13				
		recognize.	43.5	44.7	1.2	7310		5				
		MINERALIZATION: 12% quartz vèin development, veins rimmed with carbonate (ankeritic, dolomitic?),	44.7	46.7	2.0	7311		5				
		<3 mm wide. Disseminated fine tourmaline within quartz veins (<2% abundance). Minor	46.7	48.2	1.5	7312		5				
		sulphides (21%), comprised of pyrite and chalcopyrite, occuring as fracture coats within the	48.2	49.7	1.5	7313		5				
•		quartz veins. Cr-mica occurs as before, in irregular fragments, wisp-like forms (<3\$). Local	49.7	50.7	1.0	7314		11				
		vug structure în quartz-carbonate veîn (~51.3 m).	50.7	52.3	1.6	7315		12				
			52.3	53.8	1.5	7316		12				
			53.2	54.8	1.6	7317		26				
54.8	83.5	CONGLOMERATE: same as 40.0 - 41.24 m.										
		MINERALIZATION: 54.8 - 57.6 - moderately intense (10%) quartz-carbonate veins. Generally < 3 cm in width, moderate halos of sericitization and K-feldspar. Alteration abundant quartz veins. Downhole quartz-carbonate veins become fewer but larger in size, averaging > 15 cm, also more intense sericitic and K-feldspar alteration.	54.8	57.6	2.8	7318		5				
		62.3 - 62.7 - quartz carbonate-K-feldspar vein, with inclusions of host.	62.3	62.7	0.4	7319		5				
		69.9 - 70.1 - quartz carbonate vein with later cross cutting K-feldspar filled fractures. Tourmaline observed on fracture and foliation surfaces.	69.9	70-1	0.2	7320		5				
		72.7 ~ 74.2 - quartz-carbonate-sericite-black chlorite-iron-carbonate veins and carbonate and K-feldspar alteration.	72.7	74.4	1.7	7321		5				
		75.5 - 76.2 - quartz carbonate vein with a sericite-K-feldspar alteration halo. 76.3 - 76.9 - core ground, about 60% recovery.	75.5	76.2	0.7	7322		5				
		76.9 - 77.1 - quartz-carbonate - Cr-mica (trace) vein. 77.1 - 78.9 - no recovery - core tube did not lock.	76.9	77.1	0-2	7323		5				
		78.9 - 83.1 - variable amounts of quartz-carbonate veins and mild sericitic-K-feldspar altera-	78.9	80.9	2-0	7324		84				
		tion zone. Basal contact gradational.	80.9	83.3	2.4	7325		5				

LAND THE CONTRACTOR OF THE PROPERTY OF THE PRO

From	То	DESCRIPTION		5	SAMPLE				ASSA	YS		
(Me1	rlc)		From	То	Length	No.	Rec 1	Au (ppb)	Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)
83.5	95.8	SERICITE-K-FELDSPAR CONGLOMERATE: Highly altered, light green to beige mosaic, fairly evenly	83.3	85.0	1.7	7326		10				
		distributed. More altered zones are quite soft. Where quartz veining is intense, get breccia-	85.0	88.0	3.0	7327		6				
		tion of host. Non-magnetic, slightly local calcareous zones (<5%). Foliation to core axis	88.0	89.8	1.8	7328		5				
		85 m - 50°, 91 m - 45°.	89.8	91.9	2.1	7329		10				
		ALTERATION: Dominantly sericitization 40% and K-feldspar addition, 30% with small zones of	91.9	93.6	1.7	7330		5				
		silicification about quartz veins - some quartz veins have ankeritic(?) halos and inclusions. Disseminated Cr-mica (<1\$).	93.6	96.4	2.3	7331		9				
		MINERALIZATION: Sulphides located with tourmaline/black chlorite fracture fills, sulphide										
		dominantly pyrite (<1%). Also at basal contact fine disseminations of chalcopyrite and										
		pyrite (<2\$ total). Zones of ground core indicative of ground water flow(?) which may										
		coincide with brittle deformation zones(?), also coated with limonite. N.B. spring feed zone located at 88.5 - 89.7 m.										
95.8	109-1	CONGLOMERATE: same as 40.0 - 41.2 m. Upper section is finer grained, giving way to typical breccia/ fragmental assemblage.										
		ALTERATION: Fracture fills of calcium carbonate (3% fractures) zones of relatively more intense alteration:										
		96.4 - 97.1 - mild sericitic (5%) and K-feldspar (15%) alteration plus small (<2cm) quartz veins (10%).	96.4	98.6	2-2	7332		5				
		100.9 - 102.3 - pervasive finely developed sericitic (10%) and K-feldspar (40%) alteration with quartz-carbonate veins (2%), possible tourmaline (black chlorite?) fracture fills and calcium carbonate fracture fills (5% fractures). Note: ground core at 101.4 - 101.6 m.	100.8	102.6	1.8	7333		5				
		104.6 ~ 105.7 - Intensely altered, K-feldspar (45%), sericite (15%) and silicification (20%), quartz veins, small (<2 cm) (2%); minor Cr-mica (<1%). Sericite not uncommonly found as a halo about quartz veins. All contacts between alterations are gradational over a distance of 10-15 cm. Foliation to core axis: 102.6 m - 65°, 104.1 m - 53°: appears to be increasing relative to core axis.	104.5	106.1	1.6	7334		7				
109.1	123.6	SERICITIC CONGLOMERATE: Similar to previous but clasts not altered to the same degree. Matrix	109.1	111.4	2.3	7335		5				
		preferentially altered to K-feldspar (45%) and sericite (30%), minor amounts of Cr-mica (< 1%).	111.4	113.0	1.6	7336		7				
		MINERALIZATION: The entire section is sprinkled with very fine (<0.5 mm) grained pyrite and	113.0	115.3	2.3	7337		7				
		minor amounts of chalcopyrite, < 2% in total sulphides - these sulphides occur dominantly	115.3	116.8	1.5	7338		8				
		where the sericite and K-feldspar alteration is most intense, though not all zones of intense	116.8	118.7	1.9	7339		7				
		alteration has sulphide development. Also some sulphides have been found in the breccia	118.7	120-8	2-1	7340		16				
		clasts which display a high degree of alteration. Black, flakey hematite has also been found	120-8	122.3		7341		8				
		as fracture fills, often accompanied with pyrite and/or chalcopyrite, 2% of fractures are as	122.3	123.6		7342		5				
		such. Calcium carbonate has also been found as fracture fills as well as minor amounts										

THE STATE OF THE PROPERTY OF T

From	To	DESCRIPTION						,	SSAYS			
(Me	tric)		From	То	Length	No.	Rec	Au	^	Zn	РЬ	
							*	(ppb)	(pp	m) (ppm)	(ppm)	(p
		disseminated into the host. Foliation to core axis: 112.7 m = 60° , 116.6 m = 55° , 122.9 = 50° . Gradational basal contact over a length of 10 cm.										
123.6	125.8	CONGLOMERATE: same as above, 95.8 ~ 109.1 - clast to matrix ratio getting smaller. ALTERATION: Minor (<5%) weak zones of sericitic alteration with trace pyrite development. 124.8 - 125.8 - core ground, coincides with topographic depression. Remnant quartz found, also trace pyrite. Fault zone? Basal contact relatively abrupt.	123.6	125.8	2-2	7343		5				
125.8	136.1	SANDSTONE/SILTSTONE: Interbedded on a 1-3 cm scale. No primary textures visible. Non-calcareous, non-magnetic. ALTERATION: Patchy zones of K-feldspar addition-silicification. Sericitization less common, approximately 15% patchy weak alteration. Sericite also occurs as a primary metamorphic mineral 135.2 - 136.4 - moderately more intense alteration. Bedding/foliation to core axis: averaging approximately 60°. Basal contact sharp.		136.4	1.2	7344		8				
136.1	167.3	CONGLOMERATE: same as before, 123.6 - 125.8. Clast to matrix ratio larger, fragments generally smaller. Minor interbeds of 'sandstone/siltstone units. Non-magnetic, non-calcareous. Foliation/ bedding to core axis: averaging 60. ALTERATION: Generally patchy zones of K-feldspar, sericite—silica additions. More pervasive in upper sections. Lower sections, sericitization, with lesser amounts of K-feldspar are generally restricted to stringers in the matrix.		-		7345 7346		5 5				


Notes:

167.3 END OF HOLE

- 1. Difficult to assess proportions of carbonate due to cold weather while logging.
- 2. Core recovery generally 100%.

Serry J

J. Jorynah: Y

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

Hole No.:

VT 87-02

Started:

November 28, 1987

Hole Survey

November 29, 1987 Property: Virginiatown Completed: Meterage Azlmuth DIp (corrected) Claim No .: L666338 Logged by: G. Gorzynski, J. Ho 140° -46° 0.0 -440 Drill Contractor: Langley Drilling, Brampton, Ontario 60.7 Ref. Co-ord.:

Elevation:

Assayer:

Accurassay Laboratories, Kirkland Lake, Ontario

-420 136.8

Acid Acid

Method

Compass

Surveyed:

Grid Co-ord.: 30+75W, 3+50S

Purpose:

1. To test Beaver Dam Cross-Fault.

2. To test zones of surface alteration.

Core Size:

BQ

Casing Left:

DESCRIPTION

SAMPLE

ASSAYS

(Metric)

From To Length

(ppb)

٨g (ppm) (ppm)

HOLE SUMMARY

Casing.

Sericite Schist: locally < 15 cm wide quartz vein zones with finely disseminated pyrite-molybdenite 136.9 -tourmaline. 102.8 - 103.0 structurally an "M" zone of fold nose system.

END OF HOLE 136.9

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

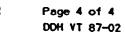
November 28, 1987 Hole Survey Hole No.: VT 87-02 Started: Dlp November 29, 1987 Virginiatown Completed: Az Imuth Property: Meterage Method (corrected) L666338 Logged by: G. Gorzynski, J. Ho Claim No.: 140° -46° 0.0 Compass -44° Ref. Co-ord.: Drill Contractor: Langley Drilling, Brampton, Ontario 60.7 Acid -42° 136.8 Acid Accurassay Laboratories, Kirkland Lake, Ontario Elevation: Assayer:

1. To test Beaver Dam Cross-Fault.

2. To test zones of surface alteration.

Surveyed:

Grid Co-ord.: 30+75W, 3+50S


Core Size: Casing Left: No

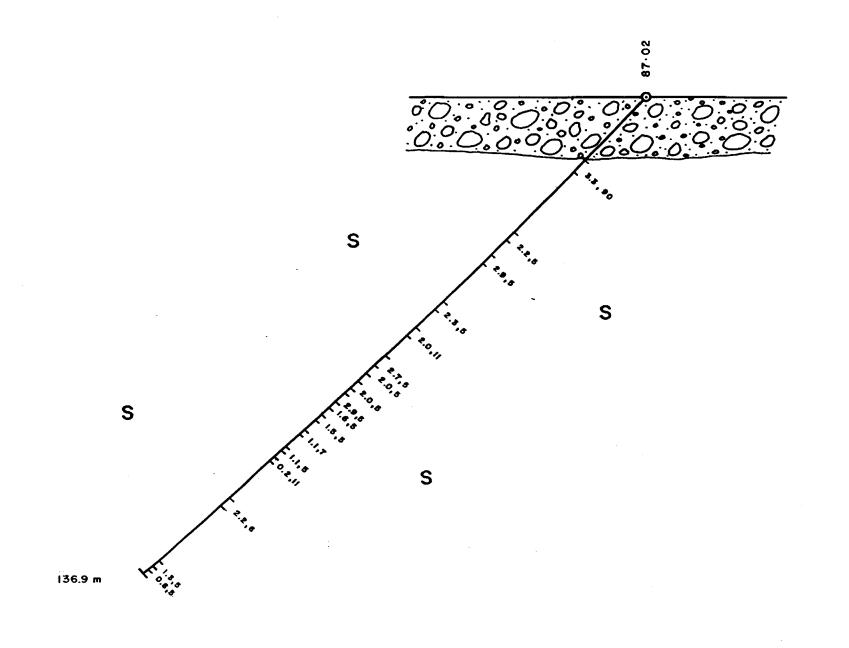
BQ

Purpose:

From	To	DESCRIPTION		S	AMPLE				ASSA'	YS		
(Metri	(c)		From	To	Length	No.	Rec	Au		Zn	РЬ	Cu
							1	(ppb)	(ppm)	(ppm)	(ppm)	(ppm
0.0	17.4	Casing: Few mafic volcanic pebbles recovered. Casing may have been driven a long way into bedrock. Overburden is reported to be mainly clay.										
17.4	136.9	SERICITE SCHIST: Light green with off-white bands and patches; banding is typically vague, <1 cm thick; entire unit is generally very uniform in appearance; non-magnetic, non-calcareous; patchy sections are poorly developed breccia zones; sparse sections (<15 cm) are silicified; generally non-siliceous at top of unit, becoming moderately siliceous downhole; foliation to core axis = 40° at 17.5 m, 40° at 23.5 m, 50° at 31.0 m, 45° at 36.5 m, 40° at 42.5 m, 40° at 46.0 m. Small (<7 cm width) rhyolitic+quartz dikelets/veins(?) intersecting core section (<3% abundance). Sections of broken core (faults?) at 24.6-27.1 m (core tube did not lock), 28.3-29.3 m, and small sections elsewhere; ALTERATION: Sparse local highly silicified sections (<15 cm) - very rare disseminated Cr-mica. MINERALIZATION: Sparse (<1%) pink quartz veins (<15 cm) parallel to foliation. 17.4 - 20.7 - <1% disseminated pyrite; only trace pyrite elsewhere; fine (1 mm) veinlets at 43.9 m and 48.8 m host 0.5% pyrrhotite-pyrite and 3% molybdenum(?). 45.2 - 45.4 - 3 cm quartz-black chloritic veinlet at 10° to core axis; rare thin (<3 mm) similar veinlets occur elsewhere. 57.0 - 59.3 - moderately more silicification (~8% total rock) in discrete bands. Finely disseminated pyrite (3%) associated with brecciated quartz veins (<1 cm wide), (~3% total), pyrite often concentrated along contact zone. Also fracture coated Mo (~1%) and minor fracture coated py (~1%). This type of fine grained pyrite development occurs at varying intervals, often > 1 m, and <1 cm wide.	17.4 37.5 43.6 57.0	20+7 39-7 46-5 59-3	3.3 2.2 2.9 2.3	7001 7002 7003 7004		90 5 5 5				

From To	DESCRIPTION			SAMPLE				ASSAY	rs	•
(Metric)		From	To	Length	No.	Rec	Au	 Ag	Zn	Pb
						*	(ppb)	(ppm)	(ppm)	(ppm)
	64.5 - 66.5 - Overall look the same as above (57.0-59.3); with development of rhyolitic dike/vein (~4% of total rock). Larger dikes/veinlets (>3 cm) penetrated with fine grained pyrite (<2% total sulphide).	64.5	66.5	2.0	7005		11			
	68.3 - 69.8 - Core ground and lost.									
	68.5 - 68.9 - core lost.									
	69.5 - 69.8 - core lost.									
	Foliation to core exis: $54.6 \text{ m} - 50^{\circ}$; $57.6 \text{ m} - 48^{\circ}$, $66.7 \text{ m} - 70^{\circ}$.									
	72.9 - 75.6 - Moderate increase in size and frequency of quartz vein, < 5 cm in width, 5%, abundance, host rock remains a sericite schist. The largest vein (18 cm wide) displays trace (1≴) chalcopyrite and molybdenite.	72.9	75.6	2.7	7006		5			
	75.6 - 77.6 - Similar to 72.9 - 75.6, < 1% developed pyritic fracture coats, up to 5% of fracture surface coated. Pyrite deformed parallel to foliation.	75.6	77.6	2.0	7007		5			
	80.1 - 82.1 - Same sericite schist but with more frequent, pyritic fracture coats, 2% of rock.	80.1	82.1	2.0	7008		5			
	83.1 - 86.0 - Variably silicified (~10% total rock) and brecciated (5% total rock), sericitic schist. Pyrite (3%) occurs as rims and inclusions in small (< 1 cm wide) quartz veins and as fine disseminations.	83.1	86.0	2•9	7009		5			
	86.0 - 88.4 - Same as 83.1 - 86.0, but with less quartz veining. Foliation to core axis: $71.3 \text{ m} - 40^{\circ}$, $74.4 \text{ m} - 45^{\circ}$, $83.5 \text{ m} - 55^{\circ}$.	86.0	87.6	1.6	7010		5			
	89.7 - 91.2 - Typical sericitic schist with pyritic quartz veins. About 5% pyrite over a quartz vein width of typically 1 cm. Quartz vein makes up approximately 2% of rock. All quartz veins are either brecciated or highly contorted. Note: Overall, the colour of rock is a dark green.	89.7	91 .2	1.5	7011		5			
	93.9 - 95.0 - Sericitic schist with approximately 1% quartz veins and well disseminated fine grained pyrite approximately 2%.	93.9	95.0	1.1	7012		7			
	99-0 -100-1 - Large brecciated quartz vein 35% of section with interstitial chlorite (10%). Fine grained pyrite (3%) restricted mainly to interstitial areas.	99.0	100-1	1.1	7013		5			
	101.1 -112.7 - Appearance of highly disrupted fine grained sandstone beds. Disruption includes vertical orientation of bedding to core axis and general contortions. Also the appearance of relatively thick sandstone units (> 7 cm) which are foliation parallel (injection dike?). 102.4 - 102.7 - poor core recovery, approximately 75%. Appearance of taic/ serpentine?, soft, light green, greasy feel zone. 102.8 - 103.0 - quartz veins (20%) with pyritic (2%) margins. Overall this section maybe an "M" zone of a fold nose system.	102.8	103.0	0-2	7014		11			
	114.2 -120.4 - same as 101.1 - 112.7. Highly contorted fine sandstone bed(?). Fragments and large (>50 cm), massive to weakly foliated sandstone bed(?)/injection dikes?									

From To	DESCRIPTION			SAMPLE				ASSA	rs		
(Metric)		From	То	Length	No.	Rec	Au	Ag	Zn	Pb	Cu
						*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
	114.2 - 116.6 - A very contorted zone of smaller quartz-rich sandstone beds(?) which have been cross cut by small (<< 5 mm) quartz pyritic veins (25% veining). Pyrite developed in the seritic rich margins (<0.3 mm width), pyrite abundance approximately 3% (overall abundance).	114.4	116.6	2.2	7015		6				
	124.8 - 126.1 - 1% small pyritic quartz veins, < 1 cm width, 2% pyrite, in a typical sericitic schist.										
	134.2 - 134.7 - Typical sericitic schist, but quartz veins, 5% abundance, have approximately 1% Cr-mica, also approximately 2% fine grained pyritic, quartz veins <3 cm wide.	133.4	134.7	1.3	7016		5				
	134.7 - 135.5 - Rhodochrosite+dolomite vein (30:70 ratio). From 134.7 - 135.2, top contact approximately parallel to foliation bottom contact irreguarly parallel to core axis. Fine grained pyrite (-chalcopyrite) disseminated about margins (3% abundance), some pyrite found as (approximately 2% of total) inclusions in vein itself. Molybdenite (approximately 1%) also found as inclusions. Best of section is dominantly a sericitic schist with finely disseminated pyrite (approximately 2%). Foliation to core axis: 118.7 m - 35°, 125.1 m - 40°, 129.2 m - 40°, 133.9 m - 40°.	134.7	135.5	0.8	7017		5				


136.9 END OF HOLE

Note:

Carbonate proportions underestimated due to cold weather, outcrops typically display 20 - 25% iron carbonate in this vicinity.

ferry B

J. Joryandi (f)

LEGEND

- CONGLOMERATE ± AGGLOMERATE
- GREYWACKE .
- SILTSTONE AND SHALE
- SERECITE SCHIST
- SYENITE / TRACHYTE

WIDTH IN METRES, PPB Au

LOOKING WEST

VIRGINIATOWN PROPERTY

87.02 FIGURE 2 SECTION OF DIAMOND DRILL HOLE

NORTHERN DYNASTY EXPLORATIONS LTD.

			DIAMOND DRILL RECORD										
Hole No.:	VT 87-03	Started:	December 1, 1987						Hole	Survey			
Property:	Virginiatown	Completed:	December 4, 1987			Me	terage		Azīmuth	Olp		M	lethod
Claim No.:	666338	Logged by:	J. Ho				0.0		1400	(correct		c	Compass
Ref. Co-ord.:		Drill Contractor:	Langley Drilling, Brampton, Ontario				60.7		-	-49)	^	Acid
Elevation:		Assayer:	Accurassay Laboratories, Kirkland Lake, Ontario				121.6 197.8		-	-47 -41	0		Acid Acid
Surveyed:	No						258.8		-	-35)		Acid
Grid Co-ord.:	30+30W, 6+45S	Purpose:	 Test surface alteration zones. Test deformation zones. 										
Core Size:	₿Q		2. Test between ton zones.										
Casing Left:	No												
From To	<u></u>		DESCRIPTION			SAMPLE				ASSA			
(Metric)		-		From	То	Length	No.	Rec	Au		Zn (ppm)	РЬ	Cu (ppm)
								*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
	HOLE SUMMARY												
0.0 1.4	Casing.												
1.4 126.5		•	of quartz-carbonate veins with < 1% fine pyrite- on. Syenific dikelets developed at 31.3 - 39.5										
126.5 129.8	Sericitic conglomerate:	alteration includes	bleaching, K-feldspar, and Cr-mica (< 1%).										
129.8 132.3	Interbedded sericitic c	onglomerate and serio	citic schist: fault at basal contect.										
132.3 188.9	_	· · · · · · · · · · · · · · · · · · ·	reration, quartz-carbonate vein, pyrite, tourmaline. 0 - 165.8 mafic voicanic.										

193.1 Conglomerate: trace Cr-mica and < 1≴ disseminated pyrite.

216-3 Sericitic conglomerate: 2% cubic pyrite quartz-carbonate veins.

219.9 Interbedded sericitic schist/sericitic conglomerate: local quartz veins with < 1% pyrite.

188.9

193.1

216.3

Page	2	of	8
DOH	vT-	-87	-03

From	To	DESCRIPTION
(Met	ric)	
		HOLE SUMMARY - (Cont'd)
219.9	225.3	Sericitic conglomerate: local disseminations of pyrite and quartz veins.
225.3	239.4	Banded sericitic schist: local quartz veins.
239.4	258.8	Interbedded mudstone/siltstone.
	258.8	END OF HOLE

ASSAYS

| Ag | Zn | Pb | Cu | (ppm) | (ppm) | (ppm) |

SAMPLE To Length No.

From

(ppb)

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

December 1, 1987 Hole No.: VT 87-03 Started: Hole Survey December 4, 1987 Azīmuth Property: Virginiatown Completed: Meterage DIP Method (corrected) J. Ho Claim No.: 666338 Logged by: ~50° 0.0 140 Compass Drill Contractor: Langley Drilling, Brampton, Ontario -49 Ref. Co-ord.: 60.7 Acid -47° 121.6 Acid Elevation: Assayer: Accurassay Laboratories, Kirkland Lake, Ontario -41 197.8 Acid 258.8 -35 Surveyed: Acid Purpose: Test surface alteration zones. Grid Co-ord.: 30+30W, 6+45S

Core Size: BQ

2. Test deformation zones.

 From To
 DESCRIPTION
 SAMPLE
 ASSAYS

 (Metric)
 From To Length No. Rec Au Ag Zn Pb Cu
 Ag Zn Pb Cu

 \$ (noh)
 (nom) (nom) (nom) (nom) (nom)
 (nom) (nom) (nom) (nom)

14.5

14.8

0.3 7018

14

.4 126.5 SERICITE SCHIST: Patchy mosaic of light greens to white representing regions of (1 - 3 cm wide) more siliceous rock which are separated by yellow-green stringer zones (<1-2 mm wide) of sericite-chlorite (85:15). Primary features are absent due to alteration and accompanying deformation. Non-calcareous, non-magnetic. Number of limonitic-rusty fractures to 10.9 m. Foliation/bedding to core axis: 2.6 m: 45°; 8.8 m: 40°; 17.9 m: 45°.

ALTERATION: Sericite is the dominant alteration mineral (45%) with lesser amounts of silicification about quartz veins (< 8%), also minor (trace) amounts of Cr-mica occurring in a fragment-like form.

MINERAL IZATION:

CASING - no recovery.

Casing Left: No

0.0

- 3.8 11.0: Small < 3 cm wide quartz veins. Very infrequent, <1% of rock, with trace sulphides (pyrite), often with carbonate-chlorite-sericite margins. Margins < 2 mm wide.
- 14.5 14.8: Variable width quartz vein, from 2 1/2 cm wide with a pink K-feldspar alteration halo, extending approximately 3 cm from quartz vein margin with a chloritic richer inner zone approximately 1 cm from margin. The vein displays periodic pinch and swell features over its length. The contact runs approximately parallel to core axis (true width unknown). Locally about the quartz vein and within the quartz vein sulphide concentrations up to 5%, but averaging <2%. Sulphide is pyrite, formed in small <1 mm euhedral forms.
- 25.7 27.7: Small (< 2 cm wide) quartz veins, totalling < 2% of rock with chloritic (tourmatine?)-carbonate-sericitic 1 2 mm margins.
- 31.3 39.5: Relatively abundant quartz veining approximately 10% total rock, and approximately 8% small, <3 cm wide, syenific dikelets, increasing in frequency down hole. Also, a small, 1/2 cm wide tourmaline vein at 31.3 m.

rom To	DESCRIPTION			SAMPLE				ASSA	rs .		•
(Metric)		From	To	Length	No-	Rec	Λu	Ag	Zn	РЬ	Cu
						*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
	32.1 - 34.7: 15% quartz vein concentration, veins about 20 cm wide, contacts parallel to foliation, veins cut by chloritic-sericitic filled fractures. Pyrite (3% abundance) formed as fine disseminations in the immediate marginal zones. Dolomitic carbonate also intimately intergrown with quartz, up to 25% of vein.	32-1	34.7	2.6	7019		8				
	37.4 - 39.4: Quartz veins, highly contorted to foliation parallel, comprising 7% of section- intergrown with the quartz is 25-60% dolomitic carbonate and 1-2% Fe-carbonate. 25% of section is comprised of 1 - 3 cm wide syenitic (?) pink dikes/sills (?), thin, < 1 - 2 mm, wide altera- tion rims are visible. Bleaching (?) and some whitish (bleaching ?) spots also found on some dikes (10%). Very fine pyrite (1%) has been observed as fracture coats of the quartz veins.	37.4	39.4	2.0	7020		7				
	40.7 - 43.7: Sericitic alteration bands (2 mm wide) more widely spaced (1 - 2 cm) with primary (?) depositional grains visible in the interband zones. Fine pyrite, up to 2%, found in more sericitic and siliceous zones. Cr-mica fragments (?) appearing in lower section (1% total). Quartz-carbonate-tourmaline vein (70:20:10 ratio) located at 41.8 - 42.3 with fine pyrite 2% localized about upper contact, contacts parallel to foliation.	40.7	43.7	3.0	7021		∠ 5				
	44.0 - 44.2: Quartz-dolomitic carbonate-Fe-carbonate (80:18:2 ratio) with fine-grained pyrite (3%) localized about lower contact. Trace chalcopyrite inclusion. 44.5 - 45.7: 80% core recovery.	44.0	44.2	0-2	7022		13				
	46.2 - 46.5: 75% core recovery.										
•	48.3 - 48.5: core ground.										
	50.6 - calcium carbonate fracture fill, fracture width < 2 mm. Foliation to core axis: 54.6: 38°; 57.7: 38°.										
	58.8 - 64.8: Sericitic alteration reduced by 10 - 15% with primary clastic outlines visible,	60-3	62.5	2.2	7023		7				
	somewhat whiter in colour. Cr-mica alteration increase, up to 2%, appears to be intergrown	62.5		1.2	7023		√ < 5				
		63.3		1.3	7025		~5				
	with the sericitic bands (<1 mm wide). Trace jasper (?) clasts visible. Relatively large quartz veins (>25 cm), with contacts parallel to foliation, are developed. The quartz is intergrown with dolomitic carbonate (average 15≴) and black, fractured tourmaline (?). 5≴ very		04.0	1.5	1025		2)				
	fine-grained pyrite (<1/2 mm) is observed disseminated throughout section, 2% in total. More concentrated pyrite (pyrrhotite; non-magnetic) in fractures, up to 55% locally. <1% of fractures are mineralized.										
	71.7 - 72.1: Syenitic dikes/sills?, 80% of section. Structurally, these features and the host schist display a weakly developed kink band.										
	82.4 - 83.3: Small (1/2 cm wide) quartz veins, 5% of section, with very fine grained pyrite, 2% in total, K-feldspar alteration, 6% towards top.	82.4	83.3	0.9	7026		7				
	86.0 - 88.6: Same as above 82.4 - 83.3, but quartz vein slightly wider, approximately 1 cm, all	86.0	87.6	1.6	7027		< 5				
	quartz veins parallel to foliation. Foliation to core axis: 71.5: 37; 81.4: 30; 85.2: 32.	87-6	88.6	1.0	7028		7				
	88.6 - 99.5: Same as above 86.0 - 88.6 but few quartz veins, 2% of section; some quartz veins (approximately 10%) have developed fine-grained pyrite (2%) over widths of 3 - 5 cm; 2 - 3%	97.5	98.4	0.9	7029		5				

K-feldspar alteration.

mante to a second or a second of the second

From	To	DESCRIPTION			SAMPLE					ASSA	YS		
(Met	ric)		From	То	Length	No.	Rec	Au		Ag	Zn	Pb	Cu
							*	(ppb)		(ppm)	(bbw)	(ppm)	(ppm
		99.5 - 105.2: Development of large (>30 cm) quartz veins. These quartz veins composed of	101-1	102.6	1.5	7030		8					
		quartz 80%, 15% dolomitic carbonate and -5% tourmailne. Contact parallel to foliation; 1%	102.6	104-1	1.5	7031		13					
		pyritic sulphides localized at margins; tourmaline acts as fracture coats in the quartz (< 5%).	104-1	105-2	1-1	7032		9					
		109.8 - 110.4: Quartz-carbonate-tourmaline vein (70:26:4) contacts parallel with foliation. Trace pyrite in immediate margin.	109.8	110.2	0-4	7033		8					
		110.4 - 126.5: Sericitic schist with 7% quartz veins and 5% localized syenitic dikes/sills;	112.8	113.9	1.1	7034		12				-	
		quartz veins generally < 10 cm wide with contacts parallel to foliation, but deviations not	119.1	119.9	8.0	7035		10					
		uncommon. Sulphides, dominantly pyrite, are associated with quartz veins, either localized within the marginal zones or as distinct inclusions; pyrite concentration averaging 2%, locally up to 5%.	124.0	124.4	0.4	7036		15	(37)				
		115.5 - 116.3: core ground, recovery 80%.											
		Foliation to core axis: 115.3: 35°; 118.3: 35°; 124.6: 37°.											
126.5	129.8	SERICITIC CONGLOMERATE: Polymictic matrix supported; 98% of clasts are syenitic in composition, ranging from 1 - 2 cm in the long dimension and 1/2 cm wide. These clasts are light pink in colour; 2% of clasts are dark grey in colour and may be a sediment (wacke?). The matrix is light green sericite-chlorite (90:10). The clast to matrix ratio is 78:22. All clasts have been deformed into the plane of foliation. Non-calcareous matrix, but a dolomitic-carbonate fracture fill is found at 126.9. Non-magnetic. ALTERATION: The sericitic matrix represents the most obvious alteration by bleaching and the clasts display moderate (20%) K-feldspar addition. Cr-mica (approximately 1%) is also present as intergrowths with sericite. MINERALIZATION: The upper contact is marked by a 2 cm wide quartz-carbonate vein with 4% fine grained pyrite. The pyrite continues as disseminations into the conglomerate. Pyrite concentration decreases to 2% as disseminations.	126.5	127•4	0.9	7037		9					
129.8	132-3	INTERBEDDED SERICITIC CONGLOMERATE AND SERICITIC SCHIST: Bedding on the scale of > 20 cm. Sericitic conglomerate same as 126.5 - 129.8 but without the sulphide mineralization. The sericitic schist is similar to the sericitic schist up hole, however, the alteration here is more evenly developed with less distinct sericitic bands allowing for a more homogeneous light-green-blege colour. Quartz veins and sulphides are also lacking. 132.3 - Basal contact marked by 1/2 cm wide zone of quartz (85≴)-Fe-carbonate (10≴) - black chiorite (5≴); poorly consolidated, this may be interpreted as a fault.											
132.3	188.9	SERICITIC CONGLOMERATE: Same as 126.5 - 129.8. However, the sericitic rock matrix is slightly more											
		green, possibly indicating more chlorite, this gives the rock a stronger banding effect. The											

matrix to conglomerate ratio, however, appears to be the same.

From To	DESCRIPTION			SAMPLE				ASSA'	YS	(
(Metric)		From	То	Length	No.	Rec	Λu	Ag	Zn	Pb
						*	(ppb)	(ppm)	(ppm)	(ppn
	132.3 - 134.2: K-feldspar alteration is more intense (>20%) giving the rock a distinct red look. Contained within this zone at 132.8 is a 2 cm wide quartz (40%)-black chlorite (10%)-Fe- carbonate (8%), the rest of the assemblage is brecciated conglomerate, this may be a fault	132.3	134.2	1.9	7038		12			
	zone, coinciding with the Beaver Dam fault (?).			_			_			
	144.9 - 146.2: Black chlorite (?)-quartz filled fractures with Fe-carbonate developed roughly parallel to the core axis. 10% of section is fractured. 1 - 2% fine-grained pyrite is developed within these fractures.	144.9	146.2	1.3	7039		7			
	146.9 - 147.1: Zone of K-feldspar alteration centered about a 1/2 cm wide black chlorite-fe- carbonate (40:60) fracture. Similar to 132.3. This may be another fault. 149.1 - 149.2: Quartz-carbonate (10%)-fe-carbonate (5%) vein, with chloritic rich contacts.									
	Contact parallel to foliation.									
	156.6 - 156.8: Quartz (65%)-fe-carbonate (20%)-dolomitic carbonate vein-	156.6	156.8	0.2	7040		9			
	157.2 - 157.6: 2 mm wide quartz vein with tourmaline (?) rich margins. 1 - 2% pyrite developed within the vein. The vein runs approximately parallel to core axis.	157.2	157.6	0.4	7041		9			
	161.4 - 161.6: Quartz vein zone, 45% quartz veining with 2% tourmaline (?). 3% dolomitic carbonate and 2% Fe-carbonate. Trace chalcopyrite.	161.4	161.6	0.2	7042		10			
	163.2 - 176.7: Numerous syenitic dikes/sills, 20% of section. Contacts roughly foliation parallel, some contacts (10%) display a 1 - 2 mm wide zone of bleaching. Foliation is developed within these structures. Generally < 20 cm wide.									
	164.4 - 165.9: 1% calcium carbonate fracture fill (vein ?) with fine pyrite (1 - 2%) and fracture confined pyrite (1%), deformed parallel to foliation.	164.4	165.9	1.5	7043		11			
	165.0 - 165.8: Development of dark green-black, fine-grained, non-magnetic mafic volcanic dikes/ sills (?). About 25% of section. Foliation developed within these structures.									
	170.4 - 170.5: Quartz-carbonate vein, contacts perpendicular to core axis.									
	This section (163.2 - 176.7) is also marked by less altered syenitic clasts, evidenced by stronger									
	red colours and more visible igneous textures, and clastic outlines are very sharp.									
	182.2 - 2 cm wide fault zone. Characterized by quartz (30%)-Fe-carbonate (40%)-black chlorite (20%)-sericite (10%) vein filling. ∠ 1% very fine pyrite localized on black chlorite surfaces.									
	184.3 - 184.4: Fault zone similar to 182.2 but less Fe-carbonate (10%) and more black chlorite									

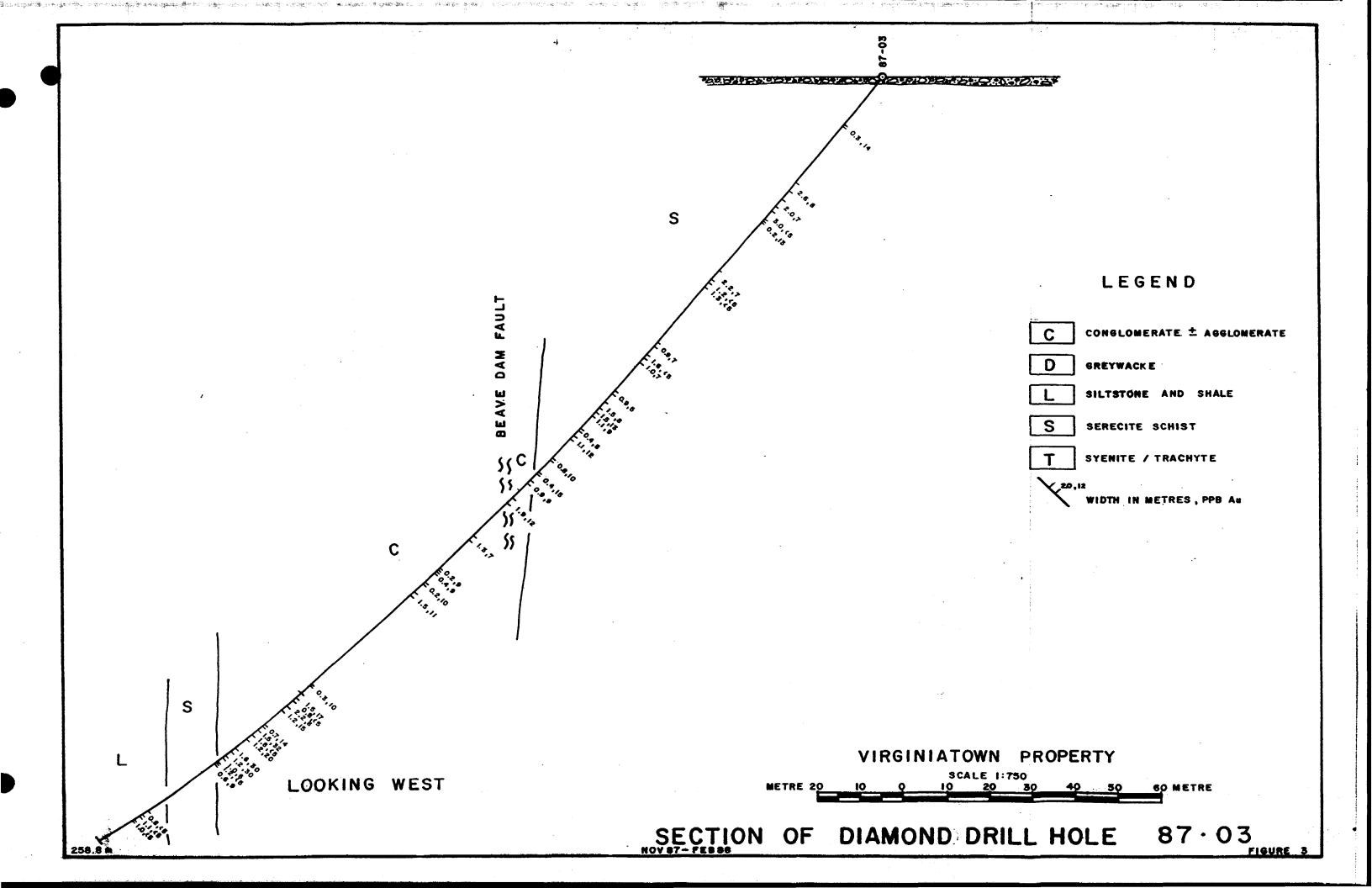
N.B. Mis-number of tags between 185.62 and 188.67, only 20 cm between these two tags. Tag numbers preceeding and following these tags are consistent.

CONGLOMERATE: Polymictic clast supported conglomerate. Clasts variable in size up to 5 cm wide, generally angular to subangular. 90% of clasts are syenitic in composition. ALTERATION: Matrix has been altered to a dominant sericitic schist. 8% of section is sericite. The clasts also display bleached margins.

(30%). Cr-mica also appears (2%). No sulphides are visible. Foliation to core axis: 174.2: 44; 180.9: 46; 184.8: 54.

										DDH VT-	-87-03		
From	То	DESCRIPTION			SAMPLE					ASSA	YS		
(Me	tr1c)		From	То	Length	No.	Rec	Au		Ag	Zn	Pb	Cu
							*	(ppb)		(ppm)	(ppm)	(bbm)	(bbw)
		MINERALIZATON: 190.3, 1 cm wide zone of 80% Cr-mica with 10% sericite, 10% silica and trace fine pyrite.											
193.1	216.3	SERICITIC CONGLOMERATE: Same as 126.5 - 129.8.											
		197.0 - 197.3: Quartz vein with 5% dolomitic carbonate and 4% Fe-carbonate. Trace pyrite inclusions in the quartz. Both contacts, roughly parallel to foliation, are characterized by	197.0	197.3	0.3	7044		10					
		black chlorite-Fe-carbonate and trace pyrite in a zone about 2 - 3 mm wide. MINERALIZATION: Finely disseminated pyrite up to 2 - 3% can be seen. Calcium carbonate fracture	200.1	201.6	1.5	7045		17					
		fills/veins, oriented roughly parallel to core axis (2% fractures). 3% highly contorted	201.6	202.4	0.8	7046		< 5					
		small (<2 cm wide) quartz veins with 1 - 2% marginal fine pyrite. Trace Cr-mica appears	202.4	204.6		7047		8					
		from 212.4 on down hole.	204.6	205.8	1.2	7048		15					
			211.1	211.8	0.7	7049		14					
		211.8 - 213.3: 5% calcium carbonate fracture fills, locally up to 5% pyrite.	211-8	213.3	1.5	7050		32					
		213.3 - 215.1: Pyrite becomes large (5 - 8 cm) euhedral cubes with 2 - 3 mm wide silicate pressure shadows, oriented parallel to foliation (2% sulphides).	213.3	215.1	1.8	7051		< 5					
		215.1 - 216.3: Disseminated and quartz vein (3%) associated pyrite (1%).	215.1	216.3	1 - 2	7052		20					
216.3	219.9	INTERBEDDED SERICITIC SCHIST/SERICITIC CONGLOMERATE: The conglomerate is similar to 126.5 - 129.8 and bedding widths average >10 cm. The sericitic schist is a homogeneous line green with 1% pyritic (10%) quartz veins. Beds typically >30 cm in width. Pyrite also occurs as fracture fills with black chlorite, 2% fractures, 1% pyrite.											
219.9	225.3	SERICITIC CONGLOMERATE: Same as 126.5 - 129.8.											
		220.3 - 221.9: 1% fine-grained pyrite disseminated into conglomerate. Quartz vein from 220.5 - 220.8, with 1% pyrite about contacts and as fracture coats within the quartz. Quart vein	220.3	221.9	1.6	7053		30					
		from 221.8 - 221.9, similar to quartz vein at 220.5 - 220.8 but 5% fracture pyrite.	221.9	223-1	1.2	7054		4 5	(30)				
		221.9 - 223.1: Core ground, but good recovery, 90%. 1 - 2% finely disseminated pyrite.	223.0	224.0	1.0	7055		6					
		224.0 - 225.3: Large quartz vein, 60 cm wide with 2% pyrite in fractures and 1% disseminated pyrite in host. Foliation to core axis: 218.0: 50°; 221.7: 50°; 225.2: 53°.	224.0	225.2	1.2	7056		∠ 5					
225.3	239.4	BANDED SERICITIC SCHIST: Banded on a scale of 1 - 1-1/2 cm; alternating light green coloured bands											
		with dark grey coloured bands; fine-grained in texture, grading visible, fining up hole; non-magnetic; non-calcareous.											
		225.3 - 225.9: 50% quartz vein with 10% dolomitic carbonate, trace pyrite in contacts. Contact, foliation parallel.	225.3	225.9	0.6	7057		9					
		237.1 - 237.3: 11 cm wide quartz vein with finely disseminated pyrite in margins.											
		238.0 - 238.9: Calcium carbonated fracture fill with trace pyrite, running length of section.											

Basal contact gradational (alteration) over interval of 2 m.


From To	DESCRIPTION	SAMPLE ASSAYS				rs					
(Metric)		From	То	Length	No.	Rec 1	(ppb)	 Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)
239.4 258.8	INTERBEDOED MUDSTONE/SILTSTONE: Light grey to greenish grey in colour, banded on a scale of 1 - 1-1/2 cm. Visible primary textures include basal scours and convoluted bedding. Non-calcareous, non-magnetic. Foliation to core axis: 243.4: 50°; 245.1: 54°; 225.7: 52°. MINERALIZATION: Relatively large quartz veins (>25 cm) with trace pyrite in fractures and margins. 253.2 - 254.5: core ground, 85% recovery.	245.4 247.7 248.8	246.2 248.8 249.8	0.8 1.1 1.0	7058 7059 7060		< 5 < 5 < 5				

Note:

258.8 END OF HOLE

Fault zones may be evidenced by narrow quartz-black chlorite-fe-carbonate-dolomitic carbonate, poorly consolidated zones with wide fe-carbonate alteration halos.

Jerry B

Dip

(corrected)

-45°

-39°

-32°

-30°

Method

Compass

Acid

Acid

Acid

Hole Survey

Azīmuth

140

Meterage

0.0

60.7

121.6

152.1

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

Hole No.:

VT-87-04

Started:

December 6, 1987

Property:

Virginiatown

Completed:

December 8, 1987

Claim No.:

765073

Logged by:

J. Ho

Ref. Co-ord.: Elevation:

Drill Contractor: Langley Drilling, Brampton, Ontario

Assayer:

Accurassay Laboratories, Kirkland Lake, Ontario

The transfer of the state of the contract of t

Surveyed:

No

Grid Co-ord.: 18+60W, 8+85N

Purpose:

To test deformation zone under creek.

Core Size:

BQ

Casing Left: No

From	_To	DESCR IPTION			SAMPLE				ASSAY	rs		
(Met	ric)		From	То	Length	No.	Rec	Au	 Ag	Zn	РЬ	Cu
							7	(ppb)	(ppm)	(ppm)	(ppm)	(bbw)

HOLE SUMMARY

0.0 12.3 Casing.

Bleached-potassic conglomerate: local pyrite (1%) quartz-tourmaline (?) veins. 12.3

17.5 Conglomerate: local chlorite-pyrite (<1%) fractures.

Bleached conglomerate: local small quartz veins-tournaline. 54.4 - 55.1 - 20% quartz veins-22.5

60.4 152-1 Sericitic schist with local K-feldspar alteration, trace Cr-mica and 1 - 2% pyrite development -Interbeds of conglomerate at 65.1 - 65.7 and 70.8 - 71.9. "M" zone at 124.9 - 126.0. Fine silt/ sandstone Interbeds at 142.5 - 151.6.

152.1 END OF HOLE

142

< 5

7061

7062

NORTHERN DYNASTY EXPLORATIONS LTD.

To test deformation zone under creek.

DIAMOND DRILL RECORD

VT-87-04 Started: December 6. 1987 Hole Survey Hole No.: December 8, 1987 DIP Virginiatown Completed: Meterage Azimuth Method Property: (corrected) J. Ho Claim No.: 765073 Logged by: 140° -45° 0.0 Compass Ref. Co-ord.: Drill Contractor: Langley Drilling, Brampton, Ontario -39° 60.7 Acid -32° Accurassay Laboratories, Kirkland Lake, Ontario 121.6 Acid Elevation: Assayer: -30° 152.1 Acid Surveyed: No

Grid Co-ord.: 18+60W, 8+85N

Core Size:

Casing Left: No

From To	DESCRIPTION		SAM	PLE				ASSA	YS		
(Metric)		From	To Le	ength	No.	Rec 1	Au (ppb)	 Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)

13.8

17.1

15.3

17.4

0.3

0.0 12.3 Casing - overburden.

12.3 BLEACHED-POTASSIC CONGLOMERATE: Clasts: Polymictic, clast supported, 90% red to pink syenitic subrounded to angular clasts: 10% angular andesitic (?) clasts, finely porphyritic (plagioclase?) In a black vitric (?) groundmass. Matrix: 5 - 8% matrix composed of sericite (90%) and chlorite (10%), color green to light green. Non-magnetic, non-calcareous. Foliation to core exis: 12.5 m: 55°; 16.4 m: 46°. ALTERATION: Dominantly potassium addition in the form of K-feldspar formation. 65% of section altered. Bleaching (sericitic?) alteration (10%) evidenced by lightened color and sericitic matrix, fairly homogeneously altered. MINERAL IZATION:

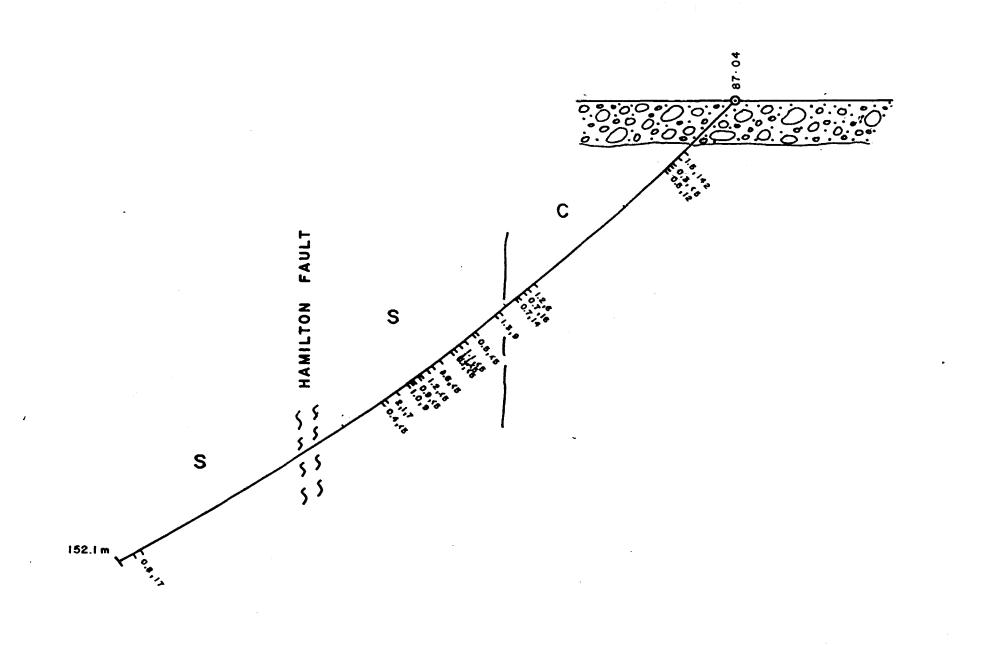
Purpose:

13.8 - 15.3 - 1% quartz veining with tourmaline (2%) ? and very intense (85%) K-feldspar alteration. 1% fine-grained pyrite associated with quartz veins. 17.1 - 17.4 - Quartz vein, 5% vugs, 1% pyrite within vein, contact parallel to foliation. Core ground at various 20 cm widths in section, 10% ground. Limonitic fractures reaching a depth of 15 m. Basal contact gradational (alteration) over 30 cm.

17.5 CONGLOMERATE: Clasts: Polymictic, clast supported, subrounded to subangular clasts, 90% of clasts are syenitic, 10% angular andesitic ? clasts, finely porphyritic (plasioclase?) in a black vitric (?) groundmass. Overall, grey to grey-red. Matrix: fine silt-sandstone. 90:10 ratio of clasts to matrix. Similar to conglomerate before (12.3 - 17.5) but without the intense alteration. Non-magnetic, non-calcareous. ALTERATION: 2 - 5% K-feldspar addition, 1 - 2% bleaching.

Page	3	of	4
HOO	VT-	-87-	-04

From	To	DESCRIPTION	SAMPLE				ASSAYS					
(Me	r(c)		From	To	Length	No-	Rec	Λu	٨g	Zn	РЬ	Cu
		MINERALIZATION: 18.3 - 18.8 - 1% black-chlorite (?) filled fractures cross-cutting core axis with 3% fine-grained pyrite, weak potassic alteration halo (2 cm wide). Quartz vein also associated with	18.3	18.8	0.5	7063	<u>,</u>	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
22.5	60.4	these fractures. Foliation to core axis: 24.0 m: 51; 28.6 m: 56. BLEACHED CONGLOMERATE: Conglomerate same as 17.5 - 22.5 except bleaching more evident, increasing from 5 - 10% uphole to 85% toward end of section. Bleaching is evidenced by an overall lighter color, a light grey. Cr-mica (1%) in the form of angular-like fragments are also present. 45.9 - 46.3 - 40 cm wide interbed of fine sandstone. Same alteration as host conglomerate. Contacts are foliation parallel. MINERALIZATION: 2% small quartz veins with tourmaline? halos, veins < 2 cm wide and trace pyrite, contacts foliation parallel.									·	
		53.2 - 54.4 - 2% quartz veins, veins highly contorted.	53-2	54.4	1.2	7064		6				
		54.4 - 55.1 - 20% quartz veins, 10 cm vein at 54.5 - 54.6 with 5% accicular 2 mm long tourma- line. 15% dolomitic carbonate and 3% Fe-carbonate.	54.4	55.1	0.7	7065		16				
		56.8 - 57.5 - 45% quartz veins, 25 cm vein at 57.1 - 57.35, composed of 10% massive to accicular (2 mm long) black tourmaline, 15% dolomitic carbonate, 10% Fe-carbonate. All contacts foliation parallel. Foliation to core exis: 52.5 m: 60°; 57.8 m: 55°.	56.8	57.5	0.7	7066		14				
60.4	152.1	SERICITIC SCHIST: Typical limey-green color with whitish interbands on a scale of 3 - 5 mm. Green bands composed of sericite (90%) and chlorite (10%). Whitish bands composed of fine silt to sandstone. Small scale undulations, folds and load structures visible. ALTERATION: Generally sericitic, but local zones of K-feldspar addition (2% total). Trace to 1% Cr-mica intergrown with sericite. MINERALIZATION: 61.0 - 61.1 - Fault zone.										
		61.4 - 61.5 - Breccia zone: Infilled with chlorite 80%, silica 10%, 7% tourmatine and 3% sericite. 61.5 - 62.7 - 20% K-feldspar alteration, 1% quartz veining with dolomitic and Fe-carbonates. 65.1 - 65.7 - Interbed of conglomerate, same as 22.5 - 60.4.	61.4	62.7	1.3	7067		9				
		68.2 - 68.7 - 80% quartz veining with sericitic-chlorite-rich, 1 - 2 mm margins. Quartz veining 1 - 2 cm wide and foliation parallel.	68.2	68.7	0.5	7068		< 5		•		
		70.8 - 71.9 - Interbed of conglomerate, same as 22.5 - 60.4, from 71.2 - 71.6. At upper contact 8 cm wide quartz vein with chloritic margins and 5% pyrite. Pyrite occurs as fracture coats within the quartz vein and as ewhedral cubes in the margins of sericitic host. Finely disseminated (1%) pyrite in rest of section associated with small < 1 cm wide quartz veins. All quartz vein contacts parallel to foliation. ≤ 7% quartz veins.		71.9		7069		< 5				
		71.9 - 73.0 - Large 0.75 cm cubic pyrite disseminated in sericitic host from 71.9 - 72.4, about 2% total sulphide. From 72.4 - 72.9 silicified (20%) and K-feldspar alteration (80%), trace sulphides.	71.9	73.0	1.1	7070		< 5				


AND THE PROPERTY OF THE PROPER

- LO I LO TO TO THE TO THE TO THE TO THE TOTAL THE TOT

rom To	DESCRIPTION			SAMPLE				ASSAY
(Metric)		From	To	Length	No.	Rec	Λu	Ag
						*	(ppb)	(ppm)
	73.0 - 73.7 - Similar large pyrite cubes at 71.9 - 73.0 (2%) with 2 - 3 mm wide silicate pressure shadows. Small, 1 cm wide quartz vein at 73.4 with 50% pyrite. Also trace fine-grained pyrite disseminations.	73.0	73.7	0.7	7071		2 5	
	76.8 - 84.5 - 2 - 3%, 1 - 3 cm wide quartz veins with chloritic, 1 - 2 mm wide, margins. Up	76.9	78.5	1.6	7072		< 5	
	to 30% pyrite within the quartz veins. Overall 2 - 3% pyrite.	79.8	81 -0	1.2	7073		< 5	
		82.2	83.4	1.2	7074		~ 5	
		83.6	84.5	0.9	7075		< 5	
	87.4 - 88.4 - 20% K-feldspar alteration with 5 - 10% silicification. 2% fine-grained pyrite in areas of high silica.	87.4	88.4	1.0	7076		9	
	88.4 - 105.2 - 2%, 1 - 2 cm wide, quartz veins with chloritic selvages (1 - 2 mm wide) and	88.4	90.5	2.1	7077		7	
	trace to 1% fine-grained pyrite. Local pyrchotite development. Host is typically a seri- citic schist.	90.5	90.9		7078		4 5	
	96.2 - 5 cm wide fold nose zone, axial plane is foliation parallel. Foliation to core axis: 88.0 m: 53°; 94.2 m: 51°; 101.7 m: 51°.							
	 105.2 - 110.0 - Mud seam; no return, poor recovery. 5 - 8% ground sericitic schist core fragments and 3% mud. Mud is light-grey in color, fine clay-sized particles. 110.7 - 113.7 - Fabrics oriented roughly parallel to core axis and well-developed small scale undulations and folds. Uphole contact marked by tight, 5 - 7 mm wide, assymetrical chevron folds. 'Z' assymetry where looking east. 							
	120.1 - 5 cm wide pink and brown carbonate vein. Contacts parallel to core axis. Vuggy in texture. Carbonate is rhodochrosite, with exposed surfaces weathered brown. 1 - 3 mm wide crystal faces.developed. Impregnated with 1% fine-grained pyrite. Chloritic selvages. 124.9 - 126.0 - Similar texture as 110.7 - 113.7. 'M' zone of fold system (?). Downhole half							
	displays breccia fabrics when in contact with regionally oriented fabrics. Breccia clasts subrounded, in a zone 1-1/2 - 2 cm wide. Sericite altered, as before.							
	140.7 - 140.8 - 2 mm wide calcium carbonate veïn/fracture fill, trending diagonal to core axis. 1% pyrite.							
	142.5 - 151.6 - Thicker fine silt/sandstone interbeds, from 1/2 - 2 cm wide, intercalated with typical sericitic-chiorite schist. These fine silt/sandstone beds are highly contorted, displaying both 'S' and 'Z' assymetries (looking west). Axial planes are foliation parallel. Other kinematic indicators abundant. 1\$, 1 - 2 cm wide quartz veins with trace to 1\$ pyritic selvages or inclusions. These quartz veins display similar deformation fabrics as the host. Upper contact displays dextral offsets, roughly parallel to core axis, 2\$.	147-6	148.4	0.8	7079		17	
	151.6 - 152.1 - Typical sericitic schist.							
	Foliation to core axis: 127.6 m: 33°; 133.6 m: 42°; 145.5 m: 40°; 151.6 m: 32°.							

152.1 END OF HOLE

ferry &

LEGEND

- C CONGLOMERATE ± AGGLOMERATE
- D GREYWACKE
- L SILTSTONE AND SHALE
- S SERECITE SCHIST
- T SYENITE / TRACHYTE

20,12
WIDTH IN METRES, PPB Au

LOOKING WEST

SECTION OF DIAMOND DRILL HOLE 87.04

FIGURE

-50°

MORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

Hole No.:

VT-87-05

Started:

December 9, 1987

Hole Survey

Property:

Virginiatown

Completed:

December 11, 1987

Meterage

Azimuth Dlp (corrected) Method

Compass

Claim No .:

Ref. Co-ord.:

765073

Logged by:

J. Ho

Drill Contractor: Langley Drilling, Brampton, Ontario

0.0

140°

Elevation:

Assayer:

Accurassay Laboratories, Kirkland Lake, Ontario

Surveyed:

Grid Co-ord.: 14+50W, 8+10N

Purpose:

1. To test deformation zone under creek.

2. To test surface sulphides on North Cliff.

Core Size:

Casing Left: No

DESCRIPTION

SAMPLE

To Length

From

(ppb)

ASSAYS

(ppm)

26.5

0.0

Casing: 2% recovery.

Recovery consisted of boulder, sandy till with mud and clay intervals. Casing stuck at 26.5 m in loose boulder horizon; further penetration not possible.

END OF HOLE

Notes:

- 1. Glacial till may be localized in a faulted zone paralleling the creek, graben-like fault zone?
- 2. Recovery of drill string complete except for lowermost 5 feet of casing and shoe bit.
- 3. Hole re-drilled as YT-87-06, 200 feet east.

Sery B H

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

Hote No.:

VT-87-06

Started:

December 11, 1987

Hole Survey

Property:

Virginiatown

Completed:

January 6, 1988

Meterage

- or management of the first the the transfer was to minimize the second of the same after the property of the

Azimuth

Method

Claim No.:

765073

Logged by:

J. Ho

6.1 - 15.2 - Loose boulder horizon, no matrix. Mechanical failure on December 12, 1987, parts not

0.0

140°

(corrected) -51°

Dip

Ref. Co-ord.:

Assayer:

Drill Contractor: Langley Drilling, Brampton, Ontario

Compass

Elevation: Surveyed:

Grid Co-ord.: 12+00W, 10+00N

Purpose:

1. To test deformation zone under creek.

2. To test surface sulphides on North Cliff fault.

Accurassay Laboratories, Kirkland Lake, Ontario

Core Size:

BQ

Casing Left:

From To	DESCRIPTION	SAMPLE ASSAYS
(Metric)		From To Length No. Rec Au Ag Zn Pb Cu \$ (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)
0.0 15.2	Casing - BQ. 0.0 - 6.1 - Sandy †!!!.	

- readily available, break for Christmas. BQ casing left in hole. 13.7 Casing - No. Resumed drilling January 5, 1988. No casing reamed over 80 casing to achieve greater 0.0
- 15.2 Casing - BQ. Resumed BQ casing drilling from 15.2 m. BQ casing selzed at 16.7 m. Similar loose boulder horizon. Hole abandoned.
 - END OF HOLE 16.7

Notes:

- 1. 100% recovery of BQ drill string and casing.
- 2. Abandoned 12.2 (40 feet) of NQ casing and shoe bit.

depth penetration. NQ casing seized at 13.7 m.

3. Attempt hote from south (DOH VT-88-06).

Sery &

Zn

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

VT-88-01 Started: January 9, 1988 Hole Survey Hole No.: Virginiatown Completed: January 12, 1988 Meterage **Az Imuth** Dip Property: Method (corrected) J. Ho Claim No .: 765073 Logged by: 320° -53° 0.0 Compass -49° Ref. Co-ord.: Drill Contractor: Langley Drilling, Brampton, Ontario 60.6 Acid -50° 121.6 Acid Accurassay Laboratories, Kirkland Lake, Ontario Elevation: Assayer: -44° 185.6 Acid -39° 243.5 Acid Surveyed: Purpose: 1. To test mafic dike contact. Grid Co-ord.: 14+15W, 11+80N 2. To test weak EM-conductor. Core Size: BQ 3. To test small gold showing in trench.

From	To	DESCRIPTION			SAMPLE				ASSA	YS
(Metric)	rīc)		From	То	Length	No.	Rec	Au	Ag	Zi (pp
		HOLE SUMMARY					*	(ppb)	(ppm)	(pp
0.0	8.6	Casing, boulder till.								
8.6	16.4	Gabbroic dike.								
16.4	71 -9	Conglomerate: local CaCO ₃ , K-feldspar alteration.								
71.9	77.9	Tuffaceous conglomerate.								
77.9	84-8	Conglomerate: local K-feldspar alteration.								
84.8	95.5	Interbedded conglomerate-quartz greywacke: moderate bleaching and sericitization.								
95.5	99-1	Syenitic dike: trace sulphides localized about altered fractures.								
99.1	102.9	Interbedded quartz greywacke-conglomerate: moderate sericitication.								
102.9	106.7	Syenite dike: localized bleaching and quartz filled fracture network.								
106.7	111.2	Interbedded conglomerate-quartz greywacke: moderate sericitization.								
111.2	135.6	Syenite dike: localized bleaching and silicification, trace Cr-mica, trace pyrite-chalcopyrite								

in fractures.

Page 2 of 9 DDH VT-88-01

<1 %).
· •

246.6 END OF HOLE

ASSAYS

SAMPLE
 Ag
 Zn
 Pb
 Cu

 (ppm)
 (ppm)
 (ppm)
 (ppm)
 To Length No.

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

Hole No.: YT-88-01		Started:	January 9, 1988		Hote	Survey	
Property:	Virginiatown	Completed:	January 12, 1988	Meterage	Azīmuth	Dlp	Method
Claim No.:	765073	Logged by:	J. Ho	0.0	320°	(corrected) -53 ⁰	Compass
Ref. Co-ord.:		Drill Contractor:	Langley Drilling, Brampton, Ontario	60-6	-	-49°	Acid
Elevation:		Assaver:	Accurassay Laboratories, Kirkland Lake, Ontario	121.6	-	-50°	Acid
Elevation.		N334701 .	record and rear rest, with knowledge, our at re-	185.6	-	-44°	Acid
Surveyed:	No			243.5	-	-39 [°]	Acid
0-1404	44.4511 44.0011	Purpose:	1. To test mafic dike contact.				
Gria Comora.:	14+15W, 11+80N	2. To test weak EM-conductor.					
Core Size:	BQ		3. To test small gold showing in trench.				

From To	DESCRIPTION			SAMPLE			ASSAYS						
(Metric)		From	To	Length	No.	Rec	Au		Ag	Zn	Pb	Cu	
						*	(ppb)		(ppm)	(ppm)	(ppm)	(ppm)	

- Casing, boulder till. GABBROIC DIKE: Color - Ijght, faint green-grey. Texture - fine-grained, unfoliated: weakly magnetic. 8.6 ALTERATION: Very fresh. MINERALIZATION: Numerous (4%) 1 - 3 mm wide calcium carbonate-Fe-carbonate veinlets/fracture fills. These fractures occur at variable orientations to the core axis, but generally cross-cutting the core axis at 45° - 55°. Slickensides visible on fracture surfaces. 8.0 - 8.8 - Conglomerate xenolith; contacts are faint due to similar color in conglomerate matrix and gabbroic dike (conglomerate described below 16.4 - 71.8). 10.8 - 10.9 - Quartz-Fe-carbonate (60:40) vein, 2 cm wide. Also 3-1/2 cm wide quartz-Fe-carbonate 7080 10 (5%) - breccia vein, 20% breccia fragments. Breccia composed of dike/sill host. Limonite 13.2 7081 **<** 5 15.6 2.6 staining on downhole contact. - 1% fracture coated magnetic pyrrhotite. 13.8 - 13.9 - Mineralized fracture fill, coincident with quartz-Fe-carbonate, 1 - 2 mm wide
 - 13.8 13.9 Mineralized fracture fill, coincident with quartz-Fe-carbonate, 1 2 mm wide vein/fracture. All mineralization on fracture surface or vein/fracture structure. Mineralization includes molybdenite (5%) and chalcopyrite (2%) associated with main quartz-Fe-carbonate vein/fracture. 5% pyrite, <1% molybdenite, <1% chalcopyrite hematite in other fractures.

 14.0 14.6 Fracture running up length of core axis. Ca-carbonate 90% Fe-carbonate (10%) filled 2% chalcopyrite concentrated mainly uphole.

 Basal contact faint.
- 16.4 71.9 CONGLOMERATE: Color dark grey matrix with patchy shades of dark red (syenitic clasts). Moderately foliated, long axis of clasts generally parallel aligned foliation parallel. Clasts subrounded to rounded. 90% of clasts are red-pinkish syenite. The remainder comprised of volcanic/sediment

Casing Left:

From To		DESCRIPTION			SAMPLE				ASSA	ASSAYS		
(Metric)			From	То	Length	No.	Rec	Λu	Ag	Zn	Pb	Cu
							*	(ppb)	(bbw)	(ppm)	(ppm)	(ppm)
	Foliation	to core axis: 22.6 m: 45; 31.5 m: 46; 37.5 m: 49; 42.6 m: 52; 48.6 m: 56;										
	54.3 m -	42°; 60.4 m: 48°.										
		W: Very fresh.										
		ATION: 5% of section fracture filled with < 2 mm wide Ca-carbonate Fe-carbonate veins.	53.3	55.1	1.8	7082		< 5				
	These	are generally oriented about 45° across the foliation.	56.1	57.0	0.9	7083		< 5				
			68.1	68.7	0.6	7084		< 5				
	37.2	- Mud seem (<1 cm wide).										
	50.5	- Limonite coated fracture.										
	52.9	- Mud seam (<1 cm wide).										
	53.4	- 1 cm wide quartz-fe-carbonate vein with pyritic (20%) and molybdenite (5%) selvages.										
	55.0	- Ca-carbonate fracture fill with 1% fine-grained disseminated pyrite (<1 cm wide).										
	55.5	- Mud seam (<3 cm wide).										
	56.1	 2\$ quartz-Fe-carbonate fracture fill with molybdenite in fracture (<1\$ over 10 cm width. 										
	56.6 - 56	6.8 - Calcium-carbonate-K-feldspar fracture fill. K-feldspar alteration halo about 1/2 cm about fracture - typical red-pink color. 1% disseminated, fine-grained pyrite.										
	63.1	- Mud seem (<3 cm wide).										
•	63.6	- Mud seem (∠3 cm wide).										
	68.3 - 68	3.7 - Similar Ca-carbonate-K-feldspar fracture fill as 56.6 - 56.8. 1% fine-grained, disseminated pyrite.										
71.9 77.9	generally Clasts of sediment (20% of a	CONGLOMERATE: Color - dark grey with small (1 - 2 mm) whitish spots, well foliated, clasts y subrounded to subangular. Variable clast size, generally <1 cm in the long direction emprised essentially of diorite (95%) with the remainder comprised of syenite, volcanic/ and quartz fragments. The matrix is composed of tuffaceous-like material with abundant matrix) crystal-like forms of plagiculase, though irregular shapes are not uncommon.										
		ON: Fresh, unaltered.										
	MINERAL IZ											
	72.3	- 1 cm wide quartz-fe-carbonate vein.	72.3	73.4	1.1	7085		6				
		2.7 - 1/2 cm wide quartz-Fe-carbonate vein running down length of section.	76.8	77.9		7086		17				
	73.0	- 1-1/2 cm wide quartz-Fe-carbonate vein.										
	73.3	- 1 cm wide quartz (40%)-Ca-carbonate (20%)-Fe-carbonate (20%)-chlorite (18%)- pyrite (1%)-chalcopyrite (1%) vein. Cross-cutting core axis. Sulphides developed on chloritic foliation surface.							• .			
	76.8 - 7	7.9 - 2% Ca-carbonate fracture fills with 1% pyrite - trace chalcopyrite.										
	Upper co	ntact gradational over 20 cm-										
	Basal co	ntact very sharp.										
	Foliatio	n to core axis: 72.0 m: 48°; 73.2 m: 47°; 76.0 m: 52°.										

From	To	DESCRIPTION			SAMPLE			ASSAYS						
(Metr	-1c)		From	То	Length	No.	Rec	Au		Ag	Zn	Рь	Cu	
							*	(ppb)		(ppm)	(bbw)	(ppm)	(bbw)	
77.9	84.8	CONGLOMERATE: Color - light grey with slight green tint. Moderately well-foliated. Clasts well												
		rounded to subrounded. Clasts comprise 80% felsics (granodiorite?), 10% volcanics, 10% quartz,												
		plagioclase and jasper clasts. Matrix comprised of fine-grained wacke sediment. Matrix to												
		clasts ratio 60:40, matrix supported.												
		78.0 ~ mud seam.												
		Non-magnetic, non-calcareous.												
		ALTERATION: Generally very fresh but local zones of alteration:												
		78.9 - 79.9 - 5% K-feldspar alteration resulting in a pinkish-red tint coloring.												
		81.5 - 81.7 - Same alteration as 78.9 - 79.9. K-feldspar alteration about fractures, extending												
		not more than 2 mm into host. Less than 3% total hairline fractures. Trace Cr-mica overall.												
		MINERAL IZATION:												
		78.9 - 79.9 - 10% quartz-Fe-carbonate tracture network with 1% Cr-mica alteration. 1% pyrite-	78.9	79.9	1.0	7087		< 5						
		chalcopyrite mineralization on fracture surfaces.												
		81.2, 82.4, 83.4 - 1 - 3 cm wide quartz-Fe-carbonate-Ca-carbonate veins (10-15% carbonate in												
		total).												
		Foliation to core exis: 78.6 m: 50°; 81.9 m: 56°.												
84-8	95.5	INTERBEDDED CONGLOMERATE AND QUARTZ GREYWACKE: The entire sequence has a distinct green-grey color												
		with patches of pink-red, yéllow and yellow-green reflecting clast type and alteration; moderately												
		well-foliated; clasts are generally 1 - 4 cm long in the long dimension and are well-rounded to												
		rounded. The quartz greywacke is poorly to moderately well-foliated (more massive) and is fine-												
		grained. The clasts comprised by variety of lithologies; granite/rhyolite - 60%, sediments (mud-				=								
		stone) - 20%, volcanic (15%) and a 5% mixture of quartz and jasper clasts. The matrix highly												
		chloritic, matrix to clast ratio is 30:70, though matrix supported. Quartz greywacke zones:												
		85.3 - 85.5; 90.1 - 90.6; 90.7 - 93.6. Non-magnetic, non-calcareous.												
		ALTERATION: The alteration is dominated by bleaching and secondary addition of sericite. The												
		sericite (10%) forms as small (< 2 mm) yellow streaks and where more intense as yellow-greenish												
		stringers and patches. 1% Cr-mica alteration can be found in localized fractures. Upper contact												
		gradational over 20 cm, lower contact very abrupt.												
		MINERALIATION: Nearly the entire sequence is disseminated with very fine chalcopyrite (<1%) and	87.3	88.4	1.1	7088		22						
		pyrite (1%). Concentrations increase locally (<2 cm in width) up to 5% where fractures are	88.4	90-2	1.8	7089		9						
		calcium-carbonate filled, where sericite is well-development, and where quartz-Fe-carbonate	90.2	91 -1	1.1	7090		9						
		veins (<1/2 cm wide) appear. There is nearly a 1:1 ratio of the presence of sulphides with	91.1	92.6	1.5	7091		< 5						
		these small quartz-Fe-carbonate veinlets. Pyritic sulphides also penetrate into the more	92.6	93.6		7092		< 5						
		felsic clasts. Limonitic staining at 87.2, 90.3. A 2-1/2 cm wide quartz-Fe-carbonate (5%)	93.6	94.6	1.0	7093		21						
		vein is localized at the lower contact and is mineralized with molybdenite (3%) and chalco-	94.6	95.6	1.0	7094		6						
		pyrite (1\$).												

The company of the control of the co

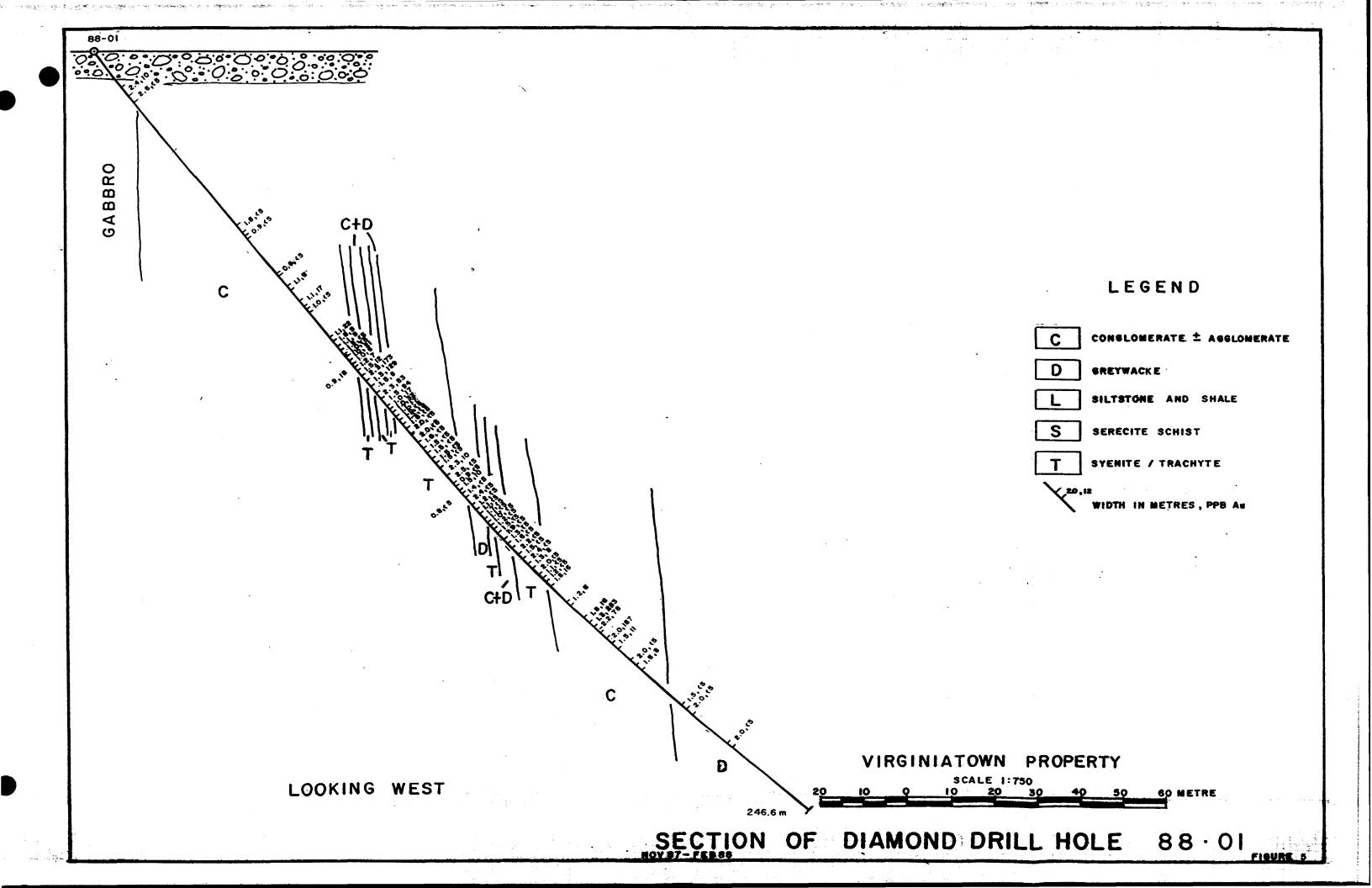
From	To	DESCRIPTION			SAMPLE				ASSA	rs		•
(Me	ric)		From	То	Length	No.	Rec \$	Λu	 Ag	Zn	Pb	Cu
							×	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
95.5	99.1	SYENITE DIKE: Reddish pink in color, fine to medium-grained, generally weakly foliated. Non-magnetic, non-calcareous (excluding fracture fills). ALTERATION: Restricted mainly to 1 - 5 mm wide viens and fractures. Alteration assemblage comprised dominantly of calcium carbonate (67%) and black chlorite (tournaline?) (20%). Lesser amounts of sericite (8%) and Fe-carbonate (5%). Weak sericite development into host, generally forms a halo about fractures (2 - 3 cm wide). Also < 2% black chlorite (tournaline?) dis-										
		semination.			•							
		MINERALIZATION: 1 - 2% pyrite - 1% chalcopyrite molybdenite restricted to altered fractures	95.5	96.4	0.9	7095		18				
		(veins) and quartz veins. Quartz veins < 2 cm wide (2≸ abundance) and foliation parallel.	96.4	97.6	1 - 2	7096		7				
		Sulphides coincidence with black chlorite fracture development. Fracture abundance 4%. Lower contact marked by 4 cm wide zone of chlorite (60%), quartz (vein) (35%) and 5% CaCO ₃ ; 5 cm wide halo of sericite alteration is also present. Foliation to core axis: 95.7 m: 57; 97.9 m: 63.	97.6	99.1	1.5	7097		12				
99.1	102.9	INTERBEDDED QUARTZ-GREYWACKE AND CONGLOMERATE (same as 84.8 - 95.5 m). This section slightly more										
		altered, sericite development up to 15%. Also increasing amounts of black chlorite (tourmaline?)										
		downhole. 5 - 8% black chlorite localized in fractures, fracture abundance 5%. Quartz veining										
		<15.										
		Bedding contacts: 99.1 - 99.9 - quartz greywacke.										
	•	99.9 - 100.3 - conglomerate.										
		100.3 - 100.9 - quartz greywacke.										
		100.9 - 101.2 - conglomerate.										
		101.2 - 101.5 - quartz-greywacke.										
		101.5 - 101.6 - conglowerate.										
		101.6 - 101.7 - quartz-greywacke.										
		101.7 - 102.4 - conglomerate.										
		102.4 - 102.9 - quartz-greywacke.										
		MINERALIZATION: Trace pyrite chalcopyrite, restricted to chloritic fractures where present.	99.1	101 -4	2.3	7098		173				
		Foliation to core exis: 99.5 m: 65.	101.4	102-9	1.5	7099		129				
102.9	106.7	SYENITE DIKE: (same as 95.5 - 99.1 m).										
		ALTERATION: More fractures, up to 10% with similar carbonate-chiorite-sericite-Fe-(Mg) carbonate assemblage in fractures.										
		102.9 - 103.2 - Bleached, resulting in a change of color from pinkish-red to faded pink.										
		103.9 - 3 cm wide zone of brecciation with black chlorite infills.										
		MINERALIZATION: Only trace - 1% pyrite chalcopyrite; 102.9 - 103.2 - 20% quartz filled fracture	102.9	104.4	1.5	7100		8				
		network. Majority of core is broken and fractured, with 90 - 95% recovery. Natural water spring encountered at approximately 104 m.	104.4	106.7	2.3	7101		83				

The state of the transmission of the state o

DOH VT-88-01

From	Το	DESCRIPTION	SAMPLE From To Length No						ASS	AYS		
(Met	ric)		From	То	Length	No.	Rec	Au	Ag	Zn	РЬ	Cu
							×	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
106.7	111.2	INTERBEDDED CONGLOMERATE-QUARTZ GREYWACKE: Same as 99.1 - 102.9 m, again more altered than the										
		similar lithological sequence at 84.8 - 95.5 m.										
		MINERALIZATION: 15 chalcopyrite-pyrite disseminations throughout section. This section dis-	106.7	108.2	1.5	7102		94				
		plays more quartz veining than 99.1 - 102.9, up to 10%, localized at 108.2 - 108.6, and	108-2	109-2	1.0	7103		17				
		109.8 - 109.9.	109-2	110-2	1.0	7104		32				
		Bedding contacts: 106.7 - 107.3 - quartz-greywacke.	110-2	111.3	1.1	7105		17				
		107.3 - 107.7 - conglomerate.										
		107.7 - 108.2 - quartz-greywacke.										
		108.2 - 111.2 - conglomerate.										
		Limonitic coatings at 109.8, 110.2 - 110.4. Localized zones of core are broken and fractured										
		110.2 - 110.5, 110.6 - 110.9, and 111.0 - 111.5.										
		Foliation to core axis: 108.3 m: 50°; 111.2 m: 58°.										
111.2	135.6	SYENITE DIKE (same as 95.5 - 99.1): however, adding to the alteration assemblage is the development										
11102	122.0	of patchy stilicification. Overall there is 5 - 8% stilicification in this section. Cr-mica also										
		appears as small (<2 mm) foliation parallel patches and stringers, total abundance <1%.										
		Mineraliation also remains the same with a pyrite-chalcopyrite (<1% of total sulphide) assem-	111-2	112.7	1.5	7106		45				
		blage developed on Ca-carbonate-black-chlorite-sericite-quartz-fe-carbonate fractures (veins	112.7			7107		< 6				
		where quartz became dominant mineral); fracture (vein) abundance 6%; generally < 1 cm in width	114-2			7108		45				
		and commonly < 5 mm in width.	115.8	117.8		7109		4 5				
		Foliation to core axis: 118.6 m: 45°; 124.7m: 50°; 130.4 m: 60°,; 134.4 m: 37°.	117.8	119.8		7110		< 5				
		TOTAL TO COLO UNID. TIONS HE TO , IZICIME DO , IZICIME DO , IZICIME DO ,	119.8	121.6		7111		45				
			121.6	123.1		7112		45				
			123-1	124.6		7113		4 5				
			124.6	126.1		7114		۷ 5				
			126.1	127.6	1.5	7115		۷ 5				
			127.6	129.9		7116		10				
			129.9	132.4	2.5	7117		4 5				
			132.4	133.3	0.9	7118		< 5				
135.6	141.6	QUARTZ-GREYWACKE: Similar to quartz-greywacke at 84.8 - 95.5; but more coarse-grained, generally	133.3	134.8	1.5	7119		10				
13310	14150	medium-grained. Moderately foliated. Kink band at 135.7.		135.6		7120		45				
		ALTERATION: Moderate Increase (4%) in bleaching and sericite development downhole (139.4 - 141.6).										
		Sericite becomes more disseminated downhole. Trace Cr-mica.						•				
		MINERALIZATION: 1 - 3% black-chlorite-quartz-sericite-Ca-carbonate fractures and veins; widths	135-6	137-0	1.4	7121		۷ 5				
		<1 cm. 1% disseminated fine (<1 mm) pyrite associated with 1 cm wide quartz-chlorite-	137.0			7122		< 5				
		sericite vein at 136.8 m.	139.4	140-6		7123		45				
		Foliation to core axis: 136.7 m: 65°; 140.1 m: 65°.	140.6	141.7	1.1	7124		< 5				
		Upper contact sharp, lower contact sharp but accompanied by increasing sericitization and bleaching										

Page 8 of 9 DDH VT-88-01


From	To	DESCRIPTION						ASSA	YS		•	
	ric)		From	То	Length	No-	Rec	Au	Ag	Zn	Pb	Cu
							×	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
141.6	144.4	SYENITE DIKE (same as 95.5 - 99.1 and alteration similar to 111.2 - 135.6). However, pyrite be-	141 • 6	143.3	1.7	7125		< 5				
		comes dominant sulphide which occurs as fracture coats, as before, (2%) and now also as dis- seminations (1%) into host about the chloritic fractures and quartz-chlorite veins.	143.3	144.4	1.1	7126		< 5				
144.4	145.4	QUARTZ-GREYWACKE (same as 135.6 - 141.6). Pyritic mineralization, trace. Foliation to core axis: 140.0 m: 60°.	144.4	145.4	1.0	7127		< 5				
145.4	150.0	CONGLOMERATE (same as 84.8 - 95.5 m conglomerate). Alteration is also similar as well; 1%	145.4	146.6	1.2	7128		4 5				
14301	13000	(locally 2%) sulphides. Sulphides dominated by pyrite with lesser amounts of chalcopyrite.	146.6	148.1		7129		< 5				
		Also have increase of quartz veining, up to 3%, generally < 5 cm wide.	148.1	150.0		7130		6				
		147.0 - 3 cm wide quartz vein with 1% very fine-grained pyrite and 2% Cr-mica. Con- tacts foliation parallel. 148.1 - 148.3 - Core broken and fractured, 95% recovery. 148.9 - 149.1 and 149.5 - 150.0 - Limonite coatings on core.										
		Foliation to core axis: 148.5 m: 48.										
150.0	162.6	SYENITE DIKE (same as 111.2 - 135.6). Only trace pyritic sulphides, but similar patchy and fracture filled silicification.										
		150.0 - 151.3 - 8% quartz-black chlorite-carbonate fracture fills. Limonitic coating at 150.0 -	150.0	151.3	1.3	7131		∢ 5				
		150.1 and 150.6 m.	151.3	152.9	1.6	7132		< 5				
		151.3 - 152.9 - Same as 150.0 - 151.3 except also development of pink dolomitic veins and frac-	152.9	155-1	2.2	7133		< 5				
		ture fills. 5% dolomitic carbonate abundance in veins < 4 cm wide. 3% abundance veins and	155-1	156.6	1.5	7134		4 5				
		and fractures.	156.6	158.2	2.4	7135		4 5				
		156.6 - 162.6 - Significant increase in alteration, gradual increase in bleaching and sericiti-	158.2	159.5	1.3	7136		8				
		zation until typical red-pink color becomes light yellow-green towards the lower contact.	159.5	161.5	2.0	7137		4 5				
		Alteration is fairly diffuse but sericitization parallels fractures and diffuses out into host at right angles along foliation surfaces.	161 -5	162.6	1.1	7138		∠5				
		156.6 - 156.8 - Low angle cross-cutting Ca-carbonate fracture fill with 1% pyrite. 157.3 - 157.8 - 30%, 2 - 3% wide quartz veining with black chloritic, 2 - 3 mm wide, selvages. 1% pyrite.										
		161.3 - 167.6 - Gradual appearance of 1 mm sized hornblende (?), increase in abundance to 5≴ downhole. Randomly oriented with somewhat diffusive crystal surfaces.										
		Foliation to core axis: 151.5 m: 50°; 158.0 m: 50°; 161.5 m: 55°.										
162.6	203.4	CONGLOMERATE (same as 145.4 - 150.0). Alteration is similar with weak bleaching and patchy stringer forms of sericite. Trace to 1% Cr-mica developed.										
		MINERALIZATION: Very fine disseminated pyrite chalcopyrite pyrrhotite (abundance < 1%) can be	162.6	163.8	1.2	7139		< 5				
		found throughout the section. Locally, sulphide abundance increases to 2 - 3% over 1 - 2 cm	163.8	165.6	1.8	7140		16				
		widths.	170.9	172-1	1.2	7141		6				
		Both upper and lower contacts very sharp.	176.8	178.6	1.8	7142		16				

From	To	DESCRIPTION DESCRIPTION		:	SAMPLE				ASSA	rs	4	
(Meti	ric)		From	To	Length	No.	Rec	Au	Ag	Zn	Pb	Cu
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
		Foliation to core axis: 169.0 m: 60; 174.5 m: 60; 182.3 m: 50; 189.5 m: 60; 192.5 m: 58;	178.6	179.9	1.3	7143		283				
		201.2 m: 55°.	179.9	182.1	2.2	7144		78				
		Core broken and fractured: 195.5 - 196.0 m.	183.9	185.9	2.0	7145		187				
		Core ground: 200.9 - 203.1, 203.5 - 203.9 m.	185.9	187.4	1.5	7146		11				
			191.4	193.4	2.0	7147		<5				
			193.4	195.0	1.6	7148		8				
203.4	246.6	QUARTZ-WACKE: Dark green in color, medium to fine-grained, composed of 40% mafics (chlorite), 50%										
		combined quartz and plagioclase and 10% lithics. Primary clastic outlines still visible. 10%,										
		10 - 50 cm wide conglomerate interbeds. Non-magnetic, non-calcareous.										
		ALTERATION: Fairly fresh, only minor (<5%) sericite developed.										
		MINERALIZATION: 4 - 5%, 1 - 2 cm wide quartz-calcium carbonate veinlets developed, cross-cutting	207.5	209.0	1.5	7149		< 5				
		core axis. Associated sulphides, < 0.75%, pyrite-chalcopyrite. Also finely disseminated	209.0	211.0	2.0	7150		< 5				
		pyrite (< 0.5%) in sediment.	221.3	223.3	2.0	7151		< 5				
		221.27 - 223.3 - 15% sericitic alteration and moderate bleaching, 2 - 3 cm wide quartz veins										

246.6 END OF HOLE

(3% abundance) towards upper hote.

Jery B

Olb

(corrected)

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

Hole No.:

VT-88-02

Started:

化硬燃烧炉槽 经联合的制备

January 16, 1988 January 18, 1988 Hole Survey

140

Property:

Virginiatown

Completed:

G. Gorzynski

Meterage Az I muth

Method

Claim No.:

Ref. Co-ord.:

L767378

Logged by:

Drill Contractor: Langley Drilling, Brampton, Ontario

0.0 60.6 -60° Compass -62° Ac1d

Elevation:

Assayer:

Accurassay Laboratories, Kirkland Lake, Ontario

121.6 164.3 - -58°

Ac1d Ac1d

Surveyed:

No

Grid Co-ord.: 52+00W, 20+20S

Purpose:

To further test gold mineralization and alteration in DDH VT-87-01.

Core Size:

81.8

BQ

Casing Left: No

From	To	DESCRIPTION			SAMPLE				 ASSA			
(Metric	c)	• • • •	From	То	Length	No.	Rec 1	Au (ppb)	 Ag (ppm)	Zn (ppm)	(ppm)	Cu (ppm)

		HOLE SUMMARY
0.0	1.7	Casing.
1.7	6.5	Altered slitstone+(greywacke).
6.5	10.3	Altered greywacke+(siltstone)+(conglomerate).
10.3	13.6	Altered conglomerate.
13.6	21.4	Conglomerate.
21 .4	41 - 1	Altered conglomerate.
41 - 1	58.4	Tuffaceous conglomerate/agglomerate.
58.4	70-1	Altered conglomerate.
70-1	75.5	Tuffaceous conglomerate/agglomerate.
75.5	81 -8	Altered conglomerate.

83.4 Tuffaceous conglomerate/agglomerate.

Page 2 of 8 DDH VT-88-02

From	To	DESCRIPTION	SAMPLE From To Length No.						Λ:	SAYS		
(Me	tr(c)		From	То	Length	No.	Rec ≴	Au (ppb)	<u>Aç</u> (pp		Pb (ppm)	Cu
		HOLE SUMMARY - (Cont'd)					*	(рро7	Υρρ	o (ppm)	(ppm)	(ppm
83.4	86.4	Altered conglomerate.										
86.4	88.3	Tuffaceous conglomerate/agglomerate.										
88-3	105.3	Altered conglomerate.										
105-3	110.7	Tuffaceous conglomerate/agglomerate.										
110.7	111.9	Altered conglomerate.										
111.9	120.7	Tuffaceous conglomerate/agglomerate.										
120-7	124.6	Altered conglomerate.										
124-6	125.4	Tuffaceous conglomerate/agglomerate.										
125.4	130.5	Altered conglomerate.										
130-5	134.4	Tuffaceous conglomerate/agglomerate.										
134.4	137.4	Altered conglomerate.										
137-4	142-1	Quartz fragment breccia/conglomerate.										1
142-1	145.2	Sericite schist.										
145.2	164.3	Sandstone/siltstone.										
	164.3	END OF HOLE										

The second state of the se

DIAMOND DRILL RECORD

Hole No.:

VT-88-02

Started:

January 16, 1988

Hole Survey

Property:

Virginiatown

Completed:

January 18, 1988

Meterage Azimuth

Claim No.:

L767378

Logged by:

G. Gorzynski

140°

Compass Acid

Acid

Acid

Method

Ref. Co-ord.:

Elevation:

Drill Contractor: Langley Drilling, Brampton, Ontario

Accurassay Laboratories, Kirkland Lake, Ontario

60.6 121.6 164.3

0.0

-60° -62° -58° -53°

Dlp

(corrected)

Surveyed:

No

Grid Co-ord.: 52+00W, 20+20S

Purpose:

Assayer:

To further test gold mineralization and alteration in DOH VT-87-01.

Core Size:

BQ

Casing Left: No

rom	To	DESCRIPTION		S	AMPLE				ASSA	rs		
(Metr	(c)		From	To	Length	No.	Rec	Au	Ag	Zn	Pb	Cu
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
0.0	1.7	CASING - Recovered 20 cm unaitered feldspar glomeroporphyritic basait boulder.										
1.7	6.5	ALTERED SILTSTONE+(GREYWACKE): Generally < 2 cm wide light grey siltstone layers separated by	1-7	2.6	0.9	7152		4 5				
		≤ 5 mm light green sericite layers; local botroidal patches (≤ 5 cm) of white quartzitic silt-	2.6	3-8	1.2	7153		< 5				
		stone; non-magnetic; weakly dolomitic - reaction to HCI most notable in limonitic sections.	3.8	5.4	1.6	7154		45				
		NOTE - the proportion of ankerite/dolomite in altered sections is commonly 5 - 10% here and elsewhere, but reaction to HCI is typically very weak; banding and foliation generally at 25 to core axis; 15% of section is broken core; 1.7 - 2.5 m - predominantly light to medium grey	5.4	6.5	1.1	7155		< 5				
		greywacke; basal contact in broken core. ALTERATION: Constally bloomed and workly combonitized (see note shows)										
		ALTERATION: Generally bleached and weakly carbonitized (see note above). MINERALIZATION: Pyrite <1% - disseminated and on fractures, limonite ankerite rust: 7% at 5.4 -										
		6.5 m. Quartz white carbonate veinlets: 5% at 1.7 ~ 5.0 m.										
5 . 5	10-3	ALTERED GREYWACKE+(SILTSTONE)+(CONGLOMERATE): Predominantly orange-brown limonite/ankerite rust	6.5	8.7	2-2	7156		< 5				
		stained; 30% dark to light grey; 30% broken core; generally medium-grained, well foliated/poorly banded at 30° to core exis; local sections of siltstone (as 1.7 - 6.5 m) and conglomerate (as below) present toward uphole contact; non-magnetic; basal contact gradational over 40 cm. ALTERATION: - Local bleaching; local patches (<3 cm) quartz+K-feldspar; - Weakly to moderately ankeritic throughout. MINERALIZATION: Limonite+ankerite rust - average 15% - disseminated, on fractures and as boxworks; pyrite <<1% - disseminated and on fractures; quartz-white carbonate veinlets - <<1%.	8.7	10.3	1-6	7157		← 5				
0.3	13.6	ALTERED CONGLOMERATE: Dark to light grey with pink, white and green sections; polymictic; clast	10.3	11-0	0.7	7158		< 5				
		definition varies with alteration from nil to good; non-magnetic. Clasts: ≤ 3 cm diameter;	11.0	11.8	0-8	7159		< 5				

From	To	DESCRIPTION			SAMPLE				,	•	4	
(Metr			From		Length	No.	Rec	Λu		ASSAYS g	Zn	PI
							Rec 1	(ppb)			(ppm)	(pp
		Clasts dominantly syenite/trachyte and greywacke; closed matrix varies from chloritic to grey- wacke; foliation and clast elongation at 35° to core axis; basal contact gradational over 20 cm. ALTERATION: Variable.	11.8	13.6	1.8	7160		~ 5				
		 Prominant pink K-feldspar and (rhodochrosite?) with 20% intercalated light green sericite at 11.0 - 11.8 m and small (< 5 cm) patches elsewhere; 										
		 Prominant off-white quartz and (dolomite) at 13.1 - 13.4 m and small (< 5 cm) patches elsewing. Minor (< 1 cm thick bands) bleaching/sericitization. 	here.									
		MINERALIZATION: 25% limonite and ankerite rust in broken core at 10.5 - 11.0 m - disseminated, fractures, boxworks.										
		- Pyrite and chalcopyrite - trace - disseminated. - Quartz-carbonate-chlorite veins - < 1%.										
13.6	21 •4	CONGLOMERATE: Polymictic; ≤ 15 cm angular to subrounded clasts in light grey quartzitic sandstone closed matrix; clasts consist of pink syenite/trachyte, variably grey greywackes, light green										
		sericitic siltstones, sparse green basalt, and rare purple crystal tuff; non-magnetic; no bedding evident; weakly to moderately dolomitic matrix; poor to moderate foliation and clast elongation										
		generally at 35° to core axis; basal contact gradational over 1.5 m. ALTERATION: Minor - 2% lenses and slivers of bleached/sericitized material especially uphole in										
		unit. MINERALIZATION: Commonly 1% pyrite disseminations in conglomerate matrix; 4% quartz+white										
		carbonate veins (≤3 cm wide) at 13.6 - 15.1 m; ∠1% elsewhere.	13.6	15-1	1 -5	7161		18				
21 -4	41 - 1	ALTERED CONGLOMERATE: Similar to 13.6 - 21.4 but moderately bleached/sericitized(?) throughout;	21.4	22.6		7162		11				
		weakly to moderately dolomitic sandstone matrix; foliations to core axis -> 40° at 24.1 m, 40° at 27.1 m, 35° at 30.1 m, 35° at 33.2 m, 30° at 36.3 m, 30° at 39.3 m; basal contact grada-	22.6	24.7		7163		< 5				
			24.7	25.8		7164		8				
		tional over 20 cm.	25.8	27-1	_	7165		9				
		ALTERATION: Moderately bleached throughout; Intensely sericitized (?) lenses and slivers com-	27-1	29.1		7166		45				
		prise 5 - 20%; most intense sericitization toward basal contact;	29-1	31.1		7167		< 5				
		- carbonate in matrix may be secondary;	31 - 1	33.0		7168		45				
		- Chrome Mica - trace - disseminated.	33.0	34.7	_	7169		< 5				
		MINERALIZATION: Pyrite - overall < 1%; locally < 4% mainly in conglomerate matrix; chalcopyrite -	34.7	36.8		71 70		< 5				
		trace - disseminated; hematite - 38.9 - 39.5 - 2% massive veinlets ≤ 8 mm; quartz-white	36.8	38.2		71 71		12				
		carbonaterchiorite veins, generally < 1%, 10% at 33.0 - 34.7 m; 5% at 38.2 - 41.1 m; ankerite/	38-2	39.3		7172		7				
		limonite – 10 – 20% over 10 − 20 cm associated with fractures at 24.8 m, 25.4 m, 28.4 m, 31.9 m, 37.3 m.	39.3	41.1	1.8	/173		< 5				
41 -1	58.4	TUFFACEOUS CONGLOMERATE/AGGLOMERATE: 60% rounded to angular clasts in open purple-grey to brown-	48.5	50.1	1.6	7174		< 5				
		grey matrix with 10% disseminated sericitized (?) feldspars; clasts are predominantly plnk	50.1	51.9	1 -8	7175		< 5				
		syenite/trachyte and tuffaceous material similar to matrix; non-magnetic; massive, moderately foliated at 35 ° - 40 ° to core axis throughout; siliceous - Moh = 6 - 7 throughout; very weakly	51.9	54.0	2.1	71 76		9				
		to non-calcareous, basal contact gradational over 20 cm.										

Page 5 DOH VT-			•
ASSA	YS		
 Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)

From	To	DESCRIPTION			SAMPLE				ASSA	YS	
(Met	rIc)		From	To	Length	No.	Rec	Au	Ag	Zn	
							Rec \$	(ppb)	(ppm)	(ppm)	<u>(t</u>
		ALTERATION: Light pink quartz+K-feldspar [±] dolomite [±] sericite patches - 10% at 48.5 - 54.0 m, <u><</u> 2% elsewhere - Cr-mica - trace - disseminations and local clots. MINERALIZATION: Pyrite -<< 1% - disseminated; hematite+chalcopyrite - trace - associated with									
		rare \lesssim 1 cm bands of chlorite alteration; quartz+white carbonate veinlets generally $<$ 1%.									
50 4	70.1	ALTERED COUNTRY OF THE Comments of the second of the control of the second of the seco	E0 4	50.0		71 77		. 5			
58.4	70.1	ALTERED CONGLOMERATE: Generally light green to biege with varicoloured clasts; 10% patchy sections (<30 cm wide) of relatively unaltered tuffaceous conglomerate (as 41.1 - 58.4 m); clasts ≤ 3 cm	58 • 4 50 0	59.9		7177		∡ 5 6			
		•	59.9	61.8		7178		-			
		diameter; angular to rounded, predominantly pink syenite/trachyte and purple-brown tuff; clasts	61.8	63.9		7179		4 5			
		comprise 40% of unit; open matrix is predominantly sericite and quartz; hardness Moh = 3 - 6;	63.9	65.7		7180		< 5			
		non-magnetic; weakly to non-calcareous; well foliated at approximately 35° to core axis through-	65.7	67.4	1.7	7181		< 5			
		out; basal contact gradational over 3 cm.	67.4	68.8	1.4	7182		4 5			
		ALTERATION: Generally highly bleached/sericitized? - Cr-mica - trace - disseminated.	68.8	70.1	1.3	7183		< 5			
		MINERALIZATION: Pyrite <<1\$, disseminated; quartz+white carbonate veins<<1\$; orange siderite+									
		chlorite veins - trace, 1 cm parting quartz (20%)+Cr-mica (40%)+hematite (40%)+chalcopyrite									
		(1≴) at 61.9 m.									
70.1	75.5	TUFFACEOUS CONGLOMERATE/AGGLOMERATE: As 41.1 - 58.4 m; generally moderately foliated at 35° to core	70-1	72.4	2.3	7184		< 5			
,,,,	• • • • • • • • • • • • • • • • • • • •	axis; basal contact gradational over 2 cm-	72.4	74.0		7185					
		ALTERATION: 72.4 - 72.8 m - highly bleached conglomerate similar to 58.4 - 70.1; sparse \leq 3 cm						15			
		zones of bleaching elsewhere.	74-0	15.5	1.5	7186		9			
		MINERALIZATION: Pyrite - 1% - disseminations and clots in veins; quartz+white carbonate brange									
		siderite veins - 5% - irregular, variably oriented.									
75.5	81 -8	ALTERED CONGLOMERATE: Patchy pink-brown to light green; vestiges of clasts only locally discernible;	75.5	77.1	1.6	7187		11			
		predominantly light green sericite and pink-brown K-feldspar; non-magnetic; non-calcareous; well	77.1	78.3	1.2	7188		8			
		foliated at variable 30 - 40° to core exis; basal contact gradational/ragged over 1 cm.	78.3	79.8		7189		10			
		ALTERATION: Pervasive Intense potassic alteration marked by patchy Intergrown sericite and	79.8	81 -8		7190		13			
		· · · · · · · · · · · · · · · · · · ·	7,740	0	, 2.0	,,,,		13			
		K-feldspar; Cr-mica - trace - disseminations and clots. MINERALIZATION: Prominant quartz+white carbonate-chlorite-orange siderite-(tourmaline?) veins									
		· · · · · · · · · · · · · · · · · · ·									
		In veins; chalcopyrite+pyrrhotite - trace - in veins.									
81 -8	83.4	TUFFACEOUS CONGLOMERATE/AGGLOMERATE: As 41.1 - 58.4 m; moderately foliated at 30° to core exis;	81 -8	83.4	1 1.6	7191		11			
		basal contact sharp.									
		ALTERATION: 5% patchy to wispy bleached/sericitized? zones; <<1% Cr-mica - disseminated wisps.									
		MINERALIZATION: Pyrite - trace - disseminations and fracture-fill; quartz+white carbonate-orange									
		siderite veinlets - 3% - irregular.									
83.4	86.4	ALTERED CONGLOMERATE: Similar to 75.5 - 81.8 m; predominantly pink-brown K-feldspar uphole with	83.4	85-1	1.7	7192		10			
		light green sericite increasing to 50% downhole; 3% patchy vestiges (≤ 3 cm diameter) of un-	85.1	86.4	1.3	7193		18			
		altered tuffaceous conglomerate; non-magnetic; moderately to well foliated at 35° to core exis;									

THE PROPERTY OF THE PROPERTY O

									Page 6	of 8 -88-02	
From	To	DESCRIPTION			SAMPLE				ASSA	YS	
(Met	htc)		From	To	Length	No.	Rec	Λu		Zn	РЬ
							*	(ppb)	(ppm)	(ppm)	(ppm)
		Basal contact gradational over 2 cm.									
		ALTERATION: Pervasive K-feldspar with sericite increasing downhole - very weakly to non-									
		dolomitic/calcareous; silica+albite (?) patches - 10% at 85.1 - 86.4 m; Cr-mica - dissemina-									
		tions and wisps (clasts?) - 3% at 83.8 - 84.8 m; <<1% elsewhere; possibly associated with fine									
		grains of disseminated chromites.									
		MINERALIZATION: Quartz+white carbonate orange siderite chlorite veins - 15% - irregular - ≤ 10 cm				-					
		wide; pyrite+pyrrhotite $\sim <$ 1% - in veins and (disseminations).			*						
86.4	88.3	TUFFACEOUS CONGLOMERATE/AGGLOMERATE: Similar to 41.1 - 58.4 m but moderately altered throughout;	86.4	88.3	1.9	7194		14			
		well foliated at 30° to core axis; basal contact gradational over 1 cm.									
		ALTERATION: Bleaching/sericitization(?) - 3% - disseminations and wisps; K-feldspar - ≤ 40% at									
		87.7 - 88.3 m; Cr-mica - trace - disseminated wisps.									
		MINERALIZATION: Quartz+white carbonate orange siderite veinlets - 4% - irregular, <1 cm wide;									
		. •									
88.3	105.3	ALTERED CONGLOMERATE: As 75.5 - 81.8 m; moderate to strong foliation to core axis -> 30° at 91.1, 40° at 94.2, 40° at 97.2, 35° at 100.1, 45° at 103.1; basal contact gradational over 3 cm.	88.3	90-0	1.7	7195		20			
			90.0	91 -6		7196		9			
		ALTERATION: Pervasive intense K-feldspar+sericite alteration in varying proportions throughout;	91.6	92.9		7197		6			
		weakly dolomitic throughout; Cr-mica - 1% - disseminations and wisps.	92.9	94.4	1.5	7198		8			
	÷	MINERALIZATION: Quartz+white carbonate chlorite orange siderite tourmaline veins; 8% at 88.3 - 95.8 m; 20% at 95.8 - 101.7 m; 10% at 101.7 - 105.3 m; pyrite - << 1% - on fractures in veins	94.4	95.8	1.4	7199		72			
		and disseminations; chalcopyrite - trace - on fractures in veins.	95.8	97.3	1.5	7200		6			
		and disseminations; charcopyrite - trace - on hactures in vents.	97 . 3 98 . 8	98-8 100-1	1.5 1.3	7201 7202		< 5			
			100.1	101.7		7202		11 8			
			101.7	103-4		7204		< 5			
			103.4	105.3		7205		22			
			10304	10505	(**)	1207		24			
105.3	110.7	TUFFACEOUS CONGLOMERATE/AGGLOMERATE: Similar to 41.1 - 58.4 m; moderately to poorly foliated at	105.3	106.2	0.9	7206		7			
		45° to core axis; basal contact gradational over 10 cm;	106.2	107.9	1.7	7207		5			
		ALTERATION: Slight bleaching 109-0 - 110-7 m; Or-mica - trace - disseminations and wisps.	107.9	108-8	0.9	7208		8			
		MINERALIZATION: Quartz+white carbonate orange siderite veins - 8% - irregular, ≤ 8 cm wide.	108-8	110.7	1.9	7209		< 5			
110.7	111.9	ALTERED CONGLOMERATE: Similar to 75.5 - 81.8 m; moderately to well foliated at 35° to core exis; basal contact gradational over 5 cm.	110.7	111.9	1.2	7210		23			
		ALTERATION: Pervasive K-feldspar (40%)+sericite (60%). Alteration in patchy mosaic; weakly									

dolomitic; Cr-mica - 0.5% - disseminated wisps.

MINERALIZATION: Quartz+white carbonate orange siderite black chlorite veins - 20% - irregular,

 \leq 20 cm wide; pyrite/chalcopyrite/pyrrhotite - < 1% on fractures in veins.

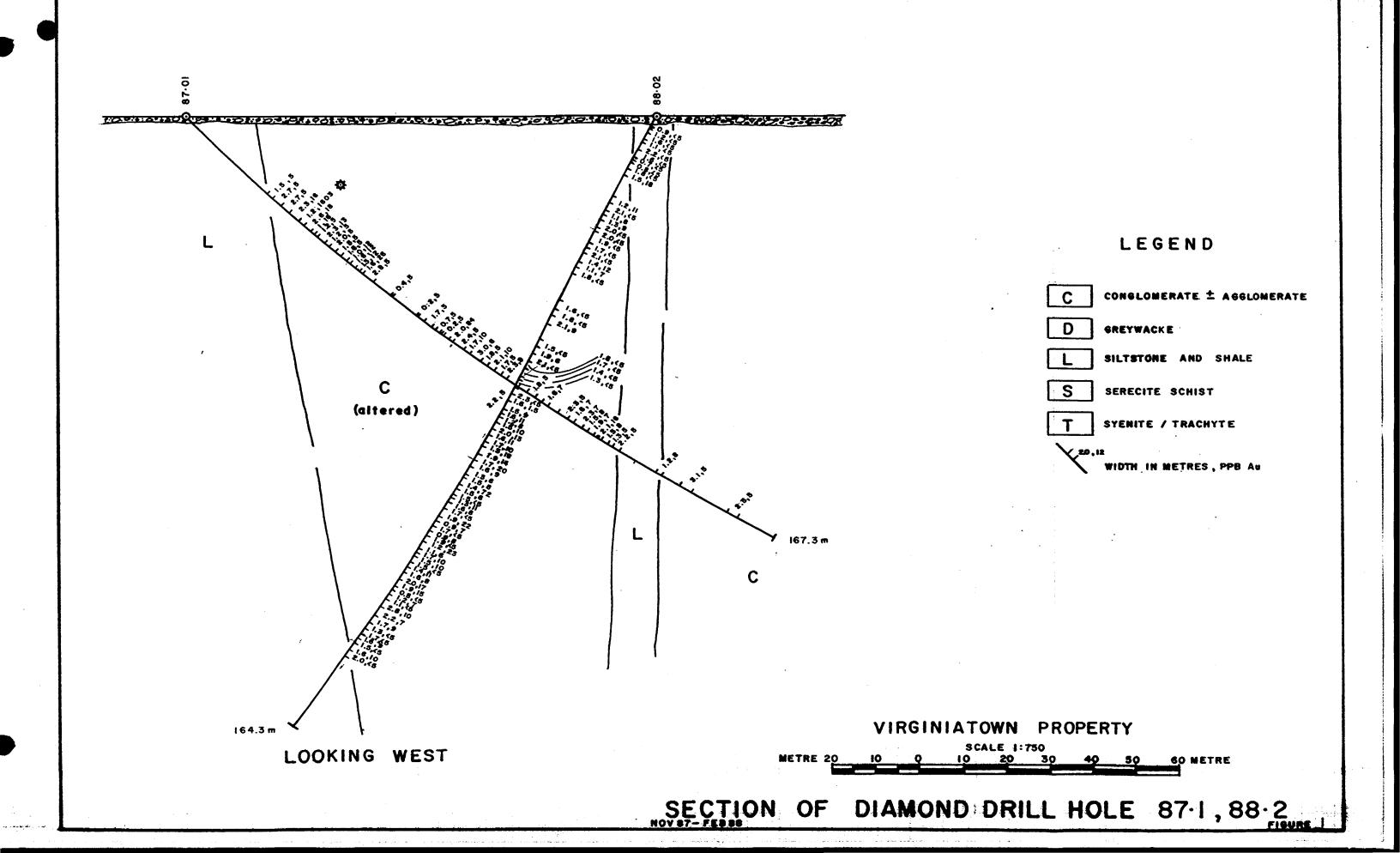
									DOH VT-			
From	To	DESCRIPTION		\$	SAMPLE				ASSA	YS		
(Met	ric)		From	То	Length	No.	Rec	Au	Ag	Zn	Pb	Cu
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
111.9	120.7	TUFFACEOUS CONGLOMERATE/AGGLOMERATE: Similar to 41.1 - 58.4 m; moderately foliated at 35° to core	111.9	113.0	1.1	7211		6				
		axis; basal contact sharp but irregular.	113.0	114.7	1.7	7212		10				
		ALTERATION: Minor bleaching/sericitization especially toward uphole contact.	114.7	116.2	1.5	7213		10				
		MINERALIZATION: Quartz+white carbonate orange siderate sericite veins -> 111.9 - 114.7 - 5%,	116.2	117.7	1.5	7214		< 5				
		114.7 - 116.2 - 25%; 116.2 - 120.7 - 4%.	117.7	119.1	1.4	7215		11				
			119.1	120.7	1.6	7216		8				
120.7	124.6	ALTERED CONGLOMERATE: Similar to 75.5 - 81.8 m; moderately foliated at 40 to core exis; basal	120.7	122.7	2.0	7217		17				
		contact gradational over 2 cm.	122.7	124.6	1.9	7218		15				
		ALTERATION: Pervasive K-feidspar (40%)+sericite (60%) as patchy mosaic; weakly dolomitic; Cr-mica - 0.5% - disseminations and wisps.										
		MINERALIZATION: Quartz+white carbonate orange siderate (black chlorite) veins - 8% - irregular, 5 cm wide; pyrite - trace - disseminated.										
124.6	125.4	TUFFACEOUS CONGLOMERATE/AGGLOMERATE: Similar to 41.1 - 58.4; well foliated at 45° to core axis; basal contact gradational over 1 cm.	124.6	125.4	0.8	7219		< 5				
		ALTERATION: Bleaching/sericite - 2\$ - wisps and patches; Cr-mica - trace - disseminations and wisps.										
		MINERALIZATION: Quartz+white carbonate orange siderite veins - 7% - irregular, ≤ 2 cm wide.										
125.4	130.5	ALTERED CONGLOMERATE: Similar to 75.5 - 81.8 m; well foliated at 40° to core exis; basal contact	125.4	126.6	1.2	7220		7				
		gradational over 5 cm.	126.6	127.7	1-1	7221		< 5				
		ALTERATION: Pervasive K-feldspar (25%)+sericite (75%) alteration as patchy mosaic; locally only moderately altered; Cr-mica - trace - disseminations and wisps.	127.7	130.5	2-8	7222		10				
		MINERALIZATION: Quartz+white carbonate orange siderite black chiorite veins -> 125.4 - 127.7 - 10%; 127.7 - 130.5 - 2%; irregular, € 5 cm wide.										
130.5	134.4	TUFFACEOUS CONGLOMERATE/AGGLOMERATE: Similar to 41.1 - 58.4 m, moderately foliated at 35° to core	130.5	132.7	2-2	7223		7				
		axis; basal contact gradational over 20 cm.	132.7	134.4	1.7	7224		9				
		ALTERATION: Pervasive to patchy moderate bleaching through 60% of unit. MINERALIZATION: Quartz+white carbonate orange siderate ("black chlorite) veins - 2% - irregular, &8 cm wide.										
134.4	137.4	ALTERED CONGLOMERATE: As 75.5 - 81.8 m; well foliated at 30 - 40 to core exis; basal contact	134.4	135.7	1.3	7225		< 5				
,		gradational over 10 cm.	135.7	137.4	1.7	7226		45				
		ALTERATION: Pervasive K-feldspar (40%)+sericite (30%)+silica/albite? (30%); local (<1%) albite (?)			• • •							

patches (\leqslant 2 cm diameter); Cr-mica - trace - disseminated. MINERALIZATION: Quartz+white carbonate sericite chlorite veins - 3% - irregular, \le 2 cm wide;

pyrite+chalcopyrite - trace - disseminations and wisps.

From	To	DESCRIPTION		:	SAMPLE			ASSAYS						
(Met	ric)		From	To	Length	No.	Rec	Au	Ag	Zn	Pb	Cu		
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)		
137.4	142-1	QUARTZ FRAGMENT BRECCIA/CONGLOMERATE: Light green, poorly defined crystal tuff and conglomerate clasts (35%) (<3 cm diameter) in open sericitic matrix; overprinted (?) by 5%, 1 - 5 mm diameter, well-defined, angular, white to light grey quartz clasts (tectonic breccia clasts?); non-magnetic, non-calcareous; well foliated at 45° to core axis; basal contact sharp at 40° to core axis. ALTERATION: Pervasive intense sericitization and moderate silicification (?); Cr-mica - trace - disseminated wisps. MINERALIZATION: Pyrite - overall 1%, locally < 5% - disseminated cubes < 3 mm diameter, commonly in quartz clasts (replacement by quartz?); pyrrhotite - trace - replacing quartz; quartz+white carbonate veins - <1%, < 2 cm wide; blue quartz veins - 1% - 1 cm wide.	137.4 139.0 140.5	139.0 140.5 142.1	1.6 1.5 1.6	7227 7228 7229		9 < 5 10						
142.1	145.2	SERICITE SCHIST: Light greenish yellow, pastey-textured, sericite bands with < 30% light (uphole) to medium (downhole) grey interbeds of fine arenite; non-magnetic, non-calcareous; very soft; well foliated and bedded (<2 cm thick) at 30° to core axis; basal contact gradational over 1 m. ALTERATION: Pervasive bleaching/sericitization (?). MINERALIZATION: Quartz+white carbonate veinlets - <<1%, <5 mm thick.	142.1	144.1	2.0	7230		< 5						
145.2	164-3	SANDSTONE/SILTSTONE: Generally interbedded light to medium grey, fine to medium grained sandstone beds (<10 cm thick) and dark grey siltstone (*shale) beds (<1 cm thick); non-magnetic, non-calcareous; bedding/foliation at 35 - 40° to core axis; local cross beds indicate stratigraphic												

ALTERATION: 145.2 - 152.3 m -> decreasing moderate to slight bleaching/sericitization (?) of


MINERALIZATION: Pyrite - <<1% - disseminated; quartz veinlets -<<1%, <1 cm wide.

164.3 END OF HOLE

tops downhole.

siltstone beds.

J. Jorynsk.

DIAMOND DRILL RECORD

January 19, 1988 Hole Survey Hole No.: VT-88-03 Started: Virginiatown Completed: January 20, 1988 Meterage Azimuth Dip Property: Method (corrected) J. Ho L666335 Logged by: Claim No.: -45° 320° 0.0 Compass Drill Contractor: Langley Drilling, Brampton, Ontario Ref. Co-ord.: 60.6 Acid -37° Elevation: Assayer: Accurassay Laboratories, Kirkland Lake, Ontario 121.6 Acid

Surveyed:

No

Grid Co-ord.: 45+60W, 22+05S

Purpose:

1. To test extension of quartz vein zone in DDH VT-87-01.

2. To test cross fault.

Core Size:

ВQ

Casing Left: No

From	То	DESCRIPTION		SAMPLE			ASSA	YS		
(Meti	Tc)		From 3	To Length	No. R	ec At	 Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)
		HOLE SUMMARY								
0.0	10.8	Casing.								
10.8	28.8	Interhedded silitstone-sandstone.								

0.0	10.8	Casing.
10.8	28 • 8	Interbedded siltstone-sandstone.
28.8	52.7	Bleached Interbedded siltstone-sandstone: local silicification.
52.7	86.4	Altered conglomerate: pervasive bleaching and sericitization as well as moderate K-feldspar addition. Trace sulphides.
86.4	92.0	Conglomerate: weakly altered.
92.0	103.8	Bleached-sericitic conglomerate: pervasively bleached with moderate sericitization and weak K-feldsparateration.
103-8	121.6	Bleached-sericitic-interbedded siltstone-sandstone: pervasive bleaching, weak sericitization; weak quartz veining; trace sulphides.

DIAMOND DRILL RECORD

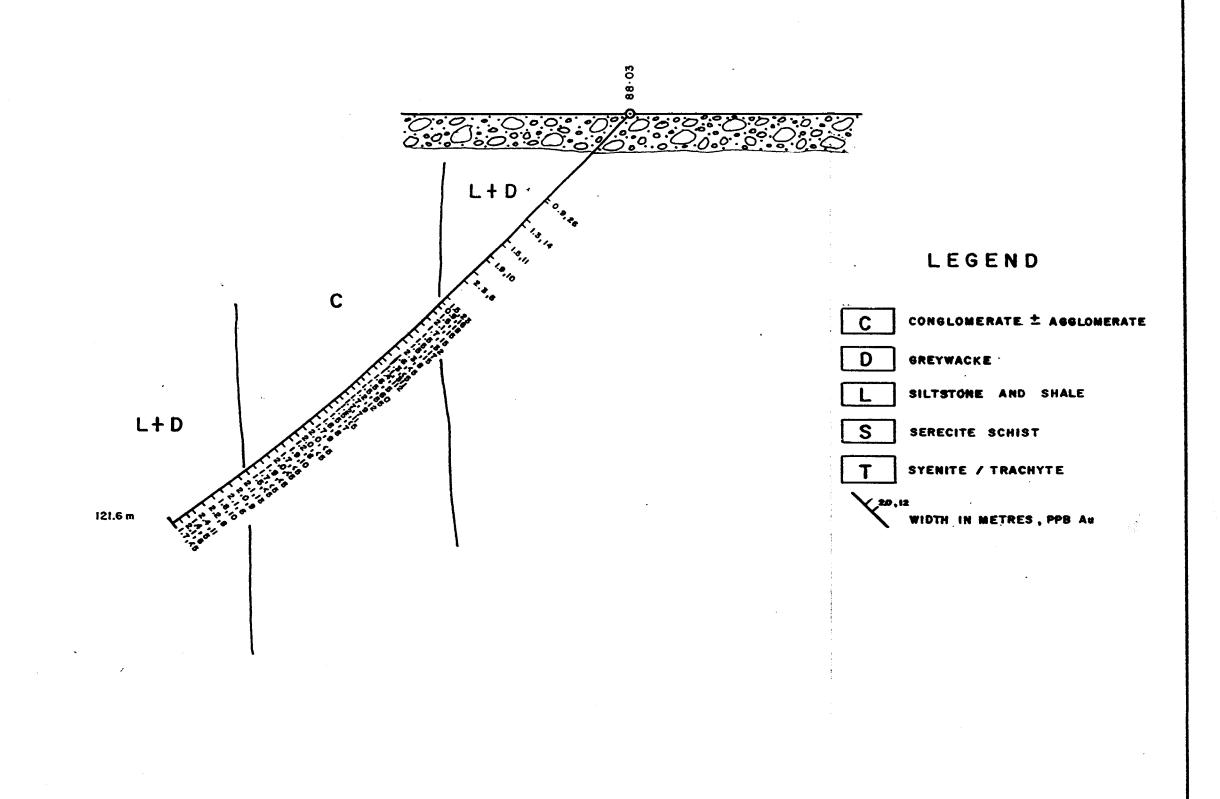
Hole No.:	VT-88-03	Started:	January 19, 1988	Hole Survey				
Property:	Virginiatown	Completed:	January 20, 1988	Meterage	Azīmuth	Dip	Method	
Claim No.:	L666335	Logged by:	J. Ho		o	(corrected) o		
Ref. Co-ord.:		Drill Contractor:	Langley Drilling, Brampton, Ontario	0.0 60.6	320°	-45° -44°	Compass Actd	
Elevation:		Assayer:	Accurassay Laboratories, Kirkland Lake, Ontario	121.6	-	-37°	Acid	
Surveyed:	No							
Grid Co-ord.:	45+60W, 22+05S	Purpose:	1. To test extension of quartz vein zone in DOH VT-87-01. 2. To test cross fault.					

Casing Left: No			
From To	DESCRIPTION	SAMPLE	ASSAYS
(Metric)		From To Length No. Rec	Au Ag Zn Pb Cu

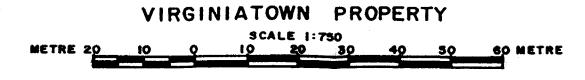
From	To	DESCRIPTION			SAMPLE		ASSAYS				
(Metr			From	To	Length	No.	Rec	Au	Ag	_	
							*	(ppb)	(ppm)	(
0.0	10.8	Casing.									
10.8	28.8	INTERBEDDED SILTSTONE-SANDSTONE: Color - grey with green tint. Textures - bedding generally on a scale of 1 cm but sandstone thicknesses up to 1 m.									
		10.8 - 11.2 - Highly contorted bedding, axial planes parallel to bedding.									
		15.3 - 18.0 - Contorted bedding, bedding often parallel to core exis. 16.1 - 16.2 breccia zone									
		5% quartz infilling and veining with trace pyrite. Fold zone?									
		Primary sedimentological features visible, such as load structures, scours, and graded bedding,									
		indicative of tops uphole. Non-magnetic, non-calcareous.									
		ALTERATION: Fresh, only trace of bleaching.									
		MINERALIZATION: < 1% thin, (< 1 cm wide) quartz veins, foliation/bedding parallel.									
		23-2 - 23-3 - 10% quartz filled fractures with 3% fine-grained pyrite. Bedding also highly contorted.	23.1	23.4	0.3	7231		26			
		16.9 - 17.0 - Core lost.									
		Foliation/bedding to core axis: 11.9 m: 45°; 18.0 m: 48°; 24.1 m: 40°.									

52.7 BLEACHED INTERBEDDED SILTSTONE-SANDSTONE.: Color - progressive change from grey to green downhole, becoming a lime-yellow green at lower contact. Texture - bedding on scale of 1 - 2 cm with wider 30 - 50 cm sandstone beds. Similar to 10.8 - 28.8 m. Non-magnetic, non-calcareous. ALTERATION: Bleaching reflected in the pervasive discoloration downhole. Localized silicification 44.8 - 44.3 m. 2 - 3% sericitization developed downhole as 1 - 2 mm wide foliation parallel stringers.

Core Size:


	To	DESCRIPTION	SAMPLE					ASSAYS				
(Metri	lc)		From	From To Length No. Rec			Αu	Ag	Zn	Pb	Cu	
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
		MINERALIZATION: < 1%, 1 - 3 cm wide quartz veins with 2 - 3% fine-grained pyrite. Black chlorite	28.9	30.2	1.3	7232		14				
		(tourmaline?) also developed with quartz veins and as fracture fills, 2% abundance.	34.4	35.9	1.5	7233		11				
		Uphole contact gradational over 30 cm.	39.1	41-0	1.9	7234		10				
		Downhole contact very sharp.	43.9	46.4	2.3	7235		6				
		Foliation/bedding to core axis: 33.2 m: 45; 39.1 m: 47; 46.3 m: 48; 51.5 m: 44.	51.2	52.7	1.5	7236		23				
			52.7	53.5	0.9	7237		16				
			53.5	55.0	1.5	7238		18				
			55.0	57.1	2.1	7239		15				
52.7	86.4	ALTERED CONGLOMERATE: Color - patchy mosaic of greens-yellows and reds. Texture - clasts 1 - 4 cm										
		In length (long direction), rounded to subrounded and aligned parallel to foliation. 30 - 40%										
		matrix, matrix supported. Clasts comprised 70% felsics, 25% volcanics and sedimentary, 5%										
		quartz. Matrix composed of chlorite-sericite and quartz. Non-magnetic, non-calcareous.										
		ALTERATION: Pervasive bleaching; 10 - 15% sericite addition in the form of stringers and patches.										
		5 - 6\$ K-feldspar addition. ≤ 1\$ Cr-mica development. K-feldspar addition associated with quartz veining.										
		MINERALIZATION: Trace pyrite disseminated in section. Up to 2% locally, over widths of 2 cm, in	57.1	58.8	1.7	7240		15				
		proximity of quartz veins. 2 - 4%, 3 - 10 cm wide quartz-carbonate (dolomite) veins, veins	58.8	60.3		7241		32				
		cross-cut foliation with 1 - 3% host inclusions, associates pyritic mineralization concen-	60.3	61 -8		7242		17				
•		trated about contacts but also found with host inclusions.	61.8	63.3		7243		15				
		63.3 - 65.8 - 10% K-feldspar alteration. \leq 1% disseminated pyrite.	63.3	65.6		7244		8				
		65.8 - 67.2 - 5 - 8% silicification.	65.6		1.6	7245		< 5				
		67.2 - 68.7 - ≤ 1% pyritic quartz veins.	67.2	68.7		7246		< 5				
		68.7 - 69.8 - 30 cm wide quartz vein (68.3 - 69.1) with 3% pyritic selvages and host inclusions.	68.7	69.8	1.1	7247		311				
		1 - 3% Fe(Mg)-carbonate.	69.8	71.2	1.4	7248		112				
		69.8 - 71.2 - 20 cm wide quartz vein (70.1 - 70.3 m), 2 - 3% Fe(Mg)-carbonate, 2 - 3% fine-	71.2	72.8	1.6	7249		5				
		grained pyrite, width of 1 - 1-1/2 cm developed about contact.	72.8	74.3	1.5	7250		60				
		72.8 - 74.3 - 30% quartz veining, quartz veins similar to 69.8 - 71.2.	74.3	75.8	1.5	7251		55				
		74.3 - 75.8 - 15% quartz veining.	75.8	77.0	1.2	7252		15				
		75.8 - 77.0 - 8% quartz veining.	77.0	78.7	1.7	7253		9				
		77.0 - 78.7 - 5% quartz veining.	78.7	80.4	1.7	7254		7				
		80.4 - 81.6 - 50% K-feldspar addition, 5 - 8% dolomitic carbonate, 2 - 3% black-chloritic frac-	80.4	81.6	1.2	7255		11				
		ture fills; 10% silicification. Core ground at 81.4 - 81.5.	81.6	83.1	1.5	7256		< 5				
		Foliation/bedding to core exis: 54.3 m: 43; 64.1 m: 41; 70.1 m: 48; 74.3 m: 50; 81.8 m: 38.	83.1	84.6		7257		7				
			84.6	86.4		7258		8				

86.4 92.0 CONGLOMERATE: Color - dark grey-red with spiashes of green-yellow sericite. Texture - clasts are rounded to subangular, clasts aligned parallel to foliation. Clasts comprised 70% felsics, 20% volcanics-sediments, and 10% quartz-feldspars. 30% matrix, matrix supported. Matrix composed of quartz-feldspar-chlorite-sericite.


From	To	DESCRIPTION		S	AMPLE				ASSA	YS		
(Met	ric)		From	To	Length	No.	Rec	Λυ	Аg	Zn	Pb	Cu
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
		ALTERATION: Pervasive bleaching 10 ~ 15%. ≤ 7% sericite development, 5% K-feldspar alteration.										
		Trace Cr-mica development.										
		MINERALIZATION: ∠ 1%, 1 cm wide quartz veins with 5 - 10% Fe(Mg)-carbonate.	86.4	88.1	1.7	7259		9				
		Foliation/bedding to core exis: 87.7 m: 41°; 90.5 m: 40°.	88.1	90.1	2.0	7260		< 5				
			90.1	92.1	2.0	7261		< 5				
92.1	103.8	BLEACHED SERICITIC CONGLOMERATE: Color - light green with beige-white patches. Textures - Clasts,										
		1 - 3 cm in long direction, well-rounded to subrounded. Clasts comprised 70% felsics, 20% vol-										
		canics-sediments, and 10% quartz-feldspar. Matrix composed of chlorite-sericite-quartz feldspar.										
		40% matrix, matrix supported. Non-magnetic, non-calcareous.										
		ALTERATION: Pervasive bleaching 80 - 90% with 5 - 10% sericitic stringers intergrown with the	,									
		matrix. 1 - 2% K-feldspar alteration. Trace Fe(Mg)-carbonate fracture fills (101.2 - 101.5 m).	• '									
		MINERALIZATION: Trace 1 - 1-1/2 cm wide quartz veins.	92.1	93.3	1.2	7262		8				
		Foliation to core axis: 95.2 m: 32°; 104.0 m: 47°.	93.3	95.2	1.9	7263		10				
			95.2	96.7	1.5	7264		< 5				
			96.7	98.7	2.0	7265		< 5				
			98.7	100.6	1.9	7266		< 5				
			100-6	102.3	1.7	7267		ح 5				
			102.3	103.8	1.5	7268		< 5				
103.8	121.6	BLEACHED SERICITIC INTERBEDDED SILTSTONE-SANDSTONE: Color - light green with beige-white bands.										
		Texture - bedding (banding) variable scale from 2 - 3 cm to 30 cm. Non-magnetic, non-calcareous	•									
		ALTERATION: Pervasive bleaching 80 - 90%, decreasing downhole. < 5% sericitic alteration.										
		MINERALIZATION: ≤ 1%, < 1 cm wide quartz veins with 3 - 5% Fe(Mg)-carbonate. Trace dolomitic	103-8	105.9	2.1	7269		13				
		carbonate fracture fills with trace chalcopyrite.	105.9	107.9	2.0	7270		. 9				
		103.9 and 104.7 - (<3 cm wide) black chlorite (70%), quartz (25%)-sericite (5%) filled frac-	107-9	110-0	2.1	7271		6				
		tures. Fault zone.	110-0	111.8	1.8	7272		10				
		Foliation to core exis: 105.4 m: 38°; 109.8 m: 45°; 117.2 m: 47°; 121.5 m: 51°.	111-8	114.0	2.2	7273		8				
			114-0	116.4	2.4	7274		11				
			116-4	117-8	1.4	7275		5				
			117.8	119.9	2.1	7276		6				
			119.9	121.6	1.7	7277		~ 5				

fery &

121.6 END OF HOLE.

LOOKING WEST

SECTION OF DIAMOND DRILL HOLE 88.03

FIGURE 6

DIAMOND DRILL RECORD

Hole No.:	VT-88-04	Started:	January 23, 1988	Hole Survey			
Property:	Virginiatown	Completed:	January 27, 1988	Meterage	Azlmuth	D1p	Method
Claim No.:	L666508	Logged by:	G. Gorzynski		•	(corrected)	
Ref. Co-ord.:		Drill Contractor:	Langley Drilling, Brampton, Ontario	0.0 60.6	140°	-45 [°] -46 [°]	Compass Actd
Elevation:		Assayer:	Accurassay Laboratories, Kirkland Lake, Ontario	121.6	-	-43 [°]	Acid
Surveyed:	No		·	182.6	-	-37 [°]	Acid
Grid Co-ord.:	49+20W, 0+17N	Purpose:	 To test two EM conductors. To test alteration zone projected from west. 				
Core Size:	BO		· •				

From	То	DESCRIPTION			SAMPLE				ASSA'	rs		
(Metr	(c)		From	То	Length	No.	Rec	Au (ppb)	 Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)
		HOLE SUMMARY						(рро)	(ppm)	(pp)	(pp)	(pp)
0.0	14.0	Casing.										
14-0	35.5	Tuffaceous greywacke+conglomerate/agglomerate (?).										

14.0	35.5	Tuffaceous greywacke+conglomerate/agglomerate (?).
35.5	44.5	Tuffaceous conglomerate/agglomerate; moderate alteration.
44.5	54.0	Greywacke.
54.0	65.4	Conglowerate.
65.4	68.1	Intercalated trachyte/syenite and crystal tuff; moderately silicified, local quartz veins
68-1	73.1	Chlorite-spotted trachyte/syenite; local quartz-tourmaline veins-
73-1	93.4	Trachyte tuff/porphyritic syenite; local quartz-tourmaline veins and strong alteration.
93.4	123.1	Conglomerate+(greywacke); moderately bleached; local quartz veining.
123.1	133.8	Greywacke+conglomerate.
133-8	138.5	Conglomerate; moderate alteration.

Casing Left: No

Page	2	of	6
DOH	VT-	-88-	-04

From	То	DESCRIPTION
(Meti	rtc)	
		HOLE SUMMARY - (Cont'd)
138.5	141.0	Greywacke.
141.0	154.9	Conglomerate; variable alteration.
154.9	159.1	Chlorite-spotted tuff; local quartz tourmaline veins; locally disseminated sulphides.
159.1	164.8	Trachyte/syenite; moderately bleached.
164.8	182.5	Conglomerate.
	182.5	END OF HOLE

DOH VT-88-04

SAMPLE
From To Length No. Rec Au Ag Zn Pb Cu
\$ (ppb) (ppm) (ppm) (ppm) (ppf)

DIAMOND DRILL RECORD

Hole No.: VT-88-04 Started: January 23, 1988 Hole Survey Property: Virginiatown Completed: January 27, 1988 Meterage Azīmuth Dip Method (corrected) Claim No.: G. Gorzynski L666508 Logged by: 140° -45° 0.0 Compass -46° -43° -37° Ref. Co-ord.: Drill Contractor: Langley Drilling, Brampton, Ontario 60.6 Acid Elevation: Accurassay Laboratories, Kirkland Lake, Ontario Acid Assayer: 121.6 182.6 Acid

Surveyed:

Grid Co-ord .: 49+20W, 0+17N

Purpose:

5% at 42.3 - 42.8 m.

1. To test two EM conductors.

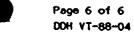
veins - 7% at 37.9 - 38.5 m. Limonite+ankerite rust stained fractures - 5% at 40.2 - 40.9 and

2. To test alteration zone projected from west.

Core Size: BQ Casing Left: No

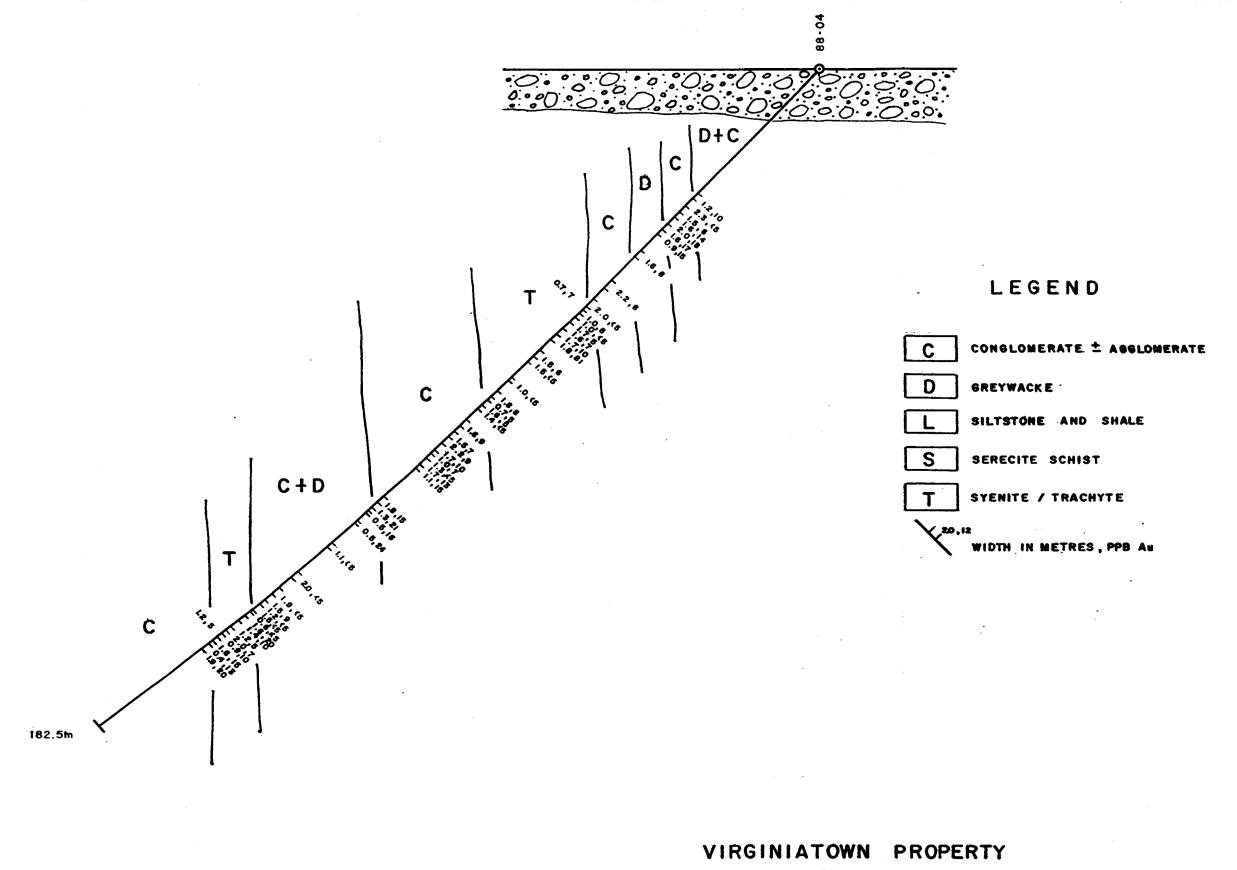
From	To	DESCRIPTION		\$	SAMPLE				ASSA'	YS		
(Met	-1c)		From	То	Length	No.	Rec	Au	Ag	Zn	Pb	Cu
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm
0.0	14.0	Casing - Unaitered/unmineralized baselt, greywacke and (diorite) pebbles-										
14.0	35.5	TUFFACEOUS GREYWACKE/TUFF?+(CONGLOMERATE/AGGLOMERATE?): Generally medium grey to greenish grey,										
		massive to thickly bedded, medium-grained; predominantly feldspar (locally as crystals)+quartz										
		sericite-chlorite; locally grades into pebble conglomerate with ≤ 30% greywacke, trachyte and										
		basalt (?) clasts over ≤ 50 cm; locally slightly magnetic; Foliation - weak to moderate at										
		35 - 40° to core axis; basal contact gradational over 30 cm.										
		ALTERATION: White ankerite (?) - disseminated - 10% uphole, decreasing downhole to ≤ 1%; no significant bleaching.										
		MINERALIZATION: Pyrite+pyrrhotite - <<1\$ - disseminated - quartz+white carbonate-(orange siderite)	34.3	35.5	1.2	7278		10				
		veinlets - << 1% - typically < 2 mm thick; local limonite-strained fractures.										
35.5	44.5	TUFFACEOUS CONGLOMERATE/AGGLOMERATE ?: Generally medium-grey, massive. Clasts -> typically vaguely	35.5	37.8	2.3	7279		< 5				
		defined, form 10 - 30% of unit; variety of clast types - predominantly pink trachyte/syenite and	37.8	39.3	1.5	7280		6				
		chlorite-spotted tuff?; matrix: tuffaceous greywacke?; weakly dolomitic, moderately to well	39.3	40.9	1.6	7281		14				
		foliated at 35 - 40° to core axis.	40.9	42.9	2.0	7282		18				
		ALTERATION: Moderate bleaching+K-feldspar ankerite (?) at 37.9 - 38.5 m and 39.4 - 39.8 m.	42.9	44.5	1.6	7283		17				
		MINERALIZATION: Magnetite - <1% - disseminated. Pyrite - <<1% - disseminated, up to 20% over										
		≼ 3 cm in small silicified zones at 43.0 and 43.9 m. Quartz+white carbonate+orange siderite										

Page 4 of 6 DDH VT-88-04

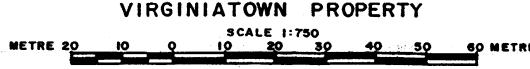

From To (Metric)		DESCRIPTION			SAMPLE				ASS	AYS		
(Met	ric)		From	То	Length	No.	Rec \$	Au	_ ^ g	Zn	РЬ	Cu
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
44.5	54.0	GREYWACKE: Generally medium-grey, thick bedded, local pebbles and cobbles toward base of unit;	44.5	45.4	0.9	7284		15				
		locally slightly magnetic; weakly to non-dolomitic; bedding and weak to moderate foliation at	50-1	51.7	1.6	7285		8				
		35° to core axis; basal contact gradational over 4 cm.										
		ALTERATION: Local very weak bleaching.										
		MINERALIZATION: Pyrite: Trace - disseminated. Quartz+white carbonate-orange siderite-chlorite										
		veins – $<$ 1% – 10 cm vein at 50.5 m. Limonite – 5% – on fractures at 44.5 – 45.0 m and										
		sparsely elsewhere.										
54.0	65.4	CONGLOMERATE: 20 - 40% clasts (≤ 15 cm diameter) in open to closed light grey greywacke matrix;	58.2	60.4	2-2	7286		8				
		clast size increases downhole. Clasts - several types, predominantly pink trachyte/syenite	63.4	65.4	2.0	7287		< 5				
		and chlorite-spotted light green volcanic (?); massive, non-magnetic, weakly to non-dolomitic;										
		moderately foliated at 35° to core axis; basal contact sharp.										
		ALTERATION: Minor patchy bleaching.										
		MINERALIZATION: Pyrite - trace - disseminated, locally 1% at 58.2 - 60.4 m developed on frac-										
		tures; quartz+white carbonate veinlets: < 1% - Irregular.										
65.4	68.1	TRACHYTE/SYENITE AND CRYSTAL TUFF: Intercalated 5 - 60 cm wide sections of medium grey crystal	65.4	66.1	0.7	7288		7				
		tuff (?) (40%) and pink trachyte/syenite (60%); contacts are sharp and parallel to foliation at	66.1	67-1	1.0	7289		8				
		45 - 55 to core axis; Crystal Tuff (?) - fine-grained with common feldspar crystals, massive;	67.1	68.1	1.0	7290		< 5				
	•	Trachyte/Syenite: massive/foliated; dikelets associated with chlorite-spotted trachyte/syenite										
		below (?); non-magnetic; basal contact gradational over 3 cm; 0.5 m of highly broken core										
		near uphole contact.										
		ALTERATION: Generally weakly dolomitic - pervasive to patchy, moderate to strong silicification										
		over 50% of unit - preferentially in trachyte/syenite. Local wisps of sericite in crystal										
		tuff. Cr-mica - trace - disseminated in trachyte/syenite.										
		MINERALIZATION: Quartz+white carbonate-tourmaline-chlorite-orange siderite veins/stockworks -										
		35% - Irregular, generally veins < 1 cm.										
68.1	73.1	CHLORITE-SPOTTED TRACHYTE/SYENITE: Pinkish grey to bright orange-pink; fine to medium-grained,	68-1	69.8	1.7	7291		5				
		typically with 10% green chlorite_spots <2 mm long; non-magnetic, non-calcareous; generally	69.8	71 .4	1.6	7292		7				
		moderately to well foliated at 45° to core axis; basal contact sharp.	71 -4	73.1	1.7	7293		10				
		ALTERATION: K-feldspar(+silicification?) - pervasive and intense at 71.4 - 73.1 m sericiti-										
		zation - trace - as bands and wisps.										
		MINERALIZATION: Quartz+white carbonate-chiorite-tourmaline-orange siderite veins - 2\$ at 68-1 -										
		71.4 m; 20% at 71.4 - 73.1 m - irregular, < 10 cm; 72.7 - 72.8 -> spectacular 20% tourmaline-										
		spiculed quartz vein. Pyrite - trace - disseminated and on fractures.										
73-1	93.4	TRACHYTE TUFF/PORPHYRITIC SYENITE: Typically 10 - 20% sub-rounded pink feldspars (<4 mm diameter)	73-1	74.9	1.8	7294		81				
		and 2 - 7% wispy chlorite spots (<3 mm long) in a pink to pinkish grey, fine-grained matrix;	77.9	79.4	1.5	7295		6				

The state of the s

Page 5 of 6 DDH VT-88-04


From	To	DESCRIPTION			SAMPLE				ASSA	YS		
(Met	ric)		From	То	Length	No.	Rec	Au	Ag	Zn	Pb	Cu
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
		massive; non-magnetic, weakly to non-dolomitic; moderately foliated at 40° to core axis through-	79.4	80.9	1.5	7296		< 5				,
		out; basal contact gradational over 10 cm.	85.4	86.4	1.0	7297		< 5				
		ALTERATION: K-feldspar+sericitization(+silicification?) - at 91.1 - 93.4 m - moderate to intense,	89.3	91.1	1.8	7298		8				
		pervasive. Cr-mica - trace - disseminated. Local minor bleaching 73.1 - 91.1 m.	91.1	91.8	0.7	7299		5				
		MINERALIZATION: Quartz+white carbonate tourmaline chlorite orange siderate veins - generally	91 -8	93.4	1.6	7300		5				
		< 2%; 7% at 79.4 - 80.9 m; 5% at 85.4 - 86.4 m; 7% at 91.8 - 93.4 m; tourmaline-bearing										
		veins mainly toward base of unit; hematite < 1% at 91.1 - 93.4 m - in veins and dissemina-										
		tions. Pyrite - trace - disseminated and in veins.										
93.4	123.1	CONGLOMERATE+(GREYWACKE): Generally light grey to pinkish grey uphole grading to medium grey down-	93.4	94.8	1.4	3268		< 5				
		hole; conglomerate grades to medium and coarse-grained, greywacke over 15% of unit; massive -	97.8	99.4	1.6	3269		9				
		no bedding preserved; non-magnetic, weakly to non-dolomitic; foliation to core axis - moderate	101.0	102.5	1.5	3270		7				
		to strong - generally 40° uphole varying to 50° downhole; 2 cm rusty gouge at 50° to core axis	102.5	104.7	2.2	3271		9				
		at 106.6 m; variety of clasts - ≪10 cm diameter, ≪30%; mainly pink trachyte/syenite, chlorite	104.7	106-4	1.7	3272		10				
		greywacke, and chlorite-spotted grey tuff; basal contact sharp across 1 cm quartz vein.	106.4	107-4	1.0	3273		7				
		ALTERATION: Generally moderate bleaching at 93.4 - 113.0 m causing discoloration and poor	107.4	108.7	1.3	3274		< 5				
		definition of conglomerate clasts. K-feldspar - moderate to intense at 106.4 - 108.7 m and	108.7	110-4	1.7	3275		13				
		small patches (≪20 cm) elsewhere, especially at 120.0 - 123.1 m; sericitization - intense	110.4	111.5	1.1	3276		15				
		at 110.4 - 110.8 m; minor elsewhere.	120.0	121-8	1.8	3277		15				
•		MINERALIZATION: Quartz+white carbonate-chlorite-tourmaline veins - generally < 2% - 4% at 106.4 -	121.8	123.1	1.3	3278		21				
		108.7 and 4% at 120.0 - 123.1 m; hematite - < 1% at 93.4 - 94.8 m - in veins; pyrite - trace - disseminated and in veins.										
123.1	133.8	GREYWACKE+CONGLOMERATE: Gradationally intercalated sections (<1.5 m wide) of medium grey, medium	124.4			3279		16				
		to coarse-grained greywacke (65%) and conglomerate (35%); conglomerate clasts are ≤ 3 cm dia-	127-2	127.7	0.5	3280		24				
		meter, variety of clasts but predominantly pink trachyte/syenite in open to closed medium grey										
		greywacke matrix; non-magnetic, weakly to non-dolomitic; moderate foliation generally at 50 to										
		core axis; basal contact gradational over 3 cm.										
		ALTERATION: Minor bleaching/sericitization and silicification.										
		MINERALIZATION: Quartz+white carbonate veins - generally << 1%; 5% at 124.4 - 124.9; pyrite -										
		generally trace; 0.5% at 124.4 - 124.9 m; locally 1% at 127.2 - 127.7 m in small zones of silicification.		-								
133.8	138.5	CONGLOMERATE: Similar to 54.0 - 65.4 m; moderately to well foliated at 45° to core exis; basal	133.8	134.9	1.1	3281		< 5				
		contact sharp.			·							
		ALTERATION: K-feldspar: moderate alteration at 133.8 - 134.5 m; slight alteration at 135.4 -										
		136.2 m; bleaching - slight throughout.										

MINERALIZATION: Quartz+white carbonate+chlorite veins - 4% at 133.8 - 134.9 m; \ll 1% elsewhere.



From	То	DESCRIPTION			SAMPLE				ASSA	YS		
(Me1	ric)		From	То	Length	No.	Rec 1	Au (ppb)	Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)
138.5	141.0	GREYWACKE: Medium grey, medium-grained, massive, non-magnetic, weakly dolomitic; moderately to well foliated at 50° to core axis; basal contact gradational over 4 cm. ALTERATION: not altered. MINERALIZATION: Quartz+white carbonate veinlets - << 1%; pyrite - trace - disseminated.										
141.0	154.9	CONGLOMERATE: Similar to 54.0 - 65.4 m; moderately to well foliated at 50° to core axis; basal contact across 10 cm quartz+white carbonate vein. ALTERATION: K-feldspar - pervasive - slight to moderate uphole varying to intense downhole (151.6 - 154.9 m); sericitization - local wisps and bands throughout. Cr-mica - trace - disseminated - increasing downhole. MINERALIZATION: Quartz+white carbonate-chlorite-orange siderite veins - generally < 1% - irregular; pyrite - trace - disseminated and in veins.	142.6 148.2 150.1 151.6 152.8 154.3	144.6 150.1 151.6 152.8 154.3	1.9 1.5 1.2	3282 3283 3284 3285 3286 3287		< 5 < 5 9 < 5 < 5 < 5 < 5				
154.9	159-1	CHLORITE-SPOTTED TUFF (?): Generally very light grey with 15% disseminations. 3 mm long chlorite wisps; local pink syenite clasts (2 cm diameter) increasing downhole; massive, non-magnetic, weakly dolomitic; well foliated at 55° to core axis; basal contact sharp. ALTERATION: K-feldspar - intense as 2 cm selvages on quartz-carbonate veins at 154.9 - 156.5 m; local patches elsewhere. MINERALIZATION: Quartz+white carbonate+orange siderite+chlorite-tourmaline veins - 25% at 154.9 - 156.5 m; 1% at 156.5 - 159.1 m; pyrite+(chalcopyrite): disseminated and in veins.	154.9 156.5 157.9	156.5 157.9 159.1	1.4	3288 3289 3290		20 10 5				
159.1	164.8	TRACHYTE/SYENITE: Light to dark pink, massive; typically homogeneous, 0.5 m feldspar crystal mosaic; poorly defined breccia of rounded trachyte clasts (<1 cm) in similar tight closed matrix at 160.2 - 162.0 m; non-magnetic, non-dolomitic, moderately hard (Moh = 6); poorly foliated at 50° to core axis; basal contact sharp. ALTERATION: Moderately bleached and locally sericitized at 161.1 - 162.0 m. MINERALIZATION: Quartz+white carbonate+orange siderite+chlorite veins - 3% at 159.1 - 162.0 m; <1% at 162.0 - 164.8 m.	159-1 161-1 162-0 163-2	161.1 162.0 163.2 164.8	0.9 1.2	3291 3292 3293 3294		7 10 5 15				
164.8	182.5	CONGLOMERATE: Generally light brownish grey with pink tint toward uphole contact; large variety of \$3 cm well-rounded clasts in closed greywacke matrix; clasts include pink trachyte/syenite, light to dark grey sandstones, and green tuffs (?); moderate foliation varies 45 - 55° to core axis; non-magnetic; weakly to non-dolomitic. ALTERATION: Slightly bleached throughout; K-feldspar + slight pink tint at 164.8 - 168.8 m. MINERALIZATION: Quartz+white carbonate+chlorite veins - << 1% - irregular; 5% at 168.4 - 168.8 m; pyrite - trace - disseminated.	164.4 164.8	164.8 166.7	1.9	3296 3295		13 20				

Jerry B

LOOKING WEST

SECTION OF DIAMOND DRILL HOLE 88.04

FIGURE 7

DIAMOND DRILL RECORD

Hole No.	•:	VT 88-05	Started:	January 30, 1988								Hole Su	rvey			
Property	/ :	Virginiatown	Completed:	February 2, 1988				Mete	erage		Azīmuth	<u> </u>	<u>01p</u>		<u> </u>	othod
Claim No)•:	L765075	Logged by:	J. Ho					0.0		320°		(correct)	c	ompass
Ref. Co-	-ord.:		Drill Contractor:	Langley Drilling, Brampton, Ontario				(50.6		-		-47) ,		ctd
Elevatio			Assayer:	Accurassay Laboratories, Kirkland Lake, Ontario				18	21.6 32.6		-		-43 -40 -38	,	٨	cid cid
Surveyed	1:	No	0	1 Took Courth Cities - 1				24	47.0		-		-38		^	cld
Grid Co-	ord.:	6+20W, 2+10S	Purpose:	1. Test South Cliff mineralized zone. 2. Test VLF conductor.												
Core Siz	te:	BQ														
Casing L	eft:	No														
From	То															
(Metr				DESCRIPTION			SAMPI	E_					ASSA	rs		
	ic)			DESCRIPTION	From	То	Len		No-	Rec	Au		Ag	Zn	Pb	Cu
	le)			DESCRIPTION	From	То			No.	Rec	Au (ppb)				Pb (ppm)	Cu (ppm)
	ic)	HOLE SUMMARY		DESCRIPTION	From	То			No.	Rec			Ag	Zn		
0.0	1c) 2.5	HOLE SUMMARY Casing.	· ·	DESCRIPTION	From	То			No.	Rec			Ag	Zn		
0.0					From	То			No.	Rec *			Ag	Zn		

75.0 82.8 Interbedded greywacke-mudstone/siltstone.

82.8 94.7 Graphitic siltstone-mudstone.

94.7 96.9 Greywacke.

96.9 113.4 Interbedded greywacke-mudstone/siltstone.

113.4 121.1 Bleached greywacke.

121-1 147-8 Greywacke; locally bleached, weak sulphides.

147.8 152.4 Graphitic slitstone.

		SAMPLE								
From	То	Length	No.	Rec	Au		Ag	Zn	Pb	Cu

Page 2 of 9 DDH VT-88-05

From To		DESCRIPTION
(Met	ric)	
		HOLE SUMMARY - (Cont'd)
167.7	172-1	Altered interbedded siltstone-mudstone; pervasive bleaching, sericitization and silicification; 1 - 2% pyritic sulphides.
172.1	192.8	Interbedded siltstone-mudstone.
192.8	206.3	Altered Interbedded siltstone-mudstone; pervasive bleaching; localized quartz veins and pyritic sulphides.
206.3	209.5	Bleached conglomerate; pervasive bleaching, moderate K-feldspar; localized pyritic sulphides.
209.5	219.7	Conglomerate; weak alteration.
219.7	220.6	Altered conglomerate; pervasive K-feldspar alteration.
220.6	227.3	Conglomerate.
227.3	230.8	Altered conglomerate; strong pervasive K-feldspar alteration.
230-8	243.8	Conglomerate; weakly bleached; local quartz velning.
243.8	247.0	Agglomerate.

247.0 END OF HOLE

			DIAMOND DRILL RECORD										
Hole No.:	VT 88-05	Start o d:	January 30, 1988						Hote Surv	өү			
Property:	Virginiatown	Completed:	February 2, 1988			Meterage		Azimuth	<u>1</u>	Dlp		М	lethod
Claim No.:	L765075	Logged by:	J. Ho			0.0		320°	((correct 45°	ο .	c	Compass
Ref. Co-ord.:		Drill Contractor:	Langley Drilling, Brampton, Ontario			60.6		-		-47	Δ.		Actd
Elevation:		Assayer:	Accurassay Laboratories, Kirkland Lake, Ontario			121.6 182.6		-		-43 -40	0		lcid lcid
Surveyed:	No					247.0		-		-38	,	٨	lcid
Grid Co-ord.:	6+20W, 2+10S	Purpose:	1. Test South Cliff mineralized zone. 2. Test VLF conductor.										
Core Size:	ВС												
Casing Left:	No												
From To			DESCRIPTION		SAMPLI	Ξ				ASSA	YS		
(Metric)		, , , , , , , , , , , , , , , , , , , ,		From	To Leng	th No.	Rec 🕺	(ppb)		Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)
0.0 2.5	CASING.												
2.5 60.0	calations of sil tures visible: I length. All are acid. However,	t-mudstone. Silt-mudstone oed casts common, graded to Indicative of top direct 2.5 - 10.4 m marks a zone	ture - fine-grained with 5 - 8%, 1 - 3 cm wide inter- e slightly darker in colour. Abundant primary struc- beds, and flame structures up to 1-1/2 cm in ion uphole. Non-magnetic. No reaction to 10% HCI of 1 - 2 mm sized, cubic mineralization. Abundance,										

6-5 1-5 97501

1.3

29-2 1-3 97504

97502

97503

< 5

17.8 2.0

20-8

15.8

19.5

27.9

from 20% maximum at top of section gradually diminishing, to trace at 10.4 m. This mineralization appears to be carbonate.

ALTERATION: Fresh, only weak bleaching, immediately about quartz-filled fracture networks. MINERALIZATION: 1 - 3% quartz veining and quartz filled fracture networks. Quartz veins generally ≤ 45° to core axis. Moderately well-developed in pyritic sulphides. Locally, 1 - 2 cm wide ones of 3 - 4% pyrite, but averaging ≤ 1% over section. Pyrite is developed In two forms; 1) very fine disseminations, < 1 mm in size, and ii) relatively large, up to 1/2 cm in size, euhedral cubes. The large cubes are quite spectacular. Weak halo of CaCO_q about veins.

- 5.0 6.5: Typical mineralized zone (as above).
- 15.8 17.0: Same as 5.0 6.5.
- 19.5 20.8: Increasing in quartz veining, 25% of section, largest quartz vein 10 cm wide, contact at right angles to core axis. Host is moderately brecciated about the quartz veins. 1% pyrite in host.
- 27.9 29.2: Similar to 19.5 20.8 but quartz veining down to 10 12%. Typical large pyrite cubes in host, < 1% sulphide total.

Page 4 of 9 DOH YT-88-05

From To (Metric)	DESCRIPTION			SAMPLE				ASSA	YS	•		
(Metr	ic)		From	To	Length	No.	Rec	Au	Ag	Zn	РЬ	С
							7	(ppb)	(ppm)	(ppm)	(ppm)	(pp
		33.0 - 34.7: 10% quartz veining, ≤1 cm wide, contacts ≤ 45° to core axis. Trace associated	33.0	34.7	1.7	97505		17				
		euhedral pyrite. 3% CaCO, - pyrite fracture fills at 33.2 - 33.5. Pyrite as coats and	37.0	37.6	0.6	97506		12				
		covers up to 30% at fracture surface. Pyrite is very fine.	39.7	40.2	0.5	97507		15				
		37.0 - 37.6: 8% quartz veining similar to 33.0 - 34.7. No Caco ₃ . Pyrite fracture fills visible. 1% euhedral pyrite overall, but restricted to two strataform bands of 1 cm width (at 37.2 m and 37.3 m). Abundance of 10% over this 1 cm width.	52.6	53.2	0.6	97508		21				
		39.7 - 40.2: Similar to 37.0 - 37.6 except, no quartz veins; pyritic bands of similar description (37.0 - 37.6) at 39.9 m and 40.1 m.										
		52.6 - 53.2: 5 - 6% quartz veining as before. 52.7 - 52.8 marks a brittle-ductile shear zone. Excellent development of tectonic fabrics. Trace sulphides and no appreciable alteration. Bedding/foliation to core axis: 6.5 m: 48; 17.9 m: 44; 31.6 m: 50; 41.7 m: 47, 51.6 m: 53.										
	75.0	INTERBEDOED SILTSTONE-MUDSTONE (Minor Conglomerate): Color - medium to dark grey, similar to greywacke unit above. Textures - bedding on a scale of 1 - 2 cm, coarser grained units. \leq 5 cm wide. Abundant primary structures visible, indicative of tops uphole. Conglomerate units at 60.02 - 60.4 and 64.2 - 65.2. Matrix supported and polymictic; 80% felsics, 10% volcanics, and 10% quartz and plagioclase clasts. Non-magnetic, very weakly calcareous matrix. ALTERATION: No significant alteration. However, mild to moderate bleaching (10%) of conglomerate units and also 5 - 7% patchy sericite development. MINERALIZATION: 1% 'small (<1 cm wide) quartz veins, however, upper sections more intensely mineralized and well-developed with quartz veins, as follows: 60.0 - 61.0: 25% quartz veining, concentrated at top of section, 2 - 3% euhedral pyrite associated with quartz veining and disseminated in conglomerate unit (60.4 - 60.6). Quartz veins roughly bedding parallel. 61.0 - 61.9: Large quartz vein from 61.1 - 61.8. 3 - 5% green chlorite intergrowths with the quartz and 1 - 2% black tourmaline (2) intergrowths.	60.0 61.0 61.9 62.9 64.2	61.9 62.9 64.2 65.2	0.9 1.0 1.3	97509 97510 97511 97512 97513		25 14 22 25 27				
		61.9 - 62.9: 3 - 4% irregularly formed quartz veins, 2 - 2-1/2 cm wide. Local (62.2 - 62.3) calcium-carbonate-chalcopyrite (<1%) fracture fill.	65.2	65.9		97514		20				
		62.9 - 64.2: 3 - 4% quartz filled fractures (network). 64.2 - 65.2: 2 - 3% euhedral pyrite conglomerate unit. Pyrite found dominantly in matrix but not uncommon in clasts. 65.2 - 65.9: 2 - 3% quartz veining, contacts bedding parallel, 2 - 3 cm in width. Week bleaching immediately about quartz veins. Bedding/foliation to core axis: 60.4 m: 43°; 67.8 m: 40°; 73.9 m: 47°.										

75.0

82.8 INTERBEDDED GREYWACKE - MUDSTONE/SILTSTONE: Color - medium grey, similar to above units.

Textures - fine-grained, bedding variable, greywacke units generally 30 - 60 cm wide interbedded with 1 - 3 cm wide mud-siltstone units. Non-magnetic, non-calcareous.

From To		DESCRIPTION			SAMPLE				ASSA	YS	
(Met	r(c)		From	To	Length	No.	Rec	Au	Ag	Zn	F
							1	(ppb)	(ppm)	(ppm)	(p
		ALTERATION AND MINERALIZATION: Very fresh, only trace quartz veins.									
		Foliation/bedding to core exis: 80.9 m: 47°; 82.7 m: 45°.									
82.8	94.7	GRAPHITIC SILTSTONE-MUDSTONE: Color - dark grey-black. Texture - fine-grained, phylitic,									
		bedding < 1 cm wide. Non-magnetic, non-calcareous.						_			
		ALTERATION AND MINERALIZATION: No visible signs of alteration. $\leq 1\%$, 2 - 5 mm wide, quartz	88.9	91 -4	2.5	97515		26			
		veins, trace pyrite.									
		89.0 - 94.6: 80% of core ground and broken, 88% recovery.									
		93.6 - 94.2: core lost. Bedding/foliation to core axis: 85.5 m: 55°; 91.2 m: 53°.									
		Bedding/Tollation to core axis: 85.5 m: 55; 91.2 m: 55 .									
94.7	96.9	GREYWACKE: Color - light-medium grey. Texture - fine-grained. Non-magnetic, non-calcareous.									
		ALTERATION AND MINERALIZATION: No visible signs of significant alteration or mineralization.									
		Bedding/foliation to core exis: 95.7 m: 54°.									
96.9	113.4	INTERBEDDED GREYWACKE: Mudstane/siltstone, same as 75.0 - 82.0.									
		101.8 - 103.6: 1% quartz vein, contacts bedding parallel, trace pyrite. Bedding/foliation to core axis: 101.3 m: 53°; 106.8 m: 52°.	101.8	103.6	1-8	97516		24			
		Bedding/foliation to core axis: 101.3 m: 53; 106.8 m: 52.									
113.4	121.1	BLEACHED GREYWACKE: Color - light green-grey. Texture - fine-grained, minor interbeds of fine silt.									
,		Non-magnetic, non-calcareous.									
		ALTERATION: Weakly altered, greenish tint from bleaching.									
		MINERALIZATION: Trace disseminated pyrite. Trace CaCO, fracture fills.									
		Uper and lower contact gradational over 30 cm.									
		Foliation/bedding to core exis: 117.0 m: 52°; 111.8 m: 60°.									
121 1	147-8	GREYWACKE: Color - typical medium grey with slight green tint. Texture - fine-grained, 3 - 5%,									
12141	147.0	1 - 3 cm wide, intercalations of silt-mudstone. Silt-mudstone slightly darker in colour. Pri-									
		mary features visible, though not as distinct as 2.5 - 60.0 m. Overall, similar to 2.5 - 60.0 m.									
		ALTERATION: Localized zones of slight (2.5%) bleaching. Generally <1 cm wide.									
		126.2 - 126.9: Slightly more intense zone of bleaching. Pervasive, 5 - 10% abundance.									
		139.9 - 143.5: Weak zone of bleaching (3 - 4%).									
		MINERALIZATION: Trace, stratabound, euhedral pyritic bands, widths <1 cm, 2 - 3% over this	126-2	126.	9 0.7	97517		23			
		width.									
		126.2 - 126.9: Trace pyrite and galena (?) associated with 5 cm wide quartz vein and silicifica-									
		tion zone.									
		142.2 - 143.8: Weak zone of bleaching with very fine-grained pyrite developed at most intense	142.2	143.	8 1.6	97518		33			
		zone of alteration (143.2 - 143.3). 1% abundance.	_								
		Foliation/bedding to core axis: 118.5 m: 58° ; 130.5 m: 60° ; 133.9 m: 62° ; 142.0 m: 60° ; 144.9 m: 5	59°.								

Page 6 of 9 DOH VT-88-05

From	То	DESCRIPTION			SAMPLE "	عوا ري	ASSAYS						
(Met	ric)		From	То	Length	No.	Rec	Au		Ag	Zn	Pb	Cu
							*	(ppb)	(ppm)	(bbw)	(ppm)	(ppm)
147.8	152.4	GRAPHITIC SILT-MUDSTONE: Color - dark grey to black. Texture - fine-grained bedded on a 1 - 2 cm scale. Non-magnetic, non-catcareous.											
		ALTERATION: Very fresh. MINERALIZATION: Trace, foliation parallel quartz veins. Core ground from 151.2 - 152.1, good recovery 93%.	151 -1	152.4	1.3	97519		28					
		Foliation/bedding to core axis: 149.0 m: 54°.											
152.4	167.7	INTERBEDDED SILTSTONE-MUDSTONE: Color - medium-grey. Texture - fine-grained, bedding on a scale of 1 - 3 cm. Non-magnetic, non-calcareous.											
		ALTERATION: Fresh, no significant signs of alteration. MINERALIATION: Trace, 1 - 2 cm wide, quartz veins. Contacts roughly foliation/bedding parallel.											
		1 - 2% quartz filled fractures. < 1% fine-grained pyrite.											
		Bedding/foliation to core exis: 153-5 m: 53; 157-4 m: 54; 163-4 m: 56.											
167.7	172.1	ALTERED INTERBEDDED SILTSTONE-MUDSTONE: Color - banded sequence of yellow-greens and greys. Texture - fine-grained, only weakly foliated. Non-magnetic, non-calcareous. ALTERATION: Well-altered; pervasively bleached (80%); abundant development of sericite (30% of											
		mineral assemblage); and good silicification (20%). MINERALIZATION: 1 - 2% well disseminated euhedral pyritic sulphides. Pyrite cube 1 - 2 mm in	167.7	169.1	1.4	97520		15					
		size; preferentially oriented parallel to foliation; silicate pressure shadows visible on	169-1	170.6		97521		10					
		larger pyritic cubes. Only trace quartz veins.	170.6	172.1		97522		14					
		Foliation/bedding to core axis: 170.3 m: 58.											
		Upper and lower contacts gradational over 10 - 20 cm.											
172-1	192.8	INTERBEDDED SILTSTONE-MUDSTONE: Color - grey to slightly finted green-grey. Texture - fine-grained, bedding on a 1 - 2 cm scale. Non-magnetic, non-calcareous.											
		ALTERATION: Only very weak bleaching, otherwise generally fresh. MINERALIZATION: Generally no quartz veins or sulphides.											
		174.0 - 175.2: 2% irregular quartz veins with 1 - 2% pyritic inclusions.	174.0	175.2	1.2	97523		19					
		Foliation/bedding to core axis: 179.5 m: 54; 185.6 m: 55; 191.2 m: 50.	••••	,,,,,,									
		Lower contact gradational over 1 m.											
192-8	206.3	ALTERED INTERBEDDED SILISTONE-MUDSTONE: Color - light yellow green, progressing from a grey-green											
		uphole to a distinct yellow-green downhole. Texture - fine-grained, weakly foliated, non-magnetic; non-calcareous.											
		ALTERATION: Dominated by pervasive bleaching, increasing intensity downhole, becoming completely											

(100%) bleached by lower contact. Gradual alteration over the length of the section.

Page 7 of 9 DDH VT-88-05

The state of the s

From	То	DESCRIPTION			SAMPLE								
(Me	tric)		From	То	Length	No.	Rec 1	Au	Ag	Zn	Рь	Cu	
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	
		MINERALIZATION: 2 - 3% localized 10 - 20 cm wide quartz veins with 1 - 2% fracture filled pyrite. Pyrite also occurs as discrete euhedral forms with grey silicate pressure shadows (1% pyritic abundance).											
	196.9 - 198.0: two 10 - 20 cm wide quartz velns, contacts foliation parallel (197.1 - 197.3 and 197.6 - 197.3 respectively).	196.9	198.0	1-1	97524		18						
		200.2 - 201.1: Three quartz veins (200.3 - 2 cm wide and 200.5 - 200.8 and 200.9 - 201.0 m	200.2	201.1	1.1	97525		17					
		respectively), 1 - 2% pyritic filled fractures associated with 200.9 - 201.0 m quartz vein. 204.8 - 206.3: Trace quartz veins. 1% euhedral pyrite with silica pressure shadows. Pyrite forms 1 - 2 mm in size. Foliation/bedding to core axis: 192.7 m: 65°; 198.5 m: 67°; 203.6 m: 59°.	205.1	206.3	1.2	97526		15					
206.3	209-5	BLEACHED CONGLOMERATE: Color - gradual change from yellow-green (similar to above unit) to pinkish- red downhole. Textures - Clasts are rounded to sub-angular and aligned parallel to foliation. Clasts dominated by syenitic (trachyte) 85%, 15% volcanics and quartz. Clasts generally 1 - 4 cm long. Matrix supported, 45% matrix to 55% clasts. Non-magnetic, non-calcareous. ALTERATION: Dominated by extreme bleaching in upper sections gradually fading downhole. Moderate (5 - 10%) K-feldspar addition towards lower contact. Also weak (1 - 2%) sericitic addition, as stringers and wisps in the matrix. MINERALIZATION: Trace to 1% euhedral pyrite in upper sections, with silicate pressure shadows, discriminated. 206.3 - 207.9: 1% euhedral disseminated pyrite with silicate pressure shadows. Trace CaCO filled fractures with < 1% pyrite. 207.9 - 209.5: Similar to 206.3 - 207.9 (above) except lesser bleaching with depth. Foliation to core axis: 205.2 m: 53°; 208.1 m: 63°.	206.3 207.9	207 . 9 209 . 5		97527 97528		36 27					
209.5	219.7	variable sizes generally 1 - 4 cm in size. Same as above section (206.3 - 209.5 m). Similar clast types and abundances. Matrix supported, 55% matrix to 45% clasts. ALTERATION: Weak bleaching and weak K-feldspar addition at upper and lower contacts. Trace Cr-mica MINERALIZATION: Upper contact marked by 1 - 3 cm breccia zone. This is filled with chlorite (10 - 15%), host (45%), quartz (40 - 45%). Lower contact marked by 3 - 5 cm wide mud seam. Core ground from 219.2 - 219.6 m. 209.5 - 211.0: Weakly altered, 1% quartz veins with xenoliths of host 5 - 8%, Mg-carbonate with quartz vein.	209.5	211.0				13					
		217-3 - 219-7: Weakly bleached and K-feldspar altered. Foliation/bedding to core axis: 211-1 m: 70°; 214-8 m: 64°; 219-1 m: 54°.	217.3	219.7	2-4	97530		22	•				

The second of th

· The Company (Table) (See The See
9 05

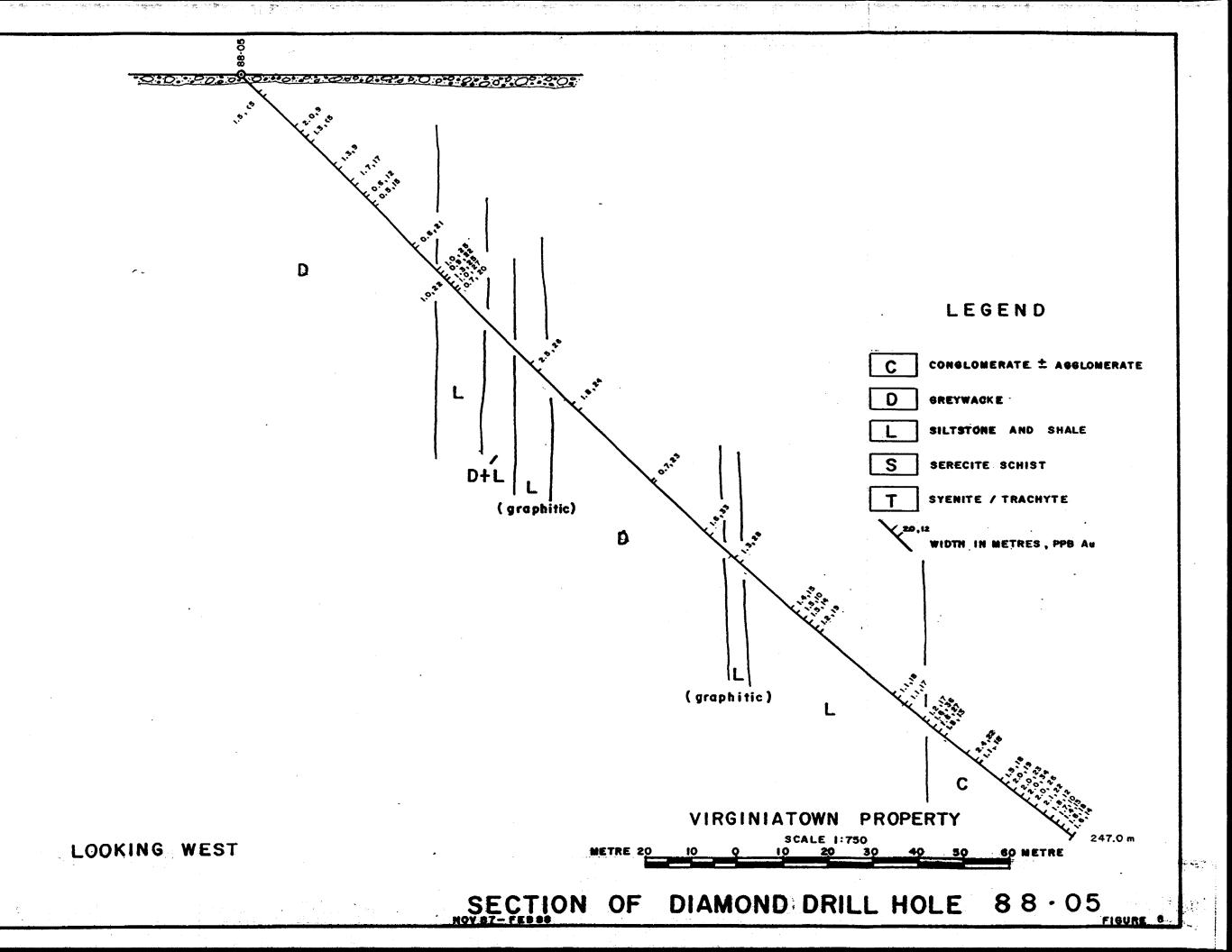
Page	8	0	f	9
DDH	٧T	-8	8-	0:

From	To	DESCRIPTION	DESCRIPTION SAMPLE					ASSAYS						
(Metr	·ic)		From	To	Length	No.	Rec #	Au	Ag	Zn	Рь	Cu		
							X.	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)		
219.7	220.6	ALTERED CONGLOMERATE: Color - pinkish red. Texture - Clasts rounded to sub-angular, variable sizes												
		1 - 3 cm. Clast type and abundance same as 206.3 - 209.5 m. Matrix supported, 35% matrix to 65% clasts.												
		ALTERATION: Dominated by K-feldspar addition. 80 - 85% of section altered weak bleaching. Trace Cr-mica.												
		MINERALIZATION: Trace pyrite.	219.7	220.6	1.1	97531		18						
		Upper contact fairly sharp - marked by mud seam.												
		Lower contact gradational over 10 - 20 cm.												
220.6	227.3	CONGLOMERATE: Color - grey-green with pinkish clasts. Texture - Clasts rounded to subrounded,												
		aligned foliation parallel. 85% syenitic to trachytic, 10% volcanics (mafic) and 5% quartz.												
		Local kink bands. Non-magnetic, non-calcareous.												
		ALTERATION: Very weak local bleaching.												
		MINERALIZATION: Trace quartz veins with Fe-carbonate-dolomite.												
		Upper and lower contacts gradational over 30 cm.												
		Foliation/bedding to come axis: 222.1 m: 54°; 226.4 m: 62°.												
227-3	230.8	ALTERED CONGLOMERATE: Color - red-pińk. Texture - Same as 220.6 - 227.3. Minor kink bands visible.												
		Non-magnetic, non-calcareous.												
		ALTERATION: Highly altered, alteration dominated by K-feldspar (60 - 70%). Alteration intensifies downhole.												
		MINERALIZATION: Trace pyritic sulphides in matrix and trace 1 cm wide quartz veins.	227.3	228-8	1.5	97532		18						
		Upper contact gradational over 20 cm. Lower contact gradational over 5 cm. Foliation/bedding to core axis:	228.8	230.8	2.0	97533		19						
230-8	243.8	CONGLOMERATE: Color - green-grey. Texture - Moderately well-foliated. Much more mafic clasts.												
		20% syenitic/trachytic clasts, 60% mafics, 10% mudstone and 10% quartz and lithics. Clasts well												
		deformed parallel to foliation. Silicate pressure shadows developed on the large syenitic clasts:												
		good kinematic indicator. Non-magnetic, non-calcareous (calcareous fracture fills).												
		ALTERATION: Weak bleaching, generally localized about quartz veins.												
		MINERALIZATION: 2%, 1/2 cm wide quartz veins with intergrown pink carbonate (Mg(Fe)CO ₂). Trace	230.8	232.8	2.0	97534		23						
		sulphides. 10 - 15% sericitic alteration associated with quartz veins.	232.8	234.8	2.0	97535		34						
		Foliation/bedding to core exis: 233.7 m: 55°; 236.5 m: 56°; 241.3 m: 50°.	234.8	236.8	2.0	97536		26		•				
			236.8	238.9	2-1	97537		22						
			238.9	240.7	1-8	97538		12						
			240.7	242.4	1.7	97539		10						
			242.4	243.8	1.4	97540		15						

The second of th

	•								•	
From To	DESCRIPTION			SAMPLE				 ASSA'	rs	
(Metric)		From	То	Length	No.	Rec	Au (ppb)	 Ag (ppm)	Zn (ppm)	Pb Cu (ppm)
243.8 247.0	AGGLOMERATE: Color - dark green-grey. Texture - Poorly foliated. Rounded syenitic (trachytic) clasts with 1 - 5 mm sized plagioclase crystals. Clast group comprised 60% syenites (trachytic) and 37% plagioclase crystals, and 30% mafic fragments. Matrix to clast ratio 60:40. Non-magnetic, non-calcareous (CaCO _x filled fractures).	i								

18


97541

247.0 1.6 97542

247.0 END OF HOLE

ALTERATION: No significant signs of alteration. Weakly bleached immediately about quartz veins. MINERALIZATION: 1 - 1-1/2%, 1 - 1-1/2 cm wide quartz veins and fracture fills. Also pyritic

(3%) - CaCO, fracture fills, abundance < 1%. Trace chalcopyrite. Foliation/bedding to core axis: 241.2 m: 54; 246.8 m: 46.

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

			DIAMOND DRILL RECORD										
Hole No.:	VT-88-06	-88-06 Started: February 4, 1988							Ho	ole Survey			
Property:	Virginiatown	Completed:	February 7, 1988			<u>Me</u>	terage		Azimuth	Dip		Me	thod
Claim No.:	L765089	Logged by:	G. Gorzynski							(correct			
Ref. Co-ord.:		Drill Contractor:	Langley Drilling, Brampton, Ontario				0.0		320°	-46) 0		ompass
Elevation:		Assayer:	Accurassay Laboratories, Kirkland Lake, Ontario			•	60.6 121.6		_	-45 -41	0		eld eld
Surveyed:	No						210.0		-	-32	•		cld
Grid Co-ord.:	9+60W, 1+80N	Purpose:	 To test south cliff fault zone. To test north cliff fault zone. 										
Core Size:	₿Q												
Casing Left:	Yes												
From To			DESCRIPTION			SAMPLE				ASSA	YS		
(Metric)		• *		From	То	Length	No.	Rec	Au (ppb)	Ag (ppm)	Zn (ppm)	Pb (ppm)	Cu (ppm)
·	HOLE SUMMARY								(рро)	(ppm)	(pp)	(ppm)	(ppm)
0.0 3.2	Casing.	•											

- 3.2 8.1 Sericite Schist; pervasive bleaching and sericitization; local quartz veins-
- 8.1 11.8 Altered conglomerate; moderate bleaching and sericitization.
- 11.8 44.4 Tuffaceous conglomerate+(greywacke); weak alteration-
- 44.8 45.8 Altered conglomerate; moderate bleaching and sericitization; local quartz veins.
- 45.8 54.0 Tuffaceous conglomerate+(greywacke); local quartz veins.
- 54.0 77.6 Altered conglomerate; pervasive bleaching and sericitization and K-feldspar alteration; trace disseminated sulphides.
- 77.6 82.3 Altered greywacke+(conglomerate); moderate bleaching-
- 82.3 94.2 Conglomerate.
- 94.2 103.5 Altered conglomerate; strong K-feldspar alteration and silicification; local quartz veins.

Page	2	of	6
HOO	VT.	-88	-06

From To (Metric)			DESCRIPTION
	(1.07		
			HOLE SUMMARY - (Cont'd)
	103.5	111.8	Greywacke; weak alteration; 1 - 2% disseminated pyrite.
	111.8	116.7	Conglomerate; weak alteration.
	116.7	121-6	Greywacke.
	121.6	216.1	Greywacke+(siltstone); unaltered.
		216.1	END OF HOLE

ASSAYS

 SAMPLE
 ASSAYS

 From
 To
 Length
 No.
 Rec
 Au
 Ag
 Zn
 Pb
 Cu

 \$
 (ppb)
 (ppm)
 (ppm)
 (ppm)
 (ppm)
 (ppm)

NORTHERN DYNASTY EXPLORATIONS LTD.

DIAMOND DRILL RECORD

VT-88-06 Started: February 4, 1988 Hole Survey Hole No.: DIp Method Property: Virginiatown Completed: February 7, 1988 Meterage Azimuth (corrected) Claim No.: L765089 Logged by: G. Gorzynski -46° 320° Drill Contractor: Langley Drilling, Brampton, Ontario Ref. Co-ord.: 0.0 Compass 60.6 Acid Accurassay Laboratories, Kirkland Lake, Ontario -41° Elevation: Assayer: 121.6 Acid -32° Surveyed: No 210.0 Acid Purpose: 1. To test south cliff fault zone. Grid Co-ord.: 9+60W, 1+80N 2. To test north cliff fault zone.

Core Size: BQ

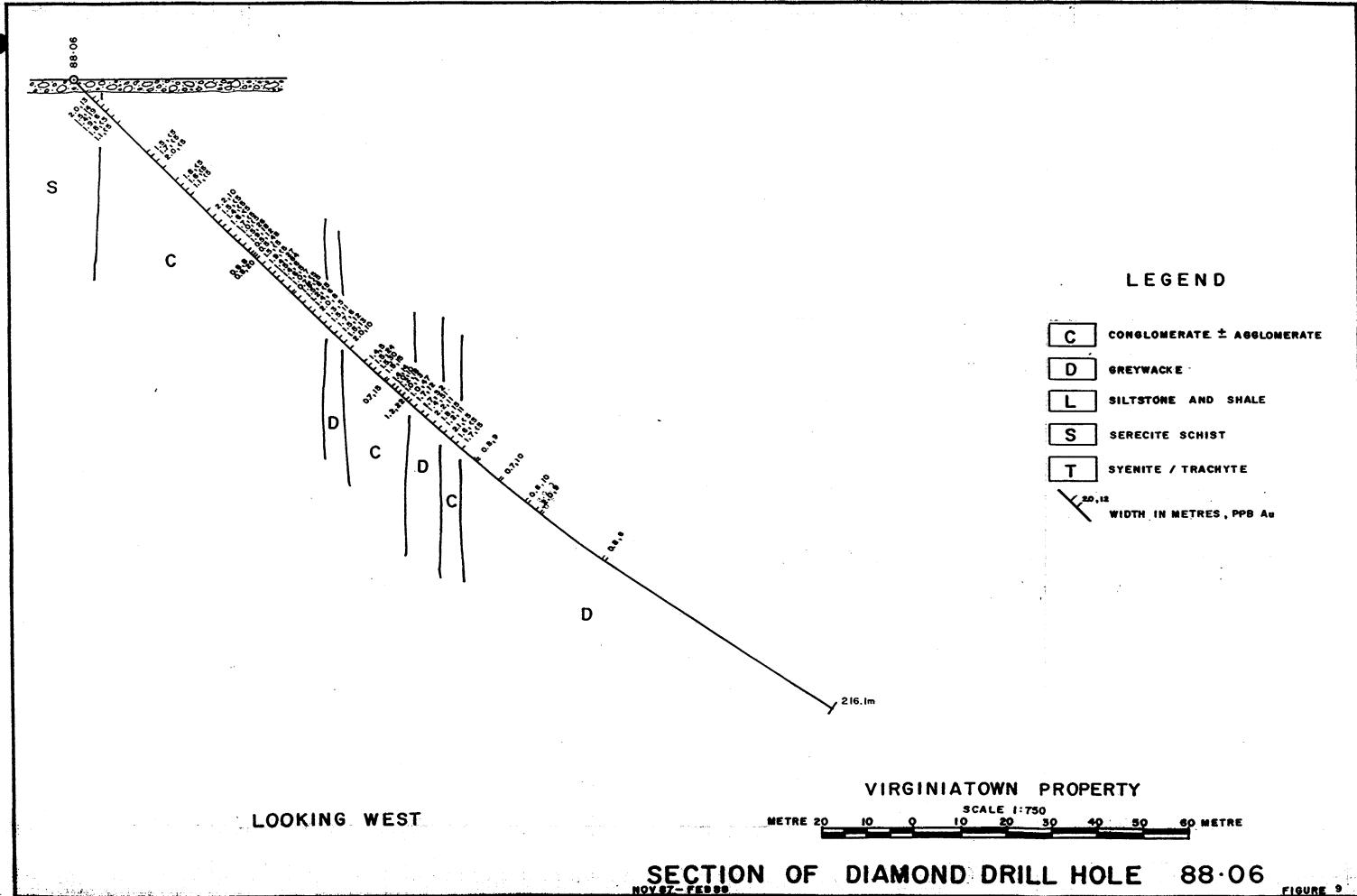
Casing Left:

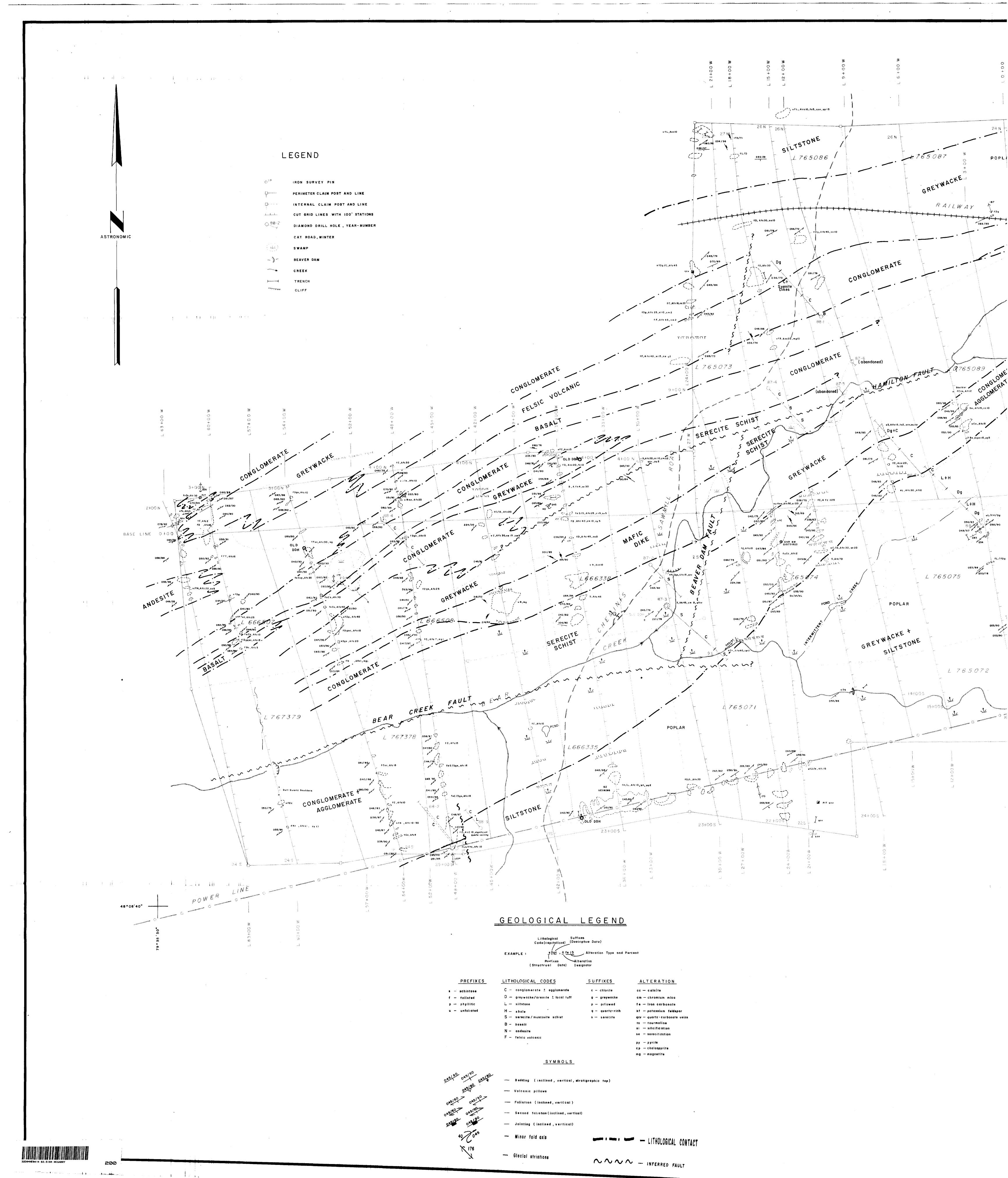
·om	To	DESCRIPTION		5	SAMPLE			ASSAYS						
(Metr	(c)		From	То	Length	No.	Rec	Au	Ag	Zn	РЬ	Cu		
							*	(ppb)	(ppm)	(bbm)	(ppm)	(ppe		
0.0	3.2	Casing: small unaltered basaft pebbles recovered.												
-2	8.1	SERECITE SCHIST (HIGHLY ALTERED CONGLOMERATE?): Light green locally grading to pink-biege sections	3-2	5.2	2.0	97543A		13						
		of K-feldspar(?) alteration; relatively homogeneous; non-magnetic, moderately to well-foliated	5.2	6.7	1.5	97544A		14						
		at 45° to core axis; basali contact sharp.	6.7	8.1	1 -4	97545A		19						
		ALTERATION: Pervasive intense bleaching/sericitization?; K-feldspar(?) - pervasive in <30 cm sections comprising 15% of unit; weakly to moderately dolomitic throughout; Cr-mica - tracedisseminated.												
		MINERALIZATION: Quartz+white carbonate veins - ≤ 10 cm wide, irregular; 3% at 3.2 - 5.2; 20% at 5.2 - 6.7; 2% at 6.7 - 8.1 m; pyrite < 1% - locally 3% in veins - disseminated and clots; limonite/ankerite rust - 2% - as gossanous boxworks around fractures, especially at 6.7 - 6.9 m.												
.1	11.8	ALTERATED CONGLOMERATE: Light green, light brown and purple-grey mosaic varying with degree of	8.1	10.0	1.9	97546A		6						
		alteration and composition of conglomerate clasts; massive/unbedded; clasts poorly to well- defined; variety of subrounded to subangular clasts form 15 - 40% of unit; most common clasts are pink trachyte/syenite and medium grey felsic crystal tuff; non-magnetic; weakly to non- dolomitic; moderately to well-foliated at 50° to core axis; basal contact gradational over 30 cm. ALTERATION: Bleaching/sericitization(?) moderate to intense over 75% of unit; Cr-mica - trace - disseminated. MINERALIZATION: Quartz+white carbonate veins -<< 1%; pyrite - trace - disseminated.	10.0	11.8	1.8	97547A		< 5						
			11.8	12-9	1.1	97548A		< 5						
-8	44.4	TUFFACEOUS CONGLOMERATE+(GREYWACKE): Generally light grey to dark purple-grey; massive/unbedded conglomerate grading to similar greywacke sections (<3 m thick) over 15% of unit; conglomerate	22.3	23.8	1.5	97549A		< 5						
		comprises variety of clasts; predominantly pink trachyte and grey greywacke in open to closed	23.8	25.5	1.7	97550A		< 5						
		greywacke matrix; clasts vary 10 - 60% of unit, < 3 cm diameter; generally non-magnetic,	25.5	27.5	2.0	97551A		< 5						

The second profession of the second profession of the second of the second seco

From	To	DESCRIPTION			SAMPLE			ASSAYS						
(Met	ric)		From	To	Length	No.	Rec \$	Au	Ag	Zn	РЬ	Cu		
		_					*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)		
		non-dolomitic; moderately to well-foliated at 50° to core axis throughout; basal contact grada-	31.2	33.0	1 -8	97552 ∧		< 5						
		tional over 3 cm.	33.0	34.6	1.6	97553A		< 5						
		ALTERATION: Local patchy bleaching, especially -> 5% at 22.3 - 23.8, 25% at 23.8 - 27.5 m;	34.6	35.7	1.1	97554A		< 5						
		Cr-mica - trace - disseminated and wisps (as conglomerate clasts?).	40.7	42.9		97555A		10						
		MINERALIZATION: Quartz+white carbonate vein - <1% generally; 5% at 33.0 - 35.7; 5% at 40.7 -	42.9	44.4	1.5	97556A		< 5						
		44.4 m; hematite - trace - in veins at 31.5 m and 41.1 m; pyrite - trace - disseminated and in veins.												
44.4	45.8	ALTERATED CONGLOMERATE: Generally light green and grey mosaic; altered version of conglomerate at	44.4	45.8	1.4	97557A		< 5						
		11.8 - 44.4 m; moderately to poorly-defined clasts; non-magnetic, weakly to non-dolomitic;												
		moderately foliated at 50° to core axis; basal contact gradational over 5 cm.												
		ALTERATION: Moderate bleaching/sericitization(?) throughout; K-feldspar+silicification: intense												
		in patches at 45.2 - 45.8 m; Cr-mica - trace - disseminated. MINERALIZATION: Quartz+white carbonate veins - ≤2 cm wide, irregular - 3% at 44.4 - 45.2, 15%												
		at 45.2 - 45.8 m.												
45.8	54.0	TUFFACEOUS CONGLOMERATE+(GREYWACKE): Similar to 11.8 - 44.4 m with 40% intercalated greywacke;	45.8	47.4	1.6	97558A		< 5						
		moderately foliated at 50° to core axis; basal contact in broken core; 49.8 - 54.0 - broken	47.4	49.1	1.7	97559A		< 5						
		core, 70% recovery; minor gouge recovered.	49.1	50-1	1.0	97560A		< 5						
		ALTERATION: Slight to moderate bleaching throughout; 53.5 - 54.0 m - moderately silicified/	50.1	51 -6	1.5	97561A		26						
	•	K-feldspan/senicite.	51.6	53-5	1.9	97562A		18						
		MINERALIZATION: Quartz+white carbonaterchiorite veins: 3% at 45.8 - 53.5; 25% at 53.5 - 54.0 m;	53.5	54.0	0.5	97563A		12						
		irregular; pyrite - trace - disseminated; locally 3% in veins.												
54.0	77.6	ALTERED CONGLOMERATE: Only local vestiges of poorly-defined clasts visible; generally light green;	54.0	54.6	0.6	97564A		8						
		relatively massive; commonly magnetic due to sections (≪1 m thick) of ≪5% disseminated magne-	54.6	55-1		97565A		48						
		tite - decreasing downhole; moderately to non-dolomitic; moderately to well-foliated at 60° to	55.1	55.9		97566A		20						
		core axis; basal contact sharp(?); 54.0 - 54.8 - broken core, 70% recovery.	55.9	57.4		97567A		< 5						
		ALTERATION: 54.0 - 55.9: pervasive, very intense silica/ankerite/sericite - mosaic green, white	57.4	59.3		97568A		< 5						
		and pink; 54.0 - 55.6 - 20% ankerite rust in zone of fracturing; similar alteration at 58.1 -	59.3	60.7		97569A		27						
		58.7 m; 55.9 - 77.6 m: pervasive, intense bleaching/sericitization throughout; local patches	60.7	62.2		97570A		64						
		(≤ 30 cm thick) of moderate K-feldspar alteration. Cr-Mica - trace - 0.5% - increasing	62.2	63.6		97571A		. 6						
		downhole.	63.6	65.2		97572A		5						
		MINERALIZATION: Pyrite: 54.0 - 62.2 m - <1% - disseminated; 62.2 - 77.6 m - 0.5 - 3% -	65.2	66.2		97573A		7						
		Increasing downhole - disseminated - replacing magnetite; (locally 10% over 10 cm); chalco-	66.2	66.9		97574A		< 5						
		pyrite - trace - in veins; hematite - trace - in veins; quartz+white carbonaterchloriter	66.9		1.8	97575A		< 5						
		orange siderate veins; generally <1%; 4% at 57.4 - 59.3 m; 10% at 62.2 - 63.6 m; rhodochro-	68.7	70-2		97576A		8						
		site-chalcopyrite (2%) vein - 1 cm thick at 66.2 m.	70.2	71 -4		97577A		< 5						
			71 .4	72.8		97578A		6						
			72 . 8	74.8		97579A		5 6						
			74.8	76.1		97580A		9 11						
			76.1	77.6	1.0	97581A		11						

From	To	DESCRIPTION			SAMPLE				ASSAYS Ag Zn Pb Cu						
(Met	-1c)		From	To	Length	No.	Rec %	Au	Ag	Zn	РЬ	Cu			
							*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)			
77.6	82.3	ALTERED GREYWACKE+(CONGLOMERATE): Generally light greenish grey; massive/unbedded with gradationally	77.6	79.3	1.7	97582A		6							
		interbedded polymictic pebble conglomerate at 80.8 - 81.5 m; non-magnetic, weakly dolomitic;	79.3	80.8	1.5	97583A		12							
		moderately foliated at 60° to core axis; basal contact gradational over 3 cm.	80.8	82.3	1.5	97584A		13							
		ALTERATION: Moderately to weakly bleached throughout.													
		MINERALIZATION: Pyrite: 0.5% - 2% - disseminated and in veins; quartz+white carbonate veins - <1%.													
82-3	94.2	CONGLOMERATE: Generally medium to dark green-grey; predominantly rounded pink trachyte/syenite	82.3	84.3	2.0	97585A		10							
		clasts (< 4 cm diameter) in open chloritic greywacke matrix; locally magnetic due to ≤ 1% dis-	88.3	89.7	1 - 4	97586A		5							
		seminated magnetite; weakly to non-dolomitic; moderately foliated at 65° to core axis; basal	89.7	91 -2	1.5	97587A		24							
		contact gradational over 1.5 m.	91 .2	92.7	1.5	97588A		30							
		ALTERATION: Increasing silicification downhole (Hardness Moh = 5 - 7); Increasing (nil -	92.7	94.2	1.5	97589A		15							
		moderate) patchy K-feldspar alteration downhole; slight bleaching toward uphole contact.													
		MINERALIZATION: Quartz+white carbonate+orange siderite veins: < 1% at 82.3 - 92.0; 7% at 92.0 -													
		94.2 m; pyrite – trace – disseminated.													
94.2	103.5	ALTERED CONGLOMERATE: Dark green-grey with dark orange-red patches uphole (94.2 - 99.5 m) and	94.2	94.9	0.7	97590A		15							
		orange-pink/light green-grey mosaic downhole (99.5 - 103.5 m); original conglomerate similar	94.9	96.3	1.4	97591A		14							
		to 82.3 - 94.2 m above; alteration has obscured most vestiges of clasts uphole; clasts moderately	96.3	97.3	1.0	97592A		10							
		to well-defined downhole; massive (uphole) to moderately foliated (downhole) at 55° to core axis.	97.3	98.5	1.2	97593A		18							
		Basal contact gradational over 70 cm.	98.5	99.5	1.0	97594A		13							
		ALTERATION: 94.2 - 99:5: Patchy K-feldspar+silicification varies from 25% uphole to 90% downhole;	99.5	100.7	1.2	97595A		22							
		downhole contact of this alteration is across 3 cm gouge zone parallel to foliation;	100.7	101 -8	1.1	97596A		47							
		99.5 - 103.0 - patchy K-feldspar - ankerite - 30%.	101.8	103.5	1.7	97597A		12							
		103.0 - 103.3 - moderate bleaching.													
		MINERALIZATION: Quartz+white carbonate+orange siderite chlorite veins: 4% at 94.2 - 94.9 m; 30%													
		at 94.9 - 96.3 m; 4% at 96.3 - 98.5 m; 60% at 98.5 - 99.5 m; 6% at 99.5 - 103.5 m;													
		95.1 - 96.0 m: quartz-healed rubble and crackle breccia (<20% matrix); pyrite - trace -													
		disseminated and in veins.	•												
103.5 -	111-8	GREYWACKE: Generally light green-grey; massive/unbedded; minor gradationally intercalated con-	103.5	105.2	1.7	97598A		52							
		glomerate; moderately foliated at 65° to core exis; basal contact gradational over 50 cm; non-	105-2	106.6	1 -4	97599A		51							
		magnetic, weakly to non-dolomitic.	106.6	108.8	2-2	97600A		11							
		ALTERATION: Slight to moderate bleaching throughout; K-feldspar - 5% patches at 103.5 - 106.5 m.	108.8	110.6	1.8	97601A		15							
		MINERALIZATION: Pyrite - 1 - 2% - disseminated - replacing disseminated chlorite?; quartz+white carbonate-chlorite veins: 5% - irregular.	110.6	111-8	1-2	97602A		11							
111.8	116.7		111-8	113-9	2.1	97603A		< 5							
		foliated at 65° to core axis; basal contact gradational over 2 cm.	113.9	115.4	1.6	97604A		< 5							
		ALTERATION: Slight bleaching throughout; minor K-feldspar patches.	115-4	117-1	1.7	97605A		< 5							
		MINERALIZATION: Quartz+white carbonate veins - << 1\$; pyrite - trace - disseminated.													





From	To	DESCRIPTION		SAMPLE			ASSAYS						
(Metric	c)			To	Length	No.	Rec	Au	Ag	Zn	РЬ	Cu	
			***************************************				*	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	
116.7 1	21.6	GREYWACKE: Medium green-grey; massive/unbedded; locally magnetic due to < 1% disseminated magnetite; weakly to non-dolomitic; moderately foliated at 65° to core axis; basal contact gradational over 50 cm. ALTERATION: Slight bleaching throughout; 116-7 - 117-1 - 30% K-feldspar alteration. MINERALIZATION: Pyrite - generally << 1%; 2% coarse (2 mm) grains at 120-8 - 121-6 m.	120.8	121 -6	0.8	97606A		9					
121.6 2	216.1	GREYWACKE+(SILTSTONE): Generally green-grey; massive/unbedded to thinnly bedded; slitstone generally <10% except 50% at 121.6 - 127.9 m; greywacke varies from fine to coarse grained; locally magnetic due to minor disseminated magnetite; generally non-dolomitic; generally moderately foliated at 60 - 70° to core axis throughout; broken core at 124.5 - 126.3 m and at 173.7 - 174.6 90% recovery; 174.6 - 216.1: 5 - 20% intercalated thin white quartz arenite beds increasing downhold ALTERATION: Generally nil - some slight bleaching; intense, pervasive sericitization with 2% rhodochrosite veins at 155.8 - 156.6 m and small sections elsewhere. MINERALIZATION: Quartz+white carbonate-(orange siderite) veins: < 2% - Irregular; pyrite - trace - disseminated; locally <1%.	127.4 134.7 137.3 155.8	128.1 135.3 139.3 156.6	2.0	97607A 986C8A 97609A 97610A		10 10 9 6					

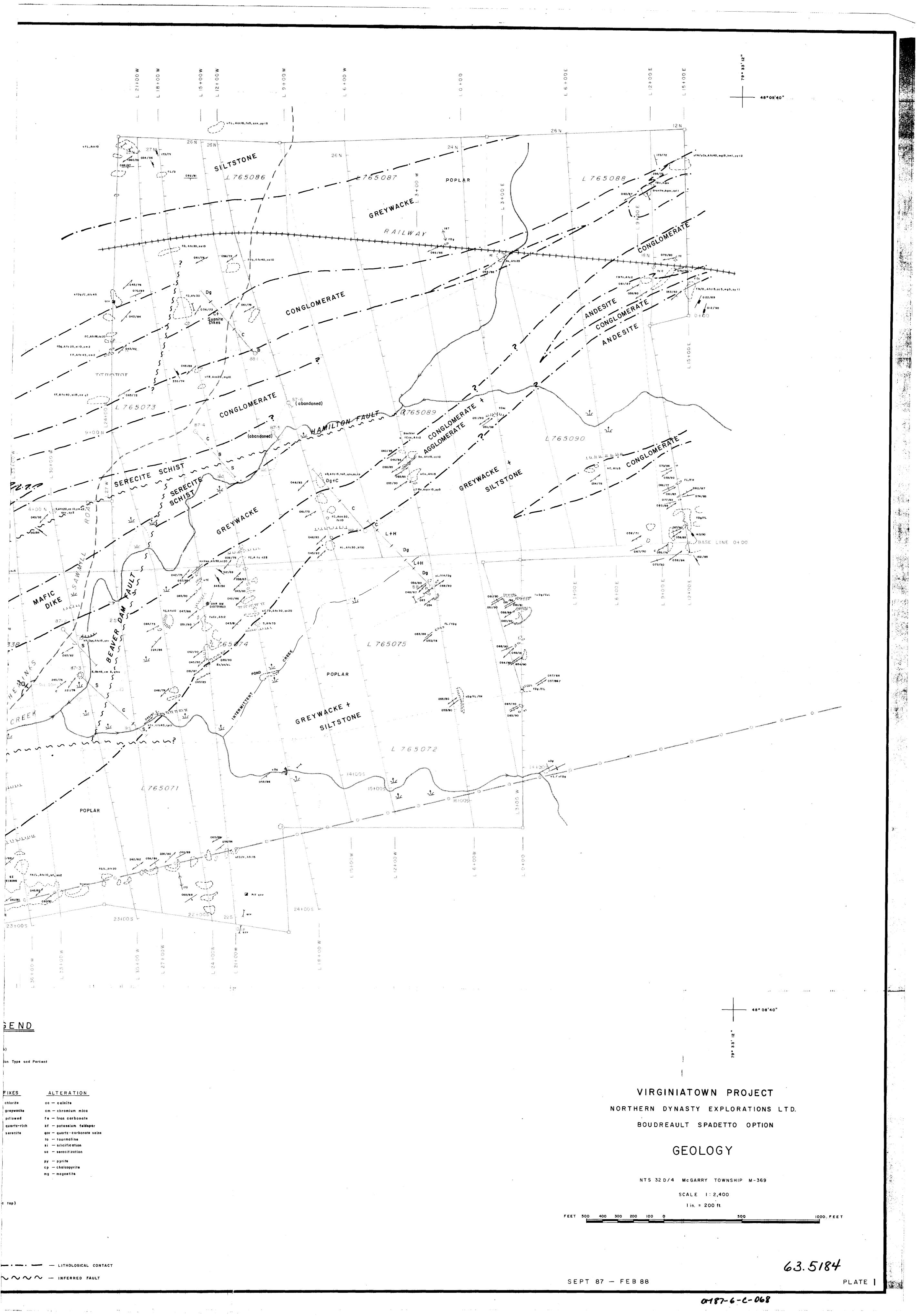
216.1 END OF HOLE

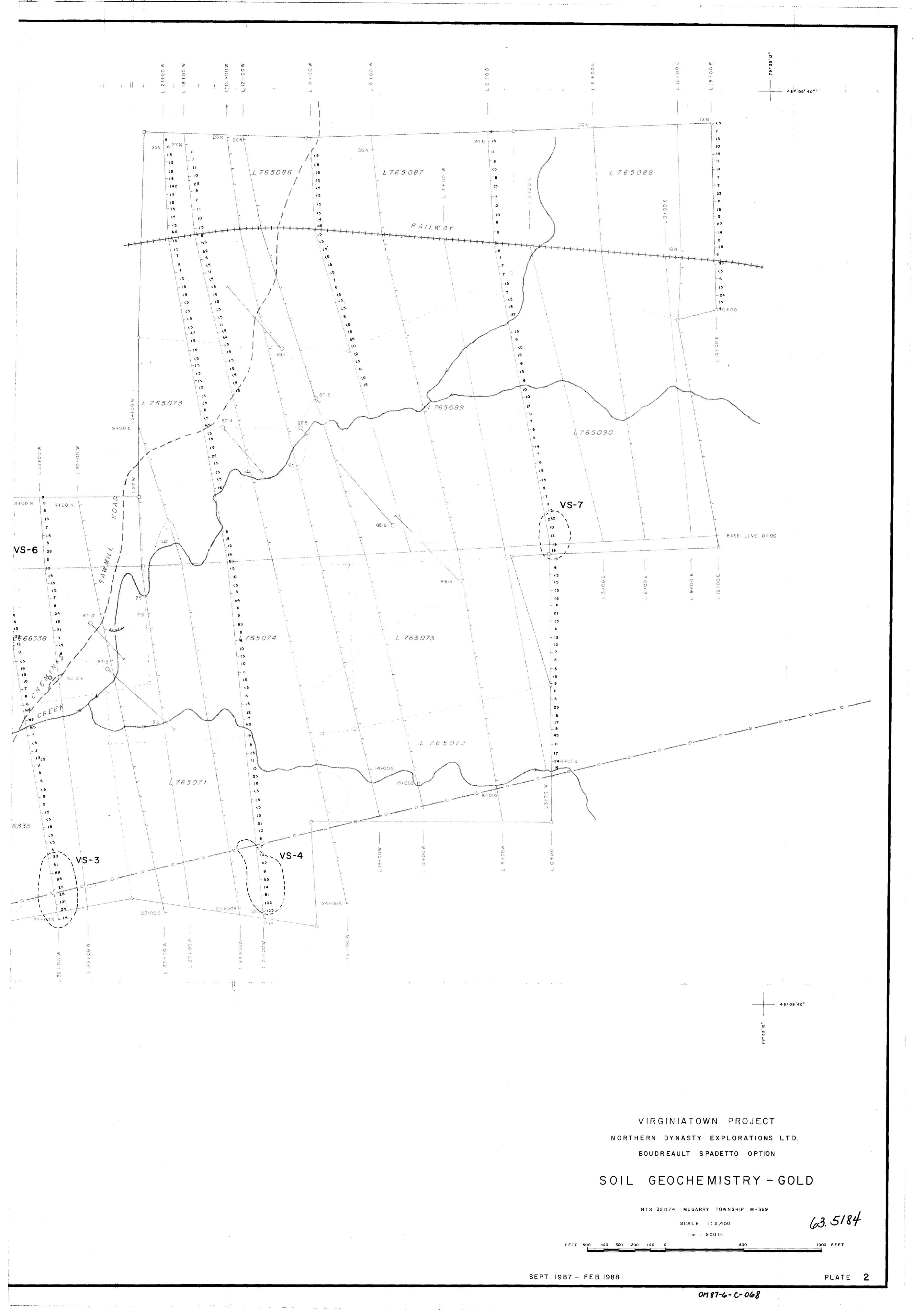
J. Jorymski g

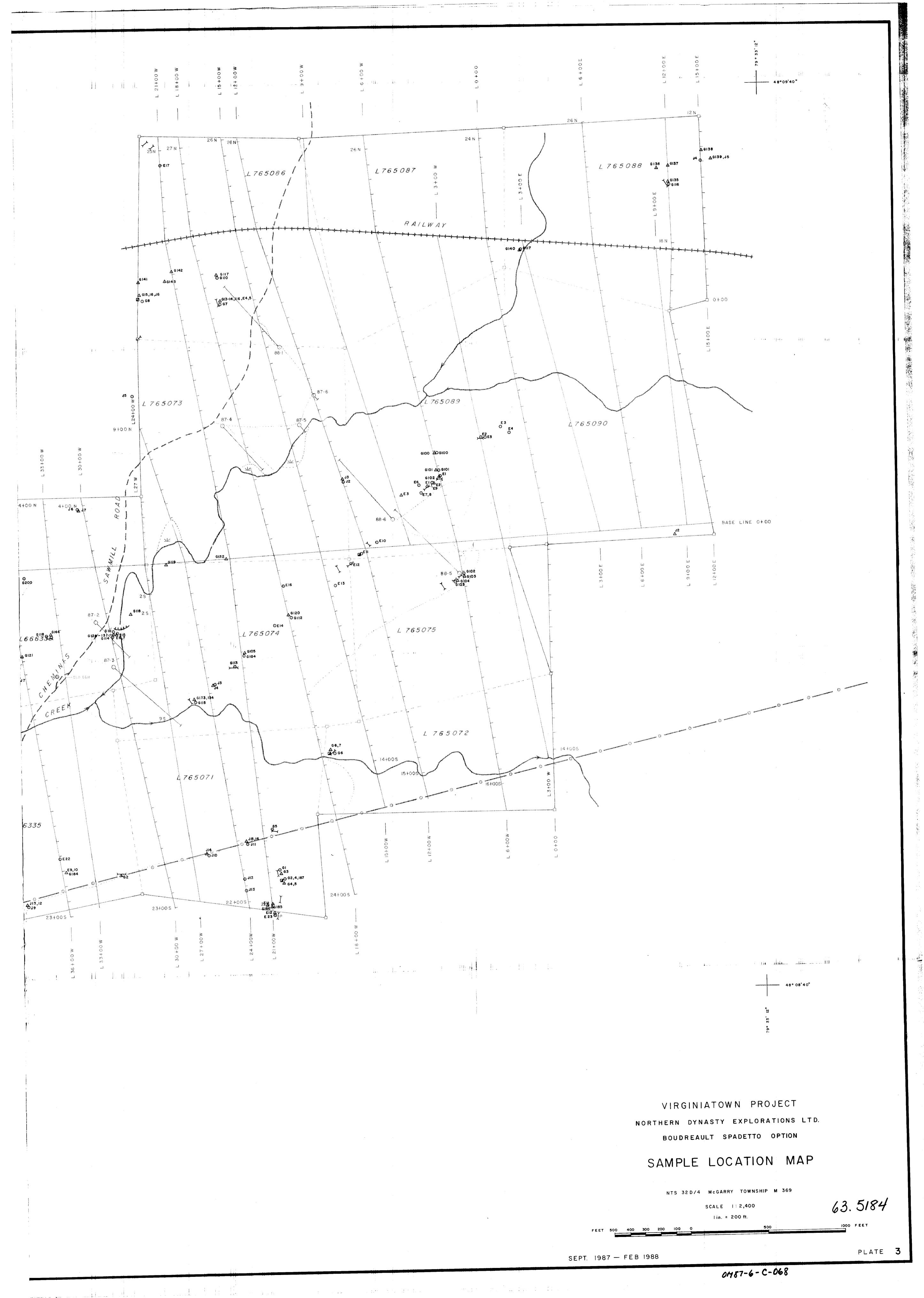
25N -6 27N : 26 N LEGEND L765087 L 765086 IRON SURVEY PIN PERIMETER CLAIM POST AND LINE INTERNAL CLAIM POST AND LINE CUT GRID LINES WITH 100' STATIONS, GOLD VALUES IN PARTS PER BILLION DIAMOND DRILL HOLE , YEAR-NUMBER CAT ROAD, WINTER SWAMP ASTRONOMIC BEAVER DAM VS-6 ANOMALOUS ZONE L 765073 9+00N 3400 N T 2100 N BASE LINE 0+00 (5 VS-5 L 765075 L 666507 L 76507. 2765071 L 767379 L 767378 | L666335 24+00s \ 23400 s 👇 48 ° 08' 40"

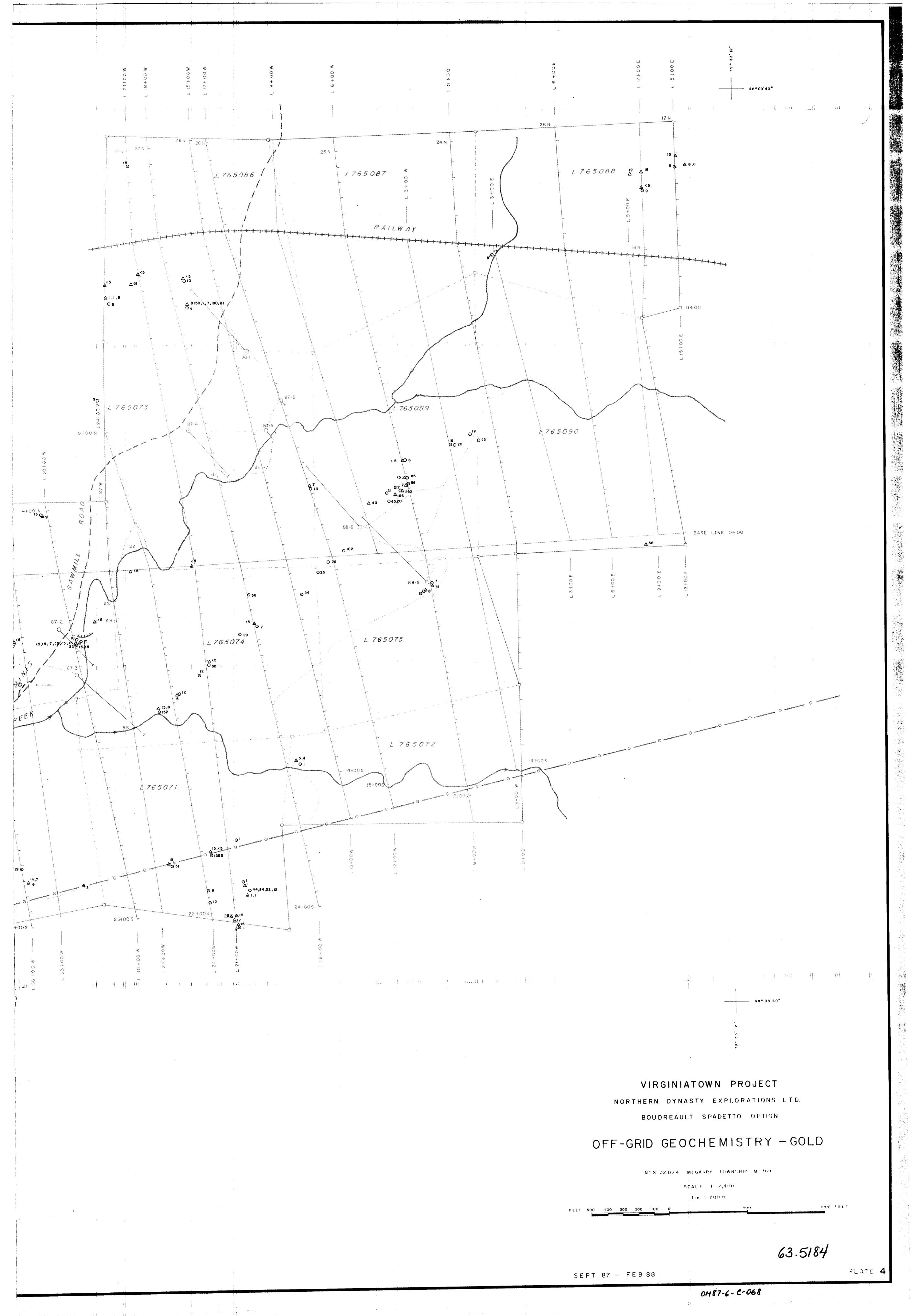
26 N LEGEND L 765087 L 765086 IRON SURVEY PIN PERIMETER CLAIM POST AND LINE RAILWAY INTERNAL CLAIM POST AND LINE CUT GRID LINES WITH 100' STATIONS DIAMOND DRILL HOLE , YEAR-NUMBER ASTRONOMIC CAT ROAD, WINTER SWAMP BEAVER DAM CREEK SOIL SAMPLE AND NUMBER ROCK SAMPLE AND NUMBER J5 O 3 4 765073 765089 9+00N 4+00 N 3+00 N 2100 N BASE LINE 0+00 GI08,109 A GII,12 OE14 L 765074 4 765075 L 666508 L 666507 L 765072 4765071 L 767379 L 767378 24+00s \ 23+00 s 🗸 48° 08' 40" —

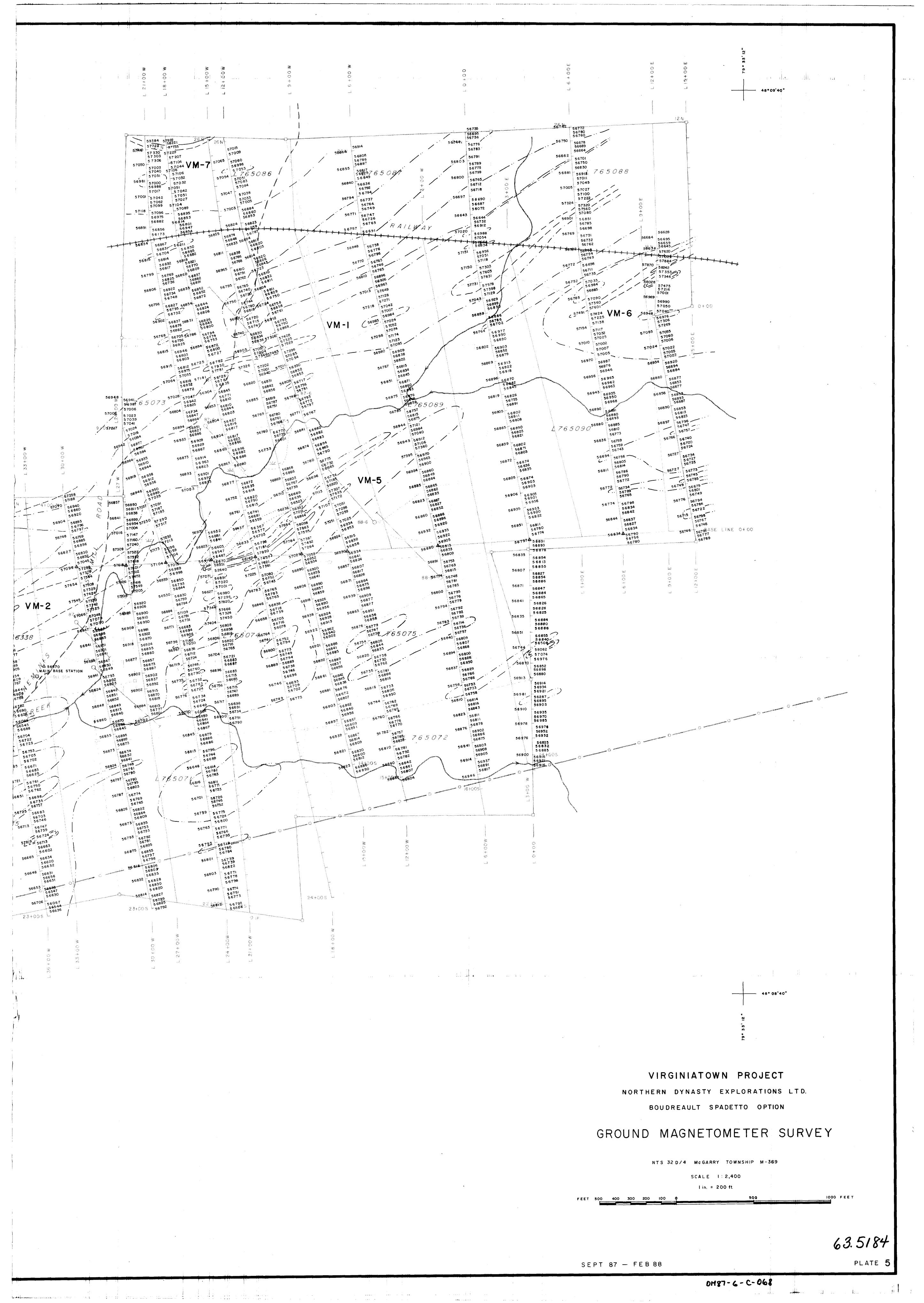
L765087 L 765086 LEGEND IRON SURVEY PIN PERIMETER CLAIM POST AND LINE RAILWAY INTERNAL CLAIM POST AND LINE CUT GRID LINES WITH 100' STATIONS DIAMOND DRILL HOLE, YEAR-NUMBER CAT ROAD, WINTER ASTRONOMIC A 9150,1, 7,180,21 SOIL SAMPLE AND GOLD CONTENT IN PART PER BILLION ROCK SAMPLE AND GOLD CONTENT IN PART PER BILLION L 765073 9 + 0 0 N 4400 N 3+00 N 2+00 N BASE LINE 0100 (5,(5,7,(5,(5,3,0))5 32 (5,45 L 765075 TL 666508 L 666507 L 765072 4765071 L 767379 L 767378 1666335 24+00 S 🟃 25+005 / 48°08'40" —

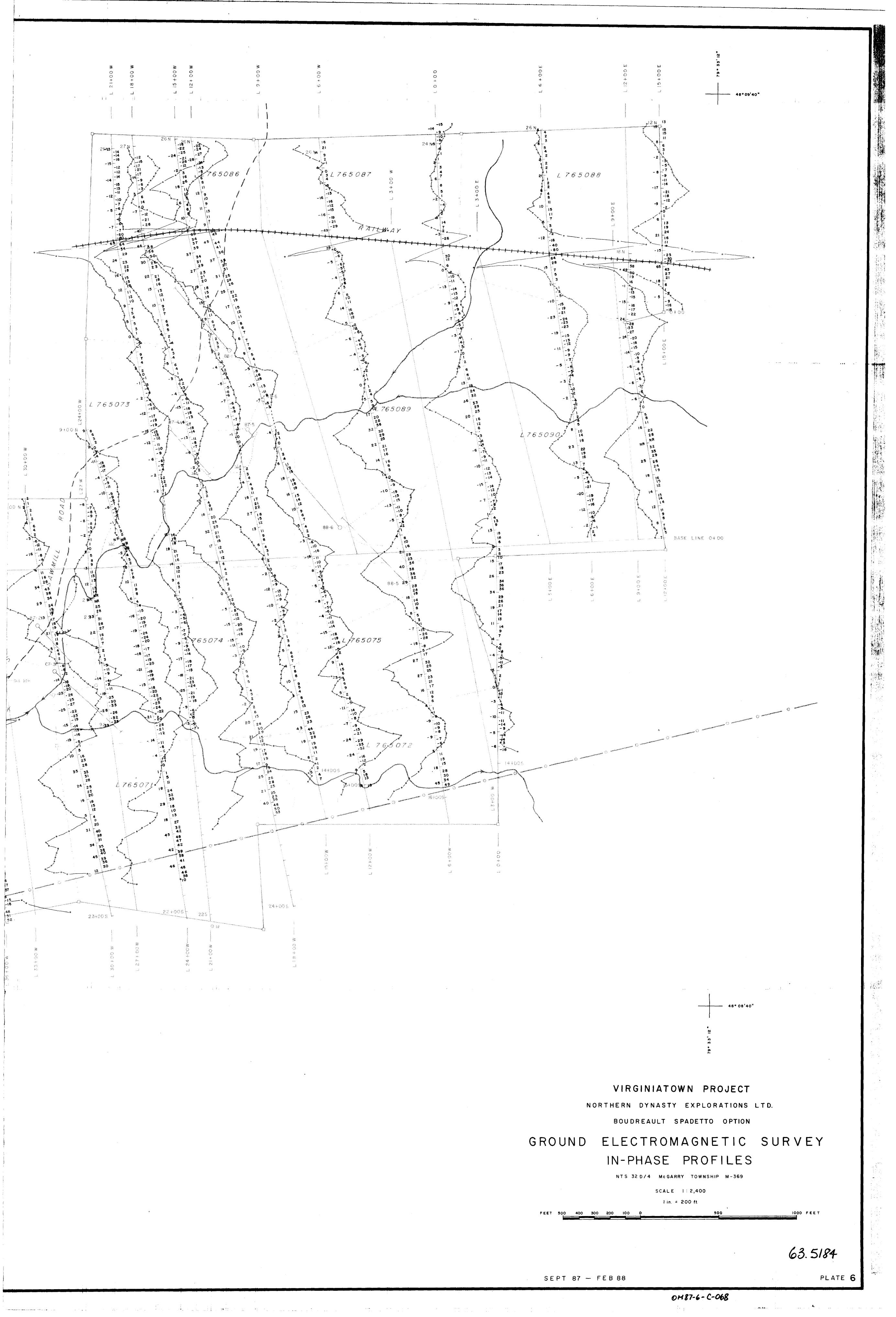

The state of the s 3 L 765087 LEGEND IRON SURVEY PIN PERIMETER CLAIM POST AND LINE INTERNAL CLAIM POST AND LINE CUT GRID LINES WITH 100' STATIONS DIAMOND DRILL HOLE , YEAR-NUMBER CAT ROAD, WINTER ASTRONOMIC SWAMP BEAVER DAM INPHASE PROFILE (| cm = 10°) ---- QUADRATURE PROFILE (1cm = 10%) PROFILE SCALE TRANSMITTER: SEATLE, WASH., U.S.A. INSTRUMENT: GEONICS RONKA EM-16 BASE LINE 0 +00 24+00s 👇 23400S >

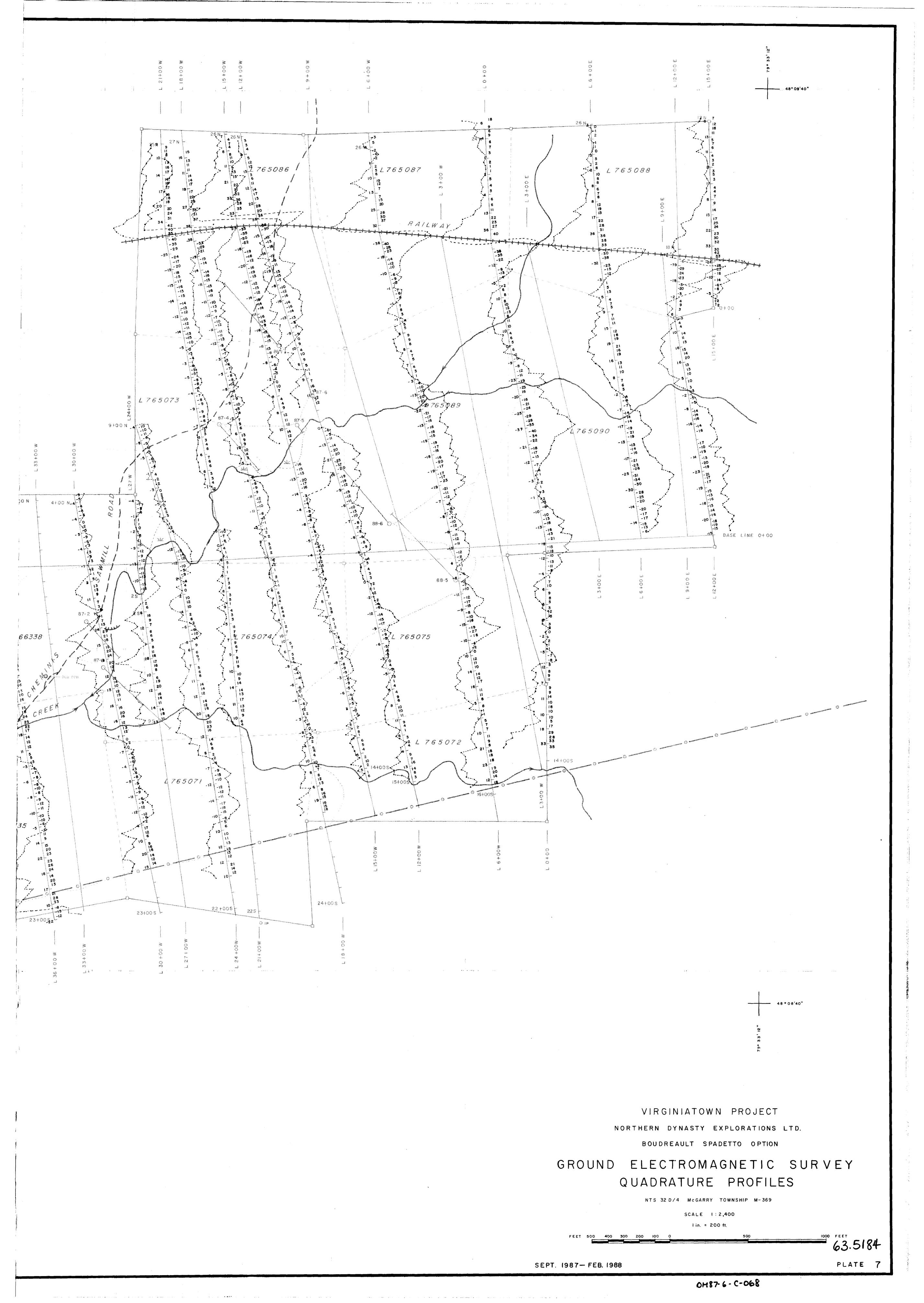

en la companya de la constitución de destrumba de la companya del companya de la companya de la companya del companya de la companya del la companya de la c


250


LEGEND \$ L 765087 IRON SURVEY PIN PERIMETER CLAIM POST AND LINE INTERNAL CLAIM POST AND LINE CUT GRID LINES WITH 100' STATIONS DIAMOND DRILL HOLE , YEAR-NUMBER ASTRONOMIC CAT ROAD, WINTER BEAVER DAM INPHASE PROFILE (1cm = 10°) QUADRATURE PROFILE (Icm = 10 %) PROFILE SCALE TRANSMITTER : SEATLE, WASH., U.S.A. INSTRUMENT: GEONICS RONKA EM-16 4+00 N 3+00 N r BASE LINE 0+00 666507 24+00s \ _22+00s 231005


LEGEND IRON SURVEY PIN PERIMETER CLAIM POST AND LINE INTERNAL CLAIM POST AND LINE CUT GRID LINES WITH 100' STATIONS DIAMOND DRILL HOLE , YEAR-NUMBER ASTRONOMIC CAT ROAD, WINTER 24+00s 😉 23400 S 👇 LEGEND TRANSMITTER: SEATLE, WASHINGTON INSTRUMENT : GEONICS RONKA EM-16 VE-7 - ANOMALOUS ZONE





1765088 24+00S 🟃 LEGEND TRANSMITTER: SEATLE, WASHINGTON VIRGINIATOWN PROJECT NORTHERN DYNASTY EXPLORATIONS LTD. BOUDREAULT SPADETTO OPTION GROUND ELECTROMAGNETIC SURVEY VE-7 - ANOMALOUS ZONE FRASER FILTER PLOT NTS 32 D/4 McGARRY TOWNSHIP M-369 SCALE 1: 2,400 1 in. = 200 ft. 1000 FEET 63.5184 SEPT 87 - FEB 88

on 87-6-C-068

PLATE 8