010

REPORT ON

STRIPPING PROGRAM

DIABASE DIKE PROPERTY

EBY TOWNSHIP

LARDER LAKE MINING DIVISION

ONTARIO

A. Black

November, 1991

TABLE OF CONTENTS

Page No.

INTRODUCTION 1
Location/ Access 1
History 1
GEOLOGY 1
PURPOSE OF PROGRAM 1
DESCRIPTION OF PROGRAM 2
RESULTS OF PROGRAM 2
CONCLUSTON 2
RECOMMENDATIONS 2
REFERENCES 2
APPENDHESNo.
LOCATION and CLAIM MAP I
STRIPPING PLAN II
PHOTOGRAPHS 間
CERTIFICATE N

INTRODUCTION

Location/ Access
The property herein described consists of two contiguous 32 ha mining claims covering the South $1 / 2$ of Lot 11, Concession I, Eby Township, Larder Lake Mining Division, Ontario. Highway 66 traverses the property about 7 miles southwest of the junction of highways 66 and 11 at Kenogami. A poorly maintained dirt road leads west from Highway 66 across the nortiwvest quarter of the property.

History
The area was mapped by H. Lovell in 1967 and '68. No assessment work has ever been filed on the area at the Resident Geologist Office in Kirkland Lake check overlay!

GEOLOGY

The claims are mostly underiain by granitic rocks of the Round Lake Bathollth. A small package of highly altered mafic metavolcanics straddles the south boundary of the group along the Blain - Eby township line. A diabase dike of the Matachewan group intrudes both the granite and metavolcanics. The dike strikes N - S through the centre of the group. This particular cike is noteworthy in thatithas a glomeroporphyritic texture resulting in a pleasing green spotted pattern.

PURPOSE OF PROGRAM

The limited amount of stripping undertaken was designed to expose the diabase well enough to get an idea of its true width and to see how many fractures were present. A site was chosen that would be amenable to the removal of a substantial sample for evaluation as a building stone source. Several slabs were cut and polished for promotional purposes and critical evaluation by experts in the field.

DESCRIPTION OF PROGRAM

A John Deere 792 Excavator with a 1.8 yard bucket was contracted for seven hours to bare enough bedrock for closer examination and to ascertain the dimension of the alike.

RESULTS OF PROGRAM

Several thousand square feet of rock were exposed near the centre of the property. The contact between the diabase and granite was exposed revealing a NW strike at that point. This finding does not conform with Lovell's mapping and may indicate branching of the dike previously masked by overburden.

The dike appears to have few fractures and, except for fine grained zones along the granite contact, maintains a relatively uniform giomeroporphyritic texture.

CONCLUSION

The dike seems to be worthy of further study since it appears to be competent and consistent over a large area. Assuming a 50° width and 1000° strike length and a lift of 50° above the surrounding terrain, a reserve of $\mathbf{2 5}$ million cubic feet of easily removable material could be proven up quite readily.

RECOMMENDATIONS

The dike material should be examined by experts in the field of building stone and evaluated for its suitability for various purposes. If preliminary conclusions are positive a follow up program of bulk sampling should be undertaken to further evaluate the material. Only a very limited amount of drilling would then be needed to prove up tonnage in anticipation of production.

REFERENCES

GR 99, Ely and Otto Area, ODM, H. Lovell, 1972.

- accompanying Map 2239.

Ow Black

CERTIFICATE

THS IS TO CERTIFY:

1. I am a graduate in Prospecting Techniques from the Northern College of Applied Arts and Technology, Haileybury campus, 1976 and have completed the Haileybury School of Mines, Geophysical Field School, 1990, and the Interpretation of Ground and Airbome Geophysical Data Course, 1991. I have been active as a prospector and exploration contractor since 1974.
2. I am a member in good standing of the P.D.A., past president of the N.P.A., and director of O.M.E.F., and C.I.M.M.
3. I reside and hold office at 139 Carter Ave., Kirkland Lake, Ontario, P2N 2A1.
4. I have an interest in the property.
5. My report is based upon having personally participated in each program herein described, a review of published information on the property, consultation with local geologists and upon my familiarity and experience as a prospector in the Kirkland Lake camp.

REPORT on

VLF - EM - 16 SURVEY
 and SAMPLING

HINCKS TOWNSHIP
LARDER LAKE MINING DIVISION ONTARIO

M Leahy

December, 1901

020C

TABLE OF CONTENTS

Page \#

INTRODUCTION

Location 2

Access 2
History 2
Geology 2
PROSPECTING 2
VIFEM16 SURVEY 3
RESULTS OF VFFEM16 SURVEY 3
CONCLUSIONS and RECOMMENDATIONS 3
APPENDICES
CLAMM MAP I
SAMPLNG PLAN |I
SAMPLE DESCRIPTIONS III
WHOLE ROCK ANALYSIS N
JENSEN CATION PLOT V
MYASHIRO PLOT V
COX ET AL PLOT VII
ELECTROMAGNETIC SURVEY MAP (PROFILES) VIII
RONKA VLF-EM1 6 SPECS IX
CERTIFICATE x
PROPERTY LOCATION MAP XI

INTRODUCTION

Location:

The property herein described consists of fourteen contiguous unpatented claims near the northwest comer of Hincks Township, Larder Lake Mining Division, Ontario. The nearest settements are a cottage subofivision on Austen Lake, about five miles to the south. The town of Matachewan lies about twenty miles to the east The claims are numbered as follows: L-1168899, L-1168900. L-1168901, L1168902, L-1168903, L-1168904, L-1168905, L-118906, L-1168907, L-118908, L1168880, L-1168881, L-1168882 and L-1168883.

Access

The property is accessible only by foot trail from the rapids at the northern outlet of Austen Lake. Access to that point is via boat for five miles up Austen Lake, then twenty miles east along a gravel road and Highway 566 to Matachewan.

Mistory:

Although airborne surveys have been flown over the area, no ground work has ever been recorded on the property. The most recent airborne, (ODM Map No. 1017,1975) detected two conductive zones which were staked in early February, 1991. At that time, a base metal discovery in nearby Robertson Twp. rekindled interest in the area and a privately produced geology map of the area was made available. This map, a copy of which is attached, indicates a contact between calc-alkalic and Tholeitic volcanics runs across the property near the known airbome conductors. This contact forms the nose of an easterly plunging syncline with the calc-alkalics overtying the Tholeites.

Georogy

As indicated above, the claims are underlain by mafic to intermediate Tholeitic and calc-alkaline flow near the nose of an easterty plunging syncline. Whole rock analyses were done on all samples taken and several plots were done to aid in rock classification, (see charts attached: Jensen 1976, Miyashiro 1974, Cox et al, 1979). The rocks are all part of the Abitibi supergroup which extends for over one hundred miles across the Ontario - Quebec border. The cherty exhalite sample \#8575 is similar to rocks near the Robertson Twp. massive sulfide discovery.

PROSPECTING

In May. 1991, a reconaissance traverse was done across the group and several rock samples were taken from out crops encountered. See chart, plots and map attached, for details.

VLF-EM16 Survey

In the fall of 1991, a picket line grid was cut over the two claims covering the south airborne EM conductor. Five lines were cut at 100 M intervals with stations established every 25M. A Ronka VLF-EM16 was used to read the 25 km grid. Cutter, Maine, at 24.0 khz was used as transmitter and readings were all taken facing north. A total of 173 readings were taken and profiles were plotted on a map with a scale of 1:5000.

RESULTS OF VLF-EM16 SURVEY

The survey succeeded in defining weak conductive zones indicated by dip angle profiles but the out of phase (quadrature) readings remained veg flat suggesting electrolytic overburden sources for the conductivity.

CONCLUSIONS and RECOMMENDATIONS

No shallow massive sulfide or graphite conductors were detected by the survey. The airborne EM conductor may be caused by an overburden source. Follow-up work in 1992 should consist of the following:

1. Using the existing grid the area around the south conductor should be mapped and further sampled.
2. The north conductor should be read with ground VLF and the area around it should be prospected.

Dec 91

$=-\frac{1}{6}-0_{0}$品

保
 1032616 1032817 1096767 1096766；

Hincks Twp. Property Sample Descriptions

Location \# Sample \# Description

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1
TEL.: (705) 567-3361

40027 Certificate of Analysis

Mr. Mike Leahy 139 Carter Ave., Kirkland Lake. ON P2N 2A1

SAMPLE NUABER
Accurassay
243460
243461
243462
243463
243464
243465
243466

Custoner

8575
8576
8577
8578
8579
8580
8581

5102
 ICAP *

57.33
54.33
58.39
62.67
53.47
54.12
51.98

A1203 ICAP *

10.86
11.83
12.37
12.22
12.35
12.01
12.37

Fe 203 ICAP

 *16.73
19.02
12.33
10.93
16.02
15.73
17.02

Mgo ICAP
*
4.19
2.42
4.48
2.77
3.95
3.86
4.31

Ha 2 O
ICAP
$\mathbf{*}$

K20
TiO2

*
1.44
3.98
1.98
3.99
3.30
2.60
1.105
0.47
1.735
4.81
4.19
4.76
4.46
0.37
1.578
7.86
7.79
9.28

ICAP
*
*
er:

Mr. Mike Leahy 139 Carter Ave. . Kirkland Lake, ON P2N 2A1

Work Order \# 910628
Project:

SAMPLE NUMBER

Accurassay

2434
243461
243462
243463
C243464
243465
2434

Customer

8575	0.25
8576	0.78
8577	0.32
8578	0.41
8579	0.25
8580	0.27
8581	0.30

P2O5
IGAP
$\%$
0.25
0.78
0.32
0.41
0.25
0.27
0.30
Ba
ICAP
PPA

162
86
54
41
40
56
49
$\underset{\mathbf{x}}{\text { LOI }}$
2.80
2.55
3.85
1.70
1.75
2.40
2.55
SUMOX
CALC
$\%$
100.6 <3 $100.9<3$ 99.86 <3 $100.5<3$ $100.9<3$ 100.7
<3 $100.8<3$
SAMPLE NDIBER
Absuraegay Customer

Cd
ICAP
pp

9
<5
<5
8
10
11
18

Co	Cr
ICAP	ICAP
PPm	PPm
40	1190
47	250
C30	411
<30	1120
<30	319
C30	299
30	292

40063 Certificate of Analusis

Mr. Mike Leahy
139 Carter Ave.,
Kirkland Lake, ON
P2N 2A1

Page *3
June 10
1991

Work Order 910628
Project:

SAMPLE EDABER		$\underset{\text { ICAP }}{\mathrm{Cu}}$	$\stackrel{\mathrm{Mn}}{\mathrm{ICAP}}$	$\begin{gathered} \mathrm{Ni} \\ \text { ICAP } \end{gathered}$	$\stackrel{\mathrm{Pb}}{\mathrm{ICAP}}$
Accurassay	Customer	ppm	ppm	ppm	ppm
243460	8575	83	1930	250	60
243461	8576	13	1900	271	60
243462	8577	24	1110	160	70
243463	8578	42	981	120	70
243464	8579	81	1640	160	60
243465	8580	81	1850	120	70
243466	8581	99	1810	230	120

SAMPLE	NOMBER	$\underset{\text { ICAP }}{\mathbf{S r}}$	$\begin{gathered} v \\ \mathbf{I C A P} \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ \mathrm{I} \mathbf{C A P} \end{gathered}$	$\underset{\mathrm{ICAP}}{\mathrm{Zr}}$
Accurassay	Customer	ppm	PP®	PP\%	Ppm
243460	8575	191	447	208	150
243461	8576	46	140	186	220
243462	8577	91	220	156	220
243463	8578	86	127	153	260
243464	8579	80	474	189	150
243465	8580	151	456	194	140
243466	8581	211	492	215	150

Per:

V.L.F. EM-I6 SURVEY
 Hincks Township
 ONTARIO
 scale: 1: 5,000

LI+00w
ij

Ploneered and patented exclusively by Geonics Limited, the VLF method of electromagnetic surveying has been proven to be a major advance in exploration geophysical instrumentation.

Since the beginning of 1965 a large number of mining companies have found the EM16 system to meet the need for a simple. light and effective exploration tool for mining geophysics.

The VLF method uses the military and time standard VLF transmissions as primary field. Only a receiver is then used to measure the secondary fields radiating from the local conductive targets. This allows a very light, one-man instrument to do the job. Because of the almost uniform primary field. good response from deeper targets is obtained.

The EM16 system provides the in-phase and quadrature components of the secondary field with the polarities incicated.

Interpretation technique has been highly developed particularly to differentiate deeper targets from the many surface indications.

Principle of Operation

The VLF transmitters have vertical antennas. The magnetic signal component is then horizontal and concentric around the transmitter location.

Specifications

Souree of primary field	VLF transmitting stations.	Reading time	10-40 seconds depending on signal strength.
Tranmmitting stutions used	Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two	Operating temperature range	-40 to $50^{\circ} \mathrm{C}$.
	tuning units can be plugged in at one time. A switch selects enther station.	Operating controls	ON-OFF switch. battery testing dust: button. station serector, switch. volume control. quadrature, dial
Operating trequency range	About $\mathbf{1 5 - 2 5} \mathbf{~ k H z}$		$\pm 40 \%$. inclinometer dial $\pm 150 \%$.
Oarameters measured	(i) The vertical in-onase component itangent of the wit angle of the poranzation ellidsoidl.	Power Supply	© size AA (pentight) alkatine cells. dife aoout 200 hours.
	2) The vertical out-of-onase lquadrature) combonent (the snort axis of the	Dimensions	$42 \times 14 \times 9 \mathrm{~cm} 1: 6 \times 5.5 \times 3.5 \mathrm{in}$.
	potanzation ellipsoid compared to the long axis).	Weight	1.6 kg (3.5 lbs.)
Method of reading	In-ohase from a mecnanical inclinomoter and quacrature from e calibrated dial. Nulling by audio tone.	Instrumert supplied with	Monotonic speaker, carrying case. manual of oderation. 3 station se'ec: $=$ r plug-in tuning units (adoitional froquencies are optionall, set of battenes.
Seale renge	In-phase $=150 \%$; quadrature $\pm 40 \%$.	Shipping weight	4.5 kg (10 fbs.)
Readabillty	$=1 \%$.		

GEONICS LIMITED

2 Thomcliffe Park Drive Toronto/Ontario/Canada M4H 1H2
Tel: (416) 425-1821
Cables: Geonic's

Additional case histories on recuest

Stuen selector
Two tuning units can be plugged of one time. A switch selects her station.

Recerving Colls
Vertical rocaiving coil circuit in instrument picks up any vertical signal present. Horizontal recerving coil circurt. atter automatic 90° signal phase shift. teeds signal into quadrature dial in series with the recerving coil.

In-Phese Olas
shows the tilt-angle of the instrument for minimum signal. This angle is the measure of the vertical in-phese signal expressed in percentage when compared to the horizomal field.

Quadrature Dial
is calibrated in percentage mertings and nulls the vertical quadrature signal in the vertical coil circurt.
ay selecting a suitable transmitter station as a source, the EM 16 user can survey with the most suitable drimary field azimuth.

The EM 16 has two receiving coils. one for the pick-ud of the honzontal (primary) field and the other for detecting any anomalous vertical secondary field. The coils are thus orthogonal, and are mounted inside the instrument "handle'.

The actual measurement is done by first tilting the coil assemoly to minimize the signal in the vertical (signal) coil and then further sharpening the nuil by using the reference signal to buck out the remaining signal. This is done by a calibrated "quadrature" dial.

The tangent of the tilt angle is the measure of the vertical in-phase component and the quadrature reading is the signal at right angles to the total field. All readings are obtained in per centages and do not depend on the absofute amplitude of the primary signats present.

The "null" condition of the measurement is detected by the drop in the audio signal emitted from the patented resonance loudspeaker. A jack is provided for those preferring the use of an earphone instead.

The power for the instrument is from 6 pentight cells. A battery tester is provided.

CERTIFICATE

THO IS TO CERTIFY:

1. I am a graduate in Prospecting Techniques from the Norther College of Applied Arts and Technology, Haileybury campus, 1976 and have completed the Haileybury School of Mines, Geophysical Field School, 1990, and the interpretation of Ground and Airborne Geophysical Data Course, 1991. I have been active as a prospector and exploration contractor since 1974.

2 I am a member in good standing of the P.D.A., past president of the N.P.A., and director of O.M.E.F., and C.I.M.M.
3. I reside and hold office at 139 Carter Ave., Kirkland Lake, Ontario, P2N 2A1.
4. I have an interest in the property.
5. My report is based upon having personally participated in each program herein described, a review of published information on the property, consultation with local geologists and upon my familiarity and experience as a prospector in the Kirkland Lake camp.

REPORT ON

MAGNETIC \& VLF ELECTROMAGNETIC SURVEYS

AND
GEOLOGICAL MAPPING \& SAMPLING
ON
CRYSTAL LAKE PROPERTY
TOWER HILL CLAIMS
\section*{LEBEL TOWNSHIP}
LARDER LAKE MINING DIVISION, ONTARIO

V. Leany

December : 991

030C

TABLE OF CONTENTS

Page \#
INTRODUCTION
Location and Access 2
History 2
Geology 2
1991 EXPLORATION PROGRAM
Line Cutting 3
Geological Survey 3
VLFEM Survey 3
Magnetic Survey 3
RESULTS OF GEOLOGICAL SURVEY 4
RESULTS OF MAGNETIC SURVEY 4
RESULTS OF ELECTROMAGNETIC SURVEY 4
CONCLUSIONS 4
RECOMMENDATION 4

TABLE OF CONTENTS

APPENDICES

CLAMM MAP I
LEBEL SAMPLE DESCRIPTIONS II
Au ASSAY RESULTS Illa \& lilb
WHOLE ROCK ANALYSIS N
JENSEN CATION PLOT V
COX ET AL PLOT VI
GEOLOGY MAP VII
MAGNETIC SURVEY MAP VIII
ELECTROMAGNETIC SURVEY MAP IX
MAGNETOMETER INSTRUMENT SPECS. X
VLF-EM16 INSTRUMENT SPECS. XI
CERTIFICATE XII

INTRODUCTION

Lecation \& Access:
The property herein described consists of two contiguous, unpatented mining claims, (L-1045589, L-1046795) covering part of the Tower Hill along the south shore of Crystal Lake, Lebel Township, Larder Lake Mining Division, Ontario. Highway 66, running roughly E-W, passes parallel to and a few hundred feet south of the south boundary of L-1045589. The town of Kirkland lake lies about 6 miles to the west.

History:
Both claims were patented many years ago but no record of work could be found in the Resident Geologist's files in Kirkland Lake. During the process of mapping, however, several old trenches and diamond drill casings were found probably dating back to the 1950's or earlier. In 1990 the claims were prospected for one day, by A. Black and M. Leahy.

Geology:
Tower Hill lies along the east boundary of Lebel Township which is underlain by a highly complex, both structurally and stratigraphically, assemblage of Timiskaming age sediments and volcanics. Atteration varies from moderate to intense and is accompanied by strong deformation, spotted textures and complete obliteration of the original rock type in places.

The object of the 1991 program was to search for gold bearing zones within the trachytes using the Morris Kirkland Gold Mine as a model. Ore at the Morris, one mile to the west of the property, was found in and adjacent to north trending felsic dikes cross cutting the trachyte. Just south of the property in a rock cut on Highway 66, gold occurs in trachyte adhacent to a syenite dike with a roughly north - south trend.

1991 EXPLORATION PROGRAM

1. Une Cutting:

Picket lines were cut over both claims at 300^{\prime} intervals using the north boundaries of each claim as base lines. A total of 2.5 miles were cut with stations every 100 .

2 Geological Survey:
Using the picket line grid and newly established (surveyed) patented claim boudaries for control the geology of the claims was mapped and sampled. Results were plotted on a map with a scale of $1^{\prime \prime}=200$ or $1: 2400$. Eleven grab samples were taken and assayed for Au with one sample also subject to whole rock analysis.
3. VLF-EM Survey

On October 1, 1991, a VLF-EM survey was conducted over ciaim L-1046795 only, due to interference from the high voltage line traversing claim \# L-1045589; a Ronka VLF-EM1 6 was used Lines 0, 3W, 6W, 9W and 12 W were read at 50° and 100^{\prime} intervals with 109 readings taken. A total of 1.2 miles of line were traversed. The station used was Cutter, Maine, at 24.0 khz . All readings were taken facing north.

4 Magnetic Survey

A magnetic survey was conducted over both claims using a Geometrics proton magnetometer model 250, on October 1, 1991. Readings were taken at various intervals of 100° and less. A base station was established at the \#2 post of L-1046795 but due to the slight diurnal variation no corrections were necessary. Results were plotted on a map with a scale of $1^{\prime \prime}=200^{\circ}$ and contoured at 500 gamma intervals.

RESULTS OF GEOLOGICAL SURVEY

Only one geological contact was noted between trachytes and tuffaceous rocks through the centre of claim L-1045589. South of the contact highly altered, deformed frine grained gray tuff dips vertically and strikes E-W. The area north of the contact is underlain by highly altered trachytes with red, green and black spotted textures. Rocks are locally silicified, carbonatized and pyritized. Several odd trenches were mapped along barren quartz veins near the tower. At the base of the tower a narrow quartz breccia zone contains chalcopyrite andmalachite. Whole rock analysis of sample \#12-544, a black-spotted trachyte, were plotted, (Jensen Cation 1976, Cox et al, 1979), with charts attached.

RESULTS OF MAGNETIC SURVEY

The magnetic survey succeeded in defining the trachute - tuff contact north of the high voltage line. The trachyte show a relatibely low magnetic relief around 58,000 gammas while the tuffs have a higher and more variable magnetite content giving readings as high as 60,000 gammas. A small linear high extending west from the tower may be less altered than the surrounding rocks where magnetite may have been altered to hematite. Crystalline magnetite was observed in outcrop at L12E +250 S in bedded tuffs.

RESULTS OF ELECTROMAGNETIC SURVEY

The VLFEM survey over L-1046795 only revealed no bedrock conductors. Interference from the low voltage power line to the tower, guy wires and the high boltage power lint to the south affected readings but does not seem to be masking any significant bedrock response.

CONCLUSIONS

1. No gold values were obtained from sampling.

2 No VLF-EM conductors were defined.
3. No magnetic features of interest were defined.
4. No strong shears or faults were defined.
5. No Morris-Kirkland type dikes were found.

RECOMMENDATIONS

No further work is recommended at this time. A stripping program recommended in 1990 could not be justified without some gold values.

LOCATION	DESCRIPTION
$425 \mathrm{~W}+98$	Trachyte - light green, highly atered 1\% fine disseminated pyrite.
450W + 950S	Matic intrusive, medium grained am. phibole in green matix
$425 \mathrm{~W}+9255$	Trachyve ; grav-green, silicicied, pyrite and magnetite.
L3W + 8805	Trachyte - green matrix with dark red feldspar spots (from trench).
L6W + $850 \mathrm{~S}+10 \mathrm{~W}$	Trachyte - very dark red, fine grained, silicfied, pyrite.
L9W + 95	Trachyte . dark red, porphynitic, 1\% fine disseminated pyrite.
$B L+125 E$	Trachyte - green spotted, carbonaized, silicified.
LTE + 5705	
LOE + 320S	Trachyte - gray matrix with black spots (See whole rock charts.)
L6E + 5105	Tuff, fine grained, gray.
$250 E+55$	Tuff, gray-green, carbonatized, silicified, <1\% pyite.

\#ON	SAMPLE
MAP	$\#$
1	8582
2	8583
3	8584
4	12.539
5	12.540
6	12.541
7	12.542
8	12.543
9	12.544
10	12.545
11	12.546

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.I. C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.t

41057
 Certificate of Analysis

Page: 1
Leahy, Mike 139 Carter Ave. Kirkland Lake, Ontario P2N $2 A 1$

SAMPLE NUMBERS
Accurassay
248043
Customer

248044
248045
248046
248047
248048
248049
248050
248050

12-539
12-540
12-541
12-542
12-543
12-544
12-545
12-546
12-546

Gold ppb
< 5
<5
<5
<5
<5
<5
<5
< 5
<5

August 29
Work Order \# : 911079

Project :
Gold Oz / T
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001 Check

91

Swastika Laboratories

A Division of Assayers Corporation Ldd.
Assaying-Consulting-Representation

Geochemical Analysis Certificate

Company: M. LEAHY
Date: NOV-21-91
Project:
Copy 1. I39 CARTER AVE, KIRKLAND LAKE
Autn:
We hereby certify the following Geochemical Analysis of 3 ROCK samples submitted NOV-19-91 by .

ACCURASSAY LABORATORIES

A division of barringer laboratories limited. rexdale, ontario
BOX 426
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1
TEL.: (705) 567-3361
President: Dr. GEORGE DUNCAN, m.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.I, M.C.I.C., M.R.S.C., A.R.C.S.t.

41096 Certificate of Analysis

Page \#1
September 4,
1991

Work Order * 911079.

 Project:SAMPLE RUMBER

248048

Accurgebay
243046

SAMFLE RUMBER
Accurassuy Gustomor
Customer
$12-544$
Customor

L: 3.30

$$
12-544
$$

Mr. Mike Leahy
139 Carter Ave.,
Kirkland Lake, ON
P2N 2A1

SAMFLE RUMBER
Accuraseay
Customer
12-544
248048
Accuraseay Gustomer
12-544
248048

SAMPLE NUMBER	
Accurassay Customer	
248048	$12-544$

SAMPLE NUMBER

48048

A1203	Fe203	MgO	CaO	FazO
ICAF	ICAF	ICAF	ICAP	ICAP
$\%$	$\%$	$\%$	$\%$	$\%$
20.4	5.11	1.17	1.78	1.50

K20	TIO2	MnO	Ag	Be
ICAF	ICAP	ICAF	ICAF	ICAF
$\%$	$\%$	$\%$	Dpm	prn

0.664
0.14
<1
6.9

GWiAT IEKE

Pioneered and patented exclusively by Geonics Limited. the VLF method of electromagnetic surveying has been proven to be a major advance in exploration geophysical instrumentation.

Since the beginning of 1965 a large number of mining companies have found the EM16 system to meet the need for a simple. light and effective exploration tool for mining geophysics.

The VLF method uses the military and time standard VLF transmissions as primary field. Only a receiver is then used to measure the secondary fields radiating from the local conductive targets. This allows a very light, one-man instrument to do the job. Because of the almost uniform primary field, good response from deeper targets is obtained.

The EM16 system provides the in-phase and quadrature components of the secondary field with the polarities indicated.

Interpretation technique has been highly developed particularly to differentiate deeper targets from the many surface indications.

Principle of Operation

The VLF transmitters have vertical antennas. The magnetic signal component is then horizontal and concentric around the transmitter location.

Specifications

Areses of VLF Signals
Coverage shown only for well-known stations. Other retiable, fully operational stations exist. For full information regarding VLF signals in your area consutt Geonics Limited. Extensive field experience has proved that the circles of coverage shown are very conservative and are actually much larger in extem.

EM 16 Profibe over Lockport Ming Property, Newfoundland
Additional case histories on request.

Stution Selector Two tuning units can be plugged an one time. A switch sefects ner station.

Receiving Colta
Vertical recerving coil circuit in instrument pucks up any vertical signal prasemt. Horizontal recerving coil circurt. after automatic 90° signal ohase snift. feeds signal into quadrature dial in series wrth the recerving coil.

In-Phase Dial
shows the tilf-angle of the instrument for minimum signal. This angle is the measure of the vertical in-phase signal expressed in percentage wnen compared to the nonzomtal field.

Quadrature Dial
is calibrated in percentage markings and nulls the vertical quadrature signal in the vertical coll circuit.

By selecting a suitable transmitter station as a source. the EM 16 user can survey with the most suitable primary field azimuth.

The EM 16 has two receiving coils. one for the DIck-uD of the horizontal (primary) field and the other for detecting any anomalous vertical secondary field. The coils are thus orthogonal. and are mounted inside the instrument "handle".

The actual measurement is done by first tilting the coil assembly to minimize the signal in the vertical (signal) coil and then further sharpening the nuil by using the reference signal to buck out the remaining signal. This is done by a calibrated "quadrature" dial.

The tangent of the tilt angle is the measure of the vertical in-phase component and the quadrature reading is the signal at right angles to the total field. All readings are obtained in per centages and do not depend on the absolute amolituce of the primary signals present.

The "null'" condition of the measurement is detected by the drop in the audio signal emitted from the patented resonance loudspeaker. A jack is provided for those preferning the use of an earphone instead.

The power for the instrument is from 6 pentight cells. A battery tester is provided.

Appendix

CERTIFICATE

THE IS TO CERTIFY:

1. I am a graduate in Prospecting Techniques from the Northern College of Applied Arts and Technology, Haileybury campus, 1976 and have completed the Heileybury School of Mines, Geophysical Field School, 1990, and the Interpretation of Ground and Airborne Geophysical Data Course, 1991. I have been active as a prospector and exploration contractor since 1974.

2 I am a member in good standing of the P.D.A., past president of the N.P.A., and director of O.M.E.F., and C.L.M.M.
3. I reside and hold office at 139 Carter Ave., Kirkland Lake, Ontario, P2N 2A1.
4. I have an interest in the property.
5. My report is based upon having personally participated in each program herein described, a review of published information on the property, consultation with local geologists and upon my familiarity and experience as a prospector in the Kirkland Lake camp.

REPORT on

HLEM (MAX MIN) SURNEY
GEOLOGICAL SURVEY

DIAMOND DRILLING

LADY LOU PROPERTY

BOMPAS TOWNSHIP
LARDER LAKE MINING DIVISION
ONTARIO

040C

TABLE OF CONTENTS

Page \#
INTRODUCTION
Location 2
Access 2
History 2
Geology - Regional 2
Geology - Lady Lou Claim 2-3
1991 EXPLORATION PROGRAM
Line Cutting Program 3
Max Min HLEM Survey 3
Geological Survey 3
Diamond Drilling Program 4-5
Self - Potential Survey 5
CONCLUSIONS
Max Min HLEM Survey 5
Geological Survey 6
Diamond Drilling Program 6
Self - Potential Survey 6
RECOMMENDATIONS 6

TABLE OF CONTENTS

APPENDICES

Claim Map 1
Geology Map II
Sample Descriptions III
Whole Rock Analysis N
Jensen Cation Plot V
Geochemical Analysis V
Drill Plan VII
Drill Logs
Max Min MapsIXa, IXb
S-P Chart (Map) X
Certricate XI
Multimeter Specs XII
Apex Max Min Specs XIII

INTRODUCTION

Socaton:

The property herein described consists of one unpatented mining claim, L1110266 , located about $11 / 4$ mile north of the SE comer of Bompas Township, Larder Lake Mining Division, Ontario. The claim lies just west of the north end of Kenogami Lake and $1 / 2$ mile nortiwest of Hotchkin (Little Kenogami) Lake. The town of Kirkdand Lake lies about 11 miles to the east.

Access:

Grenfe\#R Road leads west from Highway 11 at Kenogami and passes within 2,000' of the property along the eastern boundary of Bompas Township. The road is maintained year-round for about 3 miles from the Trans-Canada where it becomes passable only by pickup truck. A trail was cut in June of 1991, from Grenfell road to the \#1 shaft. The trail is passable by light all-terrain vehicles, only.

```
History:
```

The property covers the old Lady Lou shaft area which was first discovered and worked around 1940 At that time, two shallow shafts (approximately 50^{\prime} deep), were sunk and some surface trenching was done. In 1990 , a Magnetic Survey, Electromagnetic Survey and Self-Potential Survey were performed.

```
Geciogy - Regionai:
```

The property lies near Kirkdand Lake in the Abitibi super-group of steeply dipping Archean metavolcanics and metasediments which straddles the Ontario-Quebec border. The famed E-W striking Larder - Cadillac break passes about $21 / 2$ miles to the south. The property lies on a thin, 5 mile wide, N-S trending outier of flat lying Huronian sediments bound on the east by mafic Kinojevis metavolcanics and on the west by the Watabeag batholith (Algoman).

> Geology - Laay Lcu Claim:

The property is underlain by Huronian sediments $1 / 4$ mile west of the eastern edge of the above mentioned Huronian outlier. Mineraization and geology were described by Lovell, 1980.
"Mineralized rock in dumps consists of quartz veins cutting Cobalt Group Gowganda Formation Coleman :Memiber feldspaticic sandstone tarkose). The quartz veins are vuggy in places, with euhedral crystals of quartz as drusy linings of gas spaces. Metallic minerals in the veins are chalcopyrite, pyrite, sphalerite and gold.

Geology -Laciy Lou Claim, conted:

Quartz veins of an aggregate width of about $06 m$ (2') strike N 30 W and dip 75 SW, and cut Cobalt Group arkose. The veins contain pyrite. chalcopyrite and gold. A brecciated fracture zone containing pyrite, chalcopyrite and galena strikes across about perpendicular to the quartz band."

1991 EXPLORATION PROGRAM

ine Cuttung Program:

Three new picket lines (L9W, L11W and L13W) were added to last year's gnd. (2,200' in 1991). Deadfall was cleared from last year's grid and a trail was cut from Grenfell road to the \#1 shatt
. Max Min incrizontal Lood EM Survey:

On September 20, 1991, three lines were read on the property in search of possible EM conductors beneath the flat - lying Huronian sediments. A total of 50 readings were taken at 50^{\prime} or 100' intervals along L8W, L10W and the south part of the baseline. Two frequencies were read $(444,1777 \mathrm{khz})$, along all lines at a $300^{\prime \prime}$ coil separation. Results were plotted on a map with a scale of $1 "=200^{\circ}$. No conductive zones were detected.

Geological Survey:

The entire claim was mapped using grid lines for control. All outcrops, pits. veins and topo features were noted and plotted on a map with a scale of $1^{\prime \prime}=200^{\prime}$. The claims are underlain by Huronian arkose dipping very gently west. A few narrow quartz veins were found with minor pyrite, chalcopyrite and galena. At the \#2 shaft dump angular, epidotized basalt and epidotized Huronian arkose were found indicating the shaft penetrated through to basement. Whole rock analyses define the basalt as a high magnesium Tholeite, (see Jensen Cation plot. attached). Several samples were taken, mostty from the shaft dumps, and all were assayed for gold with disappointing results.

1991 EXPLORATION PROGRAM

Diamond Driling Program:
Three short diamond drill holes were put down as follows:
DDH LL-1-Collared at L1OW + 160 at \#1 shaft

- Bearing 40
- Dip 45
- Depth 60
- Target: 1.- testing depth of Huronian sediments,

2- search for veins parallel to \#1 shaft vein.

- Results: - hole stopped in Huronian sediments,
- only a few narrow barren quartz veins encountered.
- Assays - none taken.

DDH LL - 2 - Collared at L1OW + 160 at \#1 shaft.

- Bearing 90
- Dip 45
- Depth 28'
- Target: 1.-shear under gully \& perpendicular to shait vein,

2 -collared in shaft vein to get core sample of chaicopyrte in quartz

- Result: hole caved, jammed rods at 28' after grinaing core.
- Assays: - none taken.

1991 EXPLORATION PROGRAM

Diamond Drilling Program, conted.:

DDH LL 3 - Coliared at $1150 \mathrm{~W}+2 \mathrm{~S}$ at \#2 shaft.
-Bearing 315

- Dip 45
-Depth 12
- Target: - shear zone joining \#1 and \#2 shafts.
- Result: - hole lost in cave; abandoned at 12 '.
- Assays: - none taken.

The Boyle Bros. "XRay' diamond drill employed in the program was unable to core through broken ground or to collar through overburden. Anchor bolts had to be set in bedrock to hold the drill stationary. The two speed transmission did not give theflexibilityneeded to handle varying ground conditions. Even when operated by a professional driller, the "XRay' is difficult and dangerous to work with and should only be used under ideal drilling conditions.

Seif - Potential Survey:

A follow-up S-P survey was done to further test subtie responses detected during the 1990 program. A Micronta model 22-1 85A LCD digital multimeter with an accuracy of $+/-0.8 \%$ of reading and $\div /-0.2 \%$ of full scale was used with porous porcelain pots containing CuSO4 and H 2 O . The long wire technique was used giving readings relative to a single base point along the base line. Drought conditions during 1991 contrasted with wet soil conditions in 1990 which gave relatively high background potentials. The 1991 survey, under dry conditons gave smoother and lower readings effectively erasing the subtle responses i+ or $: 00 \mathrm{mv}$) recorded last year. A total of 79 readings were taken and plotted on a man with a scale of $1^{\prime \prime}=200$. All the 1991 readings were low enough to be interpreted as zero.

CONCLUSIONS

> Wax Vin hi_EM Survev:

There were no conductors detected in traverses across the shaft vein or across the shear zone aiong the creek between the \#1 and \#2 shaits.

CONCLUSIONS

Geological Survey:
All out crops are gently dipping arkose with a few narrow quartz veins, some containing chalcopyrite, galena and pyrite. Underlying basalts are within about 50' of surface at the \#2 shaft, as indicated by angular basalt boulders and epidotized arkose in shaft dump. There were no assays of economic interest; basement rocks have little base metal potential.

Diamond Drilling Program:

Short holes gave little information and many problems. The XRay drill has severe limitations. No mineralization of interest intersected.

Self - Potential Survey:
Dry conditions in 1991, gave smoother, lower readings discounting the possibility that subtle highs from the 1990 survey were caused by sulfides.

RECOMMENDATIONS

The Lady Lou claim appears to have no economic potential at this time. No further exploration is recommended. The property does, however, have historic value. The shaft areais picturesque with a small intermittent stream flowing through the \#1 shaft then down a narrow mossy canyon to the beaver ponds velow. The partially collapsed hoist room contains a steam powered hoist and water pump as well as parts of the boiler system and other artifacts. At the \#2 shaft a short tramway runs for 50^{\prime} along a moss covered muck pile. An old side-dump ore car and hoisting bucker lie nearby. Efforts should be made to preserve the site and equipment and consideration should be given to restoring the site as an historic landmark.

Michel Lathy
Sec 91

DESCRIPTION
Arkose, fine to med. grained. $1 \% \mathrm{py}$. Arkose, fine grained, silicified, breccia, QV,C p.
Basalt, black, fine grained weakly magnetic. Arkose, QV. Arkose, QV, Cp.
Arkose, silicified, epidote,
QCV, Py, galena.
Arkose, med. grained, dark,
$>1 \%$ fine diss. Py.
Arkose, epidote, fine Py. Basalt, black, fine grained,
epidote.
Basalt, black, fine grained,
carbonate stringers.
Basalt, black, fine grained,
rusty rind, slighty magnetic.
Arkose, QV, epidote, Py. LOCATION $L 12 W+450 S$
$L 9 W+50 N+$
$40^{\prime} S W$
\#2 shaft dump
\#1 shaft dump
\#1 shaft dump dunp yeus 乙\#
dunp yeus 乙\#
dunp дeys ح\#

$$
\begin{aligned}
& \begin{array}{l}
\text { REPORT No. } \\
\text { Page No. } \\
\text { File No. } \\
\text { Date }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& 名 }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { ®a }}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \text { º * } \\
& \text { 운 - } \stackrel{\circ}{\dot{\sim}} \stackrel{\circ}{\sim} \stackrel{0}{\dot{\sim}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \% }
\end{aligned}
$$

> ANN BLACK CO.
> SAMPLE

> DIAMOND DRILL SECTIONS LADY LOU PROPERTY BOMPAS TOWNSHIP
> $1^{\prime \prime}=50^{\circ}$

Swastika Laboratories

A Division of Assayers Corporation Lid.
Assaying - Consulting - Representation

Geochemical Analysis Certificate

Company: ANN BLACK
Project:
A th:

1W-4125-RG1
Date: OCT-07-91
Copy 1. 139 CARTER AVE, KIRKLAND LAKE P2N TAI
2. $567-46 \%$

We hereby certify the following Geochemical Analysis of 12 ROCK samples submitted OCT-04-91 by .

Certified by
 \qquad

P.O. Box 10, Swastika, Ontario P0K 1T0
diamond drill record

Total footage.....................................8..........................

1

DIAMOND DRILL RECORD
Footage

24
$\div 24 \quad 1 \quad 28^{\prime}$
\square
Sample
Footage

Arkose - mostly around and broken core.
EOH
Remarks

$\begin{array}{l}\text { Sample } \\ \text { Width }\end{array}$	$\begin{array}{c}\text { Gold } \\ \text { Sample }\end{array}$	$\begin{array}{c}\text { Gold } \\ \text { Sludge }\end{array}$

m

Arkose - feldspathic, medium to fine orained,
_ - less than 1% fine disseminated pyrite.
L_
Hole No.InF.....................
Sheet No..... 1.
diamond drill record

[^0]

CERTIFICATE

THIS IS TO CERTIFY:

1. I am a graduate in Prospecting Techniques from the Northern College of Applied Arts and Technology, Haileybury campus, 1976 and have completed the Haileybury School of Mines, Geophysical Field School, 1990, and the Interpretation of Ground and Airborne Geophysical Data Course, 1991. I have been active as a prospector and exploration contractor since 1974.
2. I am a member in good standing of the P.D.A., past president of the N.P.A., and director of O.M.E.F., and C.I.M.M.
3. I reside and hold office at 139 Carter Ave., Kirkland Lake, Ontario, P2N 2A1.
4. I have an interest in the property.
5. My report is based upon having personally participated in each program herein described, a review of published information on the property, consultation with local geologists and upon my familiarity and experience as a prospector in the Kirkland Lake camp.

The MICRONTA ${ }^{\text {® }}$ LCD Digital Multimeter is a portable 3-2/3 digit, compact-sized multimeter idealty suited for field, lab, shop. bench and home applications. Here is a review of some of the features that quality your new digital multimeter as real "pro".

- The latest IC and display technology is used to achieve the lowest possible component count. This. in turn, ensures reliability, accuracy, stability and a really rugged, easy-to-handle instrument. Two analog-to-digital converters are used for many special features.
- Conveniently positioned range and function switch knobs for one-hand range/function control.
- Colored indication of the referential ranges to the selected function.
- Effective overload and transient protection on all ranges except DC/AC 10A range.
- Continuity function for quick continuity check - buzzer sounds when circuit resistance is approximately 300 ohms or less.
= Copyright 1988 Inter TAN Canada Limited
Al Rights Reservad
Micronta is a registered trademerk of Tandy Corporation

2

4

GPECIFICATIONS：

Frequencies：
222．444，日89． 1777 and 3555 Hz ．
Noden of Oparetion：Max：Trenerritter cod plane end re－ ceiver col plane horizontal （Max－coupled；Harizontel－locp model．Leed with refer：cetle
MIN：Tiansmitter coiplane harizon－ tel end recemer coll plene ver． tical（Min－couplad rnade）． Ueed with references ceble．
V．L．：Tranemitter coilphane verti－ cal and receiver coil plene horr－ zontel（Verticel－loop model． Used without reference cable．In parellal lines．

Coll Beparetione：
25，50．200．150，200 e esOm（MмM） or 100．200，300，400，600 end日OD ft．（MMIIF）
Coll seneretione in V．L mode not re－ etricted to fixed velues．

Parametere Pead：－In．Phese and Quadreture compo－ nents of the secondery fietd in MAX end MIN modes．
－Tilt－engle of the cotel field in V．L． mode．

Meedouts：－Autometic．direct readout on EDTMn（3．5＂）exfgewise metere if MAX and MiN modes．No null－ ： 万 or commensation necesbery．
－iilt ongle ew mill in ORmm edge－ wise meters in VL．mode．
 buttion switch
Quadrature： $\pm 20 \%, \pm 100 \%$ by push－ bittion switch．

 שn 05% Tilt： 1%

Repeetebllity ：
A0．25\％tnit\％nowimaily，comendirn
 Beppration chbed

Tremernitter Output：－2e2ttz ：220Auri²
－$\Delta \Delta \Delta t+z: 2 \Omega \Delta u n^{2}$
－B38itz：120arriz
－1777＋1z：GOAtinif
－ 3555 Hz ：30ALI2
Paceiver Batterias： $9 \vee$ trans radio type batceries（4） Life：exxmox 351 rrg crontiringus du ty（alkalme． 05 A, ）．less in cold weather

Tranamiteter
Entterles

Meforence Ceble：Ligite woighte 2－corutiction tefkon
12V 6An Gel－type rechargeable battery．（C．harner sispolied） ceble for riururtum fruerkon Unghe：1． ed．All refarence ratses antionad ot extre cost．Plegse specify

Voice Link：
Bualt－in mitercorn Gysitem for voine comminicatinn twriseen re－
 in MAX nan MiN inories．vie re． r．．．．．．．．．．：I．

 reatinge

Receiver Weight：Ekg（1．3 Ithe．J
Trenernitter Weigit： 13 kg （29flas．）
 ing on chiantitifeg of roference

\qquad

[^0]:

