HORIZONTAL ELECTROMAGNETIC

AND
$=$
PROTON MAGNETIC SURVEY

PERFORMED BY
르Nニニニ＝ニニニニ＝
GEOSOL
＝＝＝＝＝

FOR
＝＝

FALCONBRIDGE COPPER MINES LIMITED

AT
＝

LARDER LAKE GROUP
＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
ONTARIO

R．LEE Geophysicist

Geophysical surveys were undertaken between September 20/77 and October $2 / 77$ by Robert l.ee (party chief), D. Bourgoin (geophysical operator) and R. Moyle (mag. operator) contracting under the name GEOSOL for Falconbridge Copper Mines Ltd. Geosol was to perform horizontal electromagnetic and proton magnetometer surveys in order to delineate and extend known sulphide occurances and to locate new conductors and magnetic anomalies.

INSTRUMENTATION:

The following instrumentation was used in the survey.
-Horizontal Electromagnetic:
model - Apex Maxmin II
parameters - Inphase and Quadrature components of the secondary field
mode of operation: Transmitter coil plane and receiver coil plane horizontal (Max - coupled; horizontal loop mode). Used with reference cable.
reading repeatability - $\pm 1 \%$
coil seperation - main map area - 400 foot

- detail map area - 200 foot
eperation frequencies - main map area - 1777 HZ and 444 HZ
- detail map area - 3555 HZ and 888 HZ

```
-Proton Magnetometer:
    model - Geometrics - Exploranium model G-816
    repeatability and accuracy - ! 5 gammas
    range - 20,000 to 90,000 gammas
    field - total magnetic field.
```

The property is located in N.W. Hearst Township and N.E. McElroy Township South of highway 66 and West of highway 624 , between Larder lake and Grassy Lake in Timiskaming district Ontario. A series of bush roads traverse the property, A major one joins with highway 624 just West of the Spoon Bay arm of Larder Lake.

SURVEY CLAIMS:
The claims covered by the H.E.M. and proton magnetic survey include the following contiguous group:

MC ELROY TWP.
L 319450
L 341108
L. 341109

L 367391
L 411212
L 411213
L. 440994

L 440995
L. 441476

L 441477
L 441847
L 442480
L 442482
I 442483
L 476600
L 476642
L 476663
L 767390
MR 25.

HEARST.: TWP.
P 40080
P 40081
P 41648
P 41649
P 41650
P 42435
P 45203
P 45204
P 50522
P 50523
P 50524
L 92591
L 92592
L 92593
L319452
L319453
L373247
L411211
L429935
L429936
L447513
L447514
L447515
L476446
L476447
L476601
L476664
L476665
L476666
L477384
L477385

Approximate location of these claims with the survey lines is indicated on the accompanying magnetic map.)

SURVEY METHOD:
Horizontal electromagnetic:
The survey was performed on parallel lines 400 feet apart except in the detail area where 200 foot parallel lines were used.

Readings in 2 frequencies were taken every 100 feet except where anomalous readings began to be evident. In those instances, 50 foot readings were taken. In the case of the detail grid, more then half the readings were at 50 foot intervals.

Magnetic:

This survey was performed to coincide with the H.E.M. survey but readings were also taken along base lines and tie lines where deemed necessary to outline more fully, certain bedrock features. Readings were taken every 100 feet except where anomalous readings began to become evident. In those cases, 50 foot readings were taken.

INTERPRETATIOI OF H.E.H. ANOMALIES

CHAINAGE
UIDTH
DEPTH
σT
TNE NO. HICH FREQ. LO! FREO. HIGH FREQ. LOW FREQ. HIGH FREQ. LOW FREQ. HIGH FPEO. LOW FREC.

fee		feet		feet		feet		feet	feet	feet		mhos	mhos
72	E	16+50	N	16+30	N	200^{\prime}		150	120	150		13.85	12.38
68	E	16+40	N	16+20	N	-		0	100	90		14.78	29.93
'64	E	15+60	N	15+70	N	0			60	80		8.3	17.18
60	E	17+20	N	17+10	N	-		0	50	30		5.54	6.93
56		13+50	N	13+80	N ${ }^{\text { }}$	-			20	-		1.04	0.15
52	E	30+70	N	30+40	N	0			20	25		1.43	0.14
52		10+20	N	9+70	N	0		0	120	120		8.31	15.3.
52	E	$8+30$	N	$8+30$	N	- 0		0	130	140		8.31	15.3
48	E	5+50	N	5+60	N	100		100	30	30		11.55	40.64
48	E	2+10	5	2+00		0		0	0	0		3.93	13.3
48	E	3+80	S	3+50 S	5	0		0	0	0		3.93	13.3
20	E	13+00	H	12+90	N	90		50	0	10		0.416	-
20	E	9+20	S	: 9+30 S	S	0	-	50	0	40		0.647	3.97
12	E	26+40	N	26+20	N	40		150	40	40		0.97	3.23
		19+60	N	19+40	\$	50		150	-	230		-	24.0
4		3+70	S	$3+80$	S	0		0	-	-		2.68	11.6
4 E		4+50	S	4+70	S	0		0	60	90		2.68	11.6
4		16+30	S	16+30		\square		-	-	-		--	
	E	44+30	N	44+40	N	-		-	0	10		9.24	17.5
2	E	44+10	N	43+80	N	-		-	0	10		9.24	17.5
2		42+80	N	42+90		-		-	10	20		9.24	17.5
0		44+70	N	44+50				-	0	15		10.16	2.12
0		1+20	S	1+20 S		-		-	150	40		1.48	3.97
0		2+20	S	2+20 S		-		-	. 40	30		1.48	3.97
2		44+70	N	44+70	N	20		10	20	25		18.0	66.5
4		45+20	N	45+20		-		-	0	0		20.8	33.25
4		42+30	N	42+60		-		-	20	40		2.66	---
4		1+80	N	1+30	N	-		-	40	60.		--	5.9
6		46+60	N	46+20		-		-	0	0		25.4	29.5
6		44+50		44+25		-		-	0	0		25.4	29.5
6		42+60	N	42+80	N	-		-	0	0		25.4	29.5
6		41+40	N	41+50		-		-	0	0		25.4	29.5
8		47+00		47+80		-		-	. 35	70		12.93	36.0
8		45+50	N	$45+80 \mathrm{~N}$	N	-		-	30	80		12.93	36.0
8		$41+20$	N			-		-	0	-		10.85	46.18
8		40+80	N	41+00				-	20	0		10.85	46.18
10		47+90	N	$47+80$	N	0		0	40	50		11.08	14,03
10		46+50		45+95		0		0		70		11.08	14.03
10		41+50	N	40+80	N	0		0	0	0		9.69	24.0
10 W		39+50	N	39+50	N	0		0	$\cdots 20$	0		9.69	24.0
16		47+50		47+20	N	$: 3$: $?$	35	40		1.02	4.99.
48		5+40	N	5+40	N	0		50	100	-		-	4.34
52		33+30	N	33+00	N	0		50	35	80		1.11	$6.65{ }^{\circ}$
52		5+35		6+00	N	0		0	45	75		3.88	6.93
52		-		4+70	N	-		- 0	-	24		\cdots	6.93
56		6+70		$6+90$ N		0		30	100	110		11.62	6.19
60		9+90	N	9+90	N	0		40	90	80		4.53	7.2
64		$10+80$	N	$11+00$	N	0		0	120	80		3.46	19.4

MAGNETIC COINCIDENCE WITH

H.E.M. ANOMALIES

CONCLUSIONS:
The surveys were successful in locating and defining many electromagnetic conductors and magnetic anomalies. Further surveys are required in several areas to completely define some anomalies or in order to define their proper orientation.

R. Lee

Geophysicist.

- -cevirn

FEB 241978
PROJECTS UNIT

PRELIMINARY GEOLOGICAL REPORT
of the

LARDER LAKE PROPERTIES

November 1977
by Dave Comba
mapping by: Dave Comba, MSc.
Evanna Simpson, BSc. Janet King

FALCONBRIDGE COPPER LIMITED

Ninety-one adjoining claims in Hearst and McElroy Townships, Larder Lake Mining Division Ontario, have been acquired by option and staking during the past 18 months to cover approximately five miles of stratabound semimassive sulphides.

The claims are underlain by Archean felsic, mafic and ultramafic meta volcanics. Metasediments comprising graphite, shales, thin bedded greywackes and conglomerates, conformably and unconformably overly volcanics or are intercalated between flows. Semi-massive to massive sulphides, princially pyrite and pyrrhotite, occur in graphitic horizons interbedded with volcanic flows and sediments. Significant concentrations of sphalerite, chalcopyrite and argentiferous galena may occur with graphite-rich sediments. Hydrothermally altered volcanic rocks frequently occur in the footwall of the main volcanic sediment interface.

The volcanics and sediments have been intruded by dykes of syenite, diorite, quartz feldspar porphyry, diabase, pyroxenite, and lamprophyre.

The rocks are isoclinally folded into a synclinal structure about an inferred east-west axis, and appear to have been refolded about a northeast trending axis. Parasitic folds are numerous. Northwest and northeast trending faults transect the property.

Argentiferous lead, zinc and copper mineralization in shafts, trenches and drill holes located in pyrite-rich graphitic horizons has been used to select high priority exploration targets. Maxmin II H.E.M. and proton magnetometer surveys are used to locate favourable horizons beneath overburden. These include:
A) The north limb Croxall, King and Watling zones.
B) The south limb MR-25, Boundary and Amax zones.
A. \quad Three specific targets have been selected from the north limb stratigraphy:

1) Croxall Pits Area (McElroy Township) A twenty foot shaft on a sulphiderich graphitic sediment near the main volcanic sediment contact reportedly bottomed in massive sphalerite (Abraham O.D.M. Vol. LIX, Part VI, 1950). Specimens of massive pyrite, argentiferous galena and semi-massive sphalerite
cur on the dump. Samples of breccia containing lapilli sized clasts of massive pyrrhotite with traces of chalcopyrite have also been retrieved from adjacent muck piles. The pyrrhotite is magnetic: A magnetic high occurs in the volcanic footwall 100^{\prime} northeast of the shaft.

In 1957 Big Jackpot Mines Limited drilled 4 of 5 holes under the main Croxall showings over a 400' east-west strike length. All holes intersected visible pyrite, pyrrhotite, sphalerite, and galena in graphitic sediments, although no assays were made. (Dr. Wm. Gerrie, Swastika Lab. per.comm.).

One 500' check hole is proposed.
2) King Zone (McElroy Township) A weakly conductive H.E.M. anomaly without magnetic correlation occurs along a roughly east-west strike length for 2000 ft . The conductor is assumed to lie between komatiites (F.W.) and high-Mg tholeiitic basalts (H.W.). One 400' hole is proposed, and additional H.E.M. coverage will be employed from existing $N-S$ picket lines to extend the zone to the west.
3) Watling Zone (Hearst Township) An apparent $N-S$ trending conductor has been picked up from N-S lines in the estimated vicinity of Watling Larder Mines D.D.H. \#l8 (1951). The hole was split and assayed for gold with negligible results and the collar pulled. In 1953 the chief geologist for Wright-Hargreaves Mines assayed $l^{\prime \prime}$ samples collected every 6 " from split core stored on the property. An intersection grading $2.58 \% \mathrm{Zn}$ and $1.29 \% \mathrm{~Pb}$ over 118^{\prime} is reported, the remaining core was destroyed by fire. The area is devoid of outcrop. Additional geophysical surveys from new E-W lines are proposed.
B. Three possible targets have been selected within the south limb stratigraphy.

1) MR. 25 Zone (McElroy Township) A northwest trending H.E.M. conductor with low chargeabilities and no magnetic correlation has been traced for approximately 2000'. Due to claim boundary considerations which are no longer applicable, only the easternmost 600 feet has been tested to shallow depths:

$$
\begin{aligned}
& \text { WRIGHT-HARGREAVES HOLE \#4(1954) } \\
& \begin{array}{ll}
\text { AMAX \#37 (1968) } & \frac{1.05 \% \mathrm{~Pb}, 1.90 \% \mathrm{Zn}, 0.38 \% \mathrm{Cu}}{18.5} \\
\text { AMAX \#36 (1968) } & \frac{0.04 \mathrm{oz} \mathrm{Ag}, 0.49 \% \mathrm{Zn}, 0.05 \% \mathrm{Cu}}{12.5} \\
& \frac{0.28 \mathrm{oz} \mathrm{Ag}, 3.36 \% \mathrm{Zn}, 0.05 \% \mathrm{Cu}}{13.5^{\prime}}
\end{array}
\end{aligned}
$$

Aree holes are proposed for 1600'. Additional H.E.M. coverage from existing picket lines and a new erid over the ice of Grassy Lake is contemplated.
2) Boundary Zone (McElroy-Hearst Townships) Approximately one mile east of the MR-25 zone two H.E.M. conductors on separate horizons occur in the vicinity of two shallow shafts of 1906 vintage. Rock and soil geochem sampling by Sogemines (H.D.McLeod) 1960 and the Ontario Department of Mines (Dr. Wm. Wolfe) 1972 give strongly anomalous values for zinc and anomalous values for lead and copper in the area.

Detailed geophysical coverage on new east-west lines is recommended.
3) Amax Conductor Zone (Hearst Township) A mile east of the township boundary an H.E.M. conductor with magnetic correlations is traceable over an apparent strike length of 2000'. Two AMAX holes, approximately 1000' apart returned:

$$
\begin{aligned}
\text { AMAX \#40 } & \frac{1.22 \% \mathrm{~Pb}, 2.86 \% \mathrm{Zn}, 0.09 \% \mathrm{Cu}}{7.2^{\prime}} \\
\text { AMAX \#42 } & \frac{0.49 \% \mathrm{~Pb}, \frac{1.97 \% \mathrm{Zn}}{9.5^{1}}}{} \\
& \frac{0.78 \% \mathrm{~Pb}, 3.87 \% \mathrm{Zn}}{1.9^{1}} \\
& \frac{1.58 \% \mathrm{Zn}, 1.15 \% \mathrm{Cu}}{2.2^{1}}
\end{aligned}
$$

Two holes are proposed for 1000^{\prime}.

The claim group is situated on the southwestern outskirt of the Larder Lake Townsite. Highway 624 between Englehart and Larder Lake passes within 300 feet of the easternmost claim. The north boundary lies from 1500 to 5000 feet south of Highway 66 to Kirkland Lake. A number of jeep roads provide excellent access to 30% of the property.

TOPOGRAPHY AND VEGETATION
A north trending esker ridge dominates the east end of the claim group. The ridge slopes steeply to the east and is utilized by a local ski club. To the west the esker slopes gradually to the township boundary. West of the boundary the area is characterized by gently undulating hills and broad flat swampy areas. A few larger hills with steep cliff-like slopes are present south and northeast of Grassy Lake. The west end of the property is covered by a wide shallow section of the Mesima River, aptly named Grassy Lake. Topographic relief on the claim group does not exceed 200'.

The entire area is heavily forested with secondary growth spruce, hemlock, and cedar in wet areas and with balsam, pine, poplar and birch occurring on the better drained slopes. Bedrock exposures account for only 10% of the total area and 90% of these exposures are overgrown with moss.

PROPERTY

A contiguous block of 91 claims was acquired in Hearst and McElroy Townships Ontario and includes the following separately acquired properties:

1) The Lowe Group (46 claims) - optioned from prospector D. Lowe, January lst 1977.
2) Claims staked by Falconbridge Copper Limited: June-July 1976 (28) and October 1977 (3).
3) The Croxall Property (11 claims) - optioned from J. Croxall June 20 th 1976.
4) The Hudson Bay Mines Ltd. Claim MR-25 - optioned November 20, 1976.
5) The Cunningham Claims (2) - optioned fron consultant L. Cunningham, March lst 1977.

Prospecting for $A u$ and $A g$ by stripping, blasting and trenching has been intensively but sporadically pursued in McElroy and Hearst Townships since 1903. Four small shafts had been sunk on lead-zinc showings by 1906 , but the Ag tenor of the galena could not compare with the bonanza ores of Cobalt. Successive waves of explorationists searching for Au swept through the area leaving a patchwork of small patented claim holdings. Only in recent years have sufficient numbers of the old patented claims lapsed for taxes that it has been possible to accumulate reasonably sized blocks of ground.

Amax Exploration Incorporated, under the direction of Stan Watowich, completed a systematic survey of over 70% of the present property using modern geophysical methods. Searching for nickel orebodies within peridotites Amax completed the following program between 1968 and 1970:

1) line cutting on 200 foot centres
2) a geological survey
3) a magnetometer survey
4) VLF surveys in two directions
5) Vertical Loop coverage of most VLF conductors
6) and I.P. survey over the peridotites in McElroy Twp.
7) diamond drilling of 9 holes totalling 9,384 feet.

Other groups whose data is on record in F.C.L. files and has been incorporated into reports and maps include the following:

1) a) Ontario Department of Mines (1972) Dr. W. J. Wolfe, geochemist, carried out test work in the Kirkland Lake area. Eighteen "B" horizon soil samples were collected near the Hearst-McElroy boundary in the vicinity of two 1906 era shafts. The area is highly anomalous in zinc with above normal copper and lead concentrations.
b)
(1950) E. M. Abraham $1^{\prime \prime}=1000^{\prime}$ scale
geology map of McElroy and parts of Boston Townships.
c) (1947) J. E. Thomson $1^{\prime \prime}=1000^{\prime}$ scale
geology maps of Hearst and McFadden Townships.

The Hudson Bay Mines Limited (1971) - conducted EM16, magnetometer and Vertical Loop surveys over two small areas of the property.
3) Cunningham (1974) - EMI6 and magnetometer check survey over reported Canico airborne conductor. Conductor located on F.C.L. claim 476663 immediately west of township boundary.
4) a) Falconbridge Nickel Mines Ltd. (1965) property examination by
W. G. Robinson and S. Watowich
b)
(1969) property examination of Lowe's patented claims by Dr. H. Squair.
5) Vitro Minerals (1962) - local S.P. survey followed by approximately 1200' drilling in six holes. Majority of holes drilled parallel to contact with negative results.
6) Sogemines Development Company Ltd. (1960) - soil and bedrock samples from claims 429935 and 36 adjacent to the Hearst-McElroy boundary. Anomalous lead-zinc values were located in vicinity of two 1906 era shafts, and west of the \#4 post of claim 429935.
7) Big Jackpot Mines Limited (1957) drilled 4 of 5 holes under the main Croxall pits on claim 440995. None of the holes were assayed, but visible lead and/or zinc sulphides were noted in graphite-rich sedimentary sections as follows:

B.J. \#1	278.1 to 341.6 ft .	54.51
\#2	128.0 to 139.5 ft .	11.5'
\#3	175.3 to 179.0 ft . - 18" lost core	2.71
	203.0 to 256.0 - 18" lost core	$53.0{ }^{\prime}$
\#4	227.3 to 234.2	
	DILATED BY DYKE	43.9^{\prime}
	259 to 296 ft . (especially 262 to	

The logging was done by the late Dr. W. Gerrie of the Swastika Laboratory.
8) Wright-Hargreaves Mines Limited (1954-55) aerial and ground geophysics by Dr. Hans Lundberg. Five drill holes, totalling 2,332 feet. Three of the holes were drilled in peridotite with negative results. The best remaining hole \#WH-4 intersected $1.05 \% \mathrm{~Pb}, 1.90 \% \mathrm{Zn}$ and $0.38 \% \mathrm{Cu}$ over 18.5^{1} in a Eraphitic tuff. Additional packsack holes were attempted near \#WH-4 but
lacked sufficient depth to further test the conductor; many stopped in overburden.
9) Watling-Larder Mines (1951) - drilled twenty shallow holes ($\pm 200^{\prime}$) in the northeast sector of the property. Hole \#l was drilled under an exposure of green carbonate. The remaining holes were drilled in areas devoid of outcrop to test projections of known faults and magnetic anomalies. Prospector Davey Lowe recalls that two holes contained specks of visible gold, while two others contained long sections of lead, zinc and copper sulphide mineralization. The latter two holes were \#13 and \#18. Watling-Larder geologist John Jewel split all the core for Au in 1951. In 1953 Wright Hargreaves' chief geologist resampled hole \#18 for base metals. A section 118' long reportediy averaged $2.58 \% \mathrm{Zn}$ and $1.2 \% \mathrm{~Pb}$. Hole \#l3 was destroyed in a core shed fire before it could be resampled (Lowe pers.comm.).

THE FALCONBRIDGE COPPER EXPLORATION PROGRAM

A program of stripping and detailed geological mapping has indicated the presence of previously unrecognized rhyolitic and ultramafic lavas. Mineralized graphitic horizons have been located at or near volcanic sediment contacts and between lavas of komatiitic and thoeliitic composition.

Six hundred rock geochem samples for copper, lead, zinc have been collected.

Magnetometer and H.E.M. surveys have been carried out over the north limb of a synclinal structure, to cover this area for the first time systematically, and extend this coverage to known geophysical anomalies on the south limb.

Work by F.C.L. to date has included the following, in chronological order:
a) property evaluation
b) diamond drilling on known anomalies for assessment purposes. Two holes for 1011"
c) cutting of a north-south grid with line spacings at 200^{\prime} or 400^{\prime} spacings depending on anticipated outcrop density. Total 68.7 miles.
d) extensive stripping and detailed geological mapping in the field at $1^{\prime \prime}=100^{\prime}$. Mapping plotted at $I^{\prime \prime}=400^{\prime}$.
e) collection of 97 rock geochem samples to assist geological compilation.
f) collection of 600 rock geochem samples for copper, lead; and zinc
g) 35.57 line miles of proton magnetometer and Maxmin II H.E.M. survey.

General Statement

The F.C.L. property is underlain by an arcuate NW-SE trending syncline that has been segmented by faulting. The core of the syncline is occupied by sediments with minor volcanic intercalations. The sediments may lie conformably or unconformably upon volcanics. Two ages of sedimentation are inferred. High magnesian tholeiitic basalt and komatiitic lavas form the rim of the syncline. Clasts and possible thin flows of rhyolite (calc-alkaline?) occur at or above the main volcanic sediment interface. Semi-massive to massive sulphides, principally pyrite and pyrrhotite, occur in several graphitic horizons interbedded with volcanic flows and/or sediments. Significant concentrations of lead, zinc and copper mineralization are present in some of the iron sulphide-rich graphitic beds. Hydrothermal alteration of volcanic rocks frequently occurs near the main volcanic sediment interface, particularly in McElroy Township on the north limb of the syncline. The rocks are isoclinally folded into a synclinal structure about an inferred east-west axis, and appear to have been refolded about a series of northeast trending axes. Parasitic folds are numerous. Northwest and northeast trending faults transect the property. Dykes of syenite, diorite, quartz feldspar porphyry, diabase pyroxenite and lamprophyre have been mapped. A thermal contact aureole adjacent to the McElroy syenitic stock lies along the southern margin of the claim group.

Stratigraphy

Stratigraphically the area is divided into two main parts:

1) Ultramafic, mafic and felsic volcanics stratigraphically underlying and intercalated with sedimentary rocks and forming the limbs of the main synclinal structure.
2) Sedimentary stratigraphy in the core of the syncline.

The volcanic stratigraphy consists of the mapable differentiating trends of komatiitic, tholeiitic and calc-alkalic? suites of volcanic rocks, encompasing such types as peridotite, magnesium-rich tholeiitic basalt, and rhyolite. All volcanics are assigned a Keewatin age in government publications.

Volcanic Stratigraphy (based on the Jensen Cation Classification)*
a) Komatiites are dark grey-green to black on a fresh surface, fine to medium grained, and may be weak to strongly carbonated. Only ultramafic (peridotitic) komatiites have been recognized on the property. Olivine is the major mafic mineral. The weathered surface is light blue-grey just after stripping, but upon more prolonged exposure may turn rusty peach brown to buff. Volcanic structures associated with these rocks include: olivine spinifex, polygonite (egg shell breccia) and elephant hide weathering. Irregular clots and dyke-like bodies of spinifex and irregular patches of polygonite as exposed in limited hand stripped areas served only to confirm rock type identification, and was not used for attitude determinations. Excellent top determinations from komatiitic flows were obtained from outcrops exposed by bulldozing on an uncompleted forestry access road L24W, 7N. Pillow-like structures in komatiitic rocks were identified by Janet King on line 6E, $31 N$ and confirmed by Larry Jensen of the O.D.M.. Variolite-like structures are commonly developed in the komatiites. Magnetic intensity varies greatly, apparently dependent upon alteration.
b) High-magnesian tholeiitic basalts are light to medium grey on a fresh surface, aphanitic to fine grained, and are frequently chloritized. The weathered surface is generally light to medium green to grey. Gradational contacts with intercalated komatiitic lavas makes precise identification difficult in many areas. Field distinctions are often based on the non-magnetic nature of high-magnesian lavas and presence of pillow structures. Most pillows on the property tend to have thin selvages and frequently contain less than 10% amygaules. Concentric cooling fractures were noted in a few pillows but scarcity of outcrop prevented the use of these uniquely structured flows as markers. Some tholeiitic lavas are variolitic or spherulitic. Pillow breccias and incipient pillows account for 10% of the flows, pillows for $50-60 \%$, the remainder being massive. Numerous thin intercalations of mafic tuff occur between flows north of 37 N between lines $52 \mathrm{~W}-56 \mathrm{~W}$.
c) Rhyolites (calc alkaline?) are medium to dark grey on fresh surfaces and weather white. Most are strongly feldspar porphyritic and may contain small

[^0]Dartz phenocrysts. Thin flows may exist at $32 \mathrm{~N}, 16 \mathrm{~W}$ and $17 \mathrm{~N}, 10 \mathrm{E}$. In most occurrences rhyolite clasts are mixed with clasts of ultramafic komatiite. This bimodal clastic rock was given the field name "Con-Agg" (conglomerateagglomerate). At $18 \mathrm{~N}, 10 \mathrm{E}$ a 20 foot thick vertically dipping bed is graded and contains cross bedding in the fine clastic top. Tops are to the east, indicated current direction from the northeast.

Felsics account for $1-2 \%$ of the known volcanics of the property, but little is known or can be inferred about their genesis due to limited exposure. Rhyolitic flows or clastic rocks containing rhyolite fragments occur within sedimentary rocks. Host sedimentary rocks are usually heterogeneous conglomerates that contain clasts of all rock types exposed in the area. The restrictive bimodal nature of the "Con-Aggs" suggest that they are distal pyroclastics related to coexisting ultramafic and felsic erruptive centres. Exposures of similar but coarser clastic equivalent occur east of the property in Larder Lake (Island CC) and southeast of the property along highway 624 in Skead Township.

2. Sedimentary Stratigraphy

Mapping of the sediments commenced in McElroy Township in the vicinity of the Croxall showings (claim L-440995), an area of relatively high outcrop density. Field names defined in McElroy Township have been assigned to small isolated exposures of sediments in Hearst Township with some misgivings. The devised subdivisons have a recognized limited applicability. Data collected on clast size, composition and style of sedimentation suggests two main sedimentary groupings. Both contain coarse conglomerates and finer clastic equivalents, and are assigned a Timiskaming age in goverment publications. Fine grained equivalents are usually indistinguishable, the subdivisions listed below are primarily assigned on features observed in pebble to cobble conglomerates.
a) The older of the two groups appears to be associated with the close of volcanism and may occasionally be hydrothermally altered. Lithologically the older group has been separated into two major field subdivisions:
(i) P \& G (Pink and Green) thinly bedded greenish greywacke, grit to pebble sized conglomerates with rare cobble to boulder sized clasts. When light weathering clasts exceed l-2 mm they frequently appear to be light pink or whiterhyolite set in a more mafic matrix. $P \& G$ sediments may in fact be related to the

Con-Aggs" described in the previous volcanic section on rhyolites. Clasts may be rounded or very angular. Primarily occurs in a 200-300 foot wide band on the north limb of the main syncline in McElroy Township adjacent to the volcanics. Fine-grained sandy to graphitic argillaceous beds may be intercalated especially in Hearst Township. Particle size gradation is characterized by a colour gradation from light to dark as the particles become smaller.

In the vicinity of the Croxall pit area the sedimentary sequence is somewhat different. Immediately overlying intensely hydrothermally altered pillows and pillow breccias is a less intensely altered volcaniclastic containing fragments of massive pyrite. The volcaniclastic is about 30^{\prime} thick. Finely bedded greywackes, including possible tuffs, conformably overlie the volcaniclastic and grade over 25' into dark graphitic sediments. Dump material from the main Croxall pit contains streaks of pyrite, sphalerite, galena, carbonate and quartz in graphitic sediments. Breccias containing angular clasts of high magnesian tholeiitic 90%, rhyolite 8% and massive pyrrhotite with traces of chalcopyrite 2% can also be found on the dump.
(ii) Croxall Conglomerate stratigraphically overlying the main Croxall showings, outcrops in a narrow band north of the main P \& G sequence and lenses out approximately 900 feet east of the main pit. Five hundred feet west of the pit this conglomerate is truncated by a northwest trending fault. Weathered Croxall conglomerate has a greyish cast. Fragments of rhyolite, bedded cherty tuff or quartzite(?), massive iron sulphide, bedded greywacke and slate, komatiite, tholeiite, and rare plutonic rocks are well supported in a sandy matrix. Size gradation over several feet and zones containing preponderances of similar lithology give exposures a layered appearance. Clasts rarely exceed $6^{\prime \prime}$ and are usually prolate with their long axis parallel to the volcanic sediment contact. Jensen (pers.com.) believes these heterogeneous conglomerates are turbitites.

A similar conglomerate outcrops in Hearst Township on the northwest portion of claim 447515. This conglomerate has a more chlorite-rich matrix than the type Croxall. A thin band of Croxall conglomerate outcrops in the northeast corner of claim 477386 Hearst Township.

It is important to note that clasts of jaspilite (iron formation) and trachytic lava are not present in either of the older sedimentary subdivisions.
(b) V.M. (Variety Mix) sediments occur primarily in the centre of the
wain synclinal structure in McElroy Township and in a few places in the western part of Hearst Township, The distribution pattern is undoubtediy influenced by the paucity of outcrop in Hearst Township.

The V.M. sediments are characterized by a great variety of fragment types and dense packing of clasts. In addition to fragments of all the stratigraphically lower rocks on the property, the V.M. conglomerates frequently contain syenitic clasts up to 50% by volume and clasts of reddish trachyte lava 20-30\% (Jensen pers.com.). Fragments may be angular, but typically are sub rounded to rounded and appear to have been deformed into oblate shapes parallel to the synclinal axis. The overall colour of the V.M. conglomerates is reddish where it overlies P\&G sediments in McElroy Township. Fine clastic sections resemble arkoses. The colour changes to green stratigraphically higher in the section as the synclinal axis is approached. The colour change is due to progressive chloritization, beginning in the matrix areas and eventually altering large syenite clasts from pink to green with whitish rims. Although this younger sediment is likely Timiskaming in age, no jaspilitic (iron formation) clasts are known.
(c) Sediments? that appear to be closely associated with felsic and ultramafic volcanism outcrop sparsely in Hearst Township and rarely in McElroy Township. Bimodal breccias of feldspar porphyry rhyolite and komatiitic volcanics resemble to some extent $P \& G$ sediment, and may be a near source equivalent. In the field these breccias were dubbed "Con-Aggs" (conglomerate-agglomerates) because of the ambiguity of their origin. Felsic content varies from 20% to 100%; the totally felsic members may represent extremely large clasts (Jensen pers.com.) or thin flows. At $18 \mathrm{~N}, 10 \mathrm{E}$ a 20 foot thick bed grades from coarse boulders to grit and contains cross beds in the fine clastic top. The bimodal nature of the "Con-Agg" breccias compared to the heterogeneity of adjacent sediments suggests that they are distal pyroclastics related to coexisting ultramafic and felsic eruptive centres. The heterogeneous character of most of the sediments seems to reflect to a large degree the nature of the underlying rocks. However, the rhyolite content of all conglomerates is higher than might be anticipated from a survey of its distribution in the volcanic sequences.

Due to the small size of most hand stripped exposures and the overall scarcity of outcrop suitable for stripping, it has not been possible to delineate intrusive trends or swarms. Dykes of the following composition have been mapped; syenite, diorite, quartz feldspar porphyry, diabase, pyroxenite and lamprophyry. Numerous mafic dykes of tholeiitic composition occur in pillowed exposures, perhaps having once acted for feeders to overlying flows.

A number of dykes contain pebble sized clasts of exotic rock types that presumably underly the area and through which the intrusives have passed. These pebble dykes are usually lamprophyre, but at $40+50 \mathrm{~N}, 54 \mathrm{~W}$ the matrix appears to be tholeiitic basalt. On line 20 E between 34 S and 36 S occasional syenite clasts from pebble to cobble in size appear in tholeiitic basalt. No dyke like margins were located by stripping and the origin of these syenite clasts remains enigmatic.

A large syenitic stock bounds the property to the southwest.

Alteration

Most of the volcanic and sedimentary rocks appear to have been subject to low or middle greenschist metamorphism. A thermal contact aureole surrounds the syenite stock that bounds the southwest boundary of the claim group. Upper amphibolite facies are developed within this aureole and are best observed south of 20 S , between lines 16 E and 36 E . Within this zone volcanics are dark green on both fresh and weathered surfaces. Epidote in pods and stockwork veinlets may account for up to 35% of the rock. High magnesian tholeiftic basalts resemble iron-rich tholeiites within the aureole and are frequently magnetic. In some of the more slaty horizons an unidentified contact mineral has developed ($7 \mathrm{~N}, 4 \mathrm{~W} ; 15 \mathrm{~N}, 34 \mathrm{~W}$). It occurs as small metacrysts as great as .5 cm in diameter spotted throughout the horizon. It may be andalusite or chloritold, but no positive determinations were made. The metacrysts are resistant to weathering compared to the host and the field term "knobbies" is used to describe the texture. A similar but less intensely developed chloritic? spotting may be developed in lavas (22N, 58W).

Carbonate alteration of varying intensity is associated with komatiitic lavas. In Hearst Township green carbonates (fuschite) outcrop 45S, 46E and 20N, 25E. In McElroy Township carbonate alteration along shear planes, polygonal joints and flow breccia matrix areas results in very irregular, even jagged surfaces on many of the komatiitic exposures.

Pillowed volcanics within a few hundred feet of the sediment contact commonly have rusty, hydrothermally altered selveges. Close to the contact the lavas may be so intensely hydrothermally altered that little of the rocks primary structures and textures remain. Adjacent sediments may also be altered, frequently making the precise volcanic sediment contact difficut to position. This is particularly true on the north limb of the syncline in Hearst Township on claims 476663, 476600 and 476642 and to a lesser extent on 440995.

Resistant weathering chloritic alteration may be developed in pillow intersticies, selveges, and matrix areas to in situ brecciated basalts. This
 and was investigated by Ted Muir (Mineralogy Report No. 1038). Similar alteration was observed in outcrop near hole \# LL 77-1 between 4 S and 15 S , 45 E to 50E and at three other locations: 10N, $8 \mathrm{~W} ; 45 \mathrm{~N}, 5 \mathrm{~W}$ and $29+50 \mathrm{~S}, 39+50 \mathrm{E}$. Sulphides normally associated with these chloritic in situ breccias are pyrite and pyrrhotite with traces of chalcopyrite.

Restricted zones of silicification associated with fractures were mapped in sediments close to the synclinal axis. Quartz veins (and carbonate veins) are ubiquitous with green carbonates.

Structure
In McElroy Township where outcrops are relatively plentiful, a major east-northeast trending synclinal structure has been mapped. The nose of the syncline occurs 2000 feet southeast of Grassy Lake on claim 441847. Sediments of apparently two different ages occupy the core of the syncline. The limbs of the syncline are only crudely symmetrical, partly as a result of the lensy shaped volcanic flows. Volcanics, and more rarely sediments, adjacent to the McElroy syenite stock are pervasively sheared parallel to the syenite contact. On the property this shearing trends northwesterly and is most evident in outcrops on the southwest corner of claim MR-25 and all of claim 476445.

A northwest trending fault zone intersects the nose of the major syncline. Imbricate faults within the zone are marked by intense shearing ($40+$ $50 \mathrm{~N}, 59+50 \mathrm{~W}$) or flow banded felsic dykes ($14+50 \mathrm{~N}, 44 \mathrm{~W}$) in outcrop, but normally lie beneath topographic depressions controlling the drainage pattern. Near McElroy's east boundary northeast trending faults appear to parallel the hinge line of a fold that warps the trend of the synclinal axis from east-northeast to. northwest.

At the beginning of the field season it was assumed that sulphiderich graphitic beds occurred at one stratigraphic horizon at the base of the main sedimentary sequence. FIGURE 2 illustrates a stratigraphic section through the volcanics (F.W.) sediment (H.W.) contact on the north limb of the syncline at the Croxall showing, claim L-440995 (30N, 45W). This contact was traced northeasterly into Hearst Township, the last exposure on claim L-411211 (20N, 6E) occurring approximately a mile east of the Croxall pit. Similar geology on the south limb of the syncline was intersected by F.C.L. drill holes LL $77-1(17 N, 46 E)$ and $L L 7 T-2(27 N, 48 E)$. With the exception of the Croxall showings, only trace amounts of chalcopyrite and sphalerite are associated with semi-massive to massive bedded pyrite and magnetic pyrrhotite. Pyrite nodules may account for up to 80% of the sulphides present. The horizon commonly produces magnetic expression, and coincident H.E.M. conductors ozcur on claims L-440995, L-476600, L-476663 in McElroy Township and claims L-411211, L-447514, L-447513(?) and L-92592(?) in Hearst Township. On the latter two claims Amax (1969-70) drill holes \#40 and \#42 intersected significant base metal values, but due to complex structural relationships the mineralization may occur at a different horizon.

A second major stratigraphic zone occurs in the footwall to the Croxall horizon. A thin sedimentary sequence of bedded tuffs and/or greywackes with graphitic lenses may occur at the contact between high magnesian tholeiitic basalts (H.W.) and komatiitic lavas (F.W.). On the south limb this horizon has been tested on claims L-367391, L-367390 and I-319450, McElroy Township, by the following hoies:
D.D.H.

WRIGHT HARGREAVES 1954 - \#4 (4+15N,54+30W)

AMAX 1969 - \#35
AMAX 1969 - \#36

AMAX 1969 - \#37
The horizon is characterized by H.E.M. conductors with low chargeabilities and no magnetic response.

IDEALIZED STRATIGRAPHIC SECTION MAIN CROXALL SHOWING

Me Elroy Township
Larder lake mining division

Amax hole \#39 (2N,2W) intersected $1.26 \% \mathrm{Zn}, 0.16 \% \mathrm{Cu}, / 4.8^{\prime}$ and terminated in graphite-rich sediments on a contact with a komatiitic footwall. A series of pits and trenches on claims L-411213, L-411212 McElroy Township, contain pyrite and pyrrhotite with traces of chalcopyrite, sphalerite and galena in graphitic sediments near the synclinal axis, and approximately 1000 feet stratigraphically higher than the Croxall mineralization FIGURE Other mineralized horizons may exist, especially in Hearst Township where overburden covers approximately 95% of the surface area.

A Model for the Geological History and Possible Ore Forming Process
Komatiitic and high-magnesian basaltic flows were extruded into a roughly east-west trending basin or fault zone. Graphitic sediments and sulphides were deposited at some interflow contacts. Sulphides are thought to be related to fumarolic activity. During the closing stages of mafic volcanism fumarolic activity hydrothermally aitered many of the uppermost flows. Locally derived sediments were deposited as the basin closed tectonically by $\mathbb{N}-\mathrm{S}$ compression. Fumarolic action waned but some sediments are hydrothermally altered and exhalites occur within the sedimentary succession. Clasts of massive pyrite and pyrrhotite occur within the immature sediments. Coarse clastic bimodal breccias (komatiite and rhyolite [calc-alkaline?]) and possible flows intercalate with locally derived sediments. The basin continued to be squeezed by north-south compression. Younger immature sediments were dumped into the basin. Tectonism closed the basin in a tight isoclinal syncline. The syncline was refolded about northeast trending axes and was segmented by northwest and northeast trending faults. Sulphides, particularly argentiferous galena, is remobilized into E-W trending tensional fractures and deposited in quartzcarbonate veinlets.

Several priority exploration targets have been selected on the Larder Lake claims using the above associations as specific guides within the broader conceptual framework of the genesis of massive sulphide deposits.

SECTION II PRIORITY EXPLORATION TARGETS

Two major zones corresponding to the limbs of the synclinal structure are rated as priority targets. They include:
A) North limb

1) Croxall showing area McElroy Township
2) King H.E.M. conductor zone McElroy Township
3) Watling Larder Mines D.D.H. \#18 area Hearst Township
B) South limb
4) MR 25, H.E.M. conductor zone McElroy Township
5) Boundary zone conductors township line
6) Amax conductor zone Hearst Township.

These areas are considered significant because each represents a favourable environment for base metal sulphides that has not been adequately tested. Argentiferous lead, zinc and copper mineralization in shafts, trenches and drill holes aretreated as geochemical anomalies. Maxmin II H.E.M. and proton magnetometer surveys locate favourable stratigraphy beneath overburden.

A NORTH LIMB
1 CROXAL SHOWING AREA (McElroy Township)
The volcanic sediment contact in the vicinity of the Croxall showings (30N, 45W) is a high priority exploration target for the following reasons:
(a) The shaft dump and adjacent stripped areas consititute the best exposures of hydrothermally altered lavas and basemetal mineralization associated with graphitic sediments.
(b) Breccia specimens containing lapilli sized clasts of massive pyrrhotite with traces of chalcopyrite occur on the dump. A magnetic high occurs in the volcanic footwall 100 feet northeast of the dump.
(c) Four holes drilled beneath the pit area in 1957 by Big Jackpot Mines Limited intersected galena and/or sphalerite within iron sulphide-rich graphitic sediments as follows:

The holes were not assayed because the promoters were only interested in "massive sulphides". The holes were competently logged by the late Dr. Wm. Gerrie of the Swastika Laboratory, Swastika, Ontario. The mineralization appears to widen (estimated true width 40 feet) at depth 200' - 240' (deepest intersection).

Conclusions and Recommendations Re: Croxall Showing Area
The area was covered by a partially completed Vertical Loop geophysical survey by Amax (1968) with no conductors. The zone responded well to a V.I.F. survey by Croxall in 1975. The recently completed H.E.M. survey failed to pick up a conductor. The proton magnetometer survey records a high 100 feet north east of the central Croxall pit. For reasons not clear to the writer, the graphitic sediments, host to disseminated and semi-massive beds and veinlets of sphalerite and galena, do not respond well to E.M. methods. I.P. coverage is not proposed, since it would probably only confirm the V.L.F. data. Topographic irregularities and variable overburden depths rule against gravimetric surveys.

One 500 foot hole is proposed to retest this excellent environment below the B.J.M. D.D.H. \#l intersection. The hole would be drilled under Croxall's V.L.F. conductor and into the magnetic anomaly in the volcanic footwall. The hole would be collared at ($28+00 \mathrm{~N}, 44+00 \mathrm{~W}$) and drilled north at 50°.

2 KING H.E.M. CONDUCTOR (McElroy Township)
A weakly conductive H.E.M. anomaly without magnetic correlation occurs between 44 N to 47 N from 0 W to 20 W , approximately 3000 feet northeast of the Croxall showings. The conductor corresponds to a CANICO (1968) airborne anomaly that was subsequently traced out with V.I.F. by Cunningham (1974). The anomalous horizon is presumed to lie in a relatively thin sedimentary (tuffaceous?) screen between komatiites (F.W.) and high-magnesian tholeiltic basalts (H.W.).

Geophysical response and geological setting similar to MR-25 on south limb.

One hole collared at $48+75 \mathrm{~N}$, 10W and drilled south at 45° for 400^{\prime} is proposed. Additional H.E.M. coverage will be employed from existing N-S picket lines to extend the zone to the west.

3 WATLING LARDER D.D.H. \#18 AREA (Hearst Township)

No assay sheets have been located, but a reported 118^{\prime} of hole $\# 18$ graded $2.58 \% \mathrm{Zn}$ and $1.2 \% \mathrm{~Pb}$. The hole was drilled, logged and split for Au by consulting geologist John Jewel in 1951. The Au assays (negligible) are in F.C.L. files. The writer has met and talked with Mr. Jewel on several occasions, but no new information was acquired. In 1953 the chief geologist for Wright-Hargreaves Mines Limited collected $l^{\prime \prime}$ specimens of split core at $6^{\prime \prime}$ intervals and assayed them for lead-zinc. (Hole \#l3 reportedly containing similar mineralization was destroyed in a core shed fire.) Mr. Frank O'Conner, owner of Canadian Gems and Minerals Limited of Kirkland Lake was then a field man and draftsman for Wright-Hargreaves. He recalls plotting the average base metal values on a compilation map. A copy of this map is in F.C.L. files. Mr. 0^{\prime} Connor unsuccessfully searched his extensive collection of Wright-Hargreaves exploration files for the actual assay sheets. The casing for hole WI-18 was pulled. The closest outcrop, a rusty sediment, lies 1100^{\prime} to the northwest.

An H.E.M. anomaly with low conductivity and little magnetic response was picked up at $30+55 \mathrm{~N}, 52+00 \mathrm{E}$. A north-south trend parallel to the picket lines is suggested by high in-phase values for line 56E. Detailed EM-16 coverage in two directions is in progress.

WL-18 had 57' of casing, but had to be reamed to 77^{\prime} after drilling through a "ledge". Overburden at the present H.E.M. anomaly is estimated to be 20^{\prime} to 25'.

Conclusions and Recommendations Re: Watling Larder D.D.H.-18 Area
O'Conner's recollections closely collaborate those of prospector Davey
Lowe. Hole WL-l8 can be regarded as a geochemical anomaly of the first order. Between 0^{\prime} Conner's compilation map and Lowe's estimates, WI- 18 was collared
somewhere in the vicini; east. $24 N$ to $27 N$ between $52 E$ to $56 E$ and drilled south-

Detailed H.E.M. and/or gradient I.P. coverage is recommended in two directions. A recognized authority should be contacted to interpret the data. One or two short holes are proposed as follow up.

B SOUTH LIMB

1 MR-25 H.E.M. CONDUCTOR (McElroy Township)
A northwest trending H.E.M. conductor with low chargeabilities and no magnetic correlation has been traced for appoximately 2000'. Due to claim boundary considerations (i.e. MR-25) which are no longer applicable, only the easternmost 600 feet has been tested to shallow depths:

AMAX 1969 - \#36

AMAX 1969 - \#37

WRIGHT-HARGREAVES $1954-\# 4(4+15 N, 54+30 W)$

INTERSECTION
$\frac{3.35 \% \mathrm{Zn} 0.05 \% \mathrm{Cu} 0.15 \mathrm{oz} \mathrm{Ag}}{13.5^{\prime}}$
$\frac{0.49 \% \mathrm{Zn} \mathrm{0.05} \mathrm{\%} \mathrm{Cu} 0.04 \mathrm{oz} \mathrm{Ag}}{12.5^{\prime}}$
$\frac{1.90 \% \mathrm{Zn} \mathrm{1.03} \mathrm{\%} \mathrm{~Pb} \mathrm{0.38} \mathrm{\%} \mathrm{Cu}}{18.5^{\prime}}$

The mineralization is associated with graphitic lenses intercalated with relatively thin sedimentary sequences of bedded tuffs, and/or greywackes. In the vicinity of hole AMAX 1969 \#36 the sedinents lie at the contact between komatiites (F.W.) and high magnesian tholeiitic basalts (H.W.). West of 50W the sediments appear to be bounded by tholeiitic basalts. Outcrops in the vicinity of the shaft on MR-25 (12+50N, 59+35W) and the conductor axis are rusty and tectonically deformed. Specimens of massive to semi-massive galena, pyrite and sphalerite in a quartz carbonate host occur in the shaft's dump.

Conclusions and Recommendations Re: MR-25 H.E.M. Conductor

The shaft on patented claim MR-25 was sunk on a quartz carbonate vein that lies parallel to strong shearing developed near the nose of the main synclinal structure. Base metals within the vein are interpreted as remobilizations from a "source-bed" lying nearly normal to the shearing. The "source-bed's" sub-surface trace is interpreted as the H.E.M. conductor axis. Previous drill holes have intersected the "source-bed" 950 " to 2400 " southeast of the shaft.

Three holes are proposed for 1600 'as follows:

LOCATION (estimate)	AZIMUTH	DIP	LENGTH	REMARKS
($4+00 \mathrm{~N}, 51+20 \mathrm{~W}$)	360°	-45°	400^{\prime}	H.E.M. conductor 300^{\prime} east of W.H. \#4
(8+00N, 60W)	360°	-45°	800^{\prime}	H.E.M. conductor 40^{\prime} wide, will pass beneath MR-25 shaft
(12+50N, 64W)	180°	-45°	400^{\prime}	H.E.M. conductor near junction of MR-25 vein and "source-bed"

Additional H.E.M. coverage from existing picket lines and a new grid over the ice of Grassy Lake is contemplated to extend the conductor.

2 BOUNDARY ZONE (McElroy-Hearst Townships)

Approximately one mile east of the MR-25 zone three H.E.M. conductors and AMAX hole $\# 39$ ($O N, 2 W$) appear to occur on three separate horizons in the vicinity of two shallow shafts of 1906 vintage. Geologic contacts strike at low angles to the picket lines. Rock and soil geochem sampling by Sogemines (H.D. McLeod) 1960 and the Ontario Department of Mines (Dr. Wm. Wolfe) 1972 give strongly anomalous values for zinc near AMAX hole \#39 and anomalous values for lead and copper in the area. Hole \#39 intersected $1.26 \% \mathrm{Zn}, 0.16 \% \mathrm{Cu}$ over 4.8 feet. A thousand pounds of massive galena has been removed from trenches near the shafts by Canadian Gems and Minerals Limited, Kirkland Lake. The trenches are located in contorted greywackes close to the volcanic sediment contact. The 1906 era shafts were sunk on east-west trending quartz carbonate veins in the volcanics. In 1962 Vitro Minerals drilled 4 short holes, primarily at the veins and subparallel to strike of the host rocks.

Conclusions and Recommendations Re: Boundary Zone
Argentiferous galena, sphalerite and chalcopyrite associated with E-W trending quartz-carbonate veins is interpreted as remobilized base metal from one or more adjacent "source-beds". H.E.M. conductors are thought to represent the sub-surface trace of the "source-beds".

Detailed geophysical coverage is recommended from unsurveyed N-S picket lines and new E-W lines. Due to structural complexities, geophysical interpretation should be made by a recognized authority.

A mile east of the township boundary an H.E.M. conductor with magnetic correlations is traceable over an apparent east-west strike length of 2000'. Two AMAX holes, approximately 1000^{\prime} apart returned:

HOLE
AMAX - \#40
Az $360^{\circ} 365^{\circ}$
AMAX \#42
$\mathrm{Az} 012^{\circ}$? 1200^{\prime}

LOCATION INTERSECTIONS
$(12+75 \mathrm{~N}, 55+40 \mathrm{E}) \frac{1.22 \% \mathrm{~Pb}, 2.86 \% \mathrm{Zn}, 0.09 \% \mathrm{Cu}}{7.2^{\prime}}$ $(11+75 \mathrm{~N}, 66+25 \mathrm{E}) \frac{0.49 \% \mathrm{~Pb}, 1.97 \% \mathrm{Zn}}{9.5^{t}}$
$\frac{0.78 \% \mathrm{~Pb},-3.87 \% \mathrm{Zn}}{1.9}$
$\frac{1.59 \% \mathrm{Zn}, 1.15 \% \mathrm{cu}}{2.2^{1}}$ Not surveyed.

REMARKS
Apparently south dip

Apparently dip changed to north as hole went down dip? Hole started AX and finished EX.

On line 72 E a conductor estimated to be 150^{\prime} - 200' wide lies at a depth of $120^{\prime}-150^{\prime}$ around $16+35 \mathrm{~N}$. A magnetic anomaly lies to the south around 14 N . On line 60 E a narrow conductor with weak chargeability and weak magnetic correlation is centered around $17+15 \mathrm{~N}$. This latter anomaly is several hundred feet north of the inferred east-west trend.

Conclusions and Recommendations Re: Amax Conductor Zone
Two or three holes are proposed for 1000' to 1500'. The first 500 foot hole would be drilled from north to south on line $72 E$ assuming a north dip (geophysics suggests vertical). If this hole intersects the anomalous zone at a reasonable angle, the program would be reduced to two holes, the second drilled from south to north on line 60E. Consideration should also be given to redrilling the section cut by hole AMAX \#42 but from north to south and at depth, since $1.10 \% \mathrm{Cu} / 3.1^{\prime}$ was intersected from 1132.2 to 1135.3.

East-west geophysical lines should be cut west of line 64 E to cover a possible brenching of the conductor to the northwest.

ROCK GEOCHEMICAL SURVEY

```
of the
```

LARDER LAKE PROPERTIES
by Dave Comba MSc.

$$
\text { N.T.S. } \quad 32 \mathrm{D}-4
$$

FALCONBRIDGE COPPER LIMITEED
 Noranda, Quebec

February, 1978

```
Copper (ppm) - Cu
    Northwest sheet (McElroy Township)
    Northeast sheet (Hearst Township)
    Southeast sheet (Hearst Township)
Zinc (ppm) - Zn
    Northwest sheet (McElroy Township)
    Northeast sheet (Hearst Township)
    Southeast sheet (Hearst Township)
Lead (ppm) - Pb
Northwest sheet (McElroy Township)
Northeast sheet (Hearst Township) Southeast sheet (Hearst Township)
```

SUMMARY

Six hundred rock geochemical samples were collected while traversing 68.7 miles of grid lines. Samples were analyzed for copper, lead and zinc by atomic absorption techniques and the results averaged on an IBM 370 computer. Contour intervals were selected from the multi-element statistics. Contouring was correlated with known geological and drill data.

The survey succeeded in detecting base metal sulphides at the main volcanic sediment contact, and also confirmed the existence of other stratigraphic horizons.

INTRODUCTION

The subject claims are underlain by Archean felsic mafic and ultramafic metavolcanics. Metasediments comprising graphite, shales, thin bedded greywackes and conglomerates conformably and unconformably overly volcanics or are intercalated between flows. Semi-massive to massive sulphides, principally pyrite and pyrrhotite, occur in graphitic horizons inter-bedded with volcanic flows and sediments. Significant concentrations of sphalerite, chalcopyrite and argentiferous galena may occur with graphite-rich sediments. Hydrothermally altered volcanic rocks frequently occur in the footwall or the main volcanic sediment interface.

Six hundred rock geochemical samples were collected and analyzed for copper, lead and zinc by atomic absorption techniques. The chemical data have been compiled and plotted to indicate anomalous geochemical patterns, The geochemical abnormalities are assumed to be associated with metal-exhalative processes which are likely to be confined to the walls of pipes or vents through which mineralizing solutions passed and to stratigraphic zones in volcanic rocks and associated sedimentary rocks where the metals were precipitated.

LOCATION AND ACCESS

The claim group is situated on the southwestern outskirt of the Larder Lake Townsite. Highway 624 between Englehart and Larder Lake passes within 300 feet of the easternmost claim. The north boundary lies from 1500 to 5000 feet south of Highway 66 to Kirkland Lake. A number of jeep roads provide excellent access to 30% of the property.

TOPOGRAPHY AND VEGETATION

A north trending esker ridge dominates the east end of the claim group. The ridge slopes steeply to the east and is utilized by a local ski club. To the west the esker slopes gradually to the township boundary. West of the boundary the area is characterized by gently undulating hills and broad flat swampy areas. A few larger hills with steep cliff-like slopes are present south and northeast of Grassy Lake. The west end of the property is covered by a wide shallow section of the Mesima River, aptly named Grassy Lake.

Iopographic relief on the claim group does not exceed 200'.
The entire area is heavily forested with secondary growth spruce, hemlock, and cedar in wet areas and with balsam, pine, poplar and birch occurring on the better drained slopes. Bedrock exposures account for only 10% of the total area and 90% of these exposures are overgrown with moss.

PROPERTY

A contiguous block of 91 claims was acquired in Hearst and McElroy Townships, Ontario, and includes the following separately acquired properties:

1) The Lowe Group (46 claims) - optioned from prospector D. Lowe, January lst 1977.
2) Claims staked by Falconbridge Copper Limited: June-July 1976 (28) and October 1977 (3)
3) The Croxall Property (11 claims) - optioned from J. Croxall June 20th, 1976.
4) The Hudson Bay Mines Ltd. Claim MR-25 - optioned November 20th, 1976.
5) The Cunningham Claims (2) - optioned from consultant L. Cunningham March lst, 1977.

PREVIOUS WORK

Two successful geochemical surveys of limited areal extent have been made along the Hearst-McElroy boundary between the four and five miles posts. In chronological order:
(1) Sogemines Development Company Ltd. (1960) Mr. H. D. McLeod took an undetermined number of soil and bedrock samples from claims L-429935 and L-429936. Anomalous lead-zinc values were located in the vicinity of two 1906 era shafts, and west of the \#4 post of claim L- 429935.
(2) Ontario Department of Mines (1972) Dr. W. J. Wolfe, geochemist, carried out test work in the same area sampled by Sogemines. Eighteen " B " horizon soil samples were collected. The area is highly anomalous in zinc with above normal copper and lead concentrations.

THE FALCONBRIDGE COPPER ROCK GEOCHEM PROGRAM
Six hundred rock geochem samples were collected by four students during September and October 1977. 68.7 miles of north-south grid lines were traversed. Lines are spaced at 200^{\prime} or 400^{\prime} intervals. Samplers were issued reduced Xerox copies of $I^{\prime \prime}=100^{\prime}$ geological maps to assist in locating out-

C CUNNINGHAM GROUP
Cr CROXALL GROUP
F.CLIFALCONBRIDGE COPPER, LTD.
H.B.M HUDSON BAY MINES GROUP.
L LOWE GROUP

PROPERTY MAR

Pops between lines. Samples were routinely taken at 100^{\prime} intervals unless changes in rock type warranted closer spacing. In volcanic sequences attempts were made to sample pillow selvages and/or interstices. Weathered rind material was trimmed off all samples. Average sample weight ranged from 0.50 Ib . to 0.75 Ib .

Primary crushing was achieved by passing each sample through jaw and cone crushers. A riffle table was used to half each sample. The reject portion is permanently stored. The remaining half was pulverized to approximately 160 mesh. One gram of pulp was used for base metal determinations. Pulps are permanently stored.

Each of the 600 samples was analyzed for copper, lead and zinc in the Assay Laboratory of the Company's Lake Dufault Division, Noranda, Quebec. A total of 1800 determinations were made by atomic absorption methods. Sample decomposition was achieved by adding 15 ml , of concentrated nitric acid and a few drops of bromine to each gram of pulp. The solution was placed on a hot plate to drive off the bromine. 10 ml . of concentrated hydrochloric acid were added followed, after about 5 minutes, by a further 5 ml . of concentrated hydrochloric acid. The mixture was evaporated to dryness and allowed to cool. 5 ml . of hydrochloric acid and $10-15 \mathrm{ml}$. of water were added to disolve the residue and the solution allowed to stand for 15 minutes. Finally 2 ml . of 5% lanthanum chloride solution were added and the solution bulked to 100 ml . with demineralized water.

RESULIS

Chemical data was averaged on an IBM 370 computer. (Refer APPEMDIX B) Table l lists the multi-element statistics. Contour intervals were selected as follows:
contour interval $1=$ geometric mean
contour interval $2=$ geometric mean x deviation coefficient
contour interval $3=$ geometric mean x deviation coefficient x deviation coefficient
contour interval $4=$ geometric mean x deviation coefficient ${ }^{3}$
contour interval $5=$ geometric mean x deviation coeffieient ${ }^{4}$
To facilitate the correlation between geochemical data and known geological and drill data, contouring was performed on a light table using geologic
and drill compilation base maps. Faults, known and inferred, were traced onto geochemical plans.

Numerous above average geochemical abnormalties are indicated on the enclosed geochemical plans. Major coincidental anomalies are briefly described below.
A. NORTH LIMB LARDER LAKE SYNCLINE

1. An arcuate band along the north boundary of the property in McElroy Township is weakly anomalous. More anomalous values for copper, lead zinc may occur within the zone, particularly on line 36W. Outcrop density is low. An H.E.M. conductor underlies the eastern section of the band on claim L-476663.
2. Isolated highs and semi-continuous weak anomalies mark the main volcanic sediment contact in McElroy Township, particularly on claims L-440994, L-476642 and L-476600. In Hearst Township the same contact occurs in the southwest corner of claim L-411211. Kumerous pits and trenches occur in graphitic sediments adjacent to the contact. The Croxall showings at 30 N between lines 44 W and 46 W have a footwall of black, hydrothermally altered volcanics. Lapilli sized clasts of massive ironsulphides occur in the sedimentary hangwall rocks. Suprisingly, no geochemical anomalies are associated with the Croxall showings.
B. SOUTH LIMB LARDER LAKE SYNCLINE
3. Anomalous zones detected by Sogemines (1960) and the Ontario Department of Mines (1972) adjacent to the township boundary were detected and extended. Two stratigraphic horizons are indicated.
4. Along the east side of the property in Hearst Township on claims L-47664, and L-447514 strongly anomalous zones were picked up in what is known locally as the McCrea showings. Extensive stripping by prospector D. Lowe and drilling by Siscoe (1940) and Falconbridge Copper (1977) has failed to indicate base metal mineralization of economic significance.
5. Only isolated highs are recorded on patented claim MR-25 and adjacent claims in the southwest corner of the property in McElroy Township. Gossan zones adjacent to old pits and trenches, and an H.E.M. conductor

MULTI-ELEEMENTI STATISTICS
LARDER LAKE 1977 SURFACE ROCK GEOCHEM

MEASURE	ELEMENT	NUMBER	MINIMM	MAXIMUM	ARITHMETIC MEAN	STANDARD deviation	GEOMETRIC MEAN	DEVIATION COEFFICIENT
ppm	Copper (Cu)	600	12.00	2710.00	95.74	165.22	69.76	1.9792
ppm	Zinc (Zn)	600	16.00	6000.00	104.92	260.76	73.53	1.9775
ppm	Lead (Pb)	600	2.00	268.00	17.37	26.20	22.14	2.1195

with interesting base metal values in drill holes had led to the expectation of more significant anomalies.

CONCLUSIONS

The subject survey is the first attempt at systematically sampling a large geologic structure in the area with the intent of locating alteration pipes and stratigraphic horizons related to metal-exhalative processes. The survey succeeded in detecting base metal sulphides at the main volcanic sedimwnr contact, and also confirmed the existence of other stratigraphic horizons.

Compatible soil geochemical techniques should be evolved to assist tracing anomalous zones in areas of extensive overburden.

Dave Comba, MSc. Geologist Falconbriage Copper Limited Exploration Division

FIL		DATA		TURONTO COMPUTING CENTRE	;	PAGE	11
?					\}		
26L	528	24	26	6			
26L	529	78	53	16			
261	530	36	84	15			
26L	531	45	25	10			
26L	532	47	81	16			
4 26L	533	32	54	14			
26L	534	42	52	38			
26L	535	57	45	9			
266	536	28	48	10			
26L	537	53	68	16			
26L	538	64	65	34			
261	539	40	34	7			
26L	540	60	40	7			
26L	541	52	65	5			
26 L	542	62	60	4			
26L	542 A	85	40	$\stackrel{\square}{4}$			
26L	543	72	390	4			
26L	544	38	26	4			
26 L	545	48	31	3			
261	546	83	61	5			
26 L	547	55	49	6			
26L	548	240	191	47			
26L	549	103	38	4			
26 L	550	97	48	5			
26 L	551	14	44	5			
26L	552	25	28	2			
26 L	553	73	72	41			
26L	554	53	26	3			
26 L	555	82	43	8			
26L	5554	110	45	4			
26L	556	113	71	6			
26L	557	57	63	9			
261	556	104	83	6			
26L	559	27	40	5			
26L	560	90	40	5			
261	5604	100	67	7			
261	561	86	36	3			
26L	562	64	60	7			
26 L	563	29	52	4			
26L	564	43	47	6			
26L	565	116	34	7			
26 L	566	120	37	8			
26 L	567	114	44	4			
26L	568	53	36	3			
261	569	124	167	3			
26L	570	110	53	7			
26L	571	38	25	4			
261	572	52	20	5	.		
26L	573	43	34	18			
261	574	58	26	6			
261	575	75	37	2			
26L	576	81	23	3			
26L	5	53	32	3			
- 26L		95	53	- 2			
4 26L	579	102	65	2			
\% 261	579A	92	50	10			
261	580	26	29	7			

*PROGRAM FCXOLO

- CONTROL listing

DS REF
CTRL $I=5 \quad 0=0$
DATA $\quad J=11 \quad 0=6$
NO. ELEMENTS $=3$
NO. LEVELS $=1$
INPUT REC FMT
(T3,A1,I1,T17,3F8.0)
Titie
LARDER LAKE, 1977 SURFACE ROCK SAMPLES
ELEMENT ZAMES
CU PPMZN PPMPY PPM


``` GEOLOGY OEPARTMENT—— TEXPLORATION
MULTI-ELEMENT STATISTICS
ELEMENT NUMBER MINIMUM MAXIMUM MEAN DEVN MEAN DEVN
LARDER LAKE, 1977 SURFACE ROCK SAMPLES
L
\begin{tabular}{lllllllll} 
CU & PPM & 600 & 12.00 & 2710.00 & 95.74 & 165.22 & 69.76 & 1.9792 \\
ZN & PPM & 600 & 16.00 & 6000.00 & 104.92 & 260.76 & 73.53 & 1.9775
\end{tabular}
```

```
\square
SUBMITTING USERID: FNMLDF
REMOTE COMMANO FUNCTION: PRINTA
CMS FILE NAME: GRAM
CMS FILE TYPE: RSLT
```


IBM COMPUTING CENTRE: TOROVM

IBM COMPUTING CENTRE: TOROVM

Type of Survey (s) Geophysical (2)
Township or Area MCElroy Hearst Tounhipe
Claim Holder (s) Falconbridge Copper Limited Box 40 commerce court West, Toronto, ont
Survey Company Geosol
Author of Report _ Robert Lee
Address of Author Box 549, Noranda, P.Q. J9X 581
Covering Dates of Survey September 20/77, october $2 / 77$
Total Miles of Line Cut \qquad

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer \qquad Electromagnetic \qquad Radiometric \qquad (enter days per claim)

Res. Geol. \qquad Qualifications
 Previous Surveys

GROUND SURVEYS If more than one survey, specify data for each type of survey

Number of Stations_ Refer maps
Station interval Main map area 100^{\prime} detail 50^{\prime} Number of Readings every 100: except at

Profile scale $20 \%=1^{\prime \prime}$ except detail map $10 \%=1^{n}$
Contour interval every 1000 gama exeept near beckeround, every 200 Line spacing Min map area 400° detall 200^{\prime}

Accuracy - Scale constant ± 5 gaman

Diurnal correction method __Distributing drift according to tifin \tilde{v}
Base Station check-in interval (hours)_1 hour
Base Station location and value
at on base line on map provided

Instrument
Scale constant
Corrections made \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain \square Frequency Domain
Parameters - On time \qquad Frequency
\qquad
Range \qquad

- Delay time \qquad
- Integration time

Power
\qquad

Electrode array
Electrode spacing
Type of electrode \qquad

GEOPHYSICAL SURVEYS LARDER LAKEE CLAIMS
THE MINING ACT REPORT OF WORK

OPTION	$\begin{aligned} & \text { CLAIM } \\ & \text { NUMBER } \end{aligned}$	DAYS	OPTION	CLAIM NUMBER	DAYS
LOWE	L-341108	40	CROXALL	L-440994	40
	L-341109	40		L-440995	40
	L-411211	40		L-476642	40
	L-411212	40		L-441847	40
	L-411213	40		L-442480	40
	L-367390	40		L-442481	40
	L-367391	40		L-442482	40
	L-319450	40		L-442483	40
	L-429935	40			
	L-429936	40			
	L-441476	40			
	L-441477	40			
	L-319453	40			
	工-447513	40			
	L-447514	40			
	L-476664	40			
	L-477384	40			
	L-373247	40			
FALCONBRIDGE	L-476447	40			
COPPER	L-476599	40			
LIMITED	L-476600	40			
	L-447515	40			
	L-476663	40			
	L-476601	40			

Ministry of Natural Resources

File \qquad 2.2614

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) ceolodond
Township or Area Malliroy - Hearst
Claim Holders) Paloculoridse Copper Ind tad
Box 40 commerce court Vert, relate, cit.
Survey Company ralooubridy Copper Limited
Author of Report C. Berle A. Conte, MSC.
Address of Author Bor 866 Halloyoury, catania
Covering Dates of Survey ApriL $\mathbf{1 9 7 7}$ to Ootever $\mathbf{2 9 7 7}$
Total Miles of Line Cut
68.7 mile

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS -- If more than one survey, specify data for each type of survey

Number of Stations \qquad Number of Readings
Station interval \qquad Line spacing

Profile scale
Contour interval \qquad

Instrument \qquad
Accuracy - Scale constant \qquad
Diurnal correction method \qquad
Base Station check-in interval (hours)________
Base Station location and value \qquad
\qquad

Of Instrument
Coil configuration \qquad
Coil separation \qquad
Accuracy
Method: $\quad \square$ Fixed transmitter $\quad \square$ Shoot back $\quad \square$ In line Parallel line
Frequency \qquad (specify V.L.F. station)
Parameters measured

Instrument
Scale constant
Corrections made \qquad

Base station value and location

Elevation accuracy \qquad

Instrument \qquad
Method \square Time Domain
Parameters - On time
Frequency Domain Frequency

- Off time

Range

- Delay time
- Integration time

Power \qquad
Electrode array
Electrode spacing
Type of electrode \qquad THE MINING ACT REPORT OF WORK

OPTION	CLAIM NUMBER	DAYS	OPTION	CLAIM NUMBER	DAYS
LOWE	L-341108	40.	CROXALL	L-440994	40
	L-341109	40		L-440995	40
	L-411211	40			
	L-411212	40		1-476444	40
	I-411213	40		L-476445	40
	L-367390	40		L-476642	40
	L-367391	40		L-441847	40
	L-319450	40		L-442480	40
	L-429935	40		L-442481	40-
	L-429936	40		L-442482	40
	L-429937	40		L-442483	40
	L-441476	40			
	L-441477	40			
	L-319453	40			
	L-447513	40			
	L-447514	40			
	L-476664	40			
	L-476665	40			
	L-476666	40			
	L-477384	40			
	L-477385	40			
	L-477386	40			
	L-477387	40			
	L-477388	40			
	L-477389	40			
	L-373247	40			
	L-103640	40			
	L-429938	40			
FALCONBRIDGE	L-476447	40			
COPPER	L-476599	40			
LIMITED	L-476600	40			
	L-447515	40			
	L-476663	40			
	L-476601	40	N		

Ministry of Natural Resources

 File 2.2614
GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.
\qquad
Township or Area Mondroy-Hearit

Claim Holder(s) ___ Feombiridge copper IArltad Box 40, Comparce court woot, revente, ante Survey Company Ficoabriape Coppor Indita
Author of Report C. Maric A. Conte Mo
Address of Author Boz 866, Hailoybury, cutario
Covering Dates of Survey 8optorber 1977 cotcher 1977 (linecutting to office)
Total Miles of Line Cut \qquad SPECIAL PROVISIONS
CREDITS REQUESTED

ENTER 40 days (includes line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

Geophysical	$\begin{aligned} & \text { DAYS } \\ & \text { per claim } \end{aligned}$
--Electromagnetic	
-Magnetometer	
-Radiometric_____	
--Other	
Geological	
Gcochemical	80

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. \qquad Qualifications \qquad

Previous Surveys			
File No.	Type	Date	Claim Holder

GEOPHYSICAL TECHNICAL DATA

GROUND SURVIYS If more than one survey, specify data for each type of survey

Number of Stations \qquad Number of Readings

Station interval \qquad Line spacing \qquad
Profile scale
Contour interval \qquad

Instrument \qquad
Accuracy - Scale constant \qquad
Diurnal correction method \qquad
Base Station check-in interval (hours)
Base Station location and value \qquad
\qquad

OI Instrument

\qquad
Coil configuration \qquad
Coil separation \qquad
Accuracy \qquad
\square In line
Parallel line
Method:
Fixed transmitter(specify V.L.F. station)
Parameters measured

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy.

Instrument \qquad
Method \square Time Domain Frequency Domain
Parameters - On time \qquad Frequency

- Off time \qquad Range
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode \qquad

SELF POTENTIAL

Instrument Range

Survey Method \qquad

Corrections made \qquad
\qquad

RADIOMETRIC

Instrument

Values measured \qquad
Energy windows (levels) \qquad
Height of instrument Background Count \qquad
Size of detector
\qquad

Overburden \qquad
OTHERS (SEISMIC, DRILL WELL LOGGING EIC.)
Type of survey
Instrument \qquad
Accuracy
Parameters measured. \qquad

Additional information (for understanding results) \qquad
\qquad
\qquad

AIRBORNE SURVEYS

Type of survey(s)

Instrument(s)	(specify for each type of survey)
Accuracy__	(specify for each type of survey)
Aircraft used	

Aircraft used
Sensor altitude
Navigation and flight path recovery method \qquad

Aircraft altitude
Line Spacing
Miles flown over total area Over claims only

Numbers of clams from which samples taken. 43

GEOCHEMICAL SURVEY LARDER LAKE CLAIMS THE MINING ACT REPORT OF WORK

OPTION	CLAIM NUMBER	DAYS	OPTION	CLAIM NUMBER	DAYS
LOWE	L-341108	20	CROXALL	L-440994	20
	L-341109	20		L-440995	20
	L-411211	20		L-476444	20
	L-411212.	20		L-476445	20
	L-411213	20		L-476642	20
	L-367390	20		L-441847	20
	L-367391	20		L-442480	20
	L-319450	20		L-442481	20
	L-429935	20		L-442482	20
	L-429936	20		L-442483	20
	L-441476	20			
	L-441477	20			
	L-319453	20			
	L-447513	20			
	L-447514	20			
	L-476664	20			
	L-476665	20			
	L-476666	20			
	L-477384	20			
	L-477385	20			
	L-477386	20			
	L-477387	20			
	L-477388	20			
	L-477389	20			
	L-373247	20			
	L-103640	20			
FALCONBRIDGE	L-476447	20			
COPPER	L-476599	20			
LIMITED	L-476600	20			
	L-447515	20			
	L-476663	20			
	L-476601	20			

$|$| | |
| :--- | :--- |
| | |
| 0 | |
| \vdots | |
| \vdots | |
| ω | |
| u | |

FALCONBRIDGE COPPER ITD.
2.
$\frac{0}{n}$
2
2

0NJ937
$\begin{array}{lllllllll}\text { Element } & \text { Sample } N^{0} & \text { Min. Max. } & \text { Arith. Mean } & \text { Standard Dev. } & \text { Geom. Mean } & \text { Dev. } \\ \text { COPPER(Cu) } 600 & 12 & 2710 & 95.7 & 165.2 & 69.76 & 1.9792\end{array}$
 lake dufault division

5

[^1]

(2)

[^0]: *Jensen, L.S. 1976 A new cation plot for classifying sub-alkalic volcanic rocks O.D.M. Miscellaneous Paper 66

[^1]: LEGEIND
 $\begin{array}{lllllllllllll}\text { Element } & \text { Sample No } & \text { Min. Max. Arith. Mean } & \text { Standard Dev. Geom. Mean Lev. } \\ \text { EAD(Pb) } & 600 & 2 & 268 & 17.4 & 26.4 & 12.14 & 2.1195\end{array}$

