

2.18120

010

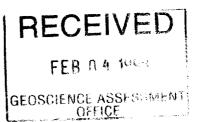
REPORT

.

ON

PHASE III and PHASE IV

DRILLING PROGRAMS


MCGARRY PROJECT

MCGARRY TWP., VIRGINIATOWN AREA

LARDER LAKE MINING DIVISION, ONTARIO

TRANSPACIFIC RESOURCES INC.

TORONTO, ONTARIO

Toronto, Ontario July 2, 1997

E. A. Gallo, B.Sc., F.G.A.C. Gallo Exploration Services Inc.

TABLE OF CONTENTS

INTRODUCTION	1.
CLAIMS DATA	1.
LOCATION	2.
ACCESS	2.
REGIONAL GEOLOGY	2.
LOCAL GEOLOGY	2.
DIAMOND DRILLING - PHASE III	5.
- PHASE IV	10.
SUMMARY	12.
CONCLUSIONS	13.
RECOMMENDATIONS	13.

LIST OF TABLES

I	-	SUMMARY -	PHASE III DRILLING RESULTS	
			INSTANT CREEK GOLD ZONE	6.
ĪI	-	SUMMARY -	PHASE III DRILLING RESULTS	
			SOUTH GOLD ZONE	9.
III	-	SUMMARY -	PHASE IV DRILLING RESULTS	
			SOUTH GOLD ZONE	11.

.

010C

LIST OF FIGURES

I - LOCATION SKETCH З. II - OMNR CLAIM PLAN G-3678, MCGARRY TWP. 4. FIGURES III TO XXIII IN POCKETS III - DIAMOND DRILL HOLE PLAN IV - SECTION ALONG 21+57 E SHOWING DDH 96-25 V - SECTION ALONG 21+83 E SHOWING DDH 96-26 VI - SECTION ALONG 22+60 E SHOWING DDH's 96-21, and -28 VII - SECTION ALONG 22+82 E SHOWING DDH 96-29 VIII - SECTION ALONG 22+10 E SHOWING DDH's 96-19, 96-30, and -32IX - SECTION ALONG 20+35 E SHOWING DDH 96-31 X - SECTION ALONG 20+85 E SHOWING DDH 96-33 XI - SECTION ALONG 20+06 E SHOWING DDH's 96-34, -43, and part of 96-41 XII - SECTION ALONG 21+11 E SHOWING DDH 96-35 XIII - SECTION ALONG 20+60 E SHOWING DDH's 96-16, and -36 XIV - SECTION ALONG 20+48 E SHOWING DDH's 96-2, -2A, 96-11, -14, and -37 XV - SECTION ALONG 20+77 E SHOWING DDH's 96-15, and -38 XVI - SECTION ALONG 20+00 E SHOWING PART OF DDH 96-39 XVII - SECTION ALONG 20+28 E SHOWING DDH's 96-13, -40, and part of 96-39 XVIII - SECTION ALONG 19+86 E SHOWING PART OF DDH 96-41 XIX - SECTION ALONG 19+50 E SHOWING DDH 96-42 XX - SECTION ALONG 19+32 E SHOWING DDH 97-44 XXI - SECTION ALONG 19+07 E SHOWING DDH 97-45 XXII - SECTION ALONG 18+81 E SHOWING DDH 97-46 XXIII - SECTION ALONG 18+56 E SHOWING DDH's 97-47, -48 and 97-49

LIST OF APPENDICES

I - CORE LOGS FOR HOLES DRILLED IN PHASE III:

96-25, -26, and -28 to -43, inclusive

II - ASSAY CERTIFICATES FOR CORE SAMPLES

FROM PHASE III DRILL HOLES

III - CORE LOGS FOR HOLES DRILLED IN PHASE IV:

97-44 to -49, inclusive

IV - ASSAY CERTIFICATES FOR CORE SAMPLES

FROM PHASE IV DRILL HOLES

REPORT

ON

PHASE III and PHASE IV

DRILLING PROGRAMS

MCGARRY PROJECT

MCGARRY TWP., VIRGINIATOWN AREA

LARDER LAKE MINING DIVISION, ONTARIO

TRANSPACIFIC RESOURCES INC.

INTRODUCTION

Transpacific Resources Inc. holds Mining Lease CLM 298 situated in the northwest part of McGarry Twp., Virginiatown Area, Ontario. Transpacific recently performed two drilling programs on the Lease. One of the programs, termed Phase III, was undertaken in the latter part of 1996. The other, termed Phase IV, was undertaken in early 1997. This Report provides details, including technical results, on the two drilling programs, and makes recommendations regarding further work.

CLAIMS DATA

The Transpacific property consists of Mining Lease CLM 298, on which the drilling was performed, plus 4 contiguous claim blocks. Mining Lease CLM 298 consists of 52 mining claims. The 4 claim blocks are numbered L 1193121, L 1193122, L 1193123, and L 1202672.

Mining Lease CLM 298 is a 21 year lease with a renewable date of January 1, 2008. The Lease can be maintained by paying the annual rental fee.

Claim blocks L 1193121 and L 1193122 each consist of 4 claim units. Claim block L 1193123 consists of 2 claim units.

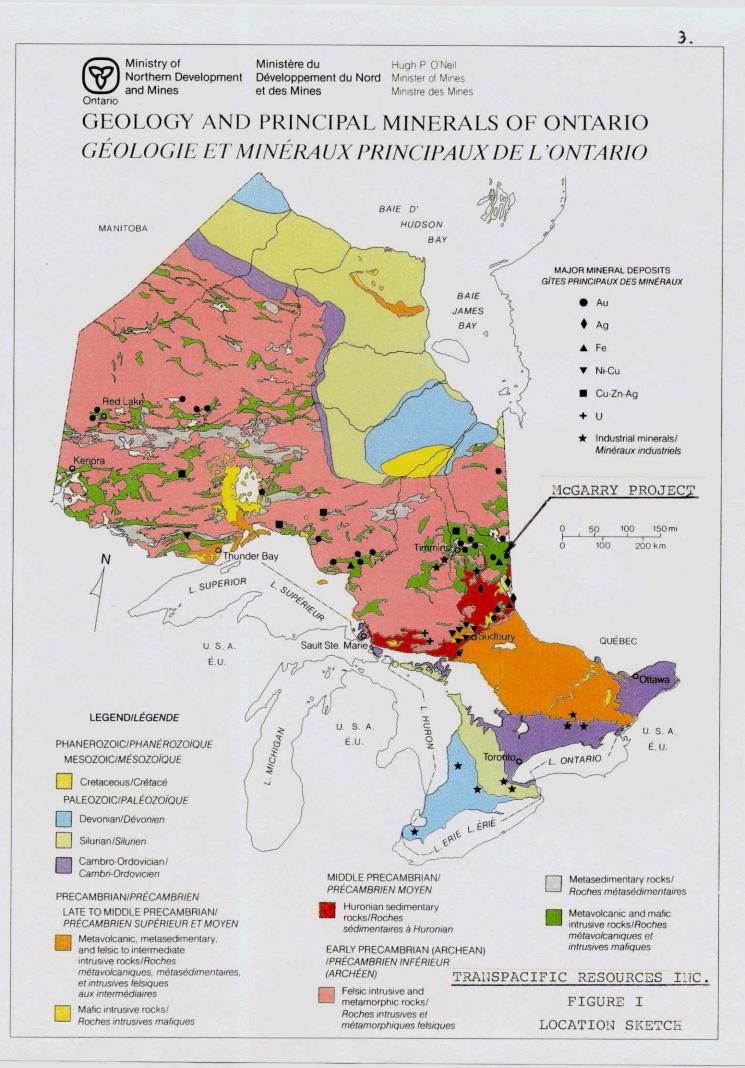
L 1193121 has a due date of Jan. 26, 1998. L 1193122 and L 1193123 have the same due date - Jan. 26, 1999.

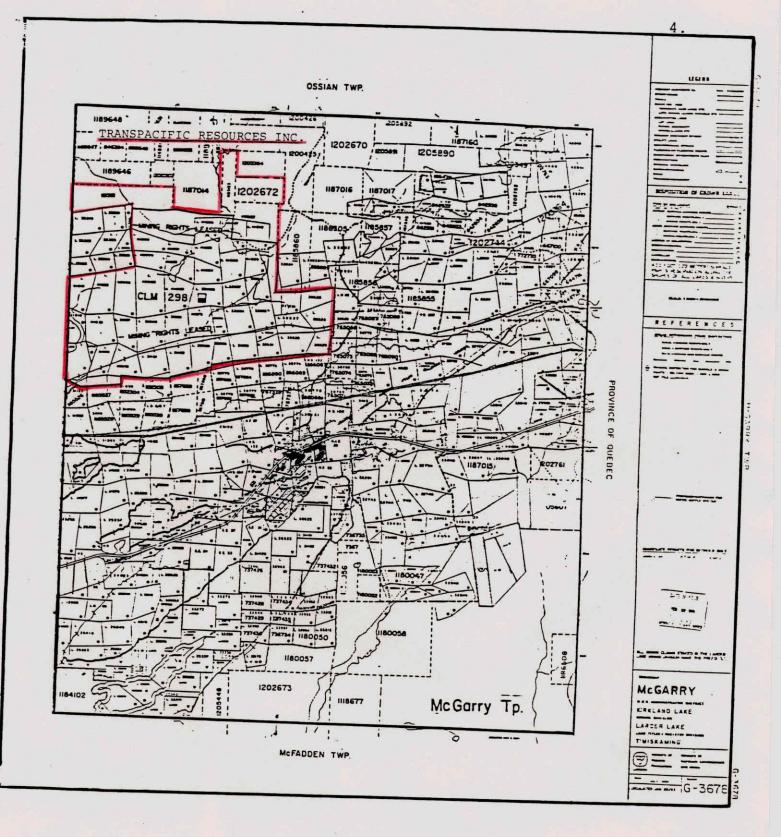
Claim block L 1202672 consists of 2 claim units, and has a due date of Aug. 2, 1998.

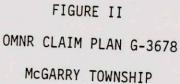
LOCATION

The Transpacific property lies in the northwest part of McGarry Twp., Larder Lake Mining Division, Ontario. The property is centred at approximately latitude 48°10', and longitude 79°35', on NTS map sheet 32 D/4. The mining community of Virginiatown is situated 1.2 kms south of the southeast corner of the property. Figure I is a general location sketch, and Figure II is a reduction of OMNR Claim Plan G-3678, McGarry Twp. The property is shown outlined in red on Figure II.

ACCESS


The property is easily reached by 4-wheel drive vehicle along a former haulage road leading northward from Virginiatown. This road passes the SE corner of the property. The north part of the property is also reached easily by 4-wheel drive vehicle, along a circuitous route of timber haulage roads that lead westward from the Cheminis Road at a point approximately 400 meters north of its crossing the Ontario Northland Railway tracks. The Cheminis Road leads northeastwards from Provincial Highway 66 at a point 500 meters east of the village of Kearns, or about 1.6 kms east of Virginiatown.


REGIONAL GEOLOGY


The Transpacific property lies in the Abitibi Greenstone Belt of the Canadian Precambrian Shield. The rocks consist mainly of Archean age metavolcanics, with interbedded clastic sedimentary units, all of which have been metamorphosed to the greenschist facies. These supracrustal rocks trend in a general east-west direction, and dip vertically. Locally, large granitic batholiths intrude the volcanic-sedimentary assemblage. The regional geology is shown on Figure I.

LOCAL GEOLOGY

The Transpacific property is underlain mainly by Archean basic metavolcanics consisting of pillowed, massive, and spherulitic andesites and basalts. These volcanics have been intruded by

syenitic and dioritic bodies in the north part of the property, and by gabbroic bodies in the west part of the property. The metavolcanics trend in a general east-west direction, and dip vertically or steeply to the south.

The southern part of the Transpacific property is underlain by Timiskaming-type metasediments consisting of greywackes, arkose and conglomerate, and by trachytic volcanics. These strata trend in a general east-west direction, and dip steeply to the south. They are in fault contact with the Archean metavolcanics to the north.

DIAMOND DRILLING: PHASE III

Eighteen holes totalling 2,475.5 meters (8,119.6 feet) were drilled in Phase III. Ten of the holes were drilled into the Instant Creek Gold Zone, and the remaining 8 holes into the South Gold Zone. The holes were drilled between Oct-Dec.,1996.

The 10 holes drilled into the Instant Creek Gold Zone are numbered 96-25, -26, -28, -29, -30, -32, and -37 to -40, inclusive. Together they total 1,366.4 m (4,481.8').

The 8 holes drilled into the South Gold Zone are numbered 96-31, -33 to -36, inclusive, and -41, -42, and -43. They total 1,109.1 m (3,637.8').

Core logs for these holes are given in Appendix I. Assay Certificates for core samples are given in Appendix II.

Figure III is a 1:500 scale plan showing the drill hole locations.

Figures IV to XIX, inclusive, are 1:500 scale sections showing each of the 18 holes drilled in the Phase III program.

Table I is a summary of pertinent information and results, including assays, for Phase III holes drilled into the Instant Creek Gold Zone.

Most of the holes drilled into the Instant Creek Gold Zone were shallow, drilled to depths of 82-150 meters (270-490'). The deepest hole, 96-37, was drilled to a depth of 247 meters (810 feet).

All of the holes intersected basalts. Feldspar porphyry and syenite were intersected in most of the holes.

Seven of the 10 Instant Creek holes intersected potentiallyeconomic quantities of gold mineralization. Accentuating the

TABLE I

TRANSPACIFIC RESOUTCES INC. McGARRY PROJECT

SUMMARY PHASE III DRILLING RESULTS INSTANT CREEK GOLD ZONE

HOLE	CO-ORI	DINATES	AZIMUTH	DIP	LENG	STH	MAJOR ROCK UNITS		INTE	<u>SIGNIF</u> RVAL	ICANT MIN	ERALIZATIO			Au	REMARKS
No 96-	NORTHING	EASTING	degrees	degrees	meters	feet		f f	rom feet	meters	to feet	meters	feet	ppb	oz/ton	
25	1501	2157	352	45	82	269	Basalt	57.6 or 57.6	189.0 189.0	58.5 59.3	191.9 194.5	0.9 1.7	2.9 5.5	2286 1667	0.07	with 1160 ppm Cu (0.12%) with 1313 ppm Cu (0.13%)
26	1503	2183	352	45	100	328	Basalt	28.7 or 28.7 59.9 78.4	94.0 94.0 196.6 257.3	28.9 30.1 60.9 78.9	94.8 98.7 199.9 258.6	0.2 1.4 1.0 0.5	0.8 4.7 3.3 1.3	6240 2069 3754 2057	0.18 0.06 0.11 0.06	Carbonate Zone: 38.7 to $40.3 = 1.6m$ (127.0 to $132.2 = 5.2'$) 4350 ppm Cu (0.44%): 63.1 to $63.9 = 0.8m(207.0 to 209.5 = 2.5')$
28	1485	2260	352	45	149.9	492	Basalt	138.4	454.1	138.7	454.9	0.3	0.8	1199	0.03	Carbonate Zone: 75.3 to 76.7 = $1.4m$ (247 0 to 251 6 = 4.6.)
29	1506	2282	352	45	90	295	Basalt	-	-	-	_	-	-	-	_	Deformation Zone: 131.0 to $134.6 = 3.6m$ (429.7 to 441.5 = 11.8')
30	1459	2207	352	60	199.5	654	Basalt, Syenite	-	-	-	-	-	-	-	-	-
32	1496	2210	352	60	123	403	Basalt	$ \begin{array}{c} 15.0\\ \text{or } 15.0\\ 37.0\\ 43.2\\ 55.9\\ 64.3\\ \text{or } 63.8 \end{array} $	49.2 49.2 121.4 141.7 183.4 210.8 209.3	16.0 17.1 38.4 43.9 56.7 64.9 66.0	52.4 56.2 125.9 143.9 186.0 213.0 216.5	1.0 2.1 1.4 0.7 0.8 0.6 2.2	3.2 7.0 4.5 2.2 2.6 2.2 7.2	5429 3144 2128 2809 4706 2872 1433	0.16 0.09 0.06 0.08 0.14 0.08 0.04	
37	1484	2049	352	60	247	810	Basalt	56.6 or 55.5 204.2 or 204.2	185.6 182.0 669.8 669.8	57.8 57.8 204.4 205.0	189.6 189.6 670.6 672.4	1.2 2.3 0.2 0.8	4.0 7.6 0.8 2.6	3280 1914 119212 34292	0.10 0.06 3.48 1.00	Fault: 86.8 to 88.0 = 1.2m (284.7 to 288.6 = 3.9') Metallics Assay: 3.48 oz/ton. Visible Gold: 204.3m (670.1') Green Carbonate and Deformation Zones: 196.1 to 230.9 = 34.8m
38	1519	2077	352	59	122	400	Basalt	21.6 34.5 or 34.5 55.9 75.7 or 75.7 82.5 or 82.5	70.9 113.4 113.4 183.2 248.4 248.4 270.6 270.6	22.0 34.6 35.2 57.0 76.1 76.9 82.9 84.4	72.0 113.6 115.4 186.8 249.7 252.2 271.8 276.9	0.4 0.1 0.7 1.1 0.4 1.2 0.4 1.9	1.1 0.2 2.0 3.6 1.3 4.2 1.2 6.3	2410 79475 9710 1300 11641 4346 17749 4118	0.07 2.32 0.28 0.04 0.34 0.13 0.52 0.12	(643.2 to 757.4 = 114.2') Metallics Assay: 2.32 oz/ton. Visible Gold: 34.6m (113.5') Carbonate Zone: 75.1 to 75.7 = 0.6m (246.3 to 248.3 = 2.0') Deformation Zone: 78.0 to 78.8 = 0.8m (255.8 to 258.5 = 2.7') Fault: 83.8 to 84.4 = 0.6m (274.9 to 276.9 = 2.0')
39	1615	2000	168	45	132	433	Basalt	-	-	-	-	-	-	-		Fault: 46.4 to $46.6 = 0.2m$ (152.2 to 152.8 = 0.6')
40	1515	2028	352	60	121	397	Basalt	106.1	247.9	107.5	352.6	1.4	4.7	1024	0.03	Deformation Zone: 46.4 to $49.5 = 3.1m$ (152.7 to $162.4 = 9.7'$) Deformation Zone: 49.3 to $53.7 = 4.4m$ (161.8 to $176.1 = 14.3'$) Carbonate Zone: 94.3 to $109.3 = 15.0m$ (309.3 to $358.6 = 49.3'$)

gold mineralization, several holes returned geologic data indicative of 2 significant gold-bearing environments - green carbonate zones, and deformation zones. Green carbonates host economic quantities of gold mineralization at the Kerr Addison Mine, 3 kms (2 miles) to the south, and also at several other mines elsewhere along the Larder Lake Break. Deformation zones are major structural breaks in the earth's crust, characterized by intense shearing and faulting. The association of gold mineralization with shearing and faulting has long been recognized in the Kirkland Lake Gold Camp, at Timmins, and at other major gold-producing areas throughout the world.

The best assay results in the Instant Creek Gold Zone were returned from holes 96-37, and 96-38, where intersections of 119,212 ppb Au (3.48 oz/ton) across a core length of 0.2 meter (0.8'), and 79,475 ppb Au (2.32 oz/ton) across 0.1 meter (0.2'), respectively, were obtained. Visible gold was identified in both mineralized sections. One other mineralized lens in 96-37 returned 3,280 ppb Au (0.10 oz/ton) across 1.2 meter (4.0'). Four other mineralized lenses in 96-38 returned 17,749 ppb Au (0.52 oz/ton) across 0.4 meter (1.2'), 11,641 ppb Au (0.34 oz per ton) across 0.4 meter (1.3'), 2,410 ppb Au (0.07 oz/ton) across 0.4 meter (1.1'), and 1,300 ppb Au (0.04 oz/ton) across 1.1 meter (3.6').

Hole 96-32 intersected 5 mineralized lenses, the best of which returned 5,429 ppb Au (0.16 oz/ton) across 1.0 meter (3.2'). The 4 other lenses returned values of 4,706 ppb Au (0.14 oz per ton) across 0.8 meter (2.6'), 2,872 ppb Au (0.08 oz/ton) across 0.6 meter (2.2'), 2,809 ppb Au (0.08 oz/ton) across 0.7 meter (2.2'), and 2,128 ppb Au (0.06 oz/ton) across 1.4 meters (4.5').

Hole 96-26 intersected 3 mineralized lenses, the best of which returned 6,240 ppb Au (0.18 oz/ton) across 0.2 meter (0.8'). The 2 other lenses returned values of 3,754 ppb Au (0.11 oz per ton) across 1.0 meter (3.3'), and 2,057 ppb Au (0.06 oz per ton) across 0.5 meter (1.3'). Values of up to 4,350 ppm Cu (0.44%) across 0.8 meter (2.5') were also obtained in hole 96-26.

Hole 96-25, -28, and -40 returned values of 2,286 ppb Au (0.07 oz/ton) across 0.9 meter (2.9'), 1,199 ppb Au (0.03 oz/ton) across 0.3 meter (0.8'), and 1,024 ppb Au (0.03 oz/ton) across 1.4 meter (4.7'), respectively. Values of up to 1,313 ppm Cu (0.13%) were also obtained in hole 96-25.

Holes 96-29, -30, and -39 did not return any gold values of potential interest.

A green carbonate zone was intersected in hole 96-37, extending for a core length of 34.8 meters (114.2') from 196.1 - 230.9 meters (643.2 - 757.4'). Carbonate zones were also intersected

in holes 96-26, -28, -38, and -40. Minor carbonate alteration was encountered in holes 96-25 and 96-30.

Deformation zones were intersected in holes 96-28, -37, -38, -39, and -40. A fault was intersected in holes 96-37, -38, and -39.

Phase III holes drilled into the South Gold Zone all intersected diorite. A few of the holes also intersected basalt, and minor amounts of feldspar porphyry and argillite. All of the holes are shallow, with depths between 107-178 meters (351-584').

Phase III holes in the South Gold Zone also encountered potentially-economic gold mineralization, green carbonates, and deformation zones.

The South Gold Zone is parallel to, and 150 meters (490') south of the Instant Creek Gold Zone.

Table II is a summary of pertinent information and results, including assays, for Phase III holes drilled into the South Gold Zone.

All 8 of the Phase III holes in the South Gold Zone returned gold values. The best intersection was obtained in hole 96-34, where 482,884 ppb Au (14.08 oz/ton) was returned across 0.5 meter (1.4'). Visible gold was noted in this mineralized zone. Two other mineralized lenses in 96-34 returned values of 62,743 ppb Au (3.19 oz/ton) across 0.3 meter (1.0'), or 4,627 ppb Au (0.13 oz/ton) across 7.4 meters (24.3'), and 1,474 ppb Au (0.04 oz/ton) across 1.5 meter (4.9').

Five other holes in the South Gold Zone returned high gold assays. They are 96-31, -33, -41, -42, and -43. Holes 96-36 returned moderate and low gold values, respectively.

Hole 96-31 intersected 6 mineralized lenses. The best returned 40,706 ppb Au (1.19 oz/ton) across a core length of 0.3 meter (0.8'). The other 5 lenses returned values of 5,760 ppb Au (0.17 oz/ton) across 0.4 meter (1.5'), 4,080 ppb Au (0.12 oz per ton) across 0.5 meter (1.8'), 1,903 ppb Au (0.06 oz/ton) across 0.3 meter (0.9'), 1,577 ppb Au (0.05 oz/ton) across 0.5 meter (1.6'), and 1.563 ppb Au (0.05 oz/ton) across 1.3 meter (4.3').

Hole 96-33 intersected 5 mineralized lenses, the best of which returned an assay of 15,806 ppb Au (0.46 oz/ton) across 1.1 meter (3.5'). The other 4 lenses returned values of 8,240 ppb Au (0.24 oz/ton) across 0.3 meter (0.8'), 6,343 ppb Au (0.19 oz/ton) across 0.5 meter (1.8'), 6,274 ppb Au (0.18 oz/ton) across 0.4 meter (1.5'), and 4,406 ppb Au (0.13 oz/ton) across 0.6 meter (2.0')

TABLE II

TRANSPACIFIC RESOURCES INC. MCGARRY PROJECT

SUMMARY PHASE III DRILLING RESULTS SOUTH GOLD ZONE

101 F		DINATES	AZIMUTH	DIP			MA JOD DOCK UNITE		INTER	SIGNIF	ICANT MINE	RALIZATIO			-
HOLE					LENG		MAJOR ROCK UNITS	fro	om	t		INTERCEPT		Au	
No 96-	NORTHING	EASTING	degrees	degrees	meters	feet		meters	feet	meters	feet	meters	feet	ppb	oz/ton
31	1324	2035	352	46	107	351	Diorite	11.6 22.0 or 20.8 49.0 64.1 or 64.1 77.8 95.1 or 93.8	37.9 72.2 68.2 160.7 210.2 210.2 255.3 311.8 307.5	12.0 22.3 49.5 64.6 65.0 79.2 95.4 95.4	39.4 73.0 73.0 162.5 211.8 213.2 259.6 312.7 312.7	0.4 0.3 1.5 0.5 0.5 0.9 1.3 0.3 1.6	1.5 0.8 4.8 1.6 3.0 4.3 0.9 5.2	5760 40706 4080 1577 1512 1563 1903 1239	$\begin{array}{c} 0.17\\ 1.19\\ 0.21\\ 0.12\\ 0.05\\ 0.04\\ 0.05\\ 0.06\\ 0.04\\ 0.04\\ \end{array}$
33	1330	2085	352	44	130	426	Diorite, Basalt	95.7 98.7 118.2 122.6 125.0 or 122.0	313.8 323.6 387.8 402.2 410.0 400.2	96.3 99.1 118.5 123.7 125.5 125.5	315.8 325.1 388.6 405.7 411.8 411.8	0.6 0.4 0.3 1.1 0.5 3.5	2.0 1.5 0.8 3.5 1.8 11.6	4406 6274 8240 15806 6343 5910	0.13 0.18 0.24 0.46 0.19 0.17
34	1337	2006	352	46	121.1	397	Diorite	74.6 78.0 78.5 79.0 80.2 or 74.6 95.4 95.6 or 95.4 116.5	244.6 255.7 257.4 259.0 263.2 244.6 312.8 313.7 312.8 382.1	74.8 78.5 79.0 79.3 81.0 82.0 95.6 96.1 96.1 118.0	245.3 257.4 259.0 260.0 265.6 268.9 313.7 315.1 315.1 387.0	0.2 0.5 0.3 1.8 7.4 0.2 0.5 0.7 1.5	0.7 1.7 1.6 1.0 2.4 24.3 0.9 1.4 2.3 4.9	22937 2178 7383 62743 1857 4627 33566 482884 320088 1474	0.67 0.06 0.14 3.19 0.05 0.13 0.98 14.08 9.34 0.04
35	1332	2111	352	43	120	394	Diorite, Basalt	87.8 105.2	288.0 345.0	89.4 105.3	293.2 345.3	1.6 0.1	5.2 0.3	1572 3292	0.05 0.10
36	1389	2060	352	43.5	162	531	Diorite	109.6 or 109.2	359.5 358.2	110.0 110.0	360.9 360.9	0.4 0.8	1.4	686 684	0.02 0.02
41	1350	1986	5	45	150	492	Diorite, Basalt	18.1 or 17.3 70.0 100.8	59.5 56.6 229.5 330.6	19.2 20.1 71.2 101.5	62.8 66.0 233.4 333.1	1.1 2.8 1.2 0.7	3.3 9.4 3.9 2.5	23943 8940 3497 3006	0.70 0.26 0.10 0.09
42	1330	1950	359	45	141	462	Diorite	63.2 74.0 92.4 104.3 118.4 140.8	223.8 242.7 302.9 343.6 388.4 461.7	69.9 76.3 93.2 106.3 118.7 141.0	229.3 250.2 305.7 348.5 389.5 462.5	1.7 2.3 0.8 1.5 0.3 0.2	5.5 7.5 2 .8 4.9 1.1 0.8	1906 1108 12354 10303 1716 1046	0.06 0.03 0.36 0.30 0.05 0.03
43	1297	2006	352	42.5	178	584	Diorite	63.8 104.0 106.9 00 or 104.0 0r 104.0 0r 106.9 160.5	209.3 341.1 350.7 357.5 341.1 341.1 350.7 526.4	64.1 105.0 108.2 109.6 113.1 109.6 109.6 161.1	210.3 344.3 354.9 359.6 370.1 359.6 359.6 528.3	0.3 1.0 1.3 0.6 9.1 5.6 2.7 0.6	1.0 3.2 4.2 2.1 29.0 18.5 8.9 1.9	2208 2795 1377 14560 1665 2427 4003 1269	0.06 0.08 0.04 0.42 0.05 0.07 0.12 0.04

i and a second second

REMARKS

.

Deformation Zone: 99.0 to 100.0 = 1.0m (324.8 to 328.1 = 1.3')Deformation Zone: 78.6 to 80.2 = 1.6m (257.7 to 263.2 = 5.5') Metallics Assay: 0.67 oz/ton._Visible_Gold:74.7m (245.0') Metallics Assay: 3.19 oz/ton. Visible Gold: 79.0m (259.1') Metallics Assay: 0.98 oz/ton. Visible Gold: 95.4m (312.9') Metallics Assay: 14.08 oz/ton. Visible Gold: 95.9m (314.6') Green_Carbonate and Deformation Zones: 110.0 to 112.5 = 2.5m (360.8 to 369.0 = 8.2') Metallics Assay: 0.10 oz/ton Green Carbonate and Deformation Zones: 73.3 to 77.3 = 4.0m (240.3 to 253.6 = 13.3') Metallics Assay: 0.02 oz/ton Carbonate and Deformation Zones: 107.8 to 113.0 = 5.2m (353.6 to 370.5 = 16.9') Carbonate and Deformation Zones: 107.4 to 110.6 = 3.2m (352.2 to 362.7 = 10.5')Green Carbonate and Deformation Zones: 116.0 to 124.5 = 8.5m (380.5 to 408.5 = 28.0')Deformation Zone: 118.3 to 131.2 = 12.9m (388.0 to 430.4 = 42.4')Fault: 125.6 to 125.8 = 0.2m (412.0 to 412.6 = 0.6')

Hole 96-41 intersected 3 mineralized lenses. One of the lenses assayed 23,943 ppb Au (0.70 oz/ton) across 1.1 meter (3.3'). The other 2 lenses assayed 3,497 ppb Au (0.10 oz/ton) across 1.2 meter (3.9'), and 3,006 ppb Au (0.09 oz/ton) across 0.7 meter (2.5').

Hole 96-42 intersected 6 mineralized lenses. The two best returned values of 12,354 ppb Au (0.36 oz/ton) across 0.8 meter (2.8'), and 10,303 ppb Au (0.30 oz/ton) across 1.5 meter (4.9'). The 4 other lenses returned values of 1,906 ppb Au (0.06 oz/ton) across 1.7 meter (5.5'), 1,716 ppb Au (0.05 oz/ton) across 0.3 meter (1.1'), 1,108 ppb Au (0.03 oz/ton) across 2.3 meters (7.5'), and 1,046 ppb Au (0.03 oz/ton) across 0.2 meter (0.8').

Hole 96-43 intersected 5 mineralized lenses, the best of which returned 14,560 ppb Au (0.42 oz/ton) across 0.6 meter (2.1'). The 4 other lenses returned values of 2,795 ppb Au (0.08 oz/ton) across 1.0 meter (3.2'), 2,208 ppb Au (0.06 oz/ton) across 0.3 meter (1.0'), 1,377 ppb Au (0.04 oz/ton) across 1.3 meter (4.2') and 1,269 ppb Au (0.04 oz/ton) across 0.6 meter (1.9').

Hole 96-35 intersected 2 mineralized lenses, the better of which returned 3,292 ppb Au (0.10 oz/ton) across 0.1 meter (0.3'). The other lens assayed 1,572 ppb Au (0.05 oz/ton) across 1.6 meter (5.2').

Hole 96-36 returned only low gold values of 686 ppb Au (0.02 oz per ton) across 0.4 meter (1.4').

Green carbonates were intersected in holes 96-34, -35, -36 & -42. Carbonate alteration was encountered in holes 96-41, and -43.

Deformation zones were intersected in 7 of the 8 holes drilled in the South Gold Zone. Only hole 96-35 failed to intersect a deformation zone. Hole 96-43 intersected a fault as well as a deformation zone.

DIAMOND DRILLING: PHASE IV

Six holes, totalling 648 meters (2,125.4') were drilled in Phase IV. All 6 holes were drilled into the South Gold Zone, and all were drilled in January, 1997. The holes are numbered 97-44 to 97-49, inclusive. Core logs of these holes are given in Appendix III. Assay Certificates for core samples are given in Appendix IV.

Table III is a summary of pertinent information and results, including assays, for the Phase IV drill holes.

Figure III, the Diamond Drill Hole Plan, shows the locations

TABLE III

TRANSPACIFIC RESOURCES INC. McGARRY PROJECT

SUMMARY PHASE IV DRILLING RESULTS SOUTH GOLD ZONE

-

-

HOLE	CO-ORD	INATES	AZIMUTH	DIP	LENG	STH .	MAJOR ROCK UNITS		SIGNIFICANT MINER		ERALIZATION I INTERCEPT		A	<u>u</u>	REMARKS	
No 97-	NORTHING	EASTING	degrees	degrees	meters	feet		fr meters	from		o feet	meters	feet	ppb	oz/ton	
44	1341.7	1932.3	352	45	106.0	347.7	Diorite	49.5	162.4	49.7	163.0	0.2	0.6	470	0.01	
45	1341.5	1906.5	352	45	101.0	331.3	Diorite	-	-	-	-	-	-	-	-	
46	1328.9	1880.7	352	45	101.0	331.3	Diorite	-	-	-	-	-	-	-	-	Fault from 92.7 m to $101.0+ m = 8.3+ m$
47	1328.4	1856.0	352	45	30.0	98.4	-	-	-	-	-	-	-	-	-	(304.1' to 331.3+' = 27.2+') Hole lost in overburden
48	1300.0	1856.0	352	50	103.0	337.8	-	-	-	-	-	-	-	-	-	Hole lost in overburden
49	1475.3	1856.6	172	45	207.0	679.0	Diotite, basalt, andesite	112.8	370.0	114.9	376.9	2.1	6.9	230	0.01	Green carbonate zone from 92.7 m to 114.9 m = 22.2 m (304.1'to 376.9' = 72.8')

11.

of the 6 Phase IV holes. Figures XX to XXIII, inclusive, are 1:500 scale sections of the holes.

Two of the holes, 97-47, and 97-48, were lost in overburden, the latter at a depth of 103 meters (338').

The 4 holes that penetrated bedrock all encountered diorite. Three of these holes, 97-44, -45, and -46, were relatively shallow, drilled to depths of around 100 meters (330'). Hole 97-49 was deeper. It went to a depth of 207 meters (679'). As well as diorite, 97-49 encountered basalt and andesite.

Two of the Phase IV holes, 97-44 and 97-49, returned low gold values. Hole 97-44 returned a value of 470 ppb Au (0.01 oz per ton) across 0.2 meter (0.6'). Hole 97-49 returned a value of 230 ppb Au (0.01 oz/ton) across 2.1 meters (6.9').

SUMMARY

Two programs of diamond drilling, termed Phases III and IV, were completed on Transpacific's McGarry Twp. Property. Phase III consisted of 18 holes totalling 2,475.5 meters (8,119.6'). Phase IV consisted of 6 holes totalling 648 meters (2,125.4').

Ten of the Phase III holes were drilled into the Instant Creek Gold Zone. The remaining 8 Phase III holes, and all 6 of the Phase IV holes were drilled into the South Gold Zone.

All but 3 of the holes in the Instant Creek Gold Zone intersected gold mineralization. As many as 5 mineralized lenses were encountered. The best assays were returned from holes 96-37 and 96-38. Visible gold was noted in both holes. 96-37 assayed 119,212 ppb Au (3.48 oz/ton) across 0.2 meter (0.8'). 96-38 assayed 79,475 ppb Au (2.32 oz/ton) across 0.1 meter (0.2 feet).

All 8 of the Phase III drill holes in the South Gold Zone intersected gold mineralization. The best values were obtained from hole 96-34, where assays of 482,884 ppb (14.08 oz/ton) across 0.5 meter (1.4'), and 62,743 ppb Au (3.19 oz/ton) across 0.3 meter (1.0'), were returned. Visible gold was noted in both intersections. As many as 8 mineralized lenses were encountered in the South Gold Zone.

Of the 6 Phase IV holes drilled into the South Gold Zone, 2 were lost in overburden. Two of the 4 bedrock holes returned low gold values of 470 and 230 ppb Au (0.01 oz/ton).

CONCLUSIONS

Several lenses of gold mineralization in 2 parallel zones have been identified by the Phase III and Phase IV drilling programs of Transpacific Resources Inc. on their McGarry Twp. property. The 2 parallel zones, termed the Instant Creek Gold Zone and the South Gold Zone, have each yielded potentially-economic values in gold. In some holes, the amount of gold present is great enough to be seen by the naked eye. In addition to the gold mineralization, green carbonate zones, carbonate alteration, deformation zones, and faults have been identified, all of which are indicative of favourable geologic environments for the deposition of gold.

Further work in the form of additional diamond drilling is warranted, to further investigate the strike and dip extensions of the 2 gold-bearing zones.

RECOMMENDATIONS

Further drilling is recommended, primarily to explore the downdip projection of the 2 mineralized zones. Some drilling should also be undertaken to explore the strike extensions of the mineralized zones in both directions, especially at their western ends, where a cross fault appears to have off set them.

Approximately 18 holes, for an aggregate 3,600 meters (11,800') is recommended. Cost is estimated to be approximately \$300,000.

Toronto, Ontario July 2, 1997

E. A. Gallo, B.Sc., F.G.A.C. Gallo Exploration Services Inc. APPENDIX I

CORE LOGS

PHASE III DIAMOND DRILL HOLES

HOLES 96-25, -26, and -28 to -43, inclusive

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hole 96-25 Property: McGarry Township Core Size: NQ Casing: Left Coordinates: 15+01N, 21+57E Depth: 82.0 m Azimuth: 352° Dip: -45° Start Date: October 25, 1996 Finish Date: October 27, 1996 Drilled by: Kosy Diamond Drilling Legged By Douglas Robinson All Measurements in Meters

Meterage

From To Description 0.0 2.0 OVERBURDEN

2.00 49.00 BASALT, Pillowed

Aphanitic, dark green with medium grey sections. Pillowed with prominent pillow selvages throughout. 1x10 mm pale green stretched vesicles perpendicular to pillow selvages immediately adjacent to pillow rims. Moderately to strongly magnetic as noted below.

Mineralization:

2.00-21.50 < 0.1% 1-4 mm euhedral cubic pyrite (py) crystals common with pyrite concentrated within outer 2-10 mm of pillow selvages. Anhedral (Py) and pyrrhotite (Po) to 2% of pillow selvages.

Vorgles Malanan Fel 15, 1997

1

Epidote calcite alteration patches at 2.80, 4.60, 5.30, 5.90,

Hole Number 96-25

7.80, 8.30 with chalcopyrite (cpy), 10.95 w/ cpy, 11.40 w/ cpy, 13.25 w/ cpy, and 14.70.

15.05 Minor chalcopyrite in pillow selvage.

15.00-33.50 Minor calcite fracture filling to 2 mm.

17.30 Cpy in pillow selvage.

18.90 Py, Po and hematite in pillow selvage.

19.50 2X1.0 cm cpy in pillow selvage.

27.90 Cpy, Py in calcite in pillow selvage.

28.50 Cpy in epidote alteration.

29.80 Cpy in 0.5 mm bleached patch.

30.35 Minor Py and cpy in calcite epidote patches.

31.05 Cpy, Po and epidote in pillow selvage.

33.50-35.40 Set of twenty three 1-3 mm fine grained white calcite fracture fillings at 45° to CA.

39.30-40.15 numerous vesicles to 1.5 cm with up to 5-10% Cpy.

34.20 1 cm quartz calcite gash fracture.

35.40-41.00 Minor set of calcite fracture fillings at 45° to CA.

40.50-42.65 Minor Cpy to 2X5 mm in calcite fracture filling.

41.00-43.15 Set of strong calcite fracture fillings at 45° to CA. Strong calcite wall rock alteration.

41.70 3 cm calcite vein with slip wall at 70° to CA.

Vein sub-parallel fracturing.

43.15-49.19 nineteen calcite fracture fillings generally 0.5-2 mm (Maximum 1 cm)

Alteration:

2.0-5.3 Prominent strong epidote alteration concentrated in pillow rims healed fractures.

Hole Number 96-25

5.3-20.0 locally epidote alteration patches to 5 cm.

20.0-31.0 Trace epidote alteration in calcite filled fractures.

28.5-36.0 Weakly bleached to medium green-grey.

Calcite alteration as noted below:

39.0-41.05 Weak patchy calcite alteration.

41.05-42.8 Strong pervasive calcite alteration bleached pale grey.

42.80-43.27 Weak patchy calcite alteration.

43.27-43.60 Moderate pervasive calcite alteration

43.60-44.70 Patchy calcite alteration.

44.70-46.20 Strong pervasive calcite alteration.

46.20 47.55 Patchy calcite alteration.

47.55-49.00 Strong pervasive calcite alteration.

Magnetism:

2.00-12.00 Strongly magnetic with non-magnetic pillow rims.

12.00-14.50 Non-magnetic to weakly magnetic.

14.50-14.80 Strongly magnetic.

14.80-23.00 Non-magnetic to weakly magnetic.

23.00-28.60 Strongly magnetic.

28.60-31.50 Non-magnetic to weakly magnetic.

31.50-41.20 Moderately to Strongly magnetic.

41.20-42.60 Nonmagnetic.

42.60-49.00 Strongly magnetic.

			Au	PPB	Cu PPN	1
88353	4.07-4.90	0.83		134	86	
88354	8.00-8.47	0.47 Py in epidote alteration.		26	54	

Hole Number 96-25

	10.88-11.48			Au PPB Av.651½	
88356	12.94-13.42	0.48	Cpy to 1 cm in chloritic pillow selvage		
			with epidote	243	804
		-28.65	1.20 Prominent Cpy in calcite-epidote	alt'n. 125	464
88358	28.65-29.50	0.85	Minor hematite in slip.	5	34
88359	29.50.30.40	0.90	Calcite-epidote veining.	9	26
88360	30.40-31.22	0.82	Py & trace Cpy in calcite alteration.		
			Hematite on slip.	Av.6175	136
88372	37.00-38.00	1.00	Minor Cpy in pillow selvage.	17	228
88373	38.00-39.15	1.15	Minor Cpy in vesicles	3	62
88361	39.15-40.13	0.98	Cpy in vesicles.	300	626
88362	40.13-41.09	0.96	Cpy in fractures and vesicles.	9	130
88363	41.09-41.40	0.31	Cpy & Py on fractures.	10	260
88364	41.40-41.97	0.57	Calcite vein. Py & Cpy in fractures.		
			Bleached.	36	442
88365	41.97-42.89	0.92	Cpy in fractures.	45	530
88366	42.89-43.68	0.79	Trace disseminated Py.	nil	12

49.00 76.00 FELDSPAR PORPHYRY

Uniform and massive. 2% 2-4 mm white feldspar phenocrysts and 30% 0.5-1.0 mm white feldspar phenocrysts in a dark green matrix. 2% mafic xenoliths to 2 cm. Upper contact at 10° CA at block. Lower contact not preserved at block. Patchy hematization as weak to moderate reddish coloration of smaller phenocrysts and matrix. 50.76-60.00 very weakly magnetic.

49.28-50.76 Intense pale grey to yellow grey carbonate alteration centred on 3 cm Fe-carbonate vein at 50.14 m. Stronalv sericitic. Carbonate alteration extends beyond sericite alteration. 50.14 3 cm Fe-carbonate vein at 45° to CA. Loose slip walls. 54.22 10 cm yellow sericitic alteration band at 50° to CA. 54.61 3 mm. Calcite in slip at 40° CA. 57.70-59.15 1 mm epidote slip at 0° to CA. 2-3 mm pale yellow wall rock (epidote?) alteration. 0-0.5 mm Cpy in slip. 60.00-68.50 Weak pervasive hematization. Bleached pale pink. 64.35 1.5-2.0 cm white calcite vein with frozen walls. No alteration. 65.93 2.5 cm pale green (epidote?) band at 60 ° to CA. 67.15 3.5 cm pale green (epidote?) band. 68.90 6 cm epidote alteration band at 60° to CA. Incomplete alteration. Porphyritic texture preserved. 69.10-70.00 Intense pale grey alteration with weak sericitization. 69.62 Calcite-quartz-red feldspar fracture filling over 3 cm at 60° to CA. 70.55-70.70 Calcite alteration, pale grey. 70.90-72.00 Moderate calcite alteration. Weak sericitization. Pale grey to yellow grey. 73.30-76.00 Numerous pale green healed epidote fractures at 35-40° to CA.. Minor calcite in larger fracture fillings. Au PPB Cu PPM 49.20-50.00 0.80 Fe-carbonate alteration, 88367 yellow sheen on slips. Cpy in strong chlorite-sericite slips at 80° CA. 22 166 50.00-50.30 0.30 Fe-carbonate alteration. 88368 nil 92

Hole Number 96-25

NB

NB

 88369
 50.30-50.81
 0.51
 Fe-carbonate alteration. Cpy on strong chlorite-sericite slips at 80° CA.
 Au PPB
 Cu PPM

 88370
 57.63-58.50
 0.87
 Fe-carbonate alteration with cpy on slips.
 Av.2286
 1160

 88371
 58.50-59.30
 0.80
 0-0.5 mm Cpy in slip at 0° to CA.
 994
 1480

76.00 82.00 BASALT

76.00-78.80 Medium green uniform and massive.

<0.5 mm crystalline with 2% 1 mm black mafic phenocryst.

Non-magnetic and hard.

78.00-82.00 Medium green and massive.

Aphanitic at 78.00 grading to very fine grained below 80.50 m.

ALTERATION AND MINERALIZATION

Silicified and hematized at upper contact and decreasing down the hole. Trace epidote calcite fracture filling.

.

82.00 END OF HOLE

Hole Number 96-25

Assay Summary 96-25

Sample No.	From To	Length	Au PPB	Cu PPM
88353	4.07-4.90	0.83	134	86
88354	8.00-8.47	0.47	26	54
88355	10.88-11.48	0.60	Av.651½	932
88356	12.94-13.42	0.48	243	804
88357	27.45-28.65	1.20	125	464
88358	28.65-29.50	0.85	5	34
88359	29.50.30.40	0.90	9	26
88360	30.40-31.22	0.82	Av.6175	136
88372	37.00-38.00	1.00	17	228
88373	38.00-39.15	1.15	3	62
88361	39.15-40.13	0.98	300	626
88362	40.13-41.09	0.96	9	130
88363	41.09-41.40	0.31	10	260
88364	41.40-41.97	0.57	36	442
88365	41.97-42.89	0.92	45	530
88366	42.89-43.68	0.79	nil	12
88367	49.20-50.00	0.80	22	166
88368	50.00-50.30	0.30	nil	92
88369	50.30-50.81	0.51	41	352
88370	57.63-58.50	0.87	Av.2286	1160
88371	58.50-59.30	0.80	994	1480

82.0 End of Hole

Hole Number 96-25

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hale 96-26 Property: McGarry Township Core Size: NO Casing: Pulled Coordinates: 15+03N, 21+83E Depth: 100.0 m Azimuth: 352° Dip: -4.5° Start Date: October 27, 1996 Finish Date: October 29, 1996 All Measurements in Meters Logged By Douglas Robinson Drilled By Kosy Diamond Drilling Meterage То Description From 0.00 3.00 **OVERBURDEN** 3.00 10.95 FELDSPAR PORPHYRY. Uniform and massive. 2% 2-4 mm white equant feldspar phenocrysts and 20% 0.2X1 mm white bladed feldspar phenocrysts and Rare mafic xenoliths to 1 cm in an aphanitic dark green groundmass. Very hard, weakly magnetic. 10.68-10.95 Sharp natural lower contact along core axis. Phenocrysts are smaller within 2 cm of contact. ALTERATION AND MINERALIZATION

Very little alteration or fracturing.

Hole Number 96-26

Douglas Holminin Felt-15, 1997

1

10.95 38.71 BASALT, PILLOWED.

Medium green and aphanitic-very fine grained with prominent pillow selvages throughout. moderately hard, locally hard below 28.00 m. 28.53-40.82 Three boxes of core spilled and jumbled. The core was reconstructed as described below. The core was logged as it sits in boxes after reconstruction. The spilled core was placed below on the basis of rock texture and character of alteration. 34.85 No match. 34.85-34.90 Core matches. 34.90 No match. 34.90-37.33 Core matches. 37.33 No match.

37.33-41.00 Core matches.

Mineralization

Sulphides restricted to chloritic pillow selvages.

3626	15.43-16.00	0.57	20 15.53-15.75 1% Cpy in 1-3 cm chloritic pillow selvage along core axis. Average of two.
3627	16.00-17.50	1.50	7 Barren.
3628	17.50-18.53	1.03 1	15 Patches of Cpy to 0.8 cm in two chloritic pillow selvages.
3629	18.53-20.00	1.47 7	25 19.02-19.04 1% Cpy in calcite-chloritic pillow selvages.
3630	20.00-20.53	0.53 10	39 20.33-20.37 2% Cpy in calcite-epidote-chloritic pillow selvage. Average of two.

Hole Number 96-26

.

2.

3631	20.53-21.48	0.95	Au PPB 12	Barren.
				20.37-28.70 Generally massive with a few narrow
				pillow selvages.
3632	27.36-28.34	0.98	nil	Barren.
3633	28.34-28.65	0.31	10	Barren.
3634	28.65-28.90	0.25	6240	28.68-28.78 3% Cpy in dark green calcite chloritic
				pillow selvage. Average of four.
3635	28.90-30.10	1.20	1200	29.92-30.02 2% Cpy in calcite-epidote-chloritic
				pillow selvage.
3636	30.10-31.00	0.90	86	30.02-33.20 Scattered vesicles to 1 cm with Cpy
				(rock is <0.1% Cpy overall).
3637	31.00-32.50	1.50	nil	Barren.
3638	32.50-33.25	0.75	17	32.68 Cpy in chloritic pillow selvage.
3639	37.33-38.08	0.75	3	37.87 Trace Cpy in thin pillow selvage.
				38.00-38.71 Dark green, weakly chloritic.

38.71 40.30 ALTERATION ZONE. Intense, non-magnetic chlorite-carbonate alteration centred on vein at 38.87 m.

ALTERATION AND MINERALIZATION.

3640	38.08-38.77	0.69	nil	Barren.
				38.71-39.09 Dark green, soft and strongly chloritic
				with minor wispy carbonate stringers.
3641	38.77-39.09	0.32	497	38.87 (75° to CA). 2 cm quartz calcite vein stained
				pale mauve by potassium ferri cyanide (KFC).
				38.87-38.95 5% Cpy below vein. 2200 PPM Cu (Assayed).

Hole Number 96-26

3

Au PPR 3642 39.09-40.12 1.03 19 Calcite chlorite alteration. 39.17 minor Cpy. 39.09-39.48 Medium grey, moderately soft calcitechlorite alteration. . 39.48-40.20 Very hard (silicified?) 3643 40.12-40.30 0.18 281 40.20-40.30 Grey chert at 50° to CA with 3% irregular dark green chloritic fracture fillings and 1% Cpy. Average of two. 1150 PPM Cu (Assayed). 51.40 BASALT, FINE GRAINED and MASSIVE.

40.30 51.40 BASALT, FINE GRAINED and MASSIVE. Dark green, uniform and massive, moderately hard and magnetic. Rare pillow selvages.

ALTERATION AND MINERALIZATION Very little fracturing. Locally trace disseminated py cubes. 3644 40.30-41.41 1.11 21 Trace Cpy. 3645 44.23-45.58 1.35 44.29 (70° to CA) 3 mm calcite stringer with trace 105 fine grained Py. 44.31 Trace Cpy in 3 mm pale patch. 44.49 Trace Cpy in chloritic fracture. 44.63 4 mm Cpy in chloritic patch. 44.76 1% Cpy in 1 cm pillow selvage. 45.26 (30° to CA) 3 mm quartz fracture filling with 25% Cpy and 15% pyrrhotite. 3646 45.58-46.58 1.00 Healed chloritic fracturing. 27 46.07, 46.27, 46.34 and 46.43 chloritic patches to 1.0 cm with 10% Cpy plus Py.

Hole Number 96-26

51.40 76.00 BASALT, PILLOWED.

Medium green, aphanitic to very fine grained, moderately hard and magnetic.

Prominent pillow selvages throughout.

ALTERATION AND MINERALIZATION.

Patchy calcite alteration. Minor epidote in healed fractures. Cpy in chloritic patches, pillow selvages and fractures as noted below. 3647 51.60-53.00 1.40 48 51.70 1% Cpy in 1 cm pillow selvage. 52.73 3% Cpy in 2 cm chloritic pillow selvage. 3648 53.00-53.97 0.97 79 Minor healed chloritic fracturing. 53.50-53.68 3% Cpy in 3 cm chloritic pillow selvage. Py cubes in pillow beside selvage. 3649 53.97-54.84 0.87 10 3651 0.32 54.84-55.16 674 Average of two. 55.00-55.10 6% Py and 3% Cpy in calcite-chloritechloritic pillow selvage. 55.16-55.66 3652 0.50 55.63 5 mm patch of Cpy. 62 3653 55.66-56.00 55.77-56.00 Non-magnetic bleached calcite alteration 0.34 514 centred on calcite vein. 55.90 2.5 cm fine grained banded calcite vein at 40° to CA. Trace Cpy and minor Py in wall rock within 1.5 cm of vein. 3654 56.00-56.94 0.94 2 Barren. 3655 56.94-58.29 57.01-57.08 hairline quartz cpy fracture filling at 1.35 58

Hole Number 96-26

				Au PPB	
					68.65-69.00 Trace Cpy in 1 cm pillow selvage
					parallel CA.
	3667	69.50-70.50	1.00	158	69.75-70.03 Trace Cpy in chloritic patches to 1 cm.
	3668	70.50-71.00	0.50	1034	Average of two.
					70.60-71.00 Fine grained Py and Cpy in pillow
					selvages to 4 cm. Py crystals to 4 mm in pillow
					within 2 cm of selvages.
	444	71.00-71.77	0.77	24	
	445	71.77-73.20	1.43	115	Average of two.
		73.22-80.33	-	-	Set of 0.2-3.0 mm calcite fracture fillings at 50°,
					90° and 140° to CA. Stained mauve by KFC.
NB	3669	74.46-75.24	0.78	19	74.62-77.10 Non-magnetic, moderately soft, dark
					green chloritic calcite alteration. Weak calcite
					alteration extends above and below.
NB	3670	75.24-75.84	0.60	470	77.49-77.54 (50° to CA) Opaque white dolomite vein
					stained mauve by KFC.
NB					75.69-75.76 (50° to CA) 6 cm opaque, buff Fe-
					carbonate vein stained blue by KFC. Minor quartz in
					centre of vein. Dolomite at edges of vein stained
					mauve by KFC. Minor Py along edges of vein.
76.00	91.47	BASALT, MASSI	VE FINE	GRAINED	

Medium grey, fine grained, uniform and massive, magnetic and moderately hard.

ALTERATION AND MINERALIZATION

Weak Fe-carbonate alteration stained blue by KFC.

3671 75.84-77.00 1.16 1298 Chlorite calcite alteration. Trace pyrrhotite

Hole Number 96-26

3672	77.00-78.43	1.43	Au PPB 58	
3673	78.43-78.85	0.42	2057	Average of two. 78.41-78.71 Non-magnetic chlorite, calcite alteration with black silicate needles. 78.48-78.49 1 cm grey calcite vein at 70° to CA. 78.48-78.73 1% Cpy beside calcite veining. Stained blue by KFC. 78.71-78.73 (70° to CA) 2 cm banded calcite-chlorite vein as grey fine grained grey calcite and dark green soft chlorite.
3674	78.85-80.27 82.69	1.42	286 -	Trace Cpy in calcite alteration. (85° to CA)1 cm fine grained banded grey calcite vein with 10% thin dark green chloritic bands. Stained mauve by KFC.
	83.00	-	-	(82° to CA) 1.5 cm fine grained grey calcite vein stained mauve by KFC.
	83.38-83.70	-	-	Trace Cpy in chloritic patches.
3675	84.74-85.81	1.07	144	84.93 1X3 cm calcite-chlorite patch with 50% Cpy. 85.66-85.71 Trace Cpy in chloritic patches to 1 cm.
	84.90-91.47	-	. 	0.1% fine grained disseminated pyrite to 0.3 mm.

91.47 94.05 FELDSPAR PORPHYRY.

Typical 2% 2-4 mm white feldspar phenocrysts 20% 0.2x1 cm white to pale pink feldspar phenocrysts in a dark green groundmass.

Hole Number 96-26

.

Uniform and massive and very hard. Sharp natural irregular upper contact at 25° to CA. Sharp natural irregular lower contact at 25° to CA.

ALTERATION AND MINERALIZATION Weak hematization along healed hairline fractures.

94.05 100.00 BASALT, MASSIVE FINE GRAINED. Light green fine grained uniform and massive. Moderately soft.

> ALTERATION AND MINERALIZATION 1% 0.5-1 mm dark green chloritic specks. Weak carbonate alteration stained blue by KFC.

96.59-97.67	-	-	Non-magnetic		
96.94	-	-	3 cm fine grained white calcite vein stained mauve by KFC. 15 cm of calcite alteration stained mauve by KFC is centred on vein.		
97.22	-	-	l.5 cm fine grained white calcite vein at 40° to CA.		
END OF HOLE.					

Hole Number 96-26

100.00

Assay Summary 96-26

Sample No.	From To	Length	Au PPB	Cu PPM
3626	15.43-16.00	0.57	20 (Av.)
3627	16.00-17.50	1.50	7	
3628	17.50-18.53	1.03	1 15	
3629	18.53-20.00	1.47	725	
3630	20.00-20.53	0.53	1089 (Av.)
3631	20.53-21.48	0.95	12	
3632	27.36-28.34	0.98	nil	
3633	28.34-28.65	0.31	10	
3634	28.65-28.90	0.25	6240 (Av.)
3635	28.90-30.10	1.20	1200	
3636	30.10-31.00	0.90	86	
3637	31.00-32.50	1.50	nil	
3638	32.50-33.25	0.75	17	
3639	37.33-38.08	0.75	3	
3640	38.08-38.77	0.69	nil	
3641	38.77-39.09	0.32	497	2200
3642	39.09-40.12	1.03	19	
3643	40.12-40.30	0.18	281 (Av.)) 1150
3644	40.30-41.41	1.11	21	
3645	44.23-45.58	1.35	105	
3646	45.58-46.58	1.00	27	
3647	51.60-53.00	1.40	48	
3648	53.00-53.97	0.97	79	
3649	53.97-54.84	0.87	10	
3651	54.84-55.16	0.32	674 (Av.))
3652	55.16-55.66	0.50	62	

Hole Number 96-26

Assay Summary (cont'd.) 96-26

Sample No.	From To	Length	Au PPB	Cu PPM
3653	55.66-56.00	0.34	514	
3654	56.00-56.94	0.94	2	
3655	56.94-58.29	1.35	58	
3656	58.29-59.00	0.71	513	
3657	59.00-59.93	0.93	14	
3658	59.93-60.93	1.00	3754 (Av.)	
3659	60.93-62.00	1.07	81	
3660	62.00-63.10	1.10	22	
3661	63.10-63.88	0.78	902 (Av.)	4350
3662	63.88-65.00	1.12	nil	
3663	65.00-66.22	1.22	216	
3664	66.22-67.35	1.13	108	
3665	67.35-68.42	1.07	5	
3666	68.42-69.50	1.08	29	
3667	69.50-70.50	1.00	158	
3668	70.50-71.00	0.50	1034 (Av.)	
444	71.00-71.77	0.77	24	
445	71.77-73.20	1.43	115 (Av.)	
3669	74.46-75.24	0.78	19	
3670	75.24-75.84	0.60	470	
3671	75.84-77.00	1.16	1298	
3672	77.00-78.43	1.43	58	
3673	78.43-78.85	0.42	2057 (Av.)	
3674	78.85-80.27	1.42	286	
3675	84.74-85.81	1.07	144	

100.00

END OF HOLE

Hole Number 96-26

11

.

TRANSPACIF RESOURCES INC.

Diamond Drill Core Log

Hole 96-28Property: McGarry TownshipCore Size: NQ&BQCasing: PulledCoordinates: 14+85N, 22+60EDepth: 149.92 mAzimuth: 352°Dip: -45°Start Date: November 1, 1996Finish Date: November 3, 1996All Measurements in MetersReduced from NQ to BQ at 19.50 m.Drilled by Kosy Diamond DrillingLogged By Douglas Robinson

Meterage

From To Description 0.00 11.50 OVERBURDEN

- 11.50 17.50 MASSIVE FINE GRAINED BASALT Medium green massive basalt. Crack and healed texture as chloritic fracture filling. Badly broken ground with open slips at 10° to CA. Much cave and over grinding of core. 5 mm of epidote along lower contact at 30° to CA.
- 17.50 25.00 FELDSPAR PORPHYRY

2% 2-4 mm white feldspar phenocrysts and 20% 0.3-1.5 mm white feldspar phenocrysts in a dark green groundmass. Minor mafic xenoliths to 1.0 cm Very hard, uniform and massive.

Hole Number 96-28.

Douglas Kolmon 1 april 7, 1997

Minor pinkish hematization and bleaching related to thin healed fractures.

Lower contact, frozen, sharp and natural at 55° to CA. Phenocrysts are smaller within 1.0 cm of contact.

25.00 70.00 BRECCIATED BASALT

25.00-36.00 Generally flow brecciated.

Very fine grained to medium grained fragments in medium grained matrix.

Locally pale green to dark green silicate fracture filling.

Moderately hard. Non-magnetic.

36.00-43.00 Generally fine-medium grained, medium green massive basalt.

Prominent chloritic fracture filling and minor thin pale yellow fracture filling.

Moderately hard. Non-magnetic.

43.00-47.75 Prominent flow breccia with angular to weakly rounded very fine grained dark green fragments to 2.0 cm in medium green matrix. 15% of matrix is 1-3 mm pale grey fragments.

Weakly to moderately magnetic.

47.75-70.00 Mixed very fine grained basalt as described 25.00-36.00.

ALTERATION AND MINERALIZATION.

PPB Au

3676 31.80-32.20 0.40 Nil Quartz-calcite veining & carbonate alteration.

Hole Number 96-28.

				32.05 2.0 cm banded quartz carbonate
	•• •• ••		Au PPB	vein at 55° to CA.
3677	32.86-33.44	0.58	697	Average of two.
				33.10-33.16 6.0 cm quartz carbonate vein with
				dolomite sections stained mauve by
				potassium ferri cyanide (KFC).
				32.78-33.83 Weakly bleached calcite alteration.
				Moderately soft to moderately hard.
				Stained blue by KFC. Minor Py in grey
				carbonate filled fractures. (Weakly
	35.68	_		sericitic?).
	55.00	-	-	4.0 cm coarse grained calcite epidote vein with weak
	38.80-39.00	_	-	epidote alteration near vein.
3678	39.96-41.44	1.48	- 24	Chloritic fracture filling.
0070	55.50-41.44	1.40	24	Calcite alteration. Fine grained, pale green-grey
				and moderately soft alteration stained mauve by KFC.
				Numerous hairline calcite fracture fillings at 65
3679	41.44-41.83	0.39	39	and 115° to CA. (Possibly weakly sericitic)
	11.11 11.05	0.55	55	41.60 1.5 cm. quartz-calcite-pyrite vein.
				Fine grained grey with 10% very fine grained Py.
				41.60 0.6 cm quartz-calcite-pyrite vein at 55° to CA
				similar to 41.60.
				41.73 1.5 cm. fine grained white calcite vein stained
				mauve by KFC.
3680	41.83-42.38	0.55	2	Calcite alteration.
3681	42.38-43.29	0.91	12	
3682	43.29-43.84	0.55	3	43.26-43.90 Bleached, pale green, soft calcite

				alteration (possibly weakly sericitic)
				with prominent healed fracturing having
				bleached walls. Stained mauve to blue
				by KFC.
				43.49 3.5 cm fine grained clean white calcite
				vein at 80° to CA stained pale mauve by
				KFC.
				43.80 1.5 cm fine grained white calcite vein at 80°
				to CA with fine grained Py in wall rock
			Au PF	
3683	43.84-44.70	0.86	19	44.01 Trace Cpy.
				44.11-44.20 Trace Cpy in pale grey altered
0.001			_	fractures.
3684	45.51-45.76	0.25	3	45.61 1.5 cm fine grained, grey calcite-pyrite vein
				with 5% fine to medium grained Py in
				vein and Py in wallrock to 1.0 cm from
	47.26			vein. Vein 72° to CA.
3685	47.20 50.73-51.55	0.82	- 12	Trace Cpy.
2002	50.75-51.55	0.02	12	50.73-51.52 Calcite alteration.
				51.38 2.5 cm fine grained white calcite vein with
				several wispy chlorite bands and 1% medium grained Py. Vein at 80° to CA.
				Stained purple by KFC.
	57.76	_	_	5.0 cm quartz-calcite-sericite vein with minor
	37.70			sericite fracture filling beside vein. Vein at 35°
				to CA.
	58.46-58.58	-	_	5.0 cm aphanitic pale green dike with banding along
				fractures parallel dike walls.
				regolated paration which wanted

			Au I	PPB
3686	58.70-59.00	0.30	17	Minor Cpy in chloritic groundmass of primary
				volcanic breccia.
3687	63.73-64.61	0.88	214	Average of Two.
				63.31-64.79 Bleached calcite alteration very weakly
				stained pale mauve by KFC.alteration
				centred on vein at 64.23 m. Alteration
				is soft near vein at hard at outside
				edges.
				64.23 5.0 cm fine grained grey-white calcite vein
				with 1% fine disseminated Py. Vein at
				85° to CA.
3688	64.61-65.61	1.00	141	64.92-69.00 Scattered Cpy throughout in 0.5 cm pale
				grey patches to 0.5 cm in chloritic
				alteration in matrix of primary breccia
				(20-50% Cpy in patches).
				65.05 1.0 cm patch Cpy in 3.0 cm patch of calcite.
3689	65.61-66.80	1.19	7	Trace Cpy.
3690	68.80-68.08	1.28	21	66.82-69.05 2% fine grained Py masses and
				1% 2-4 mm Py cubic crystals
3691	68.08-69.12	1.04	7	Trace Cpy.
3692	69.12-69.98	0.86	2	Barren.

70.00 141.92 MASSIVE FINE GRAINED BASALT

Dark green, uniform and massive, fine grained basalt with little to no secondary fracturing. Very weakly to moderately magnetic to 90.00 m.

90.00-103.93 Moderately magnetic.

103.93-105.14 Nonmagnetic.

Hole Number 96-28.

٠.

70.00-100.00 Moderately soft and chloritic.

Minor healed chloritic fractures.

100.00-149.72 Dark green, moderately hard and fine grained.

105.14-106.69 Moderately magnetic.

106.69-107.25 Non-magnetic.

107.25-108.38 Moderately magnetic.

108.38-110.70 Non-magnetic to very weakly magnetic.

110.70-116.36 Moderately magnetic.

116.36-118.08 Non-magnetic.

118.09-131.00 Moderately magnetic.

131.00-134.57 Non-magnetic deformation zone.

134.57-144.59 Moderately magnetic.

144.59-145.22 Non-magnetic.

145.22-149.72 Weakly to moderately magnetic.

ALTERATION AND MINERALIZATION.

NB 3693 75.32-76.63 75.33-76.66 Intense Fe-carbonate alteration centred 1.31 7 at 76.00 m. Soft fine grained and massive alteration stained pale mauve to pale blue by KFC. Medium grey-green at 75.33 grading to pale yellow from 75.86-76.05. Grades from pale yellow at 76.06 to medium grey at 76.66. Numerous 2-3 mm carbonate stringers at 90° to CA grading from calcite stained mauve by KFC (at edges of alteration) to dolomite stained pale blue in centre of alteration zone. Sericitic foliation at 78° to CA. 75.99-76.05 very intense alteration (or vein?) of amorphous, massive, very soft carbonate.

۰.

				75.82 1.5 cm opaque white carbonate vein at 60° to
				CA. Stained blue by KFC.
				76.05 0.8 cm opaque white carbonate vein at 75° to
	77 00 02 00		Au I	
	77.00-83.00		~	Numerous 2-5 mm disseminated Py grains, many having
3694	76.63-77.65	1 00		crude cubic outlines (Pyrrhotite? after Py).
3695		1.02	15	Disseminated Py.
	77.65-78.48	0.83	58	Trace Cpy. Average of two.
3696	78.48-79.61	1.13	7	Trace Cpy.
3697	79.61-80.00	0.39	10	Py as described above.
3698	80.00-81.63	1.63	nil	Py as described above.
	81.44	-	-	One speck Cpy.
3699	109.00-110.71	1.71	2	108.38-110.71 Dark green, soft chlorite-carbonate
				alteration centred on a set of calcite
				stringers between 109.85 and 110.48 at
				80° to CA (weak zone). Larger stringers
				listed below. Alteration stained blue
				by KFC. Stringers not stained by KFC.
				108.38 2.5 cm fine grained white calcite stringer at
				80° to CA.
				109.20 Irregular 1.0 cm fine grained calcite stringer
				at 55° to CA.
	112.64-112.76	-	-	50% calcite vein and 50% breccia very weakly stained
				pale mauve by KFC. From 112.56-112.90 non-magnetic.
	115.30-117.10	-	-	Minor 2 mm disseminated Py cubes.
	115.65	-	-	0.5X2.0 cm Pyrrhotite patch.
	116.36-118.08	-	-	Medium green aphanitic flow breccia with dark green
				fragments to 2.0 cm. Non-magnetic chloritic

			Au PPI	3
				<pre>fracture filling (flow top?).</pre>
3700	119.00-120.00	1.00	19	119.05-121.95 1% masses of fine grained Py to 0.5 cm in dark green chloritic fracture filling
3701	120.00-121.00	1.00	3	See above.
3702	121.00-122.00	1.00	2	121.00-123.00 Chloritic alteration. 1% 11-2 mm dark green chlorite specks.
	124.00-128.40	-	-	5% irregular, dark green chlorite veining cutting aphanitic section of basalt. (flow top?)
3703	128.00-128.80	0.80	nil	
3704	128.80-129.00	0.20	nil	128.90-128.95 1.0X5.0 cm chloritic alteration patch with 5% fine grained Py and 5% wispy Cpy. Average of two.
3705	129.00-130.00	1.00	nil	Chloritic.
3706	130.00-131.00	1.00	nil	Chloritic.
				130.52-131.10 calcite alteration.
3707	131.00-132.00	1.00	nil	 131.00-134.57 DEFORMATION ZONE 131.00-131.47 Dark green, uniform and massive moderately soft chloritic alteration 2% 1 mm chloritic specks. No linear texture. Not stained by KFC. 131.47-132.31 grades from dark green to pale buff (Fe-carbonate sericite alteration). Chloritic specks generally absent. Soft fine grained with 1-2% tiny white (leucoxene) specks. Uniform and massive with no linear fabric. Dark green alteration along a few random

					fractures. From 132.31 to 132.20 Stained dark blue
				Au PPB	by KFC.
NB	3708	132.00-132.85	0.85	nil	132.31-132.94 Similar to 131.47-132.31 with more
					intense Fe-carbonate sericite
					alteration. Fine grained, uniform and
					massive with up to 5% medium grey-green
					secondary fracture filling ranging from
					20° to CA at 132.40 m to 70° to CA at
					132.93 m.
NB	3709	132.85-133.21	0.36	43	132.94-132.98 Pale buff Fe-carbonate sericite
					alteration, foliated at 70-90° to CA.
					133.02-133.07 5.0 cm very fine grained white to dark
					grey quartz vein with 3% very fine-fine
					grained Py at 72° to CA.
					132.98-134.12 Sericitic Fe-carbonate alteration.
					Massive, very fine grained, soft pale
					buff alteration with swirled appearance
					From 132.98-133.20 pale buff sericitic
					bands. Locally very hard, aphanitic
					buff silicification.
					From 132.20-134.12 Trace fine grained Py
					in 2 mm patches and 3 tiny specks of Cpy
NB	3710	133.21-133.80	0 59	5	in grey silicious fracture filling. Sericitic Fe-carbonate alteration.
NB	3711	133.80-134.55		3	
		100.00 104.00	0.75	3	Sericitic Fe-carbonate alteration.
					134.04-134.07 1.0X3.0 cm massive Py brecciated and cemented by Fe-Carbonate.
					cemented by re-carbonate.

.

9

.

			Au PPB	
				134.26 1.5X2.0 cm brecciated massive Py.
3712	134.55-135.30	0.75	55	134.20-135.30 Calcite alteration & calcite fracture
				fillings. Alteration stained mauve by KFC.
				137.37-137.40 10% Fine grained Py in patch of pale grey alteration.
3713	135.30-135.99	0.69	nil	134.20-138.00 Numerous hairline calcite fracture
				filling to 1 mm at 60-70° to CA. Stained mauve by KFC.
3714	135.99-137.00	1.01	125	136.10 Insolated 1.0 cm chloritic pillow selvage
				with 5% fine grained Py and 1% Cpy. 136.74-136.78 4.0 cm coarse grained white calcite
				vein with chloritic bands. Trace Py.
				Stained mauve by KFC. Vein at 60° to
0715	107 00 407 40			CA.
3715	137.00-137.40	0.40	14	137.12-137.15 2.0X3.0 cm patch brecciated Py with 1% Cpy in fracture.
				137.22-137.27 0.5-5.0 cm chloritic band with 25% and 1% Cpy.
3716	137.40-138.43	1.03	nil	Barren calcite fracture filling.
3717	138.43-138.69	0.26	1199	Average of two.
				138.52-138.61 1.0 cm calcite chlorite band parallel
0.54.0				CA. 20% Massive Py and 3% Cpy.
3718	138.69-139.66	0.97	3	139.10 0.3 cm white calcite vein at 55° to CA stained mauve by KFC. Py in wall rock.
				139.25-140.00 1% cubic Py to 3 mm.
	140.58	-	-	Trace Py.

10

-

			Au PPB	
	140.74	-	-	1.5 cm calcite chlorite vein at 55° to CA.
3719	141.13-142.08	0.95	7	Trace Cpy in calcite fracture filling.
				141.34-141.98 Trace Cpy in calcite fracture filling
				at 35° to CA.
•				141.92 0.0-1.5 cm calcite vein stained blue by KFC.
				141.98 Trace Cpy and Minor Py in calcite patch.
	140.00-149.72	-	-	Trace coarse grained Py.
	145.00	_	-	4.0 cm banded calcite-chlorite vein stained mauve by
				KFC.
149.92	END OF HOLE			

Assay Summary 96-28

Sample No.	From To	Length	Au PPB
3676	31.80-32.20	0.40	Nil
3677	32.86-33.44	0.58	697 (Av.)
3678	39.96-41.44	1.48	24
3679	41.44-41.83	0.39	39
3680	41.83-42.38	0.55	2
3681	42.38-43.29	0.91	12
3682	43.29-43.84	0.55	3
3683	43.84-44.70	0.86	19
3684	45.51-45.76	0.25	3
3685	50.73-51.55	0.82	12
3686	58.70-59.00	0.30	17
3687	63.73-64.61	0.88	214 (Av.)
3688	64.61-65.61	1.00	141
3689	65.61-66.80	1.19	7
3690	68.80-68.08	1.28	21
3691	68.08-69.12	1.04	7
3692	69.12-69.98	0.86	2
3693	75.32-76.63	1.31	7
3694	76.63-77.65	1.02	15
3695	77.65-78.48	0.83	58.5 (Av.)
3696	78.48-79.61	1.13	7
3697	79.61-80.00	0.39	10
3698	80.00-81.63	1.63	nil
3699	109.00-110.71	1.71	2
3700	119.00-120.00	1.00	19
3701	120.00-121.00	1.00	3

Assay Summary (cont'd) 96-28

Sample No.	From To	Length	Au PPB
3702	121.00-122.00	1.00	2
3703	128.00-128.80	0.80	nil
3704	128.80-129.00	0.20	nil (Av.)
3705	129.00-130.00	1.00	nil
3706	130.00-131.00	1.00	nil
3707	131.00-132.00	1.00	nil
3708	132.00-132.85	0.85	nil
3709	132.85-133.21	0.36	43
3710	133.21-133.80	0.59	5
3711	133.80-134.55	0.75	3
3712	134.55-135.30	0.75	55
3713	135.30-135.99	0.69	nil
3714	135.99-137.00	1.01	125
3715	137.00-137.40	0.40	14
3716	137.40-138.43	1.03	nil
3717	138.43-138.69	0.26	1199 (Av.)
3718	138.69-139.66	0.97	3
3719	141.13-142.08	0.95	7

149.92

END OF HOLE

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hole 96-29 Property: McGarry Township Core Size: NQ Casing: Pulled Coordinates: 15+06N, 22+82E Depth: 90.00 m Azimuth: 352° Dip: -45° Start Date: November 04, 1996 Finish Date: November 06, 1996 All Measurements in Meters Drilled by Kosy Diamond Drilling Logged By Douglas Robinson Meterage Description From То 0.00 21.00 OVERBURDEN 54.23 FINE GRAINED BASALT. Single flow. 21.00 Medium green, massive, moderately hard groundmass cut by 1-2% irregular random fracture filling of aphanitic dark green chlorite and very fine grained pale yellow (epidote?). Very competent ground. ALTERATION AND MINERALIZATION. PPB Au 21.00-35.50 ----Yellow fracture filling dominant with chloritic fracture filling common near the bottom. 33.50-45.00 Chlorite and yellow silicate (epidote?) alteration

Vouglas Kolman Capil 9, 1997

				Au PF	PB
					equally common.
		45.00-54.23	-	-	Chlorite dominant fracture filling.
	3720	34.00-34.71	0.71	36	34.15 Minor Cpy in chloritic fracture filling.
					34.53 Minor Cpy in chloritic fracture filling.
		36.22	-	-	1.5 cm calcite vein with 15 cm yellow bleaching (epidote).
	3721	37.30-38.28	0.98	9	Barren.
NB	3722	38.28-38.95	0.67	29	38.28-38.90 Bleached pale grey calcite alteration stained mauve by potassium ferri cyanide (KFC). Moderately hard, weakly sericitic. 5% fine grained calcite veining to 1.0 cm at 80° to CA. At 38.90 sharp alteration front line at 65° to CA.
	3723	38.95-39.92	0.97	5	Barren.
NB	3724	39.92-40.36	0.44	3	 39.92-40.28 Pale grey carbonate alteration and minor calcite fracture filling. Alteration stained blue by KFC. 40.12 1.0 cm fine grained crushed calcite-chlorite
					vein at 40° to CA stained mauve by KFC.
	3725	40.36-41.35	0.99	5	Average of two. 40.90-41.83 Minor Cpy in numerous chlorite fracture fillings.
	3726	41.35-42.00	0.65	5	
	3727	42.00-43.00	1.00	nil	Barren.
	3728	44.74-45.00	0.26	188	Average of two.

Au PPB

44.95 1.0x3.0 cm calcite-chlorite-epidote alteration patch with 3% Cpy.

3729 49.78-50.58 0.80 49.80-50.95 0.1% Cpy in chloritic fracture fillings 10 to 1.0 cm. 3730 50.58-51.00 0.42 62 See above. 3731 52.37-53.00 0.63 86 Average of two.

52.54-52.95 Minor Cpy in chlorite-epidote fracture filling.

54.23 81.00 FINE GRAINED BASALT. Single flow.

54.23-70.50 Medium green, uniform and massive, fine grained flow. Rare black xenoliths to 0.5 cm. Medium hard and non-magnetic.

- 70.50-81.10 Medium green, massive, fine grained, moderately hard, and non-magnetic. Narrow bleaching along fine healed fractures at 50° to CA. Fracture spacing 0.3-0.5 cm.
- 78.65-81.10 Prominent flow breccia as pale grey shards and medium green aphanitic fragments.
- 81.10 Sharp, natural irregular lower contact 0-45° to CA.

ALTERATION AND MINERALIZATION.

54.23-57.00	-	-	Chloritic fracture filling.
57.00-63.00	-	-	Possibly weak pervasive epidote
			alteration of groundmass.
63.00-67.34	-	-	Irregular fracture filling by pale

Hole Number 96-29

				Au PH	PB
					green epidote and bleaching along
					fractures.
	3732	67.34-68.00	0.66	2	Barren.
NB	3733	68.00-68.63	0.63	nil	68.00-69.13 Calcite alteration stained mauve by KFC.
					Moderately soft. Prominent set of 1.0-
					4.0 calcite stringers at 60° to CA.
					Stringers not stained by KFC.
NB	3734	68.63-69.14	0.51	nil	68.72 5 cm fine grained grey, grain reduced calcite
					at 60° to CA. 3% wispy dark green chlorite.
	3735	69.14-70.30	1.16	7	Barren.
	3736	78.64-79.34	0.70	2	78.83 0.5X1.5 cm patch grey calcite alteration with
					10% Cpy.
	37 37	79.34-80.27	0.93	10	80.07 & 80.11 specks of Cpy.
	3738	80.27-81.00	0.73	9	80.77 specks of Cpy.

81.00 90.00 MEDIUM GRAINED BASALT. Single flow. Medium green, uniform and massive, moderately hard and nonmagnetic. 1% irregular dark green healed chloritic fracture filling commonly at 45° to CA. At 81.00 upper contact 0.4 cm pale green aphanitic chill against flow above. From 81.00 to 84.00 grades from aphanitic to medium grained. From 84.00 to 90.00 medium grained

ALTERATION AND MINERALIZATION.

86.40--Minor Py in 0.3 cm chloritic fracture filling.373988.00-88.500.503488.14 Minor Cpy in 0.6 cm chloritic fracture filling
at 42° to CA.

90.00 END OF HOLE.

Hole Number 96-29

.

Assay Summary 96-29

Sample No.	From To	Length	Au PPB	
3720	34.00-34.71	0.71	36	
3721	37.30-38.28	0.98	9	
3722	38.28-38.95	0.67	29	
3723	38.95-39.92	0.97	5	
3724	39.92-40.36	0.44	3	
3725	40.36-41.35	0.99	5 (Av.)	
3726	41.35-42.00	0.65	5	
3727	42.00-43.00	1.00		
3728	44.74-45.00	0.26	188 (Av.)	
3729	49.78-50.58	0.80	10	
3730	50.58-51.00	0.42	62	
3731	52.37-53.00	0.63	86 (Av.)	
3732	67.34-68.00	0.66	2	
3733	68.00-68.63	0.63	nil	
3734	68.63-69.14	0.51	nil	
3735	69.14-70.30	1.16	7	
3736	78.64-79.34	0.70	2	
3737	79.34-80.27	0.93	10	
3738	80.27-81.00	0.73	9	
3739	88.00-88.50	0.50	34	

90.00 END OF HOLE

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hole 96-30 Property: McGarry Township Core Size: NO Casing: Pulled Coordinates: 14+59N, 22+07E Depth: 199.50 m Azimuth: 352° Dip: -60° Start Date: November 07, 1996 Finish Date: November 10, 1996 All Measurements in Meters Drilled by Kosy Diamond Drilling Logged By Douglas Robinson Meterage From

From To Description 0.0 4.40 OVERBURDEN

4.40 15.50 AUGITE SYENITE

Uniform and massive, fine grained with locally 3% black unaltered to grey altered Augite (hornblende?). Non-magnetic to very weakly magnetic.

Sharp natural lower contact at 35° to CA. Finer grained over 3.0 cm along lower contact.

ALTERATION AND MINERALIZATION.

Very hard and silicious without calcite alteration. Trace hematization along healed fractures below 11.00 m. Minor calcite fracture filling at 35-50 and 120° to CA. Locally trace Py

٠,

11.20

- - Trace Cpy in 4 mm bleached patch.

Vorgenskolman 1 Reputited 97

15.00 - - Speckled epidote alteration concentrated within 15.0 cm of lower contact.

15.50 41.20 MASSIVE BASALT

Dark green and moderately hard with variable grain size from aphanitic to medium grained. Non-magnetic.Numerous pale green aphanitic chilled flow contacts.Up to 2% irregular white specks (not calcite).

15.00-18.80 Coarse appearance due to 25% 2-4 mm dark green clots in pale yellow green (epidote?) groundmass. This appears to be an alteration texture.

18.80 Gradational textural change.

18.80-25.05 Medium green, aphanitic and massive.

25.05 Contact obscured by calcite alteration.

25.05-26.30 light green, fine grained and massive with 1% white leucoxene specks.

26.30 Gradate to aphanitic.

26.30-41.20 Mixed fine grained to medium grained mafic rocks with 1-2% white leucoxene in aphanitic chilled contacts noted below. 32.30-33.10 Dike? Chloritic stockwork absent.

> Unit is uniform and massive, fine grained with typical pale green chills along contacts. This unit is similar to the unit it cut including 1-2% white leucoxenes.

> At 32.30 Rock below is chilled against rock above along an irregular natural contact at approximately 25° to CA.

At 33.10 rock above is chilled against rock below.

33.10-34.00 Aphanitic pale green with prominent chlorite stockwork.

34.00-39.10 Similar to 32.30-33.10.

Sharp, natural, wavy upper contact along o.4 m of core.

Sharp, natural, lower contact at 20° to CA.

41.00-41.20 aphanitic with prominent wispy chloritic

stringers.

At 41.20 sharp natural contact 40° to CA.

ALTERATION AND MINERALIZATION.

Entire unit is cut by a stockwork of irregular 1-3 mm healed chloritic fracture filling at 1.0-4.0 cm spacing at 45 and 135° to CA. Generally barren of sulphides.

PPB	Au
-----	----

	23.38	-	-	Minor Py in 4 mm chloritic fracture filling.
88374	24.67-25.15	0.48	10	24.70-25.05 Bleached strong, pervasive pale grey calcite
				alteration. Texture 90° to CA.
				24.73 0.3-2.0 cm calcite fracture filling with pale yellow
				(epidote) along walls. 65° to CA.
				24.85 Calcite similar to 24.74 at 80° to CA.
				24.87 Calcite similar to 24.74 at 90° to CA.
				This is dominant stringer.
				25.02 0.5 cm calcite similar to 24.74 at 80° to CA.
				25.06 0.3 cm calcite similar to 24.74 at 65° to CA.
	28.30-28.45	-	-	Aphanitic chill at 35° to CA.

Au PPB

88375 29.50-29.80 0.30 14 Minor Py in chloritic fractures. 33.60 - Trace Py along chloritic slip.

41.20 51.50 AUGITE SYENITE

3% altered elongated medium green augite (hornblende?) phenocrysts to 1 mm and locally relict black unaltered phenocrysts in a glassy, very fine grained, uniform and massive groundmass. Very hard and silicious. Locally mafic xenoliths to 1.0 cm.

Sharp, natural, frozen, lower contact at 35° to CA.

ALTERATION AND MINERALIZATION.

Silicified. 15% fine chlorite-dolomite? specks in grey silicious groundmass. Pale green epidotization of phenocrysts within 2 m of upper and lower contacts.
Minor widely spaced set of 0.1-0.4 cm calcite stringers at 75° to CA with weak calcite alteration along fracture walls.
Locally weak red hematization to 1.0 cm along healed fractures including 35 and 75° to CA.
0.5-3% disseminated Py as 0.5 mm anhedral to subhedral grains.

with highest concentrations from 43.20-50.50 m.

 88376
 41.20-42.09
 0.89
 9
 41.30-42.05 Calcite chlorite fracturing at 25° to CA. Silicification along fractures. Trace Py. Locally

 88377
 42.09-43.12
 1.03
 17
 < 0.5% disseminated Py.</td>

 88378
 43.12-44.50
 1.38
 29
 Disseminated Py.

Hole Number 96-30

10

Au PPB 88379 44.50-46.00 1.50 19 1-3% Pv. 88380 46.00-47.50 1.50 1-3% Py. 24 88381 47.50-48.57 1.07 10 Disseminated Py 88382 48.57-49.00 0.43 14 48.68-49.00 Strong pervasive calcite alteration centred on vein at 65-70° to CA.

88383	49.00-50.50	1.50	9	Disseminated Py.
88384	50.50-51.50	1.00	12	Disseminated Py.

51.50 63.80 MASSIVE MEDIUM GRAINED BASALT

Similar to 15.00-42.20.

Medium green, medium grained, uniform and massive throughout having irregular chloritic stockwork with 00-10° to CA dominant. No fine grained sections. Moderately hard to hard.

ALTERATION AND MINERALIZATION.

Stockwork fracturing healed by dark green chlorite to 2 mm with 00-10° to CA dominant. Weak Fe-carbonate alteration? Locally trace disseminated Py.

63.80 78.82 AUGITE SYENITE

Similar to 41.20-51.50

Pinkish grey to orange, very fine grained groundmass with 20% altered, elongated augite phenocrysts with locally relict black augite phenocrysts. Locally mafic xenoliths to 3.0 cm. Non-magnetic.

ALTERATION AND MINERALIZATION.

Weak to strong hematization of groundmass centred on minor carbonate-quartz fracture filling at 20-30 and 70° to CA. At lower contact 1.0 m of prominent 0.4-0.6 cm hard yellowish alteration spots (altered phenocrysts?) with weak calcite. Trace to 3% 0.5 anhedral disseminated Py commonly in altered augite phenocrysts, xenoliths and along minor chloritic fractures. Au PPB 88385 63.80-64.87 2 Trace disseminated Py. 1.07 88386 64.87-66.63 1.76 27 1-3% disseminated Pv. 88387 66.63-68.10 1.47 17 Trace to 1% disseminated Pv. 67.50-72.20 strongest hematization. 88388 68.10-69.63 1.53 9 88389 69.63-71.10 1.47 9 88390 71.10-71.90 0.80 10 88391 71.90-73.00 1.10 12 73.00-74.50 88392 1.50 5 88393 74.50-76.00 1.50 15 88394 76.00-77.00 1.00 2 88395 77.00-77.81 0.81 nil 76.43-79.15 calcite alteration. 78.13-78.81 2-3% disseminated Pv -78.81-78.82 Trace disseminated Py _

78.82 148.80 MASSIVE BASALT

Similar to 51.50-63.80.

Sequence of medium green, uniform and massive, fine grained, nonmagnetic mafic flows with pale green aphanitic chills in contact with the flows above. Flows grade downwards from medium grained

Hole Number 96-30

to fine grained at their lower contacts. 81.50-84.40 Very fine grained flow breccia. 84.40 Chilled flow contact at 45° to CA. 86.50 Chilled flow contact at 40° to CA. 86.55-86.80 Patches of chilled flow along the core. 104.10 Chilled flow contact at 50° to CA. 104.10-109.10 Fine grained flow. 109.10 Chilled flow contact at 70° to CA. 139.50 Indistinct, irregular chilled flow contact. 148.45 Chilled flow contact in broken core. 149.80 Lower contact arbitrarily set at start of moderate magnetism.

78.95-79.20 Augite syenite dike.

ALTERATION AND MINERALIZATION.

			Au PI	PB
88396	77.81-79.80	1.99	9	78.82-79.15 Patchy calcite-epidote alteration.
88397	79.80-80.48	0.68	7	79.90-80.03 Crystalline (1 mm) white calcite vein with 10% breccia fragments aligned with vein walls. Slip wall at 79.90 and frozen wall at 80.03 at 60° to CA.
				79.15-81.38 Intense pervasive calcite alteration not stained by KFC. Alteration centred on vein at 79.90 m.
	80.15-83.50	_	-	Prominent set of quartz-carbonate seams at 50-60° to CA.
	82.00-88.00	-	-	Chloritic stockwork (not as strong as up the hole).
	88.00-107.00	-	-	Rare thin pale green fracture filling.

Hole Number 96-30

			Au PP	В
	108.45-109.91	-	-	Pervasive calcite alteration in part bleached pale green.
	107.00-112.00	-	~	
	112.00-149.80	-	-	Rare carbonate-silicate fracture filling.
·	145.60-145.80	-	-	
	148.60-149.80	-	-	Minor dark green chloritic stockwork.
	149.15-149.50	-		1.0 cm fine grained pale yellow epidote bands parallel slips at 10° to CA.
88398	149.60-149.98	0.34	12	Py to 0.2X3.0 cm healed chloritic fracture.

148.80 162.15 BASALT, FINE GRAINED.

Medium green, aphanitic-very fine grained with short medium grained sections. Moderately magnetic. Moderately hard to hard.

ALTERATION AND MINERALIZATION.

149.80-161.10 Numerous hairline epidote fracture fillings to 1 mm at 50° to CA at 2.0-6.0 cm centres (average 0.2-6.0 cm). Average fracture spacing <1.0 cm, locally 6.0 cm.

88399 161.00-162.00 1.00 2 161.10-162.15 Pervasive calcite-chlorite alteration and pale green bleaching centred on contact vein at 162.15 m.
88400 162.00-162.24 0.24 108 162.15 4.0 cm quartz-carbonate vein with slip walls at 75° to CA. 1.0 cm calcite chlorite vein with minor Cpy along one side.

Hole Number 96-30

.

162.15 199.50 MASSIVE MEDIUM GRAINED BASALT

Medium green, medium grained, uniform and massive flow. No flow contacts recognized. Moderately hard to hard and moderately magnetic.

ALTERATION AND MINERALIZATION.

Weakly developed yellowish epidote fracture filling., 3551 162.24-163.20 0.96 5 162.15-163.10 Pervasive calcite alteration. Bleached with numerous 0.1 - 0.5CTT calcite stringers at 15, 45 and 70° to CA. 167.00-183.30 Late loose open fractures at 10-35° to CA. -167.30-169.00 Strongly fractured. -171.30-172.00 Strongly fractured at 15° to CA with chloritic slips --(calcite on some slips). Strongly fractured with chloritic slips at 20-30° to 172.50-173.40 CA. 174.90-175.12 0.22 3552 7 175.00 1% Cpy and 5% epidote in 1 cm quartz vein. Strong chloritic slip wall. 174.00-176.00 Patchy epidotization. 176.00-177.25 Non-magnetic moderately strong pervasive yellow-green epidotization without calcite. 3553 178.24-178.78 0.54 178.40-178.60 Minor dark grey, coarse quartz 2 alteration with minor associated calcite and epidote. Wall rock also epidotized. 178.40-188.05 Trace coarse anhedral Pv. 3554 188.11-189.50 1.39 9 188.05-193.00 0.1-0.5% fine disseminated Py to 0.5 mm. 189.50-191.02 1.52 3555 7

Hole Number 96-30

Au PPB 3556 191.02-192.02 1.00 Disseminated Py. 9 3557 192.02-193.00 0.98 5 Disseminated Py. 3558 193.00-194.00 1.00 3 193.00-199.50 Trace 0.5-1.5 mm disseminated Py. 193.20 Minor Cpy and epidote along chloritic slip at 20° to CA. 193.51-193.65 Minor Cpy in weak epidote alteration bands. 3559 195.55-196.57 1.02 Minor Cpy. 5

199.50

END OF HOLE

Driller reported 201.00 as the end of the hole. The core was logged relative to the tag at 189.00 m.

Assay Summary 96-30

	20.00			
Sample No	. From To	Length	Au PPB	
88374	24.67-25.15	0.48	10	
88375	29.50-29.80	0.30	14	
· 88376	41.20-42.09	0.89	9	
88377	42.09-43.12	1.03	17	
88378	43.12-44.50	1.38	37.5 (Av.)
88379	44.50-46.00	1.50	19	
88380	46.00-47.50	1.50	24	
88381	47.50-48.57	1.07	10	
88382	48.57-49.00	0.43	14	
88383	49.00-50.50	1.50	8 (Av.))
88384	50.50-51.50	1.00	12	
88385	63.80-64.87	1.07	2	
88386	64.87-66.63	1.76	27	
88387	66.63-68.10	1.47	17	
88388	68.10-69.63	1.53	9	
88389	69.63-71.10	1.47	9	
88390	71.10-71.90	0.80	8.5 (Av.))
88391	71.90-73.00	1.10	12	
88392	73.00-74.50	1.50	5	
88393	74.50-76.00	1.50	15	
88394	76.00-77.00	1.00	2	
	77.00-77.81	0.81	nil	
88396	77.81-79.80	1.99	9	
88397	79.80-80.48	0.68	7	
88398	149.60-149.98	0.34	12	
88399	161.00-162.00	1.00	2	

Assay Summary (cont'd) 96-30

Sample No.	From	То	Length	Au PPB
88400	162.00-1	62.24	0.24	108
3551	162.24-1	163.20	0.96	5
3552	174.90-1	175.12	0.22	7
3553	178.24-1	78.78	0.54	2
3554	188.11-1	89.50	1.39	9
3555	189.50-1	.91.02	1.52	
3556	191.02-1	.92.02	1.00	9
3557	192.02-1	93.00	0.98	5
3558	193.00-1	94.00	1.00	3
3559	195.55-1	96.57	1.02	5

,

199.50

END OF HOLE

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hole 96-31Property: McGarry TownshipCore Size: NQCasing: PulledCoordinates: 13+24N, 20+35EDepth: 107.00 mAzimuth: 352°Dip: -46°Start Date: November 12, 1996Finish Date: November 13, 1996Drilled By: Kosy Diamond Drilling. Logged By: Douglas RobinsonAll Measurements in Meters

Meterage

From To Description 0.00 3.50 OVERBURDEN

3.50 40.00 DIORITE, MAGNETIC COARSE GRAINED
Varied textured diorite defined by variation in grain size. Generally coarse grained crystalline with feldspar laths to 3 mm long with dark green mafic intergranular mafic minerals. 5% 0.5-2 mm magnetite grains. Unit is dark green, moderately hard-hard and strongly magnetic with non-magnetic sections as noted below.
14.17-14.70 Non-magnetic, non altered phase at 45° to CA. 1-2 mm equant pale green-white feldspar grains in dark green mafic groundmass. Slightly irregular frozen contacts.
18.55-18.63 3.5 cm medium grey, medium grained crystalline aplite.

Hole Number 96-31

Nouplas Holmon Feb 15, 1997

Very weakly carbonated by calcite. 19.10-20.36 Mafic Dike at 60° to CA Dark green, fine grained, uniform and massive. Moderately hard. Not carbonated. Sharp natural chilled and frozen contacts. At 19.15 5 cm xenolith of diorite host rock. 22.90-23.00 Fine grained magnetic diorite phase with gradational upper and lower contacts. 23.00-28.10 Non-magnetic phase similar to 14.17-14.70. 30% 2-3 mm pale green-white equant feldspar grains in mafic groundmass. Not altered. Gradational upper and lower contacts. 28.10-38.05 generally coarse grained magnetic with considerable variation in grain size and texture. 45° to CA. 38.05-38.08 3 cm coarse grained mafic band without feldspar. Soft. 45° to CA. 38.08-40.00 Medium grained aplite.

Silicified? Uniform, massive and very hard. Lower contact epidotized at 70° to CA.

ALTERATION & MINERALIZATION

Locally minor epidote alteration patches to 5 cm.

3769	11.00-11.57	0.57	3	Barren rock.
3560	11.57-12.00	0.43	5760	11.65 0.8 cm chlorite band and slip at 30° to CA.
				11.65-11.90 core is 5% Py as fracture fillings to 0.3 cm
				at 15-30° to CA. Average of 2.
3770	12.00-12.77	0.77	52	Barren rock. Average of two.
	14.71	-	-	0.8X2.0 cm patch epidote alteration with 5% Cpy.

Hole Number 96-31

. .

			Au PI	PB
	15.70-16.50			Feldspars coloured pale red by hematization.
3561	18.53-18.95	0.42	27	from 18.63-18.79 10 cm quartz vein at 30° to CA and parallel to aplite above.
• *				5% chloritic inclusions, 10% Py over 1 cm in wall rock along both edges of vein. Vein has frozen walls.
				Centre of vein broken by calcite chlorite slip parallel vein walls.
3562	20.78-21.26	0.48	427	Py.
3767	21.26-22.00	0.74	7	Barren rock.
3563	22.00-22.25	0.25	40706	<pre>From 22.09-22.16 fine grained zone at 70° to CA. Very hard, silicified and weakly epidotized. 1 cm pyritic carbonate alteration of wall rock at both edges. Epidote alteration extends 3 cm beyond zone. At 22.09 1X2 cm of calcite alteration is 25% Cpy. At 22.16 minor Cpy along contact. Average of 4.</pre>
3768	22.25-23.00	0.75	9	Barren rock.
	29.00-40.00	-	-	Weak pervasive Fe-carbonate alteration indicated by blue stain from potassium ferri cyanide (KFC).
	33.33-33.39		-	Epidote alteration filling 2.5 cm fracture at 45° to CA.
	34.00	-	-	0.5 cm calcite fracture filling with epidote to 4 cm into wall rock. 20° to CA.

40.00 99.03 DIORITE, NON-MAGNETIC COARSE GRAINED EQUANT Medium green, 30% 2-3 mm greenish white equant feldspar grains in

Hole Number 96-31

dark green mafic groundmass.

Moderately hard to hard, generally unaltered.

Numerous aplite and magnetic sections.

Magnetic sections similar to 3.50-40.00 m.

42.7-43.10 Fine grained magnetic phase with gradational contacts at 45° to CA.

44.81-44.95 Magnetic section.

45.80-46.70 Magnetic, medium grey phase with xenolith of unaltered non-magnetic diorite host.

52.30-53.55 Magnetic diorite phase.

53.25-53.55 Fine grained magnetic aplite.

56.90-57.70 Fine grained magnetic section with gradational contacts.

58.05-58.70 Magnetic coarse grained phase with 3 cm pegmatitic pods.

Tag 71 should read 68.00 m. Three metres were subtracted from subsequent tags.

- 72.00-72.40 Magnetic phase.
- 73.00-73.20 Magnetic phase.

74.65-75.00 Magnetic phase. Varied textured.

- 77.30-77.40 Magnetic phase.
- 78.80-79.10 Magnetic phase.

88.00-88.60 Magnetic phase.

Varied textured with contacts at 75 and 50° to CA.

88.90-89.00 Magnetic phase.

91.15-91.30 Magnetic phase.

92.25-93.00 Magnetic phase.

Hole Number 96-31

94.33-94.82 Magnetic phase. 95.10-98.07 Magnetic phase.

ALTERATION AND MINERALIZATION.

	Weak Fe-car	bonate a	alterati	on of mafic minerals only.
	Samples from	n 93.00-1	105.00 m	n. measured relative to tag at 98 m.
	41.80-45.00	-	-	Patchy epidote alteration.
	43.48-43.74	-	-	Moderate epidote alteration with minor hematization.
3564	47.95-49.00	1.05	58	Prominent epidote alteration along healed fractures. 48.12 1 cm calcite epidote with strong loose slip wall.
				48.48-48.55 irregular fine grained grey calcite fracture filling.
3565	49.00-49.53	0.53	4080	48.90-49.80 white calcite-epidote fracture filling. 49.30-49.53 3% Py to 3 mm in calcite fracture filling.
3880	49.53-50.13	0.60	15	Rusty fracturing at 0° to CA.
3881	50.13-51.14	1.01	7	Barren.
	54.80-54.95	-	-	Intense pervasive yellow-green epidote alteration
	FD 00			along strong slips.
	59.80	-	-	4 cm fine grained epidote vein at 40° to CA.
	61.80-62.23	-	~	pervasive epidote alteration.
443	63.00-64.10	1.10	14	
3566	64.10-64.57	0.47	1577	64.20-64.35 5% Py patches to 1 cm centred on hairline epidote seams.
3567	64.57-65.00	0.43	1474	64.75 1.5 cm quartz vein with 3% Cpy & 3% Py. Vein at 25° to CA. Average of two.

Hole Number 96-31

3568	65.00-65.77	0.77	65	Barren wall rock.
3569	69.18-70.47	1.29	168	69.40 minor Cpy in 0.3X3 cm Py patch.
3570	70.47-71.71	1.24	670	70.38-71.22 2% Py as fine grained patches to 1X2 cm
				along fracture at 0° to CA. Minor grey quartz
				alteration patches.
				71.60-71.67 0.3 cm thick Py band at 0° to CA, in and
				out same side of core.
3882	77.00-77.84	0.84	105	4 mm calcite vein with Py along both edges.
3571	77.84-79.16	1.32	1563	77.98 0.2X1.5 cm Py mass with 20% Cpy.
				78.10 1 cm quartz vein along epidote slip at 15° to
				CA.
				78.10-79.05 epidote seams at 0-10° to CA. 0.5% Py
3883	79.16-80.15	0.99	6	Barren. Average of two.
3572	80.15-80.50	0.35	84	Cpy & Py in thin epidote seam.
3573	82.00-82.94	0.94	9	Barren wall rock.
3574	82.94-83.40	0.46	216	Silicified? and chloritic. Moderately hard, medium
				grey and igneous texture destroyed. Trace very fine
				grained Py in minor quartz seams at 35° to CA.
3575	83.40-84.25	0.85	74	83.40-84.20 Chlorite epidote alteration banding at
				50° to CA. Moderately soft-moderately hard.
				83.40-83.43 open vuggy water seam.
				84.20 minor Cpy beside chloritic band.
3576	92.70-93.27	0.57	5	Barren wall rock.
3577	93.27-93.76	0.49	235	93.27-95.68 Scattered fine to coarse grained Py.
5577	93.27-93.10	0.49	200	$93.03-95.00$ 0.1% Cpy in chloritic fractures at $0-10^{\circ}$
				to CA
3578	93.76-95.07	1.31	1097	See sample 3577.
5570	93.10-93.01	1.01	1091	Jee sampte JJ//.

Au PPB

5

36

93.74-93.77 5% coarse grained Py near a quartz chlorite seam at 40 ° to CA.

357995.07-95.350.2819035% Py in epidote alteration. Average of two.358095.35-96.000.6554995.46 3 mm speck Cpy.358196.00-97.001.00234Wall rock. Average of two.

3582 97.00-98.00 1.00

1.03

98.00-99.03

98.08-99.03 Pale grey bleached alteration stained blue by KFC.

98.08-0.8, 98.17-0.2, 98.23-0.4 and 98.32-0.3 cm quartz calcite stringer set at 75° at CA. Stringers stained mauve by KFC.

99.03 100.04 DEFORMATION ZONE

3583

Pervasive variable banding averaging 70° to CA. Banding is locally contorted.

Zone appears to be 50% yellow sericite and Fe-carbonate stained blue by KFC and 50% fine grained calcite-quartz intergrowth as 0.5-1.0 cm massive grey bands stained mauve by KFC.

ALTERATION AND	MINERALIZATION			
	See descriptio			
3584	99.03-100.10	1.07	43	Trace very fine grained Py.
100.04 107.00	DIORITE, MEDIU	M GRAINED		
	Medium green,	0.5-1.0 cr	ysta	lline, uniform and massive.
	3% 4 mm soft,	dark green	chl	oritic masses. Moderately hard.
ALTERATION AND	MINERALIZATION			
	100.04-102.27	-	-	Pervasive moderately soft pale grey bleaching. Primary texture vague where preserved. Stained mauve by KFC.
				Minor calcite stringers to 0.5 cm at 60° to CA.
3585	100.10-100.90	0.80	5	See above. 100.04-101.49 trace fine-medium grained Py.
3586	100.90-101.49	0.59	9	See above and 3585.
3587	101.49-102.48	0.99	2	2% fine grained Py.
3588	102.48-103.46	0.98	4	102.27-107.00 Trace medium-coarse grained Py. Average of two.

107.00 END OF HOLE

Hole Number 96-31

8

• .

Assay Summary 96-31

Sample No.	From To	Length	Au PPB	
3769	11.00-11.57	0.57	3	
3560	11.57-12.00	0.43	5760 (Av.)	
3770	12.00-12.77	0.77	52 (Av.)	
3561	18.53-18.95	0.42	27	
3562	20.78-21.26	0.48	427	
3767	21.26-22.00	0.74	7	
3563	22.00-22.25	0.25	40706 (Av.)	
3768	22.25-23.00	0.75	9	
3564	47.95-49.00	1.05	58	
3565	49.00-49.53	0.53	4080	
3880	49.53-50.13	0.60	15	
3881	50.13-51.14	1.01	7	
443	63.00-64.10	1.10	14	
3566	64.10-64.57	0.47	1577	
3567	64.57-65.00	0.43	1440 (Av.)	
3568	65.00-65.77	0.77	65	

Assay Summary (cont'd.) 96-31

Sample No.	From To	Length	Au PPB
3569	69.18-70.47	1.29	168
3570	70.47-71.71	1.24	670
3882	77.00-77.84	0.84	105
3571	77.84-79.16	1.32	1563
3883	79.16-80.15	0.99	6 (Av.)
3572	80.15-80.50	0.35	84
3573	82.00-82.94	0.94	9
3574	82.94-83.40	0.46	216
3575	83.40-84.25	0.85	72 (Av.)
3576	92.70-93.27	0.57	5
3577	93.27-93.76	0.49	235
3578	93.76-95.07	1.31	1097
3579	95.07-95.35	0.28	1903 (Av.)
3580	95.35-96.00	0.65	549
3581	96.00-97.00	1.00	234 (Av.)
3582	97.00-98.00	1.00	5
3583	98.00-99.03	1.03	36
3584	99.03-100.10	1.07	43
3585	100.10-100.90	0.80	5
3586	100.90-101.49	0.59	9
3587	101.49-102.48	0.99	2
3588	102.48-103.46	5 0.98	4 (Av.)

107.00 End of Hole

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hole 96-32 Property: McGarry Township

Core Size: NQ Casing: Pulled

Coordinates: 14+96N, 22+10E

Depth: 123 m

Azimuth: 352° Drilled By: Kosy Diamond Drilling

Dip: -60° Logged By: Douglas Robinson

Start Date: October 30, 1996

Finish Date: November 01, 1996

All Measurements in Meters

Meterage From To Description 0.00 5.50 OVERBURDEN

5.50 35.25 PILLOWED BASALT

Medium grey to dark green, aphanitic to very fine grained. Prominent pillow selvages throughout. Magnetic except as noted below. Moderately hard. Sharp natural lower contact at 20° to CA.

ALTERATION AND MINERALIZATION.

Very weak Fe-carbonate alteration stained blue by Potassium ferri cyanide (KFC) .

Locally prominent epidote alteration concentrated on pillow selvages above 18.00. Below 18.00 minor epidote alteration in pillow selvages and occasional fractures.

5.65-6.15 - Very hard epidote alteration.
6.00 - 4.0 cm cherty grey quartz at 40° to CA.
- 7.50 Locally trace cubic Py concentrated within 1.5

Dauglas Robinson March 1997

Hole No. 96-32

			Au PPB	cm of pillow selvages.
3589	12.52-14.00	1.48	720	13.67 Trace Cpy in pillow selvage.
				13.84 Trace Cpy in pillow selvage.
446	14.00-15.00	1.00	62	
147	15.00-15.98	0.98	5429	Average of three.
3590	15.98-17.13	1.15	1006	16.16 Trace Cpy in pillow selvage.
				17.04 1.0X3.0 calcite with 5% Py 5% Cpy in epidotized pillow selvage.
448	17.13-18.08	0.85	39	17.67 3% Py over 1.0 cm in calcite-chlorite band
	21.60-21.75	-	-	Non-magnetic. Minor calcite in healed hairline fractures.
3591	23.14-24.00	0.86	247	23.32-23.81 Non-magnetic. Strongly chloritic; dark green and soft
				with numerous calcite stringers to 0.3 cm. No visible mineralization.
				23.44 2.0 cm fine grained white calcite vein along strong chloritic slip at 20° to CA. 5% chloritic wall rock inclusions.
	24.46-25.11	-	~	Non-magnetic moderate pervasive pale green epidote alteration.
	25.11-26.10	-		weakly magnetic.
	25.23-26.60	-	-	0.5-1.5 cm white calcite vein at 00-05° to CA. Stained mauve by KFC.
	28.00-28.84	-	_	Non-magnetic.
	30.32	-	-	2 mm patch Cpy in epidote alteration.
	31.10-31.56	-	-	Moderate epidote alteration with minor Py.

Hole No. 96-32

.-

2

..

35.25 40.98 FELDSPAR PORPHYRY DIKE

• •

2% 2-4 mm white feldspar phenocrysts and 20% 0.5-1 mm white feldspar phenocrysts in a dark green groundmass. Very hard and non-magnetic. Minor mafic xenoliths to 1.0 cm. Minor red hematization to 1 mm along healed fractures.

36.25 Irregular contact at 10° to CA gradational over 0.5 cm.

ALTERATION AND MINERALIZATION.

	36.75-39.60		Alteration zone as described below.
	36.75-37.22		Pale grey silicification. Only
			larger vague phenocrysts
			preserved. Moderately hard and
			very weakly magnetic. weakly
			stained mauve by KFC.
3592	37.00-38.39	1.39 2127	.5 Average of two.
			37.38-37.75 Carbonate alteration; soft to moderately
			soft, massive and textureless. Primary
			texture destroyed.
			37.38 3.0 cm porous water seam parallel
			silicification at 37.75.
			37.60 2.0 cm porous water seam at 55° to CA.
			37.75 4.0 cm porous water seam at 60° to CA.
			37.75-37.93 Moderately soft yellow-green sericite
			alteration with 2-4 mm very soft yellow
			green altered phenocrysts.
			37.93-38.22 Silicification similar to 36.75-37.22.

Au PPB

 3593
 38.39-39.49
 1.10
 53
 38.22-38.53 Silicification similar to 36.75-37.22

 along healed fractures.
 38.53-38.60 Silicification similar to 35.75-37.22

 38.60-39.00 Sericitic alteration similar to 37.75-37.93.

 39.00-39.60 Silicification along healed fractures

 similar to 38.22-38.53.

39.35 Trace fine grained Py.

40.98 42.90 BASALT

Possible mafic xenolith.

Medium green, moderately hard, prominent insitu breccia cemented by dark green silicates. Weakly magnetic.

This unit is fractured by late pale green epidote seams at 45° to CA.

42.15-42.90 Feldspar porphyry along edge of core. Epidote seams cut both basalt and porphyry.

42.90 54.98 FELDSPAR PORPHYRY DIKE Similar to 35.25-40.98. Not hematized. phenocrysts generally absent in lower 2.0 cm of dike. Sharp natural lower contact at 30° to CA.

ALTERATION AND MINERALIZATION.

3594 42.95-43.20 0.25 14 Patchy pale grey silicification along fractures similar to 36.75-37.22.

Hole No. 96-32

43.22-43.56 Prominent Cpy and Py band to 3 mm in 3595 43.20-43.87 0.67 2809 chloritic slip at 00-05° to CA. Mineralization appears to be associated with vein at 44.44. Average of two. 43.72 Trace medium grained Py in healed fractures. 43.87-44.33 0.46 Bleached. 3596 51 43.33-44.64 3597 0.31 44.33-44.69 Intense soft medium yellow-green sericitic 15 centred on carbonate vein. 44.44-44.52 8.0 cm calcite vein at 70° to CA. 10% opaque white quartz and 5% thin dark green chloritic inclusions parallel contacts. Slip wall at 44.52. Stained mauve by KFC. 44.60-45.34 Patch of pale grey alteration along 3598 44.64-45.46 0.82 67 healed fractures. Very hard. Silicified? 46.02 1.0 cm yellow sericitic alteration and 15.0 cm 3599 45.81-46.20 0.39 36 grey bleaching along 0.5 cm white calcite vein.

54.98 77.00 PILLOWED BASALT Medium green and aphanitic-very fine grained with prominent pillow selvages throughout. Magnetic.

ALTERATION AND MINERALIZATION.

54.98-71.40 - - Locally prominent epidote alteration of pillow

Hole No. 96-32

		A	u PPB	selvages and along minor healed fractures.
3601	55.90-56.71	0.81	4706	55.93 Trace Cpy. Average of three.
0001	00 . .0 00.01	9 • V 1	-2700	56.07 3% Cpy and 10% Py over 1.0 cm in chloritic
				bands.
				56.66 2% Cpy and 5% Py over 1.0 cm in chloritic
				band.
3602	58.35-59.85	0.50	77	58.42-58.70 0.5% Cpy and 1% Py in weak epidote alteration.
				59.00 1.0 cm white calcite vein at 30° to CA stained mauve
				by KFC. Average of two.
3603	60.00-60.70	0.70	187	60.32 1.5-6.0 cm patch of white calcite with 5% coarse
				grained Py.
				60.43 2.5 cm fine grained grey to white calcite vein at 50 $^\circ$
				to CA. Trace fine grained Fy and 0.5X5 mm
				bladed hematite crystals.
3604	60.70-61.80	1.10	75	61.51 Minor Fine grained Py.
				61.82 Minor Py and Po in 0.5 cm chlorite band.
				61.86-63.29 Scattered Py and Cpy along pale green healed
				fractures and pale grey patches to 0.5 cm.
				(0.1%Cpy and 0.3% Py overall)
3605	61.80-62.85	1.05	195	62.00 2.0 cm coarse white calcite vein with 1% Py
				associated with vein at 64.45.
3606	62.85-63.82	0.97	26	Ру, Сру.
3607	63.82-64.28	0.46	1538	63.55-66.14 Non-magnetic, dark green to pale grey
				moderately soft pervasive calcite alteration
				stained mauve by KFC. Numerous dark green
				chloritic fracture fillings at 50° to $C\Lambda$
				rotated 90° counter clockwise relative to
				numerous 0.2-0.5 cm calcite stringers

				(stained mauve by EFC) at 55° to CA and
			Au PPB	parallel vein at 64.59.
3608	64.28-64.93	0.65	2872	64.45-64.50 4.0 cm quartz Fe-carbonate vein at 55° to CA
				with thin dark green chlorite bands
				separating translucent white quarts bands
				from opaque white Fe-carbonate bands (crack
				and seal vein). Average of two.
				64.59-64.69 Crack and seal opaque white Fe-carbonate vein
				at 40° to CA with numerous thin chlorite
				bands. Stained dark blue by KFC.
				64.69-64.82 5% fine grained pyrite in healed chlorite
				fracture filling perpendicular to vein wall
				above.
3609	64.93-65.50	0.57	7	Calcite-chlorite alteration.
				64.98 1.5 cm calcite Fe-carbonate vein at 70° to CA.
				Stained mauve and blue by KFC.
3610	65.50-66.00	0.50	1090	Calcite-chlorite alteration + Cpy.
				65.54 1.0 cm fine grained massive Py with 10% in calcite-
				chlorite alteration patch.
				65.78 5.0 cm chlorite patch with 50% Py and 15% Cpy
3611	66.00-67.20	1.20	nil	Chlorite alteration + Py.
				65.54-68.40 Locally minor fine grained pyrite patches to
				0.5 cm in chloritic seams.
				Note! Mineralization from 61.86-68.40 associated with vein
				at 64.59.
3612	67.20-68.67	1.47	5	
	68.79	-	~	1.0 cm caldite-epidote vein at 50° to CA.
				Numerous epidote splays at 20° to CA.
Uole Ne				

Hole No. 96-32

			Au PPB	Stained mauve by KFC.
	69.10	-	-	1.0 cm calcite epidote vein stained mauve by KFC.
3613	71.47-72.18	0.71	80.5	71.50-73.00 Massive fine grained flow with trace coarse grained Py. Average of two.
3614	72.18-73.12	0.94	367	72.20-73.02 Minor Cpy in scattered 0.5 cm Py masses and in pillow selvages.
				73.00-77.00 Epidote alteration of pillow selvages and along pale green fracture fillings.
3615	73.12-74.28	1.16	19	
3616	74.28-75.14	0.86	705	Minor Cpy and Py in chlorite-epidote pillow selvages.
3617	75.14-76.00	0.86	74.5	Main Zone. Average of two.
				75.00-75.96 Non-magnetic, 1% medium grained Py in pervasive calcite alteration stained purple by KFC.
				75.23-75.96 Soft strongly chloritic pale grey to dark green zone is focus of alteration.
				75.40 White calcite veining to 1.0 cm at 90 & 70° to CA is stained mauve by KFC.
				75.55 1.0 cm white calcite vein at 70° to CA stained mauve by KFC.
				75.60 2X0.5 cm white calcite vein at 60° to CA stained mauve by KFC.
3618	76.00-77.20	1.20	201	76.88 Minor Cpy in epidote alteration band.

77.00 93.00 MASSIVE BASALT

Hole No. 96-32

.'

. 8

Medium green, fine grained, uniform and massive with occasional pillow selvages. Magnetic

ALTERATION AND MINERALIZATION.

. •	Very little a	ilteration	or frac	turing.
3619	77.20-78.00	0.80	10 Ba	arren wall rock.
3620	84.00-84.97	0.97	57 P	y on split surface only.
			8	3.98-86.02 Non-magnetic soft chloritic alteration. Grey
			ne	ear vein. Stained mauve by KFC.
3621	84.97-85.74	0.77	183 83	5.25 85.42 50% sheeted, opaque, off white fe-carbonate and
				quartz veins with 50% intensely silicified
				wall rock. All of structure easily stained
				dark blue by KFC.
			8.	5.42-85.83 Sheeted calcite stringers to 0.3 cm at 80° to
				CA.
3622	85.74-87.00	1.26	793.5 8	6.60-87.00 1% py cubes to 3 mm in massive basalt.
				1% fine grained Py masses to 1.0 cm in
				epidotized pillow selvages. Average of two.
	88.10-93.00	-	– Lo	ocally 1-3 mm pyrite cubes in massive basalt.

93.00 100.80 PILLOWED BASALT

Medium green, aphanitic to very fine grained and moderately hard. Prominent pillow selvages with fine grained pyrite masses to 0.5 cm and 2-4 cm pyrite cubes. Weakly stained mauve by KFC but does not react to 10% HCl.

ALTERATION AND MINERALIZATION.

Hole No. 96-32

			Au PP	В
3650	94.27-95.22	0.95	50	94.40-95.16 3% fine grained Py & 5% very fine grained
				black magnetite in pillow selvage.
3623	95.22-96.00	0.78	33	95.83 1.5 cm fine grained white calcite vein with 15%
				quartz. Stained mauve by REC.
	96.30-96.46		-	1% Py and 5 % magnetite in pillow selvage.
	97.55	-	-	2X3 mm patch Cpy near pillow selvage.
	100.62-100.74	-	-	5% Py cubes and 5% very fine grained magnetite.

100.80 123.00 FINE GRAINED MASSIVE BASALT

Medium green, fine grained uniform and massive. Magnetic.

ALTERATION AND MINERALIZATION.

Weakly stained blue by KFC. A few scattered thin quartzepidote(?) fracture filling.

	3624	100.50-101.44	0.94	77	100.62-100.74 5% Py cubes to 1.0 Cm and 5% very fine
					grained magnetite.
	3625	101.44-102.30	0.86	187	101.50 Trace Cpy in calcite chlorite patch (vesicle).
					102.25 Cpy in calcite-chlorite patch (vesicle).
		113.00-119.00	-	-	Rare Py grains.
		115.50-120.00	-	-	1% 0.5 mm black grains.
123.00		END OF HOLE			

Hole No. 96-32

Assay Summary 96-32

Sample No	. From To	Length	Au PP	В
3589	12.52-14.00	1.48	720	_
446	14.00-15.00	1.00	62	
447	15.00-15.98	0.98	5429	(Av.)
3590	15.98-17.13	1.15	1006	
448	17.13-18.08	0.85	39	
3591	23.14-24.00	0.86	247	
3592	37.00-38.39	1.39	2127.	5 (Av.)
3593	38.39-39.49	1.10	53	
3594	42.95-43.20	0.25	14	
3595	43.20-43.87	0.67	2809	(Av.)
3596	43.87-44.33	0.46	51	
3597	44.33-44.64	0.31	15	
3598	44.64-45.46	0.82	67	
3599	45.81-46.20	0.39	36	
3601	55.90-56.71	0.81	4706	(Av.)
3602	58.35-59.85	0.50	77	(Av.)
3603	60.00-60.70	0.70	187	
3604	60.70-61.80	1.10	75	
3605	61.80-62.85	1.05	195	
3606	62.85-63.82	0.97	26	
3607	63.82-64.28	0.46	1538	
3608	64.28-64.93	0.65	2872	(Av.)
3609	64.93-65.50	0.57	7	
3610	65.50-66.00	0.50	1090	
3611	66.00-67.20	1.20	nil	

Hole Number 96-32

Assay Summary (cont'd.) 96-32

Sample No.	From To	Length	Au PPB	
3612	67.20-68.67	1.47	5	
3613	71.47-72.18	0.71	80.5	(Av.)
3614	72.18-73.12	0.94	367	
3615	73.12-74.28	1.16	19	
3616	74.28-75.14	0.86	705	
3617	75.14-76.00	0.86	74.5	(Av.)
3618	76.00-77.20	1.20	201	
3619	77.20-78.00	0.80	10	
3620	84.00-84.97	0.97	57	
3621	84.97-85.74	0.77	183	
3622	85.74-87.00	1.26	793.5	(Av.)
3650	94.27-95.22	0.95	50	
3623	95.22-96.00	0.78	33	
3624	100.50-101.44	4 0.94	77	
3625	101.44-102.30	0.86	187	

123.00 END OF HOLE

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hale 96-33 Property: McGarry Township Care Size: NQ Casing: Caordinates: 13+30N, 20+85E Depth: 130.00 m Azimuth: 352° Dip: -44° Start Date: November 13, 1996 Finish Date: November 15, 1996 Drilled By: Kosy Diamond Drilling. Logged By: Douglas Robinson. All Measurements in Meters

Meterage From To Description 0.00 5.50 OVERBURDEN.

5.50 46.83 DIORITE, COARSE GRAINED MAGNETIC. with Medium grained salt and pepper texture plagioclase:augite?=50:50. Generally coarse grained but not as coarse as in hole 91-31. 0.5X1.5 to 1.0X3.0 mm intergrown plagioclase and augite(?) grains Variation Altrain Feb 15, 1997 The black augite is more elongate than plagioclase. Moderately hard and strongly magnetic. 20.50-21.85 Non-magnetic equigranular diorite phase of 40% pale green plagioclase in dark green groundmass. 38.24-38.84 similar to 20.50-21.85.

ALTERATION AND MINERALIZATION.

Pervasive weak epidote alteration of groundmass and locally moderate epidote

alteration along slips. Above 22.00 core is very weakly stained blue by Potassium Ferri Cyanide solution (KFC) when pre-etched by 10% HCl. Below 22.00 core is stained pale mauve by KFC before and after pre-etching by 10% HC1. 19.95-20.00 Fault at 60° to CA as pitted rock chips averaging 0.5 -CM. 21.68-21.85 Strong epidote alteration along slip at 50° to CA. ----22.42-24.44 Moderate to strong pervasive epidote alteration centred at 0.5 cm quartz vein at 24.35. Monmagnetic due to alteration. 24.35 0.3 cm flakey rusty gouge along 0.5 cm quartz vein. 32.88-34.07 Non-magnetic moderate pervasive epidote alteration of feldspar. Augite preserved. 33.29-33.75 3 cm quartz calcite vein along core at 0° to CA. Vein has tight walls. 33.46-33.70 0-1 cm quartz with 1% Py along healed chloritic fracture. 36.63-38.76 Intense epidote alteration centred on strong slip at 60 to CA. Minor hematite in fractures. 38.84-46.83 Weakly altered. Crystalline texture vaque. Moderately hard.

46.83 48.90 DIORITE, EQUIGRANULAR, NON-MAGNETIC. Non-magnetic to weakly magnetic equigranular diorite phase of 40% pale green plagioclase in dark green groundmass similar to 20.50-21.85.

Hole Number 96-33

Medium green with salt and pepper texture as plagioclase:Augite = 50:50.

- 48.90 49.45 DIORITE, MAGNETIC COARSE GRAINED. Magnetic diorite similar to 38.84-46.83. Magnetic. Weakly altered.
- 49.45 50.89 DIORITE, FINE GRAINED. Dark green moderately soft to soft, fine grained crystalline texture.

ALTERATION AND MINERALIZATION.

Chloritic alteration throughout.

- 3740 49.45-50.00 0.55 5 Chloritic alteration.
- 3741 50.00-50.89 0.89 10 18.0 cm coarse grained calcite vein with minor medium grained Py along chloritic fragments. Vein is 15% very soft dark green fragments. Some crushing (grain reduction) of calcite cleavages to 3 cm. From 50.20-50.89 0.5% Py along minor calcite fracture fillings.

50.89 99.50 TRANSITIONAL DIORITE. MEDIUM GRAINED. Medium grained with texture intermediate between coarse magnetic and coarse non-magnetic equigranular diorite. This unit is finer grained than magnetic and non-magnetic phases of holes 96-16 and 96-31. Lower contact is indistinct as a sudden decrease in grain size at 35° to CA.

Hole Number 96-33

50.27-51.90 Strongly magnetic.

51.90-52.20 Non-magnetic alteration.

52.20-52.60 Moderately magnetic.

52.60-53.06 Non-magnetic alteration.

53.06-58.43 Magnetic.

58.66-73.10 Magnetic.

73.10-99.50 Non-magnetic.

ALTERATION AND MINERALIZATION.

Prior to 71.00 stained mauve by KFC.

From 71.00-72.50, 74.40-76.00 and 76.35-78.60 stained prominent blue by KFC.

72.50-74.40 and 76.00-76.35 stained mauve by KFC.

below 82.00 stained pale blue by KFC where pretreated by 10% HC1.

- 50.27-63.00 - Weak pervasive epidotization of feldspars. Magnetic, except as noted.
- 51.90-52.20 - Moderate to intense epidote alteration centred on minor quartz calcite veining at 55° to CA. Nonmagnetic.
- 52.60-53.06 - Strong epidote alteration with minor Py and trace Cpy at 80 to CA.
- 55.94-56.08 - 2% Py in weak chloritic alteration and along chloritic fracture filling.
- 58.43-58.66 - Strong pervasive epidote alteration and minor calcite veining at 55° to CA.
- 61.00-82.10 - Minor 0.1-0.3 cm white calcite stringers spaced at 5-20 cm.

50°-70° is dominant and 05° evident.

3742 62.78-63.77 0.99 15 Barren.

Hole Number 96-33

			Au PPB	
3743	63.77-64.08	0.31	38	From 63.78-63.99 chloritic alteration with 2% wispy
				Cpy and 3% Py centred on 4 cm quartz vein with 3%
				Cpy and 5% black specular hematite (55° to CA).
				Also 1 cm white calcite vein with minor Cpy.
3744	64.14-65.14	1.06	35	Minor hematite & Py. Average of two.
	64.50-65.00	-	-	Minor disseminated Py.
	64.81	-	-	0.2-4 mm specular hematite seam.
	68.04-68.48	-	-	Moderate to strong epidote alteration centred on
				minor calcite fracture filling at 50° to CA. Non-
				magnetic.
	69.27-69.78	-	-	Strong epidote alteration centred on several banded
				carbonate stringers.
				Minor red hematite and Py in calcite stringers.
	69.78-73.80	-	-	Moderately soft chloritic alteration of mafic
				minerals.
	70.48-70.75	-	-	0.5-2.5 cm fine grained white calcite vein with no
				alteration.
3745	71.00-72.00	1.00	14	Chloritic alteration.
3746	72.00-73.00	1.00	17	Chloritic alteration.
3747	73.00-73.99	0.99	26	Chloritic alteration.
	73.80-75.97	- "	. -	Sporadic moderate-strong soft-moderately soft
				chloritic alteration.
3748	73.99-74.40	0.41	14	74.00-74.25 25% calcite veining as a wispy net of
				fine stringers at 50° to Ca (Stained mauve by KFC).
				Chloritic alteration.
3749	74.40-75.26	0.86	Lost	Chloritic alteration.
3750	75.26-75.96	0.70	9	Chloritic alteration. At 75.68 minor Py.
3751	75.96-76.34	0.38	257	75.97-76.33 quartz flooding as 35% very fine grained

Au PPB

				AU FFD	
					white quartz stockwork and 65% silicified wall; rock. Locally minor Py. Average of two.
NB	3752	76.34-76.84	0.50	nil	
11D	0102	70.01 70.01	0.00	1144	•
					alteration. Contact at 76.33 at 135° to CA relative
					to contact at 76.81 and dominant shearing below.
					At 76.54 1.5 cm white calcite vein in slip at 135° to
					CA.
					From 76.74-76.81 Shear banded at 60° to CA.
					Chloritic alteration.
NB	3753	76.84-77.74	0.90	17	76.81-78.64 Moderately soft dark green chloritic
					alteration. Locally the igneous texture is
					preserved as chloritic bands at low angle to CA.
	3754	77.74-78.58	0.84	69	Chloritic alteration, see 3753.
NB	3755	78.58-79.38	0.80	15	DEFORMATION ZONE.
					78.64-78.74 Strongly banded massive black chlorite
					and pale green sericite(?) and off white quartz.
					78.74-78.84 Dark green moderately soft chloritic
					alteration as bands to 3 mm parallel to CA similar
					to 76.81-78.64. Igneous texture preserved.
					79.17 2.0 cm vague opaque white quartz-calcite vein.
					79.25 2.5 cm vague opaque white quartz-calcite vein.
NB	3756	79.38-80.23	0.85	34	DEFORMATION ZONE.
					78.84-80.06 Prominent sericite-chlorite foliation at
					45-100° to CA.
					Numerous small carbonate and quartz seams in
					foliation.
					20% non-deformed sections to 3 cm of chloritic
					alteration similar to 76.81-78.64.
					arconation Dimital CO 70.01 70.04.

۰.

•.

			Au PPE	3
				79.25 1 cm distinct opaque white quartz-calcite
				vein.
				79.74-79.79 vague silicification.
· .				80.04-80.06 1.5 cm opaque white quartz-calcite vein
				at 70° to CA.
				80.15-80.18 Shear banded carbonate chlorite and
				sericite(?).
3757	80.23-80.86	0.63	93	Average of two.
				80.28-80.68 25% fine grained pyrite over a 1 cm
				width in strong silicification along healed fracture
				at 00° to CA.
				80.80 1.5 cm calcite vein at 85° to CA.
				80.06-83.16 Grades from a moderately soft chloritic
				alteration with a vague igneous texture preserved to
				a well preserved igneous texture with pale green
0.7.50				feldspar in chloritic mafic groundmass.
3758	80.86-81.88	1.02	22	Chloritic alteration.
				81.10 1 cm calcite vein at 80° to CA.
				81.30 0.7 cm white calcite vein at 65° to CA.
0750		0.00		81.48 1 cm white calcite vein at 80° to CA.
3759	81.88-82.78	0.90	3	Chloritic alteration.
22.60				82.04 4 cm white calcite vein at 75° to CA.
3760	82.78-83.15	0.37	146	82.92-83.13 2% fine grained disseminated Py centred
				on 3 mm silicious band with 25% fine grained Py (45°
07.61	00 45 04 04			to CA).
3761	83.15-84.84	1.69	14	Chloritic alteration.
3762	84.84-85.40	0.56	67	84.86-84.91 epidote alteration of very fine grained
				dikelet and open fractures.

Au PPB 84.96 1 mm speck Cpy in quartz-carbonate fracture filling at 40° to CA. 84.99-85.30 0.5 cm alteration band with 10% fine grained Py (parallel to CA along one side of core). 3763 85.40-86.00 0.60 51 Barren.

99.50 130.00 MASSIVE BASALT FLOWS.

Medium green, medium grained, with numerous flow contacts as logged below.

At the upper contact of flows, fine to medium grained basalt tends to be in sharp natural contact with aphanitic or very fine grained chilled basalt of the flow above (up the hole). The flows tend to increase gradually in grain size up the hole from the contacts.

- 99.50-101.10 Probable flow unit. Non-magnetic. Fine grained. Contact at 101.10 at 40° to CA.
- 101.10-104.27 Probable flow unit. Non-magnetic. Medium grained. Sharp natural contact at 104.27 with a tongue of fine grained unit below projecting 8 cm into medium grained unit above. This may be an infilled fracture as the tongue is continuous with the rock below (with no break).

104.27-110.90 Probable flow unit. Non-magnetic.

Grades from very fine grained at 104.27 to medium grained at 105.00.

Grades from medium grained at 107.00 to a 2 cm glassy chill at 110.90 in sharp natural contact (20° to CA)

Hole Number 96-33

against fine grain basalt below.

110.90-112.25 Non-magnetic.

Fine grained to very fine grained basalt flow with decreasing in grain size down the hole. Lower contact at 112.25 appears to be 30° to CA.

- 112.25-118.48 Fine grained magnetic flow with sharp natural lower contact at 118.48 (35° to CA) being 2 cm aphanitic chilled basalt against flow unit below.
- 118.48-120.98 Medium grained non-magnetic flow with sharp chilled lower contact at 45° to CA in contact with medium grained volcanics below.
- 120.98-130.00 Generally medium grained flow with no flow contacts defined. Possible flow contact at fine grained section from 126.00-129.00.

MINERALIZATION AND ALTERATION

	99.50-130.00	-		Very weakly stained blue by KFC where pre-etched by 10% HC1.
				Weak to moderate pale yellow epidote(?) alteration along pale yellow healed fractures throughout.
	90.00	-		0.3 cm White calcite fracture filling with intense epidote alteration at 65 ° to CA.
	90.13	-		1 cm very coarse grained diorite dike with 80% felsic minerals and 1% coarse disseminated Py (30° to CA).
3884	91.92-92.28	0.36	2	Trace Py.
	92.28-95.23	-	-	Minor medium grained Py.
3885	95.00-95.66	0.66	10	From 95.23-95.66 0.1% very fine grained disseminated

Hole Number 96-33

g

			Au PPB	
				Py in bleached alteration patches to 4 mm. Pale yellowish alteration along micro-fracturing.
3886	95.66-96.28	0.62	4406	Barren fine grained dark green alteration with fine pale greenish yellow fracture fillings. Average of 2. From 95.80-96.13 1 cm quartz vein with 5% vague dark green silicate inclusions (10° to CA). Trace Cpy, Minor Py.
3887	96.28-96.80	0.50	nil	-
3888	96.80-97.10	0.30	29	At 96.90 0.5 cm white calcite vein along rusty slip at 170° to CA relative to vein at 95.80. Trace Cpy & Py in vein and prominent yellow-green silicate along walls.
3889	97.10-97.55	0.45	58	0.1% very fine grained disseminated Cpy in pale yellow alteration patches to 5 mm. Minor fine grained yellow fracture fillings.
3890	95.55-98.00	0.45	43	0.1% very fine grained disseminated Py.
3891	98.00-98.67	0.67	36	0.1% disseminated Py & rare tiny specks Cpy. Minor pale yellow fracture fillings.
3764	98.67-99.11	0.44	6274	At 98.90: 0.5% very fine grained-fine grained Py, trace Cpy and 15% 1 mm white calcite cleavages in 3 cm translucent quartz vein at 20° to CA. Minor epidote alteration near walls. Average of two.
3892	99.11-99.61	0.50	14	Earthy hematite on slip parallel vein. Barren. Minor random pale green fracture fillings near 91.11.
3893	101.41-101.93	0.52	134	Minor Py in pale green fracture fillings plus calcite in larger fractures.

		101.93-104.26		Au PPB	
	3894	101.93-104.28	- 0.74	67	Minor pale green fracture fillings (+/- calcite).
	5054	104.20-103.00	0.74	07	Minor disseminated Py.
					Minor Py in prominent pale green fracture fillings.
		105.00-108.66	_		Pale green alteration along fractures.
	3895	108.00-108.66	0.66	2	Rare pale green fracture fillings.
	0090	100.00 100.00	0.00	L	From 108.08-108.40 2 cm fine grained yellowish
					calcite vein in 5 cm weak healed shear with strong earthy red hematite staining. Loose slip along
					earthy red hematite staining. Loose slip along shear. Moderate to strong hematization to 3 cm into
					walls.
					warro.
		108.66-109.50	_		Thin healed chloritic fracturing rimmed by pale
					green alteration.
		109.50-113.58	-		Minor pale green alteration of weak pale green
					chloritic alteration. Moderately soft-moderately
					hard.
	3896	113.58-144.64	1.06	9	Prominent pale yellow green alteration around a
					pervasive set of thin white fracture fillings at a
					low angle to CA. Rare grains of Cpy.
	3897	114.64-115.28	0.64	18	Minor black chlorite fracture fillings. Average of
					two.
	3898	115.28-115.69	0.41	401	Fine grained masses of Py & minor Cpy in pale green
	20.00				fracture fillings.
	3899	115.69-117.00	1.31	46	Weak pervasive pale green alteration associated with
					pale green fracture fillings. Trace Cpy on a 0.3 cm
	2000	117 00 117 00	0 0 0		calcite-yellow green silicate fracture filling.
	3900	117.00-117.88	0.88	34	Minor medium grain disseminated Py. Locally yellow
					alteration associated with pale yellow fracture
Ju	mber 96-	-33			fillings.

3901	117.88-118.23	0.35	Au PPB 108	Cpy & Py in yellow alteration associated with pale
3902	118.23-118.48	0.25	8240	yellow fracture fillings at low angle to CA. Py to 0.3 mm as fracture fillings and pale green fracture fillings at low angle to CA. Average of
3903	118.48-119.86	1.38	57	three. Dark green with minor pale green fracture fillings at 30° 80° and 135°.
3904	119.86-120.88	1.02	21	Rare Cpy in thin pale green yellow fracture fillings generally at 25° to CA.
3905	120.88-122.00	1.12	274	Locally weak pervasive pale green fracture filling with medium grained disseminated Py near 122.00.
3906	122.00-122.61	0.61	9755	Moderate pale green-yellow fracture filling at 40, to CA. Average of two.
3765	122.61-123.68	1.07	15806	from 122.61-122.68 20% massive coarse grained Py in white calcite vein at 0° to CA. Minor pale yellow- green silicate in vein. 3% coarse grained disseminated Py to 4 mm & trace Cpy. Average of 3.
3907	123.68-125.00	1.32	31	Very weak pale green fracture filling.
3766	125.00-125.54	0.54	6343	5% massive Py in calcite vein at 0° to CA. Minor coarse grained disseminated Py at 125.54.
3908	125.54-126.40	0.76	465	At 125.58 0.8 cm white calcite vein at 20° to CA with 2% fine grained Py and pale green silicate along vein edge. Coarse grained disseminated Py crystals to 2 cm from vein.
3909	126.40-127.27	0.87	nil	Prominent dark green chlorite fracture filling averaging 55° to CA. At 227.27 4 cm weakly chloritic fine grained grey-

12

•

				white calcite vein at 20° to CA. Vein stained mauve
				by KFC
				126.75-127.11 pervasive light-dark green chloritic
				alteration with 2% 0.5 mm white specks. Not stained
•.				by KFC. Calcite alteration from 126.26-126.75 and
				127.64-127.95 stained mauve by KFC.
				126.99-127.06 6 cm grey to white fine grained
				calcite vein with 5% quartz masses and 15% chloritic
				fragments. Stained mauve by KFC.
3910	127.27-128.00	0.73	nil	Chloritic fracture filling to 127.60. Below 127.60
				calcite fracture filling with minor yellow silicate.
	128.00-130.00	-		Minor white calcite fracture filling with minor
				yellow silicate.
				1% fine grained Py from 128.70-128.85 and 129.50-
				129.60.
130.00	END OF HOLE.			

Assay	Summary	- 96	5-3	3	
-------	---------	------	-----	---	--

Assay	Summar	Y	96-3	33							
Samp	ple No. 3740	F 49	rom	то -50.00)	Lengtl	h 5	Au Pl 5	PB		
	3741			-50.8		0.89		10			
	3742	62	.78-	·63.7	7	0.99	9	15			
	3743	63	.77-	-64.08	3	0.3	1	38			
	3744	64	.14-	65.14	4	1.00	ô	35	(<i>P</i>	Av.)	
	3745	71	.00-	72.00)	1.00)	14			
	3746	72	.00-	73.00)	1.00)	17			
	3747	73	.00-	73.99	9	0.99	9	26			
	3748	73	.99-	74.4()	0.41	L	14			
	3749	74	.40-	75.26	5	0.86	5	Lost	5		
	3750	75	.26-	75.96	5	0.70)	9			
	3751	75	.96-	76.34	1	0.38	}	257	(A	v.)	
	3752	76	.34-	76.84	1	0.50)	nil			
	3753	76	.84-	77.74	1	0.90)	17			
	3754	77	.74-	78.58	3	0.84	1	69			
	3755	78	.58-	79.38	}	0.80)	15			
	3756	79	.38-	80.23	3	0.85	5	34			
	3757	80	.23-	80.86	5	0.63	3	92.	. 5	(Av.)	
	3758	80	.86-	81.88	}	1.02	2	22			
	3759	81	.88-	82.78	}	0.90)	3			
	3760	82	.78-	83.15	5	0.37	1	146			
	3761	83	.15-	84.84	l	1.69)	14			
	3762	84	.84-	85.40)	0.56	5	67			
	3763	85	.40-	86.00)	0.60)	51			
	3884	91	.92-	92.28	}	0.36	5	2			
	3885	95	.00~	95.66	5	0.66	,	10			

Assay Summary (cont'd) 96-33

Sample No	. From To	Length	Au PPB
3886	95.66-96.28	0.62	
3887	96.28-96.80	0.50	nil
3888	96.80-97.10	0.30	29
3889	97.10-97.55	0.45	58
3890	95.55-98.00	0.45	43
3891	98.00-98.67	0.67	36
3764	98.67-99.11	0.44	6274
3892	99.11-99.61	0.50	14
3893	101.41-101.93	0.52	134
3894	104.26-105.00	0.74	67
3895	108.00-108.66	0.66	2
3896	113.58-114.64	1.06	9
3897	114.64-115.28	0.64	17.5 (Av.)
3898	115.28-115.69	0.41	401
3899	115.69-117.00	1.31	46
3900	117.00-117.88	0.88	34
3901	117.88-118.23	0.35	108
3902	118.23-118.48	0.25	8240
3903	118.48-119.86	1.38	57
3904	119.86-120.88	1.02	21
3905	120.88-122.00	1.12	274
3906	122.00-122.61	0.61	975.5 (Av.)
3765	122.61-123.68	1.07	15806 (Av.)
3907	123.68-125.00	1.32	31
3766	125.00-125.54	0.54	6343
3908	125.54-126.40	0.76	465

Assay Summary (cont'd) 96-33

Sample No.	From	То	Length	Au PPB
3909	126.40-1	27.27	0.87	nil
3910	127.27-1	28.00	0.73	nil
130.00	END OF H	IOLE.		

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Høle 96-34 Property: McGarry Township Core Size: NO Casing: Coordinates: 13+37N, 20+06E Depth: 121.07 m Azimuth: 352° -46° Dip: Start Date: November 16, 1996 Finish Date: November 18, 1996 Drilled by Kosy Diamond Drilling Logged By Douglas Robinson All Measurements in Meters

Meterage

Description From TO

0.00 4.79 **OVERBURDEN**

4.79 32.87 DIORITE, COARSE GRAINED, MAGNETIC. Medium green, massive, hard and strongly magnetic. 1X3 mm white feldspar grains dominant. Locally variable grain size with pyroxene crystals to 1X10 mm. Very weak yellow-green epidote alteration of groundmass. Stained very faintly mauve by Potassium Ferri Cyanide (KFC) Trace disseminated Py throughout. At 32.87 sharp natural lower contact with feldspar crystals projecting into fine grained diorite below. 3 cm fine grained diorite dike with coarse crystals of 32.07 host projecting into the dike. Magnetic.

Horytas Indensin Feb 15, 1997

Contacts at 30° to CA.

32.68-32.75 Fine grained diorite along side of core (Similar to 32.07 m.).

MINERALIZATION & ALTERATION.

	SAMPLES	A	u PPB	
	6.47-7.00	-	-	3% fine grained disseminated Py and 2 mm quartz
				calcite seam at 00° to CA.
3771	10.17-11.17	1.00	633	10.70-11.26 3% fine grained disseminated Py.
	11.86-12.49	-	-	1% fine grained disseminated Py.
3772	12.68-13.68	1.00	67	12.75-13.58 1-2% Fine grained disseminated Py in epidote alteration.
	13.58-13.65	-		10% fine grained disseminated py in epidote alteration.
	17.86-18.03	-	-	Nonmagnetic carbonate-epidote alteration at 60° to CA.
	19.90-21.48	-	-	Moderate pervasive epidote alteration.
	20.43-21.30			1-3% fine grain disseminated Py.
	24.29-25.00	-	-	1% fine grain disseminated Py.
	25.27-26.08	-	-	1% fine grained disseminated Py.
	27.60-32.87	-	-	Reddish discolouration of feldspar and mafic minerals elongated (locally to 0.5X10 mm).

32.87 37.53 DIORITE, FINE GRAINED MAGNETIC.

32.87-33.73 Pinkish green, massive fine grained diorite

grading to fine grained diorite at 33.73 m.

Very hard, magnetic.

33.73-37.53 Fine grained uniform and massive light grey

felsic minerals and magnetite dominate. Magnetic.

56.33-58.32 Very fine grained dark green diorite phase

12

with gradational contacts

58.32-63.00 Patches of medium and very fine grained diorite to 0.50 metres with vague gradational boundaries at various angles.

Hole Number 96-34

.

MINERALIZATION & ALTERATION

	SAMPLES		Au PPB		
3773	34.00-35.85	1.85	38	34.20-33.40	4% very fine grained disseminated Py.
				35.18-35.69	2% very fine grained disseminated Py.
3774	35.85-37.16	1.31	58	36.71-37.16	3% very fine grained disseminated Py.

37.53 82.13 DIORITE, FINE GRAINED, MAGNETIC. Medium grained magnetic, hard. Similar to 4.49-32.87 except it is finer grained and has a highly variable grain size with gradational contacts various phases. Pale coloured minerals dominate.

MINERALIZATION & ALTERATION

Disseminated Py throughout with the pyrite being finest grained and most abundant in the finer grained phases. Weak epidote alteration of groundmass to 53.0 m. 53.00-64.00 No epidote alteration. Rock is medium-dark green. SAMPLES Au PPB 37.53-49.46 Pink discolouration of feldspars. ---3775 38.65-39.35 0.70 24 38.98-39.24 3% very fine grained disseminated Py in fine grained grey diorite phase with vaque contacts.

3776 40.40-41.38 0.98 444 Average of two. 40.43-40.52 3% fine grained disseminated Py in medium grained diorite.

			Au PPI	B 41.90-42.00 2% fine grained disseminated Py
				medium grained diorite.
3777	49.21-49.74	0.53	26	49.33-49.66 1-2% medium grained disseminated Py
				probably associated with 1.5 cm strong
				epidote alteration along slip at 70° to
				CA.
3778	53.61-54.55	0.94	58	53.62-53.84 3% fine grained disseminated Py.
				53.84-54.50 1% medium grained disseminated Py.
3779	56.63-58.00	1.37	34	57.70 Chloritic slip and calcite veining to 3 mm
				at 45° to CA.
3780	58.00-58.69	0.69	109	58.00-58.18 2% Py along healed fractures and as
				patches with 20% Py over 1 cm. Average of 2.
				58.67-58.75 Fine grained disseminated Py in medium
				grained diorite.
3781	58.69-59.86	1.17	33	58.75-58.80 Very fine grained diorite with no Py.
				58.80-58.85 medium grained Py in medium grained
				diorite.
				58.97 and 59.38 Medium grained Py in wall rock beside
				healed fractures.
	59.50-61.50	-	-	Minor fine grained disseminated Py.
3782	64.59-65.17	0.58	302	64.60-65.00 2% fine grained disseminated Py.
3783	65.17-65.48	0.31	38	Barren.
				65.22-65.30 Moderate to very strong epidote
				alteration.
3784	65.48-66.68	1.20	24	65.60-66.57 1-2% fine grained disseminated Py.
	66.25-68.00	· -	-	3% 5 mm magnetite clots.
	68.08	-	-	0.2-1.0 cm coarse grained calcite in slip and minor
				parallel healed fracturing.
				· · ·

			Au PPB	
	68.25-68.67	-	-	1% medium-coarse grained disseminated Py.
3785	68.89-70.27	1.38	27	68.94-70.00 2% fine grained clustered Py.
3786	70.27-71.05	0.78	70	70.38-70.50 5% fine grained clustered Py.
				70.90-71.00 2% fine grained disseminated Py.
3787	71.05-71.34	0.29	22	Barren.
3788	71.34-71.94	0.60	31	71.34-74.00 medium to pale grey silicification.
				Very hard. Primary igneous texture
				vague. Locally minor moderately soft
				calcite chlorite alteration.
				71.68 0.4 cm fine grained white calcite stringer at
				20° to CA.
3789	71.94-72.71	0.77	94	See sample 3788.
3790	72.71-73.14	0.43	57 7	Average of two.
				72.90 1% Cpy disseminated in wall rock to stringers
				described below.
				72.95 1 mm white calcite quartz stringer at 42° to CA.
				73.02 5 mm white calcite quartz stringer at 42° to CA.
				Weak calcite-chlorite alteration with
				white specks.
	73.02-80.70	-	-	Numerous hairline grey-white calcite-quartz fracture
				filling.
	74.00-80.76	-	-	Moderately soft non-magnetic calcite alteration.
3791	73.14-73.86	0.72	111	Silicification.
3792	73.86-74.58	0.72	17	
3793	74.58-74.82	0.24	22937	74.66 2 cm calcite-quartz vein along strong slip.
				2% Cpy, 48% hard dark grey quartz and
				45% light grey fine grained calcite and
				55 chlorite bands. Minor Py.Metallic assay.
•• • •• •				0.5 mm speck of Visible Gold in chloritic
Hole Numb	ber 96-34			fracture. 6

. ·

Au PPB

74.00-75.00 Strong calcite alteration. 74.82-75.17 3794 0.35 21 Barren. 3795 75.17-75.64 0.47 105 75.20-75.36 0.5% Py and Cpy as fine grained patches. 3796 75.64-76.24 0.60 298 75.60-76.00 Slip at 05° to CA. Fine grained Py and trace Cpy in wall rock. 3797 99 76.24-76.84 0.60 Average of two. 76.40 Trace Cpy in chloritic slip at 00° to CA. 3798 76.84-77.45 1385 0.61 Barren. 3799 77.45-77.95 77.55-77.94 0.5% Cpy and 0.5% Py as 0.50 291 patches scattered though core. 3800 77.95-78.48 0.53 2178 Average of two. 78.00-79.28 Moderatelv strong calcite-chlorite alteration. Hard and silicified. Primary igneous texture destroyed. 78.48-78.96 3801 0.48 7383 Average of three. 78.50-79.14 4% Cpy along healed fracture in very hard silicification. Primary igneous texture destroyed. 78.48-79.28 Eight pieces of core that fit together. Box 14 dropped by drillers. The core was put together in Boxes 14a and 14b by appearance of core. Box 14a is arbitrarily 78.48-80.97 because this core is altered similar to core above. Box 14b is arbitrarily 80.97-83.90 as this core is not altered similar to the core below. 0.5 mm speck VISIBLE GOLD near patch of Cpy.Metallic assay. 3802 78.96-79.28 0.32 62740 79.28-80.23 3803 0.95 226 Four pieces of pieces of core that fit together. 3804 80.23-80.97 0.74 1857 80.23-80.70 One piece of core. Moderately altered Hole Number 96-34 7

Au PPB

with minor Py in weak shear banding at 32° to CA.

- 80.70-80.76 One piece of core. Very weakly altered.
- 80.76-80.97 One piece of core. Very weakly altered.
- 3805 80.97-81.97 1.00 1041 80.97-81.18 One piece of core. Very weakly altered.
 - 81.18-81.64 Two pieces of core.
 - 81.64-81.97 Two pieces of core.
 - 81.97-83.62 Thirteen pieces of core.

83.62-83.90 Two pieces of core.

82.13 110.00 DIORITE, INTERCALATED MAGNETIC & NONMAGNETIC PHASES.

84.70-86.43 Equigranular non-magnetic diorite with 0.5-2 mm

equant

pale green feldspar grains in a dark green moderately hard groundmass.

86.443-88.25 Medium grained diorite of variable grain size. Weakly silicified. Hard with vague igneous texture. From 86.87-87.15 magnetic.

88.25-89.42 Equigranular non-magnetic diorite with 35% 0.5-3 mm pale green equant feldspar grains in medium green groundmass. Moderately hard and not altered.

89.42-90.43 Medium grained diorite.

Silicified, Igneous texture destroyed. Medium grey, non-magnetic. Minor calcite fracture filling at 20° to CA.

90.43-91.53 Equigranular non-magnetic diorite similar to 88.25-89.42.

Hole Number 96-34

91.53-91.52 Fine grained magnetic diorite.

91.52 Gradational into coarse grained diorite.

91.52-96.21 Typical coarse grained magnetic diorite.

96.21-96.56 Equiganular non-magnetic diorite.

96.56-97.55 Weakly altered medium grained magnetic diorite.

97.55-103.64 Typical coarse grained magnetic diorite.

103.64-104.78 Typical non-magnetic equigranular diorite.

104.78-106.83 Medium grained magnetic diorite.

Altered patchy silicification with chloritic alteration centred on 1.0-1.5 cm sheared calcite-chlorite vein at 30° to CA.

106.83-110.00 Pale green, coarse grained diorite.

Soft and non-magnetic. Magnetite appears to have been destroyed by alteration. Vague igneous texture preserved.

ALTERATION AND MINERALIZATION.

3806	81.97-82.95	0.98	101	
3807	82.95-83.62	0.67	200	Average of two.
3808	83.62-83.90	0.28	839	Average of two.
3809	83.90-85.00	1.10	48	Barren.
3810	85.00-86.03	1.03	3	Barren.
3811	86.03-86.90	0.87	146	86.37-86.72 Wispy cherty grey quartz veining to 2 mm
				at 20° to CA with calcite in late
				fracturing. 1.2X3.0 cm massive coarse
				grain of Cpy and 1x1 cm mass of coarse

			Au PPB	grained Py in a quartz vein.
3812	86.90-88.51	1.61	62	88.00 4 cm calcite chlorite vein at 30° to CA in calcite alteration.
3814	88.51-89.70	1.19	nil	Trace Cpy.
				89.42-90.43 Silicified, Igneous texture destroyed. Medium grey, non-magnetic. Minor calcite fracture filling at 20° to CA.
3815	89.70-90.50	0.80	nil	89.42 Minor Cpy at diorite phase change.
3816	90.50-91.11	0.80	nil	Minor calcite stringers. Barren.
3817	91.11-92.03	0.01	3	Weakly altered.
3818	92.03-92.50	0.92	nil	Barren.
3819	92.50-93.00	0.50	19	92.80 0.3 cm healed chloritic fracture with minor Cpy.
3820	93.00-94.22	1.22	21	Fresh.
3821	94.22-94.67	0.45	30	Average of two.
				94.36-96.21 Minor calcite fracture filling and weak alteration. 94.40 Trace Cpy in calcite fracture filling.
3822	94.67-95.38	0.71	22	Minor calcite fracture filling.
3823	95.38-95.63	0.25	33580	VISIBLE GOLD. Estimate 12000 PPB.
				Total pulp-metallics assay. 0.5 mm VISIBLE GOLD grain and several very small VISIBLE GOLD grains in a 4.0X0.5 cm lens of grey quartz at 30° to CA. Quartz lens does not exit either side of core. 1 mm grain of black malleable mineral 0.5 cm from gold grain.
Average	95.63-96.07	0.44	123570	VISIBLE GOLD & Cpy. Est. 85000 PPB Total pulp-metallics assays reported below.

Hole Number 96-34

Sample 3824 was 95.63-96.07 0.44 m 96.820 gm/tonne Sample #199 was a 0.4 cm piece of core removed from 3824 for show at shareholders meeting. Grade 386.04 gm/tonne

Total pulp-metallics assay

sample

	weight	grade	
Sample	gm	gm/tonne	Extension
#3824	494.16	96.820	47844.57
# 199	50.36	386.040	19440.97
Average	544.52	123.570	67285.54

95.82-95.86 Vague grey quartz veinlet pinching out without crossing core. Veinlet is cut by 3 mm fine grained massive Cpy with a 0.5X1.0 cm patch of massive fine grained Py having three tiny grains of VISIBLE GOLD.

> Removed from sulphides is a 1 mm grain of VISIBLE GOLD intergrown with grey malleable metallic mineral (Possibly a telluride). There are several tiny VISIBLE GOLD grains and grey metallic grains within 3 mm of the large gold grain.

> A second 1 mm grey malleable metallic mineral grain has no visible gold.

3825 96.07-96.48 0.41 33 96.21-104.78 Fresh unaltered diorite.

Hole Number 96-34

			Au PPB	3
3826	96.48-97.00	0.52	48	Fresh.
3827	97.00-97.55	0.55	113	97.24-97.31 Moderate epidote alteration along 1.5 cm fine grained epidote band.
3828	97.55-98.77	1.22	22	Fresh. 98.26-98.46 Minor medium grained disseminated Py.
3829	98.77-100.00	1.23	46	Fresh. 99.78 Minor medium grained disseminated Py over 2 cm.
3830	100.00-101.18	1.18	10	Fresh. 100.18 Minor medium grained disseminated Py over 2 cm.
3831	101.18-102.64	1.46	139	Fresh
3832	102.64-104.04	1.40	482	Fresh.
				103.15 2.5 cm intense epidote alteration band at 55° to CA.
				103.48 Minor grained disseminated Py over 2 cm.
3833	104.04-104.94	0.90	961	Low angle fractures.
2024	104 04 105 65	0.74		104.48 Minor grained disseminated Py over 3 cm.
3834	104.94-105.65	0.71	51	105.11 0.4 cm patch Cpy in on epidote fracture filling.
				105.30 0.5 cm Cpy in on epidote fracture
2025				105.61 Trace Cpy and Py.
3835	105.65-106.25	0.60	31	1.5 cm calcite-chlorite shear.
3836	106.25-106.88	0.63	17	Minor chloritic calcite stringer at 0-20° CA.
3837	106.88-107.88	1.00	17	106.83-110.00 Intense calcite-dolomite alteration. Soft and pale green throughout. 1% 1 mm pale angular (leucoxene?) specks. Minor white calcite veining to
				specks. Minor white calcite veining

Hole Number 96-34

•

12

. •

0.5 cm at 60° to CA. Stained prominent mauve by KFC.

3838 107.88-109.00 1.12 65 See 3837. Intense calcite alteration. 108.04 4.5 cm opaque white dolomite-quartz vein at 40° to CA. 50% fine grained quartz in opaque white dolomite. Stained blue by KFC when pre-etched by 10% HCl, and mauve where not pre-etched by 10% HCl. 3839 109.00-110.00 1.00 nil Intense calcite alteration.

110.00 112.50 DEFORMATION ZONE.

Strong sericite foliation at $60-90^{\circ}$ to CA with apparent rotation around core axis. 60° to CA dominant.

Pale yellow sericite, chrome green fuchsite, grey-white calcite and medium-dark green chlorite foliation. Stained mauve by KFC where not pre-etched by KFC. Stained mauve where pre-etched by KFC.

20% unsheared blocks of diorite with strong microfracturing. Minor very fine grained Py on foliation planes.

ALTERATION AND MINERALIZATION.

- 3840 110.00-110.61 0.61 31 DEFORMATION ZONE. Trace Py.
 - 110.61-111.18 0.57 53 DEFORMATION ZONE. Trace Py.
 - 111.18-111.60 0.42 24 DEFORMATION ZONE. Trace Py.
- 3843 111.60-112.00 0.40

86 DEFORMATION ZONE. Trace Py.

111.79-111.93 Multi-stage quartz-dolomite vein banded

by thin yellowish sericite in medium

Hole Number 96-34

3841

grey, fine grained carbonate. 3 cm coarse white quartz and 2 cm opaque white dolomite with 10% quartz.

3844 112.00-112.50 0.50 51 DEFORMATION ZONE. Trace Py.

112.50 114.14 DIKE, STRONG SERICITE-CALCITE ALTERATION.

Aphanitic, locally very fine grained, pale buff unit with general appearance of a chilled mafic dike. Very soft. 20% diorite inclusions similar to 110.03-112.50. Strong calcite-sericite alteration stained mauve by KFC. Calcite veins to 0.3 cm parallel to filiation cut diorite fragments and host dike. Pervasive dark green microfracturing. Sharp natural upper contact at 60° to CA sub-parallel to foliation above.

Sharp natural lower contact at 85° to CA.

ALTERATION AND MINERALIZATION.

3845	112.50-113.09	0.59	33	INTENSE CALCITE SERICITE ALTERATION.
3846	113.09-114.07	0.98	19	INTENSE CALCITE SERICITE ALTERATION.

114.14 121.07 DIORITE, SPOTTED NONMAGNETIC.

Medium green. 50% pale green feldspar clots to 1 mm and 50% dark green chloritic mafic minerals including 3% 4 mm dark green chloritic masses.

Non-magnetic, moderately soft. Weakly developed chloritic fracturing.

Hole Number 96-34

- - - --

ALTERATION AND MINERALIZATION.

3847	114.07-115.00 0.93	27	
3848	115.00-116.50 1.50	50	Weak chloritic alteration.
3849	116.50-118.00 1.50	1474	Weak chloritic alteration.
			116.80 5 cm quartz vein with 40% yellow sericite at
			25° to CA.
3850	118.00-119.50 1.50	51	Weak chloritic alteration.
3851	119.50-121.07 1.57	nil	Weak chloritic alteration.
Average	72.71-83.90 11.19	3129	
Average	74.58-81.97 7.39	4628	
07			

121.07 END OF HOLE

Assay Summary	96-34			
Sample No.	From To	Length	Au P	PB
3771	10.17-11.17	1.00	633	
3772	12.68-13.68	1.00	67	
3773	34.00-35.85	1.85	38	
3774	35.85-37.16	1.31	58	
3775	38.65-39.35	0.70	24	
3776	40.40-41.38	0.98	444	(Av.)
3777	49.21-49.74	0.53	26	
3778	53.61-54.55	0.94	58	۰.
3779	56.63-58.00	1.37	34	
3780	58.00-58.69	0.69	109	(Av.)
3781	58.69-59.86	1.17	33	
3782	64.59-65.17	0.58	302	
3783	65.17-65.48	0.31	38	
3784	65.48-66.68	1.20	24	
3785	68.89-70.27	1.38	27	
3786	70.27-71.05	0.78	70	
3787	71.05-71.34	0.29	22	
3788	71.34-71.94	0.60	31	
3789	71.94-72.71	0.77	94	
3790	72.71-73.14	0.43	577	(Av.)
3791	73.14-73.86	0.72	111	
3792	73.86-74.58	0.72	17	
3793	74.58-74.82	0.24	22937	Metallic Assay
3794	74.82-75.17	0.35	21	
3795	75.17-75.64	0.47	105	
3796	75.64-76.24	0.60	298	

Hole Number 96-34

Assay Summary (cont'd) 96-34

Sai	mple No.	From To	Length	Au P	РВ		
	3797	76.24-76.84	0.60	99	(Av.)		
	3798	76.84-77.45	0.61	1385			
	3799	77.45-77.95	0.50	291			
	3800	77.95-78.48	0.53	2178	(Av.)		
	3801	78.48-78.96	0.48	7383	(Av.)		
	3802	78.96-79.28	0.32	62743	Metallic	Assay	
	3803	79.28-80.23	0.95	226			
	3804	80.23-80.97	0.74	1857			
	3805	80.97-81.97	1.00	1041			
	3806	81.97-82.95	0.98	101			
	3807	82.95-83.62	0.67	200	(Av.)		
	3808	83.62-83.90	0.28	839	(Av.)		
	3809	83.90-85.00	1.10	48			
	3810	85.00-86.03	1.03	3			
	3811	86.03-86.90	0.87	146			
	3812	86.90-88.51	1.61	62			
	3814	88.51-89.70	1.19	nil			
	3815	89.70-90.50	0.80	nil			
	3816	90.50-91.11	0.61	nil			
	3817	91.11-92.03	0.92	3			
	3818	92.03-92.50	0.47	nil			
	3819	92.50-93.00	0.50	19			
	3820	93.00-94.22	1.22	21			
	3821	94.22-94.67	0.45	30	(Av.)		
	3822	94.67-95.38	0.71	22			
	3823	95.38-95.63	0.25	33566	Metallic	Assay	
199 &	3824	95.63-96.07	0.44	482884	Metallic	Assays	(Av.)
	3825	96.07-96.48	0.41	33		-	
					*		

Hole Number 96-34

Sample No.	From To	Length	Au PI	PB
3826	96.48-97.00	0.52	48	
3827	97.00-97.55	0.55	113	
3828	97.55-98.77	1.22	22	
3829	98.77-100.00	1.23	46	
3830	100.00-101.18	1.18	10	
3831	101.18-102.64	1.46	139	(Av.)
3832	102.64-104.04	1.40	482	
3833	104.04-104.94	0.90	961	(Av.)
3834	104.94-105.65	0.71	51	
3835	105.65-106.25	0.60	31	
3836	106.25-106.88	0.63	17	
3837	106.88-107.88	1.00	17	
3838	107.88-109.00	1.12	65	
3839	109.00-110.00	1.00	nil	
3840	110.00-110.61	0.61	31	
3841	110.61-111.18	0.57	53	
3842	111.18-111.60	0.42	24	
3843	111.60-112.00	0.40	86	
3844	112.00-112.50	0.50	51	
3845	112.50-113.09	0.59	33	
3846	113.09-114.07	0.98	19	
3847	114.07-115.00	0.93	27	
3848	115.00-116.50	1.50	50	
3849	116.50-118.00	1.50	1474	(Av.)
3850	118.00-119.50	1.50	51	
3851	119.50-121.07	1.57	nil	
Average	72.71-83.90	11.19	31 2 9	
Average	74.58-81.97	7.39	4628	

·.

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hole 96-35 Property: McGarry Township Core Size: NO Casing: Pulled Coordinates: 13+32N, 21+11E Depth: 120.00 m Azimuth: 352° Dip: -4.3° Start Date: November 18, 1996 Finish Date: November 20, 1996 Drilled By: Kosy Diamond Drilling. Logged By: Douglas Robinson All Measurements in Meters Meterage From То Description 0.00 73.25 DIORITE, NON-MAGNETIC 0.00-55.00 Medium greenish grey, uniform and massive, medium grained 0.5 mm crystalline groundmass with 2-3% 2-4 mm dark green masses. Both the groundmass and dark green masses are moderately hard. 41.00-49.00 Dark green patches are small to absent. 55.00-73.25 Pale grey uniform and massive with 75% dirty grey feldspar to 1 mm in medium green groundmass. 1-3% 2-5 mm dark green patches. At 60.32-60.45, 60.53-60.63 and 60.91-60.98 very finer grained dikes at 40° to CA. Dike contacts are sharp natural and straight cutting across the igneous texture of the coarser grained host diorite. The dikes have thin pale green chills of dikes along

their contacts.

Dougles

50.18-50.51 Dark green dike of very fine grained diorite with fine feathery feldspar and mafic mineral. Frozen contacts at

Hole Number 96-35

80 and 110° to CA.

68.20-68.48 Diorite dike similar to very fine grained dikes above.

Sharp natural upper contact at 40° to CA.

Sharp natural lower contact at 25° to CA.

ALTERATION AND MINERALIZATION.

0.00-55.00 Trace 0.5 mm Py grains throughout.

Stained pale mauve by KFC.

Stained vary pale blue when pre-etched by 10% HCl.

16.00-52.00 very competent ground. Slip spacing 30-120 cm.

Only very minor epidote alteration or fracture filling except as noted.

Au	PPR	
nu	TTD	

03	0.00-1.40	1.40	21	Minor hairline epidote fracture filling.
				0.00-2.30 Bleached pale greenish white.
				1.12-1.30 Pitted weathering of core along water seam
				at 1.25 (25° to CA.)
	2.23-4.00	-	-	Yellow coloured feldspar very hard.
	3.12-	-	-	Trace Py in 2.,0 cm epidote alteration band at 55° to
				CA.
04	7.00-9.18	2.18	17	7.02-7.14 Pitted weathering of intense epidote
				alteration band.
				7.30 4 cm moderate epidote alteration along 0.5 cm
				band of intense epidote alteration.
				7.55 1.0 cm open water seam (weathered) with epidote
				along the walls.
				8.30-8.90 Moderate to strong epidote alteration with
				pitted weathering from 8.00-8.90.
	12.00-13.00	-	-	Minor grey silicification. Very hard.

Hole Number 96-35

	12.15-12.56	-	Au PPB	Rusty pitted weathering of moderate epidote
				alteration.
05	13.50-14.42	0.92	23	Average of two.
				13.80-14.38 Rusty weathering of epidote.
	15.16	-	-	0.5 cm epidote alteration band.
06	15.65-15.89	0.24	117	15.78 0.5 cm white calcite fracture filling with 1%
				Cpy. No alteration.
07	16.45-17.01	0.56	14	16.55 0.3 cm white calcite fracture filling with minor
				Cpy.
				16.92 0.4 cm white calcite fracture filling with
				1% Cpy.
	17.59	-	-	1.0X2.0 cm rectangular white xenolith.
	21.24	-	-	2.0 cm moderately strong epidote alteration at 55° to
				CA.
08	23.49-25.00	1.51	17	Barren. Minor healed fractures.
				24.32 0.8 cm quartz fracture filling at 45° to CA.
				24.89 2.0 cm intense silicification band with
				3% 0.5 mm disseminated Py and trace Cpy. Relict
				igneous texture preserved.
	27.33	-	-	1.0 cm quartz-epidote alteration band at 45° to CA.
	27.95	-	-	1.0 cm quartz-epidote alteration band at 20° to CA.
	28.54	-	-	0.5 cm quartz-epidote band at 50° to CA.
	30.70	-	-	Moderate silicification with moderate epidote
				alteration.
09	31.00-32.39	1.39	9	31.46 Moderate wispy epidote alteration and 0.4 cm
				of limonite in loose slip at 30° to CA.
	32.54	-	-	2.0 cm silicification band with weak epidote
				alteration.

Hole Number 96-35

			Au Pl	PB
	33.25	-		0.5 cm silicification band with weak epidote alteration.
	34.68	-	-	0.5 cm silicification band with 2.0 cm moderate epidote alteration of wall rock.
	34.68-40.16	-	-	A few scattered minor fractures healed by silicification and weak epidotization.
10	40.00-42.02	2.04	10	40.16-42.00 5-10% chloritic alteration bands at 50° to CA and silicified epidote alteration (with calcite) at 70° to CA.
11	45.60-46.00	0.40	46	45.65-45.85 2.0 cm finely laminated alteration with 1% very fine grained disseminated Py. 1% Fine grained disseminated Py extends 3 cm beyond alteration. Hard
	46.40	-	-	4.0 cm medium grey silicified band.
	50.00-73.58	-	-	Minor disseminated Py in and near minor very hard to moderately hard chloritic silicified alteration bands with epidotization. Epidote become dominant below 60.00.
12	53.00-55.00	2.00	26	53.30 Trace Cpy, minor Py in 0.5 cm very hard dark green band at 55° to CA.
				53.92 Trace Cpy, minor Py in 0.5-1.0 cm very hard dark green alteration band.
13	64.38-65.20	0.82	155	Average of two.
				64.57-65.15 Pervasive whitish yellow epidote bleaching with minor chrome green fuchsite coloured patches and silicious healed fractures 55° to CA with coarse grained Py to 4 mm.

Hole Number 96-35

Au PPB

14 65.20-67.00 1.80 24 65.15-66.65 Patchy epidote bleaching and epidote fracture filling.

15 72.00-73.22 1.22 14

73.25 77.32 ALTERATION-DEFORMATION ZONE

Alteration of medium grained diorite unit above. Vague igneous texture preserved. Moderately soft to soft. Upper contact gradational over 1 cm.

ALTERATION AND MINERALIZATION

Intense pervasive patchy medium grey to pale yellow green carbonate-sericite alteration stained mauve by KFC. Minor sections stained blue by KFC.

16	73.22-74.11	0.89	15	Competent ground. Calcite fracture filling.
17	74.11-74.35	0.24	3	74.11-74.16 20% vague patches of chrome green
				fuchsite alteration.
				74.16-74.24 9 cm fine grained grey calcite-quartz
				vein at 65° to CA. Grain reduced by shearing. Minor
				pitted weathering. Slip wall at 74.16.
				74.24-74.44 Minor vague chrome green fuchsite
				patches.
18	74.35-74.80	0.45	14	Competent ground.
				74.78-78.32 Very soft rusty bleaching.
19	74.80-76.00	1.20	2	75.35-76.00 Intermittent rusty sericite(?) foliation
				at 80° to CA.

Hole Number 96-35

...

.

Au PPB

 20
 76.00-76.57
 0.57
 2
 Competent ground. 1 mm igneous texture preserved.

 21
 76.57-77.32
 0.75
 65
 77.60-77.95 RUSTY FAULT. Ground broken to 1-3 cm sections.

77.32 85.58 BASALT, VERY FINE GRAINED, NON-MAGNETIC. medium green, moderately hard, possibly pillowed non-magnetic (Locally weakly magnetic below 82.00). Stained blue by KFC before and after pre-etching by 10% HC1.

ALTERATION AND MINERALIZATION.

	77.32-81.48	-	-	Six 0.5 cm fine grained white calcite veins at 35° to CA and nine 0.3 cm fine grained white calcite fracture filling at 75085° to CA. No epidote alteration.
	77.32-81.48	-		Calcite alteration stained mauve by KFC
	81.48-85.58	-		Stained blue by KFC.
22	77.32-79.00	1.68	5	
23	79.00-81.48	2.48	14	78.48-81.50 0.5% wispy fine grained py.
24	81.48-81.95	0.47	nil	81.48-85.58 0.5% crude disseminated Py cubes to 4 mm in weak to moderate epidote alteration.
				81.68-81.88 Dark green moderately hard chlorite
				alteration. 5% fine grained Py in very
				hard silicious grey patches crudely
				aligned at 55° to CA.
25	81.95-84.00	2.05	2	
26	84.00-85.58	1.58	nil	

85.58 86.30 ARGILLITE, SILICIFIED. Silicified argillite. Very hard, finely laminated black and dark green at 45° to CA. 3% fine to medium grained disseminated Py.

ALTERATION AND MINERALIZATION

27 85.58-86.30 0.72 1.5 3% fine to medium grained disseminated Py. Average of two.

86.30 93.75 BASALT, PILLOWED, MAGNETIC. Medium green, moderately hard, magnetic basalt with prominent pillow selvages throughout.

ALTERATION AND MINERALIZATION.

Prominent stockwork of epidote alteration and minor epidote fracture filling. 0.5% fine to coarse grained Py associated with pillow selvages, epidote alteration and healed fracture filling. Stained mauve by KFC.

Au PPB

28	86.30-87.81	1.51	7	
29	87.81-89.38	1.57	1572	
30	89.38-90.72	1.34	105	89.50-91.80 Trace Cpy.
31	90.72-91.65	0.93	48	
32	91.65-91.93	0.28	991.5	Prominent Cpy patches.Average of two.
33	91.93-93.10	1.17	161	Cpy.
34	93.10-93.77	0.67	576	93.19-93.55 4% wispy Cpy in thick chloritic pillow
				selvage.

93.75 99.10 DIKE, NON-MAGNETIC

Medium brownish grey, fine grained, uniform and massive, moderately hard. 5% 3 mm chlorite flakes. Sharp frozen upper contact at 25° to CA. Minor white bleaching of basalt above upper contact. Sharp natural lower contact at low angle to CA. Minor Cpy in white bleached basalt below lower contact.

ALTERATION AND MINERALIZATION

Very weakly stained mauve by KFC.

Minor white fracture filling at 55° to CA.

 35
 93.77-94.59
 0.82
 15
 93.82
 1.5X2.5 cm patch of 30% Cpy passes though core.

 36
 98.00-99.00
 1.00
 26
 Moderate pervasive brown hematization.

99.10 101.40 BASALT, PILLOWED, MAGNETIC.

Medium green, moderately hard, locally magnetic basalt with prominent pillow selvages throughout.

ALTERATION AND MINERALIZATION. Stained blue by KFC.

- 37 99.00-100.33 1.33 118
- 38 100.33-101.40 1.07 954 Average of two.

101.40 104.45 DIKE.

Similar to 93.75-99.10. Moderately hard.

Hole Number 96-35

101.40 Sharp natural upper contact at 60° to CA. 104.45 Sharp natural lower contact at 35° to CA.

ALTERATION AND MINERALIZATION.

39 101.40-102.00 0.60 3

104.45 120.00 BASALT, PILLOWED, NON-MAGNETIC.

Medium green, very fine grained prominent pillow selvages throughout. Moderately hard and nom-magnetic.

ALTERATION AND MINERALIZATION

Stained dark blue by KFC.

- 104.45-118.00 Chlorite-calcite alteration and weak epidote alteration in pillow selvages in pillow selvages.
- 104.45-118.00 1% coarse crude Py crystals within pillow selvages.
- 111.00-120.00 Locally fine grained masses of Py to 1 cm in thickest pillow

selvages.

- 40 104.36-105.18 0.82 122
- 50 105.18-105.28 0.10 3291.5 A single 0.5 mm pale yellow metallic speck in calcite alteration. Metallic Assay.
- 41 105.28-106.26 0.98 27
- 42 109.07-111.00 1.93 581 Average of two.
 - 111.00-111.88 0.88 41 111.24 4.5X4.0 cm mass consisting of 80% medium grained Py.
 - 111.24-111.90 5% fine grained Py as patches to 1.0 cm along chloritic pillow selvage at 00° to CA..

۰.

44	111.88-113.53	1.65	87	
45	113.53-114.97	1.44	144	113.70-114.00 Trace Cpy in calcite-chlorite pillow rim. Average of two.
				114.75 Trace Cpy in chloritic fracture filling.
46	117.37-118.77	1.40	259	
	118.00-120.00		-	Moderately soft chloritic alteration stained blue by KFC.
				3% fine grained calcite fracture filling to 1.0 cm. 1% disseminated 1 mm Py cubes.
				-

120.0 End of Hole

Hole Number 96-35

Assay Summary 96-35

Sample No.	From To	Length	Au PPB
03	0.00-1.40	1.40	21
04	7.00-9.18	2.18	17
05	13.50-14.42	0.92	23 (Av.)
06	15.65-15.89	0.24	117
07	16.45-17.01	0.56	14
08	23.49-25.00	1.51	17
09	31.00-32.39	1.39	9
10	40.00-42.02	2.04	10
11	45.60-46.00	0.40	46
12	53.00-55.00	2.00	26
13	64.38-65.20	0.82	155 (Av.)
14	65.20-67.00	1.80	24
15	72.00-73.22	1.22	14
16	73.22-74.11	0.89	15
17	74.11-74.35	0.24	3
18	74.35-74.80	0.45	14
19	74.80-76.00	1.20	2
20	76.00-76.57	0.57	2
21	76.57-77.32	0.75	65
22	77.32-79.00	1.68	5
23	79.00-81.48	2.48	14
24	81.48-81.95	0.47	nil
25	81.95-84.00	2.05	2
26	84.00-85.58	1.58	nil
27	85.58-86.30	0.72	1.5 (Av.)
28	86.30-87.81	1.51	7
29	87.81-89.38	1.57	1572

Hole Number 96-35

Assay Summary (cont'd) 96-35

Sample No.	From To	Length	Au PPB
30	89.38-90.72	1.34	105
31	90.72-91.65	0.93	48
32	91.65-91.93	0.28	991.5 (Av.)
33	91.93-93.10	1.17	161
• 34	93.10-93.77	0.67	576
35	93.77-94.59	0.82	15
36	98.00-99.00	1.00	26
37	99.00-100.33	1.33	118
38	100.33-101.40	1.07	477 (Av.)
39	101.40-102.00	0.60	3
40	104.36-105.18	0.82	122
50	105.18-105.28	0.10	3291.5 Metallic Assay.
41	105.28-106.26	0.98	27
42	109.07-111.00	1.93	580.5 (Av.)
43	111.00-111.88	0.88	41
44	111.88-113.53	1.65	87
45	113.53-114.97	1.44	144 (Av.)
46	117.37-118.77	1.40	259

۰...

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Høle 96-36 Property: McGarry Township Core Size: NO Casing: Left Coordinates: 13+89N, 20+60E Depth: 162.0 m Azimuth: 352° -43.5° Dip: Start Date: November 20, 1996 Finish Date: November 23, 1996 Drilled by Kosy Diamond Drilling Logged By Douglas Robinson All Measurements in Meters

Meterage

From TO Description 0.00 5.00 **OVERBURDEN**

5.0 107.80 DIORITE, COARSE GRAINED, NON-MAGNETIC, EQUIGRANULAR. Medium to light greenish grey, uniform and massive. 1 mm crystalline with 40-60% white feldspar in dark green chloritic groundmass. Prominent 3-4 mm dark green chlorite masses throughout. These chlorite masses are characteristic to this unit. Mafic minerals dominant, 50% white feldspar crystals to 1 mm in dark green groundmass. 1% 3 mm dark green chlorite masses. *FelrII, IIIT* This is the same unit as hole 96-34 from 114.14-121.07. 5.00-13.00 Medium green, uniform and massive.

Hole Number 96-36

13.0-96.00 Feldspathic minerals dominant.

Light grey. Approximately 50% white feldspar grains to 1 mm in a medium grey groundmass.

3% 4 mm irregular dark green chloritic masses.

54.77-55.63 Medium grey uniform and massive fine grained with vague igneous texture. Very fine grained within 5 cm of contacts.

Sharp natural upper contact at 50° to CA. Sharp natural lower contact at 60° to CA.

96.00-106.66 Dark green, moderately hard (very hard below 102.00). Feldspathic minerals dominant. 50% white feldspar grains to 2 mm in dark green groundmass. 3% 2-5 mm dark green chloritic patches.

106.66-107.80 similar to 96-00-106.66 but bleached pale green by weak sericitization. Moderately soft.

ALTERATION AND MINERALIZATION.

5.0-106.66 Very v	weakly stained blue by H	Potassium Ferri Cyanide
(KFC) where	pre-etched by 10% HCl;	otherwise stained mauve.
10.00-13.00	Loose weather	red fracture at 00° to CA with 0.5 cm
	flakey green	chlorite.
23.50-30.00	Weakly broken	ground with strong slips parallel CA
	and weakly we	eathered loose fractures at 55-60° to
	CA. Earthy o	chlorite on loose fractures.
30.00-34.50	Strongly broke	en ground with loose fractures having up to
	0.5 cm white	quartz.
	Earthy pale g	reen chlorite on loose fractures at 60° to

Hole Number 96-36

			Au PPB	
			CA.	
			Slip sp	acing 10 cm.
			Rock is	weathered and bleached yellowish grey
	46.10-46.60	-	- Weak wis	spy bands of fine grained yellow green alteration
			paralle	l slips with sugary quartz.
	46.60-48.90	-	- Bleache	d pale grey.
3852	48.86-50.92	1.96	393.5 Average	of Two.
			48.90-4	9.86 Rusty water seam. Badly broken core.
			Dark gre	een, soft and chloritic parallel vuggy fractures
			at 15-30)° to CA. Locally foliated at 60° to CA. Quartz
			noted.	
				2.10 Three low angle fractures.
3853	56.50-57.08	0.58	245 56.55-58	3.30 Minor fine Cpy grains in calcite seams at 00
· · · · ·				and 70° to CA.
3854	57.08-57.62	0.54	nil Cpy.	
3855	57.62-58.32	0.70	84 Cpy.	
	61.66	-	- 2.0 cm	quartz-calcite alteration band with 10% vague
			- 2	een epidote.
3856	62.27-62.58	0.31	3 62.46 3.	0 cm quartz-calcite alteration band at 30° to CA.
				Trace Cpy and Py. Pale yellow green epidote
				fracture filling to 10 cm from band.
	68.68-81.00	-	- Pale yel	low epidote fracture filling generally at 10-20°
			to CA.	
	72.90-75.60	-	Water :	seam. Broken core with earthy light green
				e on slips. Core broken into 1-4 cm thick
			fragment	s with earthy surfaces.
	75.00	-	- 4.0 cm v	white quartz vein at approximately 45° to CA.

			Au PP	B
3857	78.50-78.75	0.25	48	78.55-79.60 Strongest epidote alteration.
				75.55 0.5 cm alteration band with 1% fine grained Py.
3858	79.34-79.62	0.28	17	79.50 3.0 cm fine grained grey silicification and pale
				yellow epidote alteration with 1% py and
				trace Cpy.
	85.40	-	-	1.5 cm white to apple green epidote alteration band.
	90.20	_	-	1.5 cm white to apple green epidote alteration band.
	92.20	-	-	0.8 cm coarse grained white calcite in strong slip.
	92.66-93.10		_	Brick red hematization cut by irregular pale green
				epidote alteration.
	93.02			4.0 cm rusty white vein with fine grained intergrowth of
				calcite and quartz. 50% calcite, 50% quartz. Strong
				slip walls.
	94.02-99.02	-	-	Minor sericite alteration along healed fractures at 00°
				to CA.
	97.77-97.86	-	-	Moderately strong apple green to medium grey sericitic
				silicification along slip at 60° to CA. Trace very fine
	00 00 107 00			grained Py.
	99.02-107.80	-	-	Minor healed fractures at various angles including 55°
3859	107.15-107.73		- ÷ 1	to CA.
2022	10/.13-10/./3	0.58	nil	Chlorite, sericite alteration & calcite fracture filling.

107.80 112.95 DEFORMATION-ALTERATION ZONE

Variable deformation and alteration textures. Generally bleached pale grey sericitic-carbonate alteration

Hole Number 96-36

with vague to distinct igneous textures preserved. This alteration is cut by pervasive weak to strong sericitic foliation at 75-110° to CA. Zone is centred on calcite quartz vein in intense alteration from 109.61-110.57. Patchy chrome green fuchsite noted. 107.13-108.52 Stained blue by KFC where pre-etched by 10% HC1. 108.52-114.00 Not stained by KFC or very weakly stained Mauve by KFC where pre-etched by 10% HCl. Below 114.00 stained blue by KFC where pre-etched by 10% HC1. 108.40-108.96 Moderate calcite alteration. 110.00-112.36 Moderate calcite alteration. 112.36-114.00 weak calcite alteration. 109.42-109.61 Minor prominent fuchsite in sericite foliation. 107.73-108.46 0.73 43 Chlorite, sericite alteration. 107.80 3 cm soft, strong, pale-dark green sericite -chlorite foliation with 1% wispy Cpv. 107.93-108.05 strong dark green chlorite foliation with minor sericite plus 10% opaque white quartz patches to 3 mm thick. 108.05-108.95 calcite alteration. 108.05-108.52 Minor masses pyrite in sericite chlorite alteration. 108.46-109.21 0.75 63 108.52 Minor Cpy along edge of 1.0 cm fine grained white calcite vein at 45° to CA. 108.52-109.35 Pale grey sericite alteration dominates minor chlorite. Moderately soft. Stained pale mauve by KFC.

Hole Number 96-36

3860

3861

. •

			Au PPB
3862	109.21-109.61	0.40	632.5 109.35-109.42 Wispy calcite-quartz veining at $50-75^{\circ}$
			to CA and 1% coarse grained disseminated
			Py in wall rock inclusions. Average of 2.
3863	109.61-110.04	0.43	635.7 Total pulp metallics assay.
			109.61-110.02 grey fine grained carbonate-quartz
			with fine grained quartz dominates over
			massive cherty quartz. Wispy sericite
			prominent.
			109.61-109.75 0.5% Cpy, 0.5% Py and two tiny specks
			VISIBLE GOLD(?)
3864	110.04-110.32	0.28	111 110.02-110.32 strongly silicified as cherty grey
			silica replacing sericite alteration.
			110.10-110.32 5% fine grained Py masses.
3865	110.32-110.65	0.33	nil 110.32-110.57 Cherty grey quartz and fine grained
			white calcite veining.
3866	110.65-111.50	0.85	10 110.57-112.95 Silicified and sericitic.
			Strongly bleached to pale green,
			moderately soft-moderately hard.
3867	111.50-112.35	0.85	5 Silicification. 5% calcite fracture filling.
			112.27 2.5 cm fine grained calcite vein at 60° to
			CA. 10% wispy sericite foliation.
3868	112.35-112.95	0.60	9.5 Silicification. Minor calcite fracture filling.
			112.71 0.8 cm white calcite-quartz vein at 50° to
			CA. Average of two.

112.95 115.85 DIORITE, NON-MAGNETIC ALTERED.

Hole Number 96-36

Pale grey altered diorite. Chloritic and non-magnetic.

ALTERATION AND MINERALIZATION.

0000				
3869	112.95-114.00	1.05	7	Pale grey chloritic alteration.
3870 114.00-115.76		1.76	14	Weak alteration. Minor Py.
				114.80–114.90 5 cm coarse grained white calcite
				patch filling minor dilation at 30° to
				CA.

115.85 127.50 DIORITE, NON-MAGNETIC, ALTERED. Medium to pale grey with pale grey sections hard and silicified. 4 mm chlorite masses locally preserved. The igneous texture is vague due to alteration. Carbonate-quartz fracturing at low angle to CA.

ALTERATION AND MINERALIZATION.

	Variable silicification		printing (chloritic alteration?)
	114.00-120.00 -		Minor Py in and along calcite fracture filling.
	120.00-127.50 -	-	Minor medium grained disseminated Py concentrated
			along weak chlorite fracture filling and weak pale
			grey silicification bands. Py <5% overall with
			concentrations to 2% over 10.0 cm lengths.
3871	115.76-116.65 0.85	2	0.5% Py in fractures.
3872	116.65-117.77 1.12	205	2% coarse grained Py in silicious fracture
			fillings. Average of two.
3873	121.47-122.43 0.96	15	1-2% disseminated medium-coarse grained Py.

Hole Number 96-36

121.53 1.0 cm white alteration band with 30% fine grained fine grained masses of Py plus 3% medium grained disseminated Py over 4.0 cm of wall rock.
121.55-122.43 1-2% medium to coarse grained disseminated Py in patchy grey silicification.
3874 122.43-123.65 1.22 139 3% fine-medium grained Py in weak sericitic alteration.

- 127.50 129.39 DIORITE(?), DIKE. Dark greenish grey, massive and crystalline dike. Moderately hard. Aphanitic at contacts grading to feathery medium grained crystalline plagioclase and mafic crystals to 1.5 mm long. 128.65-128.95 Variable texture, possibly an absorbed xenolith Sharp natural upper contact at 40° to CA. Sharp natural lower contact at 60° to CA rotated 90° relative to contact at 127.50. 129.39-130.30 0.3-2.0 cm aphanitic pale green dikes.
- 129.39 162.00 DIORITE, NON-MAGNETIC. Medium green with patchy sections of medium grey bleaching. Uniform and massive 1 mm crystalline with equigranular feldspar and 3% 3-4 mm dark green patches.

Hole Number 96-36

ALTERATION AND MINERALIZATION.

1% white to pale yellow alteration bands (epidote) to 1 cm and minor healed quartz-carbonate fracture filling. Weakly stained mauve by KFC without preetching with 10% HCl. Locally stained pale blue after pre-etch with 10% HCl. Trace background disseminated Py throughout.

	100 m				
	136.07	-	-	1.0 cm fine grained white silicification band with	
				0.5 cm patch of fine grained Py. Also minor	
				coarse grained Py near band.	
	136.67-136.74	-	-	Bleached pale grey with 1% fine grained Py masses	
				to 4 mm and minor fine grained pale green streaks.	
3875	139.00-140.50	1.50	5	139.10-140.42 4% calcite-quartz alteration bands and	
				fracture filling with trace fine grained	
				disseminated Cpy in calcite.	
3876	144.00-145.90	1.90	nil	144.14 Trace Cpy in 3 mm calcite fracture filling	
				at 65° to CA.	
				145.25 Trace Cpy in 0.7 cm calcite-chlorite vein	
				along slip at 45° to CA.	
				145.75 Trace Cpy in irregular 3 mm calcite	
				fracture filling.	
3877	153.29-154.91	1.72	15	1.5 cm white silicification band at 70° to CA.	
				Trace fine grained Cpy.	
				153.89-157.60 5% low angle to CA calcite veining	
				with 2 mm patches of Py along edges of	
				veining. Weak bleaching and weak	
				calcite-chlorite-sericite alteration.	
3878	154 01 155 00	1.09	117	Trace Cpy & minor Py in calcite veining.	
	154.91-155.00				
3879	155.00-157.60	1.60	437	Py in calcite veining. Average of two.	

Hole Number 96-36

158.93-162.00 - - 0.5-2.5 cm banding of dark green and white silicates with 15% white calcite. Barren of sulphides.

162.00 END OF HOLE

Hole Number 96-36

Assay Summary: Hole 96-36

Sample No.	From To	Length	Au PPB
3852	48.86-50.92	1.96	393.5 (Av.)
3853	56.50-57.08	0.58	245
3854	57.08-57.62	0.54	nil
3855	57.62-58.32	0.70	84
3856	62.27-62.58	0.31	3
3857	78.50-78.75	0.25	48
3858	79.34-79.62	0.28	17
3859	107.15-107.73	0.58	nil
3860	107.73-108.46	0.73	43
3861	108.46-109.21	0.75	63
3862	109.21-109.61	0.40	682.5 (Av.)
3863	109.61-110.04	0.43	685.7
3864	110.04-110.32	0.28	111
3865	110.32-110.65	0.33	nil
3866	110.65-111.50	0.85	10
3867	111.50-112.35	0.85	5
3868	112.35-112.95	0.60	9.5 (Av.)
3869	112.95-114.00	1.05	7
3870	114.00-115.76	1.76	14
3871	115.76-116.65	0.85	2
3872	116.65-117.77	1.12	205 (Av.)
3873	121.47-122.43	0.96	15
3874	122.43-123.65	1.22	1.39
3875	139.00-140.50	1.50	5

Hole Number 96-36

11

۰.

Assay Summary (cont'd.) 96-36

Sample No.	From	То	Length	Au PPB	
3876	144.00-14	15.90	1.90	nil	
3877	153.29-15	54.91	1.72	15	
3878	154.91-15	55.00	1.09	117	
3879	155.00-15	57.60	1.60	437 (Av.)	

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

1

Hale 95-37 Property: McGarcy Township Care Size: BQ Casing: Left Caordinates: 14+84N, 20+49E Depth: 247.0 m. Azimuth: 352⁰ Dip: -60° Start Date: November 24, 1996 Finish Date: November 29, 1996 Drilled By: Kosy Diamond Drilling All Measurements in Meters

Meterage

From To Description 0.00 13.20 OVERBURDEN.

13.20 58.60 BASALT, DIORITIC, MEDIUM GRAINED MAGNETIC
13.20-48.00 Dark green, medium grained with 3-20% dark green mafic masses. Magnetic. This unit is more mafic and darker green than diorite in hole 96-16 to the south.
48.00-58.60 Dark green fine-medium grained massive hard and magnetic. Mafic masses absent.
48.75-49.81 Coarse grained phase. 20% 2X5 mm augite crystals in fine grained groundmass.

Hale Number: 96-37

	ALTERATION AN	ID MINERA	LIZATI	J.I.
	13.20-58.60	-	-	Weakly stained blue by potassium ferri cyanide (KFC) where pre-etched by 10% Hcl & very weakly stained pale blue where not pre-etched. Minor pale yellowish hairline fracture fillings.
3912	16.00-17.00	1.00	17	16.46-16.62 Intense pale green epidote alteration band at approximately 75° to CA. Alteration has 10% quartz masses to 2 cm & trace tiny Cpy grains.
	16.62-19.85	-	-	Locally weak epidote alteration as medium green bleaching. 1% pale green hairline fracture filling at 70° to CA. Rare specks Cpy in epidote.
	19.45	–	-	3 mm ochre-yellow and 3 mm coarse white calcite with minor Cpy in slip at 60° to CA.
	23.75-23.79	-	-	3.0 cm calcite epidote band at 80° to CA. 50% calcite, 20% chloritic fragments and 30% apple green epidote. Rare specks Cpy.
3913	26.00-26.45	0.45	43	26.33 4 mm calcite epidote fracture filling with 1.0 cm of wall rock alteration with 1% Cpy.
3914	28.36-29.08	0.72	277	28.53-29.48 3% pale green epidote fracture filling at 70-85° to CA and locally pale green epidote alteration of groundmass. Average of two.
3915	29.08-29.54	0.46	55	 29.15 Hairline fracture filling to 1.0 cm epidote with 25% calcite (concentrated in centres) at 80° to CA with 1% Cpy and 1% Py (in fractures). 29.43 0.5-1.0 cm epidote seam with 50% grey calcite,

)

•.

			Au PPB 10% medium grained Py an 1% fine grained
3916	30.98-31.58	0.60	Cpy. 27 31.00-33.07 Chloritic alteration.
			313.66-32.74 Strong chloritic alteration.
۰.			Medium green, very fine grained,
			massive, moderately soft, igneous
			texture destroyed.
			Alteration strongest near caldite
			stringers. White specks within 2 cm of
			stringers. No epidote in chlorite
			alteration zone.
			. Calcite stringers stained mauve by
0.0.1.5			potassium ferri cyanide (KFC).
3917	31.58-32.81	1.23	926.5 31.69 3 mm dark grey calcite stringer at 65° to CA.Av.of 2
			31.89 4 mm pale grey calcite stringer at 60° to CA.
			32.01 10.0 mm grey to green calcite vein.
			Minor medium grained Py and trace Cpy.
			32.10 Minor Py in fracture filling at low angle to CA
			32.28 4 mm pale grey calcite stringer at 70° to CA.
			32.54 1.0 cm fine grained grey calcite stringer.
2010			Trace very fine grained sulphides.
3918	32.81-34.00	1.19	36 33.69 1.0 cm fine grained grey calcite stringer.
			Rare tiny specks Py.
			33.74 3 mm grey calcite stringer.
			Note. Calcite stringers from 31.69-33.74 are at
3919		1 00	random orientation.
0.91.8	34.00-35.00	1.00	39 34.04 0-4 mm white calcite in late fracture.
			34.37 & 34.63 Calcite to 0.5 cm in epidote fracture
Number:	96-37		fillings at 30° to core axis.

			Au PPB	3
3920	36.79-38.00	1.21	82.5	36.83 Minor Cpy in 1.0 cm grey calcite stringer at 50° to CA. Average of two.
				37.30-37.80 0.3 cm calcite epidote seam with trace Cpy at 0°.
3921	42.70-44.00	1.30	24	43.32-43.40 8.0 cm very coarse grained calcite snow white vein calcite vein at 65° to CA. Vein stained mauve by KFC. 10.0 cm of dark green chlorite alteration below vein only. Minor epidote in chlorite alteration.
3922	44.00-45.13	1.13	40.5	Trace Cpy. Average of two. 44.81-44.86 Patch calcite-epidote alteration.
3923	45.13-46.40	1.27	41	 45.20 5% Cpy in rounded two dark green patches with pale green rimming outside patches. 45.64 1.0 cm chlorite alteration band at 45° to CA. 45.90 2.0 cm dark green patches with 10% Cpy. 46.18 3 mm calcite seam with trace Cpy and 3 mm pink feldspar alteration along both walls.
3924	48.74-49.00	0.26	26	48.87-48.90 15% Cpy in several 4 mm dark green patches rimmed by thin pale green alteration (not augite crystals).
	50.73	-	-	1-2 mm yellow fracture filling with 50% fine grained Py (at 50° to CA).
	51.00-52.16	-	-	Trace Py on low angle fractures.
	52.15	-	-	2 mm Py-chlorite fracture filling at 45° to CA.
0436	54.08-55.45	1.37	43	Minor epidote fracture filling.
3925	55.45-56.63	1.18	514	55.96 0.67 cm white calcite stringer with one slip

wall at 40° to CA. 22 2-4 mm disseminated PV cubes within 5.0 cm of Au PPB stringer. 3926 56.63-57.84 1.21 3280 56.70-57.80 Minor Cpy in low angle epidote fracture filling. Average of two. 0437 57.84-59.00 1.16 21

58.60 61.92 FELDSPAR PORPHYRY

15% 0.5-2 mm white feldspar phenocrysts and rare 3 mm equant white feldspar phenocrysts, 2% dark green mafic xenoliths and 5% fresh black augite phenocrysts in dark green groundmass. Very hard. Upper contact is sharp natural frozen and irregular at 30° to

CA.

Lower contact is sharp natural frozen and straight at 50° to CA.

ALTERATION AND MINERALIZATION.

Moderate hematization and weak epidotization. Not stained by KFC.

61.92 65.23 BASALT, MASSIVE, MEDIUM GRAINED. Similar to 48.00-58.00. Dark green fine-medium grained massive hard and magnetic.

ALTERATION AND MINERALIZATION.

Minor pale green fracture filling at 65° to CA. Stained blue by KFC.

Hole Number: 96-37

Au PPB

3927 61.58-62.00 0.42 336 61.67 4.0X2.0 cm xenolith. Dark green chloritic with 2% Cpy.

61.94-61.97 Minor Py and trace Cpy.

65.23 66.03 FELDSPAR PORPHYRY Similar to 58.60-61.92. Sharp, natural, frozen upper contact at 25° to CA. Lower contact along slip at 55° to CA.

> ALTERATION AND MINERALIZATION. Moderate hematization. Not stained by KFC.

66.03 86.10 BASALT, MASSIVE Dark green, fine grained, massive, moderately hard and magnetic.

ALTERATION AND MINERALIZATION. Stained blue by KFC. 66.03-74.00 Minor pale green fracture filling. ---74.00-86.10 <1% pale green epidote-calcite -------fracture filling commonly at 70 and 25° to CA. 3928 78.07-78.51 0.44 78.25-78.40 Moderate to strong chlorite alteration 2 focused on 1.5 cm fine grained white to pale green calcite-epidote vein . Trace

Hole Number: 96-37

					Py in vein. 0.5 mm white specks (leucoxene) in chlorite alteration. 10% pale green epidote fracture filling with
					epidote alteration cutting chlorite
			Au PPB		alteration.
3929	78.51-79.33	0.82	à	78.40-79.16	4% calcite-epidote stringers with minor
					Py and Cpy at 55-75° to CA.
3930	83.00-84.28	1.28	15	83.00-86.10	2-3% epidote-calcite fracture filling
					locally with trace to minor Py.
3931	84.28-85.35	1.07	2	Trace Py.	-
3932	85.35-86.10	0.75	nil	85.38-86.10	Trace Cpy.

86.10 97.91 CHLORITE ALTERATION ZONE; BASALT 20% soft dark green specks in soft medium green groundmass (dark green overall). Uniform and massive, soft to moderately soft. Non-magnetic. Upper contact gradational and arbitrary. Lower contact along tight quartz-hematite vein at 58° to CA.

> ALTERATION AND MINERALIZATION. As described above. Minor hairline calcite fracture filling throughout 86.10-86.73 - 0.3% Cpy along chloritic fractures. Weak shear at 35° to CA. 86.24-86.53 - Brecciated with 15% barren fine grained white calcite breccia filling.

Hole Number: 96-37

			Au PPB	
	86.78-87.95	-	-	86.78-87.95 STRONG FAULT.
				(Probably 0.3 m lost core as measured
				from 86.00-89.00 metres).
				From 86.78-86.90 10% coarse white
				calcite breccia filling.
				From 86.90-86.94 intense pale grey
				silicification (50° to CA) with later
				chloritic fracture filling.
				From 86.94-87.95 intense friable
				chlorite schistosity at 80° to CA with
				34.0 cm very intense friable chlorite at
				30° to CA between 87.00-87.34.
				At 87.34 green mud at 80° to CA?
	87.95-92.00	÷	-	Generally broken ground.
				3.0-7.0 cm lengths to 90.70 and 12 cm lengths below
				90.70.
	92.00-104.00	-	-	Average 12 cm slip spacing.
	89.00-92.00		-	Approximately 0.2 m ground core? (probably between
				89.00 & 90.00)
3933	89.00-90.71	1.71	nil	89.00-89.80 10% white quartz as breccia and fracture
				filling.
				89.50-90.62 30% quartz veining in strong chlorite
				schist at 60° to CA.
0.0 0.4	92.55-92.80	-	-	15% quartz veining at 25 and 28° to CA.
3934	93.50-95.00	1.50	3	93.71-93.99 8.0 cm quartz vein at 25° to CA.
				5% chloritic inclusions and 5% calcite
				fracture filling.
	95.95-96.40	-	-	Breccia with 20% breccia filling. Mixed fragments

٠,

Ŕ

•.

with most fragments identical to host rock. Eight hard red hematite and a few very fine grained chloritic fragments.

91.91 - - 0.8 cm quartz hematite vein at 58° to CA along lower contact of chlorite alteration. 3 mm white calcite at 50° to CA then 2 mm red hematite, then 3 mm white quartz, then 1.5 mm black specular hematite, then rock below.

97.91 104.37 BASALT, FINE GRAINED MASSIVE.

97.91-102.00 Moderately magnetic. Medium-dark green, fine grained, uniform and massive, and moderately hard gradational into

102.00-104.37 Non-magnetic chlorite alteration. Dark green, fine medium grained, uniform and massive, moderately soft. 20% 1 mm soft dark green specks in soft medium green groundmass. Dark green overall.

ALTERATION AND MINERALIZATION.

Chloritic alteration described above. Epidote absent. 1-2% 2-3 mm calcite fracture filling at 65, 25 and 00° to CA. 102.59-102.64 - - 4.0 cm quartz vein at 45° to CA. 20% breccia inclusions. 104.05-104.37 - - 2-3% mixed hematized syenite, chloritic basalt, and pale grey silicified rock in white quartzcalcite breccia filling. Wall rock is silicified.

Hole Number: 96-37

۰.

104.37 118.27 SYENITE.

Brick red, uniform and massive and fine grained with 3^{*}8 black augite phenocrysts. Moderately hard. 1% moderately soft rounded mafic xenoliths to 2.0 cm. Upper contact sharp at 60° to CA against silicification above. Lower contact gradational into chlorite alteration below.

ALTERATION AND MINERALIZATION.

Epidote absent. Pervasive strong hematization throughout. Barren of sulphides. 1% white calcite-quartz fracture filling with 40° to CA dominant. Stained pale mauve by KFC.

3935 105.54-107.00 1.46 nil Barren character sample. 111.62 - 1.5 cm opaque white quartz vein at 50° to CA.

118.27 138.70 BASALT, MEDIUM GRAINED MASSIVE.

Dark green, uniform and massive, soft to moderately soft. Non-magnetic.

121.80-125.90 Moderately magnetic and moderately hard.

ALTERATION AND MINERALIZATION.

Moderate to strong pervasive chloritic alteration with tiny white specks (leucoxene). Prominent chlorite fracturing at 25° to CA. <0.5% calcite fracture filling. Stained blue by KFC.

Hole Number: 96-37

Au PPB

3936 122.00-123.50 1.50 122.00-123.70 Prominent calcite fracture filling to nil 5 mm at 00-20° to CA. Trace Cpy in calcite. From 123.00-123.30 Black and red hematite in 3 mm calcite fracture filling at 00° to CA. At 123.44 2.0X2.0X0.2 cm Cpy fracture filling between two calcite fracture fillings. 3937 123.50-124.88 1.38 19 3938 124.88-125.72 0.84 77 Cpy in fracture at 00° to CA..

3939 125.72-127.22 1.50 21 Barren character sample.

138.70 149.60 FELDSPAR PORPHYRY.

138.70-141.20 Chloritic feldspar porphyry(?)

Medium grey with weakly defined pinkish spots to 3 mm. Fine grained massive and moderately soft (possible feldspathization).

141.20-149.60 Pale pinkish.

20% 1 mm orange feldspar phenocrysts, 1% 3 mm orange feldspar phenocrysts and 3% flat black phenocrysts in a fine grained pinkish grey groundmass. Moderately hard, uniform and massive.

138.70 Sharp natural contact at 40° to CA with chilled appearance against rock above.

149.60 Lower contact vague.

ALTERATION AND MINERALIZATION.

Chloritic above 141.20. Weak silicification below 141.20 obscures outlines of phenocrysts. Very weakly stained blue by KFC.

Hole Number: 96-37

]]

Au PPB	
--------	--

3940 139.83-141.28 1.45 5 Barren. Character sample.

149.60 159.64 BASALT, MEDIUM GRAINED MASSIVE. Dark green, Medium grained, uniform and massive. Moderately soft. 5% 0.5 mm dark green chloritic spots and 2% very fine white specks (leucoxene) in pervasive strong chlorite alteration. Non-magnetic. Prominent chlorite slips. Stained blue by KFC. ALTERATION AND MINERALIZATION. Alteration as described above. 3941 152.69-154.15 1.46 2 151.77-154.77 Barren chlorite. Very fine grained, dark green, soft to very soft, uniform and massive. 153.23-153.45 Chloritic schistose shear at 30° to CA with 2.0 cm of flakey gouge. Strong chlorite slip at 00-35° to CA. 158.46-159.64 _ 159.64 160.15 FELDSPAR PORPHYRY. 3942 159.64-160.15 0.51 5

160.15 162.12 BASALT, CHLORITIC.

Hole Number: 96-37

162.12 164.13 FELDSPAR PORPHYRY.

Au PPB

3943 162.12-164.13 2.01 nil

164.13 193.37 BASALT, VERY FINE GRAINED MASSIVE.

3944	164.13-165.70	1.57	10	Ру.
3945	165.70-166.69	0.99	nil	Cpy in calcite fracture filling.
3946	166.69-167.00	0.31	117 .5	Cpy fracture filling & Cpy in disseminated patches.
				Average of two.
3947	167.00-168.26	1.26	19	Trace Cpy in calcite fracture filling.
3948	168.26-169.29	1.03	1111.5	From 168.26-168.46 prominent Py invading wall rock
				from fracture at 0° to CA. Average of two.
3949	169.29-170.00	0.71	34	
3950	170.00-171.00	1.00	12	
3951	171.00-172.09	1.09	77	
3952	172.09-172.36	0.27	nil	
3953	172.36-173.68	1.32	19	
3954	173.68-174.50	0.82	38	
3955	174.50-176.00	1.50	56 1.5	Average of two.
3956	176.00-176.84	0.84	45	
3957	176.84-177.49	0.65	2	
3958	177.49-178.72	1.23	10	
3959	178.72-180.18	1.46	12	
3960	181.18-182.00	1.82	9	
3961	182.00-183.00	1.00	5	
3962	183.00-183.82	0.82	24	
3963	183.82-184.65	0.83	278	Average of two.

Hole Number: 96-37

Au PPB

	67	1.23	184.65-185.88	3964
	7	1.46	185.88-187.34	3965
	15	1.39	187.34-188.73	3966
Average of two.	25	1.48	188.73-190.21	3967
	29	1.37	190.21-191.58	3968
	9	1.79	191.58-193.37	3969

193.37 196.06 BASALT, CALCITE ALTERATION, FINE GRAINED MASSIVE.

- 3970 193.37-194.37 1.00 12.5Average of two.
- 3971 194.37-196.06 1.69 163
- 196.06 230.85 ALTERATION ZONE-DEFORMATION ZONE.

Intense pervasive alteration throughout stained blue by KFC except as noted. No epidote.

- 190.06-200.11 Intense pervasive pale yellow Fe-carbonate-sericite alteration with intense network of closely spaced microfractures. moderately soft, fine grained uniform and massive. Trace disseminated Py to 2 mm. Carbonate alteration cuts Py grains.
- 211.11-202.00 Deformation zone (similar to 190.06-200.11) with coarse healed medium grey fracture filling and locally sericitic foliation.
- 202.00-204.44 20% Pale yellow-brown sericite foliation at 00-20° to CA cutting pale grey, coarse grained Fe-carbonate (possibly 40° to CA) and small Fe-carbonate eyes in sericite foliation. Moderately soft to hard.

204.44-218.05 Deformation zone.

Hole Number: 96-37

..

75% blocks of coarse grained (volcanics?) with pervasive Fe-carbonate and intense Fe-carbonatesericite alteration with 1% 1 mm red hematite grains. Pale yellow green with 1 mm relict (igneous?) texture. 25% of rock is buff Fe-carbonate bands and patches. Rock cut by sericitic foliation at 00-25° to CA. Prominent chrome green fuchsite along edges of Fecarbonate bands.

218.05-224.00 Intense Fe-carbonate alteration-sericite alteration. 1 mm Igneous texture preserved. Pale grey-green and moderately soft with pervasive healed microfracturing and irregular medium green healed fracturing. Locally minor red coloration on some medium green fractures. Minor Fe-carbonate fracture filling to 3 mm. 1-2% 1 mm black to red hematite grains.

224.00-230.85 Similar to 218.05-224.00 but with intense calcite alteration stained mauve by KFC. Medium green throughout. Scattered very fine grained, pale pink calcite stringers to 0.3 mm at 90° to CA.

Au PPB

3972	196.06-197.23	1.17	19	
3973	197.23-198.65	1.42	36	
3974	198.65-200.11	1.46	21	
3975	200.11-201.66	1.55	724	Average of two.
3976	201.66-203.13	1.47	98	201.80 minor Py and secondary Py in minor chlorite
				band.
3977	203.16-203.74	0.61	110	
3978	203.74-204.22	0.48	117	

Hole Number: 96-37

۰.

			Au PPB	
200	204.22-204.44	0.22	119212	VG Estimated 140000 ppb. Metallic Assay.
3979	204.44-204.99	0.55	324	
3980	204.99-206.00	1.01	9	
3981	206.00-207.45	1.45	26	
3982	207.45-208.90	1.45	12	
3983	208.90-210.75	1.85	9	
3984	210.75-210.98	0.23	8	Average of two.
3985	210.98-211.77	0.79	630	Average of two.
	211.77-212.07	0.30		203.00-218.00 approximately 0.30 metres lost Core. Location arbitrarily placed at 211.77-212.07 for sampling purposes.
3986	212.07-213.53	1.46	10	
3987	213.53-215.00	1.47	nil	
3988	215.00-216.38	1.38	21	
3989	216.38-216.85	0.47	43	
3990	216.85-218.19	1.34	12	
3991	218.19-219.13	0.94	33	219.10 5.0 cm Fe-carbonate vein at 30° to CA. Strong sericitic slip walls
3992	219.13-220.55	1.42	21	
3993	220.55-221.87	1.32	3	
3994	221.87-223.37	1.50	7	
3995	223.37-224.00	0.63	11	Average of two.
3996	224.00-224.76	0.76	15	
3997	224.76-226.29	1.53	5	
3998	226.29-227.67	1.38	22	
3999	227.67-229.29	1.62	28.5	Average of two.
4000	229.29-230.85	1.56	19	

230.85 247.00 BASALT, DIORITIC.

Possible Diorite similar to bottom of hole 96-16. 1 mm crystalline as 60% white feldspar crystals in dark green groundmass of (altered mafic minerals). Medium green and moderately hard. ALTERATION AND MINERALIZATION. 5% very fine grained pale yellow-green calcite-epidote alteration bands with 80° to CA dominant. 01 230.85-233.00 2.15 34.5 Average of two. 02 244.00-245.28 1.28 5% calcite epidote alteration bands with trace Py 31 and Cpy. 145.15 2.0 cm barren white calcite vein at 30° to CA. calcite cleavages to 0.5 cm. 4.0 cm weak epidotized bleaching. 246.28-247.00 No alteration bands. 247.00 Last tag reads 245.00 but should probably read 247.00 END OF HOLE.

κ.

247.00

Assay Summary: 96-37

Sample No.	From To	Length	Au PPB		
3912	16.00-17.00	1.00	17		
3913	26.00-26.45	0.45	43		
3914	28.36-29.08	0.72	27 7	(Av.)	
3915	29.08-29.54	0.46	55		
3916	30.98-31.58	0.60	27		
3917	31.58-32.81	1.23	92 6. 5	(Av.)	• •
3918	32.81-34.00	1.19	36		
3919	34.00-35.00	1.00	39		
3920	36.79-38.00	1.21	82.5	(Av.)	
3921	42.70-44.00	1.30	24		
3922	44.00-45.13	1.13	40.5	(Av.)	
3923	45.13-46.40	1.27	41		
3924	48.74-49.00	0.26	26		
436	54.08-55.45	1.37	43		
3925	55.45-56.63	1.18	514		
3926	56.63-57.84	1.21	3280	(Av.)	• •
437	57.84-59.00	1.16	21		
3927	61.58-62.00	0.42	336		
3928	78.07-78.51	0.44	2		
3929	78.51-79.33	0.82	9		
3930	83.00-84.28	1.28	15		
3931	84.28-85.35	1.07	2		
3932	85.35-86.10	0.75	nil		
3933	89.00-90.71	1.71	nil		

Assay Summary (cont'd) 96-37

Sample No.	From To	o Length	Au PPB	
3934	93.50-95.0	00 1.50	3	
3935	105.54-107	.00 1.45	nil	
3936	122.00-123	.50 1.50	nil	
3937	123.50-124	.88 1.38	19	
3938	124.88-125.	.72 0.84	77	
3939	125.72-127.	.22 1.50	21	
3940	139.83-141.	.28 1.45	5	
3941	152.69-154	.15 1.46	2	
3942	159.64-160.	.15 0.51	5	
3943	162.12-164	.13 2.01	nil	
3944	164.13-165.	.70 1.57	10	
3945	165.70-166.	.69 0.99	nil	
3946	166.69-167.	.00 0.31	117.5	(Av.)
3947	167.00-168.	.26 1.26	19	
3948	168.26-169.	.29 1.03	1111.5	(Av.)
3949	169.29-170.	.00 0.71	34	
3950	170.00-171.	.00 1.00	12	
3951	171.00-172.	.09 1.09	77	
3952	172.09-172.	.36 0.27	nil	
3953	172.36-173.	.68 1.32	19	
3954	173.68-174.	.50 0.82	38	
3955	174.50-176.	.00 1.50	56 1.5	(Av.)
3956	176.00-176.	.84 0.84	45	
3957	176.84-177.	.49 0.65	2	
3958	177.49-178.	72 1.23	10	
3959	178.72-180.	18 1.46	12	

Hole Number: 96-37

Assay Summary (cont'd) 96-37

Sample No.	F'rom To	Length	n Au PPB	
3960	180.18-182.00	1.82	9	
3961	182.00-183.00	1.00	5	
3962	183.00-183.82	0.82	24	
3963	183.82-184.65	0.83	278 (Av.)	
3964	184.65-185.88	1.23	67	
3965	185.88-187.34	1.46	7	
3966	187.34-188.73	1.39	15	
3967	188.73-190.21	1.48	25 (Av.)	
3968	190.21-191.58	1.37	29	
3969	191.58-193.37	1.79	9	
3970	193.37-194.37	1.00	12.5 (Av.)	
3971	194.37-196.06	1.69	163	
3972	196.06-197.23	1.17	19	
3973	197.23-198.65	1.42	36	
3974	198.65-200.11	1.46	21	
3975	200.11-201.66	1.55	724 (Av.)	
3976	201.66-203.13	1.47	98	
3977	203.16-203.74	0.61	110	
3978	203.74-204.22	0.48	117	
200	204.22-204.44	0.22	119212 Metallic Assay	' -
3979	204.44-204.99	0.55	324	
3980	204.99-206.00	1.01	9	
3981	206.00-207.45	1.45	26	
3982	207.45-208.90	1.45	12	
3983	208.90-210.75	1.85	9	
3984	210.75-210.98	0.23	8 (Av.)	

Hole Number: 96-37

.:

۰.

Assay Summary (cont'd) 96-37

Sample No.	From	То	Length	Au	PPB	
3985	210.98-2	211.77	0.79	63	30	(Av.)
	211.77-2	212.07	0.30	Lost	c Coi	re
3.986	212.07-2	13.53	1.46]	LO	
3987	213.53-2	15.00	1.47	ni	.1	
3988	215.00-2	16.38	1.38	2	21	
3989	216.38-2	16.85	0.47	4	13	
3990	216.85-2	18.19	1.34	1	.2	
3991	218.19-2	19.13	0.94	3	33	
3992	219.13-2	20.55	1.42	2	21	
3993	220.55-2	21.87	1.32		3	
3994	221.87-2	23.37	1.50		7	
3995	223.37-2	24.00	0.63	1	1	(Av.)
3996	224.00-2	24.76	0.76	1	. 5	
3997	224.76-2	26.29	1.53		5	
3998	226.29-2	27.67	1.38	2	2	
3999	227.67-2	29.29	1.62	2	8 • 5	(Av.)
4000	229.29-2	30.85	1.56	1	9	
01	230.85-2	33.00	2.15	3	4.5	(Av.)
02	244.00-2	45.28	1.28	3	1	

Hole Number: 96-37

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hale 96-38 Property: McGarry Township Care Size: NQ Casing: Left Coordinates: 15+19N, 20+77E Depth: 122.0 m. Azimuth: 352° Dip: -59° Start Date: November 30, 1996 Finish Date: December 02, 1996 Drilled by Kosy Diamond Drilling Logged By Douglas Robinson All Measurements in Meters

Meterage

From To Description

0.0 52.90 BASALT, PILLOWED

Medium green, very fine grained. Prominent pillow selvages throughout. From 0.00-31.00 occasional calcite filled vesicles. From 31.00-52.90 frequent 2-5 mm calcite filled vesicles.

ALTERATION AND MINERALIZATION:

2-4 mm yellow garnets in calcite pillow selvages as noted below: 3.00, 6.10-6.20, 7.50-7.90, 8.20, 10.00, 26.50, 34.60, 36.80, 40.30, 42.00 m. These garnets were identified by colour, extreme hardness, conchoidal fracture and dodecahedral crystal shape. The yellow colour and calcite association are suggestive of grossular garnets.

Norgles Altrian Fel: 15, 1997

Hole Number 96-38

			Au PPB	3	
	0.00-41.00		-	Patchy weak to moderate calcite alteration very weakly stained mauve to pale blue by potassium ferri cyanide (KFC) without pre-etching with 10% Hcl.	
	0.00-7.5	-	-	Ground moderately broken but not altered.	
100	6.07-6.49	0.42	412.5	5 6.10-6.20 0.0-5.0 cm calcite pillow selvage with 10% garnets. Average of two.	
47	7.41-8.30	0.89	350	8.20 Glassy garnets to 3 mm in calcite pillow selvage.	
				7.50-7.80 4 cm breccia zone at 10° to CA.	
				50% 0.5-1.5 cm angular breccia fragments,	
				5% 2-4 mm yellow garnets in 45% coarse	
				grained white calcite breccia filling.	
				Trace Py.	
				7.50 Open water seam at 25° to CA.	
48	10.00-11.00	1.00	91.5	10.00-10.30 Trace Py in calcite fracture filling. Average of two.	
	11.45 -	-	-	1.0 cm fine grained white calcite along loose fracture.	
49	14.41-15.90	1.49	38	15.05-15.10 Minor disseminated Py to 1 mm and Py on	
			00	fracture.	
				15.60-15.70 25% calcite in 6.0 cm chloritic pillow	
				selvage with minor garnet.	
	18.15 -	-	-	Minor red hematite fracture filling in calcite	
				pillow selvage.	
51	19.56-20.12	0.56	410	19.64-20.42 Strong pervasive calcite alteration.	
				19.97-20.01 20% calcite veining to 0.8 cm in dark	
				green moderately soft chloritic	
				alteration at 80° to CA with minor	
	A () A (yellow epidote.	
mber	96-38			2	

			Au PPB	
52	20.12-20.96	0.84	249	Barren.
53	20.96-21.63	0.67	87	21.00-21.60 Py on two fractures at $0-5^\circ$ to CA.
54	21.63-21.95	0.32	2410	Garnet in calcite pillow selvage.
				Average of two.
55	21.95-23.00	1.05	75	Trace calcite-epidote fracture filling.
56	23.00-24.62	1.62	308.5	2% calcite fracture filling with weak epidote.
				Average of two.
57	24.62-26.13	1.51	62	24.46-25.52 50% calcite veining with
				5% pale green epidote (60° to CA)
58	26.13-27.50	1.37	111	26.27-27.15 Strong pervasive calcite alteration.
				26.54 3 cm calcite garnet pillow selvage.
				27.00-2.5 cm fine grained calcite vein at 75° to CA
				Vein has fine grained disseminated black
				magnetite. Strongly magnetic.
59		1.50	77	Minor calcite fracture filling.
60	29.00-30.07	1.07	7	29.20-29.98 5% calcite fracture filling generally at
	_			70° to CA.
61		1.93	250	1% calcite fracture filling.
62		1.41	130	Trace Py in late fractures.
63	33.41-33.62	0.21	132	Minor chalcopyrite (Cpy) associated with yellow
				garnet in 1 cm calcite pillow selvage.
64		0.95	72	Trace Py in late fractures.
65	34.57-34.64	0.07	79475	34.60 3.0 cm pillow selvage with 3% yellow garnets
				as glassy dodecahedrons. Metallic Assay.
				Three specks VISIBLE GOLD.
				Estimate 20,000 PPB Au.
66	34.64-35.17	0.53	495.5	35.07 1.5 cm strong fine grained yellow epidote along
Number	96-38			slip at 65° to CA. Average of two.
TH CHURCH	20 30			3

NB

Hole Number 96-38

			Au PPB	
67	35.17-36.52	1.35	58.5	Minor garnet. 0.5% calcite fracture filling.
				Average of two.
68	36.52-36.98	0.46	170	5% yellow garnet and minor Cpy in 0.5-3.0 cm calcite
				pillow selvage rimmed by epidote.
	36.00-52.90	-	-	Minor hairline calcite fracture filling.
69	36.98-38.68	1.70	370.5	Minor calcite fracture filling. Average of two.
70	38.68-40.00	1.32	50	Barren.
71	40.00-41.00	1.00	72	40.30 2.5 cm calcite patch with 5% garnet and
				trace Py in pillow selvage.
	41.00-46.00	-	-	Stained medium blue by KFC.
72	41.00-42.51	1.51	154	Trace calcite fracture filling.
73	42.51-42.82	0.31	406	1-5 cm pillow selvage with 2% garnet and trace Py
				in 1 cm calcite cleavages.
74	42.82-44.37	1.55	46	Epidote pillow selvages.
				43.50 Coarse grained Py and trace Cpy in
				3 mm white band at 60° to Ca.
75	44.37-45.34	0.97	53	44.54 0.5-4.0 cm calcite pillow selvage with
				minor garnet and 0.5% Cpy.
				45.26 Minor medium grained Py in Pillow selvage.
	46.00-52.90	_	-	Moderate patchy calcite alteration. Stained mauve
	40.00-02.90	-	-	to blue by KFC.
	51.60-52.90	_	_	Numerous hairline calcite fracture fillings.
				Manazous Matrine Satores reacting frinnings.
58.55	BASALT, PRIMAR	Y BRECCL	A	
				breccia fragments in medium green
	wark groon			aroute fragmentes in meature green

chloritic silicious matrix.

Hole Number 96-38

52.90

Fragments are aphanitic, angular (with locally rounded corners)with darkening along edges. Fragments and matrix moderately hard. Locally magnetic.

ALTERATION AND MINERALIZATION Very weakly stained blue by KFC. Minor calcite fracture filling and weak epidote alteration. 54.42-55.86 1.44 727 Average of two. 55.86-56.63 1295.5 Barren. Average of two. 0.77 56.63-56.94 0.31 1309.5 56.73-56.80 3 cm calcite vein with 25% pale yellow-green epidote. Average of two. 56.87 0.4 cm calcite fracture filling with 0.4 X 4.0 cm patch Cpy. Calcite and Cpy cut by earthy red hematite fracture filling. 56.94-58.05 1.11 108 Barren epidote alteration.

58.55 77.98 BASALT, MASSIVE FINE GRAINED, MAGNETIC. Medium green, fine grained, and massive. Moderately hard. Generally magnetic.

> ALTERATION AND MINERALIZATION: Minor calcite-epidote fracture filling. Scattered Py and Cpy from 62.34-77.98 58.55-64.50 Very weakly stained blue by KFC. 64.50-77.98 Patchy moderate mauve to blue stained by KFC.

Hole Number 96-38

442

76

77

	58.55-60.30 No	on-magneti	c mod	erate pervasive epidote alteration.
	60.30-77.98 Pa	tches per	vasiv	e weak epidote alteration and
	epido	te in min	or ca	lcite-epidote fracture filling.
79	60.98-62.30	1.32	5	Barren epidote alteration.
				62.24 3 mm massive black magnetite band at 90° to CA.
80	62.30-63.35	1.05	36	62.34 0.3x1.5 cm patch Py in epidote alteration.
				62.60-62.64 3% fine grained Py in calcite epidote
				veining.
				63.20 Trace Cpy in epidote alteration.
				63.32-63.75 Pervasive calcite alteration.
81	63.35-64.25	0.90	5	trace calcite fracture filling. Barren.
82	64.25-65.70	1.45	29	Barren.
				65.24-66.10 Pervasive strong calcite alteration.
83	65.70-66.72	1.02	24	65.97-68.63 Numerous small calcite fracture fillings.
				Wall rock stained mauve by KFC.
				66.27 1.0 cm fine grained white calcite vein.
				66.43 1.0 cm quartz-calcite-chlorite vein at 70° to
				CA.
				Wispy chloritic bands cutting fine
				grained intergrown quartz-calcite.
				Trace very fine grained Py.
				66.54-66.58 3.5 cm vein of white fine grained
				intergrown quartz calcite.
				Minor fine grained Py.
84	66.72-67.58	0.86	15	66.92 4.0 cm fine-medium grained white calcite vein.
				Minor chlorite.
				5% angular chloritic breccia fragments.
85	67.58-68.62	1.04	65	67.70 Minor disseminated Py.
				-

,•

6

۰.

			Au PPB	66.00-68.33 Soft-moderately soft chloritic alteration.
				67.79-68.62 Strong pervasive calcite alteration.
				67.94 6.0 cm calcite chlorite vein at 75° to CA. 20% chlorite bands.
86	68.62-69.28	0.66	79.5	68.96 Scattered Cpy to 2 mm along healed epidote fracture filling at 45° to CA. Average of two.
87	69.28-70.42	1.14	14	Barren
88		0.30	89	70.58 70.66 1x3 cm & 0.7x1.5 cm patches of massive Cpy in calcite patch on side of core.
89	70.72-71.97	1.25	15	71.11 1 cm patch of white bleaching with 5% Cpy and minor Py associated with chloritic healed fracture.
90	71.97-72.85	0.88	31	Epidote fracture filling at 40° to CA. 71.97-72.85 0.3 cm calcite-epidote stringers with minor Cpy at 10° to CA.
91	72.85-74.10	1.25	67	<pre>71.65 0.8 cm loose calcite stringer with 0.5% Cpy. Stained blue by KFC. Calcite-epidote fracture filling. 73.55 3 cm white calcite vein at 68° to CA.</pre>
				5% dark green chlorite and 5% pale green epidote (along edge).
92	74.10-75.10	1.00	1	Epidote fracture filling. Pervasive calcite alteration stained mauve by KFC. Average of two. 75.03 1.2 cm calcite-chlorite vein at 70° to CA.
				10% chlorite bands.
mber	96-38			7

Au PPB

93	75.10-75.72	0.62	12	Strong pervasive calcite-chlorite alteration.
94	75.72-76.14	0.42 1	1640.5	75.72-76.00 5% wispy Cpy and 5% Py in cherty grey SILICIFICATION band at approximately 70° to CA. Very hard, aphanitic and weakly chloritic. Average of two.
				76.00-76.04 cm fine grained grey calcite vein at 70° to CA.
				76.04-76.10 Dark green moderately soft chloritic alteration.
				76.10-76.12 2 cm chloritic grey calcite vein at 70° to CA. Trace Py.
				75.36-76.41 Non-magnetic.
95	76.14-76.88	0.74	206.5	Pervasive weak to strong calcite alteration. Moderately soft. Average of two.
				Calcite fracture filling at 70° to CA and 3 prominent
				irregular calcite fracture filling.
				76.67 1 cm medium grained white calcite vein at 40° to CA with 3 mm patch Cpy.
				76.78 Trace Cpy in 0.5-1.5 epidote alteration along fine calcite fracture fillings at 40° to CA.
96	76.88-78.01	1.13	31	Stained blue-mauve by KFC.
				Prominent network of calcite fracture filling at 55°
				to CA and epidote fracture filling at 135° to CA.

77.98 78.82 DEFORMATION ZONE

Hole Number 96-38

Dark green healed fault. 25% pale green to white rounded quartz and cherty fragments in a moderately soft dark green matrix. Minor very fine to fine grained disseminated Py.

ALTERATION AND MINERALIZATION See description above.

97 78.01-78.82 0.81 70 77.98-78.17 Weak hematization of moderately soft epidote alteration along calcite fracture filling at 60° to Ca. 77.17-77.20 Numerous 1 cm wedge shaped chips.

78.82 83.77 BASALT, MASSIVE, NON-MAGNETIC Medium green, fine grained massive and non-magnetic. Moderately soft.

> ALTERATION AND MINERALIZATION. Stained mauve by KFC. 2% white calcite-quartz fracture filling 1% dark green chlorite fracture filling. Epidote alteration absent except for 3.0 cm band of epidote alteration at 82.28. 98 78.82-80.00 79.79-81.26 calcite alteration 1.18 10 99 80.00-81.26 1.26 27 calcite veining and stained prominent mauve by KFC. 101 81.26-82.50 1.24 63

Hole Number 96-38

Au PPB

102 82.50-82.88 0.38 17748.7 82.60 1 cm sulphide band at 30° to CA. 50% Py, 30% Cpy, and 20% calcitechlorite. 30% of sulphide band ground out. Average of three. 103 82.88-83.77 0.89 74 82.90-83.77 1.0 cm earthy red and black specular hematite at 00° to CA in and out of core. 84.41 FAULT 104 83.77-84.41 0.64 1646 Fault gouge, clay like gouge with clay brown colour. Very fine and dusty when dry. 122.00 BASALT, MASSIVE, MAGNETIC. Medium green, uniform and massive increasing in grain size down the hole. Moderately hard. 84.41-90.00 Very fine grained gradational into fine grained below. 90.00-101.00 Fine grained gradational into medium grained below. 101.00-122.00 Medium grained. ALTERATION AND MINERALIZATION. Unit is sporadic weakly stained mauve and blue by KFC. 84.41-89.62 -Non-magnetic.

84.41-89.62 - Strong soft chloritic alteration with numerous hairline calcite fracture filling generally at 55° to CA. Strong chlorite slips at 30-50° to CA.
 84.41-117.40 - Scattered hematite-quartz and hematite-calcite veins

83.77

84.41

			Au PPB	
			nu rrb	and fracture filling at 0-10° to CA.
	84.41-118.20		-	Epidote alteration absent except for restricted areas to 15 cm.
	89.62-104.090	-	-	Moderate chlorite alteration. Prominent chlorite on slips. Moderately hard.
	89.62-103.00	_	-	2% calcite fracture filling to 0.5 cm.
	103.00-122.00	-	-	0.5% calcite fracture filling to 0.5 cm.
105	84.41-85.42	1.01	31	2.0 cm Quartz vein with 75% specular hematite as flakes to 2.0 mm and 1% Cpy. Vein at 00° to CA. 85.36-85.57 Prominent very strongly chloritic slip at 50-60° to CA.
106	85.42-86.88	1.46	84	85.45-85.49 Minor epidote alteration. 86.40 1.0 cm calcite vein with 5% hematite and minor Cpy.
107	86.88-87.91	1.03	216	 86.49-86.90 Black hematite to 2.0 mm in healed slip at 00° to CA. 87.12-87.80 Cpy to 0.2-3.0 cm in 0.5 cm calcite -hematite fracture filling along core
100	07 01 00 13			axis.
108	87.91-89.13	1.22	19	
109	89.13-90.09	0.96	166	
110	90.09-90.77	0.68	376	90.20-90.75 Scattered Cpy along healed fracture at 00° to CA. and bleached patches along fractures. Average of two.
111	90.77-92.00	1.23	351	91.48-92.00 5% calcite fracture filling at 60 and 10° to Ca

			Au PPB	
112	92.00-93.53	1.53	48	93.49 Six 2X4 cm patches of Cpy-hematite associated
				with 5 cm of weak epidote alteration.
113	93.53-95.00	1.47	98	Calcite fracture filling.
114	95.00-96.50	1.50	820	Calcite fracture filling. Average of two.
115	96.50-98.00	1.50	117	96.74-97.12 13.0 cm calcite quartz vein at 30° to CA.
				10% quartz 50% fine grained calcite and
				40 % wedge shaped wall rock inclusions
				and wispy chlorite bands. Minor
				hematite and trace Cpy.
116	98.00-99.50	1.50	261	99.50 1.0 cm white calcite fracture filling at 30° to
1 1 1				CA. Both walls chloritic slips.
117	99.50-101.00	1.50	53	100.05 10% red hematite in 0.5-1.0 cm calcite vein at
110	101 00 100 10	1 4 0		30° to CA.
118	101.00-102.43	1.43	46	100.05-100.10 Minor fault as 2-5 mm spaced strong
110	100 10 101 00			chloritic slips.
119	102.43-104.00	1.57	91	102.90 2 mm calcite hematite fracture filling at 25°
				to CA.
				103.20 Three patched Cpy to 1.0 cm rimed by hematite.
120	104.00-105.50	1 50	2.2	103.30-103.45 Weak epidote alteration.
120	104.00-105.30	1.50	22	103.90-105.10 Minor hematite fracture filling.
121	103.00-107.00	1.50	53	106.58-106.85 2 mm hematite fracture filling at 00° to Ca.
122	108.53-110.00	1.47	21	108.13-108.33 Moderate epidote alteration.
				108.70-109.16 5% calcite fracture filling to 2 mm with
				hematite and minor Cpy.
				109.98-111.00 2 mm calcite seam with 20% hematite
				(00° to CA).
123	110.00-111.50	1.50	nil	110.26 0.3X1.0 cm Cpy patch rimmed by hematite along

:

12

۰.

		1	Au PPB	3.0 cm calcite fracture filling at 60° to CA.
	115.10-115.60	-	-	20% coarse hematite flakes in 3 mm calcite fracture
				filling. at 00° to CA.
124	116.00-117.50	1.50	253	116.25-117.40 Calcite veining to 2.0 cm at 00° to CA.
				5% coarse specular hematite and several
				spots Cpy to 4 mm. Average of two.
	119.85-122.00	-	-	Non-magnetic. Not stained by KFC.
125	120.30-120.99	0.69	10	120.50-120.77 1.5 cm quartz vein at 10° to CA.
				Tight walls. Minor Cpy an and along
				vein.

122.00 END OF HOLE

Assay Summary 96-38

Sample No.	From To	Length	Au PPB	
100	6.07-6.49	0.42	412.5	(Av.)
047	7.41-8.30	0.89	350	
048	10.00-11.00	1.00	91.5	(Av.)
049	14.41-15.90	1.49	38	
051	19.56-20.12	0.56	410	
052	20.12-20.96	0.84	249	
053	20.96-21.63	0.67	87	
054	21.63-21.95	0.32	2410	(Av.)
055	21.95-23.00	1.05	75	
056	23.00-24.62	1.62	308.5	(Av.)
057	24.62-26.13	1.51	62	
058	26.13-27.50	1.37	111	
059	27.50-29.00	1.50	77	
060	29.00-30.07	1.07	7	
061	30.07-32.00	1.93	250	
062	32.00-33.41	1.41	130	
063	33.41-33.62	0.21	132	
064	33.62-34.57	0.95	72	
065	34.57-34.64	0.07	79475 M	letallic Assay.
066	34.64-35.17	0.53	495.5	(Av.)
067	35.17-36.52	1.35	58.5	(Av.)
068	36.52-36.98	0.46	170	
069	36.98-38.68	1.70	370.5	(Av.)
070	38.68-40.00	1.32	50	
071	40.00-41.00	1.00	72	
072	41.00-42.51	1.51	154	
073	42.51-42.82	0.31	406	

Assay Summary (cont'd) 96-38

From To	Length	Au PPB	
42.82-44.37	1.55	46	
44.37-45.34	0.97	53	
54.42-55.86	1.44	727	(Av.)
55.86-56.63	0.77	1295.5	(Av.)
56.63-56.94	0.31	1309.5	(Av.)
56.94-58.05	1.11	108	
60.98-62.30	1.32	5	
62.30-63.35	1.05	36	
63.35-64.25	0.90	5	
64.25-65.70	1.45	29	
65.70-66.72	1.02	24	
66.72-67.58	0.86	15	
67.58-68.62	1.04	65	
68.62-69.28	0.66	79.5	(Av.)
69.28-70.42	1.14	14	
70.42-70.72	0.30	89	
70.72-71.97	1.25	15	
71.97-72.85	0.88	31	
72.85-74.10	1.25	67	
74.10-75.10	1.00	1	(Av.)
75.10-75.72	0.62	12	
75.72-76.14	0.42	11640.5	(Av.)
76.14-76.88	0.74	206.5	(Av.)
76.88-78.01	1.13	31	
78.01-78.82	0.81	70	
78.82-80.00	1.18	10	
80.00-81.26	1.26	27	
81.26-82.50	1.24	63	
	42.82-44.37 44.37-45.34 54.42-55.86 55.86-56.63 56.63-56.94 56.94-58.05 60.98-62.30 62.30-63.35 63.35-64.25 64.25-65.70 65.70-66.72 66.72-67.58 67.58-68.62 68.62-69.28 69.28-70.42 70.42-70.72 70.72-71.97 71.97-72.85 72.85-74.10 74.10-75.10 75.10-75.72 75.72-76.14 76.14-76.88 76.88-78.01 78.01-78.82 78.82-80.00 80.00-81.26	42.82-44.37 1.55 $44.37-45.34$ 0.97 $54.42-55.86$ 1.44 $55.86-56.63$ 0.77 $56.63-56.94$ 0.31 $56.94-58.05$ 1.11 $60.98-62.30$ 1.32 $62.30-63.35$ 1.05 $63.35-64.25$ 0.90 $64.25-65.70$ 1.45 $65.70-66.72$ 1.02 $66.72-67.58$ 0.86 $67.58-68.62$ 1.04 $68.62-69.28$ 0.66 $69.28-70.42$ 1.14 $70.42-70.72$ 0.30 $70.72-71.97$ 1.25 $71.97-72.85$ 0.88 $72.85-74.10$ 1.25 $74.10-75.10$ 1.00 $75.10-75.72$ 0.62 $75.72-76.14$ 0.42 $76.14-76.88$ 0.74 $78.01-78.82$ 0.81 $78.82-80.00$ 1.18 $80.00-81.26$ 1.26	42.82-44.37 1.55 46 $44.37-45.34$ 0.97 53 $54.42-55.86$ 1.44 727 $55.86-56.63$ 0.77 1295.5 $56.63-56.94$ 0.31 1309.5 $56.94-58.05$ 1.11 108 $60.98-62.30$ 1.32 5 $62.30-63.35$ 1.05 36 $63.35-64.25$ 0.90 5 $64.25-65.70$ 1.45 29 $65.70-66.72$ 1.02 24 $66.72-67.58$ 0.86 15 $67.58-68.62$ 1.04 65 $68.62-69.28$ 0.66 79.5 $69.28-70.42$ 1.14 14 $70.42-70.72$ 0.30 89 $70.72-71.97$ 1.25 15 $71.97-72.85$ 0.88 31 $72.85-74.10$ 1.25 67 $74.10-75.10$ 1.00 1 $75.10-75.72$ 0.62 12 $75.72-76.14$ 0.42 11640.5 $76.88-78.01$ 1.13 31 $78.01-78.82$ 0.81 70 $78.82-80.00$ 1.18 10 $80.00-81.26$ 1.26 27

...

Assay Summary (cont'd) 96-38

Sample No.	From	То	Length	Au PPB	
102	82.50-8	2.88	0.38	17748.7	(Av.)
103	82.88-8	3.77	0.89	74	
104	83.77-8	4.41	0.64	1646	
105	84.41-8	5.42	1.01	31	
106	85.42-8	6.88	1.46	84	
107	86.88-8	7.91	1.03	216	
108	87.91-8	9.13	1.22	19	
109	89.13-90	0.09	0.96	166	
110	90.09-90	0.77	0.68	376	(Av.)
111	90.77-92	2.00	1.23	351	
112	92.00-93	3.53	1.53	48	
113	93.53-9	5.00	1.47	98	
114	95.00-90	6.50	1.50	820	(Av.)
115	96.50-98	8.00	1.50	117	
116	98.00-99	9.50	1.50	261	
117	99.50-10	01.00	1.50	53	
118	101.00-1	102.43	1.43	46	
119	102.43-2	104.00	1.57	91	
120	104.00-1	105.50	1.50	22	
121	105.00-1	107.00	1.50	53	
122	108.53-1	110.00	1.47	21	
123	110.00-1	111.50	1.50	nil	
124	116.00-1	117.50	1.50	253.5	(Av.)
125	120.30-1	120.99	0.69	10	

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hole 96-39 Property: McGarry Township Core Size: NQ Casing: Pulled Coordinates: 16+15N, 20+00E Depth: 132.00 m. Azimuth: 168° Dip: -4.5° Start Date: December 03, 1996 Finish Date: December 05, 1996 Drilled by Kosy Diamond Drilling Logged By Douglas Robinson All Measurements in Meters Meterage Description From То 0.0 4.10 OVERBURDEN. 4.10 12.81 BASALT, MASSIVE. Medium green, medium grained, uniform and massive. 5% 0.5 mm black magnetite grains. Magnetic from 4.1-12.15 Horges Klinsin Fel-15, 1997 ALTERATION AND MINERALIZATION. Fresh and competent ground. Minor white hairline fracture filling. Rare 1-2 mm pyrite clusters (<< 0.1%) Weak epidote alteration of groundmass and minor 4.1-6.0 epidote fracture filling. 126 5.0 10% coarse grained Py in 0.5 cm dark green 4.75-5.19 0.44 81 chlorite-quartz seam at 20° to CA along a slip.

Au PPB

			na rrb	
127	10.75-12.02	1.27	106	10.00-12.13 Weak to moderate pervasive epidote alteration of groundmass
				11.00 1% Cpy in epidote fracture filling at 30° to
				CA. at.
128	12.02-12.86	0.84	27	12.13-12.81 Intense chlorite alteration stained mauve
				by Potassium ferri cyanide.
				12.13-12.26 Pale grey, fine grained and
				soft.
				12.26-12.48 Pale green, coarse grained
				and very soft.
				12.48-12.65 Dark green, intense chlorite
				alteration. Very soft
				12.65-12.74 Medium green, moderately soft.
				12.74-12.87 10 cm intense silicification
				of breccia zone at 55 ° to CA. Minor
				Cpy in late calcite fracture filling
16.88	BASALT, BRECC	IA.		
	Very fine gra		salt.	
				c alteration cut by 5-10% short
	_			rs giving the core a brecciated
	appearance.			
	• •	stringe	rs aro	cut by 2% short calcite fracture

The chlorite stringers are cut by 2% short calcite fracture filling.

Non-magnetic.

Hole Number 96-39

.

12.81

.

ALTERATION & MINERALIZATION. Stained mauve by KFC. Calcite and chlorite stringers described above. Core is 1% 1 mm Py grains in the late calcite fracture filling. Au PPB 12.86-13.60 0.74 79 129 130 13.60-14.00 0.40 262 Average of two. 13.76 Four 1.5 cm patch calcite with 10% Cpy. 14.00-15.60 131 1.60 46 15.60-17.00 16.00-16.68 Weak to moderate epidote alteration at 132 1.40 34 16.68. 1 mm hematite band at 60° to CA along leading edge of epidote alteration.

16.88 30.00 BASALT, FINE GRAINED, MAGNETIC. Dark green, fine grained, massive, moderately hard and magnetic.

> ALTERATION AND MINERALIZATION: Moderately chloritic. 2-3% 1.0-3.0 cm long calcite fracture filling. 1-4% pervasive very fine stockwork of hematite veining (+/calcite). Locally fine orange silicate fracture filling.

 133
 17.00-18.45
 1.45
 41

 134
 18.45-20.00
 1.55
 21

 135
 20.00-20.44
 0.44
 172.5 Average of two.

 20.10-20.28 3% Cpy and minor Py in healed chloritic

fracture zone which includes 0.4X8.0 cm Cpy band at 25° to CA. Cpy is rimmed by hematite.

136	20.44-21.40	0.96	158	
137	21.40-22.86	1.46	17	
138	22.86-24.28	1.42	14	
139	24.28-25.72	1.44	17	
140	25.72-27.15	1.43	15	
141	27.15-28.64	1.49	2	
142	28.64-29.54	0.90	3	
143	29.54-30.00	0.46	nil	29.52-30.00 Intense very soft dark green chlorite alteration with 5% angular leucoxene speckles.
				29.89 1.0-3.0 cm wispy quartz vein at 45° to CA with calcite fracture filling cutting vein.

30.00 46.39 BASALT, MASSIVE, MAGNETIC, MEDIUM GRAINED. Dark green, uniform and massive, medium grained, and moderately hard.

Au PPB

ALTERATION AND MINERALIZATION Weak pervasive moderate chloritic alteration stained mauve by KFC. 0.5-1% calcite fracture filling to 0.5 cm commonly at 50° and 25° to CA. 144 32.94-34.40 1.46 15 33.05 1.5 cm calcite vein with 15% dark green chlorite bands. (Slip wall at 15° to CA) 33.54 2.0 cm calcite orange silicification band at 25° to core axis.

			Au PPB	
	35.42-35.79	-	-	1.0 cm calcite-chlorite-hematite seam at 10° to CA.
	36.06	-	-	6.0 cm banded calcite-chlorite vein at 45° to CA along slip.
145	37.32-38.95	1.63	17	 37.78 4.0 cm calcite-chlorite veining. 37.40-37.91 moderately strong chlorite alteration. Soft with moderately hard edges. 37.91-39.80 Patch of pervasive brown hematization of moderate chlorite alteration. Moderately soft. 38.10-40.97 Calcite alteration.
	39.80-41.88	-	-	Pervasive moderately strong chlorite alteration with 5% 0.5 mm angular white (leucoxene) specks. Medium
	41 04 41 00			grey colour due to silicification?
	41.34-41.88	-	-	Moderately hard due to silicification of groundmass. 5% 2 mm vague grey cherty streaks.
	41.54	-	-	1.0 cm vague white quartz vein at 10° to CA.
	41.88-46.39	_	-	Medium-dark green strong chloritic alteration stained mauve by KFC. Weakly developed white angular (leucoxene) specks. Various degrees of silicification and 2-3% quartz stringers and 2% calcite stringers.
146	44.73-46.19	1.46	21	

46.39 46.56 FAULT.

7 cm FAULT at 25° to CA. Friable. Pale grey loosely consolidated grey gouge.

Hole Number 96-39

.

In part effervescent in 10% Hcl.

46.56 49.50 DEFORMATION ZONE, SILICIFIED. 30% breccia, many fragments silicified and some fragments hematitic. 30% white to greenish grey quartz breccia filling. No hematite in late quartz filling. 40% soft chloritic alteration

ALTERATION AND MINERALIZATION:

147	46.65-47.72	1.07	5
148	47.72-49.19	1.47	14

49.50 83.10 BASALT, MASSIVE, FINE GRAINED. Pale green to pale greenish grey. Aphanitic to very fine grained. Generally moderately soft, locally moderately hard. Tag at 70.00 reads 77.00. 7.00 metres was subtracted from all tags below 70.00.

ALTERATION AND MINERALIZATION:

Moderately chloritic alteration throughout (+/- carbonate).
49.50-57.00 - - Well developed network of dark green chlorite fracture filling with 1% calcite fracture filling cutting chloritic fracture filling (35-55° to CA.)
57.00-60.25 - - Weak chloritic fracture filling.
60.25-66.30 - - Strong dark green pervasive chloritic alteration.

	66.30-71.00 71.00-83.08	-	Au PPB - -	Soft 5% irregular stockwork of grey cherty quartz. In part brecciated with cherty breccia filling. Light greenish grey, moderately soft pervasive chlorite-carbonate alteration. 2% irregular calcite fracture filling. Minor chlorite fracture filling. Dark to medium green chlorite carbonate alteration. 1% fine calcite fracture filling at 00-10, 30 and 60° to CA.
	51.23	_		3.0 cm hematite seam.
149	53.35-54.76	1.41	54	Average of two.
				54.00 3.0 cm calcite-quartz vein at 45° to CA with fine calcite-cherty quartz intergrowth with minor wispy hematite.
150	60.00-61.12	1.12	43	
151	63.60-65.04	1.44	89	63.60-65.02 Minor disseminated Py (<0.1%)
	67.17-67.35	-	-	Cherty white quartz breccia filling.
	67.69-67.74	-	-	Cherty white quartz breccia filling.
	70.00-70.74	-	-	Weak epidote alteration of groundmass.
152	71.70-72.80	1.10	122	
153	72.80-74.00	1.20	146	72.00-73.90 Moderate to strong pervasive epidote alteration. Prominent calcite chlorite fracture filling. Minor Cpy and Py.
154	74.00-76.03	2.03	26	
155	78.61-78.92	0.31	34	78.74 4.0 cm calcite vein at 45° to CA. 15% chlorite bands 10% orange silicious bands. Disseminated Cpy and Py (<1%).
156	78.92-80.25	1.33	17	79.92-80.25 Moderate to strong pervasive epidote
				alteration. Trace Cpy.
HOLE NUM	ber 96-39			7

157 82.00-83.10 1.10 19 82.19-81.25 Brecciated with 15% grey-white quartz breccia filling and 5% later calcite-hematite fracture filling with minor Cpy.

83.10 112.50 BASALT, MASSIVE, MEDIUM GRAINED, MAGNETIC.

Medium green, medium grained, uniform and massive.

Locally fine grained.

Moderately hard. Generally magnetic.

94.16-94.42 Dike with aphanitic edges and very fine grained

centre. Box-work bleaching, pale green healed fractures with dark green centres between fractures. Non-magnetic. Very soft to contacts, basalt above moderately hard.

94.16 Sharp natural, straight contact at 42° to CA.

Pale green aphanitic chill against medium grained basalt above.

94.42 Sharp natural straight contact at 140° to CA (relative to

contact at 94.16).

94.42-95.04 Medium grained basalt similar to basalt above 94.16. Dark green soft chloritic alteration

95.04-97.40 Dike. Same dike as 94.16-94.42.

Dark green, soft very fine grained.

94.04 Sharp natural irregular contact at approximately

60° to CA and sub parallel contact at 94.16.

97.50 Contact at breccia zone.

104.50-106.33 Grades from aphanitic (basalt?) to fine grained

Hole Number 96-39

basalt. Possible single flow? magnetic from 106.00-106.33.

104.50 Sharp natural contact at 25° to CA between pale green aphanitic (non-magnetic) chill below and medium grained magnetic basalt above.

106.33-107.93 Very fine grained mafic (basaltic) dike.

Moderately soft, dark green, weakly magnetic.

Pale green, very soft, non-magnetic chill zones at upper and lower contacts.

106.33 Sharp natural contact at 25° to CA with pale green, very soft, non-magnetic chill in sharp contact with fine grained magnetic basalt above.

107.93 Irregular sharp natural contact at 85° to CA with pale green aphanitic non-magnetic chill in sharp contact with medium grained soft chloritic non-magnetic basalt below.

107.93-108.90 Non-magnetic basalt.

ALTERATION AND MINERALIZATION.

83.10-91.00 Minor calcite fracture filling at 25-30 ° to CA.

Competent ground, relatively fresh, with local weak epidote alteration of groundmass.

91.00-101.60 2% pervasive calcite fracture filling at 10° to CA.

101.60-104.47 Minor calcite fracture filling.

91.45-100.47 Moderate to strong dark green chlorite alteration as

overlapping zones centred on larger calcite veins.

104.47-104.50 2-4% calcite fracture filling.

106.54-112.50 Minor seams of epidote throughout.

				rong chlorite alteration. Locally white (leucoxene)			
	specks. 2% calcite fracture filling (+/- epidote).						
	84.25 85.95 87.00	-	Au PPB - - -	<pre>Minor hematite on 1 mm calcite fracture filling. Wispy hematite fracture filling at 10° to CA. 2 mm 50% hematite, 50% calcite fracture filling at 70° to CA cutting younger 4 mm calcite fracture</pre>			
	87.26	-	-	filling at 25° to CA. 2 mm specular hematite fracture filling.			
158	90.30-91.70	1.40	22	90.50-91.45 0.5% 0.5 mm disseminated Py crystals and clusters.			
159	91.70-93.07	1.37	15	91.90-92.42 1.5-5.0 cm greenish white quartz vein at 00° to CA with fine grained intergrown calcite.			
160	93.07-94.44	1.37	100	Average of two.			
161	94.44-95.87	1.43	14	94.63-95.18 5.0 cm medium grained white calcite vein at 00° to CA. Trace hematite and trace Py. Trace Cpy in intense chlorite alteration of wall rock.			
162	95.87-96.90	1.03	26				
163	96.90-98.56	0.66	17	97.00-97.50 Breccia zone with 30-70% angular breccia fragments in a medium grained calcite breccia filling. Fragments are medium green, soft dike. Also 3% black chlorite fragments. Lower limit of breccia probably at 25° to CA along			

			Au PPB	several closely spaced strong chlorite slips.
	102.34	_	_	1.0 cm weak epidote alteration band at 70° to CA.
164	103.00-104.47	1.47	69	101.60-104.47 Minor calcite fracture filling. Av. of 2.
165	104.47-105.25		5	104.47-106.00 3% 1-2 mm calcite fracture filling.
100	101.17 103.23	0.70	5	104.70 2.0 cm coarse grained white calcite vein.
				105.04-105.10 Breccia with white quartz breccia
				filling.
				0.5X1.5 cm mass of Cpy and 0.5X1.5 mass
166	105.25-105.84	0 50	14	of medium grained Py with 10% Cpy.
100	103.23-103.04	0.39	14	105.83 5.0 cm white quartz vein with 10% chlorite
				patches, 5% earthy to specular hematite
167	105.84-107.24	1 40	14	and one speck Cpy.
107	103.04-107.24	1.40	14	106.54 2 closely spaced strong chlorite slips at
				30° to CA. 0.5 cm of flakey chlorite on
				one slip and 0.4 cm sheared calcite-
				chlorite on the other slip. Small fault
168	107.24-108.61	1.37	7	parallel chilled contact at 106.33.
				Manage Open in anidate for store 6111 as
169	108.61-109.95	1.34	17	Trace Cpy in epidote fracture filling.
170	109.95-111.42	1.47	12	109.95-110.81 Moderate pervasive calcite alteration.
				109.40-112.50 Intense, very soft chloritic
				alteration with white (leucoxene) specks
				to 0.3 mm. Prominent calcite fracture
				filling.
				111.02-111.34 Intense pale green epidote alteration
				band at 50° to CA. Stained mauve by KFC.

11

•

Au PPB

171 111.42-112.66 1.24 15 111.42-111.57 Core broken as 0.5-2.0 cm thick pieces with chloritic slip faces. 111.57-116.60 3.0 cm calcite vein at 60° to CA as intergrowth of fine grained calcite and chlorite.

112.50 115.30 FELDSPAR PORPHYRY.

Medium pink, moderately hard, uniform and massive with 10% pink feldspar phenocrysts to 0.3X1 mm and 1% 2 mm feldspar phenocrysts in a pink groundmass.

ALTERATION AND MINERALIZATION.

Weak pervasive calcite alteration stained mauve by KFC.

0.5% fine grained calcite fracture filling at 75° to CA and low angle to CA.

115.30 132.00 BASALT, MASSIVE MAGNETIC, MEDIUM GRAINED. Medium green, medium grained, uniform and massive flow. Magnetic. Moderately hard. 118.00-118.30 Augite syenite dike at 60° to CA. Brick red fine grained syenite dike with 5% augite phenocrysts to 1 mm (generally < 5 mm). 3% epidote specks and streaks. 130.59-132.00 Augite syenite dike at approximately 80° to CA. Hard, fine grained uniform and massive with 5-10% augite phenocrysts to 0.2X1.0 mm. 1% mafic xenoliths.

ALTERATION AND MINERALIZATION.

	112.50-130.59 Pervasively stained prominent blue by KFC. Locally weak epidote alteration of groundmass and thin epidote-calcite fracture filling with 60 and 40° to CA dominant. Generally competent ground.					
	GOMET		Au PPB			
	115.35-115.90	_	AU PPB	0.5 cm calcite-epidote seam at 00° to CA. Trace Cpy?		
172	115.46-116.96		5	116.84 4.0 quartz-epidote-hematite vein at 35 and 55°		
1,2	110.10 110.90	1.00	5	to CA. Strongly banded, trace Py, 5%		
				hematite.		
173	118.30-119.63	1 33	24	Prominent epidote fracture filling and late loose		
110	110.50 119.05	1.35	24	chloritic fracturing.		
	120.30	_	-	0.3 cm banded intense epidote alteration at 50° to		
	120.30			CA. 0.5% fine disseminated Py.		
174	127.35-128.83	1.48	nil	127.56 2.0 cm calcite vein at 15° to CA.		
T / H	127.33-120.03	1.40	1177			
				5% black specular hematite, trace Cpy		
175	100 00 100 50	1 70	20	and Py.		
	128.83-130.59	1.76	22			
176	130.59-131.78	1.19	12	Trace Py in calcite-quartz fracture filling.		
177	131.78-133.00	1.22	5	Trace Cpy in calcite-quartz fracture filling. Weak		
				calcite alteration stained mauve by KFC. 0.5%		
				Quartz and calcite fracture filling at 00-20 and 55°		
				to CA.		

132.00 END OF HOLE

Assay Summary 96-39

Sample No.	From To	Length	Au PPB	
126	4.75-5.19	0.44	81	
127	10.75-12.02	1.27	106	
128	12.02-12.86	0.84	27	
129	12.86-13.60	0.74	79	
130	13.60-14.00	0.40	262	(Av.)
131	14.00-15.60	1.60	46	
132	15.60-17.00	1.40	34	
133	17.00-18.45	1.45	41	
134	18.45-20.00	1.55	21	
135	20.00-20.44	0.44	172.5	(Av.)
136	20.44-21.40	0.96	158	
137	21.40-22.86	1.46	17	
138	22.86-24.28	1.42	14	
139	24.28-25.72	1.44	17	
140	25.72-27.15	1.43	15	
141	27.15-28.64	1.49	2	
142	28.64-29.54	0.90	3	
143	29.54-30.00	0.46	nil	
144	32.94-34.40	1.46	15	
145	37.32-38.95	1.63	17	
146	44.73-46.19	1.46	21	
147	46.65-47.72	1.07	5	
148	47.72-49.19	1.47	14	
149	53.35-54.76	1.41	54	(Av.)
150	60.00-61.12	1.12	43	
151	63.60-65.04	1.44	89	

.

Hole Number 96-39

14

.

-

Assay Summary (cont'd) 96-39

Sample No.	From To	Length	Au PP	В
152	71.70-72.80	1.10	122	
153	72.80-74.00	1.20	146	
1.54	74.00-76.03	2.03	26	
155	78.61-78.92	0.31	34	
156	78.92-80.25	1.33	17	
157	82.00-83.10	1.10	19	
158	90.30-91.70	1.40	22	
159	91.70-93.07	1.37	15	
160	93.07-94.44	1.37	100	(Av.)
161	94.44-95.87	1.43	14	
162	95.87-96.90	1.03	26	
163	96.90-98.56	0.66	17	
164	103.00-104.4	7 1.47	69	(Av.)
165	104.47-105.2	5 0.78	5	
166	105.25-105.84	4 0.59	14	
167	105.84-107.2	4 1.40	14	
168	107.24-108.6	1 1.37	7	
169	108.61-109.9	5 1.34	17	
170	109.95-111.42	2 1.47	12	
171	111.42-112.6	6 1.24	15	
172	115.46-116.9	6 1.50	5	
173	118.30-119.6	3 1.33	24	
174	127.35-128.83	3 1.48	nil	
175	128.83-130.5	9 1.76	22	
176	130.59-131.78	3 1.19	12	
177	131.78-132.00	0.22	5	

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hole 96-40 Property: McGarry Township Core Size: NQ Casing: Pulled Coordinates: 15+15N, 20+28E

Depth: 121.00 m. Azimuth: 352° Dip: -60° Start Date: December 06, 1996 Finish Date: December 10, 1996 Drilled by Kosy Diamond Drilling Logged By Douglas Robinson All Measurements in Meters

Meterage

From To Description 0.0 6.22 OVERBURDEN Sandy soil. No boulders.

6.22 49.33 BASALT, FINE GRAINED MASSIVE Medium green, fine grained uniform and massive. Locally very fine grained. internal flow contacts not defined. Magnetism not measured 44.30-49.33 weak to moderately magnetic. 10.41-35.79 Moderately hard. 35.79 40.00 moderately soft. 40.00-47.87 Moderately hard. 47.87-49.33 Moderately soft

Jangles Holman-Feb 15, 1997

Hole Number 96-40

ALTERATION AND MINERALIZATION.

6.22-6.66 Soft strong pervasive calcite alteration-weakly developed speckled chlorite alteration. Dark green healed chlorite filed microfractures at 70° to CA. Bleached pale green to pale grey.

6.66-49.33 Weakly developed epidote alteration of groundmass.

Locally moderate pale greenish sections of epidote alteration.

6.66-28.00 Minor epidote healed fracturing at 65-75° to CA.

8.22-10.22 Moderately soft pervasive chloritic alteration.

7.76-8.07 Moderately hard medium grey pervasive calcite

alteration and chlorite-calcite healed fractures at 50° to CA.

8.07-8.32 3% grey calcite fracture filling.

13.77-14.02 soft chloritic alteration.

Au PPB

178 8.82-10.22 1.40 17 Strong, pervasive, and soft pale grey calcite-chlorite alteration centred on 4 cm carbonate vein at 9.41. Stained mauve by potassium ferri cyanide (KFC). chlorite healed fractures at 70-90° to CA.
9.41 4 cm carbonate vein with chloritic slip walls at 80° to CA. 60%opaque cream coloured Feccarbonate and 40% grey calcite.
10.00-10.50 5% grey calcite fracture filling at 35-60° to CA.
11.25 - - Trace Py.

179 13.65-15.05 1.40 19 Moderately soft medium green chloritic alteration centred on 6.0 cm calcite vein at 13.90.

Hole Number 96-40

			Au PF	Dark green chlorite healed fractures. 13.90 6 cm fine grained greenish grey calcite vein with chloritic slip walls at 85° to CA. 5% wispy dark green chlorite and trace Py to 1 mm.
180	15.05-16.00	0.95	31	15.10 One speck Cpy.
181	16.00-17.00	1.00	68	Average of two.
				16.10 1 cm fine grained grey calcite vein at 70° to CA.
				2% 0.5 mm disseminated Py. 6 cm
				moderate wall rock epidote alteration.
				16.18 1.5 cm fine grained grey calcite vein at 70° to
				CA. 2% 0.5 mm disseminated Py. 9 cm
				moderate wall rock epidote alteration.
				16.42-17.00 Prominent epidote fracture filling at 70°
	17 44 17 40			to CA. parallel two calcite veins.
	17.44-17.48	-		Several specks Cpy.
182	19.00-20.47	1.47	10	19.37 1 mm speck Cpy.
				20.45 several specks Cpy in epidote fracture filling at 05° to CA.
				20.47 several specks Cpy in epidote fracture filling at 05° to CA.
183	23.33-24.80	1.47	14	23.70 0.2X2 mm speck Cpy in epidote fracture filling.
				24.02 Minor Py in 3.0 cm epidote alteration band at
				60° to CA. Trace Cpy in epidote fracture filling at 00° to CA.
				24.35 Trace Cpy in epidote fracture filling at 45° to
				core axis.
ວໄອ Num	bar 96-10			3

Au PPB 184 24.80 - 26.231.43 29 25.11 1x10 mm Py in white fracture filling at 35° to CA. 25.58 3X1.5 mm Py in chloritic fracture filling at 60° to CA. 25.89 Minor Py in silicious alteration patch. 25.99 Minor Py in chloritic fracture filling at 35° to CA. 185 26.23-27.13 0.90 19 Average of two. 186 27.13-28.00 0.87 12 27.90-28.00 1.5 cm calcite vein at 00° to CA along one side of core. 10% hematite filling spaces between 3 mm quartz crystals. 187 28.00-28.44 247 28.15-28.29 2.0 cm quartz vein at 30° to CA. 0.44 25% calcite in orange to greenish cherty quartz. Trace Cpy. 28.29-28.37 10% Cpy as 0.5 cm seam of massive Cpy perpendicular to vein at 28.29. 188 28.44-29.10 0.66 21 28.29-30.00 Trace Cpy in calcite fracture filling with minor orange guartz at low angle to CA. 189 29.10-29.84 0.74 72 See sample 188 29.84-31.17 190 1.33 36 30.00-31.00 10% calcite veining at 00-10° to CA. Orange silicate along walls and as fracture filling. 10% of veining is hematite filling fractures parallel to the vein walls. Trace Cpy. Hole Number 96-40 4

			Au PP	B
	31.67	-	-	Trace Cpy in orange feldspar-quartz stringer at 70° to CA.
	33.85-36.30	-	-	1% calcite fracture filling at low angle to CA.
191	35.79-37.15	1.36	13.5	Average of Two.
				5% calcite fracture filling and veining at 00-05° to CA. Fracture filling and veining is 50% red hematite.
192	37.15-38.62	1.47	14	See sample 191.
193	38.62-40.00	1.38	nil	38.33-39.95 0.3-0.5 cm calcite vein with 60% earthy red to black specular hematite and trace Cpy at 00° to CA.
194	40.00-41.50	1.50	5	40.00-42.00 Minor calcite fracture filling at 00-30° to CA.
195	44.33-45.73	1.40	20	44.77 2 mm hematite fracture filling. 44.77-46.30 0.5% calcite fracture filling.
196	45.73-46.80	1.07	10	46.30 Minor hematite in calcite fracture filling.
197	46.80-47.87	1.07	39	47.87 Minor hematite in calcite fracture filling.
198	47.87-49.33	1.46	12	Soft chloritic alteration stained blue by KFC. 2% wispy calcite fracture filling and 2% very fine grained hematite fracture filling; both increasing down the hole towards the deformation zone below.

49.33 53.70 DEFORMATION ZONE, SILICIFIED.

60% of unit is very hard intense silicification as very hard silicified breccia fragments in white to greenish white quartz.

Hole Number 96-40

Some fragments are red due to hematization.

Younger quartz veining cuts older quartz veining and breccia filling.

40% moderately soft relict very fine grained pale green basalt with chloritic alteration.

49.52-49.70 FAULT

Laminated friable and chloritic fault gouge .

1-10 cm rounded breccia fragments loosely cemented by dark green chlorite.

Many fragments are silicified rock.

The leading edge of the fault is 3 cm of very fine mud gouge.

49.70-49.82 Strongly sheared gradational from fault to relatively competent silicified rock.

ALTERATION AND MINERALIZATION

201	49.33-50.81	1.48	14	
202	50.81-52.09	1.28	149	Average of two.
203	52.09-53.55	1.46	26	
204	53.55-54.07	0.52	3	

53.70 55.08 BASALT, MASSIVE.

Medium green, medium grained flow Sharp natural lower contact at 50° to CA. Non-magnetic above 54.49. Magnetic below 54.49.

ALTERATION AND MINERALIZATION.

Hole Number 96-40

NB

Au PPB 205 54.07 - 54.420.35 5 53.70-54.46 Pervasive soft chloritic alteration. 54.25 4.0 cm banded vein at 65° to CA. 40% dark green chloritic bands. 60% grey calcite 0.3% Cpy. 206 54.42 - 55.100.68 54.46-55.08 Moderately soft very weak epidote 7 alteration of groundmass

55.08 55.40 MAFIC DIKE, NON-MAGNETIC Medium greenish grey mafic dike at 50° to CA. Sharp natural (frozen) contacts. Dike is fine grained and chilled to fine grained at contacts. Dike is aphanitic along upper contact.

> ALTERATION AND MINERALIZATION: Minor epidote fracture filling.

55.40 121.00 BASALT, MASSIVE MEDIUM GRAINED, MAGNETIC.

Medium green, locally with yellowish cast due to epidote alteration of groundmass.

Medium grained, uniform and massive. Moderately hard and magnetic.

Locally dark spots give coarse grained appearance (patchy chlorite alteration).

Hole Number 96-40

61.81-62.80 Fine grained section. Possible flow contact (no

flow contact defined).

94.25-106.00 Non-magnetic.

110.30-115.92 Moderately magnetic.

115.92-117.54 Weakly magnetic

117.54-119.00 Non-magnetic.

119.00-121.00 Magnetic.

ALTERATION AND MINERALIZATION:

Pervasive weak epidote alteration of groundmass gives core yellowish cast. 55.44-77.35 1.5% calcite fracture filling to 1.0 cm. 77.35-81.40 0.5% calcite fracture filling to 0.5 cm and calcite veining as noted below.

81.40-94.00 1.5% calcite fracture filling to 0.5 cm and calcite veining as noted below.

94.29-109.32 ALTERATION ZONE. Chlorite-carbonate-silicified

alteration zone. No epidote except as noted below.

207 55.10-56.58 1.48 4 55.80 3.0 cm band of strong epidote alteration at 45° to CA.

56.37-56.57 Strong epidote alteration of groundmass and epidote fracture filling at 40° to

a cpidote indecare initing at 40

CA.

208 56.58-57.58 1.00 40 Average of two.

56.60 0.3 cm calcite-hematite fracture filling at 45° to CA and 0.4 cm calcite-hematite fracture filling 10° to CA offsetting

Hole Number 96-40

				other fracture filling by 1.0 cm. 57.30 1.0 cm calcite vein at 10° to CA. 1% Cp, 1% Py and 3% hematite and 0.3 cm calcite vein with 1% 3 mm hematite crystals. 57.44-57.56 0.5 cm calcite vein with 20% fine specular hematite crystals at 30° to CA		
				intersecting 1.0 cm white calcite quartz vein with minor Cpy, Py and hematite.		
				54.54-57.82 Non-magnetic strong epidote alteration		
			Au PPB	5		
209	57.58-58.94	1.36	41	Broken ground. (0.16 metre) of lost core.		
				58.07 2 mm speck Cpy.		
	60.37	-	-	2.0 cm calcite epidote vein at 70° to CA. 2%		
				hematite and trace Cpy.		
	61.17	-	-	3.0 cm patch epidote alteration.		
	63.67-63.72	-	-	Strong epidote alteration.		
210	64.87-65.33	0.46	10	Strong pervasive calcite alteration with 5% calcite fracture filling		
	64.92-77.35	-	-	Epidote alteration minor and restricted to least altered sections.		
211	65.33-65.64	0.31	17	65.06-65.80 Non-magnetic		
				65.53-65.57 4.0 cm grey silicified zone with vague greenish white to white quartz banded at 70° to CA. <1% scattered Cpy.		
				65.61-66.12 Strong pervasive calcite alteration with 3% calcite fracture filling.		
212	65.64-66.20	0.56	14	65.31-65.53 Very soft dark green (white speckled) chlorite alteration stained blue by KFC.		

	67.65-72.21 67.26-68.56	-	 Non-magnetic. Strong, bleached, pervasive calcite a weak chlorite alteration. 	lteration and
213	68.70-69.53	0.83		n has strong ne focus of e.
			69.35 2.0 cm vague silicifica greenish white quartz.	tion band of
214	69.53-70.77	1.24	337.5 See sample 213. Average of two. 69.81 1.0 cm fine grained quartz band hematite at 75° to CA. 3° Py. 70.30 1.0 cm grey quartz band at 60° t 1% disseminated Py. 70.38 1.0 cm fine grained quartz-calcit vein at 135° to CA relati 70.30. Minor hematite and	disseminated o CA. te intergrowth ve to vein at
215	70.77-71.57	0.80	45 See sample 213.	-
216	71.57-72.17	0.60	 71.50 0.5 cm quartz vein at 75° to CA. 72 See sample 213. 71.70-72.00 15% irregular quartz string at 35-50° to CA. 1% Py to 	gers to 0.8 cm

			Au PI	PB
	72.07-73.08	-	-	Strong pervasive calcite alteration.
	73.08-74.46	-	-	Weak pervasive calcite alteration.
	74.23	-	-	1.0-2.0 cm calcite-quartz vein with 5% epidote at 30° to CA.
217	74.46-75.88	1.42	nil	 74.46-76.66 Strong pervasive calcite alteration. 72.00-77.35 3% 1-5 mm calcite ° to CA. 74.94-75.50 Strong white speckled chlorite alteration. Moderately soft dark green with angular white specks. 74.94-75.63 Non-magnetic
	76.66-76.81	-	-	Weak chlorite alteration zone. White speckled.
	76.66-76.90	-		Non-magnetic.
	77.35-93.42	—	-	Pervasive weak epidote alteration of groundmass and locally epidote fracture filling.
218	80.97-81.91	0.94	9	
219	80.07-82.84	0.93	33	 81.70-88.00 0.5 cm black chloritic spotting (normal igneous texture preserved). 81.95-82.77 Moderately hard silicified chlorite alteration. 5% calcite fracture filling to 0.8 cm at 57, 30 and 110° to CA. 81.97 Cpy in 2 mm calcite fracture filling. 82.38-82.45 Minor disseminated Cpy 82.54 2.0 cm quartz vein at 55° to CA. Calcite filling vug in quartz vein. Minor Cpy in wall rock along edge of vein.
220	82.84-83.98 83.95-85.00	1.14	21	Non magnatia
	65.95-65.00	-	-	Non-magnetic.

.

11

.

			Au PPB
	83.99-84.31	-	 Strong epidote alteration of groundmass focused on 4 mm quartz fracture filling at 84.09 at 65° to CA.
	84.46-85.37	-	 Moderately hard chloritic alteration. Locally weakly developed white angular speckles. Weakly silicified. 2% calcite fracture filling.
	84.61	-	- 2 mm hematite fracture filling at 30° to CA.
	84.70	-	 1.5 cm massive white quartz vein at 40° to CA.
233	85.78-86.41	0.43	19 Average of two.
			86.10 Trace disseminated Cpy.
	86.75	-	 - 86.75 2 mm quartz fracture filling with 1 mm hematite along edge at 60° to CA and 5 mm hematite fracture filling and late slip at 120° to CA.
	88.02	-	 2 mm calcite-quartz fracture filling along 1 mm hematite fracture filling at 70° to CA. Trace Py.
	89.23		- Friable chloritic fracture and 3 mm calcite-hematite fracture filling at 20° to CA.
221	92.22-92.84	0.62	86 92.60 2 cm chlorite-calcite vein at 45° to CA with 10% red hematite. Prominent epidote alteration within 10.0 cm of vein.
	94.29-109.32	-	 ALTERATION ZONE. Chlorite-carbonate-silicious alteration with no epidote except as noted below.
222	95.73-97.00	1.27	19 94.29-97.21 Chlorite alteration dominant. Moderately soft with dark green with angular white speckles. Alteration cut

			Au PPB 96.31-96.4	by wispy silicification. and minor quartz-calcite fracture filling. 12 6-0% quartz breccia filling.
223	97.00-98.34	1.34		11 Medium green to dark green silicification dominant. Very hard with moderately hard sections. Vague quartz flooding.
			97.42-98.9	95 DEFORMATION ZONE. Sheared throughout at 30 ° to CA with slickensides at 90° to CA when viewed down onto the slip.
	98.70	-	- 0.5 mm ear CA.	thy green chloritic gouge on slip at 30° to
	98.95	-		thy green gouge probably at 30-40° to CA, 70° to CA. Gouge smeared on two slips. ground.
	99.80-99.94	_	- FAULT. She thick.	eared chloritic rock fragments to 1.5 cm
	97.00-100.00	-	- Possibly (at 99.21-9	0.60 m lost core. Lost core assumed to be 99.81.
224	100.32-101.11	0.79	2	
	101.11-101.33	-		rk green very soft white speckled chlorite A. No fracture filling.
	101.33-105.24	-	with promi	ck green, very soft chloritic alteration nent black chlorite fracture filling at 25 o CA. (Possible altered dike).
440	103.18-104.62	1.44	5	
441	104.62-106.06	1.44		5.24 8% calcite fracture filling. ntact between very fine grained chloritic alteration above and dark green speckled

chlorite alteration below. 105.24-105.97 Dark green white speckled chlorite alteration. Very soft, fine grained 5% white calcite fracture filling to 0.4 cm. 105.97-106.35 Aphanitic pale green very soft chlorite possible altered dike. alteration. irregular sharp natural contacts at approximately 40° to CA. 105.10-109.00 Weak to moderate pervasive calcite alteration. Au PPB 225 106.06-107.50 1.44 1023.5 Average of two. 106.35-109.32 Strong chlorite alteration, medium green, soft-moderately soft with 10% irregular calcite-chlorite veining to 1 cm with orange feldspar coating walls. 226 107.50-109.00 1.50 33 See sample 225. 227 109.00-109.32 0.32 109.18 4.0 cm banded grain reduced calcite vein. 99 25% dark green chlorite bands (probably from walls). 3% pale green epidote. Minor fine grained Py (<1%) scattered in vein and wall rock over 10 cm. 109.32-117.67 Weak epidote alteration of groundmass. Minor epidote fracture filling. Rare calcitehematite fracture filling. 234 111.70 0.5 cm calcite fracture filling with minor 111.55-112.73 1.18 nil hematite and Cpy.

Hole Number 96-40

Au PPb

				112.42-112.49 Two 0.4 cm calcite fracture filling with minor hematite and epidote and trace Py.
	115.28	-	-	115.28 0.5 cm cal fracture filling with minor hematite and trace Py.
228	115.92-116.89	0.97	57	116.28-117.67 2% calcite fracture filling to 2 mm.
229	116.89-117.08	0.19	7	1.0 cm coarse grained black specular hematite band at 70° to CA with 3% Cpy. 3 cm epidote alteration
				beside hematite band.
230	117.08-118.00	0.92	5	1176.67-119.59 Strong, moderately soft, medium to dark green chlorite alteration with 3% calcite fracture filling to 3 mm.
231	118.00-119.00	1.00	3	118.62-118.70 Coarse grained (to 3 cm) white calcite vein with strong slip walls at 40° to CA. 20% wall rock breccia fragments. Stained mauve by KFC.
232	119.59-121.00	1.41	19	Weak epidote alteration of groundmass. 1-2% calcite fracture filling to 4 mm.

121.00 END OF HOLE

Assay Summary 96-40

Sample No.	From To	Length	Au PPB	
178	8.82-10.22	1.40	17	
179	13.65-15.05	1.40	19	
180	15.05-16.00	0.95	31	
181	16.00-17.00	1.00	68	(Av.)
182	19.00-20.47	1.47	10	
183	23.33-24.80	1.47	14	
184	24.80-26.23	1.43	29	
185	26.23-27.13	0.90	19	
186	27.13-28.00	0.87	12	
187	28.00-28.44	0.44	247	
188	28.44-29.10	0.66	21	
189	29.10-29.84	0.74	72	
190	29.84-31.17	1.33	36	
191	35.79-37.15	1.36	13•5	(Av.)
192	37.15-38.62	1.47	14	
193	38.62-40.00	1.38	nil	
194	40.00-41.50	1.50	5	
195	44.33-45.73	1.40	20	
196	45.73-46.80	1.07	10	
197	46.80-47.87	1.07	39	
198	47.87-49.33	1.46	12	
201	49.33-50.81	1.48	14	
202	50.81-52.09	1.28	149	(Av.)
203	52.09-53.55	1.46	26	
204	53.55-54.07	0.52	3	
205	54.07-54.42	0.35	5	

Assay Summary (cont'd) 96-40

Sample No.	From To	Length	Au PPB
206	54.42-55.10	0.68	7
207	55.10-56.58	1.48	4
208	56.58-57.58	1.00	40 (Av.)
209	57.58-58.94	1.36	41
210	64.87-65.33	0.46	10
211	65.33-65.64	0.31	17
212	65.64-66.20	0.56	14
213	68.70-69.53	0.83	51
214	69.53-70.77	1.24	337•5 (Av.)
215	70.77-71.57	0.80	45
216	71.57-72.17	0.60	72
217	74.46-75.88	1.42	nil
218	80.97-81.91	0.94	9
219	81.91-82.84	0.93	33
220	82.84-83.98	1.14	21
233	85.78-86.41	0.43	19 (Av.)
221	92.22-92.84	0.62	86
222	95.73-97.00	1.27	19
223	97.00-98.34	1.34	3
224	100.32-101.11	0.79	2
440	103.18-104.62	1.44	5
441	104.62-106.06	1.44	10
225	106.06-107.50	1.44	1023.5 (Av.)
226	107.50-109.00	1.50	33
227	109.00-109.32	0.32	99
234	111.55-112.73	1.18	nil

.

Assay Summary (cont'd) 96-40

То	Length	Au PPB
2-116.89	0.97	57
9-117.08	0.19	7
8-118.00	0.92	5
0-119.00	1.00	3
9-121.00	1.41	19
	2-116.89 9-117.08 8-118.00 0-119.00	2-116.89 0.97 9-117.08 0.19 8-118.00 0.92 0-119.00 1.00

Hole Number 96-40

.

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hole 96-41 Property: McGarry Township Core Size: BQ Casing: Left Coordinates: 13+50N, 19+86E Depth: 150.0 m. Azimuth: 5° Dip: -45° Start Date: December 11, 1996 Finish Date: December 14, 1996 Drilled by Kosy Diamond Drilling Logged By Douglas Robinson All Measurements in Meters Meterage Description From То 0.0 7.39 OVERBURDEN Boulders 7.39 29.43 DIORITE, MAGNETIC, COARSE GRAINED Medium green, 40-50% equant greenish white feldspar grains from 0.5-2.0 mm in dark green mafic groundmass. Locally hornblende crystals to 2X5 mm. Massive with variation. Moderately hard. This unit is transitional in appearance between the typical magnetic phase with elongated feldspar and the typical nonmagnetic phase with equant feldspar. 23.35-24.31 Non-magnetic section but otherwise similar to the host unit. Hole Number 96-41 1

Polylos Fel-15,1997

ALTERATION AND MINERALIZATION:

	7.37-23.35	-	Au PPB	very competent ground.
335	13.20-13.86	0.66	93	13.30 1.5 moderate epidote alteration at 60° to CA. 13.57-13.68 Moderate epidote alteration band at 75° to CA centred on straight slip.
336	15.82-17.26	1.44	22	Barren
337	17.26-18.14	0.88	1097	Barren
338	18.14-19.15	1.01	23943.3	Average of three.
				18.26-18.52 0.4 mm calcite fracture filling at 00° to CA with 10% Cpy and 5% Py.
339	19.15-20.13	0.98	509	
340	20.13-21.45	1.32	26	Barren
341	25.74-27.14	1.40	24	Minor Epidote alteration.
30.90	fine grained	medium at chil	led conta	grey, fine to medium grained ;very acts against unchilled host rock. ng 0.4 cm calcite-epidote fracture

filling and loose slip.

Sharp natural lower contact at 57° to CA cutting course grained diorite below.

Hole Number 96-41

29.43

ALTERATION AND MINERALIZATION.

Appears to be silicified with some ghosting of igneous texture.

30.90 41.70 DIORITE, MAGNETIC, COARSE GRAINED.

Generally dark green, course grained with elongate feldspar and mafic minerals. Pronounce variation of grain size from fine grained to course grained with course grained sections dominant. Vague transitional boundaries at grain size changes.

Short sections with 2-3 mm equant feldspar are weakly magnetic. 41.70 Sharp contact along strong slip at 50° to CA.

1 cm epidote alteration along slip.

ALTERATION AND MINERALIZATION.

Very competent ground.

All tags below 30 metres are 3 metres out.

ie tag 33 metres should read 36 metres.

40.15-43.96 Weak to strong pervasive epidote alteration of groundmass that appears to be associated with minor fracture filling at 00° to CA.

41.70 76.82 DIORITE, MAGNETIC, FINE TO MEDIUM GRAINED.
Medium greenish grey to medium grey, magnetic and very hard.
Grades from very fine grained at 41.70 to fine grained from 48.00-52.50. At 52.50 grades to medium grained.
52.50-76.80 generally medium grained with fine grained sections.
41.70-61.80 medium greenish grey and hard.
61.80 Sharp natural contact at 50° to CA between med grained

diorite above and very fine grained diorite below. From 61.80 grades to medium grained diorite at 62.00. 61.80-76.82 Medium grey hard diorite. 55.45-55.59 very fine grained dark grey green dike 90°

to CA.

ALTERATION AND MINERALIZATION.

No apparent alteration except weak calcite alteration indicated by mauve staining by Potassium ferri cyanide (KFC). and epidote alteration along a few healed fractures. <0.5% hairline calcite fracture filling. 47.35 1.2 cm calcite vein at 75° to CA with two slip walls. 342 Minor weak epidote fracture filling. 50.12-51.54 1.42 89 51.54-52.52 343 0.98 Minor weak epidote fracture filling. 10 344 52.52-52.98 0.46 1084.5 Fine grained Py masses invading wall rock from healed hairline fractures at 30° to CA. Average of two. 345 52.98-54.29 1.31 14 Weak calcite alteration of wall rock. Weakly effervescent in 10% Hcl. 346 54.29-55.74 0.45 0.5% fine grained disseminated Cpy and hairline 43 calcite-quartz-epidote fracture filling. 347 55.74-56.64 0.90 Trace Cpy along hairline fracture filling at 45 00° to CA. Minor epidote fracture filling. 348 56.64-56.92 0.28 149 Silicified speckled dark green chloritic alteration on 1 cm white calcite vein at 60° to CA. Coarse Py along healed fracture filling at 00° to CA (0.2% Py overall). 349 56.92-57.31 1.39 34 Trace Cpy and minor Py along healed fracture filling at 0° to core axis.

Hole Number 96-41

				54.13 1 mm hematite fracture filling at 35° to CA.
				Minor disseminated Cpy in wall rock
			Au PPB	beside fracture filling.
350	57.31-58.65	1.34	23	Barren.
289	58.65-59.49	0.84	97	0.2% scattered disseminated Cpy and minor white
		_		hairline calcite fracture filling.
290	59.49-60.25	0.76	21	Minor chlorite fracture filling.
291	60.25-60.91	0.66	185	0.2% scattered disseminated Cpy sections.
				Minor epidote alteration along minor calcite
				fracture filling at 55° to CA.
292	60.91-61.73	0.82	38	Trace Cpy and minor Py in calcite fracture filling
				at 00° to CA. Minor epidote fracture filling at 65°
				to CA.
293	61.73-63.16	1.43	31	Minor disseminated Py and trace disseminated Cpy.
				62.50 20% Py in 2mm epidote-pyrite seam.
294	63.16-64.61	1.45	22	Numerous hairline to 1 mm epidote fracture filling
				commonly at 60° to CA.
				63.70 1 cm calcite vein at 60° to CA. Minor epidote,
				1% fine grained disseminated Py over 2
				mm in and beside vein.
				64.50 Prominent loose chlorite slip at 05° to CA.
				64.60 1.5 cm dark green-grey fine grained chloritic
				cherty calcite vein at 60° to CA with 5%
				1 mm magnetite grains and 1% wispy Cpy.
295	64.61-66.00	1.39	58	Py in and near healed fractures.
			•••	65.0066.60 1% fine grained disseminated Py.
296	66.00-67.43	1.43	33	Minor disseminated Py.
			~ ~	

.

5

Au PPB 297 72 67.43-67.580.2% very fine grained disseminated Cpy. 67.43-68.92 1.49 67.58-68.53 5% fine grained patches of Py to 4 mm disseminated throughout core. 68.53 1% fine grained disseminated Pv. 298 68.92-69.97 1.05 130 Minor epidote alteration. 69.63-69.77 3% disseminated Pv. 299 69.97-71.16 1.19 1% Cpy as disseminated Cpy and Cpy in calcite 3497 fracture filling to 5 mm at 00° to CA. Average of two. 300 71.16-71.72 0.56 27 Barren. Average of two. 351 71.72-73.12 1.40 19 72.40-74.47 3% fine grained disseminated Py. 352 73.12-74.58 1.46 33 3% fine grained disseminated Py. 353 74.58-75.98 527.5 1 mm Py in prominent healed epidote fracture filling 1.40 at 25° to CA. Average of two. 75.35 2.5 cm banded calcite chlorite vein with one strong slip wall at 20° to CA. 75.40-75.98 strong epidote fracture filling at various angle to CA. 354 75.98-77.43 1.45 72 75.98-76.84 Dark green chlorite to 2 mm in healed fractures at 65° to CA. 76.55 2 cm banded opaque white calcite and dark green chloritic vein at 55° to CA with one strong slip wall. Minor calcite fracture filling near vein.

76.82 92.00 DIORITE, TRANSITIONAL, MAGNETIC, COARSE GRAINED. Medium green, massive magnetic diorite.

Hole Number 96-41

50% 1 mm equant feldspar grains. Magnetic

ALTERATION AND MINERALIZATION.

	79.64-82.50	-	-	Scattered dark green chlorite fracture filling to 5
				mm at 70° to CA (Some at 30° to CA).
	83.84-84.00	-	-	Moderate epidote alteration banding at 65° to CA.
355	84.79-85.53	0.74	15	0.5% medium grained disseminated Py associated with
				calcite fracture filling at 20° to CA.

92.00 99.30 DIORITE, MAGNETIC, COARSE GRAINED. Normal magnetic diorite. Medium green. 50:50 elongated feldspar and mafic crystals (1X3 mm).

ALTERATION AND MINERALIZATION.

356 91.75-93.10 1.35 51 91.75-92.70 Patchy weak to moderate epidote alteration. 92.05 3 cm strong epidote alteration at 60° to CA. 92.60 5% Py over 5 mm along loose chlorite fracture filling at 20° to CA.

97.77 - 6 cm strong epidote alteration at 30° to CA.

99.30 107.37 DIORITE, NON-MAGNETIC COARSE GRAINED.

Medium green, coarse grained.

50-60% 1-3 mm equant feldspar grains.

Non-magnetic with minor short weakly magnetic sections.

ALTERATION AND MINERALIZATION. 98.84-101.20 Minor medium grained disseminated Py 357 98.84-99.67 0.83 53 throughout. 99.38 5% fine grained disseminated Py in 1 cm epidote alteration band at 35° to CA. 358 99.67-100.44 0.77 27 432 100.44-100.80 0.36 14.5 Average of two. 359 100.80-101.54 3005.7 3 mm massive Py band at 40° to CA. Average of three. 0.74 101.35 Trace disseminated Cpy. 433 101.54-103.12 1.58 102.80-105.00 Increase in epidote alteration as 26 epidote fracture filling at 60° to CA and as weak alteration of groundmass. 360 105.94-106.88 0.94 17 361 106.88-107.37 0.49 15 grades from weak to strong calcite alteration stained mauve by KFC. 107.04 1.0 cm fine grained white calcite vein at 60° to CA. 107.30 1.5 cm fine grained white calcite vein at 30°

to CA.

107.37 110.59 DEFORMATION ZONE.

Light grey very softy to soft intense pervasive calcite alteration stained strong mauve by KFC. Igneous texture weakly preserved except in sheared sections.

ALTERATION AND MINERALIZATION.

362 107.37-108.12 0.75 26 107.37-108.24 0.5% fine grained disseminated Py. 363 108.12-108.49 0.37 108.24-108.39 Quartz vein at 75° to CA parallel to 183 foliation below. 20% very coarse grained opaque white calcite filling quartz vug with quartz crystals to 4 mm diameter. Calcite stained mauve by KFC. 5% schistose wall rock inclusions. 108.39-108.44 0.5% Cpv. 364 108,49-109,37 0.88 49 Average of two. 108.39-109.38 FOLIATED DEFORMATION ZONE. 50% Yellow green sericite foliation and 50% calcite lenses to 5 mm thick interbanded at 75-90° to CA. Weakly contorted. Trace very fine grained Py. 365 109.37-110.12 0.75 31 109.38-110.59 5% fine grained white calcite fracture filling at 60° to CA sub-parallel to foliation above. Trace fine grained Py. 109.63 4 cm quartz-calcite vein at 55° to CA. 50% quartz with calcite as vug filling in centre. 0.5 cm fine grained grey-white calcite along lower edge of vein. 3 mm patch Cpy in vein. 2 cm strongly foliated sericite schist along edge of vein.

Au PPB

366 110.12-110.59 0.47 46

110.59 116.40 BASALT, NON-MAGNETIC, MEDIUM GRAINED.

Possible phase of diorite above.

Medium green, medium grained uniform and massive.

Salt and pepper igneous texture.

Moderately hard, non-magnetic.

Upper contact gradational into alteration zone above.

Sharp natural frozen lower contact at 05° to CA. Unit grades to fine grained over 0.5 metres with fine grained basalt in contact with aphanitic basalt of unit below.

ALTERATION AND MINERALIZATION.

367	110.59-111.53	0.94	43	110.59-111.52 Soft calcite alteration decreasing in
				intensity down the hole
368	111.53-112.96	1.43	24	111.52-116.40 Minor epidote fracture filling at
				various angles including 40° to CA.
369	115.87-116.26	0.39	117	116.15 3 cm epidote-calcite alteration band at 79° to
				CA. 5% Cpy

116.40 150.00 BASALT, FINE GRAINED.

Medium-dark green, aphanitic to fine grained basalt flows. From 116.40-135.00 the flows tend to be fine grained with aphanitic chill margins. From 130.00 to 150 the flows very fine grained with no flow margins identified.

Hole Number 96-41

116.31-116.95 Contact at 00-05° to CA along core axis.

Aphanitic chill in sharp natural contact with fine grained basalt above.

Unit grades downwards to fine grained massive basalt.

- 119.62 Flow contact? Epidote alteration along change in grain size with very fine grained basalt in contact with fine grained basalt above. Contact obscured.
- 123.74 Aphanitic basalt in contact with fine grained basalt above (30° to CA). Epidote along contact. Unit grades downwards to medium grained basalt.
- 124.00-125.00 1.0 cm irregular aphanitic (self dike) at 00° to CA following old fracture.
- 125.50 125.50 Aphanitic basalt in sharp natural contact with fine grained basalt above (30° to CA). Unit grades downwards to medium grained basalt.
- 126.57 Aphanitic basalt in sharp natural contact with fine grained basalt above at 65° to CA. Epidote along contact.
- 135.00 Gradational contact not defined.

ALTERATION AND MINERALIZATION.

Minor hairline to 2 mm epidote fracture filling throughout.

119.57-119.62 5 cm calcite-epidote along flow contact at 85° to

```
CA. 1% Py.
```

434 120.00-120.88 0.88 7 Minor epidote fracture filling.

370 120.88-121.57 0.69 1011 Average of two.

120.90-123.85 Soft calcite-chlorite alteration stained mauve by KFC.

Hole Number 96-41

Au PPB

435	121.57-122.00	0.43	41	Minor epidote alteration.
				121.07 1.0 cm chlorite band with epidote at 15° to CA.
371	122.00-123.00	1.00	84	122.47 3.0 cm calcite vein at 30° to CA along strong
				slip with 1 mm rusty gouge. Vein is 40% chloritic
				wall rock fragments. 1% fine disseminated Py to 4.0
				cm from vein.
				122.80 1.0 & 3.0 cm calcite veins at 140° to CA
				rotated 90° relative to vein at 122.47.
372	129.00-130.33	1.33	623	Average of two.
				129.20 2 mm py at 30° to CA and Cpy on slip at 70°
				to CA.
373	130.33-132.00	1.67	31	130.39-133.20 1-3% disseminated patches of fine
				grained Py to 3 mm and Py patches
				invading wall rock from healed fractures
				at 00-05° to CA.
				131.37 Minor calcite fracture filling at 30° to CA.
374	132.00-133.27	1.27	231	
	134.76-134.82	-	-	Minor Py in epidote alteration.
	137.04	-	-	1.0 cm calcite-epidote in loose fracture.
375	138.60-140.00	1.40	21	138.89, 139.24 & 139.50 Minor Py in epidote
				alteration.
376	143.44-143.70	0.26	48	143.98 Minor Py in epidote alteration.
				143.60 0.8 cm epidote alteration band at 30° to CA.
				5% Cpy and 5% Py.
	146.00-150.00	-	-	Very dark green chloritic appearance.
	148.58-149.20	-	-	Moderately soft very dark green chloritic alteration.
				No white specks.
377	149.00-149.36	0.36	12	149.20 2 cm pale yellow epidote alteration band at 30°
				to core axis. 0.5% Cpy.
				12

150.00 END OF HOLE

Hole Number 96-41

Assay Summary 96-41

Sample No.	From To	Length	Au PPB	
335	13.20-13.86	0.66	93	
336	15.82-17.26	1.44	22	
337	17.26-18.14	0.88	1097	
338	18.14-19.15	1.01	23943.3	(Av.)
339	19.15-20.13	0.98	509	
340	20.13-21.45	1.32	26	
341	25.74-27.14	1.40	24	
342	50.12-51.54	1.42	89	
343	51.54-52.52	0.98	10	
344	52.52-52.98	0.46	1084.5	(Av.)
345	52.98-54.29	1.31	14	
346	54.29-55.74	0.45	43	
347	55.74-56.64	0.90	45	
348	56.64-56.92	0.28	149	
349	56.92-57.31	1.39	34	
350	57.31-58.65	1.34	23	
289	58.65-59.49	0.84	97	
290	59.49-60.25	0.76	21	
291	60.25-60.91	0.66	185	
292	60.91-61.73	0.82	. 38	
293	61.73-63.16	1.43	31	
294	63.16-64.61	1.45	22	
295	64.61-66.00	1.39	58	
296	66.00-67.43	1.43	33	
297	67.43-68.92	1.49	72	
298	68.92-69.97	1.05	130	
299	69.97-71.16	1.19	3497	(Av.)

Hole Number 96-41

Assay Summary (cont'd.) 96-41

Sample No.	From To	Length	Au PPB	
300	71.16-71.72	0.56	27	
351	71.72-73.12	1.40	19	
352	73.12-74.58	1.46	33	
353	74.58-75.98	1.40	527.5	(Av.)
354	75.98-77.43	1.45	72	
355	84.79-85.53	0.74	15	
356	91.75-93.10	1.35	51	
357	98.84-99.67	0.83	53	
358	99.67-100.44	0.77	27	
432	100.44-100.80	0.36	14.5	(Av.)
359	100.80-101.54	0.74	3005.7	(Av.)
433	101.54-103.12	2 1.58	26	
360	105.94-106.88	0.94	17	
361	106.88-107.37	0.49	15	
362	107.37-108.12	2 0.75	26	
363	108.12-108.49	0.37	183	
364	108.49-109.37	0.88	49	(Av.)
365	109.37-110.12	0.75	31	
366	110.12-110.59	0.47	46	
367	110.59-111.53	0.94	43	
368	111.53-112.96	1.43	24	
369	115.87-116.26	0.39	117	
434	120.00-120.88	0.88	7	
370	120.88-121.57	0.69	1011	(Av.)
435	121.57-122.00	0.43	41	
371	122.00-123.00	1.00	84	
372	129.00-130.33	1.33	623	(Av.)
373	130.33-132.00	1.67	31	

Hole Number 96-41

.

14

.

Assay Summary (cont'd.) 96-41

Sample No.	From	То	Length	Au PPB	
374	132.00-1	33.27	1.27	231	
375	138.60-1	40.00	1.40	21	
376	143.44-1	43.70	0.26	48	
377	149.00-1	49.36	0.36	12	

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hale 96-42 Property: McGarry Township Care Size: NQ Casing: Pulled Caordinates: 13+30N, 19+50E

Depth: 141.0 m. Azimuth: 359[°]

Dip: -45° Start Date: December 19, 1996 Finish Date: December 20, 1996 Drilled by Kosy Diamond Drilling Logged By Douglas Robinson All Measurements in Meters

Meterage

- From To Description 0.0 6.43 OVERBURDEN Sandy soil. No boulders.
- 6.43 116.00 DIORITE, Alternating Magnetic and Non-magnetic Medium green, uniform and massive, coarse grained diorite cut by numerous med green magnetic dioritic phases with 5% magnetite grains. Non-magnetic phase tends to be 40-60% greenish white 1-3 mm feldspar grains in dark green mafic groundmass. Mafic minerals in groundmass to 2 mm have dark green cleavages. Hard. Magnetic phase variable in grain size from medium grained (<0.5)</p>

Poughts Potrania Fet 25, 1997

Hole Number 96-42

1

mm) to coarse grained (>1 mm). 0.5-5 mm magnetite grains give this phase a coarser grained appearance. Magnetic phases as listed below: 6.43-6.82, 9.54-10.45, 12.53-12.68, 14.33-14.59, 15.95-16.86, 17.41-17.56, 20.02-20.57, 24.46-24.72, 26.50-26.67, 27.09-27.60, 29.32-30.40, 31.48-32.18, 32.70-33.68, 34.80-35.15, 36.65-36.98, 40.40-40.49, 41.50-41.62, 44.51-46.88, 49.56-50.34, 50.50-55.24, 55.24-55.53 weakly magnetic, 55.53-62.52, 63.02-71.00, 71.00-76.08 weakly magnetic, 76.08-76.57, 77.50-78.08, 78.81-79.58, 80.09-80.53, 81.20-81.65, 82.08-83.10, 91.52-92.50, 92.50-93.24 Non-magnetic alteration of magnetic phase,, 93.24-99.65, 100.45-102.66, 103.50-105.00, 105.00-107.43 Non -magnetic altered magnetic phase, 107.43-107.50, 108.16-108.47, 109.10-109.76, 111.51-111.96, 115.00-116.00. These magnetic sections tend to have well defined non chilled boundaries without normal crosscutting relationships.

49.56-55.53 Pronounced varied-textured section with prominent irregular changes in grain size and colour within the magnetic phases.

ALTERATION AND MINERALIZATION

6.43-116.00	-	-	Competent ground with widely spaced joints.
6.43	-	-	Faint greenish coloration of feldspar.
6.90-7.30	-	-	Weak greenish yellow discoloration of feldspar.
9.90-10.46	-	-	Greenish epidote alteration of groundmass.

Hole Number 96-42

			Au PPB	
	47.00-61.00	-	-	Minor epidote fracture filling to 2 mm.
235	10.67-12.04	1.37	17	11.48-12.53 Weak epidote alteration.
				11.70 2 cm epidote alteration band at 55° to CA.
	15.97-16.95	_	-	Patch of weak epidote alteration.
236	19.01-20.52	1.51	nil	19.12-19.50 Moderate epidote alteration associated
				with strong slips at 40° to CA.
				20.16-20.32 Weak silicification and chlorite
				alteration associated with 4 quartz
				fracture filling to 0.5 cm at 40° to CA.
237	21.91-22.26	0.35	nil	22.11-22.18 % cm silicified medium grey band at
				approximately 40° to CA.
	24.16	-	-	0.5 cm calcite epidote fracture filling at 30° to CA
				with trace Py.
	28.24	-	-	28.24 3 mm epidote and calcite along slip at 25° to
				CA.
	30.40	_	-	5 mm patch Py and trace Cpy on broken surfaces.
238	31.56-31.99	0.43	67	31.69-31.75 Wispy epidote alteration with 2% fine
000			0.0.5	grained Py over 0.5 cm.
239	33.52-34.91	1.39	385	Average of two.
				Trace Py at 33.80 & 35.97.
				33.68-36.17 Moderate pervasive epidote alteration of
				groundmass and epidote alteration bands
240	24 01 26 02	1 . 1	2.1	to 0.5 cm at various angle to CA.
	34.91-36.22	1.31	31	
241	39.93-40.23	0.30	41	40.01-40.04 Strong epidote alteration at 70° to CA.
	41 45			Minor wispy Cpy.
242	41.45 43.01-43.89	-	-	0.5 cm epidote calcite alteration band at 55° to CA.
242	43.01-43.89	0.88	5	43.46 3 cm calcite vein at 60° to CA.

.

3

				·
			Au PPB	White calcite cleavages to 5 mm. 15% yellow green epidote. 43.32-43.56 Moderate epidote alteration of groundmass.
243	45.27-45.97	0.70	7	
244	45.97-46.73	0.76	141	 46.27 Two 0.3-0.5 cm calcite epidote fracture filling at 32° to CA. with 3% Cpy and 1% Py. 46.49 0.4 cm calcite fracture filling with black chlorite alteration along walls. 3% Py, 0.5% Cpy. 46.64 1 mm calcite fracture filling with 0.3X1.5
245	46.73-48.17	1.44	nil	patch of Py and Cpy.
210	56.12-57.51	T.44		
	50.12-57.51	-	-	Occasional 2 mm dark green chloritic bands at 60° to CA.
	56.28	-	-	Trace Cpy in groundmass.
	56.63	-	-	5 mm quartz epidote calcite along loose slip at 25° to CA.
246	56.81-58.25	1.44	9	
	62.93	-	-	62.93 3 mm calcite epidote fracture filling at 70° to CA.
	67.62.67.80	-	-	3% fine calcite fracture filling and weak pervasive epidote alteration of groundmass.
438	66.76-68.22	1.46	5	
247	68.22-69.00	0.78	173	Average of two.
				69.03-70.80 low angle calcite fracture filling at 00-10° to CA. Fine py and trace Cpy invading wall rock from fractures (0.5%

			Au PPB	Py overall. Minor epidote alteration bands at 60° to CA.
248	69.00-69.90	0.90	2057	Average of two. See above.
249	69.90-71.00	1.10	485	
439	71.00-72.51	1.51	10	
	71.80	-	-	0.4 cm calcite fracture filling.
250	72.51-74.00	1.49	7	72.71-76.14 Chloritic calcite fracture filling to 0.4 cm at $00-30^{\circ}$ to CA.
251	74.00-74.84	0.84	954	Average of two.
				74.13-74.26 Strong epidote alteration at 80-90° to CA. with 0.5% fine grained disseminated Py. 74.28-74.70 3% Py Invading wall rock from calcite
				fracture filling. at low angle to CA.
252	74.84-76.28	1.44	119 8. 5	75.82-75.82 1% Py associated with epidote alteration and chloritic alteration. Average of two.
	81.50	-	-	Trace Py in healed fracture at 00° to CA.
253	82.04-83.13	1.09	79	2% medium grained disseminated Py and trace Cpy.
254	83.13-83.80	0.67	3	Barren.
256	83.80-85.23	1.43	163	83.80-86.64 Pervasive chlorite alteration of groundmass. Moderately hard.
				83.80-87.06 Dark green chloritic fracture filling to 2 mm common.
257	85.23-85.60	0.37	3	83.80-85.55 Chloritic calcite fracture filling along slips at 00-35° to CA. 5-20% epidote alteration at chloritic fracture filling and slips at 00-35° top CA.
				84.27-85.59 0.2% Cpy overall.
				Cpy along and in calcite epidote
~] ~ <u>}7</u> '				fracture filling.
DIE NUMI	per 96-42			5

.

5

-

			Au PPB	
258	85.60-86.32	0.72	15	
259	86.32-86.64	0.32	38	854 ppm Cu.
				86.50-86.65 4 cm opaque white quartz vein with 30% wall rock fragments and 4% Cpy & 1% Py. Narrow weak chloritic wall rock alteration.
260	86.64-87.40	0.76	nil	
301	89.55-90.01	0.46	7	
302	90.01-90.93	0.92	10	90.38 1 cm coarse calcite vein at 55° to Ca. One slip wall. Dark green chlorite along walls.
303	90.93-92.36	1.43	33	90.55-92.50 Minor Py and Cpy along epidote fracture filling at 00-10° to CA.
304	92.36-93.20	0.84	12354.3	Average of three.
				92.50-92.96 10% fracture filling pyrite (masses) along micro-fractures at 00-05° to CA with associated 5% 1-3 mm calcite fracture filling at 35° to CA.
				92.70-93.20 50% calcite epidote veining to 1 cm at 00-25° to CA. Trace Cpy and 3% Py.
205			-	93.25-97.30 Minor epidote fracture filling.
305	93.20-93.82	0.62	31	
306	96.71-97.30	0.59	10	
307	97.30-98.05	0.75	91	97.50-97.77 0.5% Cpy, and 0.5% Py in micro-fractures at 10-15° to CA.
308	98.05-98.64	0.59	20	Average of two.
309	98.64-99.47	0.83	33	98.75 3 mm chlorite epidote fracture filling with 5%
Hole Num	ber 96-42			Cpy and 5% Py.

			Au PPB	99.18-99.30 Minor Cpy and Py associated hairline white fracture filling at 55° to CA.
310	99.47-100.91	1.44	19	
311	100.91-101.56	0.65	41.5	101.13-101.40 Moderate pervasive epidote alteration of groundmass associated with chloritic fracture at 55° to CA.Average of two.
312	103.82-104.76	0.94	81	
313	104.76-106.26	1.50	10303	Average of four.
				<pre>104.88-106.16 7% pyrite invading wall rock from hairline epidote fracture filling at 15, 60 and 120° to CA. Also minor similar Py at 106.53-106.66.</pre>
314	106.26-107.20	0.94	170	106.60 2 cm band of intense epidote alteration at 65° to CA.
				106.72-106.95 banded intense epidote-calcite alteration with strong pale grey silicification at 55° to CA. Minor Py and Cpy.
315	107.20-108.58	1.38	115	108.15 Loose rusty fracture along 0.3 cm calcite- epidote fracture filling at 15° to CA.
	112.58-114.34	-	-	1-2 mm dark green chloritic fracture filling at 120 and 20° to CA associated with moderate epidote alteration of groundmass and minor epidote fracture filling at 120° to CA. Trace Py.
316	115.00-116.00	1.00	12	

7

116.00-124.53 ALTERATION AND DEFORMATION ZONE.

116.00-116.72 medium green moderately soft calcite-chlorite alteration. Igneous texture preserved. the degree of alteration and softness increase towards 116.72. 3% calcite fracture filling

Upper contact of alteration arbitrarily placed at 116.00.

Lower contact at 116.72 sharp at 75° to CA.along 1 cm fine grained calcite vein also at 75° to CA.

116.72-122.45 DEFORMATION ZONE.

Strong calcite alteration throughout stained dark mauve by Potassium ferri cyanide (KFC).

Prominent sericite foliation as noted.

116.72-117.33 Intense pervasive pale green moderately soft calcite alteration with closely spaces calcite micro-fracture filling. Calcite micro-fractures have med green edges.

117.33-120.88 Chaotic shear banding and healed brecciation.

10% deformed pale buff dolomite veins to 3 cm (average 1.5 cm) with edges stained mauve and centres stained blue by KFC. Prominent schistosity at 80° to CA as silvery grey-chrome green muscovite-fuchsite cleavage.

ALTERATION AND MINERALIZATION	Au PPB
317 116.00-116.72 0.72	9
318 116.72-117.28 0.56	10
319 117.28-118.40 1.12	58 Chaotic deformation textures. Moderately soft.
	Grey calcite alteration , minor fuchsite
	from 117.94-118.00. Schistose parting.

117.28-117.60 Trace disseminated Cpy.

Au PPB

320 118,40-118,74 0.34 Calcite veining at 60° to CA in sericite-fuchsite 1716 foliation. Trace Cpy in foliation. Average of two. 118.49 4 cm banded very fine grained grey calcite vein at 60° to CA (includes 0.8 cm band of buff dolomite). 118.00-118.17 core shown at shareholders meeting. 321 118.74-119.26 0.52 43 118.75-118.78 3 cm off white, opaque Ca-Mg dolomite vein at 75° to CA. Soft-very soft . 118.82-118.91 75% Ca-mg dolomite-quartz veins. Trace Py. Soft-very soft. 322 119.26-119.95 0.69 22 soft-very soft. 118.75-118.78 3 cm off white opaque Ca-Mg dolomite vein at 75° to CA. 118.82-118.91 75% ca-Mg dolomite-guartz veins. Trace Pv. 119.00 3 cm dolomite-quartz vein. 323 119.95-120.88 0.93 Very soft. Minor Cpy in wall rock along edges of 5 43 contorted dolomite veins. Prominent sericite (+weak fuchsite) foliation. 119.82 3.0 cm undeformed buff dolomite vein at 80° to CA. Three generations of vein filling defined by chlorite within vein. The centre of each dolomite generation stained blue by KFC and edges not stained by KFC. 30% quarts crystals project into centres of each generation

			Au PPB	of dolomite.
324	100 00 101 71	0 0 0		frace Cpy in vein.
324	120.88-121.71	0.83	3	Prominent very soft calcite-sericite alteration.
				Medium green, Igneous texture preserved.
				Dolomite veins at 121.20, 121.34 and 121.70.
325	121.71-122.32	0.61	2	Similar to 324. Very soft schistose cleavage at 80° to CA.
326	122.32-122.75	0.43	nil	122.32-122.40 similar to 324. Very soft
				122.40-122.43 2 cm banded calcite-dolomite vein with
				yellow sericite schistosity along vein
				walls. Trace Cpy.
				122.43-122.71 Moderately soft grey sericite-carbonate
				alteration prominent dark green network
				of chlorite fracture filling.
327	122.75-123.50	0.75	5	Pale yellow green sericite-calcite alteration.
				122.71-123.65 very hard pale yellow green calcite
				-sericite alteration stained mauve by
				KFC. This appears to be altered
328	100 60 104 67	1 07	2	feldspar porphyry.
J20	123.50-124.57	1.07	2	123.65-123.76 Soft sericite-calcite alteration of diorite?
				123.76-123.99 Altered silicified feldspar porphyry with vague white feldspar phenocrysts preserved in a pale grey groundmass. Very hard. Stained mauve by KFC. 123.99-124.53 Soft altered diorite.

Pale green calcite-sericite alteration. Vague primary igneous texture preserved? Minor calcite fracture filling. (Very fine grained).

124.53 125.31 FELDSPAR PORPHYRY.

Brick red, very hard feldspar porphyry. 20% white 0.0X1 mm feldspar phenocrysts in a dark red groundmass. 3% mafic xenoliths to 1 cm. Upper contact at 30° to CA. Lower contact at 65° to CA.

MINERALIZATION AND ALTERATION

329 124.57-125.83 1.26 5

125.31 141.00 DIORITE, NON-MAGNETIC, SPOTTED.

Typical non-magnetic medium green diorite with 5% 3-5 mm dark green patches.

50% 0.5-2.0 mm equant greenish white feldspar crystals in dark green mafic groundmass. Moderately hard.

ALTERATION AND MINERALIZATION.

0.5-1% calcite fracture filling to 0.5 cm at 30, 45 and 65° to CA.

1-3% dark green chlorite fracture filling to 0.3 cm at 65 and 85° to CA.

Stained blue by KFC (with patchy mauve sections).

Hole Number 96-42

			Au PPB	
330	125.83-127.25	1.42	14	126.75-126.84 Soft chlorite alteration centred on calcite fracture filling.
331	127.25-128.00	0.75	17	127.25-127.50 Soft pale to dark green chlorite alteration at 40° to CA. 5% calcite veining.
				133.53 1.5 cm orange silicate and calcite band at 45° to CA.
				133.84 1 cm band similar to 133.53 along slip at 30° to CA.
332	134.24-135.69	1.45	14	134.40-134.99 Weakly speckled chloritic alteration (1% 0.5 mm angular white specks). Weakly silicified.
333	139.56-140.77	1.21		<pre>139.34-141.00 Patchy chlorite alteration associated 2-4 mm calcite fracture filling. 139.50-140.77 2% calcite fracture filling at low angle</pre>
334	140.77-141.00	0 22	1045 5	to CA.
5.54		0.23		Average of two. 140.92-141.00 5 cm fine grained, grain reduced calcite vein at 30° to CA along a strong chloritic, rusty loose fracture. 0.5 soft dark green chloritic alteration along wall. Vein is 20% silicified wall rock fragments 1 very fine grained Py and trace Cpy to 1 mm.
	END OF HOLE			

141.00

Assay Summary 96-42

Sample No.	Exon Mo	Longth		
235	From To 10.67-12.04	Length		
		1.37	17	
236	19.01-20.52		nil	
237	21.91-22.26	0.35	nil	
238	31.56-31.99		67	
239	33.52-34.91	1.39	385.5	(Av.)
240	34.91-36.22	1.31	31	
241	39.93-40.23	0.30	41	
242	43.01-43.89	0.88	5	
243	45.27-45.97	0.70	7	
244	45.97-46.73	0.76	141	
245	46.73-48.17	1.44	nil	
246	56.81-58.25	1.44	9	
438	66.76-68.22	1.46	5	
247	68.22-69.00	0.78	1731.5	(Av.)
248	69.00-69.90	0.90	2057	(Av.)
249	69.90-71.00	1.10	485	
439	71.00-72.51	1.51	10	
250	72.51-74.00	1.49	7	
251	74.00-74.84	0.84	954	(Av.)
252	74.84-76.28	1.44	1198.5	(Av.)
253	82.04-83.13	1.09	79	
254	83.13-83.80	0.67	3	
256	83.80-85.23	1.43	163	
257	85.23-85.60	0.37	3	
258	85.60-86.32	0.72	15	
259	86.32-86.64	0.32	38	
	00.02.00.04	0.54	50	

Hole Number 96-42

Cu PPM

Assay Summary (cont'd.) 96-42

Sample No.	From To	Length	Au PPB	
260	86.64-87.40	0.76	nil	
301	89.55-90.01	0.46	7	
302	90.01-90.93	0.92	10	
303	90.93-92.36	1.43	33	
304	92.36-93.20	0.84	12354.3	(Av.)
305	93.20-93.82	0.62	31	
306	96.71-97.30	0.59	10	
307	97.30-98.05	0.75	91	
308	98.05-98.64	0.59	20	(Av.)
309	98.64-99.47	0.83	33	
310	99.47-100.91	1.44	19	
311	100.91-101.56	5 0.65	41.5	(Av.)
312	103.82-104.76	5 0.94	81	
313	104.76-106.26	5 1.50	10303	(Av.)
314	106.26-107.20	0.94	170	
315	107.20-108.58	1.38	115	
316	115.00-116.00	1.00	12	
317	116.00-116.72	0.72	9	
318	116.72-117.28	0.56	10	
319	117.28-118.40	1.12	58	
320	118.40-118.74	0.34	1716	(Av.)
321	118.74-119.26	0.52	43	
322	119.26-119.95	0.69	22	
323	119.95-120.88	0.93	43	
324	120.88-121.71	0.83	3	
325	121.71-122.32	0.61	2	

Assay Summary (cont'd.) 96-42

Sample No.	From	То	Length	Au PPB	
326	122.32-1	122.75	0.43	nil	
327	122.75-1	123.50	0.75	5	
328	123.50-1	L24.57	1.07	2	
329	124.57-1	125.83	1.26	5	
330	125.83-1	27.25	1.42	14	
331	127.25-1	28.00	0.75	17	
332	134.24-1	.35.69	1.45	14	
333	139.56-1	40.77	1.21	17	
334	140.77-1	41.00	0.23	1045.5	(Av.)

Hole Number 96-42

.

TRANSPACIFIC RESOURCES INC.

Diamond Drill Core Log

Hale 96-43 Property: McGarry Township Core Size: BQ Casing: Left Coordinates: 12+97N, 20+06E Depth: 178.0 m. Azimuth: 352° -42.5° Dip: Start Date: January 04, 1997 Finish Date: January 08, 1997 Drilled by Kosy Diamond Drilling Logged By Douglas Robinson All Measurements in Meters Meterage To From To Description 12.00 OVERBURDEN 0.0 12.00 64.94 DIORITE, Non-magnetic, Spotted Pale to med green, uniform and massive. 60% 0.5-2.0 mm white feldspars dominate unit. 2-4% 2-5 mm dark green chloritic patches with irregular outline. Nonmagnetic. 12.00-29.00 Hard. 29.00-64.94 Moderately hard but not as hard as magnetic unit below. 28.00-28.30 Mafic dike. Dark green, fine grained and hard with weakly chilled margins. Upper contact broken core

Hole Number 96-43

Lower contact along slip at 85° to CA.

28.41-28.55 Dike similar to dike at 28.00-28.30.

Upper contact at 75° to CA.

Lower contact at broken core.

Both dikes stained blue by KFC.

39.38-39.57 Dike similar to dike at 28.00-28.30.

Dike at 55° to CA.

Weakly chilled near contacts.

Dark green and fine grained with weakly porphyritic texture defined by feathery mafic mineral and feldspar.

Hard

Upper contact

64.94 Lower contact not clearly defined.

ALTERATION AND MINERALIZATION.

	12.00-34.00	_	-	Weakly broken ground with surface weathering.
	34.00-79.00	-	-	Competent ground with scattered prominent loose
				chloritic fractures at 00-30° to CA.
	12.48-16.61	-	-	Weak rusty weathering-bleaching and 0.4 cm brownish
				green mud-gouge with rock chips along slip at 40° to
				CA.
	15.60-15.80	-	-	Pitted rusty weathering of epidote alteration along
				l cm deeply pitted alteration band at 50° to CA.
261	16.75-17.65	0.90	22	16.90-17.00 Weak weathering of epidote alteration
				along a 3 mm deeply pitted epidote
				alteration band at 60° to CA.
				17.15-17.35 Weathering of epidote alteration band at
				70° to CA.

			Au PPB	
	20.63-20.86	-		weathering of epidote alteration.
	21.59-21.66	-	-	Epidote alteration band.
262	22.00-23.42	1.42	14	22.26-23.38 Hard to moderately soft alteration at 00-30° to CA. Moderate epidotization and bleached pale grey (silicification?). Igneous texture destroyed. Stained patchy mauve and blue by potassium ferri cyanide (KFC).
	23.38-25.85	-	-	Weak alteration related to alteration at 22.26-23.85.
263	29.11-30.52	1.41	27	29.11-31.58 Weak patchy epidote alteration and bleaching at 20° to CA. Stained blue by KFC except at bleached fracture filling that did not stain.
	32.78-33.00			Loose rusty fracture at 10° to CA. Grey alteration along secondary parallel healed fractures.
	36.40	_		1 cm white calcite along strong slip.
	39.77-39.89	-	-	weakly bleached.
264	43.33-43.62	0.29	26	Very hard grey silicification. Minor hematization and trace Py and Cpy in relict mafic (patches?).
265	49.10-50.56	1.46	62	49.10-50.02 3 mm brown limonite and calcite swellings to 0.5 cm in loose fracture at 00° to CA.
266	50.56-50.77	0.21	17	50.64 Trace Cpy in 0.3 Cm quartz-calcite-limonite seam along loose slip at 45° to CA.
	51.19-51.80	-	-	Minor limonite in calcite-quartz fracture filling at 00° to CA.
	53.18-53.45	-	-	0.3-1.5 cm calcite along loose fracture. 20% very

.

3

			Au PPE	3
	54.13-54.34	-	-	pale yellow acicular epidote crystals in calcite. Numerous 0.5-1 mm limonite fracture filling at 00-20° to CA and 3 mm limonite fracture filling at 30° to CA.
	55.46-54.34	-	-	limonite as partial replacement of dark green patches.
	55.80-65.00	-		Limonite (not hematite) on loose fractures and associated with 1-3 mm calcite-epidote fracture filling commonly at 50° to CA.
267	60.35-61.74	1.39	226	60.60-61.20 Intense alteration. Central portion is strongly silicified, very hard and bleached to pale yellow green colour. Edges of zone are moderately soft-very hard epidote alteration and silicification with limonite staining. Barren.
428	61.74-63.17	1.43	31	62.86 2.0 cm pale yellow calcite-epidote-quartz alteration band with central slip.
429	63.17-63.80	0.63	26	serve auto auto and aren contrar srip.
268	63.80-64.11	0.31	2208	Average of three. 64.00 1.0 cm calcite-quartz alteration band with 0.5% Cpy and 0.5% Py.
430	64.11-64.56	0.45	283	64.51 Cpy in fracture at 65° to CA. Average of two.

Au PPB

431 64.56-65.97 1.41 27 Fracturing at 00° to CA

64.94 65.35 TRANSITION ZONE, DIORITE Fine grained massive and weakly magnetic. Lower contact at 42° to CA.

65.35 83.76 DIORITE, MAGNETIC.
Highly variable grain size from fine to very coarse grained.
Hard and strongly magnetic.
65.35 At upper contact very fine grained diorite against medium grained diorite above.
65.36-67.00 Fine grained to medium grained diorite at 67.00.
67.00-78.00 Variable fine to medium grained diorite.
78.00-83.76 Coarse to very coarse grained diorite with sections to 5 mm crystalline.

ALTERATION AND MINERALIZATION.

269	65.97-67.32	1.35	15	
270	67.32-68.12	0.80	470.5	67.47 2.0 cm epidote-calcite alteration band at
				55° to CA. 1% Cpy and 1% Py. Average of 2.
				67.74-67.94 Minor Cpy and Py associated with weak
				fracture filling.
271	68.12-68.80	0.68	596	Barren. Average of two.
272	68.80-70.08	1.28	21	Two chloritic fractures at 20° to CA.
273	70.08-70.62	0.54	31	Several patches 70% Py-30% Cpy to 3 mm along
				chloritic fractures at 00° to CA.
274	70.62-71.57	0.95	10	Barren.
275	71.57-72.88	1.31	14	Barren.

			Au PPB	
276	72.88-74.30	1.42	5	Barren.
277	74.30-74.67	0.37	14	Barren.
278	74.67-75.19	0.52	91	Patches Cpy and Py near minor calcite-epidote
				fracture filling (0.1-0.2% Cpy and Py overall)
279	75.19-76.00	0.81	3	Barren.
280	76.00-76.59	0.59	242.5	Average of two.
				Cpy associated with hairline epidote fracture
				filling.
281	76.59-77.21	0.62	14	Barren.
282	77.21-78.20	0.99	17	Barren.
283	78.20-78.67	0.47	20.5	Average of two.
				78.22-78.50 Weak silicification and angular white
				specks to 1 mm (leucoxene).
				78.43 1.5 cm fine grained white calcite with minor
				pale yellow epidote. 10% chlorite wall rock
				fragments.
284	82.00-83.04	1.04	17	-
285	83.04-83.33	0.29	408.5	83.32 3.0 cm grey white calcite vein with 3% Cpy.
				4.0 cm intense, soft black chlorite
				alteration below vein. 1.0 cm fringe of
				epidote alteration below chloritic
				alteration. Average of two.
				alteration. Average of two.

83.76 100.22 DIORITE, NON-MAGNETIC, VARIED-TEXTURED. Light to dark green, fine to medium grained, and varied-textured diorite. Moderately hard with locally hard sections.

Hole Number 96-43

Pale coloured sections similar to normal non-magnetic diorite have 60% equant feldspar in dark green groundmass. Medium to dark green sections have general appearance similar to varied-texture phase of the magnetic diorite but are only locally weakly magnetic (Diabasic texture).

ALTERATION AND MINERALIZATION.

	Competent grou	und. Min	or epi	dote fracture filling at 50° to CA.
286				84.45 0.5 cm epidote-calcite seam along slip at
				45° to CA.
	89.57	-	-	Trace disseminated Py.
	90.89-91.30	-	-	Moderate epidote alteration and epidote fracture
				filling at 35-65° to CA.
	93.33-97.20	-	-	Locally epidote fracture filling.
287	93.24-94.76	1.52	39	93.57-93.70 Pale yellow silicified epidote
				alteration band at 40° to CA.
288	94.76-96.28	1.52	156	

100.22 109.69 DIORITE, MAGNETIC.

Dark green, fine to coarse grained varied-textured diorite. Magnetic and hard. Short non-magnetic sections having 0.2-1.0 equant feldspar from 100.74-101.14, 101.94-102.25, and 103.37-104.44.

ALTERATION AND MINERALIZATION. Locally minor epidote alteration of groundmass.

Hole Number 96-43

Au PPB 378 102.74-104.00 1.26 103.43-103.47 Chlorite alteration band with 1 mm Q. epidote fracture filling at 70° to CA. 103.47-104.88 Weak to moderate epidote alteration of groundmass 379 104.00-104.98 0.98 2794.5 Average of two. 104.54-104.77 2% coarse grained Py to 3 mm wide along vague healed fracture at 00° to CA. 380 104.98-106.92 1.94 48 381 106.92-108.20 1.28 1377 382 108.20-109.00 0.80 24 109.00-109.62 0.62 383 14560 Average of Three. 109.37-109.62 5% Py invading wall rock from healed fractures at 00-25° to CA.

109.69 118.28 DIORITE, NON-MAGNETIC.

Medium green with 50% 0.3-1.0 equant feldspar crystals in medium green groundmass. Non-magnetic

ALTERATION AND MINERALIZATION. Weakly bleached 1 mm brownish grey quartz fracture filling and chlorite-epidote fracture filling all at 00-05° to CA.

384 109.62-111.72 2.10 67

385 111.72-113.10 1.38 993 Average of two.

111.90-113.00 1% Py overall with Py in 1-2 mm

chloritic fracture filling at 00° to CA.

111.90-113.63 Moderate calcite-epidote alteration of

groundmass.

Hole Number 96-43

Au PPB

386 113.63-113.76 Intense pale green epidote alteration 113.10-113.85 0.75 50 band at 55° to CA. 113.85-115.20 1.35 387 15 115.20-116.70 1.50 388 5 389 116.70-118.24 1.54 5 117.00-118.28 Moderate epidote alteration of groundmass (+/-sericite?). Prominent epidote-chlorite healed fracture filling.

118.28 131.22 ALTERATION-DEFORMATION ZONE.

Highly variable intense alteration including:

- a. soft dark green chlorite alteration
- b. pale grey silicification with weak sericitization and weak carbonatization with minor chlorite spots. Vague igneous texture preserved. Minor white leucoxene specks to 1 mm.

118.26-118.64 Grey silicification with 9.0X0.1 cm streaks of Py at 00° to CA.

118.64-119.37 DEFORMATION ZONE.

Dark green-black amorphous chlorite with 35% 1 mm crystalline grey calcite veining at various angles including 00° to CA. (4 mm pink patches).

- 119.37-121.00 Medium-dark green chlorite alteration in part pale grey sericitic alteration. Very soft-moderately soft.
- 121.00-131.22 Pale grey to pale greenish grey coloured intense carbonate-(sericite?) alteration. Moderately soft, stained mauve (locally blue) by KFC.

Hole Number 96-43

.

		n dark gr	een d	chlorite patches. Minor leucoxene						
	2-5% fine graine	specks. 2-5% fine grained white calcite veining and fracture filling to								
	-	0.5 cm commonly at 25-30° to CA. 122.89-131.15 0.1-0.3% medium grained disseminated Py.								
			PPB							
390	118.24-119.55	1.31	132							
391	119.55-120.74	1.19	g	120.00-120.18 60% coarse grained calcite veining and chlorite banding at 55° to CA.						
392	120.74-121.00	0.26 г	nil	120.60-121.00 minor Py and trace Cpy in dark green chlorite alteration.						
				120.90 Trace Cpy in healed fracture.						
393	121.00-122.11	1.11 r	nil	120.40-122.14 0.1-0.3% medium grained disseminated Py.						
394	122.11-122.91	0.80	2	122.14-122.89 1% very fine grained disseminated Py.						
395	122.91-123.81	0.90 r	nil							
396	123.81-125.22	1.41 r	nil							
397	125.22-125.93	0.71	9	125.62-125.78 FAULT.						
				Cemented fractured ground with pervasive very fine sericite foliation at 75° to CA. Ground easily broken by fingers.						
398	125.93-127.95	2.02	2	125.93-127.70 1.5-5.0 cm medium to coarse grained calcite vein at 00° to CA. Narrow, intense, soft and dark green chlorite alteration along vein walls.						
399	127.95-129.44	1.49	2							
400	129.44-131.22	1.78	22							
131.22-178.0	0 DIORITE, NON-MAG	GNETIC, SE	POTTEI	D.						

.

Medium greenish-grey, medium grained, uniform and massive. 50% 0.2-1 mm white Hole Number 96-43

feldspar crystals in a greenish groundmass. 1-4% 2 to 3 mm dark green patches. Fresh appearance. Hard to very hard. ALTERATION AND MINERALIZATION. Very competent ground. Slip spacing 0.5-1.0 metres. No epidote alteration noted except from 150.84-164.00. 401 131.22-132.40 1.18 20 Average of two. 131.76-132.00 Silicified, bleached pale grey Hard. Banded at 60 ° to CA. 131.22-136.00 Weak to strong alteration. Moderately soft to hard. 3% calcite-quartz fracture filling to 0.5 cm. Trace disseminated Pv concentrated near calcite-quartz fracture filling. 402 133.81-134.57 0.76 26 133.82-134.43 Silicified bleaching and calcite alteration stained mauve by Potassium Ferri Cyanide (KFC). Alteration focused on 1.0 cm fine grained white calcitequartz vein at 40 ° to CA at 133.98 m. 403 134.57-135.28 0.71 134.92 4.0 cm calcite-quartz stringers to 3 mm at 35° 31 to CA. Minor Py. 404 136.68-138.13 1.45 15 137.35-137.57 Two 0.4 cm white silicified bands with tight walls at 60° to CA. Minor disseminated Py over 3.0 cm beside Narrow weak bleaching alteration. beside alteration. 136.00-151.82 Minor calcite-quarts fracture filling to 0.3 cm. 0.1 cm medium grained disseminated Py throughout.

Hole Number 96-43

.

			Au PPB
	140.47	-	- 1.0 cm tight quartz vein at 35° to CA. No alteration.
	142.54	-	- 1.0 cm quartz-dolomite vein at 70 ° to CA.
			Minor disseminated Py in 5.0 cm weak
·			chlorite alteration of wall rock.
405	146.76-148.19	1.43	12 146.82 2 mm quartz fracture filling and minor Py.
	151.81-167.00	-	 1.5-2.0% calcite fracture filling and veins to 1.5
			cm and minor dark green chlorite
			fracture filling.
			0.1-0.2% coarse grained background
	150.84	_	disseminated Py.
	100.04		- 1.0 cm calcite stringer with 10% fine grained apple
	152.04	-	green epidote.
			 calcite fracture filling to 0.3 cm with minor epidote and trace Py.
	153.07		- 0.8 calcite fracture filling with 2.0 cm of bleached
			wall rock.
406	154.00-154.60	0.60	9 151.10-154.50 Soft to hard bleached alteration centred
			on vein at 154.40 metres. Stained mauve
			by KFC.
			154.40 2.0 cm white quartz vein at 65° to CA.
			Fine grained intergrown calcite and
			quart.z.
407	154.60-156.08	1.48	17 156.16-156.32 Bleached pale grey calcite alteration
			at 55° to core axis.

			Au PPB	2% fine-medium grained disseminated Py and minor fine grained Cpy. Moderately soft to very hard and silicified. Stained mauve by KFC.
408	156.08-156.44	0.36	55	
409	156.44-158.23	1.79	17	157.17 1.0 cm fine grained banded quartz-dolomite- calcite vein at 30° to CA with weak wall rock alteration.
410	158.23-160.09	1.86	35.5	Average of two
				159.00 1.0 cm quartz-dolomite vein with slip wall at 30° to CA. Banded wall rock alteration.
411	160.09-160.50	0.41	27	
412	160.50-161.08	0.58	1268.5	Average of two.
				<pre>160.28-164.00 minor yellow green epidote in bleached silicified calcite alteration centred on 1.0 cm dolomite-quartz vein at 85° to CA. 1% Py and trace Cpy in vein.</pre>
413	161.08-162.45	1.37	31	
414	162.45-163.86	1.41	10	
	163.34-172.00	-	-	0.3% background disseminated Py and minor Py in fractures.
415	163.86-165.33	1.47	5	
416	165.33-165.88	0.55	3	
417	165.88-166.44	0.56	33	<pre>166.25-166.30 3.0 cm fine grained grey silicified band at 30° to CA. 20% medium grained Py in band. 166.30 strong chloritic mud slip at 40° to CA cut of Du mone (pple green mud)</pre>
				Py mass (pale green mud).

Hole Number 96-43

			Au PPB	
418	166.44-168.19	1.75	9	165.94-166.30 Trace fine grained disseminated Cpy throughout.
419	168.19-169.58	1.39	7	
420	169.58-171.05	1.47	44.5	Sporadic weak to strong grey bleaching. Silicified and very hard. 1% very fine to medium grained disseminated Py and Py clots. Minor very fine grained disseminated Cpy from 170.00-171.07. Average of two.
421	171.05-172.00	0.95	17	weak silicification as grey bleaching. Weakly chloritic.
422	172.00-172.48	0.48	53	 172.00-173.09 Irregular very fine grained diorite dike at low angle to CA and 45° to CA. Dark green and moderately hard. 172.00-172.49 3% 1-2 mm calcite fracture filling and 2% medium grained disseminated Py.
423	172.48-173.94	1.46	10	 173.09-178.00 Short patchy bleached grey sections of weak silicification associated with 0.5-1 mm calcite fracture filling and calcite fracture filling at 50 and 135° to CA. 173.84 0.5 cm opaque white calcite fracture filling at 65° to CA. 5% Py in 2.0 cm banded quartz-calcite alteration.
424	173.94-175.30	1.36	14	quartes ourortes differentien.
425	175.30-175.61	0.31	74	175.33-175.45 Banded bleached alteration at 45° to CA. 5% fine grained Py lenses to 3 mm thick,
426	175.61-176.80	1.19	17	and 0.2% fine grained disseminated Cpy.
427	176.80-178.00	1.20	21	and 0.2. The grained disseminated Cpy.
	END OF HOLE			

Hole Number 96-43

178.00

Assay Summary: Hole 96-43

Sample No.	From To	Length	Au PPB	
261	16.75-17.65	0.90	22	
262	22.00-23.42	1.42	14	
263	29.11-30.52	1.41	27	
264	43.33-43.62	0.29	26	
265	49.10-50.56	1.46	62	
266	50.56-50.77	0.21	17	
267	60.35-61.74	1.39	266	
428	61.74-63.17	1.43	31	
429	63.17-63.80	0.63	26	
268	63.80-64.11	0.31	2208	
430	64.11-64.56	0.45	283	(Av.)
431	64.56-65.97	1.43	27	
269	65.97-67.32	1.35	15	
270	67.32-68.12	0.80	470.5	(Av.)
271	68.12-68.80	0.68	596	(Av.)
272	68.80-70.08	1.28	21	
273	70.08-70.62	0.54	31	
274	70.62-71.57	0.95	10	
275	71.57-72.88	1.31	14	
276	72.88-74.30	1.42	5	
277	74.30-74.67	0.37	14	
278	74.67-75.19	0.52	91	
279	75.19-76.00	0.81	3	
280	76.00-76.59	0.59	242.5	(Av.)
281	76.59-77.21	0.62	14	

Hole Number 96-43

15

-

Assay Summary (cont'd.) 96-43

From To I	ength	Au PPB
77.21 - 78.20	0.99	17
		20.5 (Av.)
82.00 - 83.04	1.04	17
83.04 - 83.33	0.29	408.5 (Av.)
83.33 - 85.00	1.67	38
93.24 - 94.76	1.52	39
94.76 - 96.28	1.52	156
102.74-104.00	1.26	9
104.00-104.98	0.98	2794.5 (Av.)
104.98-106.92	1.94	48
106.92-108.20	1.28	1377
108.20-109.00	0.80	24
109.00-109.62	0.62	14560 (Av.)
109.62-111.72	2.10	67
111.72-113.10	1.38	993 (Av.)
113.10-113.85	0.75	50
113.85-115.20	1.35	15
115.20-116.70	1.50	5
116.70-118.24	1.54	5
118.24-119.55	1.31	132
119.55-120.74	1.19	9
120.74-121.00	0.26	nil
121.00-122.11	1.11	nil
122.11-122.91	0.80	2
122.91-123.81	0.90	nil
123.81-125.22	1.41	nil
	77.21 - 78.20 78.20 - 78.67 82.00 - 83.04 83.04 - 83.33 83.33 - 85.00 93.24 - 94.76 94.76 - 96.28 102.74-104.00 104.00-104.98 104.98-106.92 106.92-108.20 108.20-109.00 109.00-109.62 109.62-111.72 111.72-113.10 113.10-113.85 113.85-115.20 115.20-116.70 115.20-116.70 116.70-118.24 118.24-119.55 119.55-120.74 120.74-121.00 121.00-122.11 122.11-122.91	77.21 - 78.20 0.99 $78.20 - 78.67$ 0.47 $82.00 - 83.04$ 1.04 $83.04 - 83.33$ 0.29 $83.33 - 85.00$ 1.67 $93.24 - 94.76$ 1.52 $94.76 - 96.28$ 1.52 $102.74 - 104.00$ 1.26 $104.00 - 104.98$ 0.98 $104.98 - 106.92$ 1.94 $106.92 - 108.20$ 1.28 $108.20 - 109.00$ 0.80 $109.00 - 109.62$ 0.62 $109.62 - 111.72$ 2.10 $111.72 - 113.10$ 1.38 $113.10 - 113.85$ 0.75 $113.85 - 115.20$ 1.35 $115.20 - 116.70$ 1.50 $116.70 - 118.24$ 1.54 $118.24 - 119.55$ 1.31 $119.55 - 120.74$ 1.19 $120.74 - 121.00$ 0.26 $121.00 - 122.11$ 1.11 $122.11 - 122.91$ 0.80

Hole Number 96-43

Assay Summary (cont'd.) 96-43

Sample No.	From To	Length	Au PPB
397	125.22-125.93	0.71	9
398	125.93-127.95	2.02	2
399	127.95-129.44	1.49	2
400	129.44-131.22	1.78	22
401	131.22-132.40	1.18	20 (Av.)
402	133.81-134.57	0.76	26
403	134.57-135.28	0.71	31
404	136.68-138.13	1.45	15
405	146.76-148.19	1.43	12
406	154.00-154.60	0.60	9
407	154.60-156.08	1.48	17
408	156.08-156.44	0.36	55
409	156.44-158.23	1.79	17
410	158.23-160.09	1.86	35.5 (Av.)
411	160.09-160.50	0.41	27
412	160.50-161.08	0.58	1268.5 (Av.)
413	161.08-162.45	1.37	31
414	162.45-163.86	1.41	10
415	163.86-165.33	1.47	5
416	165.33-165.88	0.55	3
417	165.88-166.44	0.56	33
418	166.44-168.19	1.75	9
419	168.19-169.58	1.39	7
420	169.58-171.05	1.47	44.5 (Av.)
421	171.05-172.00	0.95	17
422	172.00-172.48	0.48	53

Hole Number 96-43

.

.

Assay Summary (cont'd.) 96-43

Sample No.	From	То	Length	Au PPB
423	172.48-1	73.94	1.46	10
424	173.94-1	75.30	1.36	14
425	175.30-1	75.61	0.31	74
426	175.61-1	76.80	1.19	17
427	176.80-1	78.00	1.20	21

APPENDIX II

ASSAY CERTIFICATES

PHASE III DRILL HOLES - CORE SAMPLES

SWASTIKA LABORATORIES

ENT ACTC DOT	
6W-4616-RG1	7W-0003-RG1
6W-4903-RG1	7W-0003-RM1
6W-4929-RG1	7W-0009-RG1
6W-4954-RG1	7W-0022-RG1
6W-4990-RG1	7W-0023-RM1
6W-5039-RG1	7W-0029-RG1
6W-5083-RG1	7W-0052-RG1
6W-5111-RG1	7W-0071-RG1
6W-5174-RM1	7W-0083-RG1
6W-5175-RG1	7W-0099-RG1
6W-5252-RG1	7W-0117-RG1
6W-5253-RM1	7W-0126-RG1
6W-5254-RG1	7W-0171-RG1
6W-5292-RG1	7W-0195-RG1
6W-5292-RM1	7W-0204-RG1
6W-5343-RG1	7W-0232-RG1
6W-5381-RM1	7W-0431-RG1
6W-5393-RG1	7W-0487-RG1
6W-5411-RG1	7W-0493-RG1
6W-5411-RM1	7W-0604-RG1

APPENDIX III

CORE LOGS

PHASE IV DIAMOND DRILL HOLES

HOLES 97-44 to -49, inclusive

APPENDIX IV

ASSAY CERTIFICATES

PHASE IV DRILL HOLES - CORE SAMPLES

SWASTIKA LABORATORIES

7W-1356-RA1 7W-1410-RA1 7W-1620-RA1

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

7W-1356-RA1

Date: APR-11-97

Assay Certificate

Company: TRANSPACIFIC RESOURCES INC

Project.

97

97

Aun- E. Gallo / M. Clay

We hereby certify the following Assay of 28 Core samples submitted APR-03-97 by

Sample Number	Au g≠tonne	Au oz/ton	Au Check g/lonne	Au Check oz/ton	Au PPB	Au Check PPB	
6301	0.04	.001			45	,	
6302	0.08	.002	-		84		
6303	0.04	. 001	•	•	43		
6304	0.03	. 00 i	-	•	33	-	
6305	0 05	. 001	0.04	. 00 1	48	43	
6306	0,04	.001		-	41	-	
6307	0.03	. 00 î		-	34	-	
6308	0.03	. 001	•	-	31	-	
6309	0.02	.001	-	-	19	-	
6310	0.01	. 001		-	10	-	
6311	0.03	.001		-	34	•	
6312	0.04	001	•	-	38	-	
6313	0.01	. 001		~	9	-	
6314	0.47	,014	•		475	-	
6315	0.01	.001	•		9		
6316	Nil	,	Nil		2	NEL	
6317	0.01	.001		•	14	-	
6318	0.01	. 001		•	ò	-	
7-44 6319	Nil	•	•	•	Nil		
▲ 6320	Q.01	.001	-				
6321	0.01	.001	-		9	-	
6322	0.01	.001	-	-	7	r	
♦ 6323	Nil		-	•	NH	-	
7-45 6324	0.06	. 002	-	-	60		
6325	0.05	. 001	-	-	55		
6326	0.02	.001	0.02	.001	21	19	
6327	0.01	. 001			?	-	
6328	0.01	.001		-	5		

One assay ton portion used.

Certified by

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 Fax (705)642-3300

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Assay Certificate

Company: TRANSPACIFIC RESOURCES INC

7W-1410-RA1

Date: APR-18-97

Project: Attn: M. Clay/E. Gallo

We hereby certify the following Assay of 19 Core samples submitted APR-05-97 by

Sample Number	Au g/tonne	Au Check g/tonne	Au PPB	Au Check PPB	
6329	Nil		Nil		
6330	0.01	-	5	-	
6331	NH	-	NIT	-	
6332	0.01	-	7	-	
6333	0.01	0.01	10	12	
6334	0 01	•••••••	14	•	
6335	0.01	-	10	•	
6336	0.01	•	7	-	
6337	0.01	•	12	-	
6338	0,02		15		
6339	0.01		10	•	
6340	0 04	0.03	41	34	
6341	Nil	0.01	3	04	
6342	0.01	-	12	•	
6343	Nil	•	2	-	
6344	0 01		7	-	
6345	0.01	•	12	-	
6346	0.01		7	-	
6347	0.01		9	-	

One assay ton portion used.

Certified by

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 Fax (705)642-3300

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Assay Certificate

7W-1620-RA1

Company: TRANSPACIFIC RESOURCES LTD Project

Date: APR-29-97

Aus: E. Galle/M. Clay

We hereby certify the following Assay of 11 Core samples submitted APR-23-97 by

Sample Number	Au g/tonne	Au Check g/tonne	Au PPB	Au Check PPB	
97-44 ⁶³⁸⁸ 97-446389	0.01	-	10	• • • • • • •	•••••••••••••••••••••••••••••••••••••••
	Nil Nil	Nil Nil	<u>Ni 1</u> 2	2	
97-45 <mark>6390</mark> 97-45	Nil	•	<u>Ni Ī</u>		
97-466392	0.01	·	<u> </u>	•	
6393 6394	0.02	•	17	-	
↓ 6394 6395 97-496396	0.01	•	10	-	
6397	0.01 Ni I	•	14 3	•	
6398	Nil	•	Nil		•••••••••••••••••••••••••••••••••••••••

One assay ton portion used.

Certified by

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 Fax (705)642-3300

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-4616-RG1

Date: NOV-12-96

Company:**TRANSPACIFIC RESOURCES INC**Project:McGarryAttn:E. Gallo/D. Robinson

We hereby certify the following Geochemical Analysis of 21 Core samples submitted OCT-31-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	Cu P P M	
	88353	134			86	
	88354	26	-	-	54	
	88355	583	720	-	932	
	88356	243	-	-	804	
	88357.	125	-	-	464	
	88358	5			34	
	88359	9	-	-	26	
	88360	789	446	-	136	
	88361	300	-	-	626	
96-25	88362	9	-	-	130	
90-25	88363	10			260	
	88364	36	-	-	442	
	88365	45	-	-	530	
	88366	Ni l	-	-	12	
	88367	22	-	-	166	
	88368	Nil			92	
	88369	41	-	-	352	
	88370	2229	2297	2331	1160	
	88371	994	-		1480	
	88372	17	-	-	228	
	88373	3			62	

One assay portion used

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-4903-RG1

Company:**TRANSPACIFIC RESOURCES INC**Project:McGarryAttn:E.Gallo/D. Robinson

Date: NOV-26-96

We hereby certify the following Geochemical Analysis of 20 Core samples submitted NOV-15-96 by .

	Sample Number	Au PPB	Au Check PPB	
	88374	10		
	88375	10	-	
	88376	9	-	
	88377	17	-	
	88378	29	46	
	88379	19		
	88380	24	-	
	88381	10	-	
	88382	14	-	
96-30	88383	9	7	
90-30	88384	12		
	88385	2	_	
	88386	27	-	
	88387	17	-	
	88388	9	-	
	88389	9		
	88390	10	7	
	88391	12	-	
	88392	5	-	
	88393	15	-	

One assay ton portion used.

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

6W-4929-RG1

Company: TRANSPACIFIC RESOURCES LTD Project: McGarry

Date: NOV-29-96

Project: McGarry Attn: E. Gallo/D. Robinson

We hereby certify the following Geochemical Analysis of 42 Core samples submitted NOV-18-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	Au Check PPB	
	3551	5				
	3552	7	-	-	-	
	3553	2	-	-	-	
	3554	9	-	-	-	
96-30	3555	7	9	-	-	
JU JU	3556	9				
Λ.	3557	5	-	-	-	
	3558	3	-	_	-	
	3559	5	-	-	-	
	3560	6240	5280	-	-	
	3561	27				
V V	3562	427	-	-	-	
	3563	44572	48138	35006	35109	
96-31	3564	58	-	-	-	
	3565	4080	-	-	-	
	3566	1577				
	3567	1474	1406	-	-	
	3568	65	-	_	_	
	3569	168	-	_	-	
	3570	670	-	-	-	
	3571	1563				
	3572	84	-	-	-	
	3573	9	-	_	-	
	3574	216	-	_	-	
	3575	74	70	-	-	
	3576	5				
	3577	235	-	-	-	
	3578	1097	-	_	-	
	3579	1886	1920	-	_	
	3580	549	-	-	-	
	One assay ton portion used.					
			Certifi	ed by	J.	Riby

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

6W-4929-RG1

Company: TRANSPACIFIC RESOURCES LTD Project: McGarry

Date: NOV-29-96

Attn: E. Gallo/D. Robinson

We hereby certify the following Geochemical Analysis of 42 Core samples submitted NOV-18-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	Au Check PPB	
96-31	3581	202	267			
	3582	5	-	-	-	
l ↑	3583	36	-	-	-	
	3584	43	-	-	-	
?	3600	3	-	-		
	88394	2	-			
14	88395	Nil	-	-	-	
	88396	9	-	-	-	
96-30	88397	7	-	-	_	
	88398	12	-	-	-	
	88399	2				
	88400	108	-	-	-	

One assay ton portion used.

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

6W-4954-RG1

Company: TRANSPACIFIC RESOURCES INC Project: McGarry

Date: DEC-03-96

Attn: E. Gallo / D. Robinson

We hereby certify the following Geochemical Analysis of 41 Core samples submitted NOV-20-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	· ·
	3585	5			
96-31	3586		-	-	
	3587	9 2	-	-	
	3588	3	5	-	
	3589	720	-	-	
l V	3590	1006			
	3591	247	-	-	
96-32	3592	2061	2194	-	
	3593	53	-	-	
	3594	14	-	-	
	3595	2738	2880		
	3596	51		-	
	3597	15	-	_	
	3598	67	-	-	
	3599	36	-	-	
	3601	5280	4347	4491	
	3602	84	70	-	
	3603	187	-	-	
	3604	75	-	-	
	3605	195	-	-	
	3606	26			••••••
	3607	1538	-	-	
	3608	3154	2590	_	
	3609	7	-	-	
	3610	1090	-	-	
	3611	Nil			
	3612	5	-	-	
	3613	82	79	_	
	3614	367	-	-	
	3615	19	-	-	

One assay portion used

Certified by

A Division of TSL/Assayers Inc.

Established 1928

96

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

6W-4954-RG1

Company: TRANSPACIFIC RESOURCES INC Project: McGarry

Date: DEC-03-96

Attn: E. Gallo / D. Robinson

We hereby certify the following Geochemical Analysis of 41 Core samples submitted NOV-20-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	3616	705			
	3617	72	77	_	
	3618	201	-	-	
	3619	10	-	-	
5-32	3620	57	-	-	
5 52	3621	183			
	3622	627	960	_	
	3623	33	_	_	
	3624	77	-	-	
	3625	187	-	-	
	3650	50			

One assay portion used

Certified by

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

6W-4990-RG1

Company: TRANSPACIFIC RESOURCES LTD

Date: DEC-06-96

Project: McGarry Attn: M. Clay/E. Gallo/D. Robinson

We hereby certify the following Geochemical Analysis of 49 Core samples submitted NOV-25-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	Au Check PPB	Cu PPB	
	3626	22	17			·	
	3627	7	-	-	-	_	
	3628	115	-	-	-	-	
	3629	725	-	-	-	-	
	3630	1131	1046	-	-	-	
	3631	12					
	3632	Ni l	-	-	-	-	
	3633	10	-	-	-	-	
	3634	4937	5691	6103	8229	-	
	3635	1200	-	-	-	-	
	3636	86					
96-26	3637	Ni l	-	-	-	_	
	3638	17	-	-	-	-	
	3639	3	-	-	-	-	
	3640	Ni 1	-	-	-	-	
	3641	497				2200	
	3642	19	-	-	-	2200	
	3643	309	254	-	-	1150	
	3644	21	-	-	-	-	
	3645	105	-	-	-	- '	
	3646	27					
	3647	48	-	-	-	-	
	3648	79	-	-	-	_	
	3649	10	-	-	-	-	
	3650 Not Rec'd	-	-	-	-	-	
	3651	646	703				
	3652	62	-	-	_	_	
	3653	514	-	-	_	-	
	3654	2	-	-	-	-	
	3655	58	-	-	-	-	
	One assay ton portion u						
	, and the second s				Λ	. /	

felf Certified by_

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

6W-4990-RG1

Date: DEC-06-96

TRANSPACIFIC RESOURCES LTD Company: Project: McGarry Attn:

M. Clay/E. Gallo/D. Robinson

We hereby certify the following Geochemical Analysis of 49 Core samples submitted NOV-25-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	Au Check PPB	Cu PPB	
	3656	513					
	3657	14	-	-	-	-	
	3658	3257	4251	-	_	_	
	3659	81	-	-	-	-	
	3660	22	-	-	-	-	
	3661	813	991			4350	
	3662	Ni l	-	-	-	-	
•	3663	216	-	-	-	_	
96-26	3664	108	-	-	-	-	
	3665	5	· _	-	-	-	
	3666	29					
	3667	158	-	-	_	_	
	3668	1366	701	-	_	_	
	3669	19	-	-	_	-	
	3670	470	-	-	-	-	
	3671	1298					
	3672	58	-	-	_	_	
	3673	2331	1783	-	_		
	3674	286	-	-	_	-	
	3675	144	-	-	_	-	

One assay ton portion used.

Certified by

Established 1928

Assaying - Consulting - Representation

Geochemical Analysis Certificate

Page 1 of 2

6W-5039-RG1

Company:	TRANSPACIFIC RESOURCES INC
Project:	McGarry

Date: DEC-05-96

Attn: D. Robinson/E. Gallo/M. Clay

We hereby certify the following Geochemical Analysis of 44 Core samples submitted NOV-27-96 by .

Sample	Au	Au Check	
Number	PPB	PPB	
3676	Nil		
3677	605	789	
3678	24	-	
3679	39	-	
3680	2	-	
3681	12		
3682	3	-	
3683	19	-	
3684	3	-	
3685	12	-	
3686	17		
3687	187	240	
3688	141	-	
3689	7	-	
3690	21	-	
3691	7		
3692	2	-	
3693	7	-	
3694	15	-	
3695	60	57	
3696	7	-	
3697	10	-	
3698	Ni l	-	
3699	2	-	
3700	19	-	
3701	3	-	
3702	2	-	
3703	Ni l	-	
3704	Ni l	Ni l	
3705	Ni l	-	
One assay ton portion	used.	Certifiea	by A. Lelo

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

6W-5039-RG1

Company: TRANSPACIFIC RESOURCES INC Project: McGarry

Date: DEC-05-96

Attn: D. Robinson/E. Gallo/M. Clay

We hereby certify the following Geochemical Analysis of 44 Core samples submitted NOV-27-96 by .

	Sample Number	Au PPB	Au Check PPB	
	3706	Nil		
	3707	Ni l	-	
	3708	Ni l	-	
	3709	43	-	
	3710	5	-	
	3711	3		
	3712	55	-	
96-28	3713	Nil	-	
	3714	125	-	
	3715	14	-	
	3716	Nil		
	3717	1018	1380	
	3718	3		
	3719	7	-	

One assay ton portion used.

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-5083-RG1

Date: DEC-10-96

Company:	TRANSPACIFIC RESOURCES INC
Project:	McGarry
Attn:	D.Robinson/E.Gallo

We hereby certify the following Geochemical Analysis of 29 Core samples submitted NOV-28-96 by .

	Sample Number	Au PPB	Au Check PPB	
	3720	36		
	3721	9	-	
	3722	29	-	
	3723	5	-	
	3724	3	-	
	3725	3		
	3726	35	-	
	3727	Nil	-	
	3728	314	62	
	3729	10	-	
	3730	62		
	3731	96	75	
	3732	2	_	
	3733	Ni l	-	
	3734	Ni l	-	
96-29	3735	7		
50-25	3/30	2	-	
∧	3737	10	-	
ľ	3738	9	-	
	3739	34	-	
	3740	5	_	
	3741	10	-	
V	3742	15	-	
96 - 33	3743	38	-	
90-33	3744	31	39	
	3745	14		
	3746	17	-	
	3747	26	-	
	3748	14	-	

One assay ton portion used.

Certified by Denis Charles

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-5111-RG1

TRANSPACIFIC RESOURCES INC Company:

Date: DEC-10-96

McGarry Project: Attn: D.Robinson/E.Gallo

We hereby certify the following Geochemical Analysis of 27 Core samples submitted DEC-03-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	3750	9			
	3751	233	281	-	
	3752	Ni l	-	-	
	3753	17	-	_	
	3754	69	-	-	
	3755	15			
	3756	34	-	_	
	3757	86	99	_	
	3758	22		-	
	3759	3	-	-	
	3760	146			
	3761	14	-	-	
	3762	67	-	-	
	3763	51	-	-	
5-33	3764	6411	6137	-	
↑	3765	15634	15669	16114	
	3766	6343	-		
	3771	633			
	3772	67	-	-	
-34	3773	38	-	-	
	3774	58			
	3775	24	-	-	
	3776	442	446	-	
	3777	26	-	-	
•	3778	58	-	-	
	3779	34			
	3780	117	101	-	

One assay ton portion used.

Certified by Denis Change

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Metallic Assay Certificate

6W-5174-RM1

Company: TRANSPACIFIC RESOURCES INC Project: McGarry

Date: DEC-09-96

Attn: D.Robinson/E.Gallo

We hereby certify the following Metallic Assay of 2 Core samples submitted DEC-06-96 by .

******* ***** Sample *. Total * +100 M * Assay Value Au 🔹 Total Weight Au * Metallic Au * Net Au * Wt (g) * Wt (g) * +100(g/t) -100(g/t) * +100(mg) -100(mg) * (oz/ton) (g/t) * (oz/ton) Number .g ∈t i 3793 VG * 299.26 * 4.39 * 225.96 19.92 * 0.992 5.874 * 0.097 3.31 * 0.669 20.94 96-34 3802 VG * 357.49 * 206.51 5.53 * 60.48 * 1.142 21.287 * 0.093 3.19 • 1.830 62.74

.

One assay ton portion used. VG Indicates there was visible gold.

Certified by

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

Company: TRANSPACIFIC RESOURCES INC

6W-5175-RG1

Date: DEC-10-96

Project: McGarry Attn: D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 51 Core samples submitted DEC-06-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	3781	33			
	3782	302	-	-	
	3783	38	-	-	
	3784	24	-	-	
	3785	27	-	-	
	3786	70			
	3787	22	-	-	
	3788	31	-	_	
	3789	94	-	_	
	3790	605	549	-	
	3791	111			
	3792	17	_	-	
	3794	21	_	-	
	3795	105	-	-	
96-35	3796	298	-	-	
	3797	81	117		
	3798	1385	-	_	
	3799	291	-	-	
	3800	2126	2229	-	
	3801	7303	7577	7269	
	3803	226			
	3804	1857	_	-	
	3805	1041	-	-	
	3806	101	-	-	
	3807	201	199	-	
	3808	717	960		
	3809	48	-	-	
	3810	3	-	-	
	3811	146	-	_	
	3812	62	-	-	

Certified by Denis Chan

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-5175-RG1

Company: TRANSPACIFIC RESOURCES INC

Date: DEC-10-96

Project: McGarry Attn: D. Robinson / E. Gallo

96-

We hereby certify the following Geochemical Analysis of 51 Core samples submitted DEC-06-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	3814	Nil			
	3815	Ni l	-	-	
	3816	Ni l	-	-	
	3817	3	-	-	
	3818	Ni l	-	-	
	3819	19			
	3820	21	-	-	
	3821	29	31	-	
-34	3822	22	-	-	
	3825	33	. –	-	
	3826	48			
	3827	113	-	-	
	3828	22	_	-	
	3829	46	-	_	
	3830	10	-	-	
	3831	139	139		
	3832	482	-	-	
	3833	994	927	-	
	3834	51	-	-	
	3835	31	-	-	
	3836	17			

One assay ton portion used.

Certified by Deins Charles

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

Established 1928

Page 2 of 2

Established 1928

Company:

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

6W-5252-RG1

TRANSPACIFIC RESOURCES LTD

Date: DEC-17-96

Project: McGarry Attn: D.Robinson/E.Gallo/M. Clay

We hereby certify the following Geochemical Analysis of 36 Core samples submitted DEC-09-96 by .

	Sample Number	Au PPB	Au Check PPB	
	3767	7		
96-31	3768	9	-	
	3769	3	-	
	3770	46	58	
	3837	17	-	
	3838	65		
¥	3839	Ni l	-	
	3840	31	-	
	3841	53	-	
	3842	24	-	
	3843	86		
96-34	3844	51	-	
	3845	33	-	
	3846	19	-	
	3847	27	-	
	3848	50		
Å	3849	1409	1539	
l 1	3850	51	-	
	3851	Ni l	-	
	3852	475	312	
V	3853	245		
96-36	3854	Ni l	-	
	3855	84	-	
	3856	3	-	
	3857	48		
	3858	17		
	3859	Ni 1	-	
	3860	43	-	
	3861	63	-	
	3862	679	686	
	One assay ton portion used.			Λ -

fill Certified by

0	• 1	T 1	•
Swast	1KA	Labora	atories

Established 1928

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

6W-5252-RG1

Company: TRANSPACIFIC RESOURCES LTD Project: McGarry

Date: DEC-17-96

Attn: D.Robinson/E.Gallo/M. Clay

We hereby certify the following Geochemical Analysis of 36 Core samples submitted DEC-09-96 by .

ample lumber	Au PPB	Au Check PPB	
864	111		
865	Ni l	-	
866	10	-	
867	5	-	
868	10	9	
869	7		
ł	umber 864 865 866 867 868	umber PPB 864 111 865 Ni1 866 10 867 5 868 10	umber PPB PPB 864 111 - 865 Ni1 - 866 10 - 867 5 - 868 10 9

One assay ton portion used.

Certified by

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Metallic Assay Certificate

6W-5253-RM1

Company: TRANSPACIFIC RESOURCES LTD

Date: DEC-17-96

Project: McGarry Attn: D.Robinson/E.Gallo/M. Clay

We hereby certify the following Metallic Assay of 1 Core samples submitted DEC-09-96 by .

	******	* * *	*****	***	****	***	* * *	*********	********	* * *	*******	********	* * *	*********	*******	* * *	*********	
	Sample	*	Total	. *	+100	М	*	Assay Va	alue Au	*	Total	Weight Au	٠	Metalli	c Au	*	Net A	łu
	Number	*	Wt (g	•	Wt	(g)	*	+100(g/t)	-100(g/t)	*	+100(mg)	-100(mg)	*	(oz/ton)	(g/t)	*	(oz/ton)	(g, t)
96-36			961.8			.02		0.07	0.69		0.001			0.000	0.00			č.68

One assay ton portion used.

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-5254-RG1

Company: TRANSPACIFIC RESOURCES LTD

Date: DEC-17-96

Project: McGarry Attn: D.Robinson/E.Gallo/M. Clay

We hereby certify the following Geochemical Analysis of 10 Core samples submitted DEC-11-96 by .

	Sample Number	Au PPB	Au	Check PPB	
	3870	14			
	3871	2		-	
	3872	209		201	
00 20	3873	15		_	
96-36	3874 -	139		-	
	3875	5			
	3876	Nil		-	
	3877	15		-	
	3878	117		-	
	3879	408		466	

One assay ton portion used.

Certified by

A Division of TSL/Assayers Inc.

Established 1928

Company:

Assaying - Consulting - Representation

•

Page 1 of 2

6W-5292-RG1

Geochemical Analysis Certificate

TRANSPACIFIC RESOURCES LTD

Date: DEC-20-96

Project: McGarry Attn: M. Clay/E. Gallo/D. Robinson

We hereby certify the following Geochemical Analysis of 32 Core/Rock samples submitted DEC-14-96 by .

Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
3880	15			
3881	7	-	-	
3882	105	_	-	
3883	3	9	-	
3884	2	-		
3885	10			•••••••••••••••••••••••••••••••••••••••
3886	4354	4457	-	
3 3887	Nil	-	-	
3888	29	-	-	
3889	58	· _	-	
3890	43		·	
3891	36	_	-	
3892	14	_	_	
3893	134	_	_	
3894	67	_	-	
3895	2			
3896	2 9	_	-	
3897	21	14	-	
3898	401	-		
3899	46	-	_	
3900	34			
3901	108	-	-	
3902	8194	8400	8126	
3903	57	-	0120	
3904	21	-	_	
3905	274			
3906	888	1063	-	
3907	31	-	-	
3908	465		-	
3909	Ni l	-	-	
	ton portion used.			

Certified by

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

Company: TRANSPACIFIC RESOURCES LTD

Date: DEC-20-96

Project: McGarry Attn: M. Clay/E. Gallo/D. Robinson

We hereby certify the following Geochemical Analysis of 32 Core/Rock samples submitted DEC-14-96 by .

96-33	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	3910	Nil			
?	3911	45	45	-	

One assay ton portion used.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

6W-5292-RG1

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

9

Metallic Assay Certificate

6W-5292-RM1

Company: TRANSPACIFIC RESOURCES LTD

Date: DEC-23-96

Project: McGarry Attn: M. Clay/E. Gallo/D. Robinson

We hereby certify the following Metallic Assay of 1 Core samples submitted DEC-14-96 by .

	*****	****	* * * * * * * *	********	*********	********	***	*******	********	***	***********	******	* * *			
	Sample			* +100 M *	Assay Va		*		Weight Au		. Metallic			Net A		
	Number	•	Wt (g)	* Wt (g) *	+100(g/t)	-100(g/t)	* -	+100(mg)	-100(mg)	*.	(oz/ton)	(g/t)	*	(oz'ton)	·ā·ī,	
96-34	3823 VG		307.25		74.10	32.91		0.369		* * * *	0.035	1.20		°.979	33.58	

One assay ton portion used.

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-5343-RG1

Company:**TRANSPACIFIC RESOURCES LTD**Project:McGarry

Date: DEC-27-96

Attn: M.Clay/D.Robinson/E.Gallo

We hereby certify the following Geochemical Analysis of 9 Core samples submitted DEC-18-96 by .

	Sample Number	Au PPB	Au Check PPB	
	3912	17		
	3913	43	-	
	3914	245	309	
96-37	3915	55	-	
50 57	3916	27	-	
	3917	1030	823	
	3918	36	-	
	3919	39	-	
	3920	79	86	

One assay ton used

Leh/ Certified by

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Metallic Assay Certificate

6W-5381-RM1

Company: TRANSPACIFIC RESOURCES LTD Project: McGarry

Date: DEC-27-96

Attn: D.Robinson/E.Gallo

We hereby certify the following Metallic Assay of 1 Core samples submitted DEC-19-96 by .

Sample * Total * +100 M * Assay Value Au * Totàl Weight Au * Metallic Au * Net Au Number * Wt (g) * Wt (g) * +100 (g/t) -100 (g/t) * +100 (mg) -100 (mg) * (oz/ton) (g/t) * (oz/ton) (g/t) 3824 * 494.16 * 11.31 * 1740.38 58.32 * 19.684 28.160 * 1.162 39.83 * 2.824 96.82

Certified by

96-

Swastika Laboratories

A Division of TSL/Assavers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-5393-RG1

Scochemical Analysis Certificate

Date: JAN-02-97

Page 1 of 2

Company:**TRANSPACIFIC RESOURCES LTD**Project:McGarryAttn:D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 46 Core samples submitted DEC-23-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	3921	24			
	3922	43	38	_	
	3923	41	-	_	
	3924	26	-	-	
	3925	514	-	-	
	3926	3120	3703	3017	
	3927	336	-	-	
	3928	2	-	-	
	3929	9	-	_	
	3930	15	-	-	
	3931	2			
37	3932	Nil	-	_	
37	3933	Nil	_	_	
	3934	3	-	_	
	3935	Nil	-	-	
	3936	Nil			•••••••••••••••••••••••••••••••••••••••
	3937	19	-	-	
	3938	77	-	-	
	3939	21	-	-	
	3940	5	-	-	
	3941	2			
	3942	5	_	-	
	3943	Nil	-	-	
	3944	10	_	_	
	3945	Nil	-	-	
	3946	132	103		
	3947	19		-	
	3948	1023	1200	_	
	3949	34		-	
	3950	12	-	-	
	One assay ton portio				

Established 1928

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

Page 2 of 2

6W-5393-RG1

Company: TRANSPACIFIC RESOURCES LTD Project: McGarry

Date: JAN-02-97

Attn: D. Robinson / E. Gallo

Established 1928

96

We hereby certify the following Geochemical Analysis of 46 Core samples submitted DEC-23-96 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	3951	77			
	3952	Ni l	-	_	
	3953	19	-	_	
	3954	38	-	-	
	3955	686	437	-	
< 27	3956	45			
6-37	3957	2	-	-	
	3958	10	-	-	
	3959	12	-	-	
	3960	9	· _	-	
	3961	5			
	3962	24	-	_	
	3963	271	285	-	
	3964	67		-	
	3965	7	-	-	
	3966	15			

One assay ton portion used.

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-5411-RG1

Company: TRANSPACIFIC RESOURCES INC

Date: JAN-06-97

Project: McGarry Attn: E. Gallo / D. Robinson

We hereby certify the following Geochemical Analysis of 22 Core samples submitted DEC-27-96 by .

	Sample Number	Au PPB	Au Check PPB	
	3967	24	26	
	3968	29	-	
	3969	9	-	
	3970	15	10	
	3971	163	-	
	3972	19		
	3973	36	-	
€-37	3974	21	-	
	3975	694	754	
	3976	98	-	
	3977	110		
	3978	117	-	
	3979	324	-	
	3980	9	-	
	3981	26	-	
	3982	12		
	3983	9	-	
	3984	7	9	
	3985	711	549	
	3986	10	-	
	3987	Nil		
	3988	21	-	

One assay ton portion used.

Certified by

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Company:

Project:

Metallic Assay Certificate

McGarry

6W-5411-RM1

TRANSPACIFIC RESOURCES INC

Date: JAN-03-97

E. Gallo / D. Robinson Attn:

We hereby certify the following Metallic Assay of 1 Core samples submitted DEC-27-96 by .

	******	***	******	* *	*****	* * * *	****************	* * *	*******	*********	* * *	***********	******	* * *	********	*****
	Sample	*	Total	*	+100 M	*	Assay Value Au	٠	Total	Weight Au	*	Metallic	Au	*	Net Au	
	Number	*	Wt (g)	*	Wt (g) +	+100(g/t) -100(g/t)	*	+100(mg)	-100(mg)	*	(oz/ton)	(g/t)	*	(oz/ton)	a t
96-35	050		218.80									0.005	0.17			3.29

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0003-RG1

Company:**TRANSPACIFIC RESOURCES INC**Project:McGarryAttn:D. Robinson / E. Gallo

Date: JAN-07-97

We hereby certify the following Geochemical Analysis of 14 Core samples submitted JAN-03-97 by .

	Sample Number	Au PPB	Au Check PPB	
	01	33	36	
	02	31	-	
	3989	43	-	
	3990	12	-	
	3991	33	-	
96-37	3992	21		•••••••••••••••••••••••••••••••••••••••
	3993	3	_	
	3994	7	-	
	3995	12	10	
	3996	15	-	
	3997	5		
	3998	22	-	
	3999	26	31	
	4000	19	-	

One assay ton portion used.

Certified by Denis Chart

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Metallic Assay Certificate

7W-0003-RM1

Company: TRANSPACIFIC RESOURCES INC Project: McGarry

Date: JAN-07-97

Attn: D. Robinson / E. Gallo

We hereby certify the following Metallic Assay of 1 Core samples submitted JAN-03-97 by .

 Sample
 * 'Total * +100 M * Assay Value Au
 * Total Weight Au
 * Metallic Au
 * Net Au

 Number
 * Wt (g) * Wt (g) * +100(g/t) -100(g/t) * +100(mg) -100(mg) * (oz/ton)
 (g/t) * (oz/ton)
 .g t'

 96-38
 65
 V.G.
 * 207.27 * 29.67 * 180.92
 62.54 * 5.368
 11.107 * 0.755
 25.90 * 2.318
 79.44

.

One assay ton portion used.

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

7W-0009-RG1

TRANSPACIFIC RESOURCES INC Company: Project: McGarry

Date: JAN-08-97

D. Robinson/E. Gallo Attn:

We hereby certify the following Geochemical Analysis of 37 Core samples submitted JAN-06-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	03	21			
	04	17	-	-	
	05	22	24	-	
	06	117	-	-	
	07	14	-	-	
	08	17			
	09	9	-	-	
	10	10	-	-	
	11	46	-	-	
	12	26	-	-	
	13	111	199		
	14	24	-	-	
	15	14	-	-	
	16	15	-	-	
	17	3	-	-	
	18	14			
€-35	19		-	-	
10 55	20	2 2	-	-	
Ţ	21	65	-	-	
	22	5	-	-	
	94	11589	11692		
Ŷ	101	63	-	-	
€-38	102	17932	17554	17760	
10-30	103	74	-	-	
. ₩ .	104	1646	-	-	
	105	31			
	126	81	-	-	
V	127	106	-	-	
	128	27	-	-	
)6-39	129	79	-	-	
	One assay ton portion used.				

Certified by Donis Chantro

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0009-RG1

Page 2 of 2

Company: TRANSPACIFIC RESOURCES INC Project: McGarry

Date: JAN-08-97

Attn: D. Robinson/E. Gallo

Established 1928

We hereby certify the following Geochemical Analysis of 37 Core samples submitted JAN-06-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	130	291	233		
	131	46	-	-	
	132	34	-	-	
96-39	133	41	-	-	
	134	21	-	-	
	135	177	168		
	136	158	-	-	

One assay ton portion used.

Certified by Denis Chante

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0022-RG1

Date: JAN-08-97

Company:**TRANSPACIFIC RESOURCES INC**Project:McGarryAttn:E. Gallo / D. Robinson

We hereby certify the following Geochemical Analysis of 18 Core samples submitted JAN-06-97 by .

S am Num	ple ber	Au PPB	Au Check PPB	
23		14		
24		Ni l	-	
25		2	-	
26		Ni l	-	
27		3	Nil	
28		7		
29		1572	-	
$5-35 \frac{30}{21}$		105	-	
31		48	-	
32		1018	965	
33		161		
34		576	-	
35		15	-	
36		26	-	
37		118	-	
38		453	501	
39		3		
40		122	-	

One assay ton portion used.

Certified by Denis Charte

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Metallic Assay Certificate

7W-0023-RM1

TRANSPACIFIC RESOURCES INC Company:

Date: JAN-08-97

Project: McGarry Attn: E. Gallo / D. Robinson

We hereby certify the following Metallic Assay of 2 Core samples submitted JAN-06-97 by .

	Sample	*	Total * -	+100 M	* Assay	Value Au	٠	Total W	Veight Au	*	Metall:	ic Au	×	Net	Au
	Number *****************	* * * *	Wt (g) *	Wt (g)	* +100(g/t) -100(g/t)	* .	+100(mg)	-100 (mg)		(oz/ton)	(g/t)	*	(oz/ton)	⟨ġ∵t
6-34		•	50.36 *	1.54				6.805	12.636			135.13			386.04
6-37	200	*	299.34 *	13.99	* 90.35	120.62	*	1.264	34.419	*	0.123 .	4.22	*	3.477	119.21

One assay ton portion used.

Certified by Denis Chanto

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0029-RG1

Company: TRANSPACIFIC RESOURCES INC

Date: JAN-09-97

Project: McGarry Attn: D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 14 Core samples submitted JAN-07-97 by .

$ \begin{array}{r} 41 \\ 42 \\ 96-35 \\ 43 \\ 44 \\ 45 \\ 46 \\ 187 \\ 188 \\ \end{array} $	27 626 41 87 141 259 247	535	 	
96-35 43 44 45 46 187	626 41 87 141 259	- 147	 	
44 45 46 187	41 87 141 259	- 147	 	
44 45 46 187	87 141 259		 	
46	141 259		 	
187			 	
V 188	24/	-		
100	21	-		
189	72	-		
96-40 190	36	-		
191	12	15	 	
192	14	-		
193	Ni l	-		
194	5	-		

One assay ton portion used.

Certified by Denis Charle

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

Established 1928

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0052-RG1

Date: JAN-13-97

Established 1928

Company:**TRANSPACIFIC RESOURCES INC**Project:McGarryAttn:D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 19 Core samples submitted JAN-08-97 by .

	Sample Number	Au PPB	Au Check PPB	
	047	350		
	048	99	84	
	049	38	-	
	050 Not Rec'd	-	-	
	051	410	-	
	052	249		
	053	87	-	
	054	2393	2427	
	055	75	· _	
	056	326	291	
6-38	057	62		
	058	111	-	
	059	77	_	
	060	7	-	
	061	250	-	
	062	130		
	063	132	-	
	064	72	-	
	066	463	528	
	100	410	415	

One assay ton portion used.

feld Certified by

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0071-RG1

Established 1928

96

Company: TRANSPACIFIC RESOURCES LTD

Date: JAN-15-97

Project: McGarry Attn: D.Robinson/E.Gallo

We hereby certify the following Geochemical Analysis of 15 Core samples submitted JAN-09-97 by .

	Sample Number	Au PPB	Au Check PPB	
	67	55	62	
	68	170	-	
	69	398	343	
	70	50	-	
	71 .	72	-	
6-38	72	154		
0 50	73	406	-	
	74	46	-	
	75	53	-	
	76	1490	1101	
	77	1282	1337	
	78	108		
	79	5	-	
	80	36	-	
	81	5	-	

One assay ton portion used.

Certified by K. Morison

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0083-RG1

Company: TRANSPACIFIC RESOURCES LTD Project: McGarry

Date: JAN-16-97

Attn: D. Robinson/E. Gallo

We hereby certify the following Geochemical Analysis of 17 Core samples submitted JAN-10-97 by .

	Sample Number	Au PPB	Au Check PPB	
	82	29		
	83	24	-	
	84	15	-	
	85	65	-	
	86	82	77	
96-38	87	14		
90-30	88	89	-	
	89	15	-	
	90	31	-	
	91	67	· _	
	92	2	Nil	
	93	12	-	
	95	242	171	
	96	31	-	
	97	70	-	
	98	10		
	99	27	-	

One assay ton portion used.

ept Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

7W-0099-RG1

Company:**TRANSPACIFIC RESOURCES LTD**Project:McGarry

Date: JAN-17-97

Attn: D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 41 Core samples submitted JAN-13-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	Cu P P M	
	106	84				
	107	216	-	-	_	
	108	19	-	-	-	
	109	166	-	-	-	
	110	382	370	-	-	
	111	351				
	112	48	-	-	-	
	113	98	-	-	-	
	114	783	857	-	-	
	115	117	-	-	-	
	116	261				
	117	53	-	_	-	
	118	46	-	-	-	
	119	91	-	-	-	
	120	22	-	-	-	
	101	53				
96-38	122	21	-	-	-	
Á	123	Nil	-	-	-	
	124	288	219	-	-	
	125	10		-	-	
	137	17				
	138	17	-	-	-	
¥	139	14	-	-	-	
	140	15	-	-	-	
	141	2	-	-	-	
96-39						
	142 143	3	-	-	-	
	145	Ni l	-	-	-	
		<u>15</u> 77	- 01		-	
∀ →6-42	254	3	81	-	-	
	One assay ton portion used.					
			Certij	ĩed by	J. Jehr	<i>P</i>

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0099-RG1

Date: JAN-17-97

Page 2 of 2

TRANSPACIFIC RESOURCES LTD Company: McGarry Project: Attn:

D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 41 Core samples submitted JAN-13-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	Cu PPM	
	256	163				
	257	3	-	-	-	
	258	15	-	-	-	
	259	38	-	-	854	
	260	Ni l	-	-	-	
96-42	301	7				
90-42	302	10	-	_	-	
٨	303	33	-	-	_	
Ť	304	12823	12617	11623	-	
	305	31	-	-	-	
96-39	145	17	-	-	-	

One assay ton portion used.

Certified by P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244 FAX (705)642-3300

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

t

Geochemical Analysis Certificate

7W-0117-RG1

Company: TRANSPACIFIC RESOURCES LTD

Date: JAN-20-97

Project: McGarry Attn: D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 20 Core samples submitted JAN-15-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	Au Check PPB	
	146 147	21 5				
	148		-	-	-	
	149 150	34 43	74	-	-	
	151	89				
96-39	152 153	122 1 4 6	-	-	-	
4	154	26	· ·	-	· _	
	<u>155</u> 306	34			-	
	307	10 91	-	-	-	
96-42	308 309	19	21	-	-	
	310	33 19	-	-	-	
	311	45	38			
	312 313	81 10800	10663	- 9703	- 10046	
	314 315	170		-	-	
		115		- 		

One assay ton portion used.

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0126-RG1

Date: JAN-20-97

Company:**TRANSPACIFIC RESOURCES INC**Project:McGarryAttn:D. Robinson/E. Gallo

We hereby certify the following Geochemical Analysis of 27 Core samples submitted JAN-16-97 by .

	Sample Number	Au PPB	Au Check PPB	
	156	17		
	157	19	-	
	158	22	-	
	159	15	-	
	160	130	70	
6-39	161	14		
A	162	26	-	
	_163	17	-	
	316	12	-	
	317	9	-	
¥ −	318	10		
6-42	319	58	-	
	320	1512	1920	
	321	43	-	
	322	22	-	
	323	43		
	324	3	-	
	325	32	-	
	326	Nil	-	
	327	5	-	
	328	2		
·	329	2 5	-	
	330	14	-	
	331	17	-	
	332	14	-	
	333	17		
	334	1200	891	

One assay ton portion used.

Certified by

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0171-RG1

Page 1 of 3

Date: JAN-23-97

Established 1928

Company: TRANSPACIFIC RESOURCES LTD

Project: McGarry Attn: D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 78 Core samples submitted JAN-20-97 by .

	Samp I e Numbe r	Au PPB	Au Check PPB	
	164	69	69	
	165	5	-	
	166	14	-	
	167	14	-	
	168	7	-	
	169	17		•••••••••••••••••••••••••••••••••••••••
	170	12	-	
	171	15	-	
	172	5	-	
	173	24	-	
96-39	174	Nil		
↑	175	22	-	
	176	12	-	
	177	5	-	
	178	17	_	
¥	179	19		
	180	31	-	
	181	81	55	
96-40		10	-	
	183	14	-	
\uparrow	184	29		
	185	21	17	
	186	12	<u>.</u>	
	187 Not Rec'd	-	-	
	188 Not Rec'd		-	
	189 Not Rec'd	-		
	190 Not Rec'd	-	-	
	191 Not Rec'd	-	-	
	192 Not Rec'd	-	-	
	193 Not Rec'd		-	
	One assay ton portion used.		 	

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 2 of 3

Geochemical Analysis Certificate

Company: TRANSPACIFIC RESOURCES LTD

7W-0171-RG1

Date: JAN-23-97

Project: McGarry Attn: D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 78 Core samples submitted JAN-20-97 by .

	Sample Number	Au PPB	Au Check PPB	
	194 Not Rec'd			
	195	20	-	
	196	10	-	
	197	39	-	
	198	12	-	
	201	14		
	202	127	171	
	203	26	-	
	204	3	-	
	205	5	-	
	206	7		
	207	4	-	
96-40	208	46	34	
JU 10	209	41	-	
	210	10	-	
	211	17		
	212	14	-	
	213	51	-	
	214	298	377	
	215	45	-	
	216	72		
	217	Nil	-	
	218	9	-	
	219	33	-	
	220	21	-	
	221	86		
	222	19	_	
	223		_	
	224	3 2	-	
	225	1018	1029	

Certified by Denis Chartre

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 3 of 3

Geochemical Analysis Certificate

Company: TRANSPACIFIC RESOURCES LTD

Date: JAN-23-97

Project: McGarry Attn: D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 78 Core samples submitted JAN-20-97 by .

	Sample Number	Au PPB	Au Check PPB	
	226	33		
	227	99	-	
	228	57	-	
	229	7	-	
6-40	230	5	-	
4	231	3	-	
₽	232	19	-	
	233	12	26	
	234	Ni l	-	
	235	17	-	
	236	Nil		
V	237	Nil	-	
'	238	67	-	
	239	360	411	
	240	31	-	
6-42	241	41		
0-42	242	5 7	-	
	243	7	-	
	244	141	-	
	245	Ni l	-	
	246	9		
	247	1646	1817	
∧	248	2023	2091	
	249	485	-	
	250	7	-	
?	No Tag	19		

One assay ton portion used.

Certified by Denis Chante

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

Established 1928

7W-0171-RG1

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

7W-0195-RG1

Company: TRANSPACIFIC RESOURCES LTD Project: McGarry Date: JAN-24-97

/

Attn: D.Robinson/E.Gallo

We hereby certify the following Geochemical Analysis of 36 Core samples submitted JAN-21-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
96-42	251	914	994		
	261	22	_		
¥	262	14	-	-	
96-43	263	27	-	-	
90-45	264	26	-	-	
₩	265	62			
	266	17	-	-	
	289	97		-	
	290	21	-	-	
Y	291	185	-	-	
	292	38		-	
	293	31	-	-	
	294	22	-	-	
	295	58	-	-	
	296	33	-	-	•
36 41	297	72			
96-41	298	130	-	-	
	299	3531	3463	_	
	300	27	-	-	
	335	93	-	-	
	336	22			
	337	1097	-	-	
	338	23726	23932	24172	
	339	509	-	-	
	340	26	-	-	
	341	24			
	342	89	-	-	
	343	10	-	-	
	344	1140	1029	-	
	345	14	-	-	
	One assay ton portion	used.			A
			Certifi	ed by	J. Auf

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

7W-0195-RG1

Company: TRANSPACIFIC RESOURCES LTD

Date: JAN-24-97

Project: McGarry Attn: D.Robinson/E.Gallo

We hereby certify the following Geochemical Analysis of 36 Core samples submitted JAN-21-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	·
	346	43			
	347	45	-	-	
96-41	348	149	-	-	
50-4⊥ ▲	349	34	-	-	
_1	350	23	-	-	
∳ 96-42	252	1197	1200	-	

One assay ton portion used.

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0204-RG1

Company: TRANSPACIFIC RESOURCES INC Project:

Date: JAN-24-97

Attn: D.Robinson/E. Gallo

We hereby certify the following Geochemical Analysis of 22 Core samples submitted JAN-22-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	267	266			
	268	1783	2030	2811	
	269	15	-	-	
	270	530	411	-	
	271	686	506	-	
	272	21			
	273	31	-	-	
	274	10	-	-	
	275	14	-	-	
	276	5	-	-	
6-43	277	14			
	278	91	-	-	
	279	3	-	-	
	280	207	278	-	
	281	14	-	-	
	282	17			
	283	22	19	_	
	284	17	-	-	
	285	406	411	_	
	286	38	-	-	
	287	39			
	288	156	_	-	

One assay ton portion used.

Certified by

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0232-RG1

Company: TRANSPACIFIC RESOURCES INC Project: McGarry

Date: JAN-28-97

Attn: D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 27 Core samples submitted JAN-23-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	351	19			
	352	33	-	-	
	353	609	446	-	
	354	72	-	-	
	355 .	15	-	-	
	356	51			
	357	53	-	_	
	358	27	-	-	
	359	2777	3017	3223	
	360	17	-	-	
6-41	361	15			
	362	26	-	-	
0 41	363	183	-	-	
	364	45	53	-	
	365	31	-	-	
	366	46			
	367	43	-	-	
	368	24	-	-	
	369	117	-	-	
	370	891	1131	-	
	371	84			
	372	643	603	-	
	373	31	-	-	
	374	231	-	-	
-	375	21	-	-	
	376	48			
	377	12	-	-	

One assay ton portion used.

Certified by

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0431-RG1

Company: TRANSPACIFIC RESOURCES INC Project: McGarry

Date: FEB-12-97

Attn: D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 26 Core samples submitted FEB-06-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
	378	9			
	379	2640	2949	-	
	380	48	-	-	
	381	1377	-	-	
	382	24	-	-	
	383	14263	13680	15737	
	384	67	-	-	
	385	1185	801	-	
	386	50	-	-	
	387	15	. -	-	
	388	5			
	389	5	-	-	
96-43	390	132	-	-	
	391	9	-	-	
	392	Ni l	-	-	
	393	Ni 1			
	394	2	-	-	
	395	Ni l	-	-	
	396	Ni I	-	_	
	397	9	-	-	
	398	2			
	399	2	-	-	
	400	22	-	-	
	401	19	21	-	
	402	26		-	
	403	31			

One assay ton portion used.

eby Certified by

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 Fax (705)642-3300

Established 1928

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0487-RG1

Established 1928

Date: FEB-17-97

Company:**TRANSPACIFIC RESOURCES LTD**Project:McGarryAttn:D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 28 Core samples submitted FEB-07-97 by .

	Sample Number	Au PPB	Au Check PPB
	404	15	
	405	12	-
	406	9	-
	407	17	-
	408	55	-
	409	17	-
	410	33	38
	411	27	-
	412	1303	1234
	413	31	-
	414	10	-
96-43	415	5	-
J0 4J	416	3	-
	417	33	-
	418	9	-
	419	7	
	420	48	41
	421	17	-
	422	53	-
	423	10	-
	424	14	
	425	74	-
	426	17	-
	427	21	-
	428	31	-
	429	26	
	430	326	240
	431	27	-

One assay ton portion used.

Certified by Down Chanto

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 Fax (705)642-3300

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0493-RG1

Company: TRANSPACIFIC RESOURCES LTD

Date: FEB-14-97

Project: McGarry Attn: D. Robinson / E. Gallo

We hereby certify the following Geochemical Analysis of 12 Core samples submitted FEB-08-97 by .

	Sample Number	Au PPB	Au Check PPB	
96-41	432	19	10	
	433	26	-	
∧	434	7	-	
	435	41	-	
	436	43		
96-37	437	21		
06 40	438	5	-	
96-42	439	10	-	
	440	5		
96-40	441	3	-	
<u>26-38</u>	442	737	717	
<u>96-38</u> 96-31	443	14		

One assay ton portion used.

Certified by Demis charto

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 Fax (705)642-3300

Established 1928

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-0604-RG1

Company: TRANSPACIFIC RESOURCES LTD Project: McGarry Date: FEB-25-97

Attn: D. Robinson/E. Gallo

We hereby certify the following Geochemical Analysis of 5 Core samples submitted FEB-13-97 by .

	Sample Number	Au PPB	Au Check PPB	Au 2nd PPB	
96-26	444 445	24 122	108	-	
	446	62	- 108		
96-32	447 448	5635 39	6058	4594	

One assay ton portion used.

Certified by Denis Chato

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 Fax (705)642-3300

Established 1928

LATITUDE	1341.7 N	
DEPARTURE	1932.3 E	
ELEVATION _	'0'	
BEARING	N 8°W (Grid North)	Az. 352°
DIP AT COLL	AR45°	

TRANSPACIFIC RESOURCES INC. **DIAMOND DRILL CORE LOG**

Tests Depth	Dip	Magnetic Bearing	Corrected Bearing	
TOTAL DEF	тн ог но	DLE 10	6.0 meters	

E ST

020 MCGARRY CLAIM No. _____MINING Lease CLM 298 97-44 HOLE No. BQ CORE SIZE March 29, 1997 STARTED April 1, 1997 FINISHED

METERAGE			SAMPLE			ASS	AYS		C	ORE LENGT	H meter
FROM	то	DESCRIPTION	No.	Au ppb	Au Chec ppb	k % CU	% ZN	% NI	FROM	то	ACC
0.0	4.0	Casing									
4.0	69.0	DIORITE. Coarse-grained, magnetic, light grey to	6301	40					4.0	5.2	1.2
		dark greenish-grey colour. Occasional carbonate	6348	24					5.2	7.0	1.8
		and/or quartz threads and stringers. Occasional	6302	80					7.0	8.4	1.4
	epidote-lined fractures and patches.		34					8.4	10.0	1.6	
			6303	40					12.0	13.0	1.0
		13.0 - 14.0 - 1% disseminated pyrite								•	
			6304	30	-				14.5	15.3	0.8
		15.3 - 15.4 - 1-2% disseminated chalcopyrite	6305	50	40				15.3	16.0	0.7
		@ 21.0 - 0.5 cm wide chalcopyrite seam	6350	22					20.6	22.3	1.7
		21.0 - 31.0 - occasional patch of	6306	40					22.3	22.7	0.4
		chalcopyrite up to 1 cm.	6351	72	39				22.7	23.6	0.9
			6307	30					23.6	24.2	0.6
		@ 25.5 - 1 mm wide pyrite stringer	6352	36					24.2	26.0	1.8
			6353	24					26.0	28.0	2.0

Kosy Drilling Ltd.

LOGGED BY

E. A. Gallo

CONTRACTOR _

DIAMOND DRILL CORE LOG

PROPERTY _____ McGarry Project

TRANSPACIFIC RESOURCES INC.

HOLE NO. 97-44

	erage		CAMPLE		ASSAYS					CORE LEN	Cmu mo
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	Au Check	% CU	% ZN	% NI	FROM	TO	ACC
4.0	69.0	DIORITE (cont'd)	6354	39					28.0		<u>wib</u>
			6308	30			<u> </u>		30.0		
			6309	20						31.0	1.0
			6310						34.4	35.1	0.7
				10					35.9	36.2	0.3
		0 40.4 - 1 mm wide pyrite stringer	6311	30					37.0	38.0	1.0
			6312	40		<u> </u>					
		43.1 - 43.2 - 12% chalcopyrite and 5% pyrite	6355	60					41.6	43.0	1.4
		in irregular patches							43.0	44.3	1.3
		0 46.9 - minor disseminated pyrite	6313	10							
		@ 48.3 - 1 cm wide quartz veinlet with minor							46.0	47.2	1.2
		chalcopyrite		<u> </u>							
			6314	470		(0.01 ģ	z/ton)		49.5	49.7	
		51.4 - 51.8 - quartz vein	6315	10					51.4	49.7 51.8	0.2
			6357	30					52.3		0.4
		62.0 - 62.2 - epidote seam with minor quartz	6317	10					62.0	53.8	1.5
		and pyrite							02.0	62.2	0.2
		6F 0 6F 2 6	6316	Nil	Nil				64.5	64.8	0.3
	l	65.0 - 65.2 - fine-grained									0.5

)

obsit in

г

2 of 5

Sheet No.____

TRANSPACIFIC RESOURCES INC.

McGarry Project

PROPERTY

HOLE NO. ____97-44

Met	terage				ASSA	/S			С	CORE LENGTH meters			
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	AG OZ	% CU	% ZN	% NI	FROM	то	ACC		
4.0	6 9.0	DIORITE (cont'd)		FF-			Ť				WIDIN		
ļ		66.4 - 67.0 - minor disseminated pyrite, 2 cm	6318	10		+	<u> </u>		66.4	67.0	0.6		
		wide quartz vein	<u>+</u>	+	+	<u> </u>	<u> </u>	+					
		Contact @ 69.0 is 45° to core axis					<u> </u>						
69.0	80.1	SYENITE PORPHYRY. Pink colour, medium-grained to					 						
		coarse-grained. Occasional threads and stringers of											
		quartz, carbonate, or epidote. Cream-coloured	,										
	I	feldspar phenocrysts up to 2 mm in diameter.	,	[
		0 70.9 - minor pyrite along a fracture	'		-								
	, {	@ 72.8 - 2 cm wide sericite seam at 80 °	 /					<u>├──</u>			<u> </u>		
		to core axis									<u> </u>		
		@ 74.6 - 5 cm wide sericite seam at 80 °									<u> </u>		
		to core axis											
	l!	@ 77.4 - 1 cm wide hematite seam at 20°									[
	!	to core axis											
		Contact at 80.1 is 45° to core axis									. <u></u>		
80.1	106.0	DIORITE. Coarse-grained, magnetic, dark greenish-											
		grey colour. Occasional carbonate and/or quartz three	ads										
	·	and stringers. Occasional epidote-lined fractures and											

)

Sheet No. 3 of 5

Sheet No. 4 of 5

PROPERTY McGarry Project

TRANSPACIFIC RESOURCES INC.

HOLE NO. <u>97-44</u>

Me	eterage		SAMPLE		ASS	SAY	·····			CORE LENG	JGTH me
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	AG OZ	% CU	% ZN	% NI	FROM		AC
80.1	106.0	DIORITE (cont'd)					-	1		+	
,		patches. @ 84.3 - 1 cm wide quartz-carbonate veinle	it.				1	++		+	
		at 30° to core axis				-					
,		0 85.1 - 2 cm wide quartz-carbonate veinlet with	6319	Nil					85.0	85.2	0.2
,		epidote, hematite-stained, at 45°				1					
, 		to core axis					† <u> </u>				+
·	-	0 90.8 - 1 cm wide quartz-carbonate veinlet at					<u> </u>			+	
′		40° to core axis. Epidote alteration			,	<u> </u>					+
, '	, 	4 cm wide on each side of veinlet.			1						+
· · · · · · · · · · · · · · · · · · ·	'	@ 94.6 - 5 mm wide quartz-carbonate veinlet,	6320	10					94.5	94.8	0.3
· · · · · · · · · · · · · · · · · · ·	·	with 4 cm epidote, hematite-stained									+
'			6359	12				1	95.7	97.0	1.3
· · · · · · · · · · · · · · · · · · ·	<u> </u>		6358	10				1	97.0	98.1	1.1
 	<u> </u> '	0 98.6 - 99.5 - 8 quartz-carbonate veinlets	6388	10				1	98.6	99.5	0.9
ļ	ا	ranging from 1 mm - 1 cm in					1	1		'	
'	<u> </u> !	width, 50°-60° to core axis.					1	1		'	
/		Minor pyrite in a patch at 99.2					1	1		/	<u> </u>
, 	<u> '</u>		6321	10					100.5	100.9	0.4
<u></u> !	<u> </u>		.	,		1				, ,	<u> </u>

TRANSPACIFIC RESOURCES INC.

PROPERTY McGarry Project

HOLE NO. 97-44

Met	cerage		SAMDI F		ASSAYS					C	ORE LENG	TH me
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	Au Check ppb	% CU	% ZN	% NI		FROM	то	ACC
80.1	106.0	DIORITE (cont'd)										
_		@ 104.1 - 2 cm wide carbonate veinlet at 45° to	6389	Nil	Nil					104.1	104.2	0.1
		core axis.			_							
	106.0	END OF HOLE										
	100.0											
						``			<u> </u>			
						<u> </u>						
						· · · · · ·		<u>·</u>				
				<u> </u>	├───							

-

Sheet No. 5 of 5

LATITUDE	1341.5 N	
DEPARTURE	1906.5 E	
ELEVATION	'0'	
BEARING	N 8°W (Grid North)	Az.
DIP AT COLLA	R	

TRANSPACIFIC RESOURCES INC. **DIAMOND DRILL CORE LOG**

352 °

Sheet	No	1	of	4
Sneer	INO.			

Tests		Magnotio	Corrected	PROPERTY _	McGarry Project	
Depth			Bearing	CLAIM No.	Mining Lease CLM 298	
				HOLE No.	97-45	
				CORE SIZE	BQ -	
		·		STARTED	April 1, 1997	
	PTH OF HOL	 101.	0 meters		April 5, 1997	
		L				

METERAGE ASSAYS CORE LENGTH meters SAMPLE DESCRIPTION Au No. FROM то ACC % CU % ZN % NI FROM то ddd WIDTH 7.0 Casing 0.0 7.0 42.7 DIORITE. Very coarse-grained, dark greenish-grey colour. Occasional quartz and/or carbonate threads and stringers. Occasional epidote stringers and patches. Magnetic. Locally diabasic texture. 7.0 - 8.2 - 7 quartz-carbonate stringers up to 6322 10 8.2 7.0 1.2 5 mm in width 8.1 - 8.2 - 3-5% disseminated pyrite 17.9 - 18.7 - minor disseminated chalcopyrite 6323 Ni] 17.9 18.7 0.8 @ 21.6 - trace chalcopyrite 25.0 - 26.2 - 1-2% disseminated chalcopyrite 6324 60 25.0 26.2 1.2 31.6 - 32.9 - 10 cm wide patch @ 31.8 of 10% 6325 50 31.6 32.9 1.3 disseminated chalcopyrite, and 2 cm patch @ 32.9 of 3% disseminated chalcopyrite

Kosy Drilling Ltd

E. A. Gallo LOGGED BY ...

CONTRACTOR.

TRANSPACIFIC RESOURCES INC.

PROPERTY McGarry Project

HOLE NO. 97-45

Mete	erage					ASSAYS			CORE LENGTH mete			
FROM	то	DESCRIPTION	SAMPLE No.	Au.	Au Checl		% ZN	<i>(1</i>)))		CORE LEN		
7.0	42.7	DIORITE (cont'd)			ppb -	/// CU	76 211	% NI	FROM	ТО		
		37.9 - 38.2 - 2 quartz-carbonate stringers up to 1 cm in width, with hematite										
		38.6 - 39.0 - 1-2% disseminated chalcopyrite and	6326	20	20				38.6	39.0	0.4	
		1-2% disseminated pyrite.										
		40.9 - 42.7 - slightly bleached										
42.7	61.0	SYENITE PORPHYRY. Very coarse-grained to coarse-				X						
		grained, pinkish-red colour. Frequent quartz and/or										
		carbonate threads and stringers, at 40°-60° to core										
		axis. Cream-coloured feldspar phenocrysts up to 2										
		mm in diameter. Contacts at 42.7 and 61.0 are both									+	
		at 45° to core axis.										
61.0	101.0	DIORITE. Very coarse-grained, dark greenish-grey										
		colour. Occasional quartz and/or carbonate threads										
	· · · · · · · · · · · · · · · · · · ·	and stringers. Occasional epidote stringers and										
		patches. Magnetic. Locally diabasic texture.										
		75.0 - 75.6 - 5 quartz-carbonate veinlets up to	6390	Nil	Nil				75.0	75.6	0.6	
		3 cm wide, generally at 45° to								-		
		core axis. Epidotized.										

2.5

Sheet No. 2 of 4

TRANSPACIFIC RESOURCES INC.

PROPERTY McGarry Project

HOLE NO. ____97-45

Mete	· · · · · · · · · · · · · · · · · · ·	DESCRIPTION	SAMPLE		ASSA	YS			C	ORE LENG	TH met
FROM	то		SAMPLE No.	Au ppb	AG OZ	% CU	% ZN	% NI	FROM	ТО	AC
61.0	101.0	DIORITE (cont'd)		1.1							WID
		75.0 - 75.6 (cont'd) Minor hematite staining.									
		84.6 - 85.4 - Trace disseminated pyrite.	6327	10					84.6	85.4	0.8
		Frequent epidote patches and									
		stringers. @ 84.9 - 3 cm wide									
		carbonate vein at 45° to core axis.			· · · · ·						
		86.2 - 87.2 - Frequent epidote patches and	6328	10					86.2	87.2	1.0
		stringers. Hematite staining.									
		92.3 - 98.3 - Some fine-grained sections.						·			<u> </u>
		Fractured. Frequent irregular									<u> </u>
		quartz-carbonate threads and									
		stringers.									
		94.9 - 95.9 - trace disseminated	6360	10					94.9	95.9	1.0
		pyrite.									
		97.0 - 98.3 - traces disseminated	6361	17					97.0	98.3	1.3
		chalcopyrite & pyrite									
		98.3 - 99.2 - quartz-carbonate veinlets up	6391	Nil					98.3	99.2	0.9
		to 3 cm. wide @ 98.3, 98.7,								55.2	
		and 99.2									

3

Sheet No. 3 of 4

Sheet No. 4 of 4

PROPERTY McGarry Project

TRANSPACIFIC RESOURCES INC.

97-45

Mete	erage				ASSAY	S			 0	ORE LENG	TH meters
FROM	то	DESCRIPTION	SAMPLE No.	AU OZ	AG OZ	% CU	% ZN	% NI	FROM	ТО	ACC WIDTH
61.0	101.0	DIORITE (cont'd)									WIDTH
		98.3 - 101.0 - fine-grained to medium-grained,									
		altered, chloritic, sheared at									
		45° to core axis.									
	101.0	End of Hole									
	 					·					
										- <u> </u>	
											
<u>-, , , , , , , , , , , , , , , , , , , </u>											
		i									

المارية المتحد فتحجه وتصورونهم والمراجع

LATITUDE	1328.9 N	
DEPARTURE	1880.7 E	
ELEVATION _	'0 '	

TRANSPACIFIC RESOURCES INC. **DIAMOND DRILL CORE LOG**

Sheet	No	1	of	5	
Oncor		_			

DEPARTURE	Tests	Magnetic	Corrected	PROPERTY	McGarry Project
101	Depth Dip	Bearing	Bearing	CLAIM Nô.	Mining Lease CLM 298
		·····		HOLE No.	97-46
BEARING <u>N 8° W (Grid North</u>) Az. 352°				CORE SIZE	BQ
DIP AT COLLAR				STARTED	April 6, 1997
	TOTAL DEPTH OF HO	DLE	.0 meters	FINISHED	April 8, 1997

Meterage						ASS	AYS			CORE LENGT	Hmeters
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	Au Chec	^k % CU	% ZN	% NI	FROM	то	ACC WIDTH
0.0	13.0	Casing. (Clay, sand, occasional boulders)									
13.0	30.0	DIORITE. Very coarse grained, greenish-grey to dark	6329	Nil					13.0	14.3	1.3
		greyish-green colour. Occasional quartz-carbonate	6331	Nil					14.3	15.6	1.3
		threads and stringers at 30°-60° to core axis.	6330	10					15.6	17.2	1.6
		Occasional hematite-lined fractures. Occasional					-				
		epidote stringers & patches. Magnetic. Trace pyrite.									
		0 18.4 - 2 cm wide carbonate vein with trace	6332	10					17.2	18.6	1.4
		pyrite.									
			6333	10	10				18.6	20.0	1.4
			6334	10					20.0	21.3	1.3
			6335	10					21.3	23.0	1.7
			6336	10					23.0	25.0	2.0
			6337	10					25.0	27.0	2.0
		27.0 - 30.0 - Epidotized	6338	20					27.0	29.0	2.0
		@ 28.2 - 2 cm wide quartz-carbonate veinlet at									

Kosy Drilling Ltd.

E. A. Gallo

LOGGED BY __

CONTRACTOR _

Sheet No. 2 of 5

PROPERTY McGarry Project

TRANSPACIFIC RESOURCES INC.

HOLE NO. 97-46

Met	terage	/	CAMPLE		ASSA	YS	(CORE LENGTH meter			
FROM	то	DESCRIPTION	SAMPLE No.	Au 	Au Chec	k % CU	% ZN	% NI	FROM	то	ACC
13.0	30.0	DIORITE (cont'd)									
		@ 28.0 (cont'd) - 60° to core axis								<u> </u>	
		28.3 - 29.0 - 1-2% disseminated chalcopyrite									
	ļ'	and 1-2% disseminated pyrite.									
	ļ	29.0 - 29.6 - 1-2% disseminated chalcopyrite and	6339	10					29.0	31.0	2.0
	, 	1% disseminated pyrite									
30.0	43.9	SYENITE PORPHYRY. Coarse-grained, pink colour. Occasional quartz and/or carbonate threads and stringers, generally at 45° to core axis. Feldspar							·		<u> </u>
	ļ !	phenocrysts up to 2 mm in diameter. Occasional									
	 	diorite inclusions up to 5 cm. Rare epidote-lined									
	ا ا	fracture. Contact at 30.0 is 40° to core axis.								<u>.</u>	
	·'	Contact at 43.9 is irregular at 40° to core axis.	1								
	ا ا	30.0 - 31.0 - trace of disseminated pyrite									
	ا ــــــــــــــــــــــــــــــــــــ	35.9 - 37.0 - 1% disseminated pyrite, trace of	6340	40	30				35.9	37.0	1.1
	ا ا	chalcopyrite, 1 mm wide quartz-	Ţ								
	ا ا	carbonate stringer at 36.1									
		38.4 - 39.0 - trace pyrite	6341	Nil	10				38.4	39.0	0.6
43.9	92.7	DIORITE. Very coarse-grained, greenish-grey to dark									
	<u> </u>	greyish green colour. Magnetic, Trace disseminated py	vrite.	,							

TRANSPACIFIC RESOURCES INC.

PROPERTY McGarry Project

HOLE NO. 97-46

Sheet No. 3 of 5

Meterage		DESCRIPTION	SAMPLE No.		AS	SAYS	CORE LENGTH meters				
FROM	то	DESCRIPTION	No.	Au _ppb	AG OZ	% CU	% ZN	% NI	FROM	то	ACC
43.9	92.7	DIORITE (cont'd). Occasional quartz-carbonate threads	\$								
		& stringers at 30°-60° to core axis. Occasional hema	atite-		-						_
		lined fractures. Occasional epidote stringers & pate	ches.								
		43.9 - 44.6 - chilled, fine-grained.	6342	10					43.9	46.0	2.1
		Quartz-carbonate veinlets up to 3 cm wide at									
		45.8, 46.7, 48.8, 48.9, 51.2									
-		59.8 - 61.0 - Epidotized, minor disseminated	6343	Nil					59.8	61.0	1.2
		chalcopyrite. Fine-grained.									
		61.8 - 63.4 - Epidotized, trace pyrite									
		0 66.9 - 1.5 cm wide carbonate-sericite veinlet	6344	10					66.9	68.0	1.1
		with epidote and trace of pyrite at									
		60° to core axis.									
		0 67.0 - 2 cm wide epidotized seam with trace of									
		pyrite at 70° to core axis.									<u> </u>
		0 67.2 - 4 cm wide quartz veinlet, irregular at								· · · · · · · · · · · · · · · · · · ·	
		45° to core axis.		<u> </u>							
			6345	10					71.3	71.6	0.3
	-	@ 74.6 - 1 cm wide quartz-carbonate veinlet at 45° to core axis.					· · · · · · · · · · · · · · · · · · ·				

PROPERTY___McGarry Project

TRANSPACIFIC RESOURCES INC.

HOLE NO. 97-46

Mete	erage		SAMPLE		ASSAYS			,		CORE LENGT		
FROM	то	DESCRIPTION DIORITE (cont'd)	SAMPLE No.	Au ppb	AG OZ	% CU	% ZN	% NI	FRO		AC	
43.9	92.7	DIORITE (cont'd)										
		@ 75.6 - 2 cm wide quartz-carbonate veinlet at										
		45° to core axis.										
		@ 76.5 - 2 cm wide quartz-carbonate veinlet										
		irregular at 40° to core axis.										
		Quartz-carbonate veinlets up to 2 cm wide at	6392	10					76.9	77.8	0.9	
	·····	76.9, 77.2, 77.4, 77.7, and 77.8				×						
		77.0 - 82.1 - fine grained, dark grey colour.				· · · · · · · · · · · · · · · · · · ·						
		@ 82.1 - 3 cm wide mylonite seam or fault gouge								-		
		at 45° to core axis.								-		
		82.1 - 92.7 - fault zone. Fractured, altered, fin grained sections.	n <u>e-</u>									
		@ 89.8 - 1 cm wide quartz-carbonate stringer at										
		55° to core axis. Slickensided on both									-	
		sides.										
92.7	101.0	BASALT. Fine-grained, dark grey colour, fractured,									+	
		altered, chloritic. Some fracture faces are slickens	ided,							+		
		some have fault gouge. Frequent quartz and/or carbor	nate ,							_		
		threads and stringers up to 1.5 cm wide, irregular bu	, it				 	· .				

Sheet No. 4 of 5

Sheet No. 5 of 5

PROPERTY McGarry Project

TRANSPACIFIC RESOURCES INC.

HOLE NO 97-46

Me	eterage				ASSA	AYS			• <u>_</u>	C	ORE LENG	TH met
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	AG OZ	% CU	% ZN	% NI		FROM	то	ACC
92.7	101.0	BASALT (cont'd)					-					
		generally at 30°-60° to core axis. Contact at 92.7							-	1		
		is broken up.										+
		93.7 - 94.4 - Trace to minor pyrite.										+
		95.5 - 96.0 - Silicified										+
		96.0 - 98.0 - Quartz-flooded, 20% quartz.	6346	10						96.0	98.0	2.0
		98.0 - 99.0 - Quartz-flooded, 40% quartz, minor	6347	10		N.				98.0	99.0	1.0
		chalcopyrite, trace pyrite.										
		99.0 - 101.0 - Fractured, with slickensides on										
	<u> </u>	fracture faces, 10°-60° to core										
	<u> </u>	axis. Silicified, epidotized							-		• • • • •	†
	<u> </u>	sections up to 10 cm wide at 99.7,						<u> . </u>				
		100.0, and 100.6, at 30°-60° to	ļ]									
	<u> </u>	core axis.										
	101.0	End of Hole.										
]												
	_											
		·										
	1			•								

		1	of	1
Sheet	No.	•	.	

LATITUDE	1328.4 N	
DEPARTURE	1856 E	
ELEVATION _	· '0'	
BEARING	N 8°W (Grid North)	Az. 352°
DIP AT COLL	AR45°	

Tests Depth	Dip	Magnetic Bearing	Corrected Bearing
TOTAL DEP	TH OF H	OLE)

PROPERTY	McGarry Project
CLAIM No.	Mining Lease CLM 298
HOLE No.	97-47
CORE SIZE	BQ
STARTED	April 9, 1997
FINISHED	April 10, 1997

<u>Mete</u>	erage		SAMPLE			ASS	SAYS		CORE LENGTH meters			
FROM	то	DESCRIPTION	No.	AU OZ	AG OZ	% CU	% ZN	% NI		FROM		ACC WIDTH
0.0	30.0	Casing. (Boulders and sand.)	'		· · · · · · · · · · · · · · · · · · ·					1		
	30.0	End of Hole. (Hole lost when casing broke off.) '	′		′					, 		
		1	· · · · · · · · · · · · · · · · · · ·		//					1		
ļ										+	,	
			,	,	,					++	[]	
,			,		,					++	J	[
			,		+		1		·′		J	
J	,	1	,	(,		+	+		·′	++	I	
		1	,	· · · · · · · · · · · · · · · · · · ·	+	+	1		· · · · · · · · · · · · · · · · · · ·	++	[]	
	++			[]				l	·′	++	J	
			[]	[]	t	+			('	 	I	(
	<u>├</u> ───┤	,	t'	[]	ļJ	 			·'	++	I	
ļ	t		t'	t'	t	├ ───┤	l		t'	+	[]	t
]	<u>+</u> '		 '	t'	<u>+</u> '	┢────┤	I	<u>⊢</u>	⊢−−− ′	<u> </u>]	<u>ا</u>	
	<u>+'</u>			! '	. <u> </u> '	⊢]	,l	<u>ا</u> ا	·'		<u>ا</u>	L

E. A. Gallo LOGGED BY _

	LATITUDE	1300 N		DIAN	/IOND	DRILL	CORE L	OG
	DEPARTURE	1856 E		Tests Depth	Dip	Magnetic	Corrected	
	ELEVATION	'0'			Dip	Bearing	Bearing	
	BEARING	<u>N 8° W (Grid Nor</u> th)	Az. 352 °	· ·				
\mathbf{i}	DIP AT COLLAR	50 °						
)				TOTAL DEF	PTH OF HC	DLE	0 meters	

PROPERTY	McGarry Project
CLAIM No.	Mining Lease CLM 298
	97-48
CORE SIZE	BQ
STARTED	April 10, 1997
	April 11, 1997

Sheet No. 1 Of 1

ASSAYS CORE LENGTH Meters Meterage SAMPLE No. DESCRIPTION ACC WIDTH то FROM AU OZ AG OZ % CU % ZN % NI FROM то 103.0 Casing. (Boulders). 0.0 End of Hole. (Hole lost when casing broke off.) 103.0

TRANSPACIFIC RESOURCES INC.

CONTRACTOR __

Kosy Drilling Ltd.

LOGGED BY _____E. A. Gallo

LATITUDE	1475.3	Ν	

DEPARTURE 1856.6 E

'0' ELEVATION ___

BEARING <u>S 8° E (Grid Sou</u>th) Az 172°

DIP AT COLLAR ______45 °

TRANSPACIFIC RESOURCES INC. **DIAMOND DRILL CORE LOG**

Bearing

Magnetic Corrected

Bearing

Sheet No. 1 Of 9

PROPERTY	McGarry Project
CLAIM No	Mining Lease CLM 298
HOLE No	97-49
CORE SIZE	BQ
STARTED	April 11, 1997
	April 14, 1997

TOTAL DEPTH OF HOLE __________ Meters

Dip

Tests

Depth

Meter	age	PEOPUPTION	SAMPLE			ASS	AYS				CORE LENGT	н meters
FROM	то	DESCRIPTION	No.	Au ppb	AG OZ	% CU	% ZN	% NI		FROM	то	ACC WIDTH
0.0	20.0	Casing. (Sand and boulders)										
20.0	38.3	DIORITE. Very coarse-grained, dark greenish-grey										
		colour, magnetic. Frequent epidote stringers and								· · · · · · · · · · · · · · · · · · ·		
		patches. Occasional quartz and/or carbonate threads										
		and stringers.									·	·
		22.9 - 23.2 - fine grained										
		26.5 - 26.6 - highly epidotized, with hematite-										
		stained threads and patches.										
		26.8 - 28.0 - quartz-carbonate veinlets up to 3	6393	20					2	6.8	28.0	1.2
		cm wide at 26.8, 26.9, 27.0, 27.7,										
		and 28.0, at 45°-90° to core axis.										
		31.0 - 32.5 - quartz-carbonate veinlets up to 10	6356	5					3	1.0	32.5	1.5
		cm wide at 31.1, 31.6, 31.9, 32.2,										
		and 32.5, at 20°-45° to core axis. 1% chalcopyrite										
		33.7 - Fracture at 15° to core axis.										· · · · · · · · · · · · · · · · · · ·

Kosy Drilling Ltd. CONTRACTOR .

E. A. Gallo LOGGED BY

TRANSPACIFIC RESOURCES INC.

PROPERTY McGarry Project

HOLE NO. __97-49

Meter	age	DESCRIPTION	SAMPLE		ASSAYS				CORE LENGTH mete			
FROM	то	DESCRIPTION	No.	Au ppb	AG OZ	% CU	% ZN	% NI	FROM	то	ACC	
20.0	38.3	DIORITE (cont'd)		FF-							WIDI	
		@ 34.1 - Fracture at 15° to core axis, with 1 cm				-						
		wide quartz-carbonate stringer.			-						_	
38.3	38.6	BASALT. Fine-grained, dark grey colour. Both										
		contacts are indistinct.										
38.6	38.8	DIORITE. Very coarse-grained, magnetic, dark										
		greenish-grey colour.									-	
38.8	46.2	BASALT. Fine grained, pale grey colour, silicified.										
		38.9 - 39.3 - 8% quartz-carbonate veinlets and	6394	10					38.9	39.3	0.4	
		patches.										
		39.3 - 39.8 - 20% quartz-carbonate veinlets and	6395	10					39.3	39.8	0.5	
		patches.									0.5	
		39.8 - 40.6 - 8% quartz-carbonate veinlets	6396	10					39.8	40.6	0.8	
		and patches.									0.0	
		40.6 - 41.4 - 60% quartz-carbonate veinlets	6397	Nil					40.6	41.4	0.8	
		and patches, sericitic.									0.0	
		41.4 - 41.8 - 10% quartz-carbonate veinlets	6398	Nil					41.4	41.8	0.4	
		and patches, sericitic.										

Sheet No. 2 of 9

TRANSPACIFIC RESOURCES INC

PROPERTY McGarry Project

HOLE NO. __97-49

Met	terage		SAMPLE						(CORE LEN	GTH mete
FROM	то	DESCRIPTION	SAMPLE No.	Au	Au Check	% CU	% ZN	% NI	FROM		ACC
38.8	46.2	BASALT (cont'd)			fr -		-				
		Quartz-carbonate veinlets up to 1 cm wide at									+
	1	43.3, 43.6, 44.9, and 45.0, at 20°-40° to			1					+	
		core axis.			1					+	
46.2	88.4	DIORITE. Very coarse-grained, magnetic, dark greenish	,h			1		+			
		grey colour. Frequent epidote stringers & patches.	ļ'		·	i					
		Occasional quartz and/or carbonate threads & stringers	s			1. `~					
		47.1 - 47.6 - 1% chalcopyrite in stringers & blebs	6362	96					47.1	47.6	0.5
	 	48.2 - 48.8 - epidotized, fine-grained, 45° to	<u> </u>								
	 	core axis.	اا ا			i					+
	 	49.1 - 49.2 - epidotized.	ا ــــــــــــــــــــــــــــــــــــ	1		, 					+
]	 	@ 52.2 - epidotized, 45° to core axis.	6363	38	38				52.0	53.8	1.8
	 	56.5 - 58.0 - 1% chalcopyrite in patches.	6364	79	-	I			56.5		1.5
	 	58.0 - 58.9 - 1% disseminated pyrite	6365	86					58.0	58.9	0.9
	┣────	65.0 - 71.3 - epidote is absent	<u> </u>	 	_						
]	 	76.7 - 77.0 - fine-grained	·]	 							
	 	77.4 - 77.7 - fine-grained		I				1			
	 	81.6 - 82.4 - fine-grained								·!	
	L			L						· · · · · · · · · · · · · · · · · · ·	

Sheet No. 3 of 9

Sheet No. 4 of 9

PROPERTY McGarry Project

TRANSPACIFIC RESOURCES INC.

HOLE NO. 97-49

Mete	erage		SAMPLE		ASSAYS			····	CORE LENGTH mete				
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	AG OZ	% CU	% ZN	% NI	FROM	то	ACC		
46.2	88.4	DIORITE (cont'd)					-						
		0 81.7 - 1 cm wide quartz-carbonate veinlet at		·							-		
		20° to core axis.									+		
		81.7 - 82.8 - minor disseminated pyrite.											
		@ 82.8 - 1 cm wide quartz-carbonate veinlet at									-		
		15° to core axis.			· ·								
		@ 83.0 - patch of pyrite				· ·							
		87.3 - 87.6 - quartz vein. Greasy texture,	6366	38		<u>.</u>			87.3	87.6	0.3		
		3% chalcopyrite in patches,											
		45° to core axis.									<u> </u>		
		<pre>@ 88.1 - 1 cm wide silicified stringer, stained</pre>											
		pink by hematite, at 15° to core axis.								······			
		@ 88.2 - grain of pyrite								<u></u>			
		@ 90.7 - 3 mm wide chalcopyrite stringer, at											
		60° to core axis.											
88.4	116.4	BASALT. Fine-grained, grey colour. Occasional											
		quartz-carbonate stringers up to 1 cm wide, at											
		30°-45° to core axis.											
		92.7 - 94.0 - strongly sericitized, carbonatized	6367	12					92.7	94.0	1.3		

Sheet No. 5 of 9

PROPERTY McGarry Project

TRANSPACIFIC RESOURCES INC.

 $\overline{\}$

HOLE NO. 97-49

Meter	rage				ASSAYS				C	CORE LENG	GTH me
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	AG OZ	% CU	% ZN	% NI	FROM	ТО	ACC
88.4	116.4	BASALT (cont'd)					-				
		94.0 - 99.2 - Strongly sericitized, carbonatized,	6368	15					94.1	95.6	1.5
!		with abundant fuschite. Green					<u> </u>			<u> </u>	
!		carbonate zone. Frequent white				1	<u> </u>				+
		quartz-carbonate veinlets up to 3	6369	45		<u> </u>			95.6	97.0	1.4
		cm wide, contorted, running along									
		core to 70° to core axis. Minor									
•		hematite staining.	6370	9					97.0	99.2	2.2
		99.2 - 99.9 - Silicified, carbonatized, sericitized	2d,	_				1			
		some fuschite.									+
		99.9 - 100.7 - Strongly sericitized, carbonatized,	, 6371	7					99.9	100.7	0.8
		with abundant fuschite. Green	ļ'							1	
		carbonate zone. Frequent white	ļ'				/				
		quartz-carbonate veinlets up to	<u> </u>			<u> </u>					
		3 cm wide.	'								
		100.7 - 102.7 - silicified, carbonatized, sericitiz	zed,								
		some fuschite.	'								
		102.7 - 103.5 - moderately to strongly sericitized,		15					102.7	103.5	0.8
		carbonatized, silicified, abundant	1 1 1	· · ·	· · ·		1	1			

Sheet No. 6 of 9

PROPERTY_____McGarry Project

TRANSPACIFIC RESOURCES INC.

HOLE NO. <u>97-49</u>

Metera	ge		SAMPLE		ASSAY	S			CORE LENGTH meter				
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	AG OZ	% CU	% ZN	% NI	FROM	ТО	ACC		
88.4	116.4	BASALT (cont'd)					-						
		102.7 - 103.5 (cont'd) - fuschite.											
		103.5 - 108.3 - slightly carbonatized and sericiti	zed.						 				
		108.3 - 109.9 - sericitized, carbonatized,	6373	58					 108.3	109.9	1.6		
		silicified, some fuschite.							 				
		109.9 - 111.5 - slightly carbonatized, sericitized	6374	12					 109.9	111.5	1.6		
		and silicified.		-					 				
		111.5 - 112.8 - slightly carbonatized, sericitized							 				
		and silicified.							 		<u> </u>		
		112.8 - 114.9 - slightly carbonatized, sericitized	6375	230	(0.01	oz/ton)			112.8	114.9	2.1		
		and silicified, 10 cm wide quartz-											
		carbonate vein at 45° to core axis							 				
116.4	207.0	ANDESITE. Fine-grained, grey colour. Pillowed?							 				
		Frequent quartz-carbonate threads and stringers up to							 				
		1 cm wide, varying from 0°-60° to core axis, but							 				
		generally at 50° to core axis. Local medium-grained							 				
		sections. Local diabasic textured sections.							 				
		118.0 - 119.0 - 2 quartz-carbonate veinlets average	6376	2					 118.0	119.0	1.0		
		2 cm wide, at 118.2 and 118.5. Tra	ice pyri	te					 				

ٹت

PROPERTY McGarry Project

TRANSPACIFIC RESOURCES INC.

HOLE NO. 97-49

Mete	rage				ASSA					CORE LENGTH mete		
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	Au Cheo	:k % cu	% ZN	% NI		FROM	то	ACC
116.4	207.0	ANDESITE (cont'd)					-					
		130.3 - 133.8 - pinkish-grey colour	6377	108	84					131.7	131.8	0.1
		135.0 - 135.2 - silicified				-						-
		138.7 - 141.3 - 1 cm wide quartz-carbonate										
		veinlet, hematite-stained, at										
_		0°-10° to core axis.										1
		141.7 - 2 quartz-carbonate veinlets, each at									- 	<u> </u>
		45° to core axis, both 1 cm wide.									<u> </u>	
	· .	@ 144.9 - 3 cm wide quartz-carbonate veinlet										
		at 45° to core axis.										
		146.2 - 146.6 - 3 cm wide calcite vein at 20° to	6378	Nil						146.2	146.6	0.4
		core axis.										
		149.2 - 149.3 - quartz-carbonate veinlet at 60 $^{\circ}$									·····	
		to core axis.										
		152.9 - 154.1 - 10% quartz in irregular patches.	6379	74						52.9	154.1	1.2
		156.0 - 157.0 - 1-2% disseminated pyrite, trace of	6380	Nil					1	56.0	157.0	1.0
		chalcopyrite, 2 cm wide quartz										
		veinlet at 50° to core axis.										
		160.3 - 171.0 - slightly sericitized.					······································					

•

TRANSPACIFIC RESOURCES INC.

PROPERTY McGarry Project

HOLE NO. 97-49

Meter	age		SAMPIF		ASSAYS				CORE LENGTH meter			
FROM	то	DESCRIPTION	SAMPLE No.	Au_	Au Check	% CU	% ZN	% NI	FROM	то	ACC	
116.4	207.0	ANDESITE (cont'd)					-					
		160.5 - 160.9 - minor disseminated pyrite.	6381	Nil			-		160.5	160.9	0.4	
		172.8 - 174.3 - 20% quartz-carbonate in veinlets	6382	21					172.8	174.3	1.5	
		at 50°-60° to core axis. Minor										
		disseminated pyrite, trace chalcop	yrite.								-	
		182.4 - 183.2 - 2 quartz-carbonate veinlets, avera	ge 6383	27					182.4	183.2	0.8	
		1.5 cm wide, at 10°-20° to core ax	is.			×				· · · · · · · · · · · · · · · · · · ·		
		184.7 - 185.6 - 2 cm wide quartz-carbonate veinlet	6384	46					184.7	185.6	0.9	
		runs along, in and out of core.										
		Minor disseminated pyrite.										
		186.2 - 187.0 - 2-3% disseminated pyrite	6385	22	24				186.2	187.0	0.8	
		193.7 - 194.7 - 2 cm wide quartz-carbonate veinlet	6386	Nil					193.7	194.7	1.0	
		runs along, in and out of core.										
		Trace of pyrite.										
		196.6 - 196.9 - Silicified.								P <u></u>		
		@ 197.0 - 1 cm wide quartz-carbonate veinlet at								<u> </u>		
		40° to core axis.								· · · · · · · · · · · · · · · · · · ·		
		197.5 - 197.6 - 1 cm wide quartz-carbonate veinlet	,									
		irregular, along core.				· · · · · ·						

)

Sheet No. 8 of 9

.

Sheet No. 9 of 9

PROPERTY McGarry Project

TRANSPACIFIC RESOURCES INC.

HOLE NO. ______

.Met	erage		CAMPLE		ASSAYS				c	ORE LENG	_{TH} met
FROM	то	DESCRIPTION	SAMPLE No.	Au ppb	AG OZ	% CU	% ZN	% NI	FROM	то	AC WID
116.4	207.0	ANDESITE (cont'd)									
		2 cm wide quartz-carbonate veinlets at 60° to					_				
		core axis at 198.0, 198.4, 198.6, 198.8, & 199.2									
		199.4 - 200.9 - 2 cm wide, salmon coloured,	6387	2					199.4	200.9	1.5
		carbonate veinlet at 10° to core									+
		axis, with minor chalcopyrite.									1
	·	0 201.1 - 1 cm wide quartz-carbonate veinlet at				\					
		10° to core axis.									
		Quartz-carbonate veinlets at:								······	<u> </u>
		201.4 - 3 cm wide, 45° to core axis									
		203.3 - 2 cm wide, 55° to core axis									
		203.4 - 1 cm wide, irregular at 50 °									<u> </u>
		to core axis.									
		203.8 - 1 cm wide, irregular at 15°									
		to core axis.									
		206.4 - 1 cm wide, 20° to core axis.								····	
	207.0	End of Hole.									
		· · · · · · · · · · · · · · · · · · ·									

Ministry of Northern Development and Mines

Report of Work Conducted After Recording Claim

Mining Ac

Personal information collected on this form is obtained under the authority of the this collection should be directed to the Provincial Manager, Mining Lands, N Sudbury, Ontario, P3E 6A5, telephone (705) 670-7264.

Transaction Number

N9880,00067

900

Instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining Recorder. 18120
 - A separate copy of this form must be completed for each Work Group.
 - Technical reports and maps must accompany this form in duplicate.
 - A sketch, showing the claims the work is assigned to, must accompany this form

Recorded Holder	(s)	ourgog Ing	Client No. 300722
	Transpacific Reso	ources me.	Telephone No.
Address	R.R.#1, Conn, On	t. NOG 1NO	(519) 848-3388
Mining Division		Town ship farms	M or G Plan No.
Mining Division	Larder Lake	McGarry and McVittie T	Twps. G-3678 and G-3163
Dates Work Performed	From: Oct. 2, 1996	To: July 2	2, 1997 /

Work Performed (Check One Work Group Only)

Work Group		Туре
Geotechnical Survey		
Physical Work, Including Drilling	Diamond Drilling	
Rehabilitation		RECEIVED
Other Authorized		FEB 0 4 1998 0.30
Assays		GEOSCIENCE ASSESSMENT OFFICE
Assignment from Reserve		

260,589. Total Assessment Work Claimed on the Attached Statement of Costs \$

Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

Name	Address
G. Kozy	3 Hilltop Dr., Chaput Hughes, Ont. POK 1TO
D. Robinson	24 Victoria St., Swastika, Ont. POK 1TO
E. Gallo	148 Allanhurst Dr., Islington, Ont. M9A 4K7

(attach a schedule if necessary)

Certification of Beneficial Interest * See Note No. 1 on reverse side

I certify that at the time the work was performed, the claims covered in this work report were recorded in the current holder's name or held under a beneficial interest by the current recorded holder.	Date Jan.	corded Holder or Agent (Signature)	
		E. A. Gallo	

Certification of Work Report

I certify that I have a personal knowledge of the facts set forth in this Work report, having performed the work or witnessed same during and/or after its completion and annexed report is true. Name and Address of Person Certifying Telington MQA 4K7

Ernest A. Gallo,	148 Allanhurst Dr.,	Islington, Ont. M9A 4K7
Telepone No.	Date	Certified By (Signature)
(416) 245-3511	Jan. 29/98	le falle
		E. A. Gallo

For Office Use Only

Total Value Cr. Recorded	Date Recorded	Mining Recorder	Received Stamp
	Deemed Approval Date <u>May 598</u> Date Notice for Amendments Sent	Date Approved	$\begin{array}{c} \hline PROVINCIAL RECORDING \\ OFFICE - SUDBURY \\ R E C E I V E D \\ FEB 0 4 1998 \\ A.M. /0:00 NB P.M. \\ 7181911011112111213141516 \\ \hline \end{array}$

122	┍╸╋╴						GEOS	CIENC	CE AS	1998 Sess	X8 MENT					400000	Work Report Number for Applying Reserve
5087	1225038 1225085	L 1221812	L 1221811	L 1217681	L 1211910*	L 1205892	L 1205891	L 1205890	L 1205736	L 1202672	L 1202670	L 1193123	L 1193122	L 1193121	L 1186	Mining Lease	Claim Number (see Note 2)
ა ω	44	N	2	З	œ	N	N	ω	Ч	N	4	N	4	4	1	52	Number of Units
00	0 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	260,589 /	Value of Assessment Work Done on this Claim
15,600 6000	-10,400-0/	12,000 /	4000 / 12,000	4,000 /	19200/	4000 /	10,4000	15,600 /	2000 /	, 681'8 1,000/	197200 /) - 009 (17,600 /	17,600-1	5,200	0	Value Applied to this Claim
00	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-260,589 787,98	Value Assigned from this Claim
00			0	0	0	0	0	0	0	0	0	0	0	0	0	6-C08 EL1	Heserve: Work to be Claimed at a Future Date
Credit Credit Credit Credit	you will ts are t ts are t that you ples of	o be ci o be ci o be ci o be ci u have	ut back ut back ut back not sp cial int	c startir c equal c-as pr ecified	ietion o ng with ly over iorized your c	the cla all clair on-the- hoice o	im liste ms con attache f priorit	ed last, Itained ed app ty, opti	workir in this endix-	ng bac report fro will b	kwards t of wor om Mi e imple	k. ning	cla d.	im I	: 120)267	2.
	0 0 15,600 6000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Vou are claim aims you with Credits are the Credits are the Cr	you are claiming in fairns you wish to p Credits are to be ch Credits ar	you are claiming in this repaires you wish to priorize Credits are to be cut back Credits are to be cu	you are claiming in this report ma aims you wish to priorize the de Credits are to be cut back startin Credits are to be cut back equal Credits are to be cut back eq	you are claiming in this report may be cu aims you wish to priorize the deletion of Credits are to be cut back starting with Credits are to be cut back as priorized intervent that you have not specified your cut to the mining claims.	Image: Second and the second and holder had a beneficial interest in	Image: Section of the section of th	you are claiming in this report may be cut back. In order to minaims you wish to priorize the deletion of credits. Please ma Credits are to be cut back starting with the claim listed last. Credits are to be cut back starting with the claim listed last. Credits are to be cut back starting with the claim listed last. Credits are to be cut back starting with the claim listed last. Credits are to be cut back starting with the claim listed last. Credits are to be cut back as priorized on the attached approven that you have not specified your choice of priority, opti Examples of beneficial interest are unrecorded transfers, option the mining claims.	Image: Section of the section of th	Image: Section of the section of th	Image: Section of the section of th	Image: Second	yet y	Image: Second	Image: Section of the sectin the sectin the sectin the sectin the section of the	Image: State of the second state of

0241 (03/01)

Ε.	Α.	Gallo

* Amender

Ministry of Northern Development and Mines

Statement of Costs for Assessment Credit Transaction Number (office use)

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

mes, un ribbi, sob hamboy carb ribbor	- •		2.181	
Work Type	Units of M Depending on the type of the of hours/days worked, met metres of grid line, number	vork, list the num res of drilling, kil	ber Cost Per Unit	Total Cost
Diamond Drilling	3,123,5	meters	59.40	185,536
Geological Supervisio	n <u>95</u>	days	200.	19,000.
Core Grabber/Splitter	95	-days	100.	9,500.
Consulting/Reporting	54	days	350.	18,900.
Assaying	980	samples	12.57	12,322.
Drafting	278	hours	20.	5,560.
ssociated Costs (e.g. supplies,	mobilization and de	emobilization).	
				1,500.
Mob and Demob				3,859.
Supplies			RECEIVED	·
			FEB 0 4 1998 PR	
		G	EOSCIENCE ASSESSMENT	
Transp	ortation Costs	t_	United	
Truck/Snowmachine Ren				3,191.
Truck/Snowmachine Ref				
Food a	and Lodging Costs			
		•		1,221.
Room/Meals				
		Total Va	lue of Assessment Work	260,589

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work. 2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	× 0.50 =	Total \$ value of worked claimed.
TOTAL VALUE OF ASSESSMENT WORK	× 0.00 -	

Note:

- Work older than 5 years is not eligible for credit.

- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

____, do hereby certify, that the amounts shown are as accurate as may E. A. Gallo I. (please print full name) reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as Agent I am authorized to make this certification.

Date Signature

.

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

April 27, 1998

TRANSPACIFIC RESOURCES INC. R.R. #1 Conn, Ontario N0G 1N0

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846 Fax: (705) 670-5881

Dear Sir or Madam:

Submission Number: 2.18120

		Status
Subject: Transaction Number(s):	W9880.00067	Deemed Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Lucille Jerome by e-mail at jeromel2@epo.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

~ Ha

ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Work Report Assessment Results

Date Correspondence Sent: April 27, 1998		Assessor:Lucille Jerc	me		
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W9880.00067	CLM 298	MCGARRY, MCVITTIE	Deemed Approval	April 27, 1998	
Section: 16 Drilling PDRILI	L				
Correspondence	e to:		Recorded Holder(s)	and/or Agent(s):	
Resident Geologis	st		E.A. Gallo		
Kirkland Lake, ON	1		ISLINGTON, ONTAF	RIO	
Assessment Files	Library		TRANSPACIFIC RE	SOURCES INC.	
Sudbury, ON			Conn, Ontario		