

（支

FEFORT OF WORK FERFORMED IN 1985BY FALCONBRIDGE LIMITEDon the properties of
CORPORATION FALCONBRIDGE COPPER (PN-660)and ofMANY METALS MINES LIMITED (PN-613)
Hearst township, Ontario (NTS 32 D/4)Dec. 30, 1985 Maglaire Berube, P. Eng.

RESUME

During 1985, Falconbridge Limited pursued its gold-oriented exploration program in Hearst township, Ontario.

Falconbridge (FL) owns one group of 132 claims in Hearst and McElroy townships, Ont., 117 of which having been optioned from Corporation Falconbridge Copper (CFC) in 1984 and 15 of which having been optioned from Many Metal Mines Limited (MMM) in 1985.

The wort done by FL on these 2 properties in 1984-85 comprises:

	1984	1985		total 85	total 84-85
Option	CFC	CFC	MMM	CFC \& MMM	CFC \& MMM
Claims covered	38	25	9	34	72
Lines cut (km)	22.5	9.7	22.5	32.8	55.3
Mag survey (km)	115.0	62.8	21.0	83.8	198.7
VLF survey (km)	19.3	62.8	21.0	83.8	103. 1
I.F survey (km)	56.3	30.0	10.5	40.5	96.8
Geochemistry ${ }^{\text {, }}$	-	62.8 (42s)) $21.0(37 \mu$.	.) 8®.8(798.)	83.8
Geology ."	-	62.8	21.0	83.8	83.8
D. D. Holes	7 (3954)	6 (3420)	3(2345)	9 (5765)	16(9719)
Costs	186 967	124 281年7	74 213	$198494 *$	385 461*

Most exploration in 1984 was concentrated on the CFC claims requiring assessment work whereas most exploration in 1985 was concentrated on the CFC and MMM claims located in the vicinity of the alteration zone longing the Mitchell-Hearst fault.

A lot of anomalies were obtained from the several surveys performed during 1985.
The 9 diamond drill holes bored in 1985 encountered a lot of pyrrhotite, pyrite, graphite or carbonate (Kerr-Addison type) but failed to intersect any significant gold values.

The main data have been interpreted and compiled on maps contained in pockets at the end of the present report. More detailed maps from the same surveys are contained in two separate reports considered as parts of the present one.

Additional work is recommended for 1986: a) on 1985 anomalies left unexplained; b) on claims farther northwest, in McElroy and Hearst townships, where precious and base metals have been reported, and c) on the Hemlar property forming an enclave within the Falcontridge group of properties. The 1986 program has not yet been worked out in detail but should include a complete review of all old data, a systematic gophysical coverage of the Hemlar property and a diamond drill compaign where stripping is not feasible.

The budget for this program is estimated between 200000 to 300000 末.
$010 C$

TABLE OF CONTENTS

Title 1
Fiesume 2
Table of contents. 3
Introduction. 4
Description of properties 4
Fegional and local geology 4
Freviolse wort: 5
Recent wort: 5
Discussion and interpretation of results. 7
Geophysical surveys. 7
Geachemical survey. 9
Geological survey 10
Diamond drill hole campaign 11
Conclusion 13
Fiecommendations 1. 4
Feferences 16
Certificate 17
Appendix A: diamond drill logs
B: list of core geochemical samples
C: diamond drill sections
Sets of maps in poctets (in volume 2/2)

- claims mape showing location of ddholes
- geological map by D. Boucher
- VlF compilation maps
- General geophysical compilation map
- Geochemical maps for Au
- Geochemical maps for coz
Anmexed volumes:
- boot: of I.F. pseudo-sections (I.F.mep incl.)
- Feport on mag. and VLF by Geola.....

INTRODUCTIDN

This report briefly describes the results of geophysical, geological and geochemical surveys together with the results of a diamond drill campaign carried out during 1985 in Hearst township, Ontario. This work was performed by Falcontridge Limited (FL) on two adjacent properties optioned from Corporation Falconbridge Copper (CFC) and of Many Metals Mines Limited (MMM).

Many maps are inserted in two complementary geophysical reports, one containing the pseudo-sections provided by Remy Belanger Enrg. who carried out the Induced Folarization survey, and the other one, provided by Geola Ltd who carried out the magnetic and V.L.F. electromagnetic surveys. The maps by Geola also integrate the computerized data obtained in 1984 in other parts of the CFC property. For all types of surveys, the data coming from both the CFC and MMM properties have been plotted together on the same map.

DESCRIPTION OF PROPERTIES

The CFC option comprises 117 claims located in Hearst and McElroy townships whereas the MMM option comprises 15 claims in Hearst township. The claims distribution is illustrated on the claim sketch inserted next page whereas the claims numbers are listed in appendix A. The CFC option itself, for CFC purposes, was subdivided in 12 blocks of claims andfor sub-options.

The center of the properties lies about 2 miles southwest of the mining town of Larder Lake. Most claims are easily accessible: first, highway of passes just north of the property; secondly, road 624 relying the towns of Larder Lake and of Englehart straddles the eastern limit of the properties and is opened all year round; thirdly, numerous summer roads and trails open for mining, timbering, hunting or sport purposes lead in or close to most claims.

REGIONAL AND LOCAL GEOLOGY

The geology of the area is well illustrated on map 1947-1 accompanying Volume LV1, part V111, 1947, of the fifty-sixth annual report of the Ontario Department of Mines, volume entitled: "Geology of Hearst and McFadden townships".

Geological surveys have been done on both properties by CFC and MMM. The local geology can be summarized by highly folded and faulted, steeply dipping, interlayered sedimentary and volcanic formations belonging to the Larder Lake Group. The sediments are mainly represented by greywackes with minor argillites and conglomerates whereas the volcanic rocks, by intermediate to ultramafic flows <classified as tholeiitic and komatijtic by CFC). Several syenitic plugs and dioritic dikes have been mapped or drill intersected.

The Larder-Cadillac break, well known and famous for the prolific gold deposits found in its vicinity, passes just North of Larder Lake village and separates the Larder Lake Group from the Timiskaming Group, farther North. Two major cross-faults and related subsidiary faults to which gold-bearing deposits are believed to be genetically or spatially associated, traverse the properties in an almost $N-s$ direction: the Mitchell-Hearst fault and the one crossing the Fitzpatrick Eay in Larder Lake. An almost E-W fault has been assumed to pass underneath Estrangement Lat:e.

Wide zones of "dolomitization" with fuchsite have been locally observed along these major faults.

Fyrite, pyrrhotite or graphite zones are frequent. Gold have often been reported associated with syenites, diorites or 'dolomitiaed' volcanic rocks.

PREVIDUS WORK

Frospecting for gold and base metals has been intensively but sporadically pursued on both properties in the past. Stripping, blasting and trenching were later followed by modern geological, geochemical, ground and airborne geophysical surveys carried out by many companies whose respective works have already been summarized in reports by D. Comba, 1977 , F. Balint, 1982 and M. Berube, 1984. Dver 100 diamond drill holes totalling in excess of 50 o00 feet have been bored on both properties. Most of this wort: had been carried out outside the portion of the CFC property intensively worteed by FL in 1985.

RECENT WORK

During 1785, Falconbridge Limited (FL) performed the following quality and quantity of work on both properties:

Type of work
Line cutting
Magnetometer VLF EM survey
I. F. survey

Geochemistry
Geol ogy
Diamond drilling

CFC
9.7 km
62.8 km
62.8 km
30.0 km
62.8 km 62.8 km

6 holes (3420') 3 holes (2545') 9 holes (5765')

The work done in 1985 covers only the western half of the MMM property and the southern part of the north bloct on the CFC property. It was concentrated to the vicinity of the MitchellHearst fault structure.

The line cutting has been contracted by Exploratjon Colinex Inc. of Fouyn, Que. Most lines have been cut in an E-W direction, with pickets at 100 -foot intervals along lines 200 feet apart. Much time has been spent in the field looking for old base lines, old
pickets and claim posts in order to be able to overlay any plan from previous works (once reduced at the scale of new plans,1" = 400°) and in order to tie the sets of claim posts recently localized, with the new grid of lines. The new claim map integrates all new lines, all old base lines and most claim posts.

The geophysical survey* carried out by Geola Ltee of Val d'Or, Que. include measurements of both the total field and the vertical gradient of the earth magnetic field, at intervals of 50 feet and also the readings of a VLF electromagnetic survey measured on 2 frequencies, at intervals of 100 feet. The computerized results have been presented as profiles and/or contours on maps accompanying the report by Geola. The author re-interpreted all VLF results on a new VLF compilation map to be found in pocket at the end of the present report.

The Induced Polarization (I.P.) survey had been carried out by Femy Belanger Enrg of Evain, Que., with Phoenix 1PV-1 and 1FT-1 instruments working in the frequency domain. Eoth the Frequency Effect (F.E.) and the Resistivity (Fies.) were measured at spacings of 200 feet and for depths of $N=1$ to 5 . Remy Eelanger provided a set of pseudo-sections showing all readings of Res. and F.E. altogether with the calculated metal factor. The author interpreted the data contained in the pseudo-sections by reporting anomalies as bars on his own plan, bars later joined by axes from line to line.

The geochemical survey was conducted by a crew of 2 technicians (Gilles Carrier and Paul Nadeau) who walked along all the lines for mapping and sampling all outcrops of bedrock. Each sample was theorically composed of several pieces of rock aggregating about 5 pounds and broken within 100 -foot radius from the reported location on the geochemical map. The $3 \boldsymbol{z}$ geochemical samples collected that way were sent to Chimitec Ltee of Sainterfoy, Que., who prepared them by fire assay before sending them at Bequerel Laboratories of Mississauga to be assayed for gold in ppt by neutronic activation; Chimitec Ltee also had then assayed for CO2 by a gravimetric method.

The geological survey has been executed by Donald Boucher of Kirkland Lake, Dnt., who visit, mapped and sampled the outcrops previously outlined by the crew of technicians doing the geochemistry. In addition, the author also presents in poctset a geological map compiling data from recent and previous geological mapping, from diamond drill results, from a few visits on the property and from geophysical interpretation.

The diamond drilling campaign has been contracted by Dominit: Drilling (1981) Ltd of Porcupine, Dnt. All the core have been logged and geochemically sampled at kirkland Lake before being transported to the Timmins core shack for storing. The logging has been done by M. Berube, Donald Boucher or J. Andre Carrier.. Splitted core samples have been sent to Swastika Laboratories Limited and geochemical samples of core have been sent to

Chimitec Ltee of Sainte-Foy for assaying. Each geochemical sample was composed of pieces of core $1^{\prime \prime}$ to $2^{\prime \prime}$ long taken at intervals of 1.8 feet along a same geological unit (more samples were taken in units exceeding 100 feet). The diamond drill logs are inserted herewith as appendix A, the diamond drill geochemical resulte, as appendix B and the diamond drill sections for each hole, as apendix C.

DISCUSSION AND INTERPRETATION OF RESLLTS

Geophysical surveys

Let's first describe the results for each type of geophysical surveys before comparing them with each other.

Magnetic and gradiometric results

Geola Ltee plotted the magnetic and the gradiometric results on 4 sets of maps (each set comprising 2 base maps provided by FL, one covering the northern part, the other, the southern part of the properties). Results of all other surveys carried out by Fl are all shown on the same set of base maps.

The broadest magnetic features contoured on the magnetic map have a northwest-southeast direction and are refered below from the southwest to the northeast:

- a high mag (1000 g), caused by ultramafic rocks (see geol ogy)
- a low mag (< 200 g), 500-1000' wide, underlain by volcanic and sedimentary rocks (could be the low side of polarized high mag)
- a medium low mag (200-500 g), $1500-2000^{\circ}$ wide, underlain by sediments
- a medium high mag (600-1000 g), probably underlain by intermediate volcanic rocks

These broader magnetic features are locally cross-cut by smaller linear anomalies marked Mag-1 to 12 on the general geophysical compilation map, and briefly described below:

Mag-1: bi-polarized mag., oriented $N 20$ E, sub-parallel to line 84 E in its north part: massive py, po, graphite at places.

Mag-2: low mag., oriented $N \bar{S} E$, sub-parallel to the southern extension of the alteration zone (see gealogical map)

Mag-3: high mag. problably caused by ultramafic flows or syenite
Mag-4: high mag., E-W, possibly a gabbroic dyke stopping against the fault passing by thealteration zone (Mitchell-Hearst fault)

Mag-5: high mag. probably caused by a gabbroic intrusion because such an outcrop has been observed in its centre

Mag-6: high mag., concordant linear structure, unxplained

Mag-7: low mag., unexplained
Mag-8: high mag., explained by heavy pyrrhotite in hole 660-0日
Mag-9: high mag., explained by pyrrhotite in hole 660-09
Mag-10: high mag., explained by pyrrhotite in hole 660-10
Mag-11: high mag., one outcrop of iron formation reported nearby
Mag-12: high mag., over a pit containing a b-30" wide copperbearing quartz vein

There are other still smaller magnetic anomalies that might indicate mineralization, specially if confirmed by other surveys. Offsets along bigger anomalies may also be structurally important because possibly caused by cross-faults.

A gradiometric map on which the highest absolute readings have been contoured succeeded to pin-point most of the anomalies described above. This gradiometric map had not been included herewith but the more significant anomalies appear on the general geophysical compilation map in pocket.

Geola reported the VLF results on 4 other sets of maps. The more significative sets are the ones showing the In Fhase components from the NSS station as profiles and contours. The set showing the In Phase components from the NAA station is not valid because the profiles have been drafted along E-W lines instead of theorical N-S lines on the profile presentation and because the filtering has also been done along E-W lines instead of theorical N-S lines on the contour presentation. For this reason, the author re-calculated all In Fhase readings from NAA along theorical N-S lines, using the Fraser method.

Then the author integrated all In fhase data on a new set of map proceeding that way: first, only the positive values contained on on both NSS and NAA maps have been transfered on a new map; secondly, all values have been countoured by Geodes (with author's own method); finally; the contoured amplitudes have been interpreted as explained below.

The strongest anomalies have been 1 abelled from VLF-1 to 10 on the VLF compilation map accompanying the present report, as a matter of reference only, before being classified as real or false anomalies.

Induced Polarization (I_P.) results

On the pseudo-sections, the higher Frequency Effect (F.E.) are generally associated with the higher Resistivity (Res.) readings and they also largely coincide with area of outcrops, suggesting
that most anomalies are sub-surface or false anomalies. The F. E. peaks or axes are almost always closely associated with high Res., apparently marking the crests of hills.

Once transfered on an I.P. compilation map, most F. E. axes are effectively located over the area of outcrops. The have been labelled from A to F, these letters being followed by numbers when axes are segmented.

One rare I.F. anomaly whose F.E. is associated with a low Res. and do not seems to correspond to an outcroping area is anomaly F which has been explained by diamond drill hole b60-08. This hole cut a lot of sulphides with minor graphite.

Correlation between Magan VLE and IqP. results

A general geophysical compilation map has been specially built to superpose the main VLF, I.F., Mag. and gradiometric axes, for comparaison and interpretation.

The new VLF compilation map outlines both sub-surface (false) and bedrock (real) conductors. The first rule of thumb used to differentiate between both types of anomalies consists to superpose the VLF compilation map over a well documented geological map (one outlying rocky hills and swamps or conductive overburden, for example). In the absence of real conductors (in bedrock), the highest amplitudes will coincide with vallies filled with conductive overburden whereas areas of rocky hills stay blanks. Then, a VLF anomaly located over a hilly area have a better chance to be a real one. The second rule of thumb to discreminate between false and real conductors inside as well as outside hilly areas consists to superpose the VLF compilation map over the I.F. compilation map. While most false VLF anomalies are located outside areas of outcrops, most false I.f. anomalies, on the contrary, are located inside areas of outcrops, then not coincident. When a VLF and an I.F. conductor coincide, then the conductor have a better chance to be caused by a real or bedrock conductor, by sulphides or graphite. See anomaly VLF-S for instance.

When a VLF anomaly and/or an I.F. anomaly coincide with a magnetic anomaly, the reliability for a real conductor is still better, as it happens over anomalies VLF-5 and VLF-8

Unfortunately, on the claims surveyed during 1985, coincident anomalies are very few and, which is still worse, axes of different surveys are cross-cutting instead of being parallel to each other.

Geochemical survey

Two complementary geochemical surveys (with local overlapping) have been conducted over the property, the one previously conducted by CFC and the recent one, by FL. Samples were assayed
for precious, base metals and for oxides by CFC and samples from surface and from diamond drill holes have been assayed for gold and CO 2 by FL.

The geochemical map in pocket shows the geochemical results obtained by FL in 1985 but also shows a few gold assay results obtained from a reconnaissance geochemical survey done by FL in 1984, when localized in 1985 by observation of flaggins left in 1984.

To make it short, very few assay results for gold are anomalous and most highly anomalous assay results for CO2 have been obtained over the main alteration zone. The previous surveys by CFC yielded much more anonalous gold assays (the area covered was not necessarily the same as the one covered by FL).

Geological survey

Let's sub-divide the gealogy into lithology, structure, alteration and mineralization. The legend for the symbols used on the geological compilation map in pocket is inserted as appendix D.

Lithology

The lithology appearing on the geological compilation in pocket is not much different from the ones previously filed by other companies like CFC, MMM, etc. It is mainly composed of three units: sediments (mainly greywackes), ultramafic flows (komatiites) and intermediate volcanic (tholeiites) rocks. There is a big difference, though, between the governmental map and all companies maps: the rocks forming the hill over the MitchellHearst fault, identified as syenite on the government's map are identified as altered volcanic and sedimentary rocks on companies maps.

Structure

The main structures are locally identified by geological observation and magnetism: the NW-SE trending contact betwenn ultramafic and intermediate flows is well defined by the magnetism except to the $S E$, on the southern extension of the main alteration zone where the ultramafic flows become 'demagnetized' by alteration. Elsewhere, on the property, the magnetism, the I.F. and the VLF do not seem very effective tools to define the structures, maybe because of local intense alteration and complex folding and faulting.

Several faults however have been tentatively drawn on the geological compilation map.

The bedding and even top determinations have often been observed at many places over the sediments and the volcanic rocks.

Eoth sedimentary and volcanic rocks have been frequently
breccicated in situ and their hairline fractures have been filled by some black graphite, as observed on surface and in many drill holes, but these breccias are not always easily followed by geology or geophysic.

Alteration

The more important type of alteration is the "dolomitization" of volcanic and sedimentary rocks, along the Mitchell-Hearst fault. This alteration has hardened the rocks to the point of forming a hill, because more resistant to erosion. This hill is by far the strongest topographic feature on both properties.

Mineralization

Fyrite and pyrrhotite has been found at many places, often associated with graphite. For instance, heavy nodular pyrite has been encountered in the wide pit at coordinates $265-8 S^{6} E$ and in hole 660-08, hole which also contains some heavy pyrrhotite. All sulphide mineralizations have been assayed for gold and, except for weak values intersected in hole 660-13, no significant amount of gold or base metals have been obtained from geochemistry, geolggy and diamond drilling in 1985.

Diamond Drill hole campaign

The first five diamond drill holes on this option were drilled under I.F. anomalies located outside outcrop areas and the sixth one was drilled across the northern extension of the alteration zone exposed on the MMM option, farther south.
I.F. anomalies in the first 4 holes are well explained by a Variable amount of graphite, pyrite and/or pyrrhotite, and do not carry any significant gold values. From the log, there is no good explanation for the I.P. anomaly in the fifth hole that the author has not seen yet. The sixth or last hole did cut the alteration zone but the alteration is reported weaker than in the third hole drilled on the MMM option to the south. This hole cut an anomalous gold zone averaging 190 ppb Au over 22 feet from 284.5 to 306.5 feet. A more detailed summary of the geology of each diamond drill hole follows:

The numbers of holes begin with $660-08$ in 1985 because holes $660-$ 01 to 07 have been drilled in 1984.

Hole 660-08
016-542: interlayered argillites, greywackes and conglomerates (or breccia?)

This hole cut several sections containing light to heavy sulphides, nodular pyrite and/or disseminated pyrrothite and some slightly graphitic sections. Fuchsite was
observed from 166 to 186 feet in an alteration zone.

Hole 660-09

042-297: interbedded argillites and greywackes, often brecciated in situ, the hairline fractures filled by graphite. Frequent py. and po.

297-606: intermediate volcanic rocks, partly brecciated, graphitic but barren of sulphides.

Hole 660-10
020-506: mainly mafic volcanic flows, local tuffs and a dyke of gabbro. These rocks are brecciated in situ from 157 to 251 and from 339 to 463. The hairline fractures in the breccia are black, being filled by graphite. The first breccia contains traces to 1% pyrrhotite and pyrite and the second one, up to 5% py-po.

Hole 660-11
074-526: mostly intermediate volcanic rocks, locally described as dacite, andesite, basalt and tuffs. a 15 dyke of syenite is noted at 461'. Graphite has been identified at 92', 121', 130132' and at 262'. Frequent traces of pyrite.

Hole 660-12
080-282: intermediate to mafic volcanics, chloritized;
282-341: mafic valcanics,
341-511: intermediate to mafic volcanics, "
511-516: gabbro-amphibolite
From the log, there is no explanation for the I.F. anomaly.

Hole 660-13

061-225: mafic and ultramafic volcanics:
225-379: al tered (dolomitized) mafic volcanics?,
local fuchsite, traces of pyrite;
379-70B: weakly altered (dolomitized) metasediments,
local graphite:
708-716: basic dyke.
65 core samples have been splitted in this last hole, the most anomalous ones being 5 consecutive samples splitted from 284.5 to $306.5:$ they averaged 190 ppb Au over 22.0 feet. The other best values are scattered and are $140,100,40,30$ and $1 e s s$.

Qn MMM option

The 3 diamond drill holes $613-01$ to 03 have been drilled before having received the results of the geochemical survey. The first two holes were drilled across the southern extension of the Mitchell-Hearst fault and across the western extension of the Estrangement Lake fault, in an area covered by overburden where ultramafic rocks were not expected because of much lower magnetism. These 2 diamond drill holes encountered mainly talcose and "de-magnetized" ultramafic volcanics without any sign of the expected syenitic intrusions, 'dolomitized' alteration zone or gold-bearing quartz veins. The third hole has then been collared farther north 50 as to sample the carbonate zone, mid-way between the first two holes and a previous set of holes under the showing area. Here is a more detailed summary of the geology encountered:

Hale 613-01
072-629: highly talcose ultramafic flows:
629-794: slightly carbonated intermediate flows.
Both intermediate and ultramafic flows are cut by 12% of diorite dykes (6 of them). The shearing from 575 to 752 might have been developed by the Mitchell-Hearst fault.

No significant gold assay results were obtained.
Hole 613-02
02S-726: talcose ultramafic flows all along.
No significant gold assay results were obtained.
Hole 613-03
OOG-S68: intermediate to mafic volcanic rocks:
368-382: amphibolite or mafic tuffs;
382-576: $21 t e r a t i o n$ zone, bleached sediments, some fuchsite;
576-637: artoosic arenites
6క7-747: alteration zone, similar to above;
747-825: mafic to ultramafic volcanic rocks.
The highest assay results from 114 core samples were: 600110,90 and 70 ppb Au.

CONCLUSION

The magnetic map helps to better define larger geological structures (contacts, faults) and to pin-point concentrations of magnetic mineraliaation. Anomalies labelled Mag-1 to 12 on the general geophysical compilation map are described in the present report. The gradiometric anomalies have also been countoured on the same general map.

The VLF compilation map (the one combining both the NAA and NSS results, with the author's method) clearly differentiates areas of positive In Phase amplitudes (generally underlain by conductive overburden) from the one of negative In Phase amplitude (generally underlain by rocky hills). The 10 sharpest anomalies are labelled VLF-1 to 10 on the map. Very few of them are real bedrock conductors.

The I.P. compilation map contains numerous F.E. axes labelled A to H (each followed by nmbers when segmented), most of them taught to be caused by sub-surface effects, some by graphite or sulphides.

A general geophysical compilation map have been drawn to better show the associations between magnetic, gradiometric, VLF and I.F. anomalies.

The geochemical maps failed to show any geochemically anomalous gold zones but clearly picked up the main carbonated alteration zone. Moreover, these maps were sometimes usefull for VLF interpretation when outlining areas of rocky hills from those of conductive overburden.

The geological compilation map differs from the government map 1947-1 which shows a wide 'syenitic' dyke instead of carbonated volcanic and sedimentary rocks along the Mitchell-Hearst fault. It does not differ much from the different companies'maps but permits to compile all old geological data and to compare then with the recent mapping.

None of the 9 recent diamond drill holes intersected significant gold intersections although they succeeded to explaine the geophysical anomalies or to cross-cut the structures looked for.

RECOMMENDATIONS

Only 72 of the 132 claims have been explored during 1984 and 1985. Some of these, the remmant of claims plus some adjacent properties deserve an aggressive exploration program for 1986.

Many geophysical anomalies are left unexplained in the area explored during 1985, particularly in the northwestern portion where some mineralization is present in a few pits and where the geology is structurally disturbed. Some VLF anomalies for instance should be detailed by I.F.along short $N-S$ or E-W lines. Then, a few of them could be explained by stripping or by diamond drilling, depending on overburden conditions.

The northwestmost portion of the CFC option has not been explored yet by FL. Interesting mineralization and alteration has been reported from there, namely the base metal showing on claim MR 25 and many carbonate zones elsewhere. Geochemical anomalies of gold and CO2 deserve a second look with I.P. before stripping or drilling.

The Hemlar property located southwest of the MMM option and the portion of Larder Lake covering the Mitchell-Hearst fault extension, as for north as the Raven River and Laguerre gold deposits also constitute good prospecting ground.

December 30, 1985

REFERENCES

Balint, Frank: 1980 Drill Frogram, Larder Lake Froject Areas, FN 630 to 637 inclusive, McElroy-Hearst townships, Ontario, NTS 32-D-4, Corporation Falconbridge Copper, December 10,1980

Balint, Frank: Larder Lake project 1981 Summary Report, FN OJO, $032,033,034,035,036, M c E l r o y$ and Hearst Townships, for Corporation Falconbridge Copper, April 1982.

Berube, Magloires Report on a Diamond Drill Campaign by Falconbridge Limited on Froject FN-660 or Froperty of Corporation Falconbridge Copper in Hearst township, Ontario. December 18, 1984.
Comba, Dave: Davey Lowe's Gold Claims Froperty Examination, memorandum to Dave Watkins, Corporation Falconbridge Copper (appendix X111 in Ealint's report), September 28, 1977.

Seguin, M. K. and Eerube, M.: Geophysical Report on IF, MAG and VLF surveys on 3 bloctrs of claims of corporation Falconbridge Copper, Hearst Township, Ontario. December 18, 1984.

I, the undersigned, Magloire Eerube, residing at 1077 avenue Louis Jobin, Sainte-Foy, Province of Duebec, certify as follow:

1- I received a B. Sc. A. degree in Geology from Laval University in 1958 and I practice the profession of Geological Engineer since then:

2- I am a member of the Corporation des Ingenieurs du Quebec, of the Canadian Institute of Mining and Metallurgy, of the Frospectors and Developers Association and of the Quebec Prospectors Association:

3- I do not hold, nor I expect to receive an interest of any kind in the claims held by Falconbridge Limited, in Hearst and Mcelroy townships, Ontario, nor in any other properties of Falconbridge Limited:

4- The present REFORT OF WORK FERFORMED IN 1985 by FALCONBRIDGE LIMITED on the properties of COFFOFATION FALCONEFIDGE COPFER and of MANY METALS MINES LIMITED, Hearst township, Ontario, dated December 1985, is based on 27 years of experience in exploration, development and mining in Northwestern Quebec and Northeastern Ontario, and on a good knowledge of all previous and recent work done on the properties of Falconbridge Limited in Hearst and McElroy towmships, Ont.

Sainte-Foy, December 30, 1985

Magloire Berube, P. Eng.

APPENDIX
A

page: $2 / 11$ ∞
0
0
0
2
$\mathbf{2}$
$\mathbf{0}$
$\mathbf{1}$

Property: Township: Logged by:		Latitude: Azimuth: Elévation:			Longitude: Dip: Length:		
description	SAMPLE No.	FROM	то	LENGTH			
From 46 to 47.2 ARENITE light quey, fine grained with black earthy 's fragmente. Trace Po slightly magnetic From 47.2 t. 72.5 SILTSTONE med qrey to blach and brown fine grimed with a mak slaty eleomage abmost parallel to the core axie. interbedded conglomerates, aren ites AND MINOR ARGILLITES From 72 to 87.7 ARENITE med grey mad grained, macuive, moderately magratie $3 \% P_{0}$ diss.t-stge. From 87.7t. 9 / CONGLOMERATE Pebbly to granular, sub arquilar tosul. rounded, eherty arenite, grequrache and Fushlitic fragment. in a carbonate riel matrix				.			

Falconbridge Ltd.

$$
\begin{aligned}
& \text { Property: } \\
& \text { Township: } \\
& \text { Logged by: }
\end{aligned}
$$

Drilled by:
Started:
Ended:
from To 72

Page: $3 / 11$

from	то	description	Sample no.	fROM	то	Length	$\begin{gathered} A \nu \\ \text { in } p p b \end{gathered}$	Repeat	CO2	
		up to 5% po, py. The contact ia gradational with the lowen unit From 91 to 102.6 ARENITE med grey coarse grained, carbonate ried hand siliceaus from 97 to 100 10% diss. po,py From 102.6 to 125.3 Conglomenate some as above but with up t_{0} 30% nodular pyrite rourded to subanqular $Y_{2} t_{0} 3 / 4$ in diameten The py in fine grainel brownial with a thim rind of bright yellow mad.grained py From 125 to 128.8 ARENTE liget grey green fire grained $3^{\circ} \%$ dics P_{0} aligetly magnetic. Snadually eharger to a med to dark quey at the battom of this section	$\begin{aligned} & 6001 \\ & 6002 \\ & 6003 \\ & 6004 \\ & 6005 \end{aligned}$	$\begin{aligned} & 102.5 \\ & 106 \\ & 111 \\ & 116 \\ & 121 \end{aligned}$	106 111 116 121 1253	$\begin{gathered} 3.5 \\ 5 \\ 5 \\ 5 \\ 4.3 \end{gathered}$	30 40 60 30 30	50	0.049 0.540 0.400 0.239 0.760	

Falconbridge Ltd.

r. . conentric
PAGE: 5/11

from	то	descraiption	sample no.	from	то	LENGTH	$\begin{aligned} & A u \\ & \text { in } p \rho b \end{aligned}$	cor	
		From 166 to 186.2 CONGLOMERATE mattled grey black, aubeoderded to eubanqular arenite, ebert and emavald green fuslaitie elocts with 10% blebe and stge of $P_{0}+P_{y}$ locally up to 20% moderately magnetic From 186.2 to 188 ARENITE medqrey to light green, med to cowse grained towarde bottom of section $1-2 \% \mathrm{py}$ po sligitly magnetic From 188 to 200 INTERBEDDED CONGLOMERATE AND ARENITE Same ad 166 to 186.2 but coblly to pebbily with Po ond Py blebe usto 0.1 indiometer	$\begin{aligned} & 6006 \\ & 6007 \\ & 6008 \\ & 6009 \end{aligned}$	$\begin{aligned} & 166 \\ & 171 \\ & 176 \\ & 181 \end{aligned}$	$\begin{aligned} & 171 \\ & 176 \\ & 181 \\ & 1862 \end{aligned}$	5 5 5 5. 2	NIL N/L NIL NIL	4.64 5.75 1.22 3.80	

Falconbridge Ltd.

fROM	то	DESCRIPTION	SAMPLE No.	fRom	то	Length	$\begin{array}{\|c\|} \hline A \nu \\ \operatorname{in} p p b \\ \hline \end{array}$	$\begin{aligned} & \mathrm{CO}_{2} \\ & \%_{0} \end{aligned}$	
		From 347 to 352 ARGIRLITE black siliceour moscine thin bedded at 25° to the eare axict From 352 to $36 /$ CONGLOMERATE rame ae above enceept the top of tris-section contains up to 40% nodular Py while the battom eontaines only $1-2 \%$ PyPo From 361 to 366 ARENITE sance oe abrue From 366 to $37 /$ CONGLOMERATE Rame an atone but with predominantly Po mineralization minar P_{y} very moqnetic From $3>1 t_{6} 37>$ ARENITE coarsegrained From 377 to 382 INTERBEDDED ARENITE SILTSTONE AND ARCillaite 2-3\% Po, py stge From 382 to 347 CONGLOMERATE 18 py, po nodulan	6020	352.3	358	5.7	30	0.418	

Page: 10/ II

Falconbridge Ltd． CLAim L－42072）

鴀	
\bigcirc	
年	
倍	
\bigcirc	$\begin{array}{ll} & N \\ & N \\ J & N \\ & N \\ & N \end{array}$
亮	0 N

Falconbridge Ltd.
hole no: 09 page: $2 / 4$

FROM	то	description	SAMPLE No.	from	то	Length	$\operatorname{in}^{A \nu}{ }^{P \rho}$	Repeat	CO2	
228.7	246.	From 187 t. 200.6 MAFIC DYKE med to coavse grained, dark grey queen, maxive with chillel contacta. ARGILLITE black, thin bedded, quapitie argillite interbedded with thin aranite beds. From 228 to 237.7 nodular P_{y} and P_{0} From 237.7 to 240 massine coalestlynodules with a thin rind of bright yellow mediam grained Pyuite. From 240 to $24310^{\circ} 7$ Po, Py stepe and module The contrete are gradational mith the uppen and lower unite. Pyrulotite rich sections are very magnetic.	$\begin{aligned} & 6021 \\ & 6022 \\ & 6023 \\ & 6024 \\ & 6025 \\ & 6026 \end{aligned}$	$\begin{aligned} & 227.5 \\ & 228.8 \\ & 231 \\ & 236 \\ & 240 \\ & 242.7 \end{aligned}$	$\begin{aligned} & 228.8 \\ & 231 \\ & 236 \\ & 240 \\ & 242.7 \\ & 245.5 \end{aligned}$	$\begin{gathered} 1.3 \\ 2.2 \\ 5 \\ 4 \\ 2.7 \\ 2.8 \end{gathered}$	N/L 10 w/L 70 NIL NIL	70	1.65 1.11 0.900 0.798 1.38 1.61	

Falconbridge Ltd.

hole no: 660-10 PAGE: $1 / 6$

- \quad -
Falconbridge Ltd.

Falconbridge Ltd.

r... woonture

Falconbridge Ltd.

$$
\text { CLAIMS L } 496276 \& 2476
$$

$$
{ }^{\circ} w
$$

$$
\text { HOLE NO: 660-1/ PAGE: } 1 / 6
$$

PAGE: $2 / 6$
|| : ON 370 H

PAGE: $8 / 11$

from	то	description	Sample no.	from	то	Lenath	$\begin{gathered} \mathrm{Au} \\ \operatorname{in} \mathrm{ppb} \end{gathered}$	CO $\%$	
		From 291 to 293 ARGILLITE siliceoue bedding in at 45° to the cove axid From 243 to 300 ARENITE same as above From 300 to 302 CONGLOMERATE similar to above but clacte show enidence that they formed by soft aediment lefarmation (shumpinge). Matiled earthy liget grey, parous from $15 t_{0} 20 \%$ P_{y} minar P_{0} From 302to308 ARENTTE some ar above From $308 t_{0} 31 /$ CONGLOMERATE 5% popy stge and blebe. From $3 / 1$ to 329 ARENITE machine aome light green epattiong sligftly magnutic From $329 t_{0} 341$ CONGLOMERATE 10% Po, Py in ablack argillite matrir From 341 to 344 ARENITE some ar above with liget quen epatting From 344 to 347 CON GLOMERATE same as atove	6014 6015 6016 6017 6018 6019	299.7 308.2 329.4 334 339 344.6	$\begin{gathered} 302 \\ \\ \\ 311.5 \\ \\ 334 \\ 339 \\ 341.5 \\ 346.6 \end{gathered}$	$\begin{gathered} 2.3 \\ \\ \\ 3.3 \\ 4.6 \\ 5 \\ 2.5 \\ 2.0 \end{gathered}$	NIL NIL NIL N/L N/L NIL	$\begin{array}{\|c\|} \hline 0.600 \\ \\ \\ \\ \\ 0.577 \\ \\ 0.467 \\ 1.23 \\ 0.898 \\ 0.956 \end{array}$	

Falconbridge Ltd.

Falconbridge Ltd.
PAGE: $4 / 6$

Falconbridge Ltd.

	$\begin{array}{\|l\|} \hline \text { 囍 } \\ \hline \end{array}$	
	$\%$	
	高	
	\because	
	矿	

PAGE: / of 3
HOLE NO: 660-12

Falconbridge Ltd.

Falconbridge Ltd.

hole no: 660-13 PAGE: I of 5

Falconbridge Ltd. CLAim L420721
$\begin{array}{lll}\text { Drilled by: DOMINIK DR/LLINE (1981) INC. } & \text { Property: HEARST TWP., C.F.C. JOINT VENTURE } \\ \text { Started: } 85 / 107 & \text { Township: of HEARST } \\ \text { Ended: } 85 / 109 & \text { Logged by: J. André Carrier, Eng. }\end{array}$
Falconbridge Ltd.

FROM	T0	description	SAMPLE No.	from	то	LENGTH	$\begin{gathered} A 0 \\ \text { in } p p b \end{gathered}$			
~ 151	~ 225	Lact 3 feet loote blearad. Minar Py 142-145. MOSTLY MAFIC VOLCANIC ROCKS Medium to tash yocy flowe (aright in clude taffacener postionn); locally parplysitic intervale. Chloritized, with some preerinh tinges. sligfitly magnatic in plecen. No pood beding not folistion (exeypt ~ $35.4 / A$ near lower ead.). Gredual homer contect. Some alteration (Sleading) evident below 200 , mad incecesiong rioth lepth. $1 / 4 \% P_{y}$ in the mper firat fect; minor Py here d there (mastly below 200). $\sim 1 \%$ quarti -calcite stringere ganenally: a 1 -inak presty stinger mith blended wall at 200 . ALTERATION ZONE Interaveliate to mafic volcame nocke (might indade respe averiteon), dieadoved in light gray to baige end in bright praer (-ocacional madicem to lask gray postione). Fine to madicm- 7 minad. Genarelly mon-uynotic. Danker pray (llew altined) pustioner:250,	$\begin{aligned} & M 6188 \\ & M 6189 \\ & M 6190 \\ & M 6191 \\ & M 6192 \\ & \\ & \\ & \\ & \\ & \\ & M 6193 \\ & M 6194 \\ & M 6195 \\ & M 6196 \\ & M 6197 \\ & M 6198 \\ & M 6199 \\ & M 6200 \end{aligned}$	$\begin{aligned} & 151.0 \\ & 156.0 \\ & 199.0 \\ & 209.0 \\ & 220.0 \\ & \\ & \\ & \\ & \\ & \\ & \\ & 225.0 \\ & 230.0 \\ & 235.0 \\ & 239.5 \\ & 259.5 \\ & 264.5 \\ & 269.0 \\ & 274.0 \end{aligned}$	$\begin{aligned} & 156.0 \\ & 161.0 \\ & 202.0 \\ & 214.0 \\ & 225.0 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & 230.0 \\ & 235.0 \\ & 239.5 \\ & 241.0 \\ & 264.5 \\ & 269.0 \\ & 274.0 \\ & 279.5 \end{aligned}$	5.0 5.0 3.0 5.0 5.0 5.0 5.0 4.5 1.5 5.0 4.5 5.0 5.5	N1L NIL NIL N/L N/L NIL NIL N/L NIL N/L NIL N/L 30			

Falconbridge Ltd.

Falconbridge Ltd.

FROM	то	description	SAMPLE No.	fROM	то	Length	inppb	Repeot		
708.5	716	Haisline to centimative couglex ahapoe (decimetic at 450 \& 479) black cemant (fanm tracer to rending 5% of the rock at aeneed plocee). Sopter \& slightly praphitic in plecer (moxtly 417-461 8 479-525); mery hated (chesty) in pheces below 600 . Quarty veim suterial at 391.5-393.5, 584.5-585.5; dm. reindete forary-andomate at $592,662,675.5,679,690.5,7044706$. Gencerally dise-cenoed by $1-3 \% \mathrm{~mm}$. to cm . mite atringere of cerbbonato with ced cite, often wethering browns ; esnationes open frocture with mell formed ayotale; holly inare abundent due to assangement of ationg enbparallel to ceve afic. Only trecer to locally minar Py; 2 mm segregoted stinger at 668 . BASIC DYKE Blacbinh, fine-grained, guite homgemeane. Chilled upper contat $\left(60^{\circ} / 4 / 4\right)$. Vary had in the apfer 4 frat. Practically nommagnatic, fittle -lterat. No-alfidio. R are hairline to mur accitio atringese.	M6229 M6230 M6231 M6232 M6233 M6234 M6235 M6236 M6237 M6238 M6239 M6240 M6241 M6242 M6243 M6244 M6245 M6246 M6247 M6248	571.0 584.0 5860 591.0 609.0 633.0 638.0 643.0 648.0 653.0 658.0 663.0 667.0 671.0 675.0 680.0 685.0 691.0 703.5	576.0 586.0 591.0 596.0 614.0 638.0 643.0 64830 653.0 658.0 663.0 667.0 671.0 675.0 680.0 685.0 691.0 696.0 708.5	5.0 2.0 5.0 4.0 4.0 4.0 5.0 5.0 6.0 5.0 5.0 4.0	NIL N/L N/L NIL N/L N/L 10 100 10 N/L N/L N/L WIL NIL N/L N/L N/L N/L NIL N/L	150 N/L		

page: $2 / 5$
holeno: 02

Drilled by: Started: Ended:	Property: Township: Logged by			Latitude: Azimuth: Elévation			Longitude: Dip: Length:		
ғНОм	то	description	SAMPLE No.	from	то	Length			
34	726	ULTRAMAFIC VOLCANIC blueish bloch to dak grey, fine to eoarce grained soft talcose and carbonate ried. very blocky at the top of the section becoming mave massine with depth. Seattered "to 1 ft Galburaic nodulee ie at 44,51,56 The ulthimafic noleanices are gerienally modenately to very magnetic except from 300 to 460 where they are only eligetly to non magratic Traces of ryuite in frand thnoufont mith up to $1-2 \% \mathrm{ky}$ treally macally in shout $1-4^{\prime \prime}$ sextionk midely seattured. Padeally at the flowi eontacte.							

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Falconbridge Ltd. HOLENO: OZ} \\
\hline from \& то \& description \& SAMPLE No. \& from \& то \& Length \& \[
\begin{gathered}
\text { AL } \\
\text { in } p \rho b
\end{gathered}
\] \& Repeat \& \(\mathrm{CO}_{2}\)
\(\%_{0}\) \& \\
\hline \& \& \begin{tabular}{l}
AT 251 Foult with mud seam From 275 to 292 Syeno Diorite I'puplish grey med. grained with 18py Then sharge tecoarce grained maasine med.to dark grey to parple guy, magnetic with 106 diss \(1 / 8\) to \(1 / 4^{\prime \prime} \mathrm{ky}\) eaber. At 326 Foult ift mud seam paor eave reconery from 325 to 327 From 331 to 333 syenite purplish grey dyke counce quained \(20^{\circ} \mathrm{c}\) infie minerale. 196 py . \\
From 346 to 348 Syenite fine graine pinkiak mith 20 py AT 370 I' Disuite dike med.quey coarse geained with \(5^{\circ} \mathrm{Ry}\) From 296 to 400 aburdant \(Y_{4 \prime \prime}^{\prime \prime}\) white \(q t_{3}\), earl veiring From 401 to 405 Diaite medgrey coarce grained mossine aligatly magnetic \(1 \%\) dinepr.
\end{tabular} \& \begin{tabular}{l}
\[
6046
\]
\[
6047
\] \\
6048
\end{tabular} \& \begin{tabular}{l}
\[
275
\] \\
331 \\
401
\end{tabular} \& \begin{tabular}{l}
\[
280
\] \\
333
\end{tabular} \& \begin{tabular}{l}
5 \\
2 \\
5
\end{tabular} \& \begin{tabular}{l}
NIL \\
NIL \\
250
\end{tabular} \& 150 \& 1.88

5.68

9.57 \&

\hline
\end{tabular}

Falconbridge Ltd. CLAIM L-429150

Falconbridge Lid.

FROM	то	description	SAMPLE NO.	FROM	то	Length	$\begin{gathered} \text { Au } \\ \text { in ppb } \end{gathered}$			
368	382	Genesally mon-mapeatic (Afoupt alighty cor, locally weas the ead). 1/2-2\% millimetric to centimetric whit stringers of paraty-aliite; mocomar, tho rain late ot 62.7-64.6 (adictesich) \& at 261.5-263.2 (grasty-sich \& holeing $\sim 1 \% P_{y}$). Near 73 : font miseses $\sim 2 \cdot \mathrm{~S}_{\mathrm{A}}$ with slichuaides $50^{\circ} \mathrm{C} / \mathrm{A}$ 50.5-69.5: ALTERED ZONE. Light buownid slivich pray; mistine of hemgeneme and brescisted fartionc (might courarpond to and alterad avaict or prayuade) reng iilicaone, holding some sevicite. efparently meally altend to 73.5. Not Oner $1 \% P_{y}$ in the vacinity of adasteguactz rein. 230-233: puearid, poorly belded, expilli tuff. PORPHYRITIC TUFFACEOUS MAFIC VOLCANIC ROCK Bleak-dottad madium prey, 20-50\% madion to cooves prained blatiol, anbhaded to andsounded (plenocryst? ?) of mefic minaral in a -nedium to dark proy fire-gpainal mations. Non-magatie. Some eppecinance of apooly	M 6063 M 6064 M 6065 M 6066 M 6067 M 6068 M 6069	250.0 256.5 261.5 263.2 358.0 363.0	$\begin{aligned} & 256.5 \\ & 261.5 \\ & 263.2 \\ & 268.2 \\ & 363.0 \\ & 368.0 \end{aligned}$ 382.0	$\begin{aligned} & 6.5 \\ & 5.0 \\ & 1.7 \\ & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	NIL N/L N/L N/L N/L N/L N/L			-

Falconbridge Ltd.

FROM	то	description	SAMPLE No.	FROM	то	LENGTH	$\begin{gathered} A u \\ \text { in } p \rho b \end{gathered}$	Repeat		
382	576.5	bedhad oligomiatic lafilli tupf: andebe alled an aphibolite. Someandat pudual contate. Suggestion of bed ling: $35^{\circ} \mathrm{C} / \mathrm{A}$-t 380 . ALTERATION ZONE Graaniol baige to yellomiah gray bleaded interacstion, mostly of fine to medinumiguind araister $\&$ preysesfere with aome to ff boader. Non-mapostic. $\sim 5 \%$ presty ationgere in the lighter adowed patione (appasinlly 411-465 \& 507-522). Fiodite preew at acwerel phaser (more iontemee 392-393,409, 416.5-4175, 422-424, 428, $445-446.5,511-514,519-522.5,558.5)$ Approximative 5 , attitader: $60^{\circ} \mathrm{C} / \mathrm{A}(513)$, $50^{\circ}(520), 45^{\circ}$ (559). 469.5~499: lear - tterad-loding \& cowner- amphibdite (in pant anoloyome to 368-382) mixed mith arenste in ite centrel fortion; esme bige medicon-grainad deste in the last fart. PY-beaving at acrenal placer.	M 6070 M6071 M 6072 M 6073 M 6074 M 6075 M 6076 M 6077 M 6078 M6079 M6080 M 6081 M 6082 M 6083 M 6084 M6085 M 6086 M6087 M6088 M6089 M6090 M6091	$\begin{aligned} & 382.0 \\ & 387.0 \\ & 392.0 \\ & 394.0 \\ & 398.0 \\ & 401.0 \\ & 405.5 \\ & 409.5 \\ & 413.0 \\ & 416.5 \\ & 419.5 \\ & 421.5 \\ & 424.0 \\ & 429.0 \\ & 433.0 \\ & 434.0 \\ & 439.0 \\ & 444.5 \\ & 447.0 \\ & 452.0 \\ & 458.0 \\ & 463.0 \end{aligned}$	$\begin{aligned} & 367.0 \\ & 392.0 \\ & 394.0 \\ & 398.0 \\ & 401.0 \\ & 405.5 \\ & 409.5 \\ & 413.0 \\ & 416.5 \\ & 419.5 \\ & 421.5 \\ & 424.0 \\ & 429.0 \\ & 433.0 \\ & 434.0 \\ & 439.0 \\ & 444.5 \\ & 447.0 \\ & 452.0 \\ & 458.0 \\ & 463.0 \\ & 466.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 2.0 \\ & 4.0 \\ & 3.0 \\ & 4.5 \\ & 5.0 \\ & 3.5 \\ & 3.5 \\ & 3.0 \\ & 2.0 \\ & 2.5 \\ & 5.0 \\ & 4.0 \\ & 1.0 \\ & 5.0 \\ & 5.5 \\ & 2.5 \\ & 5.0 \\ & 6.0 \\ & 5.0 \\ & 3.0 \end{aligned}$	20 10 N / L 10 80 N / L N / L 10 100 20 20 N / L 20 N / L 450 N / L	100 120 都 750		

Falconbridge Ltd.

APPENDIX B.

AU EPOCHEXISIRY
Diamond Drill Hole no: $\mathrm{H}-660-10$
Township:. HEARST

AU GEOCHIPMISTRY						
دiamond Drill Hole no:_H-660-11				Township: HEARST		
$\underline{L o g}$ Sumaxy			Geochemistry Sample			
$L_{\text {From }}^{\text {Locat }}$	$\frac{\operatorname{ton}(m)}{16}$	Rock type	Sample no.	$\frac{\text { Location (m) }}{\text { Fram }}$	Au (ppb)	Remarks
74	92	INT. VOLC.	01	!	1	
92	150	11	02		2	
150	200	11	03		<1	
200	245	11	04	,	<1	
245	254	TRACHYTE?	05		1	
-254	300	LNT. VOLC.	06		6	
300	350	11	07		1	
-350	400	11	08		1	
100	461	11	09		5	
-461	476	DIORITE	10		<1	
176	517	INT. VOLC.	11		<1	
517	521	MAFIC VOLC.	12		<1	
					.	
-						
-						
-						
				'		
-						\cdot
-						
--						
-						

AU GEOCHPMISTRX						
Jiamond Drill Hole no: 660-13			Township: of		HEARST	
Log Sumary		Geochemistry Sample				
- Locat:	Rock type	Sample no.	$\frac{\text { Locati }}{\text { Fram }}$	ion (ft.)	Au (ppb)	Remarks
		660-13-01	61.0	122.0	<1	
		-02	122.0	151.0	$\leqslant 1$	calcite- ${ }^{\text {conly }}$
		-03	122.0	151.0	<1	less above 1
		-04	151.0	200.0	1	
		-05	200.0	225.0	3	
		-06	225.0	264.0	20	
		-07	264.0	352.0	7	quartz only
-		-08	264.0	352.0	5	ponlysite-rioh
		-09	264.0	352.0	31	less 2 above
-		660-13-10	352.0	379.0	2	
			391.5	393.5		$\begin{aligned} & \text { quartz wein } \\ & \text { assayed } \end{aligned}$
		- 11	379.0	417.0	2	less above 1
		-12	417.0	461.0	5	
		-13	461.0	479.0	<1	
		-14	479.0	525.0	1	
		-15	525.0	580.0	1	
		-16	580.0	1600.0	1	$\begin{aligned} & \text { quartz-carbo- } \\ & \text { nate only } \end{aligned}$
		-17	580.0	600.0	<1	less above 1
-		-18	600.0	650.0	1	
		-19	650.0	708.5	6	$\begin{aligned} & \text { quartz-earbo- } \\ & \text { hoste only } \end{aligned}$
-		660-13-20	650.0	708.5	1	less abave 1
		-21	708.5	716.0	<1	
-						
$=$						
-						
-						
-						

6/3-03			Township: of HEARST			
Log Sumary		Geochemistry Sarple				
$\xrightarrow[\text { Frocation (ft.) }]{\text { Lo }}$	Rock type	Sample no.	$\frac{\text { Locatic }}{\text { Fram }}$	$\frac{\operatorname{ton}(f t)}{T o}$	Au (ppb)	Remarks
		613-03-01	12.0	50.5	3	
		-02	50.5	69.5	5	less next one
			62.5	65.0		
		-03	69.5	130.0	1	
-		-04	130.0	1210.0	2	
		-05	210.0	261.0	<1	
-			261.0	264.0		$\begin{aligned} & \text { guartz vein } \\ & \text { (assayed) } \end{aligned}$
		-06	264.0	310.0	1	
		-07	310.0	368.0	2	
		-08	368.0	382.0	3	
		-09	382.0	469.5	2	quartz only
		613-03-10	382.0	469.5	1	fuchsivere-rich
		-11	382.0	469,5	4	less 2 dbove
		-12	469.5	499.0	$\leqslant 1$	
		-13	499.0	576.5	<1	quartz only
-		-14	499.0.	1576.5	61	onty
		-15	499,0	576.5	2	less 2 dbove
-		-16	576.5	637.0	4	
		-17	637.0	706.0	2	guartz only
-		-18	637.0	706.0	3	less above 1
		-19	706.0	747.5	<1	guartz only
		613-03-20	706.0	747.5	4	$\begin{aligned} & \text { only } \\ & \text { ficitse-rich } \end{aligned}$
		-21	706.0	747.5	2	less 2 above
		-22	747.5	825	2	
=						
-						
-						
-						

APPENDIX
C

$500+8 t$ vall375
80-099 HaO

18idrojert osovid	2\% 1158
रुप500800 0,99907	0027!
$500+86$ mal1J35	
60-099 HOO	

$\cdot 017$

$500+82$ NOIL 275 oqun p2701!d 21-099 HOO

017

$500+25$ Nol1 235

 ع／－099 HGO
＂عاヘームへ

"63.4636
OM84-6-P-356

GEO ${ }^{\text {LatTEE }}$
\section*{exploration - SERVICES}

GEOPHYSICAL SURVEYS
PROPERTY OWNED BY
FALCONBRIDGE LIMITED LARDER PROJECT
HEARST TOWNSHIP
PROVINCE OF ONTARIO
OCTOBER 1985 CLERMONT LAVOIE, Ph.D.

During the period of August 1 to August 30, 1985, a V.L.F. electromagnetic survey (station NAA and NSS) and a magnetic survey were done on the property.

A total of 49.9 miles of lines was surveyed with the V.L.F. electromagnetic method using stations NAA and NSS. The readings were taken at 100 foot intervals. The instrument used was an IGS-2 from Scintrex.

A total field and vertical gradient magnetic survey (51.4 miles) was also done at 50 foot intervals. This survey was done using a proton magnemeter IGS-2 from Scintrex having a sensitivity of 0.1 gamma. The usual diurnal aric datum corrections were made using an automatic base station recorder (MP-3) from Scintrex.

DISCUSSION ON THE METHODS

The V.L.F. electromagnetic method is normally used in non-conductive overburden areas to obtain information on the geological structure, reflected by conductive zones such as faults, shear zones and naturally, massive sulphides.

INTRODUCTION

A V.L.F. electromagnetic survey
(stations NAA and NSS) along with a magnetic survey were carried out over a property owned by Falconbridge Limited in Hearst township, province of Ontario. These surveys were an extension of the previous surveys done in November 1984. We are referring you to our report of November 1984.

The V.L.F. electromagnetic survey was done to locate conductive zones which may contain economic mineralization. The magnetic survey was done to help the interpretation of the V.L.F. anomalies and to define the general structure.

PROPERTY, LOCATION AND ACCESS

The property is located approximately 10 km South of Larder Lake, in Hearst township, province of Ontario and includes two groups of option's claims. A list of these groups of claims are given at the end of this report.

Access to the property is easy from Larder Lake by using highway \# 624 which crosses the northern part of the property. Also some bush roads surround the property.

The conductive zones are picked up with varying amplitude readings depending on the following parameters: overburden conductivity, conductivity of the zone, depth, angle with the transmitter station and the geometry of the conductive zone.

Normally, a V.L.F. anomaly is not a diamond drill target on its own. It has to be tested with other geophysical methods, especially in an conductive overburden area.

During a survey, it is a good policy to use two (2) different stations perpendicular to one another. This can allow the detection of more conductors. However, due to the electromagnetic fields line distorsion present at the edge of a conductor, a false short conductor may be obtained with another perpendicular transmitter station.

Concentrations of minerals having magnetic susceptibility will give rise to variations in the earth's magnetic fields. Systematic observation of the earth's total magnetic field has allowed us to contour the data outlining magnetic patterns or anomalies.

Minerals having strong magnetic susceptibility are magnetite and pyrrhotite and are usually, but not necessarily, associated as primary or accessory minerals in massive sulphide deposits; thus, coincident magnetic and electromagnetic anomalies could be important, but are not necessarily required.

DESCRIPTION AND INTERPRETATION

The V.L.F. electromagnetic survey done on this property has allowed us to detect 58 new anomalies with the NSS station and 3 new anomalies with the NAA station with respect to our previous survey done in November 1984. We are referring you to our report of November 1984.

Each new anomaly is described in tabular form and is provided with the following parameters:

- location of the anomaly: line, station;
- intensity of the peak to peak, which reflects the validity of the anomaly or its signals with respect to the noise ratio since the noise is approximately 1 to 2%;
- length of the anomaly;
- magnetic association.
(refer to tabular forms at the end of this report).

Among the 58 V.L.F. anomalies found with the NSS station, 23 of these were classified in second priority. Many of these anomalies were also detect with the NAA station, but were not renamed. With the NAA station, 3 anomalies were detected only with this station and they were classified in second priority.

The total field magnetic data was contoured at $0,200,500,750,1000,1500,2000$ and 3000 gammas. The total field and vertical gradient magnetic data were also profiled.

Taking into account the small scale of the map and the small interval between the lines, we have used the exponential profile method in order to see the small anomalies. The strong anomalies were attenuated.

The magnetic contours reveal some North-West and North-South magnetic trends. With the help of the geological information, these magnetic data should be interpreted to define the geological formations and the structure.

CONCLUSION AND RECOMMENDATIONS

The V.L.F. electromagnetic survey has allowed us to detect 58 new :anomalies. The second priority anomalies should be tested with an I.P. survey before recommending to drill them. With the help of the geological information, the magnetic survey should be interpreted. Using all this information, it should then be easier to prepare a diamond drilling program.

DESCRIPTION OF V.L.F. ANOMALIES						PROJECT: PN-660	
STATION(S): - NSS						TOWNSHIP: Hearst	
Anomaly no.	Line	Station intersection	Amplitude	Length $1 \quad 1$	Magnetic association	Notes	華
S-11	44 S	80+75 E	23	300	-	Possible overturden. Better define on L. 44 S	3
S-12	54 S	$78+50 \mathrm{E}$	18	300	-	Poor cross-over	4
S-13	48 S	$76+75 \mathrm{E}$	22	300	Possible contact.	Reversed ano. with IJA. Poor cross-over.	3
S-14	52 S	$73+15 \mathrm{E}$	8	300	-	Poor cross-over	4
S-15	48 S	$69+05 \mathrm{E}$	54	1400	-	Well define. Also detects with IJAA.	2
S-16	48 S	$65+75 \mathrm{E}$	27	1000	-	Well define on L. 48 s . Also detects with NAA.	2
S-17	52 S	$63+75 \mathrm{E}$	11	700	-	Poor cross-over. Also detects with INAA.	4
S-18	32 S	$72+45 \mathrm{E}$	12	1000	Possible contact.	Weak. Possible Eatension of Ano. No. 15	3
S-19	30 S	$66+35 \mathrm{E}$	13	400	-	Weak	4
S-20	24 S	$64+75 \mathrm{E}$	21	1000	-	Weak. Possible IJorth-West fracture.	3
S-21	42 S	$54+25 \mathrm{E}$	14	1300	-	Poor cross-over	4
S-22	54 S	$54+45 \mathrm{E}$	> 30	600	200γ on L. 48 S	Wide cross-over. Possible overburden	2
S-23	54 S	$52+75 \mathrm{E}$	>36	400	-	Also detects with Naa. Poor cross-over.	4
S-24	24 S	51+15 E	> 40	1000	Possible contact.	Also detects with Naa. Well define.	2
S-25	30 S	$45+60 \mathrm{E}$	47	400	Possible contact.	Well define	2

		DESCRIPTION OF V.L.F. ANOMALIES							
		PROJECT: PrJ-660							
		STATION(S) :	N S S		HearstNotes				
$\begin{aligned} & \text { Ano- } \\ & \text { maly } \end{aligned}$ no.	Line					Station intersection	Amplitude	Length ()	Magnetic association
S-56	64 S	$43+80 \mathrm{E}$	32	500		-	Better define on L. 64 S .		
S-57	60 S	$39+70 \mathrm{E}$	14	700	-	Poor cross-over. Also detects with IIAA.			
S-58	64 S	$36+20 \mathrm{E}$	13	300	-	Poor cross-over			
S-59	72 S	$41+90 \mathrm{E}$	66	2400	-	Well define. Also detects with NAA.			
S-60	64 S	$30+40 \mathrm{E}$	17	800	$\begin{aligned} & 3000 \text { garmas } \\ & \text { on L. } 62 \mathrm{~S} \end{aligned}$	Poor cross-over. Also detects with INAA.			
S-61	62 S	$25+30 \mathrm{E}$	83	3000	Variable	Well define. Also detects with NAA.			
S-62	92 S	$39+40 \mathrm{E}$	>15	700	-	Better define on L. 94 S .			
S-63	92 S	$37+80 \mathrm{E}$	40	400	$>500 \gamma$	Poor cross-over. Also dete with IAA.			
S-64	92 S	$34+50 \mathrm{E}$	35	600	Possible contact.	Poor cross-over. Also det ϵ with INAA. May be disturbe by ano. 63			
S-65	90 S	$26+50 \mathrm{E}$	11	500	-	Poor cross-over. Creek			
S-66	88. S	$23+70 \mathrm{E}$	36	800	-	Poor cross-over. Also det ϵ with IIAA. Limit of survey			
S-67	64 S	$23+40 \mathrm{E}$	21	400	100γ possibl	Poor cross-over.			
S-68	62 S	$17+50 \mathrm{E}$	26	800	-	Poor cross-over. Also dete with ILAA.			
S-69	68 S	$16+70$ E	62	1400	-	Better define on L. 68 S. Also detects with INAA.			

LIST OF CLAIMS

C.F.C. OPTION PN-660	MANY METAL OPTION PN-613
	103640
319452	411210
319453	429150
420721	429934
429935	476661
429936	476662
447513	495017
477514	495018
476446	
476447	
476601	
476664	
476665	
476666	
477384	
495049	
496276	

The V.L.F. and the magnetic survey have covered in part each of these groups of options's claims.

GEO
 LA LTÉE
 PHYSIOUE
 LOGIQUE

 EXPLORATION - SERVICES

 EXPLORATION - SERVICES}

STATEMENT FOR ASSESSMENT WORK

I, the undersigned, Clermont Lavoie, for Geola Limity, certify to the following.

During the period of August 1 to August 30, 1985, a V.L.F. electromagnetic survey (49.9 miles) using the NAA and NSS stations was carried out over a property owned by Falconbridge Ltd. A magnetic survey (51.4 miles) was also done on the property.

This property is located approximately 10 km South of Larder Lake, in Hearst township, province of Onrario and includes two groups of option's claims, which claims are given at the end of this report.

V.L.F. Ins trument:	IGS-2 from Scintrex Precision: 0.1 gamma.
Mag. Instrument:	IGS-2 from Scintrex Precision: 0.1 gamma. MP-3 (base station) from Scintrex.

Operator: (27 days) M. Jean Paul Cloutier R.R. \# 1 D'Alembert P. Q. J9X 5A3

Respectueusement soumis,

GE
 EXPLORATION - SERVICES

CERTIFICATE

1. I, the undersigned, Clermont Lavoie, residing at 1148 Bérard Avenue, val d'or, Quebec, graduated with a B.Sc.A. degree in Geology from Ecole Polytechnique in 1965. I have obtained a M.Sc.A degree in Geophysics from Ecole Polytechnique in 1968, and received a Ph.D. in Geophysics from McGill University in 1972.
2. I am a member of the Order of Engineers of Quebec, the Canadian Institute of Mining and Metallurgy, the Quebec Prospectors Association and the Society of Exploration Geophysicists.
3. I do not hold, nor do I expect to receive, an interest of any kind in these claims held by FALCONBRIDGE LIMITED nor in any other mining claims they may have.
4. The interpretation and recommendations described in this report are based partly on a personal and technical experience in this district of Quebec.

Signed in val d'or, this eight (8th) day of the month of October, one thousand nine hundred and eighty-five (1985).

