NORTHERN DYNASTY EXPLORATIONS LTD.

VIRGINIATOWN PROPERTY BOUDREAULT-SPADETTO OPTION

1987-88 SUMMARY REPORT.

Written by :
George Gorzynski, M.A.Sc., P.Eng.

Larder Lake Mining Division (Kirkland Lake Office)

```
Claim Map : McGarry Township / M-369
```

N.T.S. 320/4

79034'W Long., 48009' N Lat. U.T.M. $5334000 \mathrm{mN}, 606000 \mathrm{mE}$

SUMMARY

The Virginiatown Property comprises 16 contiguous claims under option to Northern Dynasty Explorations Ltd. of Vancouver, B.C. from local co-owners B. Boudreault and G. Spadetto. The property is located immediately north of the Kerr Gold Mine of Golden Shield Resources Ltd. at Virginiatown. The property is underlain by Timiskaming metasediments and lesser metavolcanics overprinted by zones of alteration and shearing. Quartz veining and gold values up to $0.26 \mathrm{oz} / \mathrm{ton}(9.1 \mathrm{~g} / \mathrm{t})$ are locally associated with these alteration zones.

This report discusses the 1987-88 field progran which included prospecting. geological mapping, geochemical (soil and rock) sampling, and ground magnetic and electromagnetic (EM-16) surveys followed by $6.346 \mathrm{ft} .(1,934.3 \mathrm{~m})$ of diamond drilling.

RESULTS : No economically significant zones of gold mineralization were found in the course of the 1987-88 fieldwork and follow-up diamond drilling on the property. It is recommended that no further work be done by Northern Dynasty.

TABLE OF CONTENTS

SUMMARY

1.0 8ACKGROUND INFORMATION
1.1 Introduction 1
1.2 Location and Access 1
1.3 Physiography 1
1.4 Claim Status and Titles 3
1.5 Personnel and Survey Dates 3
1.6 History 3
2.0 GEOLOGICAL REPORT
2.1 Introduction 7
2.2 Regional Geology 7
2.3 Regional Structure 10
2.4 Property Geology 10
2.4.1 Introduction 10
2.4.2 Descriptions of Lithologies 11
2.4.2.1 Conglomerates and Agglomerates 11
2.4.2.2 Greywackes, Siltstones, and Shales 11
2.4.2.3 Basalts and Andesites 12
2.4.2.4 Felsic Volcanics and Serecite Schists 12
2.4.2.5 Syenites and Granftes 12
2.4.3 Quaternary Geology 12
2.5 Property Structural Geology 13
2.6 Property Alteration 13
2.7 Property Mineralization 15
3.0 GEOCHEMICAL REPORT
3.1 Introduction 16
3.2 Soil Geochemistry - Discussion of Results 17
3.3 Rock Geochemistry - Discussion of Results 20
4.0 GROUND MAGNETICS REPORT
4.1 Introduction 21
4.2 Ground Magnetics - Discussion of Results 21
5.0 GROUND ELECTROMAGNETICS (VLF) REPORT
5.1 Introduction 23
5.2 Ground Electromagnetics (VLF) - Discussion of Results 23
6.0 DIAMOND DRILLING REPORT
6.1 Introduction 26
6.2 Orillhole Summaries 26
7.0 REFERENCES 31

TABLE OF CONTENTS (continued)

FIGURES

1. Property Location Map 2
2. Claim Map 4
3. Regional Geology 8
4. Regional Setting 9

TABLES

1. Claim Status 5
2. Drillhole Technical Data 27

PLATES
(in back pocket)

1. Property Geology
2. Soil Geochemistry - Gold
3. Sample Location Map
4. Off Grid Geochemistry - Gold
5. Ground Magnetometer Survey
6. Ground Electromagnetic Survey - In-Phase Profiles
7. Ground Electromagnetic Survey - Quadrature Profiles
8. Ground Electromagnetic Survey - Fraser Filter Plot

APPENDICES

1. Property Holders
2. Table of Assessment Credits
3. Personnel and Survey Dates
4. Technical Data Statements and Procedure Records
5. Chemical Analyses
6. Author's Certification
7. Drill Logs and Sections

0M87-6-C-068

Please Note:
Similar diamond drilling logs can be found in the following record series:
$\left.\begin{array}{c}\text { D.D. } H * V T-87-01 \\ * V T-87-02\end{array}\right\}$ see Toronto diamond drilling file \# 37 McGarry $7 p$.

VIRGINIATOWN PROPERTY BOUDREAULT-SPADETTO OPTION

1987-88 SUMMARY REPORT

1. 0 BACKGROUND INFORMATION

1.1 INTRODUCTION

The Virginiatown Property comprises 16 contiguous claims held under option by Northern Dynasty Explorations Ltd. from local prospectors Bernard Boudreault and Gabrielle Spadetto. The option commenced April 1, 1987 and is due for renewal April 1, 1988. The property was optioned on the basis of its very close proximity to the large Kerr Gold Mine (over ten million ounces past production) of Golden Shield Resources Ltd. and its similar structural setting.

1.2 LOCATION AND ACCESS

The property is located 1.2 miles (2 km) north of Virginiatown, Ontario, and three miles (5 km) west of the Quebec-Ontario provincial border (Figure 1). The center of the property is at 79n34'W Long / $48^{\circ} 09^{\prime} \mathrm{N}$ Lat. on N.T.S. sheet $32 \mathrm{D} / 4$.

All season road access is avallable to the property via the Cheminis Lumber Road which runs north from North Virginiatown on Highway 66. The Ontario Northlands Railroad passes through the northern part of the property and an electrical powerline corridor cuts the southern part of the property (Figure 2, Plate 1).

1.3 PHYSIOGRAPHY

Much of the area is characterized by bedrock hills and ridges separated by swampy gullies. Other areas are flat and underlain by sandy till and clay.

- VIRGINIATOWN PROJECT

NORTHERN DYNASTY EXPLORATIONS LTD.
PROPERTY LOCATION MAP

1.4 CLAIM STATUS AND TITLES

The property is located in the Larder Lake Mining Division of Ontario with recording offices in Kirkland Lake. It comprises 16 contiguous claims (Figure 2) owned equally by Bernard Boudreault of Larder Lake and Gabrielle Spadetto of Swastika The property is under option to Northern Dynasty Explorations Ltd. of Vancouver. British Columbia (see Appendix 1 for addresses). All claims have been brought to lease pending land surveys (Table 1 and Appendix 2).

1. 5 PERSONNEL AND SURVEY DATES

The work recorded in this report was completed in several phases between June 9. 1987 and February 29, 1988. A detailed breakdown of the work periods and personnel involved is in Appendix 3.

1. 6 HISTORY

1902-25 : Various studies on the geology and mineral deposits of the area were carried out by the Ontario Bureau of Mines and the Geological Survey of Canada (Thomson, 1943).

1906 : Dr. Reddick makes original gold discoveries near the present site of the Kerr Gold Mine just south of the Virginiatown Property, which lead to a large staking rush.

1936 : First large tonnage of ore found at the Kerr Gold Mine (Thomson, 1943).

1938 : The Hay-Thompson Claims which cover much of the present Virginiatown Property, were consolidated. Thomson (1943) reports the discovery of "a few small quartz veins and stringers ... but no gold discovery of economic importance."

1938-40 : J.E. Thomson (1943) carried out a comprehensive geological mapping program which also included detailed examination of the mineral deposits in McVittie and McGarry Townships.

1930-50 ? : Numerous overgrown pits, trenches, and shallow shafts sunk on quartz veins are present on the Virginiatown Property. There is no known record of this work.

TABLE 1

VIRGINIATOWN PROPERTY

CLAIM STATUS *

* - See Appendix 2 - Table of Assessment Credits - for details.

1948 : Geological Survey of Canada (1951) flew airborne magnetics over the area as part of a large regional program.

1959 : H.S. Hay (1959) drilled two short holes (101 ft. and 103 ft.) on the property at approximate grid locations $38+50 \mathrm{~W}, 21+505$ (collar found) and $48+50 \mathrm{~W}, 23+00 \mathrm{~S}$ (collar not found in field) respectively.

1950-70 ? : Seven other drill collars on the Virginiatown Property were found by the author or reported to the author by G. Spadetto. There is no known record of this work. The collars are plotted on Plate 1 and located at : $0+00 / 4+00 N$? (2 collars reported, none found); $33+50 W / 7+005$ "Waterhole" (2 collars found): $34+80 \mathrm{~W} / 0+60 \mathrm{~S}$ (1 collar found): $43+00 \mathrm{~W} / 20+00 \mathrm{~S}$ (1 collar reported, not found): $54+15 \mathrm{~W} / 1+40 \mathrm{~S}$ (1 collar found).

1979 : Jensen (1979) and Jensen and Langford (1985) geologically re-mapped the general Kirkland Lake area in an attempt to unravel the stratigraphy.

1979 : Questor Surveys Limited (1979) flew airborne magnetics and electromagnetics over the area as part of a large regional survey for the Ontario Geological Survey.

1981 : Lampe Resource Co. Ltd. carried out ground magnetic and VLF electromagnetic surveys over the west half of the Virginiatown Property (Forbes and Leahy, 1981).

1984 : The Virginiatown Property was staked by B. Boudreault and G. Spadetto. Ground magnetic and VLF electromagnetic surveys were carried out over the entire property (Leahy, 1984A.8).

1985 : B. Boudreault and G. Spadetto carried out local trenching and stripping (Spadetto, 1985).

1986 : Hamilton (1986) re-mapped the geology and structure of the area with emphasis on understanding the gold deposits as part of a Master of Science thesis project.

2.0 GEOLOGICAL REPORT

2.1 INTRODUCTION

The geology of the Virginiatown Property was complled from mapping during the summer and autumn of 1987, and drilling (see Section 6.0) during the winter of 1987-88 (Plate 1). The property is traversed by a cut grid with 300 foot-spaced (90 m) cross-lines. Mapping was initially conducted on every second cross-line due to time constraints and select areas were later mapped in more detail.

2. 2 REGIONAL GEOLOGY

The Virginiatown Property is located in the southern Abitibi greenstone belt which is the largest and economically important belt of the Superior Province in the Canadian Shield. The Virginiatown area is mainly underlain by Early Precambrian (Archean) metavolcanics, metasediments, and plutonic rocks. To the southeast, remnants of Middle Precambrian (Huronian) metasedimentary rocks unconformably overlie the Archean rocks (Figure 3).

The metavolcanic rocks in the western Abitibi greenstone belt comprise successive volcanic piles, each composed of komatiftic flows at the base overlain by tholeiftic and calc-alkaline rocks, and capped by alkalic rocks (Jensen, 1979). In the Virginiatown area, the Upper Supergroup of Jensen (1980) is dominant and comprises one such volcanic pile (Figure 4). The basal komatitic section of the pile is called the Larder Lake Group which is conformably succeeded by the tholeitic basaltic to rhyolitic flows of the ten kilometre thick Kinojevis Group. This is overlain by the ten kilometre thick Blake River Group which consists of calc-alkaline and tholeitic basalts, and calc-alkaline andesites to rhyolites. The pile is capped by a three kilometre thick section of Timiskaming Group alkalic metavolcanics and associated metasediments.

The Virginiatown property is located in a metasedimentary dominant portion of the Timiskaming Group.Diabase: dikes. intrusive contact middle piciacian pock alkalic intrusive rocks

Is min

13 Quartzite, arrose.
Cowganda Formation

EARLY PRECAMBRIAN
MAFIC INTRUSIVE ROCKS
" Diabase: dikes. Intrusive contact
\qquad

[^0]

* BOUDREAULT SPADETTO OPTION

REGIONAL SETTING

(FROM JENSEN 1980)

2. 3 REGIONAL STRUCTURE

This portion of the Abitibi greenstone belt is marked by three dominant structural features : the Blake River Synclinorium, the Destor-Porcupine Deformation Zone (DPDZ) and the Kirkland Lake-Larder Lake Deformation Zone (KLDZ) (Figure 4). The Blake River Synclinorium is a major broad east-west structure which trends down the central axis of the greenstone belt and has deformed most of the Archean stratigraphy. The $O P O Z$ and the KLOZ are two subparallel zones of strong deformation several kllometres wide. The synclinorium and two flanking deformation zones are thought to be the product of downwarping in the crust under the weight of successive volcanic piles - the synclinorium formed along the basin center axis where the thickest volcanic deposits and maximum downwarping occurred, and the deformation zones formed sympathetic basin margin faults with long histories of repeated movement (Jensen and Langford, 1985).

The DPDZ and KLDZ are marked by abundant and often intense metasomatic alteration, and play host to most of the gold deposits of the district. The well known Larder Lake Break is a distinct ductile fault zone which occurs within the KLDZ and is characterized by intense chromium mica alteration.

The Virginiatown Property is located entirely within the KLDZ north of the Larder Lake Break.

2.4 PROPERTY GEOLOGY

2.4.1 INTROOUCTION

The Virginiatown Property is characterized by a complex of Timiskaming Group metasediments and lesser metavolcanics with local mafic dikes and sills, and very minor small syenitic to granitic intrusives (Plate 1). Numerous faults and folds of several generations deform these lithologies. The mapping was not carried out in sufficient detail to either support or contradict the structural domains outlined by Hamilton (1986).

Metamorphic grade on the property is probably sub- to lower greenschist as indicated by analogy with the studies of Jolly (1978) in the Kirkland lake area and the noted lack of higher grade metamorphic minerals on the property.

2.4.2 DESCRIPTIONS OF LITHOLOGIES

A variety of interdigitated and repetitive rock units occur on the property. The following general descriptions of each rock type are based on observations in outcrop and drillcore. More detailed descriptions of these lithologies can be found in the drill logs of Appendix 7.

2.4.2.1 Conglomerates and Agglomerates

Conglomerates and agglomerates form the wide prominent 100 ft . (30 m) high ridge that trends from the southwest corner of the property to the intersection of the railroad and the eastern property boundary (Plate 1). Several other parallel conglomerate horizons occur to the north.

The unaltered conglomerates are typically massive and polymictic with dark to medium grey open greywacke matrix. Weathered surfaces are light grey to buff brown. Clasts are usually a variety of pebbles and cobbles - most common are pink syenite/trachyte clasts but a large variety of other lithologies are evident including various sandstones, greywackes, siltstones, basalts, tuffs, and red jasper.

Locally these conglomerates grade into sections with only one or two clast types in a purple-grey tuffaceous (euhedral crystalbearing) matrix. These sections have been called agglomerates and are most common along the main Conglomerate + Agglomerate ridge noted above.

2.4.2.2 Greywackes, Siltstones, and Shales

Greywackes are common throughout the property. They are invariably interbedded with lesser siltstones and sandstones, and locally shales and conglomerates on scales of centimetres to metres. Siltstone and shale dominant units were distinguished in places (Plate 1).

The greywackes are typically dark to light grey and show a variety of primary depositional textures such as flame structures. crossbedding, scourmarks and graded beds with stratigraphic tops consistently oriented to the south.

Siltstones are typically light grey and serecitic. They are normally thinly bedded to laminated where not associated with greywackes. Shales vary from serecitic light grey to carbonaceous black sections interbedded with siltstones and greywacke where found in abundance they form recessive weathering bedded to laminated units (e.g.- drillhole VT-88-5, Appendix 7).

2.4.2.3 Basalts and Andesites

Dark and medium greytsh green units of igneous rocks have been called basalts and andesites respectively. Massive to locally pillowed sections occur in metavolcanic units. Massive basaltic to gabbroic units showing only minor deformation and alteration, in contrast to most other lithologies on the property. have been labelled dikes and sills.

2.4.2.4 Felsic Volcanics and Serecite Schists

A rock unit on the west side of the property has been called a felsic volcanic. It comprises light grey to light green, highly serecitic, often schistose rocks associated with basalts and andesites. Locally it contains sparse euhedral feldspar crystals. The unit appears in gradational contact with basalt at $48+00 \mathrm{~W}$. $1+00 \mathrm{~N}$. and thus may be, at least in part, an altered mafic volcanic. Diagnostic evidence of felsic volcanism in this unit has yet to be noted.

Elsewhere, serecite schists intercalated with siltstones and greywackes on a centimetre scale and larger, are altered metasediments as indicated by partially altered sections where primary textures are still discernable (see Section 2.6).

2.4.2.5 Syenite and Granite Intrusives

Felsic intrusives are rare on the property. A small granitic body occurs at $11+70 E / 22+00 N$. A possible syenite body was intersected over 90 ft . (28 m) in drillhole VT-88-4. Small (less than 4 inch (10 cm)) felsic dikelets occur elsewhere (e.g. drillhole VT-87-2, Appendix 7).

2.4.3 QUATERNARY GEOLOGY

Topography on the property is bedrock controlled with more massive rock units usually marked by rock knobs and ridges, and schistose units occurring in low lying areas. Glacial striations generally trend 167-177 A Amuth. Valleys are typically underlain by clay and locally matrixless boulder deposits. Poplar flats (Plate 1) are underlain by boulder and sand till, and in places, clay.

2. 5 PROPERTY STRUCTURAL GEOLOGY

The property is located within the Kirkiand Lake-Larder Lake Deformation Zone (KLOZ) and has experienced a varied and complex history of deformation, the bulk of which remains unresolved.

The most prominent structural feature on the property is well developed pervasive penetrative foliation which normally varies 040-0550 Azimuth with subvertical dip (Plate 1). This foliation is poorly developed in more massive, unaltered rock units and toward the north and southeast corners of the property. It becomes strongly foliated to schistose along the southwest-northeast central axis of the property. A second penetrative foliation is locally developed at a small angle to the main foliation.

The schistose sections are often moderately to highly altered shear zones up to $250 \mathrm{ft} .(75 \mathrm{~m})$ wide and subparallel to the central axis of the property (see Section 2.6). The offset on these zones is not known. These altered shears on the property are parallel to the shears which appear to control gold mineralization at the Kerr Mine just to the south.

High angle cross-faults are ductile to brittle structures and, in the case of the Beaver Dam Fault, show significant alteration (see drillhole VT-87-3. Appendix 7). Northeast trending structures such as the Beaver Dam Fault host gold mineralization in the Kirkland Lake Mining Camp and elsewhere, and are considered to be important exploration targets. The northeast trending Highway fault on the west side of the Kerr Mine orebodies, may be continuous with the Beaver Dam Fault.

Other major airphoto lineaments such as the Hamilton Fault (Plate 1), are late brittle structures and occur as wide grey mud seams in drillcore (see drillhole VT-87-4, Appendix 7).

2. 6 PROPERTY ALTERATION

Alteration zones on the property are varied and often intense iron carbonate, bleaching/serecite, potassium feldspar, and chromium mica alteration all occur, often in combination. Local zones of silicification and sulphidization are also present. Alteration is usually most intense in zones of shearing but also occurs in more massive units such as the conglomerates, where it may form patchy mosaics on scales of centimetres to metres.

Iron carbonate alteration is pervasive throughout most of the property (Plate 1). It occurs as fine to coarse disseminated grains of ankerite (?) in all lithologies and weathers to a distinctive rusty rind. It typically comprises less than 10% of individual outcrops but in more schistose sections it often increases to 40%.

Bleaching is widespread and is especially visible in drillcore. In greywackes, siltstones, and shales, bleaching is reflected by a colour change from grey to light (serecitic) green and off-white. The colour change is a reflection of carbon loss and possible serecite (potassium) addition with partial to complete destruction of primary textures. In conglomerates similar colour changes and carbon loss occur: serecite addition is more intense and obvious in these units as matrix and clasts of varying primary composition are partially or wholly altered to homogenous sections of light green serecite (e.g.- drillhole VT-88-2, Appendix 7). Similar partial colour bleaching and serecite addition have been observed locally in basalts (e.g.- at $48+00 \mathrm{~W}, 1+00 \mathrm{~N}$): "felsic volcanics" in this vicinity may, in fact, be highly bleached and serecitized mafic volcanics. The large units of serecite schist on the property (plate 1) are probably altered shales. siltstones, and greywackes which appear to be most susceptible to this type of alteration.

Potassium feldspar alteration is localized as patchy zones and is most prominent on the quartz stockworked rock knob on the powertine west of the Cheminis Lumber Road $(48+00 \mathrm{~W}, 23+005)$. The alteration here is best seen in drillholes VT-87-1, 88-2, and 88-3 which tested this zone. Patches of semi-massive potassium feldspar alteration up to 50 cm diameter occur over a 250 ft . (75 m) interval in proportions ranging from nil to 40%. It typically overprints fron carbonate and serecite alteration, and is usually unfolfated indicating that it is a late stage product of the hydrothermal system. A similar pink alteration occurs at the Lakeshore Gold Mine in Kirkland Lake where it is attributed to hematization.

Chromium mica alteration is locally present. It typically occurs as disseminated flakes (normally less than 2\%) in serecite schist and felsic volcanics. Elsewhere chromium mica is present in greywackes and conglomerates but appears to be in the form of primary depositional grains or pebbles (e.g.- $29+90 \mathrm{~W} / 9+20 \mathrm{~S}$). Kerr Mine-type "green carbonate" alteration was not found on the property.

Silicification is usually present as envelops on quartz veins and stockworks. It does not occur in large zones nor is it widely distributed.

Magnetite occurs as disseminated grains in some sections of conglomerate.

Where these conglomerates have been affected by moderate to intense alteration. magnetite and locally chlorite have been sulphidized to pyrite and rarely pyrrhotite (see Section 4.2Anomalies VM-4 and VM-5).

2. 7 PROPERTY MINERALIZATION

No economic gold mineralization was found on the property but, locally, encouraging gold assays were obtained. A grab sample taken from quartz + tourmaline veinlets exposed in an old trench at $17+40 \mathrm{~W} / 17+00 \mathrm{~N}$ assayed $0.26 \mathrm{oz} / \mathrm{ton} \mathrm{Au}(9.1 \mathrm{~g} / \mathrm{t}$); subsequent chip sampling failed to extend this zone. In drillhole VT-87-1 a 3.9 ft . (1.2 m) half core sample in altered conglomerate assayed $0.05 \mathrm{oz} /$ ton Au ($1.6 \mathrm{~g} / \mathrm{t}$): further assaying and drilling failed to extend or upgrade this section.

Anomalous gold values were also obtained from altered shears and quartz veins in a number of other locations (Plate 4). Many old pits, trenches, and shallow shafts tested quartz veins on the cifff marking the southern contact of the main Conglomerate + Agglomerate ridge and numerous other locations (Plate 3). A few anomalous gold values were obtained from these sites. In other areas, quartz + iron carbonate \pm tourmaline veins and stockworks, some hosting minor pyrite and chalcopyrite (e.g.- trench at $36+80 \mathrm{~W} / 1+50 \mathrm{~N}$), did not return appreciable gold values. Quartz + tourmaline stockwork veins in a possible small syenite intrusive (drillhole VT-88-1, Appendix 7) also did not return appreciable gold values.

Zones of sulphide mineralization are sparse. Locally up to 10% disseminated pyrite occurs in greywackes but appears to be of sedimentary origin and has no significant associated gold values. Sulphidization of magnetite to pyrite in conglomerates (see Section 2.6) does not appear to have associated gold values.

[^1]
3. 0 GEOCHEMICAL REPORT

3. 1 INTRODUCTION

Selective geochemical sampling was carried out on the Virginiatown Property during the 1987 field season. Full technical data statements and procedure records are included in Appendix 4. Results for all chemical analyses are listed in Appendix 5 and on Plates 2, 3, and 4.

Grid soil samples were collected along ten grid lines spread over the entire property (Plate 2). Off-grid soil samples were collected at the discretion of field personnel (Plates $3 \& 4$). Rusty brown to brownish red B-horizon samples were preferentially collected. Where B-horizon samples were not available, decomposed A-horizon samples were collected. In areas underlain by dense clay, few if any soil samples were taken.

Rock samples were collected at the discretion of field personnel (Plate 3 \& 4). Most of these samples are grab and representative samples from old excavations and other alteration zones.

Extensive half-core sampling was done on drillcore from the winter drill program (Section 6.0). All alteration and mineralization deemed to be of any possible significance was sampled.

Soil samples were sieved to -80 mesh and rock and drillcore samples were crushed to -100 mesh for analysis. All samples were analysed for gold (fire assay / atomic absorption finish) by Accurassay Laboratories Ltd. of Kirkland Lake. Precision and accuracy of these assays were good based on inhouse checks on every tenth sample by Accurassay, and blind external checks by Acme Analytical Laboratories of Vancouver. B.C. Select soil. rock, and drillcore samples were analysed for 30 elements by Induced Cation Plasma (I.C.P.) Spectometry by Acme Analytical (Appendix 5).

Most sample pulps and rejects are stored with the drillcore in the abandoned theatre in Larder Lake.

3. 2 SOIL GEOCHEMISTRY - DISCUSSION OF RESULTS

Gold assays for soil samples are plotted on Plates 2 and 4. Threshold values for gold in soils were not rigorously determined but assumed to be 15 ppb based on experience elsewhere. Priority was given during follow-up prospecting to multi-station anomalies with values well above this threshold.

In general anomalous results in precious and base metals are commonly higher in soils than in local bedrock and it is suspected that the source of at least some of the soil anomalies lies in the smokestake at the Kerr Gold Mine mill 1.2 miles (2 km) to the south.

The soil gold anomalies discussed below are plotted on Plate 2.

Anomaly VS-1

Location : 60+00W, 21+00S
This anomaly overlies a topographic bedrock high and adjacent cliff area. The only mineralization noted in the area was large (up to $6 \mathrm{ft} .(2 \mathrm{~m})$ diameter) bull quartz boulders. These boulders did not return significant gold values nor did they host sulphides. No other mineralization was seen.

This anomaly is probably cultural and associated with the Kerr smokestake.

Anomaly VS-2
Location : 48+00W, 24+00S
This anomaly is coincident with prominent bedrock knob on the hydroelectric powerline. The most significant alteration (iron carbonate, bleaching, serecite, and potassium feldspar) found on the property occurs here as well as significant quartz + carbonate veins and stockworks (see drill logs for holes VT-87-1, 88-2, and 88-3 in Appendix 7 for details). Despite this encouraging geology, none of the surface rock samples returned anomalous gold values (Plate 4) and with the exception of a single value of $0.05 \mathrm{oz} /$ ton $\mathrm{Au}(1.6 \mathrm{~g} / \mathrm{t})$ over 3.9 ft . (1.2 m) in drillhole VT-87-1, no other significant gold values were found in drillcore.

This soil anomaly may, in part, be due to sparse elevated bedrock gold values and. in part, be due to cultural contamination from the Kerr mill smokestack.

Anomaly VS-3
Location: $36+00 \mathrm{~W}, 21+00 \mathrm{~S}$
This anomaly overlies the next prominent bedrock knob east of anomaly VS-2. It too hosts significant alteration with associated quartz veining but not as extensive nor intense as that associated with anomaly VS-2. Similarly, no significant bedrock gold values were obtained here (Plate 4).

This anomaly may, in part, be due to erratic bedrock gold values, but is probably mainly cultural contamination from the Kerr mill smokestack.

Anomaly VS-4
Location : $21+00 \mathrm{~W}, 20+00 \mathrm{~S}$
This anomaly is also situated on a bedrock hill. Some mineralization is locally present. Downhill and just east of the anomaly, a series of trenches and pits expose a 3 ft . (1 m) wide quartz vein (Plate 1); no significant gold values were obtained from this vein. On the powerline at the northwest end of the anomaly a soil sample returned 1.253 ppb Au; this sample was taken over a 2 inch (5 cm) wide iron carbonated shear; two rock samples from the shear ran less than 5 ppb Au . Thus no bedrock source for the gold anomaly was found in the area.

This anomaly is probably due to cultural contamination from the Kerr mill smokestack.

Anoma $7 y$ VS-5
Location : 48+00W, 2+50S
This anomaly occurs in a relatively flat area of poplars with moderate outcrop. It is partially coincident with electromagnetic anomalies VE-2 (see Section 5.2). Both the electromagnetic anomalies and the glacial up-ice portion of the soil gold anomaly were tested by drillhole VT-88-4; local alteration and quartz veining were noted but no significant gold values were encountered (see drill log VT-88-4 in Appendix 7 for details).

The source of this anomaly is not known. It is probably not, however, a reflection of local bedrock mineralization.

Anoma 7 y VS-6
Location : 36+00W, 1+00N
This cluster of low soil gold anomalies occurs in an area of moderate outcrop. Some alteration is present in the area but not in significant abundance. A recent large bedrock trench was blasted in the area (Spadetto, 1985) to expose a quartz + carbonate + tourmaline vein 1 - 30 inches ($3-75 \mathrm{~cm}$) wide with associated minor pyrite and chalcopyrite; no significant gold values are associated with the vein. Other samples of veins and alteration zones in the area did not return significant gold values (Plate 4).

The source of this anomaly remains unknown. No significant bedrock mineralization was found in the area.

Anomaly VS-7
Location : $0+00,1+50 \mathrm{~N}$
This anomaly is located on a wide flat alder and spruce valley bottom. It is underlain by sandy till and clay. Drillhole VT-88-5 located $600 \mathrm{ft} .(180 \mathrm{~m})$ to the west tested this section of the stratigraphy and found it to be underlain mainly by greywackes and carbonaceous shales and siltstones (Appendix 7).

The source of this anomaly is not known but it is probably not derived from local bedrock.

[^2]
3. 3 ROCK GEOCHEMISTRY

Although a number of anomalous gold values were obtained from rock samples, only two are considered to be noteworthy.

An old trench at $17+40 \mathrm{~W}, 17+00 \mathrm{~N}$ exposed a 3 ft . (1 m) section of 5\% small quartz + carbonate + tourmaline veins in sheared greywacke with 10% iron carbonate and minor chromium mica. An initial grab sample of vein material returned $0.26 \mathrm{oz} / \mathrm{ton} \mathrm{Au}(9.1 \mathrm{~g} / \mathrm{t}$) but later more thorough grab and chip samples returned only 180 ppb Au at best (Plate 4). The zone was traced 50 ft . (15 m) along strike to the west where the veins pinch out; overburden covers the zone to the east.

An assay of $0.05 \mathrm{oz} /$ ton $\mathrm{Au}(1.6 \mathrm{~g} / \mathrm{t})$ over $3.9 \mathrm{ft} .(1.2 \mathrm{~m})$ was obtained form a serecite-altered conglomerate in drillhole VT-87-1 at 115.5-119.4 ft. (35.2-36.4 m) (see Appendix 7 for drill log). The lack of significant results from surface rock sampling and two other drillholes (VT-88-2 and 88-3) in the area suggests this is an isolated gold value.

Some 30 element Induced Cation Plasm (I.C.P.) spectrometric analyses were carried out on selected surface rock and drillcore samples from alteration zones throughout the property (Appendix 5). Based on the work of Fyon and Crocket (1983), these analyses were used in an attempt to identify alteration zones with anomalous values in pathfinder elements indicative of gold mineralizing systems. Weak anomalies in some pathfinder elements (As, Mo, $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$, and Ag) were detected in the vicinity of $48+00 \mathrm{~W}, 23+00 \mathrm{~S}$ and $30+00 \mathrm{~W}, 7+00 \mathrm{~S}$; these zones were tested by drillholes VT-87-1/88-2/88-3 and VT-87-3 respectively. With the exception of the single value of $0.05 \mathrm{oz} /$ ton Au ($1.6 \mathrm{~g} / \mathrm{t}$) in drillhole VT-87-1, no significant gold values were found in either surface bedrock or drillcore sampling. Some weak pathfinder element anomalies continued to be detected in drillcore from these areas (Appendix 5).

In summary. anomalous bedrock gold values are associated with quartz veins and alteration zones. The gold values of significance found in the 1987-88 program. were few and erratic.

4. O GROUND MAGNETICS REPORT

4. 1 INTRODUCTION

A ground vertical gradient magnetic survey was carried out over the Virginiatown Property during the 1987 field season. Grid lines were surveyed at 600 ft . (180 m) spacings and tightened to 300 ft . (90 m) spacing in geologically more complex areas. Results of the survey appear on plate 5. Technical data statements and procedure records are included in Appendix 4.

4. 2 GROUND MAGNETICS - DISCUSSION OF RESULTS

The magnetic signature on the property is generally flat with only a few notable anomalies (Plate 5).

Anoma 1 y VM-1
Location : 60+00W, $3+00 \mathrm{~S}$ to $6+00 \mathrm{E}, 22+00 \mathrm{~N}$
This long and continuous anomaly traverses the entire property and roughly follows a magnetic basalt unit and adjacent conglomerate units.

Anomaly VM-2

Location : $60+00 \mathrm{~W}, 12+50 \mathrm{~S}$ to $24+00 \mathrm{~W}, 2+50 \mathrm{~N}$
This moderately strong continuous anomaly follows a mafic dike which forms a bedrock ridge for much of its length. The eastern end of the dike abuts against the Beaver Dam Fault (Plate 1).

Anomaly VM-3
Location : $54+00 \mathrm{~W}, 12+50 \mathrm{~S}$ to $48+00 \mathrm{~W}, 12+50 \mathrm{~S}$
This anomaly occurs in an overburden-covered area and crosscuts the general bedding and follation trends on the property. It appears to splay off anomaly $V M-2$ and thus may also represent a mafic dike.

Anomalies VM-4 \& VM-5
Locations : $60+00 \mathrm{~W}, 23+00 \mathrm{~S}$ to $54+00 \mathrm{~W}, 21+00 \mathrm{~S}$
and $\quad 24+00 \mathrm{~W}, 3+25 \mathrm{~S}$ to $6+00 \mathrm{~W}, 7+00 \mathrm{~N}$
These prominent anomalies occur over the main Conglomerate + Agglomerate unit along the central axis of the property and are attributable to disseminated magnetite (commonly 1\%). The gap between anomalies VM-4 and VM-5 may be due in part, to a decrease in primary magnetite content of the conglomerates, and due in part, to destruction of magnetite by sulphidization to pyrite as observed in the alteration zones of driliholes VT-87-1, B8-2, and 88-3 (see Appendix 7).

Anoma 7 y VM-6
Location : 6+00E, $14+00 \mathrm{~N}$ to $12+00 \mathrm{E}, 17+00 \mathrm{~N}$
This broad anomaly outlines an area of andesite outcrops along the eastern property boundary. The anomaly is presumably due to disseminated pyrrhotite or magnetite in the andesites.

Anomaly VM-7

Location : $18+00 \mathrm{~W}, 27+00 \mathrm{~N}$
This strong anomaly occurs along the northern property boundary and is due to an unknown source north of the property.

5. O GROUND ELECTROMAGNETICS (VLF) REPORT

5. 1 INTRODUCTION

A ground electromagnetic (EM-16) survey was carried out over the entire grid at 600 ft . (180 m) spacings with fill-in lines at 300 ft . (90 m) spacing in areas of complex geology. Results of the survey are plotted on Plates 6 (in-phase readings and profiles). 7 (quadrature readings and profiles), and 8 (Fraser filter contours). Technical data statements and procedure records are included in Appendix 4.

5. 2 GROUND ELECTROMAGNETICS (EM-16) - DISCUSSION OF RESULTS

The anomalies discussed below are outlined on the Fraser filter Plot (Plate 8).

Anomalies VE-1
Location : $60+00 \mathrm{~W}, 17+00 \mathrm{~S}$ to $0+00,11+00 \mathrm{~S}$
This large cluster of strong subparallel anomalies follow, in part, Bear creek which is underlain by dense grey clay. The quadrature component (Plate 7) of these anomalies in many cases, shows reverse polarity to the in-phase readings (Plate 6) indicating a shallow probably overburden source to the anomalies (Geonics Ltd, 1973). The anomalies all trend about east-west in contrast to the 040-055 ${ }^{\circ}$ Azimuth trend of the bedrock geology.

It is concluded that these anomalies, for the most part, reflect overburden clay deposits and are unrelated to bedrock geology except to indirectly outline the linear topographic depressions which mark the Bear Creek Fault and other possible subparallel faults.

Anomalies VE-2

Location : 48+00W, 0+50S and 48+00W, 2+50S
These strong one line anomalies are in part coincident with the glacial up-ice portion of geochemical soil gold anomaly VS-5. Both electromagnetic anomalies were tested by drillhole VT-88-4.

These anomalies may reflect two small unmineralized shears encountered in drillhole VT-88-4 (see Section 6.0 and Appendix 7).

Anomaly VE-3
Location : $30+00 \mathrm{~W}, 0+75 \mathrm{~S}$
This isolated anomaly is over a topographic low with no outcrop.
The anomaly probably reflects an overburden conductor.

Anomaly VE-4
Location : $12+00 \mathrm{~W}, 0+25 \mathrm{~S}$ to $6+00 \mathrm{E}, 2+00 \mathrm{~N}$
This anomaly is in a low overburden covered area. It trends east-west across the strike of the local geology. It was tested by drillhole VT-88-5.

This anomaly probably reflects, in part, an overburden clay deposit and, in part. carbonaceous shales encountered in drillhole VT-88-5 (see Appendix 7).

Anomaly VE-5

Location : $6+00 E, 6+50 \mathrm{~N}$ to $12+00 \mathrm{E}, 6+75 \mathrm{~N}$
This small anomaly is in a low overburden covered area. It is marked by reversed quadrature and in-phase polarities.

The anomaly probably reflects an overburden conductor.

Anomaly VE-6

Location : $18+00 \mathrm{~W}, 2+50 \mathrm{~N}$ to $0+00,9+50 \mathrm{~N}$
This anomaly follows a low area of deep overburden (see drillholes VT-87-5 \& 87-6. Appendix 7) near Hamilton Creek and the Hamilton Fault.

The anomaly probably reflects an overburden clay deposit and possibly an underlying zone of unconsolidated fault gouge associated with the Hamilton Fault.

Anomaly VE-7
Location : 6+00E, $13+00 \mathrm{~N}$ to $12+00 \mathrm{E}, 12+50 \mathrm{~N}$
This small anomaly lies in an overburden covered area and trends east-southeast across local bedrock geology trends. It is characterised by reversed in-phase and quadrature polarities.

The anomaly probably reflects an overburden conductor.

Anoma $7 \times$ VE-8

Location : $12+00 \mathrm{~W}, 23+00 \mathrm{~N}$
This anomaly lies in a wide flat poplar stand with no local outcrop.

The source of the anomaly is not known.

Anomaly VE-9
Location : 6+00W, $17+00 \mathrm{~N}$ to $0+00,18+75 \mathrm{~N}$
This anomaly is located in a flat largely overburden covered area. It's definition is uncertain due to the presence of railway tracks.

The source of the anomaly is not known.

Anoma 1 y VE-10
Location : $15+00 \mathrm{E}, 6+25 \mathrm{~N}$
This anomaly is in a flat overburden covered area on the eastern property boundary.

The source of the anomaly is not known.

A number of other small isolated anomalies also occur (Plate 8). They have not been investigated.

6.O DIAMOND DRILLING REPORT

6. 1 INTRODUCTION

Twelve $B Q$ wireline diamond drillholes totalling 6346 ft . (1934.3 m) were drilled on the Virginiatown Property between November 22, 1987 and February 8, 1988 (Table 2). The holes tested a variety of geological, geophysical, and geochemical targets as described below. Drill logs with assays are attached as Appendix 7. Drillhole collars and surface projections of the holes are plotted on Plates 1 to 8.

Drillcore from all holes is stored in the abandoned theatre in Larder Lake.

6.2 DRILLHOLE SUMMARIES

Drilitholes VT-87-1, 88-2, and 88-3
Locations : VT-87-1 - 47+80W, 24+60S
VT-88-2 - $52+00 \mathrm{~W} .20+20 \mathrm{~S}$
$V T-88-3-45+60 \mathrm{~W}, 22+05 \mathrm{~S}$
Purpose :

1. To test a large zone of intense alteration and quartz veining with accompanying geochemical soil gold anomaly VS-2 (see Section 3.2) and weak gold lithogeochemical pathfinder element anomalies (see Section 3.3).
2. To test the intersection of topographic linears with these alteration and shear zones.

Results :

1. A 250 ft . (75 m) thick section of sheared conglomerates with abundant bleaching, serecite, iron carbonate, and potassium feldspar alteration and many sections of quartz veining, were encountered.
2. Only a single significant gold value of $0.05 \mathrm{oz} / \mathrm{ton}(1.6 \mathrm{~g} / \mathrm{t}$) in drillhole VT-87-1 was detected.

TABLE 2

VIRGINIATOWN PROPERTY

DRILLHOLE TECHNICAL DATA

DRILL HOLE NUMBER	CLAIM NUMBER	$\begin{aligned} & \text { GRID } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { DEPTH } \\ & (\mathrm{ft} . / \mathrm{m}) \end{aligned}$	ORILL COLLAR AZIMUTH /ANGLE
VT-87-1	L. 767378	$47+80 W / 24+605$	549/167.3	$320^{\circ} /-44^{\circ}$
VT-87-2	L. 666338	$30+75 \mathrm{~W} / 3+50 \mathrm{~S}$	449/136.9	140*/-460
$V T-87-3$	L. 666338	$30+30 \mathrm{~W} / 6+455$	849/258.8	$140^{\circ} /-50^{\circ}$
VT-87-4	L. 765073	$18+60 W / 8+85 N$	499/152.1	1400/-45
VT-87-5	L. 765073	14+50W/ 8+10N	87/ 26.5	140\%/-50\%
VT-87-6	L. 765073	$12+00 \mathrm{~W} / 10+00 \mathrm{~N}$	55/ 16.7	1400/-510
VT-88-1	L. 765073	$14+15 \mathrm{~W} / 11+80 \mathrm{~N}$	809/246.6	3200/-530
VT-88-2	L. 767378	$52+00 W / 20+205$	539/164.3	$140^{\circ} /-60^{\circ}$
VT-88-3	L. 666335	$45+60 W / 22+05 S$	399/121.6	$320^{\circ} /-45^{\circ}$
VT-88-4	L. 666508	$49+20 W / 0+17 \mathrm{~N}$	599/182.5	1400/-450
$V T-88-5$	L. 765075	$6+20 W / 2+105$	810/247.0	3200/-450
$V T-88-6$	L. 765089	$9+60 \mathrm{~W} / 1+80 \mathrm{~N}$	709/216.1	$3200 /-46^{\circ}$

Notes

1. Drill logs and sections are attached as Appendix 7.
2. Drillhole collars and surface projections plotted on Plates 1-8.
3. Drill contractor - Langley Drilling 49 Jayfield Road Brampton, Ontario L6S 3G3

Drillholes VT-87-2 and 87-3
Locations : VT-87-2 - $30+75 \mathrm{~W}, 3+50 \mathrm{~S}$

$$
V T-87-3-30+30 W, 6+45 S
$$

Purpose :

1. To test wide intense zones of surface bleaching and iron carbonate alteration and shearing.
2. To test the intersection of the Beaver Dam Fault with these zones of alteration and shearing.
3. To test an area of weakly anomalous gold pathfinder elements in surface bedrock sampling.

Results :

1. Most of the section is marked by moderate to intense bleaching, serecite, and iron carbonate alteration.
2. No significant gold mineralization was encountered.

Drilithole VT-87-4
Location : $18+60 \mathrm{~W}, 8+85 \mathrm{~N}$
Purpose :

1. To test the Hamilton Fault in the vicinity of its intersection with the Beaver Dam Fault.

Results :

1. The Hamilton Fault is a late brittle (unconsolidated gouge) structure with no associated mineralization.
2. No significant mineralization was encountered.

Drillhole VT-87-5, 87-6, and 88-6
Locations : VT-87-5 - 14+50W, 8+10N
VT-87-6 - 12+00W, $10+00 \mathrm{~N}$
$V T-88-6-9+60 \mathrm{~W} .1+80 \mathrm{~N}$
Purpose :

1. To test a zone of alteration and local sulphides near the northern contact of the main Conglomerate + Agglomerate unft.

Results :

1. Drillholes VT-87-5 and 87-6 were both abandoned in deep overburden.
2. Drillhole $V T-88-6$ intersected local significant bleaching. serecite, iron carbonate, and potassium feldspar alteration. Only minor sulphides were encountered.
3. No significant gold mineralization was found.

Drillhole VT-88-1
Location : $14+15 \mathrm{~W}, 11+80 \mathrm{~N}$
Purpose :

1. To test the basalt-conglomerate contact.
2. To test a weak electromagnetic conductor.
3. To test a small gold occurrence in a trench at $17+40 \mathrm{~W}, 17+00 \mathrm{~N}$.

Results :

1. Several zones of slight to moderate alteration were intersected.
2. A number of syenite dikes, some with abundant quartz + tourmaline veins, were intersected.
3. The weak electromagnetic conductor may be due to one of several water-filled fracture zones intersected in the hole.
4. No significant gold mineralization was encountered.

Drillhole VT-88-4
Location : 49+20W, 0+17N
Purpose :

1. To test two restricted but strong electromagnetic conductors (VE-2).
2. To test the glacial up-ice portion of soil gold anomaly vs-5.
3. To test alteration zones projected from the west.

Results :

1. Several zones of moderate to intense alteration with local quartz veins were intersected.
2. The electromagnetic conductors are probably due to two small shear zones intersected in the hole.
3. No significant mineralization was encountered.

Drillhole VT-88-5
Location : 6+20W, $2+105$
Purpose :

1. To test strong electromanetic conductor $V E-4$.
2. To test a zone of alteration, shearing and quartz veins along the southern contact of the main Conglomerate + Agglomerate unft.

Results :

1. Moderate bleaching, serecite, iron carbonate, and potassium feldspar alteration was intersected along the southern contact of the Conglomerate + Agglomerate unit.
2. The electromagnetic conductor is due in part, to a recessive weathering unaltered unit of carbonaceous shales and siltstones.
3. No significant gold mineralization was encountered.

In summary, despite the favourable structural setting and alteration in close proximity to the large Kerr Gold Mine, significant gold values from drilling and surface bedrock sampling on the property were few and erratic.

7.0 REFERENCES

Forbes, C.P.. and Leahy, M.
1981 : Report of Geophysical Surveys during March, 1981 on "The West Grid" and "The East Grid": Lampe Resource Company Ltd., Assessment Report 2.3861. Larder Lake Mining Diviston - Ontario, McGarry Township. N.T.S. $32 \mathrm{D} / 4.13 \mathrm{p} . / 4 \mathrm{maps}(s c a l e 1$ inch $=400 \mathrm{ft}$.

Fyon, J.A., and Crocket, J.H.
1983 : Gold Exploration in the Timmins Area using Field and Lithogeochemical Characteristics of Carbonate Zones; Ont. Geol. Surv., Study 26. 56p. / 2 charts / 2 maps.

Geonics Ltd.
1973 ? : EM-16 Operating Manual; Geonics Ltd., Toronto, Ontario, 16p.
Geological Survey of Canada.
1951 : Larder Lake - Aeromagnetic Series - Sheet 32 D/4; Geol. Surv.
Canada. Map 47G (scale 1:63 360).
Hamilton, J.V.
1986 : The Structural and Stratigraphic Setting of Gold Mineralization in the Vicinity of Larder Lake, south-central Abitibi Greenstone Belt, Northeast Ontario; unpub. M.Sc. thesis, Queen's University, 154p.

Hay, H.S.
1959 : No. 1 and No. 2 Diamond Drill Holes; Assessment Report 3-2-43, Larder Lake Mining Division - Ontario, McGarry Township. N.T.S. 32 D/4, 2 brief drill logs and location maps.

Jensen, L.S.
1979 : No. 15 Larder Lake Synoptic Mapping Project, Districts of Cochrane and Timiskaming; in Summary of Field Work, 1979; Milne V.G., White, O.L., Barlow R.B., and Kustra, C.R., (eds.), Ont. Geol. Surv., Misc. Paper MP90, p. 64-69/ 2 figures.

Jensen, L.S.
1980 : No. 13 Kirkland Lake-Larder Lake Synoptic Mapping Project. Districts of Cochrane and Timiskaming; in Summary of Field Work, 1980; Milne V.G., White, O.L.. Barlow R.B., Robertson, J.A., and Kustra, C.R., (eds.). Ont. Geol. Surv.. Misc. Paper MP96, p.55-60/ 2 figures.

Jensen, L.S., and Langford, F.F. 1985 : Geology and Petrogenesis of the Archean Abitibi Belt in the Kirkland Lake Area, Ontario; Ont. Geol. Surv.. Misc. Paper MP123, 130p./ 2 maps (scale 1:63 360) / 1 microfiche.

Jolly, W.T.
1978 : Metamorphic History of the Archean Abitibi Beit; In Metamorphism in the Canadian Shield. Geol. Surv. Canada, Paper 78-10. p. 63-78.

Leahy, M.
1984 A : Report on Magnetic Survey, Boudreault-Spadetto Property, McGarry Township; Assessment Report 2.2689, Larder Lake Mining Oivision - Ontario. McGarry Township, N.T.S. 32 D/4. 5p./ 1 map (scale 1 inch $=200 \mathrm{ft}$.).

Leahy. M.
1984B : VLF-EM Survey, Boudreault-Spadetto Claims; Assessment Report. Larder Lake Mining Division - Ontario. McGarry Township. N.T.S. $32 \mathrm{D} / 4.2$ maps (scale 1 inch $=200 \mathrm{ft}$.).

Questor Surveys Limited
1979 : Airborne Electromagnetic and Total Intensity Magnetic Survey, Kirkland Lake Area. McGarry Township; Ont. Geol. Surv. Map P. 2267. (scale 1:20,000).

Spadetto, G.
1985 : Mechanical and Manual Labour, Boudreault-Spadetto Claims; Assessment Report, Larder Lake Mining Division - Ontario. McGarry Township, N.T.S. $32 \mathrm{D} / 4,1$ map (scale 1 inch $=200 \mathrm{ft}$.).

Thomson, J.E.
1943 : Geology of McGarry and McVittie Townships, Larder Lake Area; Ont. Dept. Mines Annual Report, 1941, v.50, pt.7. 99p. / 2 maps (scale 1 inch $=1,000 \mathrm{ft}$.).

APPENDIX 1
PROPERTY HOLOERS

APPENDIX 1
 PROPERTY HOLDERS

VENOORS :
Bernard Boudreault \& Gabrielle Spadetto P.O. Box 324

Larder Lake. Ontario POK 1LO

UNDER OPTION TO :
Northern Dynasty Explorations Ltd. 844 West Hastings Street Vancouver, British Columbia V6C 1C8

APPENDIX 2
TABLE OF ASSESSMENT CREDITS

TABLE OF ASSESSMENT CREDITS

VIRGINIATOWN PROPERTY

| Claim Record＇g Total Credits Expiry | F | Filing Geologic Geochem Geophys Drilling Manual Expend． | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No． | Date Appl for Approved | Date | $:$ | Date | max 40 | max 40 | max 80 | Credits |

866338 Mar 11／83 $210.89 \quad$ 210．89 Lease Pdg
Survey by Mar 11／89

March 5／84
$:$ Aug 20／84
：March 7／85
March 7／85
Feb $25 / 86$
Sept 29／86
Sept 29／86
Sept 29／86
March 6／87
March 6／87
Feb 16／88
March 5／84
：Aug 20／84
：Sept 28／84
：Oct 16／84
：March 7／85
：March 7／85
：March 7／85
Feb 25／86
Sept 29／86
Sept 29／86
－Sept 29／86
March $6 / 87$
March $6 / 87$
：Feb 16／88
666507 Mar 11／83 210．89 210．89 Lease Pdg
Survey by Mar 11／89

Dec 20／83
－Jan 18／84
－March 6／84

Extension to Aug 31／84
40 MAG
G．Spadetto transfer 50% interest to 8 ．Boudreault 26
Extension to Dec 31／86
2.63
33.2
9.06

20 EM
20 EM
60
Extension to Aug 31／84
40 mag
Order for correction in staking
Complied with staking order
G．Spadetto transfer 50% interest to B．Boudreault
24
Extension to Dec 31／86
2
2.63
33.2
9.06

20 EM
20 EM
60
Order for correction in staking Complied with staking order
Extension to Sept 11／84
40 MAG
Order for correction in staking Complied with staking order
B．Boudreault transfer 50% interest to G．Spadetto

$$
24
$$

Aug 20／84
Sept $28 / 84$
Oct 16／84
March $4 / 85$
March 7／85
March $7 / 85$
Feb 25／86
Extension to Dec 31／86
Sept 29／86
Extersion to Dec 31／8

666508 Mar 11/83 210.89 210.89 Lease Pdg Survey by Mar 11/89

Dec 20/83
Jan 18/84
March 6/84
: Aug 20/84
: Sept 28/84
: Oct 16/64
: March 4/85
: March $1 / 85$
Feb 25/86
Sept 29/86
Sept 29/86
Sept 29/86
: March 6/87
: March 6/87
: Feb 16/88
765071 May $10 / 83 \quad 208.89 \quad 208.89$ Lease Pdg

Order for correction in staking
Complied with staking order
Extension to Sept $11 / 84$
40 MAG
Order for correction in staking
Complied with staking order
8. Boudreault transfer 50\% interest to G.Spadetto 26
Extension. to Dec 31/86
33.2
9.06

20 EM
20 EM
60

Nay 3/84
: Aug 20/84
Sept 28/84
: Oct 16/84
: March 7/85
: March 7/85
: April 30/86
: Sept 29/86
: Sept 29/86
: Sept 29/86
: March 6/87
: March 6/87
: Feb 16/88

Nay 3/84
: Aug 20/84
: March $7 / 85$
: March $9 / 85$
: April 30/86
Sept 29/86
Sept 29/86
Sept 29/86
March 6/87
: March 6/87
: Feb 16/88
765072 May 10/83 208.89 208.89 Lease Pdg Survey by May 10/89

Extension to Oct $31 / 84$
40 MAG
Order for correction in staking Complied with staking order 6.Spadetto transfer 50% interest to $8.80 u d r e a u l t$

24

Extension to Sept 30/86
2.63
33.2
9.06

20 EM
20 EM
60

Extension to Oct 31/84
40 mag
G.Spadetto transfer 50% interest to B. Boudreault

Extension to Sept $30 / 86$
9.06

20 EM
20 EM
60

Claim Record＇s No．Date	Total Appl for	Credits Approved	Expiry Date	：	Filing Geologic Date max 40	Geochem max 40	Geophys Drilling max 80	Manual	Expend． Credits
765090 May 17／83	208.89	208.89	Lease Pdg	：	May 3／84	Extension to Nov 19／84			
			Survey by	：	Aug 20／84	40 MAG			
			May 17／89	：	March 4／85 B	B．Boudreault transfer 50% interest to G ．Spadet to 24			
				：	Merch 7／85				
				：	April 30／86	Extension to Sept 30／86			
				：	Sept 29／86			2.63	
				：	Sept 29／86			33.2	
				：	Sept 29／86	9.06			
				：	March 6／87	20 Em			
				：	Morch 6／87	${ }^{20} 60$			
				：	Feb 16／88				
767378 Nov 4／83	208.89	208.89	Lease Pdg	：	Aug 20／84				
			Survey by	：	March 7／85				
			Nov 4／89	；	March 7／85	G．Spadetto transfer 50% interest to B．Boudreault 24			
				：	Sept 29／86			2.63	
				：	Sept 29／86			33.2	
				：	Sept 29／86			9.06	
				；	March $6 / 87$		20 EM		
				：	March 6／87		20 EM		
				：	Feb 16／88	60			
767379 Nov 7／83	246.89	246.89		：	Aug 20／84	6．Spadetto transfer 508 mag interest to 8．8oudreault			
			Survey by	：	March 7／85				
			Nov 7／89	：	March 7／85			24	
				：	Sept 29／86			2.63	
				：	Sept 29／86			33.2	
				：	Sept 29／86			9.06	
				：	March 6／87		20 EM		
				：	March 6／87		20 EM		
				：	Feb 16／88		98		

| TOTALS | 3334.24 | 3334.24 | $:$ | 0 | 0 | 1280 | 938 | 1116.24 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

APPENDIX 3

PERSONNEL AND SURVEY DATES

APPENDIX 3

PERSONNEL AND SURVEY DATES

VIRGINIATOWN PROPERTY

PERSONNEL

GEORGE GORZYNSKI
3836 West 16 th Ave. Vancouver, B.C. V6R 3C7
H. ERIC EWEN 3239 Ganymede Dr. Burnaby. B.C. V3J 1A5

JERRY W. HO
1334 Woodbine Ave. Toronto, Ont. M4C 4G2

BERNARD BOUDREAULT P.O. Box 324 Larder Lake, Ont. POK 1LO

GABRIELLE SPADETTO P.O. Box 324 Larder Lake, Ont. POK 1LO

LANGLEY DRILLING Drilling : November 22, 1987 - February 8, 1988

WORK PERIODS

Field : August 27 - October 12. 1987
November 22, 1987 - February 8. 1988
Office : February $10-29,1988$

Field : August 27 - October 12. 1987
Office : October 15, 1987 - February 29. 1988

Field : August 27 - October 12. 1987
November 22. 1987 - February 8, 1988
Office : February 10-29. 1988

Field : June 9 - July 20, 1987

Field : June 9 - July 20. 1987

49 Jayfield Rd. Brampton, Ont. L6S 3G3

TECHNICAL DATA STATEMENTS AND PROCEDURE RECOROS

Ministry of
Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

File \qquad

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) GRound Geophysics (MAGNETICS $\frac{\xi}{\text { E }}$ EM-16) and GEOCHENISTRY Township or Area Mc Garry Township Claim Holders) B3. Boudreault \& G Spadetto
MINING CLAIMS TRAVERSED
List numerically

Survey Company Northern Dynasty Exarorationsl-tio Author of Report GEORGE: GORzYNSKI, P. ENG:
 (prefix)

Res. Geol.
Qualifications
Previous Surveys

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations \qquad 2,020 Number of Readings 1978 MAG/ $1980 \times 2 \mathrm{EN}$
Station interval \qquad 25 FEFT _Line spacing 300-600 FEET
Profile scale $F M \rightarrow 1 \mathrm{~cm}=10^{\circ}=10 \%$
Contour interval 5° (FRASER FILTER EM)// $56,500 \gamma, 56750 \gamma, 57,000 \gamma, 57500 \%, 58000 \gamma$ M124. Accuracy - Scale constant ± 10 GAMMAS (HANS HELD)
Diurnal correction method $Q_{N E}$ HOUR BASE STATION TVE-LNS wERE ALC withIN Base Station check-in interval (hours) ± 40 GAMA4A5 - No CORRECTION APPLIED Base Station location and value MAN BASE STATION AT $33+00 \mathrm{~W}, 6+255$ Reading: 56870 ± 40 gammas

Coil separation =
 Accuracy $\pm \sqrt{1 \%}, \pm 1^{0}$

Instrument - EONICS RONKA EM-16
coil configuration Iwo PeRPENDICular REceiving Coils

Method:
\square Fixed transmitter
\square Shoot back
\square In line
Parallel line Frequency 18.6 kHz (SEATTLE, WASHINGTON, USA.)
Parameters measured In-PHASESIGNAL (DEGRREES) and Quadrature (Percent)

Instrument
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument
Method \square Time Domain
\square Frequency Domain
Parameters - On time \qquad Frequency

- Off time \qquad Range
\qquad
- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing \qquad
Type of electrode

Numbers of claims from which samples taken_ ALL

Soil Horizon Sampled $\frac{B_{2}+\left(A_{2}\right)}{}$
Horizon Development. $A_{1}-A_{2}-\left(B_{1}\right)-B_{2}-C$ Sample Depth $1-120 \mathrm{~cm}$
Terrain BeDrock, GLACIACTM,Swaur
Drainage Development_ Poor to Moderate
Estimated Range of Overburden Thickness

$$
0-50 m ?
$$

SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis.
Sous: -80 MESH
Rocks: - 100 MESH PULP Values expressed in:
(Cu.) (Pb) (Zn.) (Ni) Col (Mo (circle) others SEE BeLow
Field Analysis \qquad tests)
Extraction Method \qquad
Analytical Method
Reagents Used
Field Laboratory Analysis
No. tests)
Extraction Method \qquad
Analytical Method \qquad
Reagents Used

Extraction Method A ova ReGinA
Analytical Method SEE HELeN
Reagents Used \qquad
General Other I. C.P. Elements: $M n_{n}$, Fe, U, $T_{h}, S_{r}, C d, S b, B_{i}, V_{1}$ $\mathrm{Ca}_{a}, \mathrm{P}, \mathrm{La}, \mathrm{C}_{r}, \mathrm{Mg}_{\mathrm{g}}, \mathrm{Ba}, \mathrm{K}, \mathrm{B}, \mathrm{Al}$

Av: 10 g sample: Fire Assay
with an A toxic Absorption
FINESt

APPENDIX 5
CHEMICAL ANALYSES

GOLD ASSAYS FOR
 SURFACE BEDROCK SAMPLES

AND

SOIL SAMPLES

Geochemical Sample Identification Code :
Example - GK7-R-152
$G=$ Sampler
K = Virginiatown Property
$7=1987$
$R=$ Rock sample ($S=$ Soil sample)
152 = Sequential sample number

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA
P2N 3 J 5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., c. Chem IOnt.I, c. Chem (U.K.I, M.C.I.C., M.R.s.c., a.f.c.s.T.

Certificate of Analysis

8211 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. v6C 1 CB

Assay results are as follows:
SAMPLE NUMBER
Accurassay Customer

$5582 \varnothing$	$L 21+\varnothing \varnothing W$
$5+\varnothing \varnothing N$	
55821	$3+5 \varnothing N$
55822	$4+\varnothing \varnothing N$
55823	$4+5 \varnothing N$
55824	$5+\varnothing \varnothing N$
55825	$5+5 \varnothing N$
55826	$6+\varnothing \varnothing N$
55827	$6+5 \varnothing N$
55828	$7+5 \varnothing N$
55828	$8+\varnothing \varnothing N$
55828	$8+\varnothing \varnothing N$
$5583 \varnothing$	$8+5 \varnothing N$
55831	$9+\varnothing \varnothing N$
55832	$8+5 \varnothing N$
55833	$16+\varnothing \varnothing N$
55834	$1 \varnothing+5 \varnothing N$
55835	$11+\varnothing \varnothing N$
55836	$11+5 \varnothing N$
55837	$12+\varnothing \varnothing N$
55838	$12+5 \varnothing N$
55838	$12+5 \varnothing N$
55839	$13+\varnothing \varnothing N$
55840	$13+5 \varnothing N$
55841	$14+\varnothing \varnothing N$
55842	$14+5 \varnothing N$
55843	$15+\varnothing \varnothing N$
55844	$15+5 \varnothing N$
55845	$16+\varnothing \varnothing N$
55846	$16+5 \varnothing N$
55847	$17+\varnothing \varnothing N$
55848	$17+5 \varnothing N$
55849	$18+\varnothing \varnothing N$
$5585 \varnothing$	$18+5 \varnothing N$

Date: \qquad 19 \qquad
Date:
Work Order 878562

ACCURASSAY LABORATORIES LTD．

P．O．BOX 604

KIRKLAND LAKE，ONTARIO，CANADA P2N 315
TEL．：（705）567－6343
President：Dr．GEORGE DUNCAN，M．Sc．，Ph．D．，C．Chem（Ont．，C．Chem（U．K．），M．C．I．C．，M．R．S．C．，A．R．C．s．T．

Certificate of Analysis

8212 Northern Dynasty Explorations 844 West Hastings Street Vancouver B．C． V6C 1 C 8

Page \＃2
Date： \qquad 19 \qquad
Work Order 870562

Assay results are as follows：
SAMPLE NUMBER
Accurassay Customer
55851
$19+86 \mathrm{~N}$
$20+08 N$
55853
$20+56 \mathrm{~N}$
55854
21408 N
$\begin{array}{ll}55855 & 21+56 \mathrm{~N} \\ 55856 & 22+06 \mathrm{~N}\end{array}$
Gold
ppb
＜5
＜5
＜5
<5
$\begin{array}{ll}55856 & 22+00 \mathrm{~N} \\ 55857 & 22+58 \mathrm{~N}\end{array}$
＜5
142
$55858 \quad 23+88 N \quad<5$
55859 23＋56N＜5
$55860 \quad 24+66 \mathrm{~N}$
$55861 \quad 24+50 \mathrm{~N}$
$55862 \quad 25+00 \mathrm{~N}$
$55863 \quad 25+58 \mathrm{~N} \quad 5$
55864 L18＋め日W 11＋め6N＜5
55865 11＋56N＜5
$55866 \quad 12+60 \mathrm{~N}$＜5
55867 12＋56N＜5
55868 13＋GEN＜5
55869 13＋50N＜5
$55870 \quad 14+$ EのN $\quad<5$
$55871 \quad 14+50 \mathrm{~N}$
55872 15＋66N＜5
$5587315+50 \mathrm{~N} \quad 11$
$55874 \quad 16+00 \mathrm{~N} \quad<5$
55875 16＋50N＜5
$5587617+08 N 13$.
55877 17＋50N＜5
55878 18＋00N＜5
$55879 \quad 18+50 \mathrm{~N} \quad<5$
55880 19＋ø0N 11
$55881 \quad 19+50 \mathrm{~N}$＜5
55882 20＋00N 8
$55883 \quad 20+50 \mathrm{~N}$

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3 J5
TEL.: (705) 567.6343
President: Dr. GEORGE DUNCAN, M.Sc., ph. D., c. Chem Iont.1, c. Chem Mu.K., M.c.I.c., M.R.s.c., a.r.c.s.t.

Certificate of Anolusis

8213 Northern Dynasty Explorationg 844 West Hastinge Street Vancouver B.C. V6C 1 CB

Assay results are as follows:

SAMPLE NUMBER
Accurassay
Customer 55884 L6 $\theta+0 \varnothing W \theta+\varnothing 0 N$
55885 55886 55887 55888 55889 55890 L63+0.0W 55891 $558921+805$ $558931+585$ $55894 \quad 2+005$ $55895 \quad 2+5 \% 5$ $55896 \quad 3+605$ 55897 3+505 $55898 \quad 4+605$ $55899 \quad 4+565$ 55900 5+605 55901 55902 55903 55984 55905 55906
55907
55908
55909
55910
55911
55912
55913
55914
55915
55916
$0+50 \mathrm{~N}$

Date: \qquad 19 \qquad
Work Order 870562

ACCURASSAY LABORATORIES LTD．

P．O．BOX 604
KIRKLAND LAKE，ONTARIO，CANADA
P2N 3／5
TEL．：（705）567－6343
President：Dr．GEORGE DUNCAN，M．Sc．，Ph．D．，C．Chem IOnt．1，C．Chem IU．K．I，M．C．．．c．，M．R．s．C．，A．R．c．s．t．

Certificate of Analysis

8214
Northern Dynasty Exploratione 844 West Hastinge Street Vancouver B．C． v6C 1 CB

Assay results are as follows：
Date：

SAMPLE NUMBER
Accurassay Customer
55917 55918 14＋005 55919 14＋505 55920 15＋805 55921 15＋50S 55922 16＋ø日S 55923 16＋50S $55924 \quad 17+805$＜5 55925 L63＋ø日W 17＋5日S＜5 55926 GK7－S1ø日 55927 GK7－5101 GK7－R1ヵめ
$\begin{array}{llr}55928 & \text { GK7－R1ø1 } & <5 \\ 55930 & \text { GK7－R1ø2 } & 7\end{array}$
$\begin{array}{llr}55928 & \text { GK7－R1ø1 } & <5 \\ 55930 & \text { GK7－R1ø2 } & 7\end{array}$ JK7－S1
JK7－S2
JK7－53
JK7－R1
JK7－R2 55936 JK7－R3 $\begin{array}{ll}55937 & \text { JK7－R4 } \\ 55937 & \text { JK7－R4 }\end{array}$ $\begin{array}{ll}55937 & \text { JK7－R4 } \\ 55937 & \text { JK7－R4 }\end{array}$

Gold
$\begin{array}{llr}55928 & \text { GK7－R1ø1 } & <5 \\ 55930 & \text { GK7－R1ø2 } & 7\end{array}$
55931
55932
55933
55934
55935
\qquad 19 \qquad Work Order 876562 ppb 10 ＜ 5 ＜ 5 ＜ 5 ＜5 ＜ 5 ＜ <5
6 65 ．
＜ 5
Page \＃4
$09 / 10 / 87$
＜ 5
13
12
＜6
56
7
5
＜S Cheok

NOTE：Some Checks on the tenth sample were not performed due to Insufficient Sample．

ACCURASSAY LABORATORIES LTD.
P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.I, M.c.I.C., M.R.S.C., A.R.C.s.t.

Certificate of Analysis

Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C.
V6C 1 CB
Assay results are as follows:

SAMPLE NUMBER
Accurassay Customer 57505 57506 57507 57508 57509 57510 57511 57512 57513 57514 57515 57516
57517
57518
57519
57520
57521
57522
57523
57524
57525
57526
57527
57528
$57529 \quad 24+005$
57530 ø+ø0W ø+ø05
$575310+505$
$575321+005$
$575331+505$
57534 2+06S
57535 2+505
$57536 \quad 3+005$
$57537 \quad 3+505$

Page \#1
Date: \qquad $00 / 1418719$ \qquad Work Order 876575

Gold ppb 12 18 7 7

8

15
11
12
15
12
13

$60+00 W 17+005$
 29

84
22
35
19
28
19
29
26
16
21
17
16
14
19
18
19
6
<
<5
<
<5

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chom IOnt.I, C. Chom IU.K.I, M.C.I.C., M.R.S.C., A.R.C.S.t.

Certificate of Analysis

8278
Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1 C8

Assay results are as follows

SAMPLE NUMBERAcourasgay Customer		Gold
Acouraseay	Customer	ppb
57538	44005	8
57539	4+50S	21
57540	5+m@S	< 5
57541	5+50S	6
57542	6+605	13
57543	6+5\%S	12
57544	7+60S	7
57545	7+50S	6
57546	B+6日S	5
57547	$8+505$	<5
57548	9+6ms	8
57549	9+5\%S	11
5755\%	10+605	6
57551	104585	23
57552	$11+865$	5
57553	11+5\%S	17
57554	$12+005$	9
57555	12+50S	45
57556	13+6mS	11
57557	$14+$ H0S	24
57558	14+50S	16
57559	$0+\infty 06$ O+5\%N	12
57568	1+60N	18
57561	$1+50 \mathrm{~N}$	213
57562	$2+\operatorname{CHN}$	13
57563	2+50N	9
57564	3+E®N	7
57585	3+58N	8
57566	$4+80 \mathrm{~N}$	<5
57567	4+58N	<
57568	$5+60 \mathrm{~N}$	B
57568	$5+56 \mathrm{~N}$	7
57578	6+60N	14

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3 J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., ph. D., c. Chem IOnt.1, c. Chem (U.K.I, M.c...c., M.R.s.c., A.R.c.s.t.

Certificate of Analysis

8279 Northern Dynasty Explorations
844 West Hastings Street
Vanoouver B.C.
V6C 1 CB
Page *3
Date: \qquad
\qquad
Work Order 878575

Aseay resulta are mellows

SAMPLE NUMBER
Accurassay Customer

$\begin{aligned} & 2882 y \\ & 57571 \end{aligned}$	Customer	6+58N	$\begin{array}{r} \text { Ppb } \\ \hline \end{array}$
57572		7+6en	9
57573		7+50N	7
57574		$8+\infty 0 N$	θ
57575		$8+56 \mathrm{~N}$	21
57576		9+86N	18
57577		9+50N	10
57578		$10+60 \mathrm{~N}$	6
57578		$16+56 \mathrm{~N}$	< 5
57580		$11+06 N$	6
57581		$11+56 \mathrm{~N}$	19
57582		$12+80 N$	< 6
57583		$12+58 \mathrm{~N}$	6
57584		$13+66 N$	<5
57585	21+06W	$0+60 \mathrm{~N}$	53
57586		$0+50 \mathrm{~N}$	16
57587		1+0¢N	12
57588		$1+5 \mathrm{NN}$	18
57589		$2+68 N$	6
57590	$21+886$	8+5\%s	<5
57591		1+605	18
57592		1+5¢5	<
57593		24\%6S	8
57594		2+58S	44
57595		3+6\%s	6
57596		3+505	9
57597		$4+965$	93
57598		4+505	8
57599		5+0\%S	6
57600		545\%8	10
57601		6+605	<
57602		6+5¢5	18
57603		7+0日S	6

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (One., c. Chem (U.K.I, M.C.I.C., M.R.s.C., A.R.C.s.T.

Certificate of Analysis

8280 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1 CB

Page 4
Date: \qquad
\qquad
Work Order 870575
Assay results are an follows
SAMPLE NUMBER Gold
Accurassay Customer
578184
57665
57606
57867
57608
576ø9
57610
57811
57612
57613
57614
57615
57616
57617
57618
57619
57820
57821
57622
57823
57624
57825
57826
57627
57628
57629
57830
57831
57632
57633
57634
57635 57636

7+505
$8+605$
$8+5 \% 5$
$9+6 \varnothing 5$
$9+505$
$10+065$
$10+505$
$33+00 \mathrm{w}$ +5\%S
$1+$ ms
$1+505$
$2+605$
$2+585$
$3+\pi 65$
3+5\%S
$4+0.65$
4+5\%S
$5+6 \% 5$
5+5\%s
6+65s
$33+0.06+0 \% N$
$6+50 \mathrm{~N}$
$1+66 \mathrm{~N}$
$1+58 \mathrm{~N}$
$2+60 \mathrm{~N}$
$2+50 \mathrm{~N}$
3+6en
$3+56 \mathrm{~N}$
4+68N
$4+5$ fN
$36+0860+00 N$
$0+50 \mathrm{~N}$
$1+00 \mathrm{~N}$
$1+50 \mathrm{~N}$
ppb
<5
<5
8
13
12
7
Miseing
< 5
< 5
<5
7
8
24
13
31
θ
< 6
8
7
10 .
5
26
5
<5
7
13
B
8
θ
24
12
19
16

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3.5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.I, C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

8281 Northern Dynasty Explorations 844 West Hastinge Street Vanoouver B.C. V6C 1 CB

Assay resulta are as follows

SAMPLE NUMBER
Aocurassay Customer
57637
57638
57639
5764ø
57641
57642
57643
57644
57645
57646
57647
57648
57648
57659
57651
57652
57653
57654
57655
57656 57657 57658 57658 57660 57661 57662 57663 57864 57665 57666 57667 57668 57669

	Gold ppb
2+86N	19
$2+5 \% \mathrm{~N}$	13
$3+58 N$	8
$3+58 \mathrm{~N}$	35
$4+90 \mathrm{~N}$	9
$4+50 \mathrm{~N}$	<
6+5¢5	<6
1+6188	12
1+5\%8	<6
2+605	<6
2+5ms	15
3+6\%	18
3+5\%5	<5
4+ans	<5
4+595	26
5+965	12
$5+5$ \%8	11
6+6\%8	<5
6+505	16
7+6E8	19
7+5NS	10
8+4.68	7
8+508	6
9+6.85	6
$11+605$	7
11+5\%S	< 6
12406S	11
12+5\%S	13
13+985	11
$13+598$	8
14+6mS	6
14+505	<
15+06S	9

Per:

ORIGINAL

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3 J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, m.sc., ph. D., c. Chem (Ont.), c. Chem (u.א.ו. m.c..c., M....s.c., A.f.c.s.t.

Certificate of Analysis

Northern Dynasty Explorations 844 West Hastinge Street Vancouver B.C. v6C 1 C8

Date: \qquad 09/11/87 19 \qquad
Work Order 879575
Assay results are as follows
SAMPLE NUMBER Gold
Accurassay Customer
57670
57671
57672
57673
57674
57675
57676
57677
57678
57678
57680
57681
57882
57683
57684
57685
57686
57687
57688
57689
57690
57691
57692
57693
57694
57695
57696
57687
57698
57699
57760
57701
57782

15+505
$18+865$
$16+5$ ©S
$17+865$
$17+565$
$18+985$
$18+595$
$10+805$
10+6\%S
$20+685$
$20+595$
$21+065$
21+505
22+0165
$22+585$
$23+685$
$36+06 \mathrm{~W} ~ 12+665$
$21+60 \mathrm{~W} 11+065$
$11+505$
$12+665$
12+505
$13+665$
$13+505$
$14+8 \% 5$
14+5\%s
$15+985$
15450 s
$16+605$
$16+5 \% 5$
$17+605$
17+505
$18+605$
$18+505$
ppb
<<<s<5<55 $38{ }^{3}$: 51 69 85 22 28 161
<5
6
8
<
11
15
25
18
< 5
< 5
<5
<6
51
10
B
7
16

Per:

ORIGINAL

accúrassay laboratories lto.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., c. Chem IOnt.I, c. Chem IU.K.ו, M.c...c., M.r.s.c., A.f.c.s.T.

Certificate of Analysis

8283 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1 C8

Date: \qquad
Work Order 870575
Assay results are as follows
SAMPLE NUMBER
Accuraseay Customer
57703
57704
577105
57706
57707
57708
57709
57710
57711
57712
57713
57714
57715
57716
57717
57718
57719
57720
57721
57722
57723
57724
57725
57726
57727
$19+005$
$19+565$
$20+605$
$20+5 \%$ S
$21+005$
$21+5 \% 5$
$22+4 \% 5$
$48+\infty 8 \mathrm{~W} \quad 6+56 \mathrm{~S}$
$1+605$
$1+565$
$2+865$
2+505
$3+605$
3+56S
4+06S
4+505

5+565
$6+0.5$
6+505
Gold
ppb
62
55
14
B1
182
125
38
5
<5
58
28
56
54 ;
15
10
73
2
18)
$7+685$
<5
$7+5 \% 5$
< 5
$8+605$
6
8+588
10

57728
$9+605$
<5

57729
57730
5773
57732
57733
57734
9+50S
< 5
$10+065$
< 5
$10+505$
$11+005$
$11+505$
$12+065$
$12+505$
45
<5
257
7

57735
$13+065$

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem IOnt.), C. Chem IU.K.I, M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

8284 Northern Dynasty Expiorations 844 West Hastinge street Vanoouver B.C. V6C 1 C8

Date: \qquad

Aseay results are as follows

SAMPLE NUMBER
Aocuraseay Customer

Gold
ppb
13
6
15
<5
<5
7
<5
18
<5
< 5
11
< 5
7
37
15 7
16
18
36
7
114
42
< 5
<5
5
<6
<6
<5
8
10
137
986
668

99/11/87 19 \qquad
Work Order 876575
Page *8

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., ph. D., c. Chem IOnt.I, c. Chem IU.K.I, M.c....., M..f.s.c., A.R.c.s.t.

Certificate of Analysis

Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. vaC 1 CB

Assay results are as follows

SAMPLE NUMBER Aocurassay Customer

57769	153
57778	164
57771	154
57772	155
57773	156
57774	157
57775	158
57776	GK
57777	162
57778	163
57779	164
57780	166
57781	167
57782	168
57783	169
57784	$\mathrm{JK7}$

Page *
Date: \qquad 80/11/87 19 \qquad
Work Order 879575

Per:

ORIGINAL

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., ph. D., c. Chem ton.I, c. Chem IU.K.I, M.c.I.c., M.R.s.c., A.R.c.s.t.

Certificate of Analysis

8286

Northern Dynasty Explorations
844 West Hastings Street
Vancouver B.C.
VEC 1 C8

Date: \qquad 69/11/8719 \qquad

Assay results are as follows

SAMPLE NUMBER
Accurassay Customer

57801	187
57882	108
57862	188
57803	198
57884	116
57805	111
57866	112
57867	113
57898	114
578\%8	115
57810	JK7-R-5
57811	6
57811	6
57812	7
57813	8
57814	9
57815	10
57816	6+00W 13+508
57817	$148+0$ WW $0+60$
57817	L48+68V 6t96

Gold ppb < 5 <
<5 Cheok
< 5
5
<
<5
6
18
16
6
8
7 Cheok
8
<
<
6
17
7 Cheok

ACCUKASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. o., c. Chem (Onn.), c. Chem (u.k.I, M.c...c., m.r.s.c., A.f.c.s.t.

Certificate of Analysis

Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1 C8

Date: \qquad 69/18/87

Work Order 870590

Assay resulta are as follows:

SAMPLE NUMBER
Accurassay Customer
59079 L15+90E 0+06B
$5908080+50 \mathrm{~N}$
59081 1+66N
$590821+58 \mathrm{~N}$
$59.683 \quad 2+86 \mathrm{~N}$
$59084 \quad 2+56 \mathrm{~N}$
$59085 \quad 3+08 \mathrm{~N}$
59086
59887
59088
59888
59.89

59090
59.981

59092
58893
59094
59095
50096
59097
59097
59098
59099
59180
59101
58102
59102 $12+$ ON
59104 L $0+0014+06 \mathrm{NB}$
$5910514+50 \mathrm{~N}$
59106 15+øøN
$59106 \quad 15+000 \mathrm{~N}$
$5910715+50 \mathrm{~N}$
$59108 \quad 16+60 \mathrm{~N}$

Gold ppb

6
<5
24
15
6
<
sample missing
6
<5
6
<5 Check
14
27
5
< 5
6
23
7
7
10
10 Cheok
11
14
10
13
7
<5
37
18
<
15 Check
7
<5
accurassay Laboratories itd.
P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. d., c. Chem IOnt.,. c. Chem IU.к.ו, м.c...c., м.R.s.c., A.r.c.s.t.

Certificate of Analysis

8498
Northern Dynasty Explorations 844 West Hastinge Street Vancouver B.C. VGC 1 C8

Assay results are as follows:
SAMPLE NUMBER Gold
Accurassay Customer
59108
59110
59111
59112
59113
59114
59115
59115
59116
59117
59118
59119
59120
59121
59122
59123
59124
59124
59125
59126
59127 L9 + $60 \mathrm{~W} \quad 16+60 \mathrm{NB}$
59128
59129
59130
59131
59132
59133 59133 59134 59135 59136 59137 59138
$16+58 N$
$17+86 N$
$17+56 N$
$18+60 N$
$18+56 N$
$19+60 N$
$19+56 N$
$19+56 N$
$28+88 N$
$28+50 N$
$21+60 \mathrm{~N}$
$21+68 N$
$22+08 N$
$22+56 N$
$23+60 N$
$23+58 N$
$24+66 N$
$24+80 \mathrm{~N}$
$24+56 N$
$25+60 \mathrm{NB}$
$10+50 \mathrm{~N}$
$11+60 N$
$11+50 \mathrm{~N}$
$12+80 N$
$12+58 N$
1346日NB
$13+9$ GNB
$13+50 \mathrm{~N}$
$14+0 \theta N$
$14+50 \mathrm{~N}$
$15+80 N$
$15+50 \mathrm{~N}$

Page \#2
Date: \qquad 19 \qquad
Work Order 876598 ppb

7
7
7
8
6
8
8
Cheok
16
12
7
<5
8
<5
8
11
18
6 Cheok
9
5
<5
16
6
<5
12
10
16
36 Cheok
<5
<
5
<5
<5

1 ACCURASSAY LABORATORIES LTD.
P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA
P2N 315
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. O., C. Chem IOnt.I, C. Chem IU.K.I, M.C.I.C., M.R.S.C., A.R.C.S.t.

Certificate of Analysis

> 8499 Northern Dynasty Explorations 844 West Hastinge Street Vancouver B.C. v6C 1 CB

Date: \qquad $09 / 18 / 87$

Work Order 876598

Assay results are as follows:

SAMPLE NUMBER		Gold
Accurassay	Customer	ppb
59139	$16+40 N$	<5
59140	$16+50 \mathrm{~N}$	6
59141	$17+60 N$	7
59142	$17+50 N$	<5
59142	$17+50 \mathrm{~N}$	<5 Cheok
59143	$18+80 N$	< 5
59144	$18+56 \mathrm{~N}$	< 5
59145	19+80N	<5
59146	$19+50 N$	< 5
59147	$20+80 \mathrm{~N}$	< 5
59148	$26+56 \mathrm{~N}$	samplemissing
59149	$21+66 \mathrm{~N}$	14
59158	$21+50 N$	< 5
59151	$22+66 \mathrm{~N}$	<5
59151	22+00N	<5 Check
59152	22+50N	<
58153	23+60N	<5
59154	23+56N	<5
59155	24+66N	<
59156	24+50N	< 5
59157	25+00NB	<5
59158	L18+80W $21+58 \mathrm{NB}$	6
59159	$22+86 \mathrm{~N}$	<5
59160	22+56NB	10
59160	22+50NB	5 Cheok
59161	$23+86 \mathrm{~N}$	11
59162	$23+50 N$	7
59163	$24+60 N$	9
59164	$24+50 \mathrm{~N}$	22
59165	$25+00 N$	10
59166	$25+50 \mathrm{~N}$	11
58167	$26+00 \mathrm{~N}$	7
59168	$26+50 \mathrm{NB}$	11

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3 J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., ph. D., C. Chem (Ont.), C. Chem (U.K., M.C.I., M.R.S.C. A.R.C.S.T.

Certificate of Analysis

Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1 C8

Date:

Assay results are as follows
SAMPLE NUMBER
Accurassay Customer
59169 58169 59176 59171 59172 59173 59174 59175 59176
59177
59178
59178
59179
59180
59181
59182
59183
59184 59185
59186
59187
59187
59188
59189
59190
59191
59192
59183

$$
59194
$$

59195
58196
59196
59197

GK7-S-118
GK7-S-110
GK7-S-111
GK7-S-112
GK7-S-113
EKT-5-1
EK7-S-2
EK7-S-3
EK7-S-4
EK7-S-5
EK7-S-6
EK7-S-6
EK7-S-7
EK7-S-8
EK7-S-9
EK7-S-10
EK7-S-11
EK7-S-12
EK7-S-13
EK7-S-14
EK7-S-15
EKT-S-15
EK7-S-16
EK7-S-17
JK7-S-9
JK7-S-10
JK7-S-11
JK7-S-12
JK7-S-13
GK7-R-116
GK7-R-117
GK7-R-117
GK7-R-118

Gold ppb

6
10 Cheok
10
7
12
56
16
17
<5
26
21

217 102
<5
982
1253

19 Check
65
20

75

25

24
29 7
15 Cheok
56

51
8
12
7
<5
<s Check

\square

<5
\qquad 19 \qquad
Work Order 870598
Page 4
$09 / 18 / 87$

ACCURASSAY LABORATORIES LTD.

P.O. B0X 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem IOnt.I, C. Chem IU.K.I, M.C.s.C., M.R.S.C., A.R.C.s.t.

Certificate of Analysis

8501 Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C ic8

Page 5
Date: \qquad 09/18/87

Work Order 878590

Assay results are as follows

SAMPLE NUMBER
Aocuragsay 59198 59199 59268 59261 59282 59203 59284 59205 58205 59206 59287 59288
59208
59210 59210 59218-A 59210-A

Customer

 GK7-R-119 GK7-R-120 EK7-R-1 EK7-R-2 EK7-R-3 EK7-R-4EK7-R-5
EK7-R-6
EK7-R-6
EK7-R-7
JK7-R-11
JK7-R-12
JK7-R-13
JK7-R-14
JK7-R-14
JK7-R-15
JK7-R-15

Gold ppb < 5 <5 166 292 40 180 21 <5 <5 Cheok < 6 23 7 <5
13 Cheok <5 <5 Cheok
\qquad

$1 ;$
 ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3 J5
TEL.: (705) 567-6343
resident: Dr. GEORGE DUNCAN, M.Sc., Ph. d., c. Chem IOnt.I, c. Chem (U.K.,., M.c...c., M.r.s.c., A.f.c.s.r.

Certificate of Analysis

Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. v6C 1 CB

Page 1
89/18/87
Date: \qquad
Work Order 870603

Assay results are as follows:

SAMPLE NUMBER Gold
Accurassay Customer
59416
59417
59418
59418
59420
59421
EK7-S18
EK7-S19
EK7-S20
EK7-S21
EK7-S22
$48+68 \mathrm{~L} 24+58 \mathrm{~S}$
59423 L18+00W 20+50N
59424 L21+08W 22+56N
59425
59425
59426
59427
59428
59429
59438
59431
59432
59433
59434
59434
59435
59436
59437
59438
59439
59440
5944
59442
59443
59443
59444
59445

GK7-S114
GK7-S114
GK7-S115
GK7-S116
GK7-S117
GK7-S118
GK7-S119
GK7-S120
GK7-S121
EK7-R8
EK7-R9
EK7-R9
EK7-R10
EK7-R11
EK7-R12
GK7-R121
GK7-R122
GK7-R123
GK7-R124
GK7-R125
GK7-R126
GK7-R126
GK7-R127
GK7-R128
<
ppb
557
8
< 5
16
19
9
<5
<
<5 56
32 Check
132
9
17
<5
< 5
84
<
11
8
14
7
9
<
<s
<S
<5
5
<5
<
<s Check

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA
P2N 3J5

TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem tont.), c. Chem (U.K.I, M.c...C., M.R.s.c., A.R.C.s.t.

Certificate of Analysis

8496

Northern Dynasty Explorations 844 West Hastings Street Vancouver B.C. V6C 1 CB

Date: \qquad

Assay results are as follows:

SAMPLE NUMBER
Accurassay Customer
59446
59447
59448
59449
59450
59451
59452
58452
59453
59454
59455
59456
59457
58458
59459
59460
59461
59461
59462
59463
59464
59465
59466
59467
58468
59469
59470
59470
59471
59472
59473
59474
59474

GK7-R129
GK7-R130
GK7-R131
GK7-R132
GK7-R133
GK7-R134
GK7-R135
GK7-R135
GK7-R136
GK7-R137
GK7-R138
GK7-R139
GK7-R140
GK7-R141
GK7-R142
GK7-R143
GK7-R144
GK7-R144
GK7-R145
GK7-R146
GK7-R147
GK7-R148
GK7-R149
Gold ppb
<5
<5
< 5
<5
<5
8
<5
<5 Cheok
12
16
<5
8
8
<5
<5 <5 <5 <5 Check
10
14
13
<5
GK7-R181
GK7-R182

GK7-R183
GK7-R183
GK7-R184
GK7-R185
GK7-R186
GK7-R187
GK7-R187

188/18/87

Work Order 870603
Page 2

- 19 \qquad

INDUCED CATION PLASMA (I.C.P.) SPECTROMETRIC ANALYSES FOR SURFACE BEDROCK SAMPLES AND

 SOIL SAMPLES

 SOIL SAMPLES}

```
Geochemical Sample Identification Code :
    Example -
        GK7-R-152
            G = Sampler
                            K = Virginiatown Property
                            7 = 1987
                            R = Rock sample (S = Soil sample)
    152 = Sequential sample number
```


NORTHERN DYNASTY FROJECT－KIFKLAND LAKE File E7－IETI FAge 1

6x7－5－1	1	18	11	48	.1	20	5	98	2.00	21	5	N0	1	12	，	2	2	35	． 17	． 032	6	31	． 35	20	． 09	2	1.08	． 01	． 03	1	1
6＊7－5－9	1	103	49	161	． 4	160	58	489	3.23	218	5	WD	1	261	1	，	7	2	1.07	．064	19	12	． 71	18	． 01	\bullet	． 20	． 01	． 04	1	41
6x7－5－3	1	242	95	316	． 3	109	47	902	3.60	250	5	W	1	190	1	6	2	4	． 66	． 111	19	15	． 44	28	． 01	11	． 32	． 01	． 04	2	04
6x7－5－1	2	45	32	143	.3	48	17	710	2.57	12	5	NO	1	41	1	10	2	11	． 17	．055	24	10	． 09	55	． 01	2	． 19	． 01	． 03	1	32
6＊7－5－5	1	21	14	68	． 2	28	9	131	2.97	28	5	ND	2	＊	1	2	2	25	． 11	． 044	13	56	． 35	21	． 03	4	1.45	． 01	． 03	1	1
6＊7－8－6	1	9	11	29	.1	10	3	90	． 71	2	5	00	1	1	1	7	3	11	.14	． 018	1	26	． 18	26	． 05	2	． 57	． 01	． 01	1	1
6＊7．5－7	1	5	2	12	.1	4	1	15	． 19	3	5	no	1	，	1	2	3	1	． 04	． 012	6	1	． 02	35	． 02	2	． 24	． 01	． 01	1	1
6＜7－5－8	3	62	43	91	． 1	93	79		10.13	239	5	＊	3	32	1	2	3	31	． 11	． 041	23	62	． 41	6	． 03	11	1.84	． 01	．05	1	3
SIO C／AN－S	18	55	42	130	6.8	4	17	972	3.09	31	15	，	32	41	17	11	23	40	， 43	．087	34	58	.90	171	． 08	34	1，11	． 06	． 13	12	49

NORTHERN DYNAETY PROJECT-KIFKLAND LAKE FILE ©7-1571

Sandiel	no	Cu	P8	2n	46	M 1	co	M	FE	AS	U	AU	IN	$5{ }^{\text {a }}$	0	51	11	V	Ca	P	4	CR	14	m	11	1	4	MA	K	V	ausi
	PPM	PPM	PP\%	PPM	PPM	PPM	P9\%	PPM	1	PPM	PPM	PP\%	PPM	PPM	PP\%	PP\%	PPK	PPM	1	1	PPM	P9\%	1	pfn	1	PPM	1	8	1	PPM	Pft
$5 \times 7-k-1$	1	11	19	4	.1	35	\checkmark	351	2.00	14	\$	N0	1	4	1	1	5	9	. 10	. 025	1	11	. 70	21	. 01	3	. 84	. 01	. 06	1	1
6kT-R-2	1	11	1	21	.2	11	1	134	1.10	15	5	NO	2	176	,	6	2	1	. 75	. 014	1	1	. 31	11	. 01	2	. 07	. 02	. 03	1	2
6x 7 -k-3	1	-	14	12	. 3	10	1	289	1.19	11	5	ND	2	501	1	2	7	1	1.88	. 035	2	3	. 68	11	. 01	5	. 06	. 01	. 03	1	1
6x7-R-4	1	9	10	22	. 2	9	1	211	. 96	8	1	N0	2	298	1	2	2	1	. 91	.0\%	2	5	. 31	-	. 01	2	. 01	. 01	. 02	1	1
6KT-R-5	1	48	18	42	. 1	32	5	271	1.97	22	5	N0	1	151	1	4	1	3	. 31	. 021	4	1	. 53	11	. 01	2	. 26	. 02	. 05	1	1
CK7-R-6	2	57	14	72	.1	81	20	414	4.29	69	5	N0	5	35	1	2	2	13	. 21	. 081	19	69	. 65	21	. 01	2	1.25	. 01	. 10	1	5
6<7-R-7	1	12	15	45	. 1	\%	9	6^{13}	2.62	44	5	\%	3	385	1	2	3	-	5.68	. 040	10	32	1.97	26	. 01	3	. 10	. 01	. 08	1	1
6x-p-8	1	33	14	47	.1	,	1	508	2.13	3	5	N0	4	1332	,	2	2	4	2.01	. 093	\%	5	. 60	435	. 01	10	. 23	. 03	. 07	1	1
6K7-R-9	1	166	14	61	.1	1	1	541	2.61	2	,	0	3	1322	1	2	2	2	5.75	. 035	5	2	1.16	619	. 01	14	. 03	. 02	. 01	1	1
6k-R-10	1	49	10	40	. 1	3	4	330	1.63	2	5	Wi	1	150	1	2	2	1	1.39	.031	1	,	.47	396	. 01	2	. 13	. 02	. 03	1	1
6 $\times 7-8 \cdot 11$	1	33	5	11	.1	3	1	224	. 75	2	5	W	2	166	1	2	2	,	. 75	. 012	1	1	. 32	1640	. 01	3	. 05	. 02	. 04	1	1
Ex 7 -R-12	1	9	17	37	. 1	9	9	575	1.11	2	5	W0	5	315	1	2	2	1	3.36	.086	22	5	1.11	271	. 01	J	. 22	. 02	. 16	1	1
6x7-R-13	9	1035	24	36	3.8	3	1	182	1.11	78	5	10	,	106	1	16	21	1	. 09	. 024	2	3	. 02	1994	. 01	1	. 03	. 02	. 01		9150
$6 \times 7-R-14$	7	22	13	34	. 1	12	9	558	2.19	2	5	no	1	95	1	2	2	4	. 0	. 072	17		. 34	650	. 01	2	. 22	. 02	. 10	1	1
$6 \times 7-2-15$	1	15	7	13	. 1	11	2	332	1.13	3	5	Nid	1	113	1	2	2	1	1.83	. 017	3	5	. 64	36	. 01	2	. 03	. 02	. 01	1	1
6at-R-16	1	18	2	15	. 1	67	19	725	3.21	1	8	NO	3	202	1	3	4	19	3.14	. 061	14	4	1.00	65	. 01	2	1.01	. 02	. 01	1	1
6< $7-2 \cdot 17$		10161	2	19	. 1	3	1	1952	2.52	5	3	M	4	12	1	2	2		20.21	. 001	3	3	.10	II	. 01	2	. 59	. 01	. 01	5	1
STD C/AU-R	20	58	39	138	1.2	63	29	1045	3.79	42	19	1	35	49	18	17	23	64	. 47	. 101	31	3	. 90	184	. 08	3	1.73	. 01	, 13	12	310

GEDCHEMICAL ANALYEIE CEFFTIFICATE

NORTHERN DYNASTY PROJECT-KIKKLAND LT. File 87-9084 Fage 1

Ex7-5-50	1	20	7	39	. 3	1	5	162	1.88	1	5	NO	2	38	1	2	2	14	. 26	. 031	13	1	. 09	140	. 01	1	. 15	. 02	. 02	2
C.1-5-200	5	29	5	26	. 3	14	1	1218	1.29	11	5	ND	3	763	1	3	2	14	, 88	.025	1	20	. 17	230	. 05	1	. 59	. 04	. 03	1
																						2								

NORTHEFN DYNASTY FROJECT-KIRKLAND LT. FILE 87-S084

GEDCHEMICAL ANALYEIE CEFTIFICATE

NORTHERN DYNASTY
File B7-5700
Fiage 1

GEOCHEMICAL ANALVEIE CEFTIFICATE

- SAMPLE fype: pulp wis malysis dy an from 10 gran shaple.

NORTHERN DYNASTY FIde 87-5700 Fage 2
SAMPIE

GOLD ASSAYS FOR

DIAMOND DRILLCORE SAMPLES

ACCURASSAY LABORATORIES LTD．

P．O．BOX 604
KIRKLAND LAKE，ONTARIO，CANADA P2N 3 J5

TEL．：（705）567－6343
President：Dr．GEORGE DUNCAN，M．Sc．，Ph．D．，C．Chem Ont．，C．Chem IU．K．I，M．C．I．C．，M．R．S．C．，A．R．C．s．T．

Certificate of Analysis

10207
Northern Dynasty Explorations 844 West Hastings Street Vancouver，B．C． v GC：－1 C

SAMPLE NUMBERS
Accurassay
86015
86016
8601.7

86018
86019
86020
86021
86022
86023
86024
86024
86025
86026
86027
86028
86029
86030
86001
86031
7011
7012
7013
7014
7015
7016
7017
7017

Gold pps

90
＜ 5
＜ 5
<6
11
<5
<5
<5
<5
く
く
く
7
＜5
11
${ }^{6}$
5
（5）
＜6 Check

Gage： 1
Date：December 10
Work Order \＃： 870982
Project．$: 1937$

Project ：

```
M
```


ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3 J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (One.), c. Chem (U.K.I, M.c.I.C., M.R.s.c., A.R.C.s.T.

Certificate of Analysis

Worthern Dynasty Expl. Std. 844 West Hastings Street Vancouver, B.C. veici-1c8

SAMPLE NUMBERS
Accurassay
85768
85769
85770
85771
85772
85773
85774
85775
85776
85777
85777
85778
85779
85780
85781
85782
85783
85784
85785
85786
85786
85787
85788
85789
85790
85791
8579 ?
85793
85794
85795
5795

Customer
7301
730 ?
7303
7304
7305
7306
7307
7308
7309
7310
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7319
7320
7321.

7322
7323
7324
7325
7326
7327
7328
7328

Gold Dz / T
<0.001
<0.001
<0.001
<0.001
0.047
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001.
(0. 001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.002
<0.001
<0.001
<0.001
<0.001
<0.001

Pase:
Date: December 11

Work Order \# : 870970
Projecit
Gold ppb

<5

<5
< 5
16
1603
18
16
<5
13
<5
<5
< 5
<5
<5

$$
11
$$

12
12
26
< 5
<5
<5
く 5
< 5
<5

<5

84
< 5
10
6
<5
9 Check
\qquad

$\%$
 ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem IU.K., M.C.I.C., M.f.S.C., A.R.C.S.t.

Certificate of Analysis

10228
Northern Dynasty Expl. L.td. 844 West Hastings Street Vancouver, B.C. V6C-1C8

SAMPIE NUMBERS
Accurassay
Customer
85796
85797
85798
85799
85800
85801.

85802
85803
85804
85804
85805
85806
85807
85808
85809
85810
85811
85812
85813
8581.3

Gold

Oz / T

Page: ?

Date: \qquad 11

Work Order \# : 870970 Project.

Gold ppb

7330
7331
7332
7333
7334
7335
7336
7337
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7346

<0.001	10
<0.001	5
<0.001	9
<0.001	<5
<0.001	<5
<0.001	7
<0.001	<5
00.001	7
<0.001	7
<0.001	7
<0.001	8
<0.001	7
<0.001	16
<0.001	8
<0.001	<5
<0.001	<5
<0.001	8
<0.001	<5
<0.001	<5
<0.001	<5

$<0.001$168<5<5

Cherik
\qquad

ACCURASSAY LABORATORIÉS LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA
P2N 3.5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, m.Sc., Ph. D., C. Chem (Ont.I, C. Chem (U.K.I, M.C.I.C., M.f.s.C., A.R.C.s.t.

Certificate of Analysis

16523 Northern Dynasty Expl. Ltd. 844 West Hastings Street. Vancouver, B.C. V (iC-1C8

SAMPLE NUMBERS

Accurassay

89234
89235
89236
89237
89238
89239
89240
89241
89242
89243
89243
89244
89245
89246
89247
89248
89249
89250
89251
89252
89252
89253
89254
89255
89256
89257
89258
89259
89260
89261
89261

Gold Oz / T
Customer
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045 7045
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Page: 1
Date: \qquad 1938 \qquad

Work Order \# : 871030
Project
Gold
ppb

14
8
7
< 5
13
7
<5
<5
7
<5
6
7
5
8
13
9
8
12
10
15
37
9
12
7
9
9
10
11
10
17
19 Check

Certificate of Analysis

Page: 2

16524 Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

Date: \qquad 19^{88}

Work Order \# : 871030 Project

SAMPLE NUMBERS
Accurassay
89262
89263
89264
89265
89266
89267
89268
89269
89270
89270
89271
89272
89273
89274
89275
89276
89277
89278
89279
89279
89280
89281
89282
89283
89284
89285
89286
89287
89288
89288
89289

Customer
7046
7047
7048
7049
7050
7051
7052
7053
7054
7054
7055
7056
7057
7058 7059
7060
7061
7062
7063
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7072
7073

Gold Oz / T
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.004
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Gold ppb
<5
8
15
14
32
< 5
20
30
<5
30 Check
6
<5
9
<5
<5
<5
142
<5
12
11 Check
6
16
14
<5
< 5
<5
<5
<5
<5
Check
\qquad

Certificate of Analysis

Page: 3
$\begin{array}{ll}16525 & \text { Northern Dynasty Expl. Ltd. } \\ 844 \text { West Hastings Street } \\ & \\ \\ & \text { Vancouver, B.C. } \\ & \end{array}$
Date: \qquad 198

Work Order \# : 871030 Project

SAMPLE NUMBERS
Accurassay
89290
89291
89292
89293
89294
89295
89295

Gold Oz / T
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Gold ppb
<5
<5
9
7
<5
17
<5 Check

ACCURASSAY LABORATORIES LTD.
 P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA . P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., c. Chem (Ont.), c. Chem (u.K.ו., M.c..c., M.r.s.c., A.f.c.s.t.

Certificate of Analysis

17121 Horthern Dynasty Bxpl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

SAMPLE HUMBERS
Accurassay
94596
94597
94598
94599
94600
94601
94602
94603
94604
94605
94605
94606
94607
94608
94609
94610
94611
94612
94613
94614
94614
94615
94616
94617
94618
94619
94620
94621
94622
94623
94623

Gold Oz / T

7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7098
7099
7100
7101
7102
7103
7104
7105
7106 7107 7107

$$
<0.001
$$

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.005
0.003
0.004
<0.001
0.002
0.003
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Work Order \# : 880036
Project
Gold ppb

Date: January 25 1988
\qquad
\qquad
10< 5<5< 5
<5$\begin{array}{r}6 \\ \hline\end{array}$17
229239< 5< 5216187
12
17395 Check129
88394173217<56 Check

Page: 1

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3.5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., c. Chem (Ont.), c. Chem IU.K.I, M.c...c., M.R.S.c., A.R.C.S.T.

Certificate of Analysis

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3 J 5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., c. Chem (Ont.), c. Chem (U.א.I, M.c...c., M.R.s.c., A.R.c.s.T.

Certificate of Analysis

17123 Horthern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

SAMPLE NUMBERS
Accurassay
Customer
94652
94653
94654
94655
94656
94657
94658
94659
94659
94660
94661
94662
94663
94664
94665
94666
94667
94668
94668
94669
94670
94671
94672
94672

Gold
Oz / T
7136
7137
7138
7139
7140
7141
7142
7143
7143
7144
7145
7146
7147
7148
7149
7150
7151
3251
3251
3252
3253
3254
3255
3255

Date: \qquad 1988

Work Order * : 880036
Project
Gold ppb

Page:
3

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., c. Chem (Ont.,. C. Chem IU.K.I, M.c...c., m.r.s.c., A.r.c.s.t.

Certificate of Analysis

Page: 1

17335
Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V $6 \mathrm{C}-1 \mathrm{C} 8$

SAMPLE NUMBERS
Accurassay
97156
97157
97158
97159
97160
97161
97162
97163
97164
97165
97165
97166
97167
97168
97169
97170
97171
97172
97173
97174
97174
97175
97176
97177
97178
97179
97180
97181
97182
97183
97183

Gold Oz / T
0.004

Date: \qquad 1988

Work Order \# : 880075 Project :

Gold ppb

140
<0.001
0.002
0.002
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.009
0.003
<0.001
0.002
0.002
<0.001
<0.001
<0.001
<0.001
34
80
65
26
14
11
10
6
23

7243
7244
7245
7245
7246
7247
7248
7249
7250
7251
7252
7253 7254 7254

12
16
18
15
15
32
17
15
Check

8
<5

<5 Check

311
112
5
60
55
15
9
${ }_{11}$ Check

ACCURASSAY LABORATORIESLTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3 J5
TEL.: (705) 567-6343

Certificate of Analysis

Page: 2

17336
Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

SAMPLE NUMBERS
Accurassay
97184
97185
97186
97187
97188
97189
97190
97191
97192
97192
97193
97194
97195
97196
97197
97198
97199
97200
97201
97201
97202
97203
97204
97205
97206
97206

Gold Oz / T

Work Order \# : 880075
Project :
Gold ppb

Date: \qquad Pebruary 1 1988

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
11
<5
7
8
9
<5
<5
8
10
< 5
<5
<5
< 5

7268
7269
7270
7271
7272
7272
7273
7274
7275
7276
7277
7277

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA
P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), c. Chem IU.K.I, M.C.I.C., M.R.S.C., A.R.C.S.t.

Certificate of Analysis

Page: 1
Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

SAMPLE NUMBERS
Accurassay
96885
96886 96887 96888 96889 96890
96891
96892
96893
96894
96894
96895
96896
96897
96898
96899
96900
96901
96902
96903
96903
96904
96905
96906
96907
96908
96909
96910
96911
96912
96913

Customer
3256
3257
3258
3259
3260
3261
3262
3263
7152
7153
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172

Date: \qquad Eebruary 1 1988

Work Order \# : 880068
Project

Gold Oz/T

Gold ppb

$$
17
$$

$<0.001 \quad 17$
<0.001
< 5
<0.001
<0.001
<0.001
0.004
<0.001
0.003
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<5
<5
7
137
<5
114
< 5
<5
< 5
<5
< 5
<5
<5
<5
<5
<5
18
11
<5
<5
8
9
<5
<5
<5
<5
<5
12
7

Check

Check

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., c. Chem (Ont.I, c. Chem (u.K.I, M.c...c., M.f.s.c., A.R.C.s.T--

Certificate of Analysis

Page: 2
17332
Sorthern Dynasty Expl. Ltd. 844 Vest Hastings Street Vancouver, B.C. V6C-1C8

SAMPLE NUMBERS
Accurassay
96914
96915
96916
96917
96918
96919
96920
96921
96921
96922
96923
96924
96925
96926
96927
96928
96929
96930
96930
96931
96932
96933
96934
96935
96936
96937
96938
96939
96939
96940
96941

Gold Oz/T

Date: \qquad February 1 1988

Work Order \# : 880068 Project

Gold ppb
<0.001 <5
<0.001
<5
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.002
<0.001
<5
9
<5
6
< 5
<5
<5
<5
<5
<5
<5
15
9
11
8
10
18
13
11
10
18
14
20
9
6
8
72
6

Check

Check

Check

$$
;
$$

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA
P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, m.Sc., ph. o., c. Chem IOnt.I. c. Chem (u.K.I., m.c..c., m.r.s.c., A.R.c.s.t.

Certificate of Analysis

Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

SAMPLE NUMBERS
Accurassay
96942
96943
96944
96945
96946
96947
96948
96948
96949
96950
96951
96952
96953
96954
96955
96956
96957
96957
96958
96959
96960
96961
96962
96963
96964
96965
96966
96966
96967
96968
96969

Customer
7201
7202
7203
7204
7205
7206
7207
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7225
7226
7227
7228

Gold

 $\mathrm{Oz} / \mathrm{T}$$<0.001$
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Date: \qquad $19 \lcm{88}$

Work Order \# : 880068
Project :
Gold ppb
<
11
8
< 5
227
<5
12
$\begin{array}{r}8 \\ < \\ \hline\end{array}$
23
6
10
10
<5
11
8
9
17
15

Check

Check
7
<5
7
<5
10
7
9
<5
12 Check
<5
9
<5
7 -

Page: 3
\qquad

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem IOnt.I, C. Chem IU.K.I, M.C.I.C., M.R.S.C., A.R.C.S.t

Certificate of Analysis

Page: 4
$\begin{array}{ll}17334 & \text { Northern Dynasty Expl. Ltd. } \\ & 844 \text { West Hastings Street } \\ & \text { Vancouver, B.C. } \\ & \text { V6C-1C8 }\end{array}$
Date: \qquad 1988

$$
\text { Work Order \# : } 880068
$$

Project

Gold ppb
Accurassay Customer
969707229
96971
7230
96971
7230

Gold $0 z / T$
<0.001
<0.001
<0.001

10
< 5
(5 Check

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. o., c. Chem Iont.), c. Chem (U.K.ו, M.c...c., M.f.s.c., a.f.c.s.t.

Certificate of Analysis

Page: 1

> 17478 Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

Date: \qquad 1988

Work Order \# : 880097 Project

Gold Oz / T
Customer
Accurassay

98288
98289 98290 98291 98292 98293 98294 98295 98296 98297 98297 98298 98299 98300 98301 98302 98303
98304
98305
98306
98306
98307
98308
98309
98310
98311
98312
98313
98314
98315
98315

3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3295

Gold ppb
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<5
9
7
7
9
10
7
<5
13
15
15
<0.001
<0.001

10
21
16
24
< 5
<5
< 5
9
< 5
<5
14
<5
20
10
< 5
7
10
Check

Check

5
15
20
8 Check

Per:

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343

Certificate of Analysis

Page: 2

Date: \qquad 1988

Work Order \# : 880097 Project

Gold ppb

13
10
<5
6
14
18
17
15
8
8
8
<5
7
8
< 5
5
?
10
81
21
6
<5
<5
8
5
5
16

Check

Check

Check

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, m.Sc., Ph. D., c. Chem tont.), c. Chem iu.k.I, M.c...c., M.r.s.c., A.f.c.s.r.

Certificate of Analysis

17506
Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C.-1C. 8

SAMPLE NUMBERS
Accurassay
99196
99197
99198
99199
99200
99201
99202
99203
99204
99205
99205
99206
99207
99208
99209
99210
99211
99212
99213
99214
99214
99215
99216
99217
99218
99219
99220
99221
99222
99223
99223

Gold Oz / T

Date: \qquad February 8

Work Order \# : 880118 Project

Gold pph

	<0.001	<5	
97501	<0.001	9	
97502	<0.001	<5	
97503	<0.001	9	
97504	<0.001	17	
97505	12		
97506	<0.001	15	
97507	<0.001	21	
97508	<0.001	25	
97509	<0.001	14	
97510	<0.001	10	Check
97510	<0.001	22	
97511	<0.001	25	
97512	<0.001	27	
97513	<0.001	20	
97514	<0.001	26	
97515	<0.001	24	
97516	<0.001	23	
97517	<0.001	33	
97518	<0.001	28	
97519	<0.001	34	Check
97519	<0.001	15	
97520	<0.001	10	
97521	<0.001	14	
97522	<0.001	19	
97523	<0.001	18	
97524	<0.001	17	
97525	<0.001	15	
97526	<0.001	36	
97527	0.001	27	
97528	<0.001	36	Check
97528	0.001		

Per:

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA
P2N 3 J 5
TEL.: (705) 567-6343

Certificate of Analysis

Page: 2

17507 Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

SAMPLE NUMBERS
Accurassay
99224
99225
99226
99227
99228
99229
99230
99231
99232
99232
99233
99234
99235
99236
99237
99237

Customer
97529
97530
97531
97532
97533
97534
97535
97536
97537
97537
97538
97539
97540
97541
97542
97542

Gold Oz / T
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Date: February 8.

Work Order \# : 880118 Project

Gold ppb

13
22
18
18
19
23
34
26
22
25
12
10
15
18
14
16

Check

Check

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA
P2N 3J5
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem IOnt.I, C. Chom IU.K.I. M.C.I.C., M.R.S.C., A.R.C.s.t.

Certificate of Analysis

17708
 Northern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

SAMPLE NUMBERS
Accurassay
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100293

Customer
$97543 A$
$97544 A$
$97545 A$
$97546 A$
$97547 A$
$97548 A$
$97549 A$
$97550 A$
$97551 A$
$97552 A$
$97552 A$
$97553 A$
$97554 A$
$97555 A$
$97556 A$
$97557 A$
$97558 A$
$97559 A$
$97560 A$
$97561 A$
$97561 A$
$97562 A$
$97563 A$
$97564 A$
$97565 A$
$97566 A$
$97567 A$
$97568 A$
$97569 A$
$97570 A$
$97570 A$

Gold Oz/T
<0.001

Page: 1

13

14
<0.001 19
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.001
<0.001
<0.001
<0.001
<0.001
0.002
<0.001
<5
< 5
<5
<5
<5
5
<5
<5
<5
10
<5
<5
<5
<5
<
< 5
26
18
12
8
48
20
く5
<5
27
64
< 5

Date: \qquad 19 \qquad

Work Order \# : 880134
Project
Gold ppb

Check

Check

Check

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, m.Sc., Ph. o., c. Chem IOnt.), c. Chem IU.K.I, m.c..c., M...s.s.c., A.R.c.s.t.

Certificate of Analysis

Page: 2
$17709 \begin{aligned} & \text { Horthern Dynasty Expl. Ltd. } \\ & \\ & \text { 844 West Hastings Street } \\ & \text { Vancouver, B.C. } \\ & \text { V6C-1C8 }\end{aligned}$

SAMPLE RUMBERS
Accurassay
100294
100295
100296
100297
100298
100299
100300
100301
100302
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100311
100312
100313
100314
100315
100316
100317
100318
100319 100320 100320 100321

Customer
97571A
97572 A
97573 A
97574 A
97575 A
97576 A
97577 A
97578 A
97579 A
97579 A
97580 A
97581 A
97582 A
97583 A
97584 A
97585 A
97586 A
97587 A
97588 A
97588 A
97589 A
97590 A
97591 A
97592 A
97593 A
97594 A
97595 A
97596 A
97597 A
97597 A
97598 A

Gold
Oz/T
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
Result to be forwarded
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.001
<0.001
<0.001
0.002

Gold ppb

Date: \qquad February 15 19 \qquad

Work Order \# : 880134
Project

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N $3 J 5$
TEL.: (705) 567-6343
President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., c. Chem tont.I, c. Chem IU.K.I, M.c.I.c., M.R.s.c., a.R.c.s.t.

Certificate of Analysis

17710 Horthern Dynasty Expl. Ltd. 844 West Hastings Street Vancouver, B.C. V6C-1C8

SAMPLE NUMBERS
Accurassay
100322
100323
100324
100325 100326 100327 100328 100329 100329 100330 100331 100332 100333 100333

Gold Oz / T
0.001

97599A 97600A 97601A 97602A 97603A 97604A 97605A 97606A 97606A 97607A 97608A 97609A 97610A 97610A

Date: \qquad February 15 19 88

Work Order \# : 880134 Project :

Gold ppb

51
11
15
11
<5
<5
<5
<5
9
10
10
9
6
9 Check

Page: 3

INDUCED CATION PLASMA (I.C.P.) SPECTROMETRIC ANALYSES FOR DIAMOND DRILLCORE SAMPLES

```
GEOCHEMICAL ANALYSIS CEFTIFICATE
```


- SAnPLE IYPE: Pulo

NORTHERN DYNASTY File 88-0064

5AppL¢	no	0	P)	2"	AS	N1	CO	M	15	AS	v	au	In	\$R	CO	51	11	\downarrow	0	p	41	CR	H6	14	11	1	α	Na	k	
	PPM	PFM	PFM	PP\%	FP\%	PPM	PP\%	fF\%	:	PF\%	PPM	PFM	PF\%	PPM	PFM	PPM	PPK	FPM	1	1	PFR	PF\%	1	PPM	1	PPM	1	,	8	F9\%
9021	i	91	-	72	. 1	62	29	997	4.30	$?$	\%	W))	642	1	,	3	13	1.32	. 092	32	135	2.41	131	. 01	3	. 25	. 02	. 10	1
7038	i	\#	1	59	. 1	31	15	700	3.62	,	\$	NB	1	146	1	1	2	11	1.34	. 011	21	215	.13	660	. 01	1	. 30	. 01	. 12	1
1043	2	:8	6	7	. 1	32	17	127\%	5.39	5	5	ND	1	105	1	,	7	13	2.13	. 115	32	149	. 92	612	. 01	8	. 35	. 04	.13	1
7015	2	57	,	8	.1	18	13	1371	S. 18	10	3	20	-	191	1	1	!	18	. 79	. 102	25	251	. 30	110	. 01	b	. 39	. 05	. 13	2
1054	2	48	13	59	.1	42	13	1735	6.33	30	5	* 0	3	159	1	1	5	11	1.75	. 120	23	262	. 85	63	. 01	1	. 29	. 03	. 08	2
1061	1	37	4	31	. 1	13	!	521	2.80	1	5	N ${ }^{\text {d }}$	3	85	1	2	5	1	3.05	. 074	19	140	. 92	11	. 01	75	. 58	. 02	. 10	1
1081	1	23	5	6	.1	21	15	826	3.75	$?$	3	N0	3	597	1	2	,	is	3.85	. 083	22	167	1.11	725	. 01	31	. 31	. 04	. 12	1
7067	1	15	2	41	.1	21	10	Sis?	2.58	3	5	ND	1	166	,	2	2	6	1.4	.083	29	126	1.11	281	. 01	32	. 38	. 04	. 13	1
7096	,	39	b	32	.1	88	11	359	2.6?	36	5	NO	1	382	1	8	8	1	3,8!	. 037	26	89	8.06	32	. 01	!	. 30	. 03	. 08	1
7079	$?$	4	19	48	. 2	146	33	672	4.12	66	3	NO	,	374	,	2	2	4	1.90	. 086	19	136	2.89	32	. 01	9	. 48	. 01	.11	1

ACME ANALYTICAL LAEOFATOFIES LTD.
BE2 E. HASTINGS ST. VANCOUVER E.C. VGA IRG
FHONE (604)255-3158 FAX(604)253-1716

GEOCHEMICAL ANALYEIS CEFTIFICATE

- SAMPLE TYPE; ROCX PUP

DATE RECEIVED: MAR 081986 date feforit mailedi Man $/ / / 8<$

ASSAYEF.:...... TOYE OF C.LEONG, CEFTIFIED E.C. ASSAYEFS
NORTHERN DYNASTY
File 88-0680
Fage 1

jamplis	mo	Cl	9	$3 N$	45	Ni	60	m	F\%	AS	V	AU	IH	58	CO	st	81	v	Ca	p	LA	CR	M6	BA	11	B	AL	NA	K	U
	PFR	PFM	fFM	PPM	PfY	FPM	PPM	PPM	1	PPM	PPM	PPM	PP\%	PFM	PFM	PFM	PFM	PFM	1	1	PPM	PP\%	:	PFM	1	PP\%	1	:	:	PFM
3001	2	58	33	54	. 3	45	19	786	4.45	3	8	ND	5	801	1	2	2	11	3.85	. 123	25	22	2.48	8 ?	. 01	5	. 36	. 04	. 15	
9005	2	44	3	12	. 3	49	13	481	2.87	45	8	ND	9	640	1	2	2	1	2.16	. 072	29	15	1.48	57	.01	2	. 24	. 02	.12	
7012	3	60	17	41	.2	102	19	624	4.20	94	7	ND	,	700	1	4	2	1	2.47	. 100	17	19	2.16	54	. 01	2	. 23	. 02	. 09	
$710!$	1	37	5	24	.2	18	6	658	2.23	2	5	N0	3	86	1	2	2	10	3.46	. 061	14	161	1.31	80	. 01	1	. 56	. 03	. 13	
7116	1	3	6	33	.2	21	8	513	2.12	2	5	ND	1	128	1	7	2	11	3.17	. 062	18	178	1.26	404	. 01	3	. 48	. 04	. 11	1
7130	2	11	3	80	.1	63	22	135	4.17	10	5	N\%	2	11	1	2	2	33	3.62	. 043	4	272	1.43	34	. 01	3	1.87	. 04	. 09	
714	1	51	10	13	. 5	61	35	626	$3.7 ?$	13	5	No	3	191	1	2	2	19	3.09	. 040	1	187	1.10	32	. 01	5	1.07	. 04	. 10	
1159	1	72	5	15	. 3	65	30	1225	4.80	3	5	No	1	109	1	2	2	18	2.79	. 092	18	163	1.15	74	. 01	3	1.01	. 21	.17	
7178	,	61	5	78	.j	39	25	1227	5.95	5	5	No	5	173	1	2	2	17	2.31	. 132	32	110	1.2i	715	. 01	2	. 38	. 04	.15	
1185	1	24	i	59	. 1	i)	14	672	3.18	1	6	ND	6	248	1	2	2	15	2.07	. 097	29	149	1.23	1310	. 01	6	. 37	. 05	. 13	1
7189	1	26	10	32	. 2	30	15	793	3.21	1	9	ND	5	331	1	2	2	13	1,34	. 065	20	284	1.62	996	. 01	5	. 21	. 03	. 10	
7193	1	35	12	62	. 2	41	19	1708	4.38	5	11	No	5	559	1	2	2	11	\$. 95	. 097	20	123	2.19	1118	. 01	4	. 39	. 02	.10	I
7198	1	29	6	42	. 2	29	20	691	3.43	2	5	Ni	6	250	1	2	2	16	2.21	. 113	31	114	. 99	283	. 01	1	. 48	.04	. 18	2
7199	1	32	8	54	. 2	33	16	897	3.60	3	6	$N 0$	3	335	1	2	2	13	4.18	. 084	23	203	1.76	155	. 01	5	. 30	. 03	. 11	1
7202	1	19	8	46	. 2	35	17	1008	3.60	4	9	ND	5	361	1	2	2	17	\$.31	.073	19	278	1.97	659	. 01	5	.42	. 02	.12	1
7210	1	77	7	47	. 2	36	29	713	3.79	1	5	18		282	1		3	14	2.93	. 104	27	159	1.31	134	. 01	1	. 47	. 03	. 14	2
7217	1	22	10	69	. 2	39	29	835	4.17	\%	6	N0	6	699	1	1	2	15	3.23	. 107	31	131	1.50	635	. 01	6	. 11	. 04	. 11	1
7219	1	12	-	46	. 2	32	15	886	3.26	3	10	$N 8$	6	366		,	2	23	4.68	. 094	27	269	1.94	319	. 01	1	. 53	. 04	. 19	1
7222	1	12	7	59	. 3	38	18	978	1.08	1	5	NO	-	159	1	2	2	12	1.71	. 121	30	146	1.01	266	. 01	-	. 39	. 03	. 15	1
7226	1	38	4	55	. 2	37	21	1131	4.11	9	5	NO	5	157	1	2	2	17	2.14	. 112	23	11	1.51	97	. 01	3	. 16	. 04	. 16	1
7229	.	36	51	55	4	11	23	1425	6.63	38	5	ni	3	131	1	2	3	21	2.16	. 110	32	99	1.73	102	. 01	3	. 39	. 06	. 20	2
1230	2	44	10	71	. 3	85	26	661	4.06	123	3	no	9	4	1	2	2	7	1.00	. 062	21	10	1.04	18	. 01	4	. 43	. 03	. 15	1
72\%	2	58	46	63	.	91	25	864	5.10	130	5	No	5	107	1	1	3	16	1.25	. 080	20	103	1.13	16	. 01	-	. 46	. 04	. 15	1
7241	:	$6{ }^{6}$	\dot{d}	58	.2	≥ 8	20	1535	4.93	7	7	$n 0$	4	312	1	2	2	27	9,90	. 116	14	174	1.33	213	. 01	,	. 40	. 04	. 13	1
7247	2	33	9	74	. 4	31	18	1909	+. 58	1	5	ND	3	370	1	2	2	17	1.61	. 084	1	177	1.38	108	. 01	2	. 13	. 02	. 05	1
7255	2	21	6	49	. 1	25	12	1289	3.97		-	ND	,	338	,	2	3	17	5.52	. 109	18	131	1.62	226	. 01	3	. 18	. 02	. 05	1
7259	1	43	8	62	. 3	$3!$	21	1000	4.69	2	3	ND	1	570	1	8	2	20	1.00	. 133	34	11	. 88	879	. 01	8	. 35	.04	. 15	1
7263	1	68	9	49	. 3	35	26	1002	4.07	\$	5	N0	5	163	1	2	3	13	1.72	. 123	26	115	1.05	241	. 01	1	. 29	.03	. 11	1
7274	1	33	6	57	. 3	46	25	844	4.09	4	5	ND	1	349	1	2	3	12	3.16	. 115	13	100	1.75	117	. 01	2	. 13	. 02	. 13	,
7281	1	41	7	48	. 3	14	17	898	3.33	1	5	NO	1	171	1	2	3	14	4.15	. 106	24	45	1,49	133	. 01	6	. 56	. 02	. 12	2
7299	5	79	12	35	. 1	12	23	1175	3.31	13	11	N0	2	334	1	2	2	13	b.35	. 057	10	137	2.51	634	. 01	$?$. 36	. 01	.12	2
3293		26	10	38	. 2	25	11	616	2.39	\$	1	ND	1	371	1	2	2	10	3.18	. 071	32	336	1.62	1245	. 01	13	. 53	. 03	. 10	,
1294	1	17	7	30	. 1	20	13	588	2.03	3	6	NO	1	223	1	1	,	-	3.71	. 075	17	76	1.47	488	. 01	$?$. 36	. 02	. 09	2
7299	1	26	5	14	. 2	33	14	346	2.24	3	5	N0	1	178	1	2	2	+	3.93	. 082	21	127	. 97	505	. 01	1	. 33	. 04	. 09	1
STD C	17	57	40	127	6.8	SB	28	1026	4.19	39	20	7	36	41	16	11	20	53	. 51	. 088	33	$\$ 8$. 39	174	. 06	33	1.84	. 0 ?	. 14	10

NORTHERN DYNASTY FILE * BE-0680

SAMPLEI	no	CU	PI	2N	${ }^{\text {AS }}$	NI	60	MN	FE	AS	V	ANJ	IH	SR	CD	Si	11	V	CA	\cdots	41	CR	M6	A	11	1	N	NA	k	V
	PFM	PFM	PFM	PPM	PFM	PF\%	PFn	PPM	1	PP\%	PPM	PPM	PPM	PP\%	PPM	PP\%	PPM	PF\%	1	1	PPM	PP\%	1	PPM	1	PFK	\%	1	1	PPM
3293	!	36	8	57	.2	14	12	670	2,03	5	5	NV	2	144	1	2	2	11	3.51	. 097	12	161	1.42	68	. 01	1	. 67	. 01	. 16	1
3284	1	56	1	46	. 2	13	18	128	2.82	\$	7	10	3	401	1	2	2	11	4.07	. 012	14	16	1.65	494	. 01	1	. 50	. 04	. 19	3
3388	1	36	4	57	. 2	31	11	127	3.59	5	7	N0	3	372	1	2	2	15	3.43	.088	11	316	2.35	329	. 01	3	. 59	. 02	. 11	1
3294	1	41	5	38	. 1	8	14	121	2.68	1	5	N1	1	294	1	,	2	16	4.03	. 121	32	69	1.62	419	. 01	J	. 28	. 03	. 14	2
91522	1	56	12	80	.2	49	34	1340	6.75	16	5	NO	3	217	1	2	2	21	2.87	. 121	19	64	2.07	55	. 01	4	. 51	. 04	. 10	1
97527	,	69	6	72	. 3	4	21	1438	6.76	3	\$	ni	1	187	,	3	J	31	2.99	. 132	19	4	1.51	47	. 01	5	. 36	. 04	. 13	1
97531	2	112	1	38	. 1	17	16	954	3.63	3	3	W 10	4	360	1	2	2	11	5.01	. 105	26	6	1.63	675	. 01	-	. 31	. 02	. 15	1
97533	1	50	2	37	.2	17	13	931	3.36	5	5	10	1	340	1	,	1	12	4.28	. 097	22	134	1.39	145	. 01	2	. 29	. 05	. 11	1
97535	1	9	3	64	. 2	44	14	780	3.74	4	5	WD	1	124	1	2	2	28	3.23	. 091	28	136	2.72	478	. 01	2	1.41	. 06	. 16	1
975454	1	57	$1!$	94	. 1	43	22	1178	5.87	3	3	ND	3	249	1	3	2	30	2.88	. 185	18	40	1.49	241	. 01	3	. 34	. 03	. 14	1
97546A	,	13	9	85	. 3	40	19	1304	5.76	2	5	010	,	309	I	3	3	22	2.91	. 125	18	60	1.55	214	. 01	3	. 39	. 04	. 17	1
97557a	1	11	6	37	. 2	26	13	1266	3.17	5	5	N0	3	250	1	2	2	10	3.05	. 088	16	126	1.42	36	. 01	2	. 27	. 01	. 12	1
97565 ${ }^{\text {a }}$	2	14	12	20	.2	31	32	1018	2.92	42	5	ND	1	140	1	2	2	14	4.80	. 089	11	256	1.76	34	. 01	3	. 24	. 01	. 11	1
975704	1	26	6	38	. 3	25	12	983	3.62	5	5	N0	4	358	1	2	2	17	4.14	. 115	30	19	1.26	154	. 01	1	. 64	. 02	. 38	1
975714	3	67	5	17	. 3	23	18	592	2.31	10	5	No	3	193	1	2	2	11	2.84	. 118	19	163	. 84	91	. 01	6	. 35	. 01	. 23	1
97588A	1	23	5	69	.2	41	17	839	4.30	5	5	No	1	336	1	2	2	66	3.22	. 098	39	252	3.09	311	. 02	2	1.58	. 11	. 15	1
97596 ${ }^{\text {a }}$	1	31	6	41	. 2	26	13	898	3,32	7	5	N0	5	612	1	2	2	23	3.85	. 101	28	112	1.91	1263	. 01	3	. 82	. 04	. 21	1
97598 ${ }^{\text {a }}$	1	37	6	49	.j	32	18	14	3.12	8	5	Ni	1	315	1	2	2	21	3.86	. 090	33	89	2.03	109	. 01	2	. 96	. 05	. 21	1
5106	17	58	37	132	7.1	68	31	1021	1.12	10	20	1	36	47	17	18	18	58	. 49	. 086	37	55	. 93	175	. 06	35	1.83	. 08	. 14	10

APPENDIX 6
AUTHOR'S CERTIFICATION

AUTHOR'S CERTIFICATION

I, George Gorzynski, of 3836 West 16 th Avenue. Vancouver, British Columbia, hereby certify as follows :
1.

That I am a registered Professional Engineer in the Province of British Columbia.
2. That I graduated from the University of Toronto with a Bachelor of Applied Science Degree in Geological Engineering/ Mineral Exploration in 1978, and from the University of British Columbia with a Master of Applied Science Degree in Economic Geology in 1986.
3.

That I have practised my profession since 1978.
4. That I supervised or personally carried out the fieldwork and then authored this report based on the $1987-88$ program on the Virginiatown Property.

APPENOIX 7

NORTHERN OYNASTY EXPLORATIONS LTD.
VIRGINIATOWN PROPERTY
1987-88 DIAMONO ORILL PROGRAM

DRILL LOGS AND SECTIONS
FOR HOLES VT-87-1 TO VT-87-6
ANO VT-88-1 TO VT-88-6

To accompany '1987-88 Summary Report' by G. Gorzynski. P.Eng.

March. 1988

DIAMOND ORILL RECORD


```
                                    Poge 2 of }
                                    OOH VT 87-01
From

```

hole summary - (Cont'd)
$123.6 \quad 125.8$ Locally altered conglomerate.
125.8 136.1 Sandstone/siltstone: local K-feldspar, bleaching, slifica alteration.
136.1 167.3 Localiy altered conglomerate: sparse K-feldspar, bleaching, and silica alteration, becoming weaker downtole.
167.3 END OF HOLE

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Hole No.: & vi 87-01 & Started: & November 25. 1987 & & & \multicolumn{8}{|c|}{Hole Survey} \\
\hline Property: & Virginiatown & Completed: & November 27, 1987 & & & Met & eroge & & Azimuth & Dip & & & Method \\
\hline Claim No.: & L767378 & Logged by: & G. Gorzynski, J. Ho & & & & 0.0 & & \(320^{\circ}\) & (correct \(-44^{\circ}\) & & & Compass \\
\hline Ret. Co-ord.: & & Drill contractor: & Langley Orilling, Brampton, Ontario & & & & 60.7 & & & -41 & & & Actd \\
\hline Elevation: & & Assayer: & Accurassay Laboratorles, Kirkland Lake. Ontorio & & & & & & & \(-30^{\circ}\)
-30 & & & \begin{tabular}{l}
Acid \\
Acid
\end{tabular} \\
\hline Surveyed: & No & & & & & & & & & & & & \\
\hline Grid Co-ord.: & L47+80W, 24+60S & Purpose: & 1. To test surface gold anomalies. & & & & & & & & & & \\
\hline Core Size: & BQ & & 2. To test cross foults. & & & & & & & & & & \\
\hline Casing Left: & No & & & & & & & & & & & & \\
\hline From To & & & DESCRIPTION & & & SAMPLE & & & & ASSA & & & \\
\hline (Metric) & & & & From & To & Length & No. & Rec & Au & Ag & Zn & Pb & Cu \\
\hline
\end{tabular}
1.726 .0 SANDSTONE/SILTSTONE: Mainiy-banded IIght to dork grey: bedding typically \(\leqslant 2 \mathrm{~cm}\) thick - several massive sandstone beds \(\leqslant 50 \mathrm{am}\); rare scours and graded beds indicate stratigraphic tops downhole: non-mag; non-calc; several limonitic fractures to 9.4 m ; predominantly phyllitic; bedding/ foltation at: \(40^{\circ}\) to core axis at \(1.7-18.0 ; 45^{\circ}\) to core axis at \(18.0-26.0 \mathrm{~m}\); basal contact gradational over 1.8 m ;
NLERATION: 11.7-16.0: slight bleaching/sericitization?
16.0-26.0: highly bleached light green sericite bands intercalated with ifight grey sandstone.
MINERALIZATION: 20.4-20.6: 808 white quartz veins; trace chalcopyrite.
26.036 .4 SERICITIC CONGLOMERATE: Polymictic, matrix supported, clast size ranges from \(1 / 3 \mathrm{~cm}\) to 3 cm ; generally angular to subangular, ratio of clasts to motrix 35-65. Clast type dominated by fine grained syenitic intrusive ( 908 ). Lesser amounts of tine-grained volcanic/sedimentary clasts (5\%) and pink quartz. Overall colour. Ilght green, generally soft. Non-magnetic, non-calcareous. Bedding/toliation; highly veriable - \(60-40^{\circ}\) to core axis.
\begin{tabular}{ccccc}
26.0 & 27.5 & 1.5 & 7301 & 5 \\
27.5 & 30.2 & 2.7 & 7302 & 5 \\
30.2 & 32.9 & 2.7 & 7303 & 5 \\
32.9 & 35.2 & 2.3 & 7304 & 16 \\
35.2 & 36.4 & 1.2 & 7305 & 1603
\end{tabular}

NLTERATION: Both matrix and clasts altered to a sericite dominant alteration assemblage. Lesser amounts of irregulariy formod zones of silicification. 58 emerald green Cr-mica tragments(?) and wisps. Not pervasively developed.
MINERNLIZATION: 1-2x euhedral pyrite cubes up to \(1 / 2 \mathrm{~cm}\) in size. Appear to be localized between 27.5-32.9 m. Dominantiy in the matrix but some pyrite found in quartz tragments. Basal contact grodation over \(\sim 20 \mathrm{~cm}\). "Colncidence with mag spike.*

\section*{Poge 4 of 6}

\section*{From \(\frac{\text { To }}{(\mathrm{Matr}}\)}
36.439 .0 CONGLOMERATE: Polymictic, matrix supported, simllar clast assemblage as soricitic conglomerate. Dork grey in colour
MINERALIZATION: Commonly cut by quartz veins orlented about \(90^{\circ}\) to clasts, clasts follation parallel. Also some quartz velns have inclusions (xenoliths) of host - hydrostatic brecciatlon. Overall not highly altered. Follation to core axis: \(37.0 \mathrm{~m}-45^{\circ}, 39.8 \mathrm{~m}-40^{\circ}\). Basal contact gradational over 5 cm .
\(39.0 \quad 40.0\)
SERICITE, K-FELOSPAR ALTERED CONGLOMERATE: Serlcite 25\%, K-feldspar 25\%. Primary tragments not easily recognized. 39.38-39.52 - quartz-iron-carbonate velns, shorp but irregular margins. Foliation to core axis: 39.8-50. Basal contact gradational over 10 cm .
40.0 41.2 CONGLOMERATE: same as 36.4-39.0 m. 40.68-40.80-quartz veins with corbonate (Ca) halo. Basal contact gradational over 10 cm .
41.2 54.8 SERICITIC, K-FELDSPAR CONGLOMERATE: same as 39.0 - 40.0 m. Primary structures again, difficult to recognize.
MINERNLIZATION: \(12 x\) quartz vèln development, velins rimmed with carbonate (ankeritic, dolomitici), \(<3 \mathrm{~mm}\) wide. Disseminated fine tourmaline within quortz veins ( \(<28\) obundance). Minor sulphides (218), comprised of pyrite and chalcopyrite, occuring as fracture coats within the quartz velns. Cr-mica occurs as before, In irregular tragnents, wisp-1ike forms ( < \(3 \%\) ). Local vug structure in quartz-carbonate vein ( \(\sim 51.3 \mathrm{~m})\).
54.8 83.5 CONGLOMERATE: same as 40.0-41.24m.

MINERNLIZATION: 54.8-57.6 - moderately Intense (10\%) quartz-carbonate velns. Generally \(<3 \mathrm{~cm}\) In with, moderate halos of sericitization and K-feldspar. Alteration abundant quartz veins. Downhole quartz-carbonate velins become fewer but larger in size, averaging \(\mathbf{>} \mathbf{1 5} \mathrm{cm}\), also more intense sericitic and K-feldspor alteration.
62.3-62.7 - quartz carbonate-K-feldspar veln, with inclusions of host.
69.9-70.1 - quartz carbonate vein with later cross cutting K-feldspar ililed fractures. Tourmaline observec on fracture and follation surfaces.
72.7-74.2 - quartz-carbonate-sericite-black chlorite-iron-cerbonate veins and corbonate and K-feldspar alteration.
75.5-76.2 - quertz carbonate veln with o sericite-K-feldspar altoration halo
76.3-76.9 - core ground, abourt \(60 \%\) recovery.
76.9 - 77.1 - quartz-carbonate - Cr-mica (trace) veln.
77.1 - 78.9 - no recovery - core tube did not lock.
78.9 - 83.1 - varlable amounts of quartz-carbonate velns and mild sericitic-k-feldspar alteration zone. Basal contact gradational.
\(\frac{\text { SAMPLE }}{\text { From }} \frac{\text { To Length }}{}\)

\begin{tabular}{llllr}
40.0 & 41.2 & 1.2 & 7308 & 5 \\
& & & & \\
41.2 & 43.5 & 2.3 & 7309 & 13 \\
43.5 & 44.7 & 1.2 & 7310 & 5 \\
44.7 & 46.7 & 2.0 & 7311 & 5 \\
46.7 & 48.2 & 1.5 & 7312 & 5 \\
48.2 & 49.7 & 1.5 & 7313 & 5 \\
49.7 & 50.7 & 1.0 & 7314 & 11 \\
50.7 & 52.3 & 1.6 & 7315 & 12 \\
52.3 & 53.8 & 1.5 & 7316 & 12 \\
53.2 & 54.8 & 1.6 & 7317 & 26 \\
& & & & \\
54.8 & 57.6 & 2.8 & 7318 & 5
\end{tabular}
\begin{tabular}{lllll}
62.3 & 62.7 & 0.4 & 7319 & 5 \\
69.9 & 70.1 & 0.2 & 7320 & 5 \\
72.7 & 74.4 & 1.7 & 7321 & 5 \\
75.5 & 76.2 & 0.7 & 7322 & 5 \\
76.9 & 77.1 & 0.2 & 7323 & 5 \\
78.9 & 80.9 & 2.0 & 7324 & 84 \\
80.9 & 83.3 & 2.4 & 7325 & 5
\end{tabular}
83.5 95.8 SERICITE-K-FELOSPAR CONGLOMERATE: Highly oltered, light green to belge mosalc, fairly evenly distrlbuted. More altered zones ore quite soft. Where quortz veining is intense, get brecciation of host. Non-magnetic, slightly local calcareous zones (<58). Follation to core axis \(85 m-50^{\circ}, 91 m-45^{\circ}\).
ALTERATION: Dominantiy sericitizotion \(40 \%\) and K-feldspar addition, \(30 \%\) with small zones of silicification about quartz velins - some quartz veins have ankeritic(?) halos and inclusions. oisseminoted Cr-mica (<ix).
MINERALIZATION: Sulphides located with tourmaline/black chlorite tracture fills, sulphide dominantly pyrite ( \(<1 \%\) ). Also of basol contact fine disseminations of chalcopyrite and pyrite ( \(<2 x\) total). Zones of ground core indicative of ground water flow(?) which may colncide with brittle deformation zones(?), also coated with limontte. N.B. spring teed zone located at 88.5 - 89.7 m .
95.8 109.1 CONGLOMERATE: same as 40.0-41.2 m. Upper section is finer gralned, giving way to typical breccial
tragmental assemblage. N-TERATION: FRa
alteration:
96.4-97.1 - mild sericitic (5\%) and K-feldspar (154) alteration plus small ( 2 cm ) quartz velns (108).
100.9-102.3 - pervasive finely developed sericitic (10x) and K-feldspar (40\%) alteration with quartz-carbonate veins (2x), possible tourmaline (black chlorite?) fracture fills and calcium corbonate fracture fllls ( 58 froctures). Note: ground core at 101.4 - 101.6 m .
104.6-105.7-intensely altered, K-feldspar (45\%), sericite (15\%) and silicification (20\%), quartz velns, small \((<2 \mathrm{~cm})(2 x)\); minor \(C r-m i c a(<1 x)\). Sericite not uncommonly found os a halo about quartz veins. All contacts between alterations are gradational over a distance of \(10-15 \mathrm{~cm}\). Follation to core axis: \(102.6 \mathrm{~m}-65^{\circ}\), \(104.1 \mathrm{~m}-53^{\circ}\) : appears to be increasing relative to core axis.
109.1 123.6 SERICITIC CONGLOMERATE: SImilar to previlous but clasts not altered to the same degree. Matrix preferentialiy altered to K-feldspar (45x) and sericite (30x), minor amounts of Cr-mica (< 1\%).
MINERALIZATION: The entire section is sprinkled with very fine ( \(<0.5 \mathrm{am}\) ) gralned pyrite and minor amounts of chalcopyrite, < 27 in total sulphides - these sulphides occur dominantly where the sericite and K-feldspar alteration is most intense, though not all zones of intense alteration has suiphlde development. Also some sulphides have been found in the breccia clasts which display a high degree of alteration. Black, flakey hematite has also been found as fracture fills, often accompanied with pyrite and/or chalcopyrite, \(2 \%\) of fractures are as such. Caiclum carbonate has also been found as fracture fills as well as minor amounts

SAMPLE
From To Length
No. \(\frac{\text { Rec }}{x}\)
\(\frac{A S S A Y S}{\frac{A u}{(p p b)}-\frac{A g}{(p p m)}} \frac{\mathrm{Zn}}{(p p m)} \frac{\mathrm{Pb}^{(p p m)}}{\frac{\mathrm{Cu}}{(p p m)}}\)
\begin{tabular}{llllr}
83.3 & 85.0 & 1.7 & 7326 & 10 \\
85.0 & 88.0 & 3.0 & 7327 & 6 \\
88.0 & 89.8 & 1.8 & 7328 & 5 \\
89.8 & 91.9 & 2.1 & 7329 & 10 \\
91.9 & 93.6 & 1.7 & 7330 & 5 \\
93.6 & 96.4 & 2.3 & 7331 & 9
\end{tabular}
\begin{tabular}{llllr}
109.1 & 111.4 & 2.3 & 7335 & 5 \\
111.4 & 113.0 & 1.6 & 7336 & 7 \\
113.0 & 115.3 & 2.3 & 7337 & 7 \\
115.3 & 116.8 & 1.5 & 7338 & 8 \\
116.8 & 118.7 & 1.9 & 7339 & 7 \\
118.7 & 120.8 & 2.1 & 7340 & 16 \\
120.8 & 122.3 & 1.5 & 7341 & 8 \\
122.3 & 123.6 & 1.3 & 7342 & 5
\end{tabular}
disseminated into the host. Foliation to core axis: \(112.7 \mathrm{~m}-60^{\circ}\), \(116.6 \mathrm{~m}-55^{\circ}, 122.9-50^{\circ}\). Gradational basal contact over a length of 10 cm .

CONGLOMERATE: same as above, 95.8-109.1 - clast to matrix ratio getting smaller. NLTERATION: Minor ( \(<5 x\) ) weak zones of sericitic alteration with trace pyrite development. 124.8-125.8 - core ground, coincides with topographic depression. Remnant quartz found. also trace pyrite. Fault zone? Basal contact relatively abrupt.
125.8136 .1 SANDSTONE/SILTSTONE: Interbedded on a \(1-3 \mathrm{~cm}\) scale. No primary textures visible. Non-calcareous, non-magnetic.
NLERATION: Patchy zones of K-feldspar addition-silicification. Sericitizotion less common,
approximately 158 patchy weak alteration. Sericite also occurs as o primary metamorphic mineral.
\(\begin{array}{llllllllllllllllllllll}135.2-136.4 \text { - moderately more intense alteration. Bedding/foliation to core axis: averaging } & 135.2 & 136.4 & 1.2 & 7344\end{array}\) approximately \(60^{\circ}\). Basal contact sharp.

CONGLOMERATE: same as before, 123.6 - 125.8. Clast to matrix ratio larger, fragments generally \(\begin{array}{llll}141.6 & 144.7 & 3.1 & 7345\end{array}\) smaller. Minor interbeds of 's'andstone/silitstone units. Non-magnetic, non-calcareous. Foliation/ \(154.4 \quad 156.9 \quad 2.5 \quad 7346\) bedding to core axis: averaging \(60^{\circ}\).
NLERATION: Generally patchy -zones of K-feldspar, sericite-tsilica additions. More pervasive in upper sections. Lower sections, sericitization, with lesser amounts of K-feldspar are generally restricted to stringers in the matrix.
167.3 END Of HOLE

\section*{Notes:}
1. Difficult to assess proportions of carbonate due to cold weather while logging.
2. Core recovery generally \(100 \%\).



Hole No.: VT 87-02 Sterted:
November 28. 1987

Hole Survey
Property: Virginlotown
Claim No.: L666338
Ret. Co-ord.:
Elevetion:
Surveyed: No
Grid Co-ord.: \(30+75 \mathrm{H}, 3+50 \mathrm{~S}\)
Core Size: \(\quad 89\)
Cosing Left: No

0.0 17.4 Casing: Few mafic volcanic pebbles recovered. Casing may have been oriven olong way into bedrock. Overburden is reported to be mainly clay.
17.4 136.9 SERICITE SCHIST: LIght green with off-white bands and patches; banding is typically vague, \(\leqslant 1 \mathrm{~cm}\) thick; entire unit is generally very uniform in appearance; non-magnetic, non-calcareous; patchy sections ore poorly developed breccia zones; sparse sectlons ( \(\leqslant 15 \mathrm{~cm}\) ) are silicifled; generally non-siliceous at top of unit, becoming moderately siliceous downhole; foliation to core axis \(=\) \(40^{\circ}\) ot \(17.5 \mathrm{~m}, 40^{\circ}\) at \(23.5 \mathrm{~m}, 50^{\circ}\) ot \(31.0 \mathrm{~m}, 45^{\circ}\) ot \(36.5 \mathrm{~m}, 40^{\circ}\) at \(42.5 \mathrm{~m}, 40^{\circ}\) ot 46.0 m . Small ( \(<7 \mathrm{~cm}\) width) rhyolitictquartz dikelets/veins(l) intersecting core section ( \(<38\) abundance). Sections of broken core (faults?) at 24.6-27.1 m (core tube did not lock), 28.3-29.3 m, and small sections el sewhere:
ALTERATION: Sparse local highiy silicifled sections ( \(\leqslant 15 \mathrm{~cm}\) ) - very rare disseminoted Cr-mica. MINERNLIZATION: Sparse (<<ls) pink quartz velns ( \(\leqslant 15 \mathrm{~cm}\) ) parallel to follation.
17.4-20.7-< 18 disseminated pyrite; only trace pyrite elsewhere; fine ( 1 mm ) velniets at 43.9 m and 48.8 m host 0.58 pyrrhotitepyrite and 38 molybdenum( 2 ).
45.2-45.4-3 cm quartz-black chloritic velnlet at \(10^{\circ}\) to oore axis; rare thin ( \(\leqslant 3 \mathrm{~mm}\) ) similar veinlets occur elsewhere.
57.0-59.3-moderately more silicification ( -87 total rock) in discrete bands. Finely disseminated pyrite (38) assoclated with brecciated quartz velns ( \(<1\) can wide), ( -38 total). pyrite often concentroted olong contact zone. Also frocture coated Mo ( -18) and minor fracture coated py ( ~18). This type of fine grained pyrite development occurs of varying intervals, often \(>1 \mathrm{~m}\), and \(<1 \mathrm{~cm}\) wide. Note: ground core at \(58.9-59.0 \mathrm{~m}\).
\[
\frac{\text { From }}{(\text { Metric }} \frac{\text { To }}{}
\]
64.5-66.5 - Overall look the same as above (57.0-59.3); with development of rhyolitic dike) vein ( \(\sim 4 x\) of total rock). Larger dikes/veinlets ( \(>3 \mathrm{~cm}\) ) penetrated with fine grained pyrite ( \(<28\) total sulphide).
68.3-69.8 - Core ground and lost.
68.5 - 68.9 - core lost.
69.5-69.8 - core lost.

Follotion to core axis: \(54.6 \mathrm{~m}-50^{\circ}\); \(57.6 \mathrm{~m}-48^{\circ}, 66.7 \mathrm{~m}-70^{\circ}\).
72.9 - 75.6 - Moderate increase in slze ond trequency of quartz vein, \(\leqslant 5 \mathrm{~cm} \ln\) width, \(5 \%\), abundance, host rock remains a sericite schist. The largest veln ( 18 cm wide) displays trace (1x) chalcopyrite and molybdenite.
75.6 - 77.6 - Similar to 72.9 - 75.6 , < 18 developed pyritic frocture coots, up to 58 of frocture surface coated. Pyrite deformed porallel to foliation.
80.1-82.1 - Same sericite schist but with more trequent, pyritic tracture coats, 28 of rock.
83.1 - 86.0 - Voriabiy silicified ( \(\sim 108\) total rock) and brecciated ( 58 total rock). sericitic schist. Pyrite (38) occurs as rims and inclusions in small ( \(<1 \mathrm{~cm}\) wide) quartz velns and as tine disseminations.
86.0-88.4 - Same as 83.1-86.0, but with less quartz velning. Follation to core axis: \(71.3 \mathrm{~m}-40^{\circ} .74 .4 \mathrm{~m}-45^{\circ}, 83.5 \mathrm{~m}-55^{\circ}\).
89.7-91.2-Typical sericitic schist with pyritic quartz veins. About 58 pyrite over a quartz veln width of typically 1 cm . Quartz vein makes up epproximately 28 of rock: All quartz velns ore either brecclated or highly contorted. Note: Overall, the colour of rock is a dark green.
93.9 - 95.0 - Sericitic schist with approximately if quartz velns and well disseminated fine grained pyrite opproximately \(2 \%\).
99.0-100.1 - Large brecciated quartz veln 358 of section with interstitial chlorite (10\%). Fine gralned pyrite (38) restricted malnily to interstitial areas.
101.1-112.7 - Appearance of highly disrupted tine grained sandstone beds. Disruption includes vertical orientation of bedding to core axis and general contortions.
Also the eppeerance of relatively thick sandstone units ( \(>7 \mathrm{~cm}\) ) which are follation porallel (injection dike?). 102.4-102.7 - poor core recovery, epproximately 75\%. Appearance of talcf serpentine?, sott, IIght green, greasy feel zone.
102.8 - 103.0 - quartz veins (208) with pyritic (28) margins. Overall this section maybe an "M" zone of a fold nose system.
114.2-120.4 - same os 101.1-112.7. Highly contorted tine sandstone bed(2). Fragments and large ( \(>50 \mathrm{~cm}\) ), messive to weokly follated sandstone bed(3)/Injection dikes?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{SAmple} & \multicolumn{5}{|c|}{ASSAYS} \\
\hline From & To & Length & No. & Rec & Au & Ag & Zn & Pb & Cu \\
\hline & & & & \(\%\) & (ppb) & (ppm) & (ppm) & (ppm) & (ppm) \\
\hline
\end{tabular}

11
\begin{tabular}{lllll}
72.9 & 75.6 & 2.7 & 7006 & 5 \\
75.6 & 77.6 & 2.0 & 7007 & 5
\end{tabular}
\begin{tabular}{llllll}
80.1 & 82.1 & 2.0 & 7008 & 5
\end{tabular}
\begin{tabular}{lllll}
83.1 & 86.0 & 2.9 & 7009 & 5 \\
& & & 5
\end{tabular}
\begin{tabular}{lllll}
86.0 & 87.6 & 1.6 & 7010 & 5
\end{tabular}
\(89.7 \quad 91.2 \quad 1.5 \quad 7011 \quad 5\)

Poge 3 of 4 DOH VT 87-02
\(\qquad\)
(Motric)
114.2-116.6-A very contorted zone of smaller quertz-rich sondstone beds(?) which have been cross cut by small (<< 5 mm ) quartz pyritic veins ( 258 veining). Pyrite developed in the seritic rich margins ( \(<0.3 \mathrm{~mm}\) width), pyrite abundence approximotely 38 (overall abundance).
124.8-126.1-18 small pyritic quartz veins, \(\langle 1\) an width, 28 pyrite, in a typical sericitic schist.
134.2-134.7-Typical sericitic schist, but quartz velns, 5\% abundance, have approximately 1\% Cr-mica, olso approximately \(2 \%\) tine grained pyritic, quartz velns \(<3 \mathrm{~cm}\) wide.
134.7-135.5-Rhodochrositetdolomite vein (30:70 ratio). From 134.7-135.2, top contact approximately parallel to follation bottom contact irreguariy parallel to core axis. Fine grained pyrite (-chalcopyrite) disseminated about margins ( 38 abundance), some pyrite found as (approximately 28 of total) inclusions in vein itself. Molybdenite (approximately 1\%) also found as Inclusions. Best of section is dominantly a sericitic schist with finely disseminated pyrite (approximately 28 ). Foliation to core axis: \(118.7 \mathrm{~m}-35^{\circ}\). \(125.1 \mathrm{~m}-.40^{\circ} .129 .2 \mathrm{~m}-40^{\circ}, 133.9 \mathrm{~m}-40^{\circ}\).


\section*{Note:}

Carbonate proportions underestimated due to cold weather, outcrops typlcally display \(20-25 \%\) iron corbonate in this vicinity.
\begin{tabular}{lllll}
133.4 & 134.7 & 1.3 & 7016 & 5 \\
134.7 & 135.5 & 0.8 & 7017 & 5
\end{tabular}


\section*{NORTHERM DYMASTY EXPLORATIONS LTD.}

\section*{OIAMOND DRILL RECORD}


hole Summary - (Cont*d)
219.9 225.3 Sericitic congtomerate: local disseminotions of pyrite and quartz velins.
225.3239 .4 Banded sericitic schist: local quartz veins.
239.4258 .8 Interbedded mudstone/silitstone.
258.8 END OF HOLE

\section*{OIAMONO ORILL RECORD}
\begin{tabular}{llll} 
Hole No.: & VT 87-03 & Started: & December 1. 1987 \\
Property: & Virginlatown & Completed: & December 4. 1987 \\
Clalm No.: & 666338 & Logged by: & J. Ho
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Hole Survey} \\
\hline Meterage & Azimuth & Dip & Method \\
\hline & & (corrected) & \\
\hline 0.0 & \(140^{\circ}\) & \(-50^{\circ}\) & Comp ass \\
\hline 60.7 & - & \(-49^{\circ}\) & Acid \\
\hline 121.6 & - & -47 \({ }^{\circ}\) & Acid \\
\hline 197.8 & - & -41 \({ }^{\circ}\) & Acld \\
\hline 258.8 & - & \(-35^{\circ}\) & Acta \\
\hline
\end{tabular}

Ref. Co-ord.:
Elevation:
Surveyed: No
Grid Co-ord.: \(30+30 \mathrm{~W}, 6+45 \mathrm{~S}\)
Drili Contractor: Lengloy Orilling. Bramptor., Ontorio
Assayer: Accurassay Laboratories, Kirkland Loke Ontoric

Purpose: 1. Test surface alterationzones.
core Size: BQ
Cosing Left: No

32.1 - 34.7: 15x quartz vein concentration, velns about 20 cm wide, contocts parallel to follation, velns cut by chloritic-sericitic fllled fractures. Pyrite (3x abundance) formed os fine disseminations in the immediate marginal zones. Dolomitic carbonate also intimately intergrown with quartz, up to 258 of vein.
37.4 - 39.4: Quartz veins, highly contorted to follation parallel, comprising \(7 x\) of section. Intergrown with the quartz is \(25-60 \%\) dolomitic carbonate and \(1-2 \%\) Fe-carbonate. \(25 \%\) of section is comprised of \(1-3 \mathrm{~cm}\) wide syenitic (?) pink dikes/slils (?), thin, \(<1-2 \mathrm{~mm}\), wide alteration rims are visible. Bleaching (?) and some whitish (bleaching ?) spots also tound on some dikes (10\%). Very tine pyrite (1\%) has been observed as frocture coats of the quartz veins. 40.7-43.7: Sericitlc alteration bands ( 2 mm wide) more widely spaced (1 - 2 cm ) with primary ( 3 ) depositional groins visible in the interband zones. Fine pyrite, up to \(2 x\), found in more sericitic and siliceous zones. Cr-mica fragments (i) appearing in lower section
(18 total). Quartz-carbonate-tourmaline veln (70:20:10 ratio) located at 41.8-42.3 with fine pyrite \(2 \%\) locallzed about upper contact, contects parallel to follation.
44.0-44.2: Quartz-dolomitic corbonate-Fe-corbonate ( \(80: 18: 2\) rotio) with fine-gralned pyrite (3x) localized about lower contact. Trace chalcopyrite inclusion.
44.5 - 45.7: 80x core recovery.
46.2 - 46.5: 75x core recovery.
48.3 - 48.5: core ground.
50.6 - calclum carbonate fracture 1111 , tracture width \(<2 \mathrm{~mm}\)

Follation to core axts: 54.6: \(38^{\circ}\); \(57.7: 38^{\circ}\).
58.8 - 64.8: Sericitic alteration reduced by 10-158 with primary clastic outilines visible. somewhat whiter in colour. Cr-mica alteration increase, up to \(2 \pi\). appears to be intergrown with the sericitic bonds ( \(\leqslant 1 \mathrm{~mm}\) wide). Trace Jasper ( 3 ) clasts visible. Relotively large quartz veins ( \(>25 \mathrm{~cm}\) ), with contocts parallel to follotion, ore developed. The quartz is intergrown with dolomitic carbonate (average 15\%) and black, fractured tourmaline (?). 58 very fine-grained pyrite ( \(<1 / 2 \mathrm{~mm}\) ) is observed disseminated throughout section, 28 in total. More concentrated prite (pyrrhotite; non-magnetic) in froctures, up to \(55 \%\) locally. <18 of fractures are minerallized.
71.7-72.1: Syenitic dikes/silis?, 80\% of section. Structurally, these features and the host schist disploy o weokly developed kink band.
82.4 - 83.3: Small (1/2 cm vide) quartz velns, 56 of section, with very fine gralned pyrite, 28 in total, K-feldspar alteration, \(6 x\) towards top.
86.0 - 88.6: Same as above 82.4-83.3, but quartz vein silightly wider, approximately 1 cm , all quartz veins parallel to follation.
Follation to core axis: \(71.5: 37^{\circ} ; 81.4: 30^{\circ}: 85.2: 32^{\circ}\).
88.6 - 99.5: Same as above 86.0-88.6 but few quartz velns, \(2 x\) of section; some quartz veins (approximately 10x) have developed fine-gralined pyrite (2x) over widths of \(3-5 \mathrm{~cm} ; 2-38\) \(k\)-feldspar alteration.
SAMPLE
From To Length No. \(\frac{\text { Rec }}{x}\)
ASSAYS
\(\frac{\mathrm{Au}}{(p p b)}-\frac{\mathrm{Ag}}{(p p m)} \frac{\mathrm{Zn}}{(p \mathrm{pm})} \frac{\mathrm{Pb}}{(p p m)} \frac{\mathrm{Cu}}{(\rho p m)}\)
\(\begin{array}{llll}32.1 & 34.7 & 2.6 & 7019\end{array}\)
\(37.4 \quad 39.4 \quad 2.0 \quad 7020\)
\(40.7 \quad 43.7 \quad 3.0 \quad 7021\)
\(\begin{array}{llll}44.0 & 44.2 & 0.2 & 7022\end{array}\)
\begin{tabular}{rrrrr}
60.3 & 62.5 & 2.2 & 7023 & 7 \\
62.5 & 63.3 & 1.2 & 7024 & \(<5\)
\end{tabular}
\begin{tabular}{lllll}
63.3 & 64.6 & 1.3 & 7025 & \(<5\)
\end{tabular}

From
(Metric)
99.5-105.2: Development of large ( \(>30 \mathrm{~cm}\) ) quartz velns. These quartz velns composed of quartz 80\%, 15\% dolomitic carbonate and \(\pm 5\) tourmaline. Contact parallel to follation; 1\% pyritic sulphides localized at margins; tourmaline acts as fracture coats in the quartz ( \(<5 \%\) ). 109.8-110.4: Quartz-carbonate-tourmaline veln (70:26:4) contacts parallel with follation. Trace pyrite in immediate margin.
110.4-126.5: Sericitic schist with 78 quartz velns and 58 localized syentic dikes/silis; quartz veins generally \(<10 \mathrm{~cm}\) wide with contacts parallel to follation, but deviations not uncommon. Sulphides, dominantly pyrite, are associated with quartz velins, either localized within the marginal zones or as distinct inclusions; pyrite concentration averaging 2\%, locally up to 5\%.
115.5-116.3: core ground, recovery 80\%.

Follation to core axls: 115.3: \(35^{\circ}\); 118.3: \(35^{\circ}\); 124.6 : \(37^{\circ}\).
126.5 129.8 SERICITIC CONGOMERATE: Polymictic motrix supported; 98\% of clasts ore syentic in composition, ronging from \(1-2 \mathrm{~cm}\) in the long dimension and \(1 / 2 \mathrm{~cm}\) wide. These clasts are light pink in colour: 28 of clasts are dark grey in colour and may be a sediment (wacke?). The matrix is itght green sericite-chlorite (90:10). The clast to matrix ratio is 78:22. All clasts have been deformed into the plane of folitation. Non-calcareous matrix, but a dolomitic-carbonate fracture fill is found of 126.9. Non-magnetic.
ALTERATION: The sericitic matrix represents the most obvious alteration by bleaching and the clasts display moderate (20\%) K-feldsper addition. Cr-mica (approximately \(1 \%\) ) is aiso present as intergrowths with sericite.
MINERNLIZAION: The upper contact is marked by a 2 cm wide quartz-carbonate vein with 48 fine grained pyrite. The pyrite continues as disseminations into the conglomerate. Pyrite concentration decreases to \(2 \%\) as disseminations.
129.8132 .3 INTERBEDDED SERICITIC CONGLOMERATE AND SERICITIC SCHIST: Bedding on the SCale of \(>20 \mathrm{~cm}\). Sericitic conglomerate same as \(126.5-129.8\) but without the sulphide minerallzation. The sericitic schist is similar to the sericitic schist up hole, however, the alteration here is more evenily developed with less distinct sericitic bands allowing for a more homogeneous light-green-biege colour. Quartz velns and sulphides are also lacking. 132.3 - Basal contact morked by \(1 / 2 \mathrm{~cm}\) wide zone of quartz (85\%)-fe-carbonate (10\%) - black chlorite (5\%): poorly consolidated, this may be interpreted as fault.
132.3 188.9 SERICITIC CONGLOMERATE: Same as 126.5 - 129.8 . However, the sericitic rock matrix is silightiy more green, possibly indicating more chlorite, this gives the rock a stronger banding effect. The matrix to conglomerate ratio, however. oppeors to be the some.

ASSAYS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{SAMPLE} & \multicolumn{6}{|c|}{ASSAYS} \\
\hline From & To & Length & No. & Rec & Au & & Ag & Zn & Pb & Cu \\
\hline & & & & 8 & (ppb) & & (ppm) & (ppm) & (ppm) & (ppm) \\
\hline 101.1 & 102.6 & 1.5 & 7030 & & 8 & & & & & \\
\hline 102.6 & 104.1 & 1.5 & 7031 & & 13 & & & & & \\
\hline 104.1 & 105.2 & 1.1 & 7032 & & 9 & & & & & \\
\hline 109.8 & 110.2 & 0.4 & 7033 & & 8 & & & & & \\
\hline 112.8 & 113.9 & 1.1 & 7034 & & 12 & & & & & \\
\hline 119.1 & 119.9 & 0.8 & 7035 & & 10 & & & & & \\
\hline 124.0 & 124.4 & 0.4 & 7036 & & 15 & (37) & & & & \\
\hline
\end{tabular}
132.3-134.2: K-feldspar alteration is more intense ( \(>20 \%\) ) giving the rock a distinct red look Contained within this zone at 132.8 is 02 cm wide quartz (40x)-black chlorlte (10\%)-Fecarbonate ( \(8 \%\) ), the rest of the assemblage is brecclated conglomerate, this may be a fault zone, coinciding with the Beaver Dam fault (3).
144.9-146.2: Black chlorite (?)-quartz fllied fractures with Fe-carbonate developed roughly parallel to the core axis. 10x of section is tractured. 1-2\% fine-grained pyrite is developed within these fractures.
146.9-147.1: Zone of K-feldspor alterotion centered about a \(1 / 2 \mathrm{~cm}\) wide black chlorite-Fecarbonate (40:60) frocture. Similar to 132.3. This may be another foult.
149.1-149.2: Quartz-carbonate (i0k)-fe-carbonate (5x) vein, with chloritic rich contacts. Contact parallel to follation.
156.6-156.8: Quartz (65\%)-fe-carbonate (20x)-dolomitic corbonate vein.
157.2-157.6: 2 mm wide quartz veln with tourmaline (2) rich mergins. 1 - \(2 x\) pyrite developed within the veln. The vein runs approximately parallel to core axis.
161.4-161.6: Quartz vein zone, 45x quartz veining with 28 tourmaline (3). 38 dolomitic carbonate and \(2 x\) Fe-carbonate. Trace chalcopyrite.
163.2-176.7: Numerous syentic dikes/silis, 202 of section. Contacts roughly folitation parallel, some contacts (10x) display a \(1-2 \mathrm{~mm}\) wide zone of bleaching. Foliation is developed within these structures. Generally \(<\mathbf{2 0} \mathrm{cm}\) wide.
164.4-165.9: is calcium carbonate tracture flll (vein ?) with fine pyrite (1-28) and tracture \(164.4 \quad 165.9 \quad 1.57043\) confined pyrite (18), deformed parallel to follation.
165.0-165.8: Development of dark green-block, fine-grained, non-magnetic mafic volcanic dikes/ silis (2). About \(25 \%\) of section. Follation developed within these structures.
170.4-170.5: Quartz-corbonate vein, contacts perpendicular to core axis.

This section ( 163.2 - 176.7 ) is also morked by less altered syenitic clasts, evidenced by stronger
red colours and more visible igneous textures, and clastic outlines ore very sharp.
182.2 - 2 cm wide fault zone. Characterized by quartz (30\%)-fe-carbonate (40\%)-black chlorite (20x)-sericite (10x) vein filling. \(<14\) very fine pyrite localized on black chlorite surfaces.
184.3-184.4: Fault zone similar to 182.2 but less Fe-corbonate (10\%) and more black chlorite (30x). Cr-mica also appeors (2x). No sulphides are visible.
Follation to core axis: 174.2: \(44^{\circ}\); 180.9: \(46^{\circ}\); 184.8: \(54^{\circ}\).
N.B. Mis-number of tags between 185.62 and 188.67 , only 20 cm between these two tags. Tag numbers preceeding and following these togs are consistent.
188.9 193.1 CONGLOWERATE: Polymictic clast supported conglomerate. Clasts veriable in size up to 5 cm wide, generally angular to subangulor. \(90 \%\) of clasts are syenitic in composition.
alteration: Matrix has been altered to a dominant sericitic schist. \(8 \%\) of section is sericite. The clasts also display bleached mergins.
\(\frac{\text { From }}{(\text { Metr }} \frac{\text { To }}{\text { Co }}\)

MINERALIZAION: 190.3, 1 cm wide zone of \(80 \%\) Cr-mica with \(10 \%\) sericite, \(10 \%\) silica and troce fine pyrite.
193.1 216.3 SERICITIC CONGLOMERATE: Same as 126.5-129.8
197.0-197.3: Quartz vein with 58 dolomitic carbonate and 48 Fe-carbonate. Trace pyrite
inclusions in the quartz. Both contacts, roughly parallel to follation, are characterized by black chlorite-Fe-carbonate and trace pyrlte in a zone about \(2-3 \mathrm{~mm}\) wide.
MINERALIZATION: Finely disseminated pyrite up to 2 - 3k can be seen. Calcium corbonote fracture fllis/velns, oriented roughly parallel to core axis ( 28 fractures). 38 highly contorted small ( \(<2 \mathrm{~cm}\) wide) quartz velns with \(1-28\) morginal fine pyrite. Trace Cr-mica appears trom 212.4 on down hole.
211.8-213.3: 5x calcium carbonate fracture fills, locally up to 5x pyrite.
213.3-215.1: Pyrite becomes large ( \(5-8 \mathrm{~cm}\) ) euhectral cubes with \(2-3 \mathrm{~mm}\) wide slilicate pressure shadows, oriented porallel to follation ( \(2 x\) sulphides).
215.1 - 216.3: Disseminated and quartz vein (38) associated pyrite (18).
216.3219 .9 INTERBEDDED SERICITIC SCHIST/SERICITIC CONGLOMERATE: The conglomerate is simliar to 126.5 - \(\mathbf{1 2 9 . 8}\) and bedding widths overage \(>10 \mathrm{~cm}\). The sericitic schist is a homogeneous lime green with 18 pyritic (10x) quartz velns. Beds typically \(>30 \mathrm{~cm}\) in width. Pyrite also occurs as fracture fills with block chlorite, \(2 x\) fractures, ix pyrite.
219.9 225.3 SERICITIC CONGLOMERATE: Same as 126.5-129.8.
220.3 - 221.9 : 18 fine-gralned pyrite disseminated Into conglomerate. Quartz vein from 220.5 220.8, with 18 pyrite about contacts and as tracture coats within the quartz. Quart vein from 221.8-221.9, similar to quartz vein at 220.5-220.8 but 5\% fracture pyrite.
221.9 - 223.1: Core ground, but good recovery. 90\%. 1-22 finely dissominated pyrite.
224.0-225.3: Large quartz veln, 60 cm wide with \(2 x\) pyrite in fractures and 18 disseminated pyrite in host.
Foltation to core axis: 218.0: \(50^{\circ}\); 221.7: \(50^{\circ}\); 225.2: \(53^{\circ}\).
225.3239 .4 BANDED SERICITIC SCHIST: Bonded on a scale of \(1-1-1 / 2 \mathrm{~cm}\); alternating light green coloured bands with dork grey coloured bands; fine-grained in texture, greding visible, fining up hole; nonmognetic; non-calcareous.
225.3-225.9: 50\% quartz vein with 10x dolomitic carbonate, trace pyrite in contacts. Contact, follation parallel.
237.1-237.3: 11 cm wide quartz vein with finely disseminated pyrite in morgins.
238.0-238.9: Calcium corbonated frocture 4111 with trace pyrite, running length of section. Basal contact gradational (alteration) over Interval of 2 m .

Page 7 of 8
\(\square\)

\begin{tabular}{llllr}
197.0 & 197.3 & 0.3 & 7044 & 10 \\
& & & & \\
200.1 & 201.6 & 1.5 & 7045 & 17 \\
201.6 & 202.4 & 0.8 & 7046 & 5 \\
202.4 & 204.6 & 2.2 & 7047 & 8 \\
204.6 & 205.8 & 1.2 & 7048 & 15 \\
211.1 & 211.8 & 0.7 & 7049 & 14 \\
211.8 & 213.3 & 1.5 & 7050 & 32 \\
213.3 & 215.1 & 1.8 & 7051 & \(<5\) \\
& & & & \\
215.1 & 216.3 & 1.2 & 7052 & 20
\end{tabular}
\begin{tabular}{llllrr}
220.3 & 221.9 & 1.6 & 7053 & 30 & \\
& & & & & \\
221.9 & 223.1 & 1.2 & 7054 & 5 & \((30)\) \\
223.0 & 224.0 & 1.0 & 7055 & 6 & \\
224.0 & 225.2 & 1.2 & 7056 & \(<5\) &
\end{tabular}
239.4258 .8 INTERBEDOED MUOSTONE/SILTSTONE: Light grey to greenish grey in colour, banded on a scale of 1 -
\(1-1 / 2 \mathrm{~cm}\). Visible primary textures include basal scours and convoluted bedding. Non-calcareous, non-magnetic.
Follation to core axis: 243.4 : \(50^{\circ}\); 245.1: \(54^{\circ}\); 225.7: \(52^{\circ}\).
MINERALIZATION: Relatively large quartz veins ( \(>25 \mathrm{~cm}\) ) with trace pyrite in fractures and margins.
253.2-254.5: core ground, 85\% recovery.
\begin{tabular}{lllll}
245.4 & 246.2 & 0.8 & 7058 & \(<5\) \\
247.7 & 248.8 & 1.1 & 7059 & \(<5\) \\
248.8 & 249.8 & 1.0 & 7060 & \(<5\)
\end{tabular}
258.8 END OF HOLE

\section*{Note:}

Fault zones may be evidenced by narrow quartz-black chlorite-fe-carbonate \({ }^{+}\)-dolomitic carbonate, poorly consolidated zones with wide fe-carbonate alteration halos.




\section*{DIAMOND DRILL RECORD}


MINERN IZATION:
18.3-18.8 - 18 black-chtorite (7) filled tractures cross-cutting core axis with 38 fine-grained pyrite, weak potossic alteration halo ( 2 cm wide). Quartz vein also assoclated with these fractures.
Follation to core axis: \(24.0 \mathrm{~m}: 51^{\circ} ; 28.6 \mathrm{~m}: 56^{\circ}\).
BLEACHED CONGLOMERATE: Conglomerste same as 17.5-22.5 except bleaching more evident, increasing from 5-10\% uphole to \(85 \%\) toward end of section. Bleaching is evidenced by on overoll ilighter color. O light grey. Cr-mica (is) in the form of angular-like tragments are also present.
45.9-46.3-40 cm wide interbed of fine sandstone. Same alteration as host conglomerate.

Contacts are follation parallel.
MINERALIZATION: 28 smell quartz velns with tourmaline \(?\) halos, velns \(<2 \mathrm{~cm}\) wide and troce pyrite, contacts follation porallel.
53.2 - 54 . 48 ton porallel.
53.2-54.4-2\% quartz velns, velns highly contorted.
54.4-55.1-20\% quartz veins, 10 cm veln at 54.5 - 54.6 with 58 occicular 2 mm long tourmaline. 158 dolomitic carbonate and 38 Fe-carbonate.
56.8-57.5-45\% quartz velns, 25 cm veln at 57.1-57.35, composed of 108 massive to accicular ( 2 mm long) black tourmaline, 15x dolomitic carbonote, \(10 \%\) Fe-corbonate. All contacts follation porallel.
follation to core axis: \(52.5 \mathrm{~m}: 60^{\circ} ; 57.8 \mathrm{~m}: 55^{\circ}\).
SERICITIC SCHIST: Typica! ilmey-green color with whitish interbands on a scale of 3-5mm. Green bands composed of sericite (90\%) and chlorite (10x). Whitish bands composed of fine silt to sandstone. Small scale undulations, folds and load structures visible.
NLTERATION: Generaliy sericitic, but local zones of K-feldspar addition ( 28 total). Trace to is Cr-mica intergrom with sericite.

\section*{MINERALIZATION:}
61.0-61.1-Faultzone.
61.4-61.5-Breccia zone: Inflillod with chlorite 80x. sllica 10x. \(7 x\) tourmaline and \(3 x\) sericite
61.5-62.7-208 K-feldspar alteration, is quartz veining with dolomitic and fe-carbonates.
65.1-65.7-Interbed of conglomerote, some as 22.5-60.4.
68.2-68.7-80k quartz velning with sericitic-chloriterich, 1 - 2 margins. Quartz veining \(1-2 \mathrm{~cm}\) wide and follation perallel.
70.8-71.9- Interbed of conglomerste, some as 22.5-60.4, from 71.2-71.6. At upper contoct
\(70.8-71.9-\operatorname{lnterbed}\) of conglomerste, seme as 22.5-60.4, from 71.2-71.6. At upper contoct
8 cm wide quartz voin with chloritic morgins and 5 , pyrite. Pyrite occurs os fracture coots within the quartz veln and as eutiocral cubes in the morgins of sericitic nost. Finely disseminated (18) pyrite in rest of section associated with small <I cm wide quartz velins. All quartz veln contacts parallel to follation. \(\leqslant 78\) quertz veins.
71.9 - 73.0 - Large 0.75 cm cubic pyrite disseminated in sericitic host from 71 -9-72.4, about 28 total sulphide. From \(72.4-72.9\) sllicitied (20\%) and K-feldspar alteration (80\%). trace sulphides. DOH VT-87-04

152.1 END of hole



LEGEND

\section*{C CONGLOMERATE \(\pm\) AGGLOMERATE}

D SREYWACKE
\(L\) siltstome and shale
S SERECITE SCHIST
\(T\) SYEMITE / TRACHYTE
<20.12
midth in metres, ppe al

\section*{VIRGINIATOWN PROPERTY}

LOOKING WEST


SECTION OF DIAMOND DRILL HOLE 87.04 clevis. 4

Hole No.: VT-87-05
Property: Virginiotown
Claim No.: 765073
Ret. Co-ord.:
Elevation:
Surveyed: No
Grid Co-ord.: \(14+50 \mathrm{~W}, 8+1 \mathrm{ON}\)
Core Size: BQ
Casing Left: No

Started: December 9. 1987
Completed: December 11, 1987
Logged by:
J. Ho

Drill Contractor: Langley Drilling. Brampton, Ontario
Assayer:
Accurassay Laboratories, Kirkland Lake, Ontar io
Purpose: 1. To test deformation zone under creek.
2. To test surface sulphides on North Cliff.
\[
0.0 \quad 26.5 \text { Casing: } 2 x \text { recovery. }
\]

Recovery consisted of boulder, sandy +111 with mud and clay intervals.
Casing stuck ot 26.5 m in loose boulder horizon; further penetration not possible.
end of hole

\section*{Notes:}
1. Glacial till may be localized in a faulted zone paralleling the creek, graben-like fault zone?
2. Recovery of dill string complete except for lowermost 5 feet of casing and shoe bit.
3. Hole re-drililed as VT-87-06, 200 feet east.


Hole No.: VT-87-0
Property: Virginioto
Claim No.: 765073
Ref. Co-ord.:
Elevation:
Surveyed: No
Grid Co-ord.: \(12+00 \mathrm{~W}, 10+00 \mathrm{~N}\)
Core Size: \(\quad 80\)
Casing Left: No

Started:
Completed:
Logged by:
Drill Con
Assayer:

Purpose:

December 11. 1987
January 6, 1988
J. Ho

Driving, Brampton, Ontario
Accurassay Laboratories, Kirkland Lake, Ontario
1. To test deformation zone under creek.
2. To test surface sulphides on North ClIff fault
\begin{tabular}{ccc}
\multicolumn{2}{c}{ Hole Survey } \\
Azimuth & \begin{tabular}{c} 
Dip \\
\(140^{\circ}\)
\end{tabular} & Method \\
(corrected)
\end{tabular}
\(\frac{\text { From }}{\text { (Metric) }} \frac{\text { To }}{10}\) \(\qquad\)
CC_
(Mar ic)

0.0 \(\quad 15.2\) Losing - 80 .
0.0-6.1-Sandy till.
6.1-15.2-Loose boulder horizon, io matrix. Mechanical failure on December 12, 1987, parts not readily available, break for Christmas. BQ casing left in hole.
0.0 13.7 Casing - NQ. Resumed ailing January 5, 1988. NQ casing reamed over 89 casing to achieve greater depth penetration. No casing seized at 13.7 m .
15.2 16.7 Losing - 8Q. Resumed BQ casing drilling from 15.2 m . BO casing seized at 16.7 m . Similar loose boulder horizon. Hole abandoned.
16.7 END OF HOLE

Notes:
1. \(100 \%\) recovery of 89 drill string and casing.
2. Abandoned 12.2 ( 40 feet) of \(W 9\) casing and shoe blt
3. Attempt hole from south ( 00 H YT-88-06).


\section*{DIAMOND DRILL RECORD}

\(\frac{\text { From }}{(\text { Metric })}\)
hole summary - (Cont'd)
135.6 141.6 Quartz-greywacke: moderate bleaching and serlcitization, trace Cr-mica.
\(141.6 \quad 144.4\) Syenite dike: localized bleaching and silicitication, pyrite fracture coats and disseminations ( \(<18\) ).
144.4145 .4 Quartz-greywacke: moderate bleaching and sericitization, trace Cr-mica.
145.4 150.0 Conglomerate: moderate bleaching and sericitization; is disseminated sulphides.
150.0 162.6 Syenite dike: same as 141.6-144.4.
162.6 203.4 Conglomerate: weak bleaching and sericitization; is dissominated sulphide.
203.4246 .6 Quartz-nacke: localized \(\mathrm{CaCO}_{3}\) veinlets.
246.6 END OF HOLE

\section*{OIAMOND DRILL RECORD}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Hole No.: & VT-88-01 & Starter: & Januery 9, 1988 & & & rvey & \\
\hline Property: & Virginlatown & Completed: & Januery 12, 1988 & Meterage & AzImuth & Dip & Method \\
\hline Clatm No.: & 765073 & Logged by: & J. Ho & 0.0 & \(320^{\circ}\) & \[
\begin{gathered}
\text { (corrected) } \\
-53^{\circ}
\end{gathered}
\] & Compass \\
\hline Ret. Co-ord.: & & Drill Contractor: & Langlay Drilling, Brampton, Ontario & 60.6 & - & -49 \({ }^{\circ}\) & Acld \\
\hline Elevation: & & Assayer: & Accurassay Laboratories, Kirkland Lake, Ontario & 121.6 & - & -50 \(-44^{\circ}\) & Acid \\
\hline Surveyed: & No & & & 243.5 & - & \(-39^{\circ}\) & Acid \\
\hline Grid Comord.: & 14+15W, 11+80N & Purpose: & 1. To test mofic dike contact. & & & & \\
\hline
\end{tabular}

Grid co-ord.: 14+15W, 11+80N
core Size: \(\quad \mathrm{BQ}\)
Cosing Left: No

16.471 .9 CONGLOMERATE: Color - dark grey matrix with patchy shades of dark red (syenitic clasts). Moderately foliated, long axis of clasts generally parallel allgned follation parallel. Clasts subrounded to rounded. \(90 \%\) of clasts are rod-pinkish syenite. The remainder comprised of volcanic/sediment

\section*{\(\frac{\text { From }}{(\text { Metr } 1 \mathrm{C})} \frac{\text { To }}{}\) \\ (}

Follation to core axis: \(22.6 \mathrm{~m}: 45^{\circ}\); \(31.5 \mathrm{~m}: 46^{\circ}\); \(37.5 \mathrm{~m}: 49^{\circ}\); \(42.6 \mathrm{~m}: 52^{\circ}\); \(48.6 \mathrm{~m}: 56^{\circ}\);
\(54.3 \mathrm{~m}-42^{\circ}\); \(60.4 \mathrm{~m}: 48^{\circ}\).
ALTERATION: Very tresh.
MINERALIZATION: \(5 \pi\) of section frocture \(f l l l e d\) with \(<2 \mathrm{~mm}\) wide Ca-carbonate \({ }^{ \pm}\)Fe-carbonate veins.
These are generally oriented about \(45^{\circ}\) across the follation.
37.2 - Mud seam ( \(<1 \mathrm{~cm}\) ride).
50.5 - Limonite coated fracture.
52.9 - Mud seam ( \(<1 \mathrm{~cm}\) wide).
\(53.4-1 \mathrm{~cm}\) wide quartz-fe-carbonate veln with pyritic (20\%) and molybdenite (58) selvages.
55.0 - Ca-corbonate tracture fill with is fine-grained disseminated pyrite ( \(<1 \mathrm{~cm}\) wide).
55.5 - Mud seam ( \(<3 \mathrm{~cm}\) wlde).
56.1
- 28 quartz-Fe-corbonate fracture fill with molybdenite in fracture \(\ll 18\) over 10 cm width.
56.6-56.8 - Calcium-carbonateK-feldspar fracture flll. K-teldspar alteration halo about \(1 / 2 \mathrm{~cm}\) about tracture - typical red-pink color. 12 disseminated, fine-grained pyrite.
63.1 - Mud seem ( \(\leqslant 3 \mathrm{~cm} \mathrm{w!de)}\).
63.6 - Mud seam ( \(<3 \mathrm{~cm}\) wide).
68.3-68.7-Similar Ca-carbonate-K-feldspar fracture 1111 as 56.6-56.8. 18 fine-grained. disseminated pyrite.
71.977 .9 TUFFACEOUS CONGLOMERATE: COIOr - dark grey with small (1-2 min) whitish spots, well follated, clasts generally subrounded to subangular. Variable clast size, generally \(<1 \mathrm{~cm}\) in the long direction. Clasts comprised essentialiy of diorite (958) with the remainder comprised of syenite, volcanic/ sediment and quartz tragments. The matrix is composed of tuffaceous-like material with obundant ( 201 of matrix) crystal-like forms of plagioclase, though irregular shapes are not uncommon. Matrix to clast tatio: 55:45, matrix supported.
MLTERATION: Fresh, unaltered.
MINERMLIZATION:
\(72.3 \quad-1 \mathrm{~cm}\) wide quartz-fe-carbonate veln.
72.5-72.7-1/2 cm wide quartz-fe-carbonate vein running cown length of section.
\(73.0 \quad-1-1 / 2 \mathrm{~cm}\) wide quartz-fe-carbonate veln.
\(73.3-1 \mathrm{~cm}\) wide quartz (40\%)-Co-carbonate (20\%)-fe-cerbonate (20\%)-chlorite (18\%)pyrite (1X)-chalcopyrite (18) veln. Cross-cutting core axis. Sulphides developed on chloritic follation surface.
76.8-77.9 - 28 Ca-cerbonate fracture filis with 18 prite - trace chalcopyrite.

Upper contact gradational over 20 cm .
Basal contact very sherp.
follation to core axls: \(72.0 \mathrm{~m}: 48^{\circ}\) : \(73.2 \mathrm{~m}: 47^{\circ}\); \(76.0 \mathrm{~m}: 52^{\circ}\).
\begin{tabular}{c} 
SAMPLE \\
\hline From \\
To Length \\
No. \\
\end{tabular}
\begin{tabular}{lllll}
53.3 & 55.1 & 1.8 & 7082 & \(<5\) \\
56.1 & 57.0 & 0.9 & 7083 & \(<5\) \\
68.1 & 68.7 & 0.6 & 7084 & \(<5\)
\end{tabular}
\begin{tabular}{llllr}
72.3 & 73.4 & 1.1 & 7085 & 6 \\
76.8 & 77.9 & 1.1 & 7086 & 17
\end{tabular}
\(77.9 \quad 84.8\) CONGLOMERATE: Color - light grey with silght green tint. Moderotely well-follated. Clasts well rounded to subrounded. Clasts comprise \(80 \%\) felsics (granodiorite?), \(10 \%\) volconics, \(10 \%\) quartz, plagioclase and jasper clasts. Matrix comprised of fine-gralned wacke sediment. Matrix to clasts ratio 60:40, matrix supported.
78.0 - mud seam.

Non-magnetic, non-calcareous.
ALTERATION: Generaliy very fresh but local zones of alteration:
78.9 - 79.9 - 58 K-feldspor alteration resulting in a pinkish-red tint coloring.
81.5-81.7-Same alterotion os 78.9-79.9. K-feldspor alteration about fractures, extending not more than 2 mm Into host. Less than 38 total hairline tractures. Trace Cr-mica overall. MINERAL IZATION:
78.9-79.9-10\% quartz-fe-carbonate tracture network with 18 Cr-mica alteration. 18 pyritet chalcopyrite mineralization on fracture surfaces.
81.2, 82.4, 83.4-1-3 cm wide quartz-Fe-carbonate-Co-corbonate veins (10-15\% carbonate in total).
Folitation to core axis: \(78.6 \mathrm{~m}=50^{\circ}\); \(81.9 \mathrm{~m}: 56^{\circ}\).
95.5 INTERBEDDED CONGLOMERATE AND QUARTZ GREYWACKE: The entire sequence hos a distinct green-grey color with patches of pink-red, yellow and yellow-green reflecting ciast type and alteration; moderately well-follated; clasts are generally \(1-4 \mathrm{~cm}\) long in the long dimension and are well-rounded to rounded. The quartz greywacke is poorly to moderately well-toliatod (more massive) and is fine grained. The clasts comprised by varlety of ilthologies; granite/rhyolite - 60\%, sediments (mudstone) - 20\%, volcanic (15\%) and a 58 mixture of quartz and Jasper clasts. The matrix highly chloritic, matrix to clast ratio is 30:70, though matrix supported. Quartz greywacke zones: 85.3-85.5; 90.1-90.6; 90.7-93.6. Non-magnetic, non-calcareous.

NLERATION: The alteration is dominated by bleaching and secondery addition of sericite. The serictite ( \(10 x\) ) forms as small ( \(<2 \mathrm{~mm}\) ) yellow streaks and where more intense as yellow-greenish stringers and patches. 1\% cr-mico alteration can be found in localized fractures. Upper contact gradational over 20 cm , lower contact very abrupt.
MINERNLIATION: Noorly the entire sequence is disseminated with very fine chalcopyrite \((\sim 1 \%)\) and pyrite (18). Concentrations increase locally (<2 cm in vidth) up to \(5 \%\) where fractures are calcium-cerbonate filled, where sericite is well-development, and where quartz-fe-carbonate velns ( \(<1 / 2 \mathrm{~cm} w i d e\) ) oppeor. There is nearily a \(1: 1\) ratio of the presence of sulphides with these small quartz-Fe-corbonate veinlets. Pyritic sulphides also penetrate into the more felsic clasts. Limonitic staining at 87.2, 90.3 . A 2-1/2 cm vide quartz-fe-carbonate (5k) vein is localized at the lower contact and is minerallzed with molybdenite (3k) and chalcopyrite (18).
\(\frac{\text { From }}{\text { (Motric) }} \frac{\text { To }}{}\)
95.5 99.1 SYENITE DIKE: Reddtsh pink in color, fine to medium-gralned, generally weakly follated. NonSYENITE DIKE: Reddish pink in color, fine to medium-gra
magnetic, non-calcareous (excluding fracture fillis).

ALTERATION: Restricted malnly to 1 - 5 mm wide viens and fractures. Alteration assemblage comprised dominantly of colcium carbonate (67x) and black chlorite (tourmaline?) (20x). Lesser amounts of sericite (8\%) and Fe-carbonate (5\%). Weak sericite development into host, generaliy forms a halo about fractures (2-3 cm wide). Also < 28 black chlorite (tourmaline?) dissemination.
MINERNLIZATION: 1-22 pyrite - ix chalcopyrite \({ }^{+}\)molybdenite restricted to altered fractures (veins) and quartz veins. Quartz veins \(<2 \mathrm{~cm}\) wide ( \(2 \%\) abundance) and follation parallel. Sulphides colncidence with black chlorite frocture development. Fracture abundance 4x.
Lower contact marked by 4 cm wide zone of chlorite ( \(60 \%\) ), quartz (veln) (35\%) and \(5 \% \mathrm{CaCO}_{3} ; 5 \mathrm{~cm}\) wide halo of sericite alteration is also present.
Foliation to core axis: \(95.7 \mathrm{~m}: 57\); \(97.9 \mathrm{~m}: 63\).
99.1 102.9 INTERBEDOED QUARTZ-GREYWACKE AND CONGLOMERATE (same as \(84.8-95.5 \mathrm{~m}\) ). This section silightiy more altered, sericite development up to 15x. Also increasing amounts of black chlorite (tourmaline?) downole. 5-8\% black chlorite localized in tractures, frocture abundance 5\%. Quartz veining \(<1 \%\).
Bedding contacts: 99.1-99.9-quartz groywacke.
99.9 - 100.3 - conglomerate.
100.3-100.9-quartz greywecke.
100.9-101.2 - conglomerate.
101.2-101.5 - quartz-greywacke.
101.5-101.6 - conglomerate.
101.6-101.7-quartz-greywacke.
101.7-102.4 - conglomerate.
102.4-102.9 - quartz-greyvacke.

MINERN.IZATION: Trace pyrite \({ }^{+}\)chalcopyrite, restricted to chloritic fractures where present. Follation to core axis: \(99.5 \mathrm{~m}: 65^{\circ}\).
102.9 106.7 SYENITE DIKE: (same as 95.5-99.1 m).

NLTERATION: More fractures, up to \(10 x\) with similar carbonate-chlorite-sericite-Fe-(Mg) carbonate assemblage in tractures.
102.9-103.2 - Bleached, resulting in a change of color from plakish-red to faded pink.
\(103.9-3 \mathrm{~cm}\) wide zone of brecclation with black chlorite infilis.
MINERNLIZATION: OnIy trace - 18 pyrite \({ }^{\text {ºh }}\) Chaloopyrite; 102.9-103.2-208 quartz fillied frocture network. Majority of core is broken and tractured, with \(90-95 \%\) recovery. Natural water spring encountered at approximately 104 m .

\begin{tabular}{ccccr}
95.5 & 96.4 & 0.9 & 7095 & 18 \\
96.4 & 97.6 & 1.2 & 7096 & 7 \\
97.6 & 99.1 & 1.5 & 7097 & 12
\end{tabular}
\begin{tabular}{rrrrr}
99.1 & 101.4 & 2.3 & 7098 & 173 \\
101.4 & 102.9 & 1.5 & 7099 & 129
\end{tabular}
106.7111 .2 INTERBEDOED CONGLOMERATE-QUARTZ GREYWACKE: Same as 99.1 - 102.9 m , ogain more altered than the similar ilthological sequence of \(84.8-95.5 \mathrm{~m}\).
MINERN IZATION: is chalcopyrite-pyrite disseminations throughout section. This section displays more quartz velning than 99.1-102.9, up to 10x. localized ot 108.2-108.6, and 109.8-109.9.

Bedding contacts: 106.7-107.3 - quartz-greywacke.
107.3-107.7 - conglomerote.
107.7-108.2-quartz-greywacke.
108.2-111.2 - conglomerate.

Limonitic coatings of 109.8, 110.2-110.4. Localized zones of core are broken and fractured 110.2-110.5. 110.6 - 110.9, and 111.0 - 111.5 .

Folitation to core axis: \(108.3 \mathrm{~m}: 50^{\circ} ; 111.2 \mathrm{~m}: 58^{\circ}\).
111.2 135.6 SYENITE DIKE (some as 95.5-99.1): however, odding to the alteration assemblage is the development of potchy silicification. Overall there is \(5-88\) silicification in thls section. Cr-mica also appears as small ( \(<2 \mathrm{~mm}\) ) follation parallel patches and stringers, total abundance <1\%.
Mineraliation also remains the some with o pyrite-chalcopyrite ( \(<1 \%\) of total sulphide) assembloge developed on Ce-carbonate-black-chlorite-sericite-quartz-fecarbonate froctures (velns where quartz became dominant mineral); frocture (vein) abundance 6\%; generaliy \(<1 \mathrm{~cm}\) in wiath and commonly \(<5 \mathrm{~mm}\) in width.
Follation to core axis: \(118.6 \mathrm{~m}=45^{\circ}\); \(124.7 \mathrm{~m}: 50^{\circ}\); \(130.4 \mathrm{~m}=60^{\circ}\).; \(134.4 \mathrm{~m}: 37^{\circ}\).
35.6 141.6 QUARTZ-GREYHACKE: Simliar to quartz-greywacke ot 84.8 - 95.5; but more coorse-gralned, generally medium-grained. Moderately follated. Kink band at 135.7.
NLTERATION: Moderate increose (42) in bleaching and sericite developmont downhole (139.4-141.6). Sericite becomes more disseminated domitole. Trace Cr-mica.
MINERNLIZATION: 1 - 38 black-chlorite-quartz-sericite-Ca-cerbonate fractures and velins: widths \(<1 \mathrm{~cm}\). 18 disseminated fine \((<1 \mathrm{~mm})\) pyrite assoclated with 1 cm wide quartz-chloritesericite veln at 136.8 m .
Follation to core exis: \(136.7 \mathrm{~m}: 65^{\circ}\); \(140.1 \mathrm{~m}: 65^{\circ}\).
Follation to core axis: 136.7 m : \(6 \mathrm{l}^{\circ}\).
SAMPLE
From To Length
\(\frac{\text { No. }}{2}\)
\(\frac{A S S A Y S}{\left.\frac{A u}{(p p b}\right)}-\frac{A g}{(p p m)} \frac{\mathrm{Zn}}{(p p m)} \frac{\mathrm{Pb}^{(p p m)}}{\frac{\mathrm{Cu}}{(p p m)}}\)
\begin{tabular}{lllll}
106.7 & 108.2 & 1.5 & 7102 & 94 \\
108.2 & 109.2 & 1.0 & 7103 & 17 \\
109.2 & 110.2 & 1.0 & 7104 & 32 \\
110.2 & 111.3 & 1.1 & 7105 & 17
\end{tabular}
\begin{tabular}{llllr}
111.2 & 112.7 & 1.5 & 7106 & \(<5\) \\
112.7 & 114.2 & 1.5 & 7107 & \(<6\) \\
114.2 & 115.8 & 1.6 & 7108 & \(<5\) \\
115.8 & 117.8 & 2.0 & 7109 & \(<5\) \\
117.8 & 119.8 & 2.0 & 7110 & \(<5\) \\
119.8 & 121.6 & 1.8 & 7111 & \(<5\) \\
121.6 & 123.1 & 1.5 & 7112 & \(<5\) \\
123.1 & 124.6 & 1.5 & 7113 & \(<5\) \\
124.6 & 126.1 & 1.5 & 7114 & \(<5\) \\
126.1 & 127.6 & 1.5 & 7115 & \(<5\) \\
127.6 & 129.9 & 2.3 & 7116 & 10 \\
129.9 & 132.4 & 2.5 & 7117 & \(<5\) \\
132.4 & 133.3 & 0.9 & 7118 & \(<5\) \\
& & & & \\
133.3 & 134.8 & 1.5 & 7119 & 10 \\
134.8 & 135.6 & 0.8 & 7120 & \(<5\) \\
& & & & \\
135.6 & 137.0 & 1.4 & 7121 & \(<5\) \\
137.0 & 139.4 & 2.4 & 7122 & \(<5\) \\
139.4 & 140.6 & 1.2 & 7123 & \(<5\) \\
140.6 & 141.7 & 1.1 & 7124 & \(<5\)
\end{tabular}




\section*{NORTHERN OYNASTY EXPLORATIONS LTD.}

\section*{DIAMOND DRILL RECORD}

\(\frac{\text { From }}{\text { (Metric) }} \frac{\text { To }}{}\)

SAMPLE
From To Length No. \(\frac{\text { Rec }}{x}\)
\(\begin{array}{lll} & & \text { HOLE SUMMARY - (Cont'd) } \\ 83.4 & 86.4 & \text { Altered conglomerate. } \\ 86.4 & 88.3 & \text { Tuftaceous conglomer ate/agglomer ate. }\end{array}\)
88.3 105.3 Altered conglomerate.
105.3 110.7 Tuffaceous conglomer ate/aggtomerate.
110.7 111.9 Altered conglomerate.
111.9 120.7 Tuffaceous conglomerate/aggiomerate.
120.7 124.6 Altered conglomerate.
124.6 125.4 Tuffaceous conglomerate/aggloherate.-
125.4 130.5 Altered conglomerate.
130.5134 .4 Tuffaceous conglomer ate/agglomerate.
134.4 137.4 Altered conglomerate.
137.4 142.1 Quartz tragment breccia/conglomerate.
142.1 145.2 Sericite schist.
145.2 164.3 Sandstone/silitstone.
164.3 END OF HOLE

\(\qquad\)
DESCRIPTION

Clasts dominantly syenite/trachyte and greywacke; closed matrix varles from chloritic to greywacke; follation and clast elongation at \(35^{\circ}\) to core axis; basal contact gradational over 20 cm n.teration: Variable.
1. Prominant plak K-feldspar and (rhodochrosite?) with \(20 \%\) intercaloted light green sericite at \(11.0-11.8 \mathrm{~m}\) and small ( \(<5 \mathrm{~cm}\) ) patches elsewhere;
2. Prominant off-white quartz and (dolomite) at 13.1-13.4 m and smoll \(<5 \mathrm{~cm}\) ) patches elsewhere. 3. Minor ( \(<1 \mathrm{~cm}\) thick bands) bleaching/sericitization.

MINERN IZATION: 25\% i imonite and ankerite rust in broken core at 10.5-11.0 m-disseminated
tractures, boxworks.
- Pyrite and chalcopyrite - troce - disseminated.
- Quartz-carbonate-chlorite velns - < \(1 x\).
13.621 .4 CONGLOMERATE: Polymictic; \(\leqslant 15 \mathrm{~cm}\) angulor to subrounded clasts in ilight grey quartzitic sandstone closed matrix; clasts consist of pink syenite/trachyte, variably grey greywackes. Iight green sericitic siltstones, sparse green basalt, and rore purple crystal tuff; non-magnetic; no bedding evident; weakly to moderately dolomitic matrix; poor to moderate follation and clast elongation generally at \(35^{\circ}\) to core axis; basal contoct gradational over 1.5 m .
ALTERATION: Minor - \(2 x\) lenses and silivers of bleached/sericitized meterial especially uphole in unit.
MINERNLIZATION: Commoniy ix pyrite disseminations in conglomerate matrix; 48 quartz+wite carbonate veins ( \(\leq 3 \mathrm{~cm}\) wide) ot \(13.6-15.1 \mathrm{~m}\); \(<18\) elsewhere.
41.1 NLERED CONGLOMERATE: SImIler to 13.6-21.4 but moderately bleached/sericitized( ?) throughout: weakly to moderstaly dolomitic sandstone matrix; foliations to core axis \(\rightarrow 40^{\circ}\) at 24.1 m , \(40^{\circ}\) at \(27.1 \mathrm{~m}, 35^{\circ}\) ot \(30.1 \mathrm{~m}, 35^{\circ}\) at \(33.2 \mathrm{~m}, 30^{\circ}\) at \(36.3 \mathrm{~m}, 30^{\circ}\) at 39.3 m ; basal contact gradotlonal over 20 cm .
ALTERATION: Moderately bleached throughout; Intensely sericitized (i) lensos and silivers comprise 5 - 20x; most intense sericitlzotion toward basal contact:
- carbonate in matrix may be secondery;
- Chrome Mica - trace - disseminated.

MINERMLIZATION: Pyrite - overall < 18 ; localiy \(\leqslant 48\) mainiy in conglomerate motrix; chalcopyrite
trace - disseminated; hemotite - 38.9 - 39.5-2x massive veinlets \(\leq 8\) mm; quartz-white carbonaterchlorite velns, generally \(<18,10 \%\) at \(33.0-34.7 \mathrm{~m}\); 58 at 38.2 - 41.1 m ; onkeritel ilmonite - 10-20x over 10-20 cm assoclated with fractures ot \(24.8 \mathrm{~m}, 25.4 \mathrm{~m}, 28.4 \mathrm{~m}_{\mathrm{s}}\) \(31.9 \mathrm{~m}, 37.3 \mathrm{~m}\).
41.1 58.4 TUFFACEOUS CONGLOMERATE/AGGLOMERATE: 608 rounded to angular clasts in open purplogrey to browngrey motrix with 103 disseminated sericitized (7) feldspars; clasts are predominantiy pink syeniteltrachyte and tuffaceous material similar to matrix; non-magnetic; mossivo. moderately follated af \(35^{\circ}-40^{\circ}\) to core axis throughout; siliceous - Moh \(=6-7\) throughout; very weakiy to non-calcareous, basal contect gradational over 20 cm .


Poge 4 of 8 DOH VT-88-02
\begin{tabular}{llllr}
13.6 & 15.1 & 1.5 & 7161 & 18 \\
& & & & \\
21.4 & 22.6 & 1.2 & 7162 & \(<1\) \\
22.6 & 24.7 & 2.1 & 7163 & \(<5\) \\
24.7 & 25.8 & 1.1 & 7164 & 8 \\
25.8 & 27.1 & 1.3 & 7165 & \(<5\) \\
27.1 & 29.1 & 2.0 & 7166 & \(<5\) \\
29.1 & 31.1 & 2.0 & 7167 & \(<5\) \\
31.1 & 33.0 & 1.9 & 7168 & \(<5\) \\
33.0 & 34.7 & 1.7 & 7169 & \(<5\) \\
34.7 & 36.8 & 2.1 & 7170 & 12 \\
36.8 & 38.2 & 1.4 & 7171 & 7 \\
38.2 & 39.3 & 1.1 & 7172 & \\
39.3 & 41.1 & 1.8 & 7173 & \\
& & & & 5 \\
48.5 & 50.1 & 1.6 & 7174 & \(<5\) \\
50.1 & 51.9 & 1.8 & 7175 & \(<5\) \\
51.9 & 54.0 & 2.1 & 7176 &
\end{tabular}

\(\frac{\text { From }}{\text { (Motric) }} \frac{\text { To }_{0}}{}\)
\(\frac{\text { SAMPLE }}{\text { From To Length No. }} \frac{\text { Rec }}{\mathrm{d}}\)

Basal contact gradational over 2 cm .
alteration: Pervasive K-feldspar with sericite increasing downhole - very weakly to nondolomitic/calcareous; slilcatolbite (?) patches - 10x at 85.1-86.4 m; Cr-mica - disseminations and wisps (clasts?) - 3x at 83.8 - 84.8 m ; <<18 elsewhere; possibly assoclatod with fine grains of disseminated chromites.
MINERALIZATION: Quartz+white corbonate \({ }^{ \pm}\)orange siderite \({ }^{ \pm}\)chlorite velns - 158 - Irregular - \(\leq 10 \mathrm{~cm}\) wide; pyritetpyrrhotite \(-<1 \%\) - in velns and (disseminations).
86.4 88.3 TUFFACEOUS CONGLOMERATE/AGGLOMERATE: SImller to 41.1 - 58.4 m but moder ately oltered throughout: well follated at \(30^{\circ}\) to core axis; basal contact gradotional over 1 cm .
NLERATION: Bleaching/sericitization(?) - 38 - disseminations and wisps; K-feldspar -87.7-88.3 m; Cr-mica - trace - disseminated wisps.

MINERN IZATION: Quartz+wite corbonate \({ }^{ \pm}\)orange siderite velnlets - \(4 x\) - irreguler. \(<1\) cm wide pyrite - trace - disseminated and on fractures.
88.3 105.3 NLERED CONGLOMERATE: As \(75.5-81.8 \mathrm{~m}\); moderate to strong follation to core axis \(\rightarrow 30^{\circ}\) at 91.1 . \(40^{\circ}\) ot \(94.2,40^{\circ}\) ot \(97.2,35^{\circ}\) ot \(100.1,45^{\circ}\) ot 103.1; basal contoct gradational over 3 cm . LTERATION: Pervasive intense K-feldspartsericite alteration in varying proportions throughout; waakly dolomitic throughout; Cr-mica - is - disseminations and wisps.
MINERMLIZATION: Quartz+white carbonate \({ }^{ \pm}\)chlorite \({ }^{ \pm}\)or ange sideritet tourmaline velns; 86 at 88.3 95.8 m ; 208 ot 95.8 - 101.7 m; 10x at 101.7-105.3 m; pyrite-<<18-on frectures in velns and disseminations; chalcopyrite - trace - on fractures in veins.
105.3 110.7 TUFFACEOUS CONGLOMERATE/MGGLOMERATE: SImiler to 41.1-58.4 m; moderately to poorly follated at \(45^{\circ}\) to core axis; basal contact gradational over 10 cm ;
ALERATION: SIIght bleaching 109.0-110.7 m; Cr-mice - trace - disseminations and wisps. MINERNLIZATION: Quertz+wite carbonate \({ }^{\ddagger}\) orange siderite veins - \(8 \%-\operatorname{Irregular} \leqslant 8 \mathrm{~cm}\) wide.
110.7111 .9 ALTERED CONGLOMERATE: SImiliar to \(75.5-81.8 \mathrm{~m}\); moderately to well follated at \(35^{\circ}\) to core axis; basal contact gradational over 5 cm .
NLERATION: Pervasive K-feldspar (40\%)+sericite (60\%). Alteration in patchy mosaic; meokly dolomitic; Cr-mica - 0.5Z - disseminated wisps.
MINERNLIZATION: Quartz+white corbonate \({ }^{ \pm}\)orange siderlte \({ }^{ \pm}\)black chlorite veins - 208 - irroguler. \(\leq 20 \mathrm{~cm}\) wide; pyrite/chalcopyrite/pyrrhotite \(-<18\) on fractures in velns.
\(86.4 \quad 88.3 \quad 1.9 \quad 7194\)
14
\begin{tabular}{rrrrr}
88.3 & 90.0 & 1.7 & 7195 & 20 \\
90.0 & 91.6 & 1.6 & 7196 & 9 \\
91.6 & 92.9 & 1.3 & 7197 & 6 \\
92.9 & 94.4 & 1.5 & 7198 & 8 \\
94.4 & 95.8 & 1.4 & 7199 & 72 \\
95.8 & 97.3 & 1.5 & 7200 & 6 \\
97.3 & 98.8 & 1.5 & 7201 & 5 \\
98.8 & 100.1 & 1.3 & 7202 & 11 \\
100.1 & 101.7 & 1.6 & 7203 & 8 \\
101.7 & 103.4 & 1.7 & 7204 & \(<\) \\
103.4 & 105.3 & 1.9 & 7205 & 22 \\
& & & & \\
105.3 & 106.2 & 0.9 & 7206 & 7 \\
106.2 & 107.9 & 1.7 & 7207 & 5 \\
107.9 & 108.8 & 0.9 & 7208 & 8 \\
108.8 & 110.7 & 1.9 & 7209 & \(<\) \\
& & & & 5 \\
110.7 & 111.9 & 1.2 & 7210 & 23
\end{tabular}

137.4 142.1 QUARTZ FRAGMENT BRECCIA/CONGLOMERATE: Light groen, pooriy defined crystal tuff and conglomerate closts ( \(35 x\) ) ( \(\leq 3 \mathrm{~cm}\) diameter) in open sericitic matrlx: overprinted (?) by 5x, 1-5 mm diometer, well-defined, angulor, white to light grey quartz clasts (tectonic breccia clasts?): non-magnetic, non-calcareous; will follated at \(45^{\circ}\) to core axis; basal contact shorp of \(40^{\circ}\) to core axis.
NLTERATION: Pervasive intense sericitization and moderate silicification (3); Cr-mica - trace disseminated wisps.
MINERALIZATION: Pyrite - overall 18 , locally \(\leqslant 5 x\) - disseminated cubes \(\leq 3 \mathrm{~mm}\) diameter. commonly in quartz clasts (replocement by quartzi); pyrrtiotite - trace - replacing quartz; quartztwhite corbonate veins - \(<18, \leq 2 \mathrm{~cm}\) wide; blue quartz veins - 18 - 1 cm wide.
142.1 145.2 SERICITE SCHIST: Light greenlsh yellow, pastey-textured, serlcite bands with \(\leq 30 \%\) light (uphole) to medium (downhole) grey interbeds of fine arenite; non-magnetic, non-calcareous; very soft; well follated and bedded ( \(\leq 2 \mathrm{~cm}\) thick) at \(30^{\circ}\) to core axis; basal contact gradational over 1 m . NLTERATION: Pervasive bleaching/sericitization (?).
MINERALIZATION: Quartz+white corbonate veinlets \(-\ll 1 \%, \leq 5 \mathrm{~mm}\) thick.
145.2 164.3 SANDSTONE/SILTSTONE: Generali'y interbedded light to medium grey, fine to medium grained sandstone beds ( \(\leq 10 \mathrm{~cm}\) thick) and dork grey siltstone ( \({ }^{ \pm}\)shale) beds ( \(\leq 1 \mathrm{~cm}\) thick): non-magnetic, noncalcareous: bedding/folitation at \(35-40^{\circ}\) to core axis; local cross beds indicate stratigraphic tops downhole.
ALTERATION: \(145.2-152.3 \mathrm{~m} \rightarrow\) decreasing moderate to silight bleaching/sericitization (2) of siltstone beds.
MINERMLIZATION: Pyrite \(-\ll 1 x\) - disseminated; quartz veinlets \(-\ll 1 \%, \leqslant 1 \mathrm{~cm}\) wide.

\begin{tabular}{llllr}
137.4 & 139.0 & 1.6 & 7227 & 9 \\
139.0 & 140.5 & 1.5 & 7228 & \(<5\) \\
140.5 & 142.1 & 1.6 & 7229 & 10 \\
& & & & \\
142.1 & 144.1 & 2.0 & 7230 & \(<5\)
\end{tabular}



\section*{DIAMOND DRILL RECORD}


\section*{DIAMOND DRILL RECORD}
\begin{tabular}{llll} 
Hole No.: & VT-88-03 & Started: & January 19, 1988 \\
Property: & VIrginiatown & Completed: & Jonuary 20, 1988
\end{tabular}

Claim No.: L666335
Ref. Co-ord.:
Elevation:
Surveyed:
No
Grid Co-ord.: 45+60H, 22+05S
Core Size: 80
Casing Left: No

16.9-17.0 - Core lost

Follation/bedding to core axis: \(11.9 \mathrm{~m}: 45^{\circ} ; 18.0 \mathrm{~m}: 48^{\circ} ; 24.1 \mathrm{~m}: 40^{\circ}\).
28.8 52.7 BLEACHED INTERBEDDED SILTSTONE-SANOSTOKE.: COlor - progressive change from grey to green downtrole becoming a limeyellow green ot lower contact. Texture - bediling on scale of \(1-2 \mathrm{~cm}\) with wider \(30-50 \mathrm{~cm}\) sandstone beds. Similer to \(10.8-28.8 \mathrm{~m}\). Non-magnetic, non-calcareous.
NLTERATION: Bloeching reflected in the pervasive discoloration downhole. Localized silitification 44.8 - 44.3 m .2 - 38 sericitization developed downhole as 1 - 2 mivide folitation parallel stringers.

\(\frac{\text { SAMPLE }}{\text { From To Length No. }} \frac{\text { Rec }}{x}\)
\(\frac{A S S A Y S}{\frac{A U}{(p p b)}-\frac{A_{g}}{(p p m)} \frac{\mathrm{Zn}}{(p p m)}} \frac{\frac{p b}{(p p m)}}{\frac{\mathrm{Cu}}{(p p m)}}\)
\begin{tabular}{llllr}
28.9 & 30.2 & 1.3 & 7232 & 14 \\
34.4 & 35.9 & 1.5 & 7233 & 11 \\
39.1 & 41.0 & 1.9 & 7234 & 10 \\
43.9 & 46.4 & 2.3 & 7235 & 6 \\
51.2 & 52.7 & 1.5 & 7236 & 23 \\
52.7 & 53.5 & 0.9 & 7237 & 16 \\
53.5 & 55.0 & 1.5 & 7238 & 18 \\
55.0 & 57.1 & 2.1 & 7239 & 15
\end{tabular}
\begin{tabular}{llllr}
57.1 & 58.8 & 1.7 & 7240 & 15 \\
58.8 & 60.3 & 1.5 & 7241 & 32 \\
60.3 & 61.8 & 1.5 & 7242 & 17 \\
61.8 & 63.3 & 1.5 & 7243 & 15 \\
63.3 & 65.6 & 2.3 & 7244 & 8 \\
65.6 & 67.2 & 1.6 & 7245 & 5 \\
67.2 & 68.7 & 1.5 & 7246 & \(<5\) \\
68.7 & 69.8 & 1.1 & 7247 & 311 \\
69.8 & 71.2 & 1.4 & 7248 & 112 \\
71.2 & 72.8 & 1.6 & 7249 & 5 \\
72.8 & 74.3 & 1.5 & 7250 & 60 \\
74.3 & 75.8 & 1.5 & 7251 & 55 \\
75.8 & 77.0 & 1.2 & 7252 & 15 \\
77.0 & 78.7 & 1.7 & 7253 & 9 \\
78.7 & 80.4 & 1.7 & 7254 & 7 \\
80.4 & 81.6 & 1.2 & 7255 & 11 \\
81.6 & 83.1 & 1.5 & 7256 & \(<5\) \\
83.1 & 84.6 & 1.5 & 7257 & 7 \\
84.6 & 86.4 & 1.8 & 7258 & 8
\end{tabular}

CONGLOMERATE: Color - dark grey-red with splashes of green-yellow sericite. Texture - clasts are rounded to subangular, clasts aligned parallel to follation. Clasts comprised \(70 \%\) felsics, \(20 \%\) volcanics-sediments, and 108 quartz-feldspars. 302 matrix, matrix supported. Matrix composed of quartz-feldsper-chlorite-sericite.



\section*{MORTHERN DYMASTY EXPLORATIONS LTD.}

\section*{DIAMOND DRILL RECORD}


182.5 END OF HOLE

\section*{DIAMOND DRILL RECORO}


\section*{\(\frac{\text { From }}{(\text { Metric })}\)}
44.5 54.0 GREYHACKE: Generaliy medium-grey, thick bedded, local pebbles and cobbles toward base of unit; locally silghtly magnetic; weakly to non-dolomitic; bedding and weak to moderate follation at \(35^{\circ}\) to core exis; basal contact gradational over 4 cm .
NLERATION: Local very weak bleaching.
MINERALIZATION: Pyrite: Trace - disseminated. Quartz+white carbonate \({ }^{+}\)-orange siderite \({ }^{+}\)-chlorite velns - <<1x-10 cm vein at 50.5 m . Limonite - 54 - on fractures ot 44.5 - 45.0 m and sporsely elsewhere.
54.065 .4 CONGLOMERATE: \(20-408\) closts ( \(\leqslant 15 \mathrm{~cm}\) diameter) in open to closed IIght grey greywacke matrix: clast size increases downhole. Clasts - several types, predominontiy pink trachyte/syenite and chiorite-spotted light green volcanic (2); massive, non-magnetic, weakly to non-dolomitic; moderately fallated at \(35^{\circ}\) to core axis; basal contoct sharp.
NLERATION: MIINO patchy bleaching.
MINERNLIZATION: Pyrite - trace - disseminated, locally is at 58.2-60.4 m developed on frac tures; quartz+white carbonate veinlets: < 18 - irregulor.
65.4 68.1 TRACHYTE/SYENITE AND CRYSTAL'TUFF: Intercalated \(5-60 \mathrm{~cm}\) wide sectlons of medium grey crystal tuff (2) (408) and pink trachyte/syenite (60及); contacts are sharp and parallel to foliation at 45-55 to core axis; Crystal Tuft (?) - fine-grained with common feldspar crystals, mossive; Trachyte/Syenite: massive/follated; dikelets assoclated with chlorite-spotted trachyte/syenite below (2): non-magnetic; basal contoct gradational over \(3 \mathrm{~cm} ; 0.5 \mathrm{~m}\) of highly broken core neor uphole contact.
ALTERATION: Generally weakiy dolomitic - pervasive to patchy, moderate to strong slilicification over \(50 \%\) of unit - preferentially in trachyte/syenite. Local wisps of sericite in crystal tuff. Cr-mica - trace - disseminated in trachyte/syenite.
MINERNLIZATION: Quartz+white carbonate-tourmaline-chlorite-orange siderite velns/stockworks 35\% - irregular, generally veins \(<1 \mathrm{~cm}\).
68.1 73.1 CHLORITE-SPOTYED TRACHYTE/SYENITE: PInkish groy to oright orange-pink; fine to medium-gralned, typically with 102 green chlorite spots \(\leqslant 2\) ming; non-magnetic, non-calcereous; generally moderately to well follated at \(45^{\circ}\) to core axis; basal contact sharp.
NLTERATION: K-feldspar(tsiliciticationl) - pervasive and intense at 71.4 - 73.1 m. - sericitization - trace - as bands and wisps;
MINERNLIZATION: Quartz+white carbonate \({ }^{+}\)chlorite \({ }^{+}+\)tourmaline-orange siderite velns \(-2 x\) ot 68.1 71.4 m ; 208 of 71.4 - 73.1 m - irregular. \(\leqslant 10 \mathrm{~cm} ; 72.7-72.8 \rightarrow\) spectecular 208 tourmolinespiculed quartz veln. Pyrite - trace-disseminated and on fractures.
\begin{tabular}{c} 
SAMPLE \\
\hline Tom Length \\
\(\frac{\text { No. }}{8}\)
\end{tabular}
\begin{tabular}{llll}
44.5 & 45.4 & 0.9 & 7284
\end{tabular} \(\begin{array}{llll}50.1 & 51.7 & 1.6 & 7285\end{array}\)
\begin{tabular}{llll}
58.2 & 60.4 & 2.2 & 7286
\end{tabular}
\begin{tabular}{llllr}
65.4 & 66.1 & 0.7 & 7288 & 7 \\
66.1 & 67.1 & 1.0 & 7289 & 8 \\
67.1 & 68.1 & 1.0 & 7290 & \(<5\)
\end{tabular}
\begin{tabular}{llllr}
68.1 & 69.8 & 1.7 & 7291 & 5 \\
69.8 & 71.4 & 1.6 & 7292 & 7 \\
71.4 & 73.1 & 1.7 & 7293 & 10
\end{tabular}

\section*{\(\frac{\text { From }}{(\text { Metric }} \frac{\text { To }}{}\)}
massive; non-magnetic, weakly to mon-dolomitic; moderately follated at \(40^{\circ}\) to core axis throughout; basal contact gradational over 10 cm .
ALTERATION: K-feldspartsericitization(tsilicification?) - at 91.1-93.4 m-moderate to intense pervasive. Cr-mica - trace - disseminated. Local minor bleaching 73.1-91.1 m.
MINERALIZATION: Quartz+white carbonate \({ }^{+}\)tourmaline \({ }^{+}\)chlorite \({ }^{+}\)orange siderate velns - generally
 veins mainily toward base of unit; hematite \(\leqslant 18\) at \(91.1-93.4 \mathrm{~m}-\) in velns and disseminations. Pyrite - trace - disseminoted and in veins.
93.4 123.1 CONGLOMERATE+(GREYWACKE): Generally light grey to pinkish grey uphole grading to medium grey downhole; conglomerate grades to medium and coorse-gralned, greywacke over \(15 \%\) of unlt; massive no bedding preserved; non-magnetic, weakly to non-dolomitic; follation to core axis - moderate to strong - generally \(40^{\circ}\) uphole varying to \(50^{\circ}\) downhole; 2 cm rusty gouge at \(50^{\circ}\) to core axis at 106.6 m ; varlety of clasts \(-\leqslant 10 \mathrm{~cm}\) diameter. \(\leqslant 308\); mainly pink trachyte/syenite, chiorite greywacke, and chlorite-spotted grey tuff; basal contact shorp across 1 cm quartz vein.
NLTERATION: Generally moder ate bleaching at 93.4-113.0 m causing discoloration and poor definition of conglomerbte clasts. K-feldspar - moderate to intense ot 106.4 - 108.7 m and small patches ( \(\leqslant 20 \mathrm{~cm}\) ) elsewhere, especialiy at 120.0-123.1 m: serlcitization - Intense at 110.4-110.8 m; minor elsewhere.
MINERNLIZATION: Quertz+white corbonate \({ }^{+}\)chlorite \({ }^{\dagger}\) tourmaline velns - generally \(<2 \pi\) - 48 at 106.4 108.7 and 48 at 120.0-123.1 m; hematite - < 18 at 93.4 - 94.8 m - in velns; pyrite - trace disseminated and in veins.
123.1 133.8 GREYMACXE+CONGLOMERATE: Gradationaliy Intercalated sections ( \(\leqslant 1.5 \mathrm{~m}\) wide) of medium grey, medium to coarse-grained greywacke (658) and conglomerate (351); conglomerate clasts are \(\leqslant 3 \mathrm{~cm} \mathrm{dia}\) meter, veriety of clasts but predominantly pink trachyte/syenite in open to closed medium grey meter, variety of clasts but predominantiy pink trachyte/syenite in open to closed medicm grey
greywacke matrix; non-magnetic, weakly to non-dolomitic; moderate follation generally at \(50^{\circ}\) to greywacke matrix; non-magnetic, waokly to non-dol
core axis; basal contact gradational over 3 cm .
MLTERATION: Minor bleaching/sericitization and silicification.
MINERNLIZATION: Quartz+white corbonate veins - generally << 18; 58 at 124.4-124.9; pyrite generally trace; 0.5\% at \(124.4-124.9 \mathrm{~m}\); locally 18 at 127.2 - 127.7 m in small zones of sllicification.
133.8138 .5 CONGLOMERATE: Similar to \(54.0-65.4\) m; moderately to well follated at \(45^{\circ}\) to core axis; basal contact sherp.
M.TERATION: K-feldspar: moderate alteration at 133.8 - 134.5 m ; silght alteration at 135.4 136.2 m ; bleaching - silight throughout.

MINERNLIZATION: Quartz+white carbonatetchiorite veins - 48 at 133.8-134.9m; << 18 elsewhere.

SAMPLE

\(\begin{array}{llll}79.4 & 80.9 & 1.5 & 7296\end{array}\) \(85.4 \quad 86.4 \quad 1.0 \quad 7296\) \(89.3 \quad 91.1 \quad 1.8 \quad 7298\) \(\begin{array}{llll}91.1 & 91.8 & 0.7 & 7298\end{array}\) \(\begin{array}{llll}91.1 & 91.8 & 0.7 & 7299 \\ 91.8 & 93.4 & 1.6 & 7300\end{array}\)
\begin{tabular}{rrrrr}
93.4 & 94.8 & 1.4 & 3268 & \(<5\) \\
97.8 & 99.4 & 1.6 & 3269 & 9 \\
101.0 & 102.5 & 1.5 & 3270 & 7 \\
102.5 & 104.7 & 2.2 & 3271 & 9 \\
104.7 & 106.4 & 1.7 & 3272 & 10 \\
106.4 & 107.4 & 1.0 & 3273 & 7 \\
107.4 & 108.7 & 1.3 & 3274 & \(<5\) \\
108.7 & 110.4 & 1.7 & 3275 & 13 \\
110.4 & 111.5 & 1.1 & 3276 & 15 \\
120.0 & 121.8 & 1.8 & 3277 & 15 \\
121.8 & 123.1 & 1.3 & 3278 & 21
\end{tabular}
\begin{tabular}{llll}
124.4 & 124.9 & 0.5 & 3279
\end{tabular} \(\begin{array}{llll}127.2 & 127.7 & 0.5 & 3280\end{array}\)
138.5141 .0 GREYHACKE: Medium \({ }_{0}\) grey, medium-gralned, massive, non-magnetic, weakiy dolomitic; moder ately to well follated at \(50^{\circ}\) to core exis; basal contact gradational over 4 cm .
NLTERATION: not altered.
MINERNLIZATION: Quartz+white carbonate velnlets - <<18; pyrite - trace - disseminated.
141.0 154.9 CONGOMERATE: Simllar to 54.0-65.4 m; moderately to well foliated at \(50^{\circ}\) to core axis; bosal contoct across 10 cm quertz+white corbonate vein.
NLTERATION: K-feldspar - pervasive - silight to moderate uphole varying to intense downtiole ( 151.6 - 154.9 m ); sericitization - local wlsps and bands throughout. Cr-mica - trace disseminated - increasing downhole.
MINERNLIZATION: Quertz+white corbonate-chlorite \({ }^{+}\)-orange siderite veins - generaliy \(<18\) -
irregular: pyrite - trace - disseminated and in veins.
154.9159 .1 CHLORITE-SPOTTED TUFF (3): Generally very 11 ght groy with 158 dissominations. \(\leqslant 3\) mm long chlorite visps; local pink syenite clasts ( \(\leqslant 2_{0} \mathrm{~cm}\) diameter) increasing downhole; mossive, non-magnetic. weakly dolomitic; well foliated of \(55^{\circ}\) to core axis; basal contact sherp.
NLTERATION: K-feldspar - intense as \(\leqslant 2 \mathrm{~cm}\) selvages on quartz-cerbonate velns at 154.9 - 156.5 m ; local patches elsewhere.
MINERALIZATION: Quartz+white corbonatetorange sideritetchloritettourmaline velns - 25\% at 154.9-156.5 m; 18 at 156.5 - 159.1 m ; pyritet(chalcopyrite): disseminated and in veins.
159.1 164.8 TRACHYTE/SYENITE: Light to dark pink, massive; typlcally homogeneous, 0.5 m feldspar crystal mosalc; poorly defined breccla of rounded trachyte clasts ( \(\leqslant 1 \mathrm{~cm}\) ) in similer tight closed matrix at 160.2-162.0 m; non-magnetic, non-dolomitic, moderately hord (Moh = 6); poorly foliated at \(50^{\circ}\) to core axis; basal contact sherp.
N.TERATION: Moderately bleached and locally sericitized at 161.1 - 162.0 m.

MINERNLIZATION: Quartz+white carbonatetorange sideritetchlorite velns - 38 ot 159.1 - 162.0 m ; << 18 at 162.0-164.8 m.
164.8 182.5 CONGLOMERATE: Generally ilight brownish grey with pink tint toward uphole contact; large varlety of \(\leqslant 3 \mathrm{~cm}\) weli-rounded clasts in closed greywacke matrix; clasts include pink trachytelsyenite, light to derk grey sandstones, and green tuffs (?); moderate follation varies \(45-55^{\circ}\) to core axis; non-magnetic; weokly to non-dolomitic.
MLTERATION: Silightiy bleoched throughout; K-feldspar - sitight pink tint at 164.8-168.8 m.
MINERMLIZATION: Quartztwite corbonatetchlorite velns - <<18 - Irrogular: 58 at 168.4-168.8 m; pyrite - trace - disseminated.
182.5 END OF HOLE

\begin{tabular}{llllr}
142.6 & 144.6 & 2.0 & 3282 & \(<5\) \\
148.2 & 150.1 & 1.9 & 3283 & \(<5\) \\
150.1 & 151.6 & 1.5 & 3284 & 9 \\
151.6 & 152.8 & 1.2 & 3285 & \(<5\) \\
152.8 & 154.3 & 1.5 & 3286 & \(<5\) \\
154.3 & 154.9 & 0.6 & 3287 & \(<5\) \\
& & & & \\
154.9 & 156.5 & 1.6 & 3288 & 20 \\
156.5 & 157.9 & 1.4 & 3289 & 10 \\
157.9 & 159.1 & 1.2 & 3290 & 5
\end{tabular}
\begin{tabular}{llllr}
159.1 & 161.1 & 2.0 & 3291 & 7 \\
161.1 & 162.0 & 0.9 & 3292 & 10 \\
162.0 & 163.2 & 1.2 & 3293 & 5 \\
163.2 & 164.8 & 1.6 & 3294 & 15
\end{tabular}

\section*{Poge 6 of 6 DOH VT-88-04}
\(\square\)


\section*{NORTHERN DYMASTY EXPLORATIONS LTO.}

DIAMOND DRILL RECORD


HOLE SUMMARY
0.0 : 2.5 Cosing.
2.5 60.0 Greywacke; locallzed quartz volns and pyritic sulphides.
60.075 .0 interbedded siltstone-mudstone; localized quartz velns; weak sulphide development.
75.0 82.8 Interbedded greywacke-mudstone/siltstone.
82.8 94.7 Graphitic siltstone-mudstone.
94.7 96.9 Greywocke.
96.9113 .4 Interbedded greywacke-mudstone/silitstone.
113.4 121.1 Bloached greywacke.
121.1 147.8 Greywocke; locally bleoched, wook sulphides.
147.8 152.4 Graphitic silltstone.



Hole No.: VT 88-05 Started:
Property: Virginlotown Completed
Clalm No.: L765075
Ref. Co-ord.:
Elevation:
Survered: No
Grid co-ord.: 6+20W, 2+10S
Core Size: B
Cosing Left: No 2. Test VLF conductor.

January 30, 1988
February 2. 1988 J. Ho
\begin{tabular}{|c|c|c|c|}
\hline Meter age & Azimuth & Dip & Method \\
\hline & & (corrected) & \\
\hline 0.0 & \(320^{\circ}\) & -45 \({ }^{\circ}\) & Compas \\
\hline 60.6 & - & -47 \({ }^{\circ}\) & Acto \\
\hline 121.6 & - & \(-43^{\circ}\) & Acid \\
\hline 182.6 & - & \(-40^{\circ}\) & Acid \\
\hline 247.0 & - & \(-38^{\circ}\) & Acid \\
\hline
\end{tabular}
- Test South Cilff mineralized zone.

\(0.0 \quad 2.5\) casing.
2.5 60.0 GREYHACKE: Color - typical medium-grey. Texture - tine-grainedwith 5-88, 1-3 cm wide intercalations of silt-mudstone. Silt-mudstone silightiy derker in colour. Abundant primery struc-
tures visible: lood casts common, graded beds, and flame structures up to \(1-1 / 2 \mathrm{~cm}\) in
length. All ere indicative of top direction uphole. Non-magnetic. No reaction to 10 KCl
length. All are indicative of top direction uphole. Non-magnetic. No reaction to 10 K HCI
ocid. However, \(2.5-10.4 \mathrm{~m}\) marks a zone of \(1-2\) mm sized, cublc mineraliation. Abundance,
from 208 maximum at top of section gradualiy diminishing, to trace at 10.4 m . This mineralizotion eppeors to be corbonate.
NLTERATION: Fresh, only weak bleaching, immediately about quartz-fliled tracture networks. MINERMLIZATION: 1 - 38 quartz veining and quartz filled fracture notworks. Quartz velns generally \(\leq 45^{\circ}\) to core axis. Moderately woll-doveloped in pyritic sulphides. Locally.
\(1-2 \mathrm{~cm}\) vide ones of 3-48 pyrite, but averaging \(\leq 18\) over section. Pyrite is developed
in two forms; il very fine disseminations, \(\langle 1 \mathrm{~mm}\) in size, and il) relatively lerge, up to
\(1 / 2 \mathrm{~cm}\) In size, euhedral cubes. The large cubes ore quite spectacular. Weak hala of \(\mathrm{CaCO}_{3}\) about velas.
5.0 - 6.5: Typical mineralized zone (as above).
15.8-17.0: Seme as 5.0-6.5
19.5-20.8: Incroasing in quartz veining, 258 of section, lorgest quartz voin 10 cm wide.
contact at right angles to core axis. Host is moderately brecciated about the quartz velns. 18 pyrite in host.
27.9 - 29.2: Similar to 19.5-20.8 but quartz velning down to 10-12\%. Typical large pyrite cubes in host. \(<18\) sulphide total.

From To (Metric)
33.0-34.7: 108 quartz velning, \(\leq 1 \mathrm{~cm}\) wide, contacts \(\leq 45^{\circ}\) to core axis. Trace assoclated euhectal pyrite. 38 \(\mathrm{CaCO}_{3}\) - pyrite trocture tlll's at 33.2-33.5. Pyrite as coats and covers up to \(30 \%\) ot fracture surface. Pyrite is very fine.
37.0-37.6: 81 quartz velning similar to 33.0-34.7. No \(\mathrm{CoCO}_{3}\). Pyrite tracture flilis visible. 14 euhedral pyrite overall, but restricted to two strataform bands of 1 cm width (at 37.2 m and 37.3 m ). Abundance of 108 over this 1 cm width.
39.7-40.2: Simllar to 37.0-37.6 except, no quartz veins; pyritic bands of similar description (37.0-37.6) at 39.9 m and 40.1 m .
52.6-53.2: 5-6\% quartz velning as before. 52.7-52.8 morks a brittle-ductlle sheor zone. Excellent development of tectonic fabrics. Trace sulphides and no appreciable alteration. Bedding/tollation to core axis: \(6.5 \mathrm{~m}: 48^{\circ} ; 17.9 \mathrm{~m}: 44^{\circ} ; 31.6 \mathrm{~m}: 50^{\circ} ; 41.7 \mathrm{~m}: 47^{\circ} .51 .6 \mathrm{~m}: 53^{\circ}\).

INTERBEDDED SILTSTONE-MUDSTONE (MInor COnglomerate): COlor - medium to dork grey, similar to greywacke unit above. Textures - bedding on a scale of \(1-2 \mathrm{~cm}\), coarser grained units. \(\leqslant 5 \mathrm{~cm}\) wide. Abundent primary structures visible, Indicative of tops uphole. Conglomerate units at 60.02-60.4 and 64.2-65.2w Matrix supported and polymictic; \(80 \%\) telsics, \(10 \%\) volcanics, and 108 quartz and plogioclase closts. Non-magnetic, very weokly calcoreous matrix.
NLTERATION: No significant alteration. However, wlld to moderate bleaching (108) of conglamerate units and also 5-78 patchy sericite development.
MINERNLIZATION: \(18 \cdot\) small \((<1 \mathrm{~cm}\) wide) quartz volns, however, upper sections more intensely mineralized and well-developed with quartz velns, as follows:
60.0-61.0: 258 quartz veining, concentrated at top of section, 2 - 34 euhedral pyrite associated with quartz velaing and disseminated in conglomerate unit (60.4-60.6). Quartz velns roughly bedding parallel.
61.0-61.9: Lerge quartz veln from 61.1-61.8. 3-58 green chlorite intergrowths with the quartz and 1-2x biack tourmaline ( 7 ) intergrowths.
61.9-62.9: 3-42 irregulariy tormod quartz velns, 2-2-1/2 cm vide. Local (62.2-62.3) calcl um-carbonate-chalcopyrite \((<18)\) tracture till.
62.9-64.2: 3-48 quartz filled fractures (network).
64.2-65.2: 2 - 38 euthedral pyrite conglomerate unit. Pyrite found dominantly in matrix but not uncommon in clasts.
65.2-65.9: 2-3x quartz veining, contacts bedding parallel, 2-3 cm in width. Weok bloaching immediately obout quartz velins.
Bedding/follation to core axis: \(60.4 \mathrm{~m}: 43^{\circ} ; 67.8 \mathrm{~m}: 40^{\circ} ; 73.9 \mathrm{~m}: 47^{\circ}\).
INTERBEDDED GREMACKE - MNDSTONE/SILTSTONE: COIOR - modium grey, similer to abovo units.
Textures - fine-grained, bedding veriable, greywacke units generaliy \(30-60 \mathrm{~cm}\) wide interbedded with \(1-3 \mathrm{~cm}\) wide mud-silitstone units. Non-magnetic, non-calcareous.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{SAMPLE} & \multicolumn{5}{|c|}{ASSAYS} \\
\hline From & To & Length & No. & \[
\frac{R e c}{x}
\] & \[
\frac{A u}{(p p b)}
\] & \[
\frac{\mathrm{Ag}}{(\mathrm{ppm})}
\] & \[
\frac{\mathrm{Zn}}{(\mathrm{ppm})}
\] & \[
\frac{\mathrm{Pb}}{(\mathrm{ppm})}
\] & \[
\frac{\mathrm{Cu}}{(\mathrm{\rho pm})}
\] \\
\hline 33.0 & 34.7 & 1.7 & 97505 & & 17 & & & & \\
\hline 37.0 & 37.6 & 0.6 & 97506 & & 12 & & & & \\
\hline 39.7 & 40.2 & 0.5 & 97507 & & 15 & & & & \\
\hline 52.6 & 53.2 & 0.6 & 97508 & & 21 & & & & \\
\hline
\end{tabular}
\begin{tabular}{lllll}
60.0 & 61.0 & 1.0 & 97509 & 25 \\
61.0 & 61.9 & 0.9 & 97510 & 14 \\
61.9 & 62.9 & 1.0 & 97511 & 22 \\
62.9 & 64.2 & 1.3 & 97512 & 25 \\
64.2 & 65.2 & 1.0 & 97513 & 27 \\
65.2 & 65.9 & 0.7 & 97514 & 20
\end{tabular}
\[
\frac{\text { From }}{(\text { Metr }} \frac{\text { To }}{1 c)}
\]

ALTERATION AND MINERNLIZATION: Very fresh, only troce quartz veins.
Follation/bedding to core axis: \(80.9 \mathrm{~m}: 47^{\circ} ; 82.7 \mathrm{~m}: 45^{\circ}\).
82.8 94.7 GRAPHITIC SILTSTONE-MUDSTONE: COlor - dark grey-black. Texture - fine-gralned, phylitic, bedding \(<1 \mathrm{~cm}\) wide. Non-magnetic, non-calcereous.
NLTERATION AND MINERAL IZATION: No visible signs of alteration. \(\leqslant 1 x, 2-5 \mathrm{~mm}\) wide, quartz velns, trace pyrite.
89.0-94.6: 80\% of core ground and broken, 88\% recovery.
93.6-94.2: core lost.

Bedding/follotion to core oxis: \(85.5 \mathrm{~m}: 55^{\circ}: 91.2 \mathrm{~m}: 53^{\circ}\).
94.7 96.9 GREYWACKE: COlor - IIght-medium grey. Texture - fine-grained. Non-magnetic, non-calcareous. NLERATION AND MINERNLIZATION: No visible signs of significant alteration or mineralization. Bedding/follation to core axis: \(95.7 \mathrm{~m}: 54\).
96.9 113.4 INTERBEDDED GREYMACKE: Mudstonefsiltştone, same as 75.0-82.0.
101.8-103.6: 1\% quartz vein, contacts bodding parallel, trace prite.
113.4121 .1 BLEACHED GREYMACKE: COIOt - ilight green-grey. Texture - tine-grained, minor interbeds of fine silt. Non-magnetic, non-calcareous.
ALTERATION: Weakly altered, greenish tint from bleaching.
MINERNLIZATION: Trace disseminated pyrite. Trace \(\mathrm{CaCO}_{3}\) fracture filis.
Uper and lower contact gradational over 30 cm.
Follation/bedding to core exis: \(117.0 \mathrm{~m}=52^{\circ} ; 111.8 \mathrm{~m}=60^{\circ}\).
121.1 147.8 GREYWACKE: Color - typical medium grey with slight green tint. Texture - tine-grained, 3-58. \(1-3 \mathrm{~cm}\) wide, intercalations of silt-mudstone. Silt-mudstone silightiy darker in colour. Primory features visible, though not as distinct as 2.5-60.0 m. Overali, similar to 2.5 - 60.0 m . MLERATION: Localized zones of silight (2.5x) bleaching. Generally \(<1\) cm wide.
126.2-126.9: Sifghtiy more intense zone of bleaching. Pervasivo, 5-108 abundance.
139.9-143.5: Weak zone of bleoching ( 3 - 4x).

MINERNLIZATION: Trace, stratabound, euhedral pyritic bands, widths \(<1 \mathrm{~cm}, 2-38\) over this wlath.
126.2-126.9: Trace pyrite and gatena (2) associated with 5 cm wide quartz veln and silicificatlon zone.
142.2-143.8: Neok zone of bleaching with very fine-grained pyrite developed at most intense zone of alteration (143.2-143.3). is abundance.
Foliation/bedding to core axis: \(118.5 \mathrm{~m}: 58^{\circ}\); \(130.5 \mathrm{~m}: 60^{\circ}\); \(133.9 \mathrm{~m}: 62^{\circ}\); \(142.0 \mathrm{~m}: 60^{\circ} ; 144.9 \mathrm{~m}: 59^{\circ}\).

From To (Metric)
147.8 152.4 GRAPHITIC SILT-MUDSTONE: Color - dark grey to black. Texture - fine-grolned bedded on a 1 - 2 cm scale. Non-magnetic, non-calcareous.
ALTERATION: very fresh.
MINERALIZATION: Trace, follation parallel quartz velns. Core ground from 151.2-152.1, good recovery \(93 \%\).
Follation/bedding to core axis: \(149.0 \mathrm{~m}: 54^{\circ}\).
152.4 167.7 INTERBEDDED SILTSTONE-MUDSTONE: COlor - medium-grey. Texture - fine-grained, bedding on o scale of 1-3 cm. Non-mognetic, non-calcereous.
of \(1-3 \mathrm{~cm}\). Non-mognetic, non-calcarecus.
ALTERATION: Fresh, no significant signs of alterotion.
ALTERATION: Fresh, no significant signs of alteration.
MINERALIATION: Trace, \(1-2 \mathrm{~cm}\) wide, quartz velns. Contocts roughly follation/bedding paraliel 1-28 quartz filied fractures. \(\leq 18\) fine-grained prilte.
Bedding/toliation to core axts: \(153.5 \mathrm{~m}: 53^{\circ}\); \(157.4 \mathrm{~m}: 54^{\circ}\) : \(163.4 \mathrm{~m}: 56^{\circ}\).
167.7 172.1 ALTERED INTERBEDOED SILTSTONE-MOSTONE: Color - banded sequence of yellow-greens and greys. Texture - fine-grained, only weak!y follated. Non-megnetlc, non-cal careous.
MLERATION: Well-altered; pervasively bleached (80x); abundant development of sericite (30x of mineral assemblage); and good silicitication (20x).
MINERALIZATION: \(1-28\) well disseminated eutedral pyritic sulphides. Pyrite cube \(1-2 \mathrm{mman}\) in size; preferentialiy orlented parallel to follation; silicate pressure shadows visible on larger pyritic cubes. Only trace quartz velins.
Follation/bedding to core axis: \(170.3 \mathrm{~m}: 58^{\circ}\).
Upper and lower contacts gradational over \(10-20 \mathrm{~cm}\).
172.1 192.8 INTERBEDEED SILTSTONE-MMOSTONE: Color - grey to silightiy tinted green-grey. Texture-fine-grained, bedding on a \(1-2 \mathrm{~cm}\) scale. Non-magnetic, non-calcareous.
NLTERATION: Only very weok bleaching, otherwise generally fresh.
MINERALIZATION: Generally no quartz velns or sulphides.
174.0-175.2: 28 irregular quartz velns with 1-28 pyritic inclusions.

Foliation/bodding to core axis: \(179.5 \mathrm{~m}: 54^{\circ}\); \(185.6 \mathrm{~m}: 55^{\circ}\); \(191.2 \mathrm{ma}: 50^{\circ}\).
Lower contact gradational over 1 m .
192.8 206.3 NLTERED INTERBEDOED SILTSTONE-MOSTONE: COlOr - IIght yelfow green, progressing from a grey-green uphole to a distinct yellow-green downhole. Texture - fine-grained, weakly follated, nonmagnetic: non-calcareous.
ALTERATION: Dominated by pervasive bleaching. increasing intensity downhole, becoming completely (100\%) bleached by lower contect. Gradual alteration over the length of the section.

\(\begin{array}{llll}151.1 & 152.4 & 1.3 & 97519\end{array}\)
28
\begin{tabular}{lllll}
167.7 & 169.1 & 1.4 & 97520 & 15 \\
169.1 & 170.6 & 1.5 & 97521 & 10 \\
170.6 & 172.1 & 1.5 & 97522 & 14
\end{tabular}


DESCR IPTION

MINERN IZATION: 2-38 localized \(10-20 \mathrm{~cm}\) wide quartz veins with 1 - 28 fracture fllied pyrite. Pyrite also occurs as discrete euhedral forms with grey slilicate pressure shadows \((18\) pyritic obundance).
196.9-198.0: two 10-20 cm wide quartz velns, contacts foltation parallel (197.1-197.3 and 197.6-197.3 respectively).
200.2-201.1: Three quartz veins (200.3-2 cm wide and 200.5-200.8 and 200.9-201.0 m respectively), 1-28 pyritic fliled tractures associated with 200.9-201.0 m quartz vein. 204.8-206.3: Trace quartz velns. 12 euhedral pyrite with slitica pressure shadows. Pyrite forms 1-2 mm in size.
Follation/bedding to core axis: \(192.7 \mathrm{~m}: 65^{\circ}\); \(198.5 \mathrm{~m}: 67^{\circ}\); \(203.6 \mathrm{~m}: 59^{\circ}\).
206.3209 .5 BLEACHED CONGLOMERATE: Color - grodual change from yellow-green (similar to above unit) to pinkish-
red downhole. Textures - Clasts are rounded to sub-angular and allgned parallel to follation.
Clasts dominated by syenitic (trachyte) 858 , \(15 \%\) volcanics and quertz. Clasts generally \(1-4 \mathrm{~cm}\)
long. Matrix supported, 458 matrix to 558 clasts. Non-magnetic, non-calcoreous.
NLTERATION: Dominated by extreme bleaching in upper sections gradually fading downhole. Moderate (5-10x) K-feldspar addition fowards lower contact. Also weak ( \(1-2 x\) ) serlcitic addition. as stringers and wisps in the matrix.
MINERNLIZATION: Trace to is euhedral pyrite in upper sections, with silicate pressure shadows, discriminated.
206.3-207.9: 18 euhedral disseminated pyrite with silicate pressure shadows. Trace \(\mathrm{CaCO}_{3}\) filled froctures with \(\leqslant 18\) pyrite.
207.9-209.5: Similar to 206.3-207.9 (above) except lesser bleaching with depth.

Foliation to core axis: \(205.2 \mathrm{~m}: 53^{\circ}\); \(208.1 \mathrm{~m}=63^{\circ}\).
209.5219 .7 CONGLOWERATE: Color - dark grey-red with pinkish closts. Texture - Clasts rounded to sub-angular,
veriable sizes generaliy \(1-4 \mathrm{~cm}\) in size. Same as obove section (206.3-209.5 m). Similar
clast types and abundances. Matrix supported, \(55 \%\) matrix to \(45 \%\) clasts.
NLTERATION: Weak bleaching and wak K-feldspar addition at upper and lower contacts. Trace Cr-mica.
MINERALIZATION: Upper contoct merked by \(1-3\) cm breccla zone. This is filled with chlorite
(10-15\%), host (45\%), quertz ( \(40-45 \%\) ). Lower contect marked by \(3-5 \mathrm{~cm}\) wide mud seam. Core ground from 219.2-219.6 m.
209.5-211.0: Weakly altered, 18 quartz veins with xenoliths of host 5-8x. Mg-carbonate with quartz veln.
217.3-219.7: Weokly bleached and K-feldspar altered.

Follation/bedding to core axis: \(211.1 \mathrm{~m}: 70^{\circ}\); \(214.8 \mathrm{~m}: 64^{\circ} ; 219.1 \mathrm{~m}: 54^{\circ}\).
\begin{tabular}{c} 
SNMPLE \\
\hline To Length No. \(\frac{\text { Rec }}{8}\)
\end{tabular}
\(A S S A Y S\)
\(\frac{A u}{(p p b)}\)
219.7220 .6 N TERED CONGLOMERATE: Color - pInkish red. Texture - Clasts rounded to sub-angular, variable sizes 1-3 cm. Clast type and abundance same as 206.3-209.5 m. Matrix supported, 358 matrix to \(65 \%\) clasts.
NLERATION: Dominated by K-feldspar addition. 80-85\% of section altered weak bleaching. Trace Cr-mico.
MINERALIZATION: Trace pyrite.
Upper contact fairly shorp - morked by mud seam.
Lower contact gradational over \(10-20 \mathrm{~cm}\).
220.6 227.3 CONGLOMERATE: COlor - grey-green with pinklsh closts. Texture - Clasts rounded to subrounded, allgned follation parallel. 85\% syenitic to trachytic, \(10 \%\) volcanics (mafic) and \(5 \%\) quartz. Local kink bands. Non-magnetic, non-calcoreous.
N.TERATION: Very weak local bleaching.

MINERNLIZATION: Trace quartz veins with Fe-carbonate-dolomite.
Upper and lower contacts gradational over 30 cm .
Foliation/bedding to core axis: \(222.1 \mathrm{~m}: 54^{\circ}\); \(226.4 \mathrm{~m}: 62^{\circ}\).
 Non-magnetlc, non-calcareous.
Non-magnetlc, non-calcareous.
N. TERATION: Highly altered, alteration dominoted by K-feldspor ( \(60-708\) ). Alteration Intensifles TERATION: H
downhole.
MINERNLIZATION: Trace pyritic sulphides in matrix and trace 1 cm wide quartz veins.
Upper contact gradational over 20 cm . Lower contact gradational over 5 cm .
Follation/bedding to core axis:
230.8243 .8 CONGLOMERATE: Color - green-grey. Texture - Moderately well-foltated. Much more mafic clasts.

208 syenlitic/trachytic clasts, 608 mofics, 108 mudstone and 108 quartz and ilthics. Clasts well deformed parallel to follation. slilicate pressure shadows developed on the large syenitic clasts: good kinematic indicator. Non-magnetic, non-calcareous (calcareous fracture filis).
ALTERATION: Weak bleaching, generally localized obout quartz veins.
MINERNLIZATION: \(2 x_{1} 1 / 2 \mathrm{~cm}\) wide quartz velins with intergrown pink carbonate ( \(\mathrm{Mg}\left(\mathrm{Fe}\right.\) ) \(\mathrm{CO}_{3}\) ). Trace sulphides. 10 - 158 sericitic alteration associated with quartz veins.
Follation/bedding to core axis: \(233.7 \mathrm{~m}: 55^{\circ} ; 236.5 \mathrm{~m}: 56^{\circ}\) : \(241.3 \mathrm{~m}: 50^{\circ}\).
\begin{tabular}{lllll}
230.8 & 232.8 & 2.0 & 97534 & 23 \\
232.8 & 234.8 & 2.0 & 97535 & 34 \\
234.8 & 236.8 & 2.0 & 97536 & 26 \\
236.8 & 238.9 & 2.1 & 97537 & 22 \\
238.9 & 240.7 & 1.8 & 97538 & 12 \\
240.7 & 242.4 & 1.7 & 97539 & 10 \\
242.4 & 243.8 & 1.4 & 97540 & 15
\end{tabular}
243.8 247.0 AGGLOMERATE: Color - dark green-grey. Texture - Poorly foliated. Rounded syenitic (trachytic) clasts with 1-5 min sized plagioclase crystals. Clast group comprised \(60 \%\) syenites (trachytic) and \(37 \%\) plagioclase crystals, and 308 mafic fragments. Matrix to clast ratio 60:40. Non-magnetic, noncalcareous ( \(\mathrm{CaCO}_{3}\) filled fractures).
ALTERATION: No significant signs of alteration. Weakly bleached immediately about quartz veins. MINERS IZATION: \(1-1-1 / 2 x, 1-1-1 / 2 \mathrm{~cm}\) wide quartz veins and fracture fills. Also pyritic
(38) - CoCO, fracture tills, abundance < ix. Trace chalcopyrite.

Follation/bedding to core axis: \(241.2 \mathrm{~m}: 54^{\circ} ; 246.8 \mathrm{~m}: 46^{\circ}\).



\section*{MORTHERN DYNASTY EXPLORATIONS LTD.}

\section*{DIAMONO DRILL RECORO}
 \(\frac{\text { rom }}{(\text { Metric }} \frac{\text { To }}{}\)
103.5 111.8 Greywacke; weak alteration; 1-28 disseminated pyrite.
111.8 116.7 Conglomerate; weak alteration.
116.7 121.6 Greywacke.
121.6 216.1 Greywacke+(siltstone); unaltered.


\subsection*{0.0 3.2 Casing: small unaltered basalt pébbles recovered.}
3.2 8.1 SERECITE SCHIST (HIGLY MLTERED. CONGLOMERATE?): Light green locally grading to pink-biege sections of K-feldspor(2) alterotion; relatively homogeneous; non-magnetic, moderately to well-foliated at \(45^{\circ}\) to core axis; basal' contact sharp.
NLERATION: Pervasive intense bleaching/sericitization?; K-feldspor(?) - pervasive in \(\leqslant 30 \mathrm{~cm}\) sections comprising 15\% of unit; weakly to moderately dolomitic throughout; Cr-mica - trace disseminated.
MINERMLIZATION: Quartz+white carbonate veins - \(\leqslant 10 \mathrm{~cm}\) wide, Irreguiar: 38 at 3.2 - 5.2; 20\% at 5.2-6.7; 28 at 6.7-8.1 m; pyrite <18-locally \(3 x\) in veins - disseminated and clots; limonite/ankerite rust - 28 - os gossanous boxworks around fractures, especially at 6.7-6.9m.
8.1 11.8 MLERATED CONGLOMERATE: LIght green, light brown and purple-grey mosaic varying with degree of alteration and composition of conglomerate clasts; massive/unbedded; clasts poorly to welldetined; varlety of subrounded to subenguler clasts form 15-40\% of unit; most coamon clasts ore pink trachyte/syentte and medium grey felsic crystal tuff; non-magnetic; weakly to nondolomitic; moderately to well-tollated at \(50^{\circ}\) to core axis; basal contact gradational over 30 cm NLTERATION: Bleaching/sericitization(2) maderate to intense over 75\% of unit; Cr-mica - trace disseminated.
MINERR IZATION: Puartz+white corbonate velins - << 1\%; pyrite - trace-disseminated.
11.844 .4 TUFFACEOUS COMELOWERATE+(GREYWACKE): Generally IIght grey to dark purple-grey; massive/unbedded conglomerate grading to similar greywacke sections ( \(\leqslant 3 \mathrm{~m}\) thick) over 158 of unit; conglomerate comprises varlety of clasts; predominantly pink trachyte and grey greywacke in open to closed groywacke matrix; clasts vary \(10-608\) of unit. \(\leqslant 3 \mathrm{~cm}\) diameter; generaliy non-magnetic,
\begin{tabular}{lllll}
3.2 & 5.2 & 2.0 & \(97543 A\) & 13
\end{tabular}
\begin{tabular}{lllll}
5.2 & 6.7 & 1.5 & \(97544 A\) & 14
\end{tabular}
\begin{tabular}{llll}
8.1 & 10.0 & 1.9 & \(97546 A\)
\end{tabular}
\(8.1 \quad 10.0 \quad 1.9 \quad 97546\) A 6
\begin{tabular}{lllll}
11.8 & 12.9 & 1.1 & \(97548 \wedge\) & \(<5\) \\
22.3 & 23.8 & 1.5 & \(97549 \wedge\) & \(<5\) \\
23.8 & 25.5 & 1.7 & \(97550 \wedge\) & \(<5\) \\
25.5 & 27.5 & 2.0 & \(97551 A\) & \(<5\)
\end{tabular}
\(\qquad\)
(Metric)
non-dolomitic; moderately to well-follated of \(50^{\circ}\) to core axis throughout; basal contact gradotional over 3 cm .
ALERATION: Local patchy bleaching, especially \(\rightarrow 58\) at \(22.3-23.8\), 25\% of 23.8 - 27.5 m ;
Cr-mica - trace - disseminated and wisps (as conglomerate clasts?).
MINERALIZATION: Quartz+white corbonate veln - << 18 generally; 58 ot \(33.0-35.7\); 58 ot 40.7 -
44.4 m ; hematite - trace - in veins at 31.5 m and 41.1 m ; pyrite - trace - disseminated and in veins.
44.4 45.8 NLTERATED CONGLOMERATE: Generally light green and grey mosaic; altered version of conglomerote ot 11.8 - 44.4 m ; moderately to poorly-defined clasts; non-magnetic, weakly to non-dolomitic: moderately follated at \(50^{\circ}\) to core axis; basal contact gradational over 5 cm .
ALEERATION: Moderate bleaching/sericitization(7) throughout; K-feldspartsilicification: intense In patches at 45.2-45.8 m; Cr-mica - trace - disseminated.
MINERNLIZATION: Quortz+white corbonote velins - \(\leqslant 2 \mathrm{~cm}\) wide, irregular - 38 at 44.4 - 45.2, 158 ot 45.2-45.8 m.
45.8 54.0 TUFFACEOUS CONGLOMERATE+(GREYMACKE): SImilor to 11.8 - 44.4 m with 40 I intercalated greywacke; moderately follated of \(50^{\circ}\) to. core axis; basal contact in broken core; 49.8-54.0-broken core, 708 recovery; minor gouge recovered.
NLERATION: SIIght to moderate bleaching throughout; 53.5-54.0 m moderately silicitied K-teldspar/sericite.
MINERNLIZATION: Quartz+white cartonate \({ }^{+}\)chiorite veins: 38 at 45.8-53.5; 258 at 53.5 - 54.0 m ; irregular: pyrite - trace - disseminated; locally 38 in veins.
54.0 77.6 NLERED CONGLOWERATE: Only local vestiges of poorly-defined clasts visibie; generaliy light green; relatively massive; commonly magnetic due to sections ( \(\leqslant 1 \mathrm{~m}\) thick) of \(\leqslant 58\) disseminated magnetite - decreasing downhole; moderately to non-dolomitic; moderately to well-follated at \(60^{\circ}\) to core axls; basal contact sherp(1); 54.0-54.8 - broken core, \(70 \%\) recovery.
MLTERATION: 54.0-55.9: pervasive, very intense slilica/ankerite/sericite - mosaic green, wite and pink; 54.0-55.6-202 ankerite rust in zone of fracturling; simiter alteration at 58.1\(58.7 \mathrm{~m} ; 55.9-77.6 \mathrm{~m}\) : pervasive, intense bleaching/sericitization throughout; local patches ( \(\leqslant 30 \mathrm{~cm}\) thick) of moderate K-feldsper alteration. Cr-Mica - trace - \(0.5 \%\) - increosing downhole.
MINERNLIZATION: PyItte: 54.0-62.2m-<<18-disseminated; 62.2-77.6m-0.5-38increosing downhole - disseminated - replocing megnetite; (locally \(10 \%\) over \(10{ }_{4} \mathrm{~cm}\) ); chalcopyrite - troce - in velns; hemotite - trace - in velns; quertz+white corbonate chioriter orange siderate velns; generally <1x; 4x at 57.4 - 59.3 m ; 10 x at \(62.2-63.6 \mathrm{~m}\); rhodochro-site-cholcopyrite (2x) vein - 1 cm thick ot 66.2 m .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{SAMPLE} & \multicolumn{5}{|c|}{ASSAYS} \\
\hline From & To & Length & No. & \[
\frac{R e c}{x}
\] & \[
\frac{A u}{(p p b)}
\] & \[
\frac{\wedge g}{(p p m)}
\] & \[
\frac{\mathrm{Zn}}{(\mathrm{ppm})}
\] & \[
\frac{\mathrm{Pb}}{(\mathrm{ppm})}
\] & \[
\frac{\mathrm{Cu}}{(\mathrm{ppm})}
\] \\
\hline 31.2 & 33.0 & 1.8 & 97552A & & \(<5\) & & & & \\
\hline 33.0 & 34.6 & 1.6 & 97553A & & \(<5\) & & & & \\
\hline 34.6 & 35.7 & 1.1 & 97554^ & & < 5 & & & & \\
\hline 40.7 & 42.9 & 2.2 & 97555A & & 10 & & & & \\
\hline 42.9 & 44.4 & 1.5 & 97556A & & \(<5\) & & & & \\
\hline 44.4 & 45.8 & 1.4 & 97557^ & & \(<5\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 45.8 & 47.4 & 1.6 & 97558^ & \(<5\) \\
\hline 47.4 & 49.1 & 1.7 & 97559A & \(<5\) \\
\hline 49.1 & 50.1 & 1.0 & 97560^ & \(<5\) \\
\hline 50.1 & 51.6 & 1.5 & 97561^ & 26 \\
\hline 51.6 & 53.5 & 1.9 & 97562A & 18 \\
\hline 53.5 & 54.0 & 0.5 & 97563A & 12 \\
\hline 54.0 & 54.6 & 0.6 & 97564A & 8 \\
\hline 54.6 & 55.1 & 0.5 & 97565A & 48 \\
\hline 55.1 & 55.9 & 0.8 & 97566A & 20 \\
\hline 55.9 & 57.4 & 1.5 & 97567A & \(<5\) \\
\hline 57.4 & 59.3 & 1.9 & 97568A & \(<5\) \\
\hline 59.3 & 60.7 & 1.4 & 97569A & 27 \\
\hline 60.7 & 62.2 & 1.5 & 97570^ & 64 \\
\hline 62.2 & 63.6 & 1.4 & 97571A & 6 \\
\hline 63.6 & 65.2 & 1.6 & 97572A & 5 \\
\hline 65.2 & 66.2 & 1.0 & 97573A & 7 \\
\hline 66.2 & 66.9 & 0.7 & 97574A & \(<5\) \\
\hline 66.9 & 68.7 & 1.8 & 97575^ & \(<5\) \\
\hline 68.7 & 70.2 & 1.5 & 97576 \({ }^{\text {a }}\) & 8 \\
\hline 70.2 & 71.4 & 1.2 & 97577^ & \(<5\) \\
\hline 71.4 & 72.8 & 1.4 & 97578A & 6 \\
\hline 72.8 & 74.8 & 2.0 & 97579^ & 8 \\
\hline 74.8 & 76.1 & 1.3 & 97580^ & 5 \\
\hline 76.1 & 77.6 & 1.5 & 975814 & 11 \\
\hline
\end{tabular}


From \(\qquad\)
116.7 121.6 GREYWACKE: Medium green-grey: massive/unbedded; locally magnetic due to \(\leqslant 1 \%\) disseminated manelite; weakly to non-dolomitic; moderately foliated at \(65^{\circ}\) to core axis; basal contact gradetonal over 50 cm . ALTERATION: SlIght bleaching throughout; 116.7-117.1-305 K-feldsper alteration. MINERALIZATION: Pyrite - generally << 18; 28 coarse ( 2 mm ) grains of 120.8 - 121.6 m .
121.6 216.1 GREYWACKE+(SILTSTONE): Generally green-grey: massive/unbedded to thinly bedded; siltstone generality <10\$ except 50\% at 121.6 - 127.9 m ; greywacke varies from fine to coarse grained; locally magnetic due to minor disseminated magnetite; generally non-dolomitic; generally moderately fol lated at \(60-70^{\circ}\) to core axis throughout; broken core at 124.5-126.3 m and at 173.7-174.6


SAMPLE
From To Length No. Rec

ASSAYS
\(\frac{\mathrm{Au}}{(\mathrm{ppb})} \cdots \frac{\mathrm{Ag}}{(p p m)} \quad \frac{\mathrm{Zn}}{(p p m)} \frac{\mathrm{Pb}}{(p p m)} \frac{\mathrm{Cu}}{(p p m)}\)

ALTERATION: Generally nil - some slight bleaching; Intense, pervasive sericitization with 24
rhodochrosite veins at \(155.8-156.6 \mathrm{~m}\) and small sections elsewhere.
MINERALIZATION: Quartz+white carbonate- (orange siderite) veins: \(\leqslant 2 \chi\) - Irregular; pyrite -
trace - disseminated; locally \(\leqslant 18\).
216.1 END OF HOLE







\[
\begin{gathered}
\text { 48.08'40" } \\
\hdashline \\
\hdashline
\end{gathered}
\]
POWER LONE




```

ant noo, mere
Nane

```
1

茄

LEGEND
ransmitter: seatle, washington
instrument : geonics ronka em-lot
ser fluter contour intervals


VE-7 - anomalous zone




VM-2


```


[^0]: Syenite,
 porohyyrd

[^1]: In summary, many zones of encouraging alteration and quartz veining occur on the property. Some of these zones host low anomalous gold values. Higher gold values also occur but few were found in the course of the 1987-88 program.

[^2]: Numerous single station soil gold anomalies were also detected. All anomalies over 50 ppb Au and several anomalies less than 50 ppb Au were investigated during the field season. Most of these anomalies were in overburden-covered areas with little or no outcrop - their source is not known. Some of the anomalies occur in areas of outcrop but no significant bedrock mineralization was found to be associated with any of them.

