

83.5004 MCGARRY

010

.

PROGRESS REPORT ON THE SHELDON-LARDER PROJECT, MCGARRY TOWNSHIP, LARDER LAKE MINING DIVISION OF ONTARIO, FOR THE PERIOD OF MARCH 1, 1985 TO MAY 31, 1987

FOR

ARMISTICE RESOURCES LTD.

Prepared by:

G.J. Hinse Geological Services Limited 201 - 69 Cedar Street Sudbury, Ontario P3E 1A7

32D/4 0304 June 12, 1987.

۰. .

OM86-6-P-278

32850 12 1

Ø10C

LIST OF CONTENT

Certificate . Introduction . Geology Mill zone, worl Western zone, w Lamprophyre zon Dike zone Other occurrence Conclusions and	summaryiii
Listing of App	endices:
Appendix 1.	Drill logs of holes 87-12 to 87-21 9
Appendix 2.	Assay results
Listing of Fig	ures: follows page
Figure 1.	General location map of Sheldon-Larder project
Listing of Map	s and Drill Sections: (in back pockets)
Map 1. Map 2.	Geological map of south claims. Detailed map of Sheldon-Larder's Mill zone.
Western Zone: Mill Zone:	Sections 2+00 W, 0+90 W, holes 68, 7, 63 and 66, holes 67 and 69. Sections 12+00 W, 10+00 W, 8+00 W, 6+00 W, 4+25 W, 4+00 W, 3+75 W, 3+00 W, 2+50 W, 2+00 W, 1+75 W, 1+50 W, 1+00 W, 0+50 W, 0+00, 0+25 E, 0+50 E, 0+75 E, 1+00 E, 1+50 E and 2+50 E.

HIGHLIGHTS

- Recent surface diamond drilling completed on the west extension of the Mill zone has returned 0.03 oz Au/ton along a core length of 4.7 feet in hole 87-12 and 0.04 oz Au/ton along a core length of 5.0 feet in hole 87-16. However, a parallel green carbonate zone is indicated north of the tested area. It requires further drilling.
- * High grade gold zone located within the North Carbonate member of the Mill zone was tested with three short surface holes. Best results intersected are 0.11 oz Au/ton along a core length of 4.0 feet.
- * Two surface drill holes were done to test the Western zone. They did not return the expected results. More work is needed to fully assess this zone.
- * Further work is recommended to test the west extension of the Mill zone, the Western zone, and several gold-bearing occurrences outlined on this property by previous operators.

SUMMARY

Additional exploration work was carried out during February and March 1987 to drill test the west extension of the Mill zone, the high grade gold intersection previously intersected in the North Carbonate horizon of the Mill zone and the Western zone.

Gold values were intersected along the west extension of the Mill zone and another green carbonate horizon was intersected in three holes. This new zone warrant further drilling.

Although gold values were intersected testing the high grade gold zone found in the North carbonate horizon of the Mill zone, no further work is recommended at this time.

Two holes were put down to test the Western zone which had returned previously 0.30 oz Au/ton over a core length of 5.0 feet and numerous sights of visible gold. The holes failed do duplicate the previously reported results, however, they may have been spotted too far to the west. Another two holes should be done to make sure the zone has not been missed.

Several other gold-bearing zones are documented in previous operators' exploration records. These include the Dike zone, the Lamprophyre zone and other zones. These gold-bearing zones should be tested with diamond drilling.

A work program consisting of 4,000 feet of surface diamond drilling at an estimated cost of \$130,000 is highly recommended.

CERTIFICATE

I, G.J. Hinse, do hereby certify that:

I am a resident at 9 Gloucester Ct., Sudbury, Ontario, P3E 5M2.

I am a qualified geologist, having received my training at Laval University.

I am a registered Professional Engineer of the Province of Ontario, a member of the Canadian Society for Professional Engineers, the Quebec Prospectors Association, the Canadian Institute of Mining and Metallurgy and the Prospectors and Developers Association.

I am the principal and only shareholder of G.H. Hinse Geological Services Limited, holder of Certificate of Authorization No 0094003.

I have been continuously engaged in mining exploration, development and production since 1954 and have been a consulting geologist since 1978. My career in the Canadian mining industry has included positions as mine project manager, mine planning engineer, chief geologist, resident geologist and regional geologist.

I have been involved in northwestern Quebec since 1954 and in the Abitibi region and Larder Lake area since 1966 and, in the Rouyn-Noranda area intermittently since 1970. I have done geological mapping of the Sheldon-Larder properties and supervised all exploration work carried out on these lands during the last fifteen years. I have visited the properties on several other occasions in order to gain further knowledge of the geological and structural pictures of the properties.

This report is based on the author's experience in exploration and mining, and particularly on his knowledge of the Virginiatown area, on a review of all the available data and published geological maps and reports.

I have disclosed in this report all relevant material which, to the best of my knowledge, might have a bearing on the recommendations contained herein.

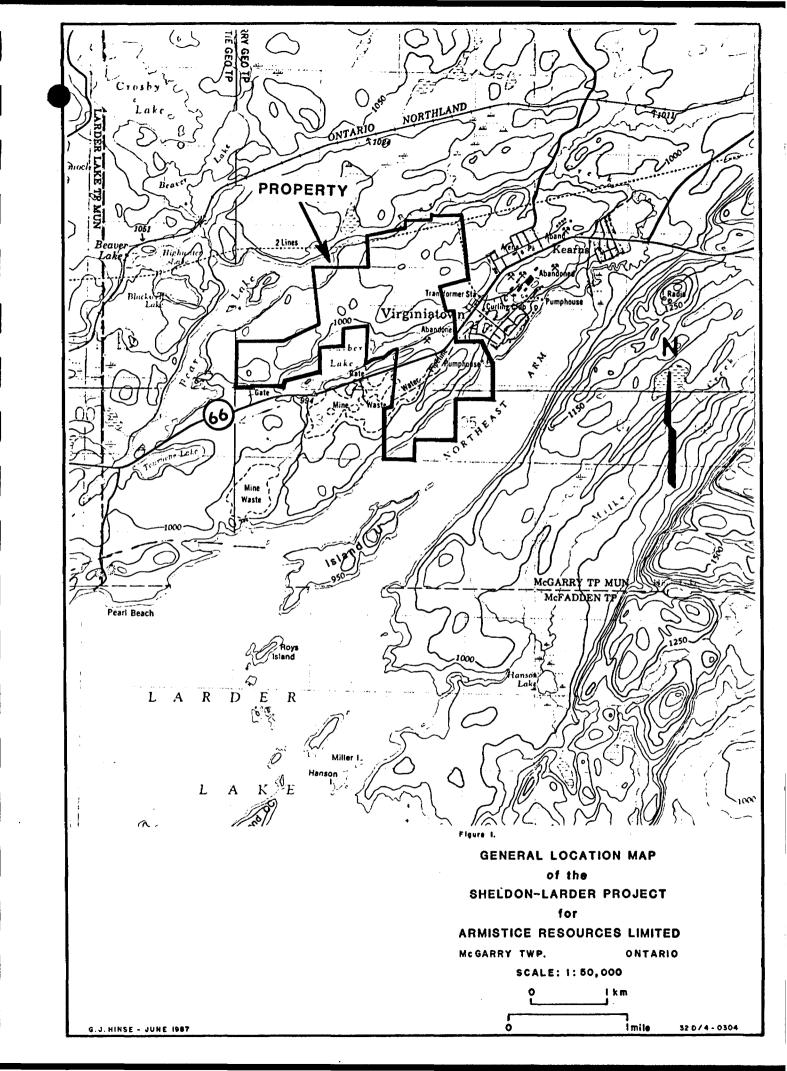
I have not, directly nor indirectly, received nor expect to receive any interest, direct or indirect, in the Sheldon-Larder property or in the properties of Armistice Resources Limited, or any affiliate. With the exception that I have an option to purchase 25,000 shares of Armistice Resources Ltd., I do not beneficially own directly or indirectly, any other securities of that company or any affiliate. I am not an insider of a company having an interest in the subject property nor in any property in the immediate area.

Sudbury, Ontario June 12, 1987

AND PROFESSIONAL REG/ G. J. HINSE nse, P.Ena. ROUNCE OF OWLAND

32850 12 6

PROGRESS REPORT ON THE SHELDON-LARDER PROJECT, MCGARRY TOWNSHIP, LARDER LAKE MINING DIVISION OF ONTARIO, FOR THE PERIOD OF MARCH 1, 1985 TO MAY 31, 1987.


- 1 -

INTRODUCTION

Gold values across mining widths are known on this property since the early 1900's when a stamp mill was erected on the shore of Larder lake to recover gold from a zone now called the Mill zone. Results obtained on this zone and other mineralized zones were first reported by Sheldon - Larder Mines, Limited in 1938-39. All work ceased during the war. Later, after shaft sinking done by Armistice Gold Mines located north of Highway 66 to test on the Sheldon-Larder lands for the extension of the Kerr Addison ore structures, from 1946 to 1948, Kerr Addison Mines Limited held the property under option and carried out an extensive exploration work program, mostly aimed at testing the south portion of the Sheldon-Larder property. Several surface and underground drill holes were put down to test numerous targets.

In 1984, a first program of surface stripping, trenching, sampling and diamond drilling was carried out early during the summer on Sheldon - Larder's Mill zone by Aurelian Developers Ltd. This zone consists of quartz stockworks and pyritized flow material. It is located along the shore of Larder lake. Further work was done during September and October of the same year to follow up the early results. These work programs were the subject of progress reports by the writer dated August 15, 1984 and March 25, 1985.

Another report was also done by the writer dated January 18, 1985. This report, more comprehensive in nature, had for purpose of evaluating the potential for the extension of the Kerr Addison ore structure on the Sheldon-Larder lands. This structure is inferred to extend onto the Sheldon-Larder ground at depth and north of the Armistice shaft, located north of the highway.

The purpose of this report is to summarize the results of the work done during this winter on the Mill and Western zones. It should be taken as a continuation of previous progress reports mentioned above.

Numerous targets located within the south portion of the Sheldon -Larder property remain untested. Further work is recommended.

Recent work done has consisted of 3,320 feet of NQ diamond drilling testing the west strike extension of the Mill zone, the North carbonate member of the same zone and two 600-foot holes done to test the Western zone.

GEOLOGY

The rocks underlying both the Sheldon - Larder and adjoining Kerr Addison properties consist of four distinct cycles of volcanism accompanied by clastic sedimentation giving way to chemical sedimentation. Volcanic material includes predominantly ultramafites, minor tholeiites and volcaniclastites while clastic sediments consist of channel in-filling and beach conglomerates, beach and mud-flow sandstone and graphitic shale. Chemical sedimentation is marked primarily by carbonate, mudstone, chert and/or quartz.

The Mill zone is located within the lowermost exposed cycle on the Sheldon and Kerr property areas. To the south of the Mill zone, the older rocks are covered by a blanket of younger Cobalt Group sedimentary rocks. The Mill zone consists at the base of clastic and volcanic material overlain by a mixture of conglomerate, sandstone and shale and carbonate and mudstone.

Gold values are found associated with pyritized mudstone (flow ore type) at contacts of carbonate rocks - and are found as free gold in quartz veining (quartz stockworks) in carbonate rocks (carbonate ore type).

MILL ZONE, WORK DONE AND RESULTS

The west strike extension of this zone was tested with five holes at 200-foot center starting on line 4+00 W, or 150 feet west of hole 84-11.

The best values intersected were 0.03 oz Au/ton along a core length of 4.7 feet in hole 87-12 and 0.04 oz Au/ton along a core length of 5.0 feet in hole 87-16. Most of the sludge were available for sampling and none of the assay results would suggest that any coarse visible gold was present.

Holes 84-12 to 84-16 indicated the presence of two green carbonate zones. The most northerly one, intersected in holes 84-14, 15 and 16 has a width of over 100 feet. In hole 84-16, it returned 0.04 oz Au/ton over a core length of 5.0 feet. Further drilling should be done to obtain a complete cross-section of this zone.

One hole of 600 feet is proposed here.

The North Carbonate member of the Mill zone was tested with three holes drilled at 50-foot centre from holes 84-1 and 84-8 which had returned previously 0.27 oz Au/ton along a core length of 3.4 feet and 1.04 ozs Au/ton along a core length of 7.0 feet. Holes 87-17, 87-18 and 87-19 were drilled respectively 50 feet west, 50 feet east and 100 feet east of the above intersections. The high grade intersections were not repeated, however, interesting values were intersected in hole 87-17, 0.11 oz Au/ton along a core length of 4.0 feet. This intersection may represent along strike the high grade intersections previously cut by holes 84-1 and 84-8.

No further work is proposed at this time.

WESTERN ZONE, WORK DONE AND RESULTS

This zone is described by J.W. Baker in a memo to W.S. Row, then manager of the Kerr Addison mine as follow:

- 4 -

«The main carbonate zone, running north-east south-west across the center of the property was investigated at depth by seven surface holes, 62, 63, 66, 67, 68, 69 and 70 and by a long underground drill hole U-78 from the 1250-foot level at the Armistice Gold Mines.....At a depth of 405.9 feet in D.D.H. 63 a small speck of visible gold was found in a quartz stringer in brown carbonate breccia. The core from 403.6 to 407.0 feet assayed 0.02 ounce per ton and the sludge from 400 to 410 feet assayed 0.04 ounce per ton. D.D.H. 66 was put down on the same vertical section and visible gold was found at 334.6 feet and 338.0 feet in quartz stringers in talc breccia. The core from 332.5 to 335.0 feet returned 0.01 ounce per ton, from 335.0 to 340.0 feet assaying 0.30 ounce per ton. The intersection in D.D.H. 66 was about 110 feet higher in elevation and 125 feet south-east of the visible gold met in D.D.H. 63. D.D.H.'s 67, 68, and 69 were put down at 100-foot intervals along strike but no further values were obtained.»

The same zone is further described by Thomson (1941) as follow:

«A surface discovery in mineralized carbonate material near the middle of the east line of claim L. 6,464 was trenched over a length of 240 feet and indicated a shoot up to 5.5 feet in width and possibly 40 to 50 feet in length, grading about \$4.00 per ton in gold.»

Drilling of two holes during this winter, Nos 20 and 21 intersected low values. It's believed that the holes could have been spotted too far west from the above intersections. However, detailed ground location of the trenches in question is now feasible. Deep snow cover made location difficult and masked most of the trenches at the time of the last program.

Further drilling is proposed to test the visible gold intersected in

holes 63 and 66 done by Kerr Addison in the 1946-48 period.

Two holes of 600 feet each are proposed here.

LAMPROPHYRE ZONE

Again, this occurrence is described in Thomson (1941) as follow:

«Gold was found along the contact of the lamprophyre dike on claim L. 5,791. This area was thoroughly trenched and sampled. All but one sample assayed less than \$4.00 per ton over widths of 1.5 to 3.0 feet.»

Referring to the map enclosed, the main portion of the occurrence was tested with several trenches, but only one drill hole. It was traced on strike to the west with 3 more drill holes over a strike length of close to 1,000 feet.

2 holes of 300 feet each are proposed here.

DIKE ZONE

A dike is located on claims 5499 and 5500. This dike is described in Thomson (1941) as follow:

«Gold occurs in a dike of altered diorite or gabbro, 3 to 3.5 feet in width, on claims L. 5,499 and 5,500. In places the dike is fractured and contains quartz and calcite stringers with associated pyrite. According to Mr. Butterfield,» manager of the property at the time, «thorough bulk-sampling of the dike indicated a shoot 121 feet long and 3.25 feet wide, which averages \$7.40 per ton in gold. An additional 300 feet carries lower values, averaging less than \$3.00 per ton. Native gold was found in a quartz stringer in one trench. Drilling indicated low values in the dike.»

The drilling mentioned above does not appear to be very extensive since the old maps show only 7 holes over a strike length of close to 900 feet.

Bulk sampling as mentioned above must have come from the old pit as shown on the map.

It is proposed that at least 4 holes of 300 feet each should be drilled here.

OTHER OCCURRENCES

A pit is found on top of the hill, near the drill road and old hole No 20. No information is available on this occurrence. This may the Lamprophyre zone.

One hole of 300 feet is proposed here.

A pit is located near the drill road, north of the Mill zone. No information is available on this occurrence.

One hole of 300 feet is proposed here.

CONCLUSIONS AND RECOMMENDATIONS

As demonstrated above, the south portion of the Sheldon - Larder property contains, besides the Mill zone, several targets warranting exploration. These are the Western zone, the Dike zone, the Lamprophyre zone, and two areas tested by deep pitting by previous operators.

The company's last program on the west extension of the Mill zone was somewhat disappointing. As well, two holes drilled north of the Mill zone to test the Western zone did not return the expected values. With the snow gone, beter localization is possible in relation to the old holes and trenches. It is quite possible that the recently-completed holes were done too far to the west. In our opinion, the target is still untested and further work is warranted.

A total 3,600 feet is proposed to test the targets detailed in the above report. Additional targets will certainly be developed with the above work, say at least another hole of 400 feet for a total of 4,000 feet.

The cost of the above work is estimated as follow:

Line cutting and chaining for location purposes	\$ 3,000.
Geology, localization of old trenches and drill holes, some sampling	10,000.
Diamond drilling, 4,000 of BQ diamond drilling @ \$20/ft, including mobilization, demobilization, moving, water lines	80,000.
Assaying	5,000.
Supervision, report writing	15,000.
15% contingencies	17,000.
Total	\$130,000.

The above work program is highly recommended.

Respectfully submitted

Sudbury, Ontario June 12, 1987

G. J. HINIT P.Eng. Hinse, J 19 PROLINGE OF OWTAGE

32850 12 17

REFERENCES AND SOURCES OF INFORMATION

- Baker, J.W., 1948, Sheldon-Larder Mines, Limited, Summary of Diamond Drilling, 1946 - 1948: Private Company Report.
- Hinse, G.J., 1984, Gold environments of the Larder Lake Virginiatown area: pp. 86-114 in Geol. Assoc. Can. Field Trip Guidebook 4, L. Owsiacki and H. Lovell, eds.
- Hinse, G.J., 1984, Progress Report on Sheldon-Larder's Mill Zone, Located in McGarry Township, Larder Lake Mining Division, Ontario for the Period Ending August 15, 1984.
- Hinse, G.J., 1985, Report on the Properties of Sheldon-Larder Mines, Limited, Located in McGarry Township, Larder Lake Mining Division of Ontario.
- Hinse, G.J., 1985, Progress Report on Sheldon-Larder's Mill Zone, Located in McGarry Township, Larder Lake Mining Division of Ontario, for the Period of August 1, 1984 to February 28, 1985.
- Hinse, G.J., Hogg, G.M. and Robertson, D.S., 1986, On the origin of Archean vein-type gold deposits with reference to the Larder Lake 'break' of Ontario and Quebec: Mineral. Deposita 21, pp 216-227.
- Hogg, G.M., 1978, A Report on the Properties of Sheldon Larder Mines, Limited, in McGarry Township, Ontario.
- Thomson, J.E., 1941, Geology of McGarry and McVittie townships: Ontario Dept Mines, Ann Rept, v 50, pt 7, pp 1-94.

APPENDIX 1.

Drill Logs of Holes 87-12 to 87-21.

		DIMOND DRIEL LOU				
		istice Resources Ltd. ldon-Larder, McGarry Township, Ontario		Hole	No: 87-	12
Locati	ion: : Surfa	Date Started: Feb. 06/8 ce Date Finished: Feb. 07/8	87		No. 1 Size: N	Q
Inclir Total Locati	nation: Depth: ion of	350.0 feet. Casing Pulled: (X) or Lef Collar: L 4+00 W 1+00 S	Stored t: ()	at Eld Acid At: 1	Tests: 75' cor	$r. 50^{\circ}$
Drille	ed by:	Forage Moderne (1985) Inc., 1161, rue des nufacturiers, C.P. 218, Val d'Or, Québec	Manu- J9P 4P3	At: 3	50' cor	r. 49°
Foota From -			Sample Number	From -		Au oz/ton
υ.0	8.0	Casing.		·		
8.0	31.0	Channel conglomerate (ultramafic), modera occasional felsic (syenitic?) clasts.	tely la	minate	d with a	mafic clasts,
31.0	157.3	Ultramafic, 60% carbonate flooding to 60. 70.0, minor shear. 75.0, shearing possible fault. 85.0, minor shear at 37° to core axis. 108.0, becoming weakly fuchsitic, still u			asing i	n carbonate.
157.3	167.0	Ultramafic carbonate, 10% qtz/carbonate f	looding	•		
167.0	218.5	Green carbonate, 5% qtz flooding, trace s	ulphide	s.		
		Coarse fragmented from 176.0 to 176.5		167.0 172.0		TR TR
		may be conglomerate. Becoming dull green, possible speck of gold at 177.5.	6392	177.0	182.0	.005
			6393 6394	182.0		TR TR
			6395	192.0	194.3	TR
		40% qtz flooding, 2-3% pyrite. As above.				.01 TR
		Green carbonate, 10% qtz flooding, 2-4% P	y6398	201.3	206.0	.03
		Grey/green carbonate, 10% qtz flooding. Becoming silty dark grey in color.			211.0 216.0	
		As above.			218.5	
218.5	223.0	Conglomerate, shaley clasts set in a dull			ate mat 223.0	
223.0	350.0	Graphitic shale and sandstone, massive, d				
		Graphitic shale. As above, becoming increasingly cherty qtz flooded towards 244.0 with 5-10% pyri 244.6 to 259.6, grey sandstone.	6404		227.5 244.6	.005 TR
		 259.6 to 262.0, graphitic gouge, 4% marca 261.5 to 262.0. 268.0, becoming weakly carbonated. 300.0, laminations at 42° to core axis. 		z/calc	ite vei	n from
350.0		338.0 to 350.0, graphitic shale, 4% marca End of hole.	site.			
		•				

11111-11...18

Company: Armistice Resources Ltd. Poject: Sheldon-Larder

Hole No: 87-12 Page No. 2

Footag From -		Geolog	ical & Ph	ysical De	scripti	on	Sample Number	From - T		Au :/ton	
				S	LUDGE S	AMPLES					
Sample Number	From	- To	Au oz/ton	Samp le Number	From	- To	Au oz/ton	Sample Number	From	- То	Au oz/ton
6262 6265 6268 6271	148.0 178.0 208.0 238.0	158.0 188.0 218.0 248.0	TR .005 .01 .02	6263 6266 6269 6272	158.0 188.0 218.0 248.0	168.0 198.0 228.0 258.0	TR .005 .01 .01	6264 6267 6270	168.0 198.0 228.0	178.0 208.0 238.0	.005 .02 .005

Parjec Locati Level: Bearin Inclin Total Locati Drille	t: She on: Surfa g: Gri ation: Depth: on of ed by:	d South -45 South South Core Saved or Discarded: Core Saved or Discarded: Core Saved or Discarded: Casing Pulled: (X) or Lef Collar: L 8+00 W 1+00XS Forage Moderne (1985) Inc., 1161, rue des facturiers, C.P. 218, Val d'Or, Québec J9	Signe Stored ft: () Manu- DP 4P3	Page Core d: at Eld Acid At: 1 At: 3	Size: N er Mine Tests: 25' cor 50' cor	Q Propert r. 41 ⁰ r. 40 ⁰		
Foota From -		Geological & Physical Description	Sample Number	From -		Au oz/ton		
0.0	16.0	Casing.						
16.0	31.0	Graphitic shale, finely laminated graphit to 1% pyrite. 28.0, lamination at 50° to core axis.	cic sha	le and	grey sa	ndstone	, Trace	
31.0	57.3	Ultramafic, dark green, 10-15% qtz/carbor	nate fl	ooding.				
57.3	87.0	Dull green carbonate, 20-30% qtz/carbonat ultramafic.	ce floo	ding, m	ay be a	ltered		
			6405	68.0	73.0	TR		
87.0	121.7	Ultramafic, 20% qtz/carbonate flooding.						
121.7	124.2	Silty carbonate, 5% qtz flooding, dull gr		race su 121.7		NIL		
124.2	128.5	Grey/green carbonate, large fuchsitic mic pyrite.	tic mica drapes, 70% qtz flooding, 3%					
		py111ce.	6407	124.2	128.5	.01		
128.5	136.0	Graphitic shale and grey carbonate.	6408	128.5	133.5	TR		
136.0	159.0	Conglomerate, highly stretched shale and 136.5-137.5, bull qtz vein.	carbon	ate cla	sts.			
		Conglomerate with 4% pyrite.	6409	151.2	155.7	TR		
159.0	241.0	Graphitic shale, possible mudstone from 161.5 to 162.0, 4% marcasite in shale. 163.0 to 172.4, sandstone. 172.4 to 185.5, graphitic shale. 185.5 to 190.0, sandstone 190.0 to 196.0, graphitic shale 196.0 to 196.8, conglomerate. 186.8 to 203.0, graphitic shale. 203.0 to 204.5, conglomerate. 204.5 to 207.3, graphitic shale.	6410		210 5			
(Conglomerate. As above.	6412	207.3	210.5 214.5	TR TR		

.

.

	: Armistice : Sheldon- L		Ltd.			3				
Footag From -		gical & Ph	lysical De	scripti	on	Sample Number	From - T		Au /ton	
	217.8- 223.0-	217.8, gra 223.0, gra 238.0, gra 238.1, gra	phitic shey siltsto	ale and			•		<u></u>	
241.1 3	00.0 Ultram	afic, weak	ly carbor	nated to	258.0.	6413	240.5 2	45.5	TR .	
300.0	End of	hole.								
			9	LUDGE S	AMPLES					
Sample Number	From - To	Au oz/ton	Sample Number	From	- То	Au oz/ton	Sample Number	From	- To	Au oz/ton
6273 6276 6279	108.0 118. 138.0 148. 168.0 178.	0 TR	6274 6277	118.0 148.0	128.0 158.0	.005 TR	6275 6278	128.0 158.0	138.0 168.0	.005

)

	_	Collar: L 8+00 W 1+00 N Forage Moderne (1985) Inc., 1161, rue de facturiers, C.P. 218, Val d'Or, Québec	J9P 4P3	Acid 1 At: 12 At: 35	ests: 25' corr 30' corr	r. 40 ⁰
Foota From -		Geological & Physical Description	Sample Number	From -		Au oz/ton
υ.0	10.0	Casing.	<u> </u>	·		<u></u>
10.0	28.5	Green carbonate, dark green, 10% quartz	flooding 6599 6600	I. Trace 11.0 16.0	e to 1% 16.0 21.0	pyrite. TR TR
		Possible fleck of gold at 24.3.	6623 6624	21.0 26.0	26.0 28.5	TR TR
28.5	43.0	Grey carbonate, 1-2% quartz flooding.	6625 6626 6627	28.5 33.5 38.0	33.5 38.0 43.0	TR TR TR
43.0	123.0	Conglomerate, grey/green conglomerate. lithologies, 90% are chert or mudstone. 1-2% coarse pyrite. Clasts are non-mine graphitic shale horizons throughout. 55.5 to 58.0, qtz vein. 77.4 to 89.0, sandstone/microconglomera 109.5 to 110.7, graphitic shale. 120.5 to 123.0, grey silty carbonate.	5-10% gr ralized.	raphitic Unit co	: drape: ontains	s throughou minor
123.0	176.5	Sandstone and shale, massive fine grain shale. 168.4, becoming increasingly graphitic		cone wit	ch 20-30	0% graphit
176.5	275.0	Dull green ultramafic carbonate, 10-15% sulphides.	•	oonate 1 176.5		g. Trace TR
		240.6 to 243.6, agglomerate/conglomerat		170.5	101.5	IK
275.0	322.7	Graphitic shale and buff grey siltstone 308.0, laminations at 50° to C.A. 316.0 to 322.7, grey carbonate.	•			
322.7	347.0	Conglomerate, large sandstone/carbonate	e clasts u	up to 50	cm in s	ize.
247 0	350.0	Graphitic shale.				
347.0						

Suppany: Armistice Resources Ltd. ject: Sheldon-Larder

Sample

Number

Hole No: 87-14 Page No. 2

Au

oz/ton

Footage From - To	Geological	& Physical	Description	Sample From - To Number	Au oz/ton

SLUDGE SAMPLES From - To Au Sample From - To Au Sample From - To oz/ton Number oz/ton Number

-	6280 6283 6286 6289 6292 6295	6.0 38.0 68.0 98.0 168.0 198.0	18.0 48.0 78.0 108.0 178.0 208.0	.005 TR TR TR TR TR	6281 6284 6287 6290 6293 6296	18.0 48.0 78.0 108.0 178.0 218.0	28.0 58.0 88.0 118.0 188.0 228.0	TR .005 .01 TR TR	6282 6285 6288 6291 6294 6297	28.0 58.0 88.0 118.0 188.0 228.0	38.0 68.0 98.0 128.0 198.0 238.0	TR .005 .005 TR .005 TR
	6298	238.0	248.0	.005	6299	248.0	258.0	.005	6300	258.0	268.0	.005

ject: She Location: Level: Surfa Bearing: Gr Inclination Total Depth Location of	id North Logged by: S. Carmichael Signed:
Footage From - To	Geological & Physical Description Sample From - To Au Number oz/ton
0.0 8.0	Casing.
8.0 21.3	Sandstone and graphitic shale, 5-10% graphitic shale, minor microconglomerate.
21.3 49.7	Channel conglomerate, ultramafic, 46.0 to 47.0 ground core.
49.7 144.2	Conglomerate, buff sandstone and carbonate clasts set in a grey sandy matrix. Minor sandstone and graphitic shale throughout. Trace sulphides increasing to 4-5% in graphitic shale. 73.4 to 80.0, sandstone-siltstone. 97.4 to 98.0, qtz-calcite vein, barren. 101.0, matrix becoming increasingly carbonate(calcite)-rich. 105.7 to 106.0,graphitic shale. 107.5 to 108.3,graphitic shale. 122.0, becoming increasingly graphitic both as narrow beds and as mud drape within the conglomerate.
144.2 165.0	Graphitic mud, siltstone, very fine grained massive graphitic unit, poorly bedded/laminated trace to 1% coarse euhedral pyrite.
165.0 179.2	Conglomerate, continuation of unit above graphitic mud horizon.
179.2 206.2	Grey ultramafic carbonate, 5-10% grey qtz flooding, fuchsitic from 179.2-182.0.
206.2 250.0	Grey/green carbonate, emerald green to 211.4 then variably green and ultramafic. 10-20% qtz flooding. Trace to 1% pyrite. 6489 206.2 208.1 TR 20% Quartz flooding. 6490 208.1 211.4 .005 Grey ultramafic carbonate. 6491 211.4 215.6 TR Green carbonate. 6492 215.6 219.0 TR Grey carbonate. 6494 223.8 228.2 .005 Grey carbonate. 6495 228.2 233.0 TR Grey carbonate. 6496 233.0 238.0 TR Grey carbonate. 6497 238.0 243.0 TR Grey carbonate. 6497 238.0 243.0 TR Grey carbonate. 6498 243.0 248.0 TR Grey carbonate. 6499 248.0 250.0 TR

ject: She				Hole No: 87-15 Page No. 2						
Footage From - To	Geolog	ical & Ph	ysical De	scripti	on	Sample Number	From -		Au oz/ton	<u> </u>
250.0 350.0	clasts	set in a	lomerate, qtz/carbo e or sand	nate fl	ooded r	natrix. U	nit is m n is loca	onomict	ic with	no
	As abov	e, 3-4% p	tz floodi yrite.	ng, 1-2	% pyri	te. 6501 6502	263.8 268.0	268.0 273.0	.01 TR	
	As abov Grey ul As abov	tramafic	section.			6503 6504 6505 6506 6507	275.3 288.0 293.0 298.0	298.0 303.0	.005 TR N11 TR TR TR	
	Smoky q	tz vein t	o 309.5.			6508 6509 6510 6511 6512 6513	308.0 310.0 315.0 320.0 325.0	325.0 330.0	TR TR TR Nil TR TR	
	Smokey	qtz vein	from 339. from 342. from 347.	0 to 34	3.1.	6514 6515 6516 6517	335.0 340.2	335.0 340.2 345.0 350.0	TR Nil Nil TR	
350.0	End of	hole.								
			. <u>S</u>	LUDGE S	AMPLES					
Sample Fro Number	om - To	Au oz/ton	Sample Number	From	- To	Au oz/ton	Sample Number	From	n - To	Au oz/tor
6602 138. 6605 168. 6608 198. 6611 228. 6614 258.	0 178.0 0 208.0 0 238.0	TR .005 TR	6603 6606 6609 6612 6615	148.0 178.0 208.0 238.0 268.0	158.0 188.0 218.0 248.0 278.0	TR TR .005 TR TR	6604 6607 6610 6613 6616	158.0 188.0 218.0 248.0 278.0) 198.0) 228.0) 258.0	TR TR TR TR .01

288.0

318.0

6617

6620

298.0

328.0

.02

.01

6618

6621

298.0

328.0

308.0

338.0

TR

.035

6619

6623

318.0

350.0

.03

TR

308.0

338.0

ì

		DIAMOND DRILL LOG	
		istice Resources Ltd.	Hole No: 87-16
Locati		ldon-Larder, McGarry Township, Ontario Date Started: Feb. 17	197 Dago No. 1
Level:	Surfa	ce Date Finished: Feb. 1	
Bearin	g: Gri	d North Logged by: Guy J. Hinse	
Inclin Total	ation:	-45 ⁰ Core Saved or Discarded 350.0 feet. Casing Pulled: (X) or L	: Stored at Elder mine property. eft: () Acid Tests:
		Collar: L 12+00 W 1+00 S	At: 175' 47' 39'
	d by:	Forage Moderne (1985) Inc., 1161, rue de	es Manu- At: 350' 45° 37°
		facturiers, C.P. 218, Val d'Or, Québec	J9P 4P3
Foota		Geological & Physical Description	Sample From - To Au
From -	То	• • • • • • • • • • • • • • • • • • •	Number oz/ton
0.0	11.5	Casing.	
11.5	35.0	Conglomerate, mostly grey carbonate, mi	nor green chlorite stretched class
11.0	00.0	in a chlorite, green chlorite, black sh	
		core axis. Traces of pyrite parallel to	
		drapes and flasers.	
35.0	43.0	Black shale, minor graphite, 45° to cor	e axis.
		15"quartz-Cb vein at 38.0, barren.	
43.0	49.0	Conglomerate as before, clasts are smal	ler, with talcy ultramafic materia
49.0	79.0	Mostly black graphitic shale with minor	grev carbonate conglomerate and
		sandstone, 45° to core axis.	
79.0	227.0	Grey carbonate sandstone with fine blac	
		axis. Sandstone getting cleaner towards	103.0, 1/2 " long black drapes.
		Minor black shale sections. 140.0 to 148.0, grey carbonate sands wi	th stretched small (1/8 " wide) wh
		carbonate clasts?, 55° to core axis.	
		178.0, getting more shaly.	· ·
227.0	240.2	Brilliant green carbonate, 20% white an	
		pyrite. Sharp upper contact at 60° to c	core axis. Well brecciated.
			6518 227.0 231.0 TR 6519 231.0 235.0 .005
			6520 235.0 240.2 .005
040 0	200 0	Dull groon on whom to loss than 10%	
240.2	298.0	Dull green carbonate, less than 10% - 2 locally approaching a grey mudstone.	www.uaruz. rioounny, 1% pyrite,
			6521 240.2 244.2 TR
			6522 244.2 248.2 .005
			6523 248.2 253.0 .02 6524 253.0 258.0 .005
		40% quartz flooding, well brecciated.	6524 253.0 258.0 .005 6525 258.0 263.0 .02
		ton quarte recounty, were diecciated.	6526 263.0 268.0 .005
			6527 268.0 273.0 TR
			6528 273.0 278.0 TR
			6529 278.0 283.0 .04 6530 203 0 288 0 .005
		50% quartz flooding.	6529 278.0 283.0 .04 6530 283.0 288.0 .005 6531 288.0 293.0 TR

11111-11...9

				<u>D1</u>	AMOND D	RILL LO	<u>)G</u>					
	<pre>pany: Armistice Resources Ltd. Project: Sheldon-Larder</pre>							Hole No: 87-16 Page No. 2				
Footage From - To		Geologi	ical & Phy	sical De	scripti	on	Sample Number	From - T		u 'ton		
298.0 313.			rbonate (p less than				: in a gr	ey chlori	te or ch	ert ma	atrix,	
				·		·	6533 6534 6535	303.0 3	08.0 .0	105 105 TR		
313.0 350.		ull to yrite.	brilliant	green c	arbonat	e, 10 t	:o 30% qu	artz floo	ding, tr	aces (of	
350.0	F M S C S	airly w lica ric alt & p lasts a	vell lamin ch, 75° to pepper tex at 350.0, 343.0-350 nole	core ax ture, co 3 x 10mm	uld be	a silt.	6541 6542 6543 Small s	318.0 3 323.0 3 328.0 3 333.0 3 338.0 3 343.0 3 347.0 3 imili	23.0 .0 28.0 T 33.0 T 38.0 T 43.0 T 47.0 T	005 2 R R R R R R R		
				S	LUDGE S	AMPLES						
Sample F Number	rom	- To	Au oz/ton	Sample Number	From	- To	Au oz/ton	Sample Number	From -	· To	Au oz/ton	
630436307663109631312631615631918632221632524632827633130	0.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	18.0 48.0 78.0 108.0 138.0 168.0 198.0 228.0 258.0 258.0 318.0 350.0	TR .015 .01 .005 TR TR .01 missing .01 .03 .005 .01	6302 6305 6308 6311 6314 6317 6320 6323 6326 6329 6322 6329	18.0 48.0 78.0 108.0 138.0 168.0 198.0 228.0 258.0 258.0 288.0 318.0	28.0 58.0 88.0 118.0 148.0 178.0 208.0 238.0 268.0 298.0 328.0	TR .02 TR TR .005 .01 .01 TR .005 .01	6303 6306 6309 6312 6315 6318 6321 6324 6327 6330 6333		38.0 68.0 98.0 128.0 158.0 188.0 218.0 248.0 278.0 308.0 338.0	TR TR .01 .03 .005 .01 TR .01 .005 .005	

-

Inclin Total Locati	ation: Depth: on of d by:	Collar: Forage M	eet. L 0+75 E oderne (19	Core Saved Casing Pu 1+90 N 985) Inc.	: Guy J. Hinse 1 or Discarded 11ed: (X) or L , 1161, rue de 1'Or, Québec	: Stored eft: () s Manu-	at Elder Acid Te		-
Foota rom -		Geol	ogical &	Physical [Description	Sample Number	From -	ſo Au oz∕to	n
0.0	20.0	Casing.				5	·····		
20.0	75.5			een carboi	nate, 10 to 30	quartz f	looding	, up to 10%	pyrite
		locally	•			6544	20.0	24.0 TR	
						6545	24.0	28.0 TR	
						6546	28.0	33.0 TR	
						6547	33.0	38.0 .01	
						6548	38.0	43.0 .005	
						6549	43.0	48.0 TR	
						6550	48.0	53.0 TR	
						6551	53.0	58.0 .005	
						6552	58.0	63.0 .02	
		•				6553	63.0	68.0 .04	
						6554 6555	68.0	72.0 .11	
75.5	100.0	Gy muds fine py		ts in a b	lack shaly mat		72.0 sts are	75.5 .09 up to 40mm	with 3-5%
		The py	1100.			6556	75.5	78.0 TR	
						6557	78.0	83.0 TR	,
						6558	83.0	88.0 .005	
						6559	88.0	93.0 .03	
						6560	93.0	95.0 .005	
		60% Qua	rtz flood	ing.		6561	95.0	100.0 .005	
100.0		End of	hole.	•					
				S	LUDGE SAMPLES				
Sample	Fro	om – To	Au oz/ton	Sample Number	From - To	Au oz/ton	Sample Number	From - T	o Au oz/to

ì

.

				<u>U1/</u>	AMUNU UK	ILL LU	<u>u</u>			
ject: ocatior level: S Bearing:	: Shel n: Surfac : Gric	ldon-Larc ce 1 South		rry Townsl Date Sta Date Fin Logged by:	arted: F nished: : Guy J.	eb. 18 Feb. 1 Hinse	9/87 Signe		. 1	у.
ocatior.	n of (by: F	Collar: L Forage Mc	L 1+00 E oderne (1	1+90 N 985) Inc. 218, Val (, 1161,	rue de	s Manu-	At: 100 At:	0' 49 ⁰ 41 ⁰	
Footage rom - 1		Geold	ogical &	Physical [Descript	ion	Sample Number	From - To	o Au oz/ton	
0.0 1	10.0	Casing.								
10.0	13.5			lll green o .0% dissem				10cm in a	a black chert	у
			·		•	•	65 62	10.0	13.5 TR	
13.5 6	51.5	Dull gre	≥en carbo	onate, 10	to 30 qu	artz f	6563 6564 6565 6566 6567 6568 6569 6570 6571	13.5 18.0 23.0 28.0 33.0 38.0 43.0 48.0 53.0	18.0 .01 23.0 .01 28.0 .02 33.0 .005 38.0 TR 43.0 .005 48.0 .03 53.0 .005 58.0 TR	
61.5 8	34.5	Grey muc	istone cl	asts in a	black s	haly c	6572 herty ma 6573 6574 6575 6576 6577	trix, up 61.5 66.5 71.5 76.5	61.5 .01 to 5% pyrite. 66.5 .02 71.5 .01 76.5 .005 81.5 TR 84.5 .03	
84.5 10	0.00	carbonat	te clasts		ly matri		lomerate	with up	to 10mm grey y sandstone w	ith
100.0		End of H	hole.					. ,		
				~						
_			_		LUDGE SA				_	_
Samp le Number	Fro	n - To	Au oz/ton	Sample Number	From -		Au oz/ton	Sample Number	From - To	Au oz/te
6343 6346	10.0 38.0 68.0	0 48.0	.04	6344 6347 6350	18.0 48.0 78.0	28.0 58.0 88.0	.NIL .04 .05	6345 6348 6351	28.0 38.0 58.0 68.0 88.0 100.0	.0

11111-11...7

rojec ocati evel: earin nclin otal ocati	t: She on: Surfa g: 128 ation: Depth: on of d by: ge	istice Resources Ltd. Idon-Larder Project, McGarry Township, Date Started: Feb. 1 Date Finished: Feb. 2 Date Finished: Feb. 2 Logged by: Guy J. Hir -45 ⁰ Core Saved or Discard 220.0 feet. Casing Pulled: (X) or Collar: L 0+10 E 2+00N Forage Moderne (1985) Inc., 1161, rue facturiers, C.P. 218, Val d'Or, Québed Geological & Physical Description	9/87 20/87 ded: Stored Left: () des Manu- 5 J9P 4P3	Page Core d: at Eld Acid At: 2 At: From -	Size: er pro Tests: 00' 50	perty.	
		Cacina			<u></u>		<u></u>
0.0	24.0	Casing.					
24.0	98.0		buff sect	ions, m	iostly	barren,	10-20%
		quartz flooding. 24.0 to 30.0, sandy salt & pepper tex	ture				
		30.0 to 33.0, few large buff fragment					
			6578	24.0	28.0		
			. 6579	28.0	33.0		
		20% outputs	6580	33.0	38.0		
		20% quartz.	6581 6582	38.0 43.0	43.0 48.0		
			6583	48.0	53.0		
			6584	53.0	56.2		
		20% py, 15% quartz flooding.	6585	56.2	58.0		
		30% quartz.	6586	58.0			
		40% quartz.	6587 6588	63.0			
		30% quartz, 2% py. 20% quartz, 7% py, 4" grey-white	6589	66.0 70.5			
		quartz at 72.0 .	0305	/0.5	/ 4.6	.01	
		30% quartz.	6590	74.2	78.0	.03	
		20% quartz.	6591	78.0		.005	
		20% quartz.	6592	83.0	88.0		
		10% quartz.	6593 6594	88.0 93.0	93.0 98.0		
			0594	93.0	90.0	in	
98.0	114.4	Grey mineralized mudstone up to 5cm a	and minor g	rey car	bonate	clasts	in a
		black shale matrix, up to 4% mostly					
			6595		103.0		
				103.0			
				108.0 112.0			
.14.4	124.0	Buff chert, carbonate fragments (clas matrix. Appears to be ultramafic. Up					
.24.0	133.5	Conglomerate, black shaly and grey cashaly, slightly cherty matrix. Minor		asts up	o to 3c	m in a l	olack
<u>ар</u> г	144 0	Dlack graphitic chala 250 to come a	vie				
	144 11	Black graphitic shale, 35° to core as	~13 .				

11111-11...5

1

.

Company:	Armistice Resources Ltd.
P ect:	Sheldon-Larder Project

Hole No: 87-19 Page No. 2

Footage	Geological	& Physical	Description	Sample From -	То	Au	
From - To	-			Number		oz/ton	

144.0 171.0 Short sections of conglomerate in a well finely laminated grey carbonate sediment, 35° to core axis. Conglomerate is 1-2cm clasts of chert and cherty material and minor buff albitized cb in a grey carbonate and shale matrix, several black chlorite and shale drapes. Locally smaller clasts, 1-1.5 mm, have whiter (carbonate?) rims. At 171, 2.0 feet of conglomerate with 60-70% clasts, matrix supported. Clasts are stretched with a convexe side down hole indicating tops up hole. 171.0, minor conglomerate, still a medium grey somewhat shaly matrix, few black drapes locally.

220.0 End of hole.

SLUDGE SAMPLES

Sample Number	From	- To	Au oz/ton	Sample Number	From	- То	Au oz/ton	Sample Number	From	- To	Au oz/ton
6352	24.0	28.0	.02	6353	28.0	38.0	.09	6354	38.0	. 48.0	.03
6355	48.0	58.0	.03	6356	58.0	68.0	.02	6357	68.0	78.0	.06
6358	78.0	88.0	.04	635 9	88.0	98.0	.02	6360	98.0	108.0	.03
6361	108.0	118.0	.04	6362	118.0	128.0	.04	6363	128.0	138.0	.05
6364	138.0	148.0	.02	6365	148.0	158.0	.03	6366	158.0	168.0	.005
6367 6370	168.0 198.0	178.0 208.0	.025 .01	6368 6371	178.0 208.0	188.0 220.0	.005 .02	6369	188.0	198.0	.02

	DIAMOND DRILL LOG
Project: She Location: Su Level: Surfa Bearing: Gri Inclination: Total Depth: Location of Drilled by:	ce Date Finished: Feb. 22/87 Core Size: NQ d North Logged by: Guy J. Hinse Signed:
Footage From - To	Geological & Physical Description Sample From - To Au Number oz/ton
0.0 10.0	Casing.
10.0 125.5	Carbonate-rich ultramafic, grey to green, laminated 45° to core axis to brecciated minor quartz flooding, barren. 58.0 to 63.0, sandy, salt & pepper texture 66.0 to 69.0, same as above 80.0 to 85.0, highly brecciated, quartz and some quartz carbonate fragments, some almost well rounded. Last two feet, 50% quartz fragments (clasts?) in an increasingly shaly matrix.
125.5 142.5	Conglomerate, grey sandstone and/or carbonate clasts up to 10cm in a black shaly matrix. 3 to 5% pyrite.
	6414 125.5 129.5 .005 6415 129.5 133.5 TR 6416 133.5 137.5 .01 6417 137.5 142.5 TR
142.5 147.5	Sharp upper and lower contacts at 30°. Dull green carbonate, barren, Mica- rich. 6418 142.5 147.5 .005
147.5 161.5	Conglomerate as from 125.5 to 142.5. Less than 1% diss'd pyrite.
161.5 168.0	Green carbonate as before. Less than 10% quartz, barren. Color changing to close to brilliant green at 168.0.
168.0 196.5	Conglomerate as before, now contains quite a few green carbonate clasts, little matrix, clast supported. Up to 10% coarse pyrite, mostly in clusters. 182.0 gradual change into a graphitic shale.
196.5 273.0	Black graphitic shale, 45° to core axis, 1-3% nodular pyrite, framboids, graphitic. 6419 196.5 198.2 .01 6420 203.0 205.0 .01
273.0 292.5	Conglomerate, grey mudstone and/or carbonate clasts in a black matrix as before. Up to 8% pyrite at first, decreasing to 2-3% pyrite. 8% pyrite 6421 273.0 278.0 TR 3% pyrite 6423 278.0 283.0 TR 5% pyrite 6424 283.0 287.5 .005 10% pyrite 6425 287.5 292.5 .005

1

Company: Armistice Resources Ltd. ject: Sheldon-Larder Project						Hole No: 87-20 Page No. 2					
Footage From - To	Geologi	cal & Ph	ysical De	scripti	on	Sample Number	From - T		Au /ton		
292.5 298.0	Graphiti	c shale,	10% nodu	lar pyr	ite		. <u></u>		,		
298.0 331.0	of grey clasts.	mudstone Up to 2	with loc 5-30% pyr	ally mi ite, of	nor gre which	een chlor 25% in c crystals 6426 6426A 6426B 6427 6428 6429	ite. Few lasts and probabl 292.5 2 298.0 3 303.0 3 308.0 3 313.0 3 318.0 3	green c 75% in y an op 98.0 03.0 . 08.0 . 13.0 . 18.0 . 23.0 .	hlorit matri:	e X.	
	328.5 to	331.0 L	ess than	2% pyri	te in d	one clust	er.				
328.5 412.0 412.0 463.0	containi drapes. At 403.0 At 407.0	ng some Could be , gradin , back i	lighter g a recrys g into a nto a gre	rey cb talized weak gr y carbo	fragmen sands ey-gree	nts, barr tone?	grading i en. Local ate.				
463.0 483.0			nate up t x, 50-55°				chlorite	clasts	in an		
483.0 600.0	Ultramaf	ic									
600.0	End of h	ole									
			<u>s</u>	LUDGE S	AMPLES						
Sample Fro Number	m - To	Au oz/ton	Sample Number	From	- To	Au oz/ton	Sample Number	From	- To	Au oz/tor	
6372 10. 6375 38. 6378 68.	0 48.0	.005 TR .01	6373 6376 6379 6381	18.0 48.0 78.0 238.0	28.0 58.0 88.0 248.0	.03 TR .01 .005	6374 6377 6380	28.0 58.0 88.0	38.0 68.0 98.0	.005	
6382268.6384298.6387328.	0 308.0	.005 .02 .01	6385	308.0	318.0	.03	6383 6386 6388	288.0 318.0 348.0	298.0 328.0 358.0	.01	

	DIMOND DAIL	
ject: She Location: Level: Surfa Bearing: Gri Inclination: Total Depth: Location of Drilled by:	d North Logged by: Guy J. H	06/87 24Page No. 107/87Core Size: NQinseSigned:rded: Stored at Elder Mine Property.or Left: ()Acid Tests:At: 200'51°43°e des Manu-At: 400'48°40°
Footage From - To	Geological & Physical Descriptio	
0.0 10.0	Casing.	
10.0 98.0	Ultramafic carbonate, brecciatde to barren. 11.0 - 15.0, sandy.	laminated at 35-40° to core axis
98.0 109.0	Conglomerate, at 98.0 several 1 cm massive white carbonate. Last three chlorite rich clasts in a white car	feet, 2-3 cm slightly streched
109.0 117.5	Green to brilliant green carbonate,	minor quartz flooding, barren.
117.5 123.0	70% white milky quartz, barren.	6629 117.5 123.0 NIL
123.0 346.4	Grey carbonate, somewhat slightly s 45° to core axis. Barren.	haly, brecciated to laminated at
	158.0, has a spotted texture, small a darker matrix.	1-3 mm round white carbonate spots i
	181.0, large 4.5cm buff carbonate f matrix, locally sandy, barren.	ragments in a grey-shaly carbonate
	203.0, 60% buff carbonate, 1-3 mm l of core. Slightly softer than adjoi	ighter spots in buff carbonate portio ning buff carbonate.
	220.0 - 226.0, green carbonate.	
	226.0, as before.	
	295.0 - 313.0, green carbonate	
346.4 360.9	Green carbonate, massive to weakly quartz flooding.	brecciated, traces of pyrite, 10-20%
	10% quartz flooding.	6630 346.4 351.0 TR

3.

pany:	Armistice Resources	Ltd.	
Project:	Sheldon-Larder		

Hole No: 87-21 Page No. 2

Footage	Geological & Physical Description	Sample From - To	Au Au
From - To		Number	oz/ton

360.9 390.0 Buff carbonate, nice buff color, ultramafic. Coarsely brecciated, barren. Spotted, coalescing white carbonate spots, 2-3 mm, in grey carbonate matrix and buff fragments. 390.0, spots disappear gradually and very gradual change into an ultramafic carbonate.

- 390.0 496.0 Ultramafic carbonate.
- 496.0 559.0 Conglomerate, sharp contact at 50°. Grey carbonate, white carbonate (calcite?), minor quartz clasts, stretched to sub-rounded, average 10mm X 20mm in a dark and bottle-green ultramafic matrix, barren. Some grey carbonate clasts up to 30 cm.
- 559.0 569.5 Ultramafic, locally sandy in more carbonated section.

569.5 580.0 Conglomerate as before, 50% green olive and 50% black ultramafic matrix.

580.0 600.0 Ultramafic.

2' of conglomerate as before at 598.0.

600.0 End of hole.

SLUDGE SAMPLES

Sample Number	From	- To	Au oz/ton	Sample Number	From	- To	Au oz/ton	Sample Number	From	- To	Au oz/ton
6431	10.0	18.0	.005	6432	18.0	28.0	TR	6433	28.0	38.0	TR
6434	38.0	48.0	TR	6435	48.0	58.0	TR	6436	58.0	68.0	TR
6437	68.0	78.0	TR	6438	78.0	88.0	TR	6439	88.0	98.0	TR
6440	98.0	108.0	TR	6441	108.0	118.0	TR	6442	118.0	128.0	TR
6443	128.0	138.0	TR	6444	138.0	148.0	TR	6445	148.0	158.0	TR
6446	158.0	168.0	TR	6447	168.0	178.0	TR	6448	178.0	188.0	TR
6449	188.0	198.0	.01	6450	198.0	208.0	.005	6451	208.0	218.0	TR
6452	218.0	228.0	TR	6453	228.0	238.0	.005	6454	238.0	248.0	TR
6455	248.0	258.0	TR	6456	258.0	268.0	TR	6457	268.0	278.0	TR
6458	278.0	288.0	TR	6459	288.0	208.0	.005	6460	308.0	318.0	.005
6461	318.0	328.0	TR	6462	328.0	338.0	TR	6463	338.0	348.0	.005
6464	348.0	358.0	.02	6465	358.0	368.0	TR	6466	368.0	378.0	TR
6467	378.0	388.0	TR	6468	388.0	398.0	TR	6469	398.0	408.0	TR
6470	408.0	418.0	.01	6471	418.0	428.0	.005	6472	428.0	438.0	.005
6473	438.0	448.0	TR	6474	448.0	458.0		6475	458.0	468.0	TR
6476	468.0	478.0	.005	6477	478.0	488.0	TR	6478	488.0	498.0	.005
6479	498.0	508.0		6480	508.0	518.0		6481	518.0	528.0	
6482	528.0	538.0	TR	6483	538.0	548.0		6484	548.0	558.0	.005
6485	558.0	568.0	TR	6486	568.0	578.0		6487	578.0	588.0	.005
6488	588.0	600.0	.005								

APPENDIX 2.

Assay Results.

32850 12 20

QUEBEC: 183 RUE GAMBLE O., C.P. 665 - ROUYN, J9X 2R8 - TEL: (819) 762-3010 ONTARIO: 20 VICTORIA STREET, SUITE 506 - TORONTO, M5C 2N8 - TEL: (416) 366-3100

CERTIFICATE OF ANALYSIS

FOR Mr. G. Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
19333	6262	Trace	GOLD	CHECKS)			
4	3	Trace						
ُ 5	4	0.005					as	
6	5	0.005	Trace	, 0.005		Spe	<u>1</u> 2	
7	6	0.005				8	1-	
8	7	0.02		j				
9	8	0.01					·	
19340	9	0.01						
1	6270	0.005						
2	1	0.02						
3	2	0.01						
4	3	0.005			ý			
5	4	0.005				•	ORA	
6	5	0.005				Deer	X	
7	6	Trace					1.13	
8	7	Trace				Ď	1	
9	8	0.005		•				
19350	6279	0.005						
				·				

February 17, 1987

CERTIFIED CORRECT al wither

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

ASSAYERS LIMITED ONTARIO: 20 VICTORIA STREET, SUITE 506 - TORONTO, M5C 2N8 - TEL: (416) 366-3100

CERTIFICATE OF ANALYSIS

FOR Mr. G. J. Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
20904	6281	0.005	GOLD CHI	скѕ	\sum			
5	2	Trace						
6	3	Trace						
7	4	0,005	0.005, 0.	005				
8	5	0.005		-	/			
9	6	Trace						
20910	7	0.01				Dud		
1	8	0,005			$\left[\right]$	Alle	D,	
2	9	Trace				1	14	
3	6290	Trace	Trace, Ti	ace		81-		
4	1	Trace						
5	2	Trace						
6	3	Trace						
7	4	0.005			<u> </u>			
	6295	Trace	······					
9	6297	Trace						
20920	6298	0.005			/	<u> </u>		
20921	6300	0.005			/			

DATE

CERTIFIED CORRECT

Feb. 19, 1987

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

9

ac Kuchler

ASSAYERS LIMITED ONTARIO: 20 VICTORIA STREET, SUITE 506 - TORONTO, M5C 2N8 - TEL: (416) 366-3100

CERTIFICATE OF ANALYSIS

FOR Mr. Guy Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
24013	6601	Trace	GOLD CHE	CKS				
4	2	Trace						
5	3	Trace						
6	4	Trace						
7	5	Trace						
8	6	Trace						
9	7	Trace		-				
24020	8	0.005						
1	9	0.005					ill	
2	6610	Trace				Ner	NC	
3	1	Trace				, Pro	1/2	
4	2	Trace				1 8	1	
5	3	Trace				<u> </u>		
6	4	Trace	Trace, 1	race				
7	5	Trace					· · · · · · · · · · · · · · · · · · ·	
8	6	0.01						
9	7	0.02						
24030	8	0.035					······································	
1	9	0.03						
24032	6620	0.01						

Feb. 25, 1987

CERTIFIED CORRECT

teldehler

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE. Ø

ASSAYERS LIMITED ONTARIO: 20 VICTORIA STREET, SUITE 506 - TORONTO, M5C 2N8 - TEL: (416) 366-3100

CERTIFICATE OF ANALYSIS

FOR Mr. Guy Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
24033	6621	Trace			Au	idge	87-15	
					/	Ő		
					· ·			
					·····			
							· · ·	
<u></u>	· ·							
	·							
								
	-							
·							· · · · · · · · · · · · · · · · · · ·	
							· · · · · · · ·	
date Feb. 2	 25, 1987	L	۱ د	CERTIFIED CORRE	- Jel	Lehler	/	<u>.</u>
UNLESS IT IS	S SPECIFICALLY STATE	D OTHERWISE GOL	- D AND SILVER VA	LUES REPORTED	10^{-1}			PEN· S

CERTIFICATE OF ANALYSIS

FOR Mr. Guy Hinse

		OZ. PER TON	OZ. PER TON	COPPER %	ZINC			
24843	6362	0.04	GOLD CHE	скя				
4	3	0.05						
5	4	0.02						
6	5	0.03						
7	6	0.005			Λ	lud		-
8	7	0.025			PN		19	
9	8	0.005	_			87-	11	1
24850	9	0.02						
1	6370	0.01						
2	1	0.02						
3	2	0.005						
4	3	0.03						
5	4	Trace						
6	5	Trace						
7	6	Trace	Trace, Tr	ace	1	roge	Ø	
8	7	0.005		$ \rightarrow $	Al	un		
9	8	0.01				47	20	
24860	9	0.01				01		
1	6380	0.005						
24862	6381	0.005				A		

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

Ŵ

CERTIFICATE OF ANALYSIS

FOR Mr. Guy Hinse

6382 3	0.005		<u> </u>			L	
7		GOLD CH	ecks				
3	0.01				De/		
4	0.02	0.02, 0.	02	All		g	
5	0.02			Pr-	22		
6	0.03			8	1		
7	0.01			-			
8	0.02						
6389	0.01)				
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
			· · · · · · · · · · · · · · · · · · ·				
		·····					
, 1987		c -	CERTIFIED CORREC	' (Sac	Juchle	V	
	6 7 8 6389 	6 0.03 7 0.01 8 0.02 6389 0.01 	6 0.03 7 0.01 8 0.02 6389 0.01	6 0.03 7 0.01 8 0.02 6389 0.01	6 0.03 8 7 0.01 8 8 0.02 9 6389 0.01 9 9 0.01 9 <td>6 0.03 7 0.01 8 0.02 6389 0.01</td> <td>6 0.03 8 0.02 9<!--</td--></td>	6 0.03 7 0.01 8 0.02 6389 0.01	6 0.03 8 0.02 9 </td

ASSAYERS LIMITED ONTARIO: 20 VICTORIA STREET, SUITE 506 - TORONTO, M5C 2N8 - TEL: (416) 366-3100

CERTIFICATE OF ANALYSIS

FOR Mr. Guy Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
24783	6301	Trace	GOLD CH	ECKS				
4	2	Trace						
5	6303	Trace						
6	6306	Trace	Trace, T	race				
7	6304	0.015						
8	6305	0.02						
9	6307	0.01			Λ		000	-
24790	8	Trace			$\left \right\rangle$	Λοι	XV-	
1	9	0.01				1 per	(),	
2	6310	0.005					1/6	
3	1	Trace				1 S		
4	2	0.03			/			. <u>.</u>
5	3	Trace						
6	44	Trace			\ 			·······
77	5	0.005			<u> </u>			
	6	Trace						
9	77	0.005						
24800	8	0.005			/			
1	9	0.01			<u>/</u>			
_24802	6320	0.01		/	<u> </u>	<u> </u>		
DATE	26, 1987		c	CERTIFIED CORREC	Ha	leathing	1	

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

CERTIFICATE OF ANALYSIS

FOR Mr. Guy Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC			
24803	6321	0.005	GOLD CHI	скѕ				
4	6323	0.01	0.01, 0.0	05				
5	4	Trace						
6	5	0.01			<u> /</u>			
7	6	Trace					norD_	
8	7	0.01			\square	Auc	ege/	
9	8	0.03	0.03, 0.0	3		A	16	
24810	9	0.02			[8	/	
1	6330	0.005					· · · · · · · · · · · · · · · · · · ·	
2	1	0.005						
3	2	0.01						
4	3	0.005			<u> </u>			
5	4	0.01			2			
6	5	0.01			[)			
7	6	0.02	<u> </u>		/		no A	
8	7	0.03				Juid		
9	8	0.02			~ /	*	1-1-	
24820	9	0.08			\	<u> </u>		
<u>1</u>	6340	0.19						
24822	6341	0.07	0.07.0.1		<u> </u>	Ι <u>ρ</u>		
date Fel	b. 26, 1987			CERTIFIED CORRE	tren	uche	V	

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

 $\overline{\mathbf{V}}$

CERTIFICATE OF ANALYSIS

FOR Mr. Guy Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
24823	6342	0.11	GOLD CHI	CKS	Ale	de	87-17	
4	3	0.07			<u>)</u>	0	,	
5	4	Nil						
6	5	0.04			(Aud	le s	-
7	6	0.03			$\overline{}$	per	18	
8	7	0.04				81-	10	
9	8	0.04						
24830	6349	0.02						
1	6351	0.01						
2	6350	0.05	0.05, 0.	05	2			
3	6352	0.02			/			
4	3	0.09			ļ/		Doca	
5	4	0.03			<u> </u>	Alu	Xa	
6	5	0.03			<u> </u>	1-0-	p-19	
7	6	0.02			$\left \right\rangle$	ľ Ž	1	
8	7	0.06			(·	
9	8	0.04			\			· · · · · · · · · · · · · · · · · · ·
24840	9	0.02						
1	6360	0.03			/			
	6361	0.04	0.03, 0.	05	6	<u></u>		

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

Ĩ

CERTIFICATE OF ANALYSIS

FOR Mr. J. Guy Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COF %	PPER	ZINC			
26606	6397	Trace	GOLD CH	ECKS					
7	8	0.03	0.02, 0.	04	\Box	OE			
8	9	0.01				COK	2		
9	6400	Trace			\mathcal{T}	87.1	-		
26610	1	0.005	0.005, T	race	[
1	2	Nil			Į –				
2	3	0.005							
3	4	Trace							
4	5	Trace			\int				
5	6	Nil							
6	7	0.01				10RE	2		
7	8	Trace			· · ·	.1-	7		
8	9	Trace			7	81			
9	6410	0.005				·			
26620	1	Trace			<u> </u>				
1	2	Trace			1				
2	6413	Trace			<u> </u>				
3	6426	0.01				OPE			
4	7	0.02			لے ۲	67-16 87-16	?		
26625	6428	0.01			<u> </u>	0'	<u></u>		
DATE	2, 1987			CERTIFIE	CORREC		leethe	1_	

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

 \checkmark

×.

CERTIFICATE OF ANALYSIS

Mr. J. Guy Hinse FOR

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC			
26626	6429	0.03		{ LOR	II.			
26627	6430	0.04		5000	.16			
				81				
				· 				
		·						
					-			
				·				
			· · · · · · · · · · · · · · · · · · ·					
			·····					
DATE Mar.	2, 1987		(CERTIFIED CORREC	Se	Werk	er	

SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

CERTIFICATE OF ANALYSIS

Mr. J. Guy Hinse. FOR

IMITED

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPE %	R	ZINC %				
26586	6414	0.005	GOLD CHE	скѕ						
7	5	Trace								
8	6	0.01								
9	7	Trace								
26590	8	0.005	0.005, 0.	005			Æ			
1	· 9	0.01			/	r lo	20			
2	6420	0.01			7	X	1.00			
3	1	Trace		/	1	0				
4	2	Trace							_	
5	3	Trace					-			
6	4	0.005								
7	5	0.005								
8	6426	0.01								
9	6390	Trace			· .	-				
26600	1	Trace	Trace, T	race						
1	2	0.005				COPE				
2	3	Trace			<u>7</u>	17-1	2			
3	44	Trace				81				
4	5	Trace								
26605	6396	0.01]]			1			
date Mar.	2, 1987		(CERTIFIED CO	RREC	te	exe file	$\overline{\mathcal{V}}$		

ASSAYERS LIMITED ONTARIO: 20 VICTORIA STREET, SUITE 506 - TORONTO, M5C 2N8 - TEL: (416) 366-3100

CERTIFICATE OF ANALYSIS

FOR Mr. Guy Hinse.

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
26319	6484	0.005		$\int dx = dx$				
26320	5	Trace			87-			
1	6	Trace		γ	SLU-	21		
2	7	0.005			8'			
26323	6488	0.005						
)			· · · · · · · · · · · · · · · · · · ·	
						·		
				·				·
•								
· · · · · · · · · · · · · · · · · · ·								
DATE Mai	rch 2, 1987		c -		De	sepla	(/	

CERTIFICATE OF ANALYSIS

FOR G. Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPF %	PER	ZINC %			
25622	6431	0.005	GOLD CHEC	ĸs					
3	2	Trace							
4	3	Trace							
5	4	Trace							
6	5	Trace							
7	6	Trace	Trace, Tr	ace					
8	7	Trace							
9	8	Trace							
25630	9	Trace			$\overline{7}$	7 520	GE		
1	6440	Trace				7 50	2		
2	1	Trace				9	1		
3	2	Trace							
4	3	Trace					·		
5	4	Trace	Trace, Tr	ace					
6	5	Trace							
7	6	Trace			,- <u></u>				
8	7	Trace			<u>_</u>				
9	8	Trace							
25640	9	0.01							
25641	6450	0.005							

DATE

March 2, 1987

CERTIFIED CORRECT

CERTIFICATE OF ANALYSIS

FOR G. Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %		
25642	6451	Trace	GOLD CHE	скя			
3	2	Trace					
4	3	0.005					
5	4	Trace				E	
6	5	Trace			SLUDG		
7	6	Trace			SLUDE B1-		
8	7	Trac e					
9	8	Trace					
25650	9	0.005					
1	6460	0.005					
2	1	Trace					
3	2	Trace					
25654	6463	0.005					

DATE March 2, 1987

CERTIFIED CORRECT

e le cher

Ŵ

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

CERTIFICATE OF ANALYSIS

FOR Mr. G. Hinse

	LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
	26299	6464	0.005	GOLD CHEC	ks				
	26300	5	0.02						
	1	6	Trace						
	2	7	Trace						
	3	8	Trace		/				
	4	9	Trace						
	5	6470	0.01						
	6	1	0.005	•					
	7	2	0.005				aE		
	8	3	Trace			SLOD 81	2		
	9	4	Trace			81	-		
	26310	5	Trace			·			
	1	6	0.005	Trace, 0	005			-	
	2	7	Trace						
	3	8	0.005	·					
	4	9	Trace						
∎∥		6480	Trace					<u></u>	
	66	1	Trace	· · · · · · · · · · · · · · · · · · ·					
	7	2	Trace				······································	· · · · · · · · · · · · · · · · · · ·	
	26318	6483	Trace		/		,		

DATE

CERTIFIED CORRECT

10 Useller

March 2, 1987

CERTIFICATE OF ANALYSIS

FOR Mr. Guy J. Hinse

	SAMPLE NO.	OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
31683	6518	Trace	GOLD CHE	CKS	\square			
4	9	0.005						
5	6520	0.005						
6	1	Trace						
7	2	0.005						
8	3	0.02				ali.		
9	4	0.005		•	1 6	perila		
31690	5	0.02	0.02, 0.0	2		02E- 16- 16-		
1	6	0.005			\geq			
2	7	Trace						
3	8	Trace			1			
4	9	0.04						
5	6530	0.005						
6	1	Trace						
7	2	0.005					. .	
8	3	0.005			<u> </u>			
9	4	0.005						
31700	5	Trace						
1	6	0.005			/			
31702	6537	0.02						

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

 \checkmark

CERTIFICATE OF ANALYSIS

Mr. Guy J. Hinse FOR

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC		
31703	65 38	Trace	GOLD CH	CKS)		
4	9	Trace				de.	
5	6540	Trace			7 00	ALL IL	
6	1	Trace			6	37-10	
7	2	Trace					
8	3	Trace					
9	4	Trace	-		\sum		
331710	5	Trace	-				
1	6	Trace				REI	
2	7	0.01	0.01, 0.	005	$\left \right\rangle u$	h-11	
3	8	0.005				6	
4	9	Trace					
5	6550	Trace					
31716	6551	0.005					
					`		
_							
	<u> </u>						
DATE Mar. 1	1, 1987		c	ERTIFIED CORRE	Ha	leche	

 \bigtriangledown

CERTIFICATE OF ANALYSIS

FOR G. Hinse

.

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC X			
39355	6489	Trace	GOLD CHEC	ĸs				
6	6490	0.005						
7	1	Trace		/				
8	2	Trace		/				
9	3	0.005						
39360	4	0.005						
1	5	Trace						
2	6	Trace						
3	7	Trace		X	\mathcal{O}	50	/	
4	8	Trace				1.1	>	
5	6499	0.005	Trace, O.O	05		81		
6	6501	0.01			· · · · ·			
7	6503	0.005						
8	4	Trace	<u></u>	<u> </u>				
9	5	Nil						
	6	Trace						
1	7	Trace						
2	8	Trace						
3	9	Trace		/				
<u></u>	6510	Trace				$\square \rho _$		
DATE	March 26, 19	987		CERTIFIED CORREC	those	lacht		

CERTIFICATE OF ANALYSIS

FOR G. Hinse

	LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
	39375	6511	Nil	GOLD CHEC	кs				
	6	2	Trace						
	7	3	Trace	Trace, Tr	ace		<u>_</u>		
	8	4	Trace				U ,		
	9	5	Nil				0511	2	
	39380	6	Nil	-			0 "		
	1	6517	Trace		/				
	2	6552	0.02	-		,			
	3	3	0.04				1		
	4	4	0.11	0.11, 0.1	1	1219-	81-11		
	5	5	0.09	0.09, 0.0	19				
	6	6	Trace			-	·		
	7	7	Trace						
	8	8	0.005						
	9	6559	0.03	0.03, 0.0	13 /				
יי - וו	39390	6561	0.005			· · · · · · · · · · · · · · · · · · ·			
	1	2	Trace		_/		-18		
l I	2	3	0.01		>0	pre 81			
	3	6564	0.01		· · · · · · · · · · · · · · · · · · ·				
Į	39394	6566	0.005						
	date Ma	arch 26, 198	7	c	CERTIFIED CORREC		Jus	ila	

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHOETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES FOUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

 \bigtriangledown

CERTIFICATE OF ANALYSIS

FOR G. Hinse

LAB NO.	SAMPLE NO.	GOLD CZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
39395	6567	Trace	GOLD CHE	СКЅ)	A 1	2	
6	8	0.005				8-1-1	0	
7	9	0.03			7 600			
8	6570	0.005			5		6	
9	6574	0.01			Ń,	87-	18	
39400	5	0.005			5 600			
1	6576	Trace	Trace, Tr	ace	5			
2	6578	Trace						
39403	6579	Trace						
		-						
·				,				
	·							
l 								
						<u></u>		
II						<u>^</u>		
date Mar	ch 26, 1987	· · · · · · · · · · · · · · · · · · ·		CERTIFIED CORREC		leep	he	
SATE FOR LO	SPECIFICALLY STATE SSES AND GAINS INHE ON CONTRAIRE, LES E	RENT IN THE FIRE.	ASSAY PROCESS.		\smile			I≜.∕

CERTIFICATE OF ANALYSIS

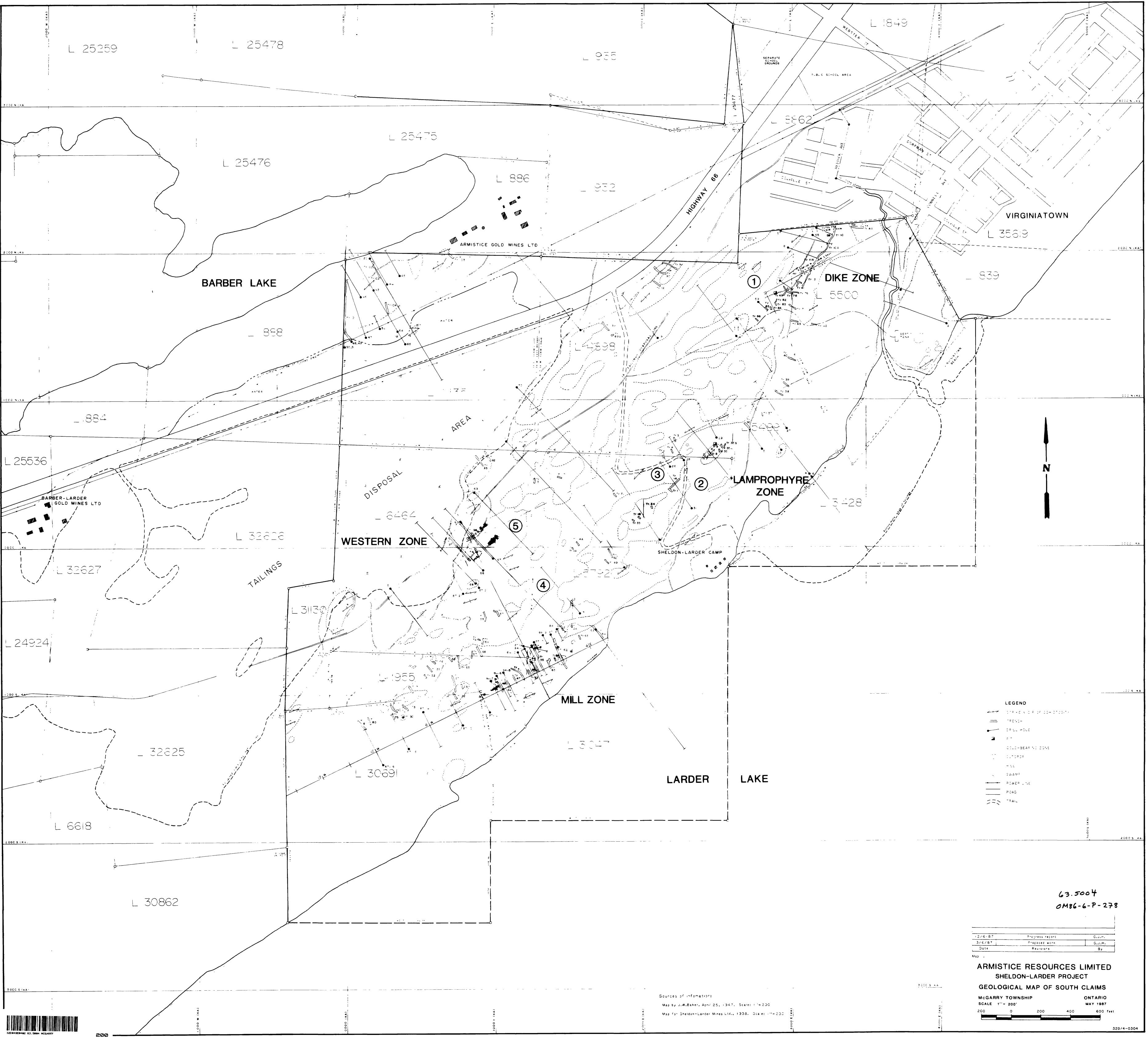
FOR Mr. G. J. Hinse

LA	B NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %		
41:	239	6500	Trace	GOLD C	HECKS	lore	87-15	
	240	6502	Trace			~	и	
	1	6560	0.005	0.005,	0.005	lore	87-17	
	2	6565	0.02]		
	3	6571	Trace			> lov	.0	
	4	2	0.01			81-	18	
	5	6573	0.02)		
	6	6577	0.03	0.03,	0.03	lore	87-18	
	7	6580	0.03					
	8	1	0.02					
	9	2	Trace					
41	.250	3	Trace					
	1	4	0.04		1 00			
 ■	· 2	5	0.05		100	g		
-	3	6	0.02		81-1			
"	4	· 7	0.02					
	5	8	0.01					
	6	9	0.03					
ll ■	7	6590	0.005	<u>\</u>				
<u>[4</u>]	1258	6591	Trace	<u> </u>		<u>h</u>	l,,	
D	Apri	1 1, 1987			CERTIFIED CORREC	Jeel	uller	

UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. SAUF MENTION CONTRAIRE, LES ESSAIS POUR L'OR ET L'ARGENT, NE SONT PAS CORRIGES POUR LES PERTES ET GAINS QUI SONT INHERENTS AU PROCEDE D'ANALYSE.

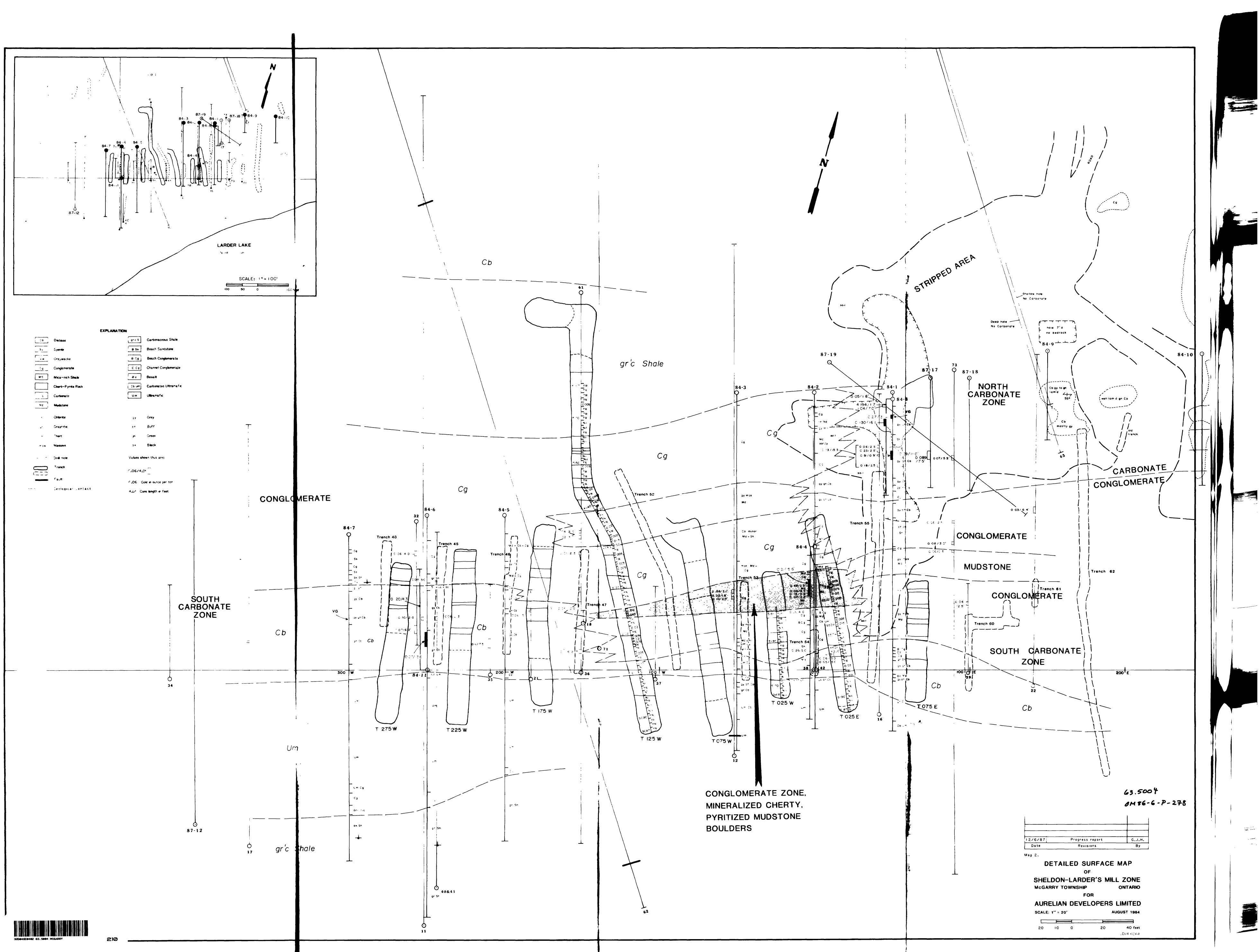
 \bigtriangledown

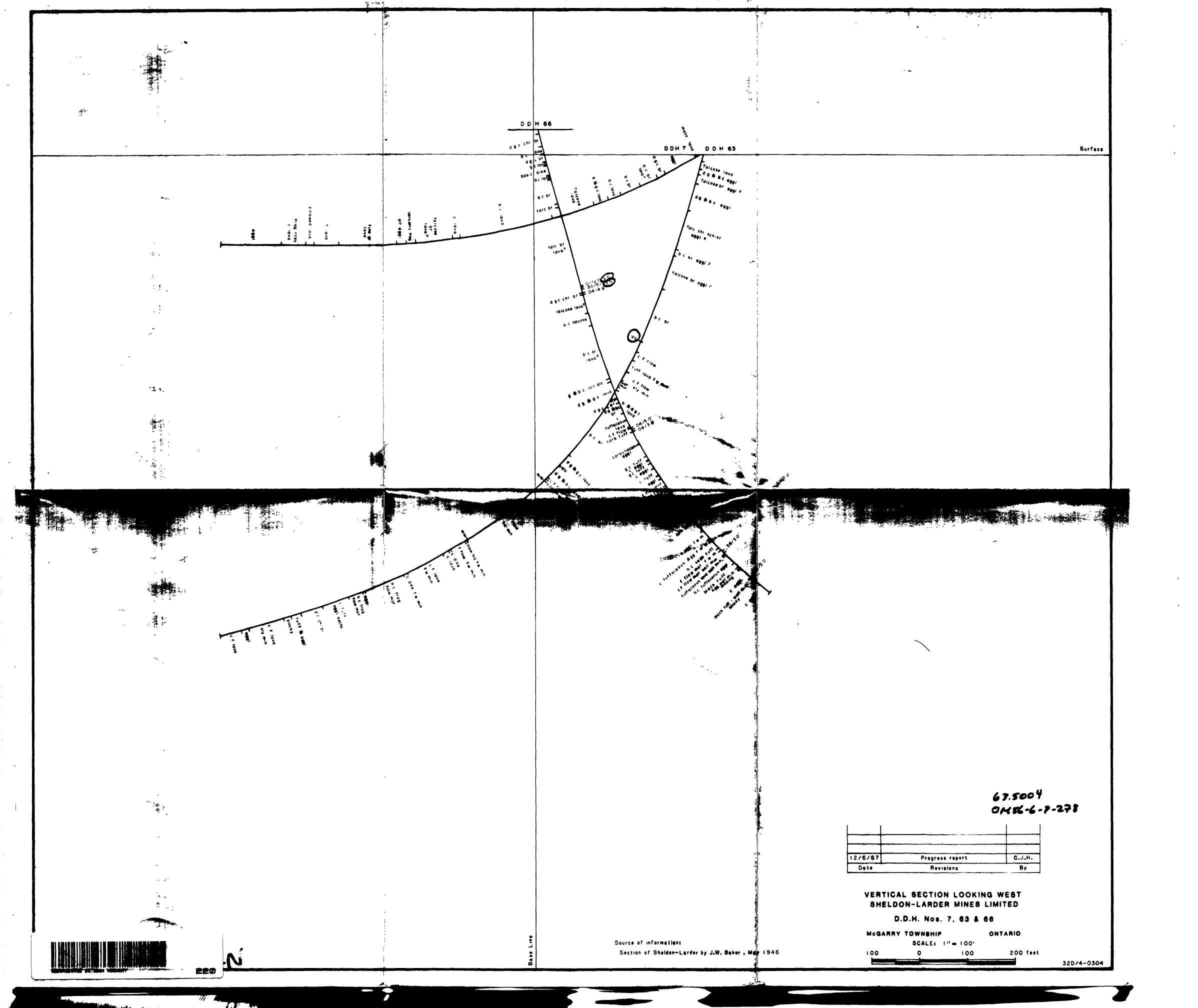
CERTIFICATE OF ANALYSIS

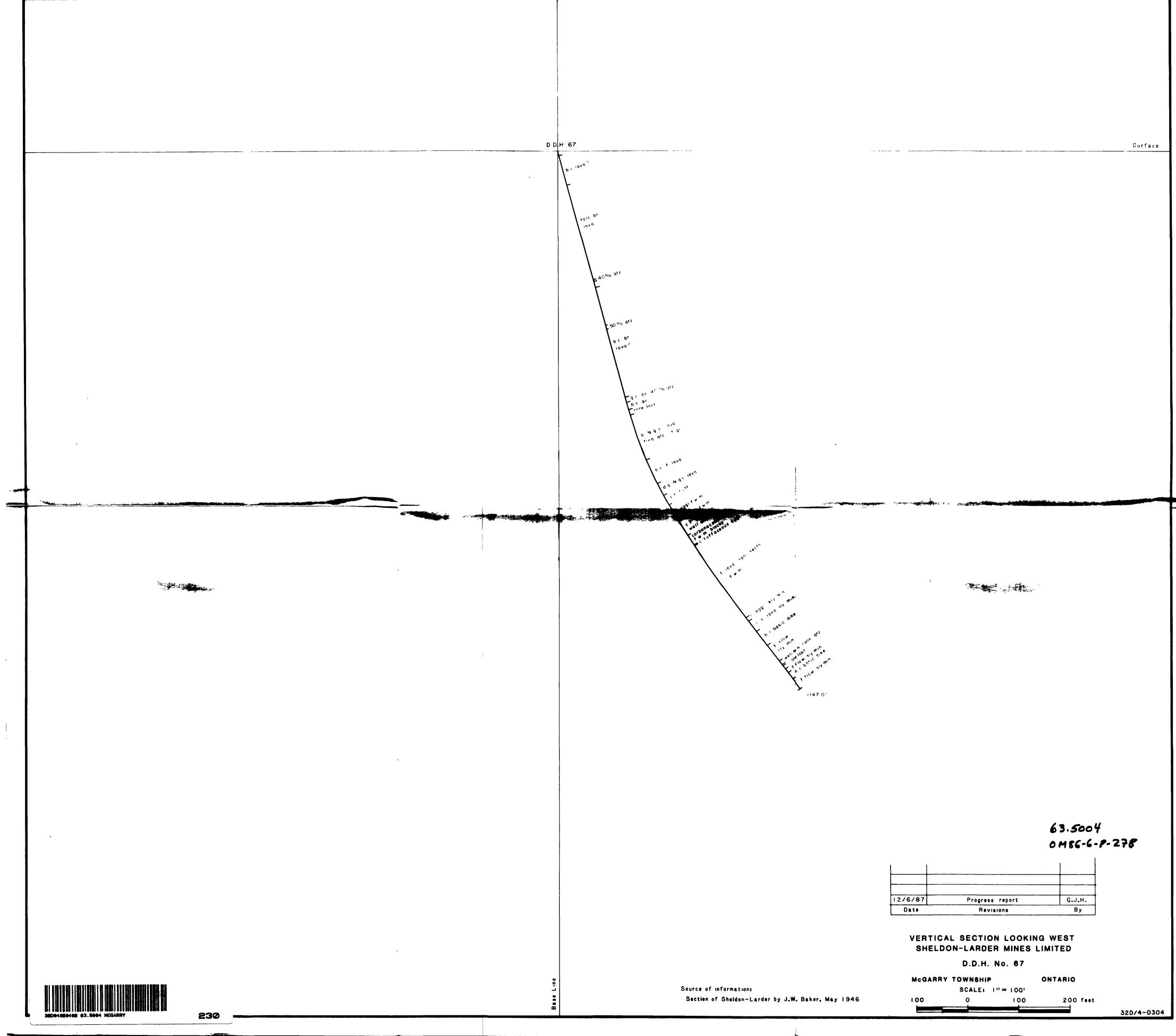

FOR Mr. G. J. Hinse

LAB NO.	SAMPLE NO.	GOLD OZ. PER TON	SILVER OZ. PER TON	COPPER %	ZINC %			
41259	6592	Trace	GOLD C	HECKS	1		······································	
41260	3	Trace						
1	4	Trace						
2	5	Trace	Trace,	Trace	100	9		
3	6	0.02			8			
4	7	0.005						
5	8	0.01	0.01, (0.01				
6	9	Trace			γ			•
7	6600	Trace			/			
8	6623	Trace						
9	4	Trace					ļ	
41270	5	Trace			XC	00		
1	6	Trace			I/	81-1	/ /	
2	7	Trace			<u> </u>			
3	8	Trace)			
4	9	Nil						
5	6630	Trace			for			
6	1	Trace			(87	-21		
41277	6632	Nil						
					h			

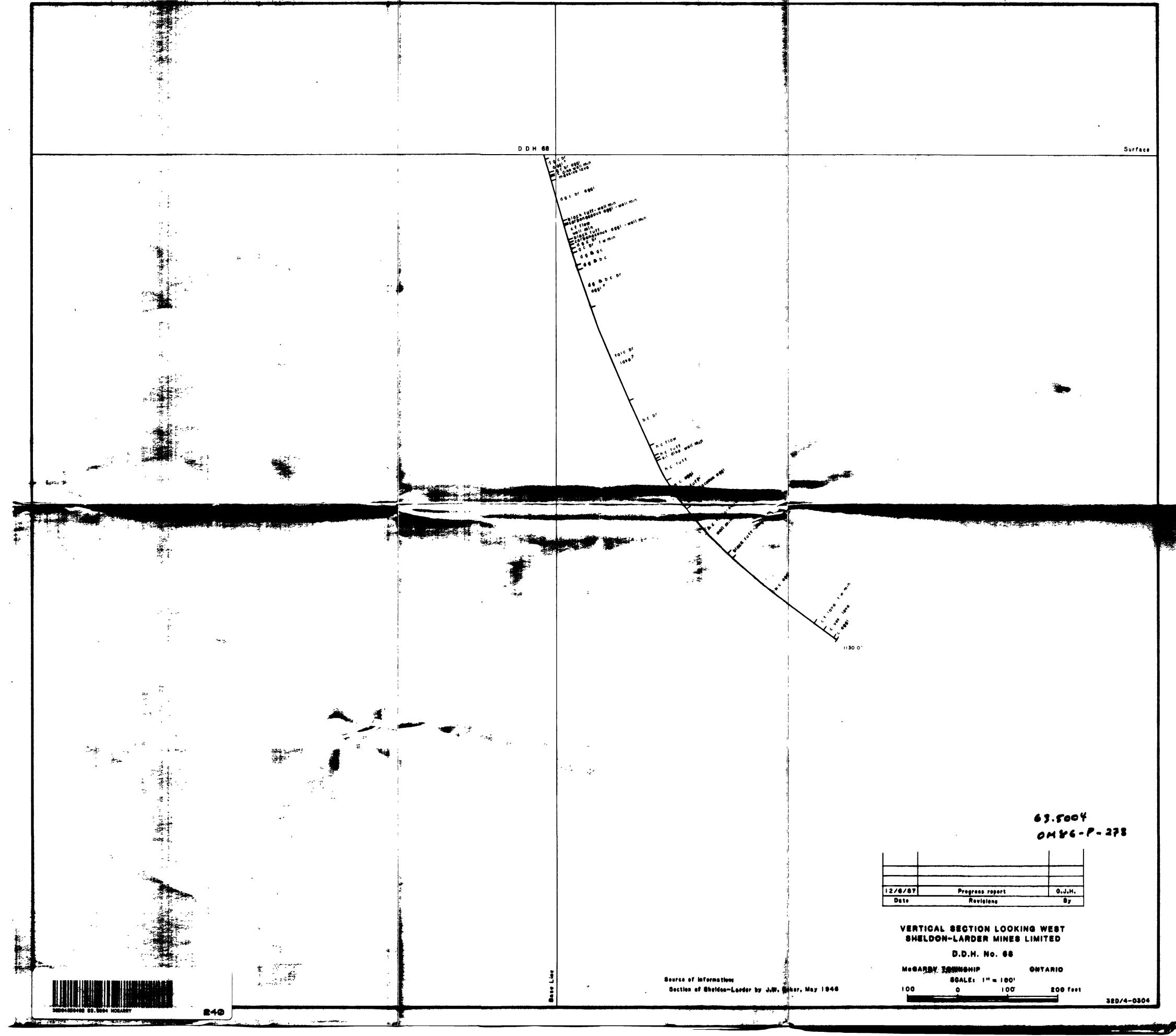
April 1, 1987

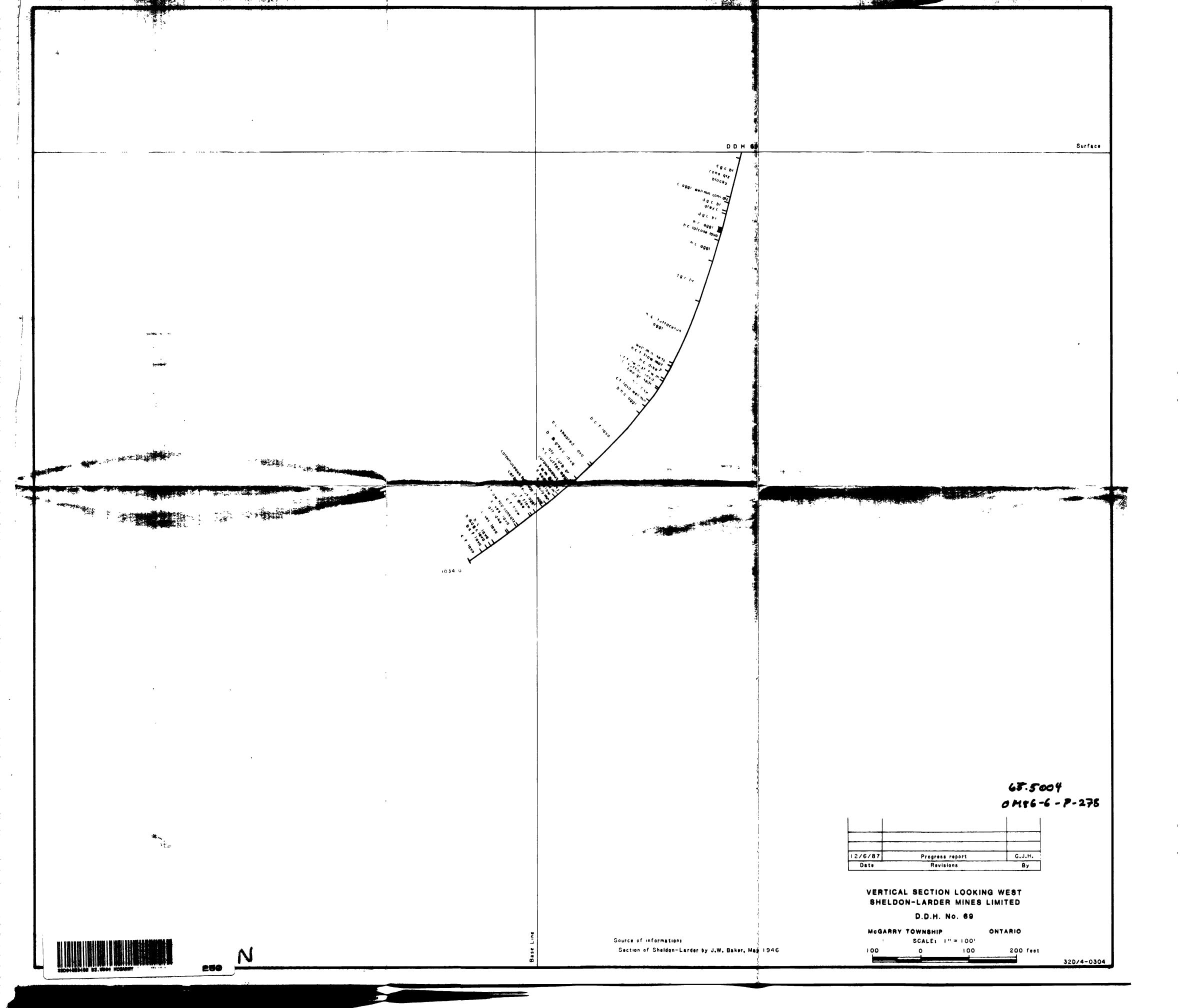

CERTIFIED CORBECT Kelind.

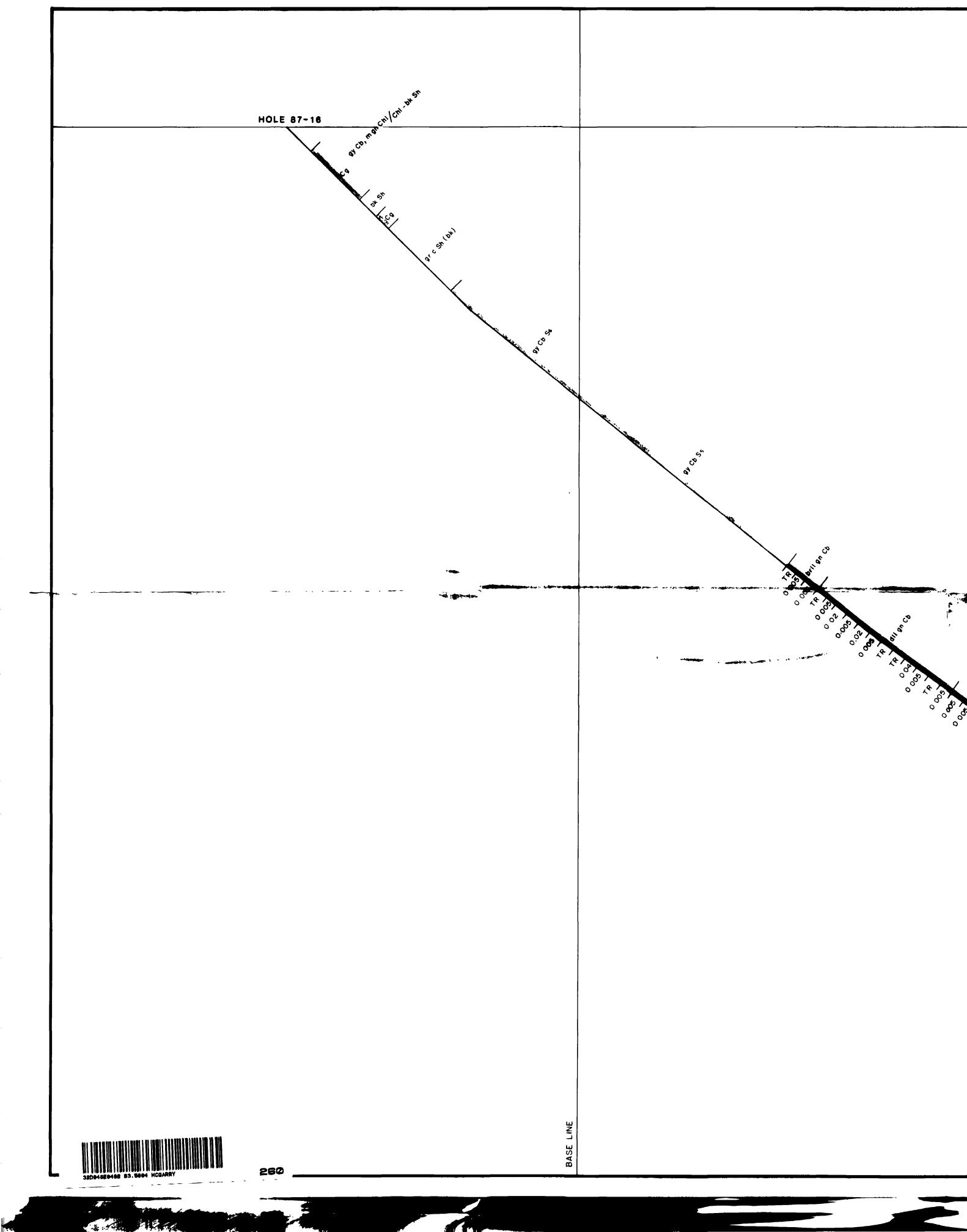




(Y	SCALE 1" = 2 200	0 200	MAY 1987 400 600 fe
	MCGARRY T		ONTARIO
3000 5 KA	GEOLOGI	CAL MAP OF S	OUTH CLAIMS
		ICE RESOUR	CES LIMITED
	Map .		
	Date	Revisions	Ву
	3/6/87	Proposed work	G.J.H.
	12/6/87	Progress report	G.j. . .






£

Л

÷

SURFACE

LEGEND

Q QUARTZ Ch CHERT MUDSTONE CARBONATE gr'c Sh GRAPHITIC SI BS SANDSTONE BIO SILTSTONE C CD CHANNEL CO CONGLOMERA Agg AGGLOMERAT CARBONATED ULTRAMAFIC

GRAPHITIC SHALE SANDSTONE SILTSTONE CHANNEL CONGLOMERATE CONGLOMERATE AGGLOMERATE CARBONATED ULTRAMAFIC ULTRAMAFIC GREY BUFF

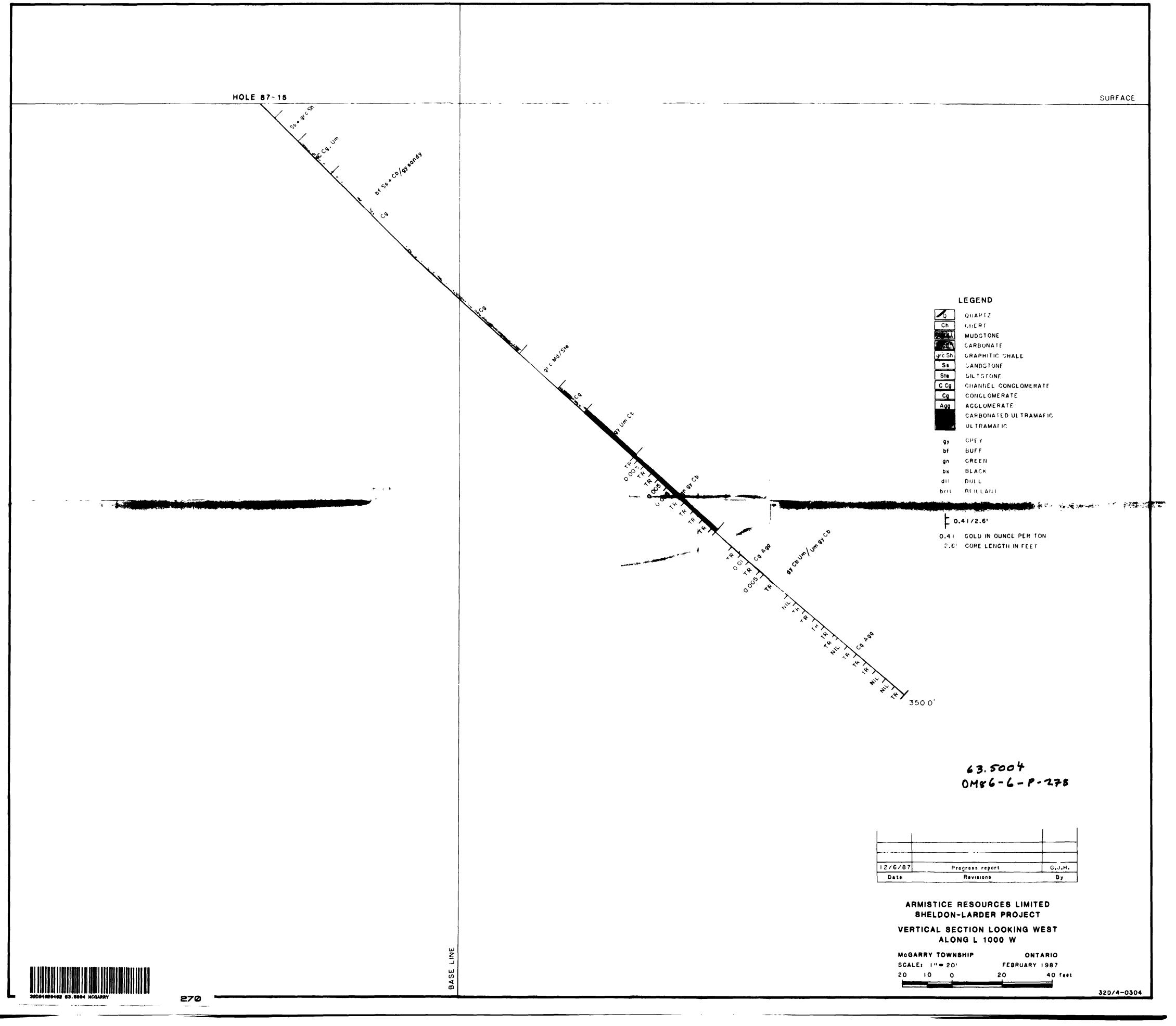
gn	GREEN
b k	BLACK
411	0111.1

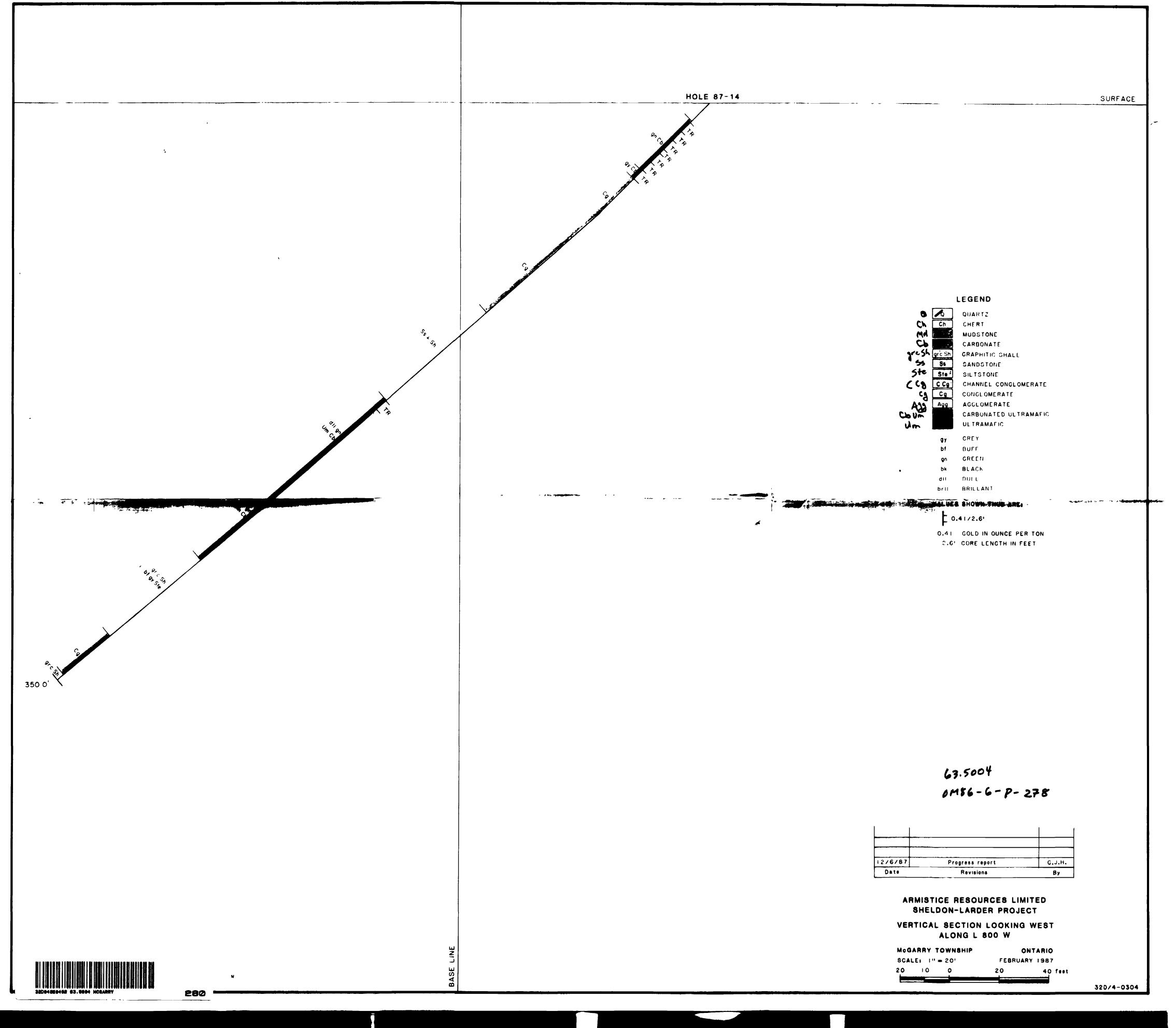
gy bf

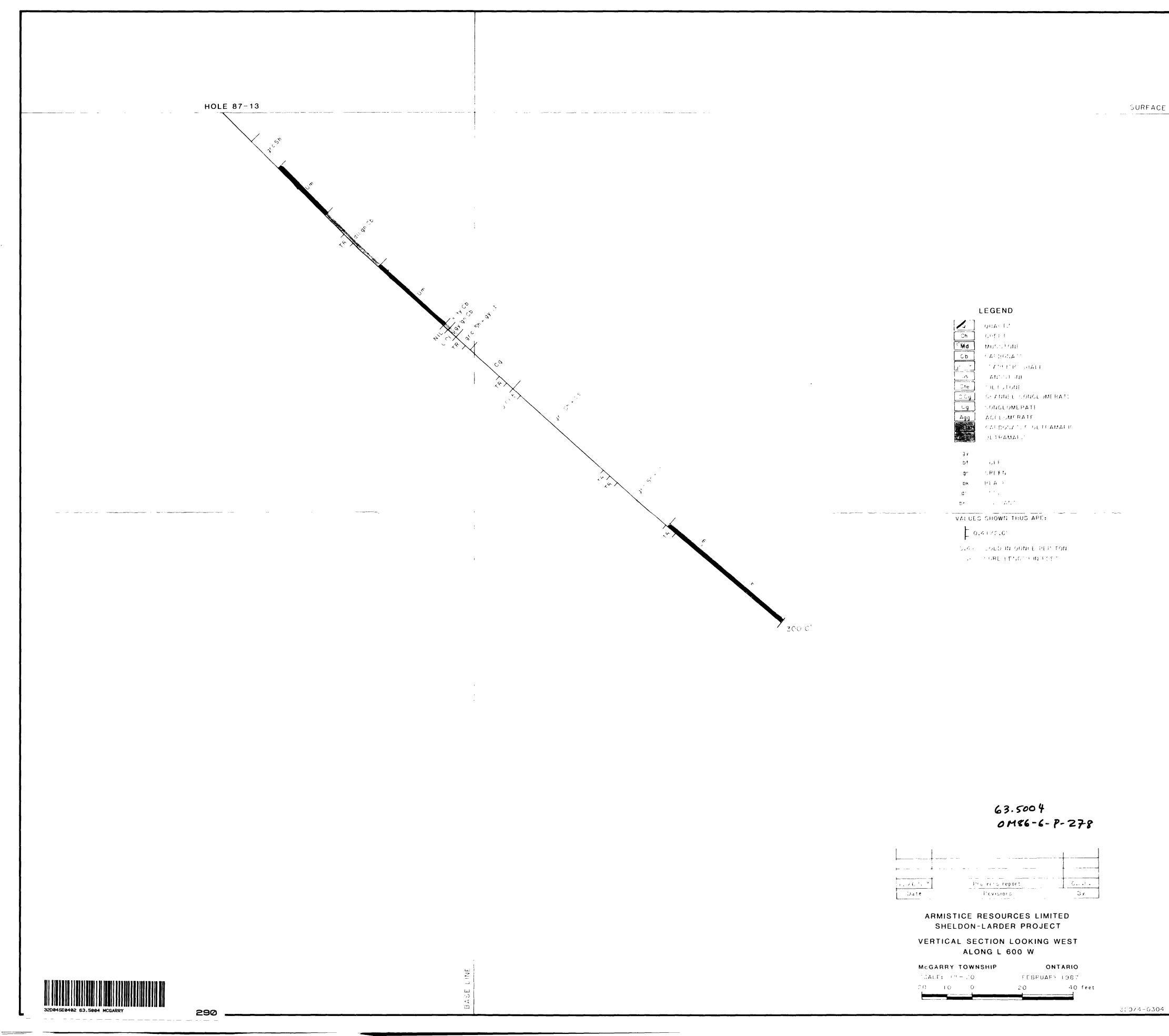
DULL BRILLANT

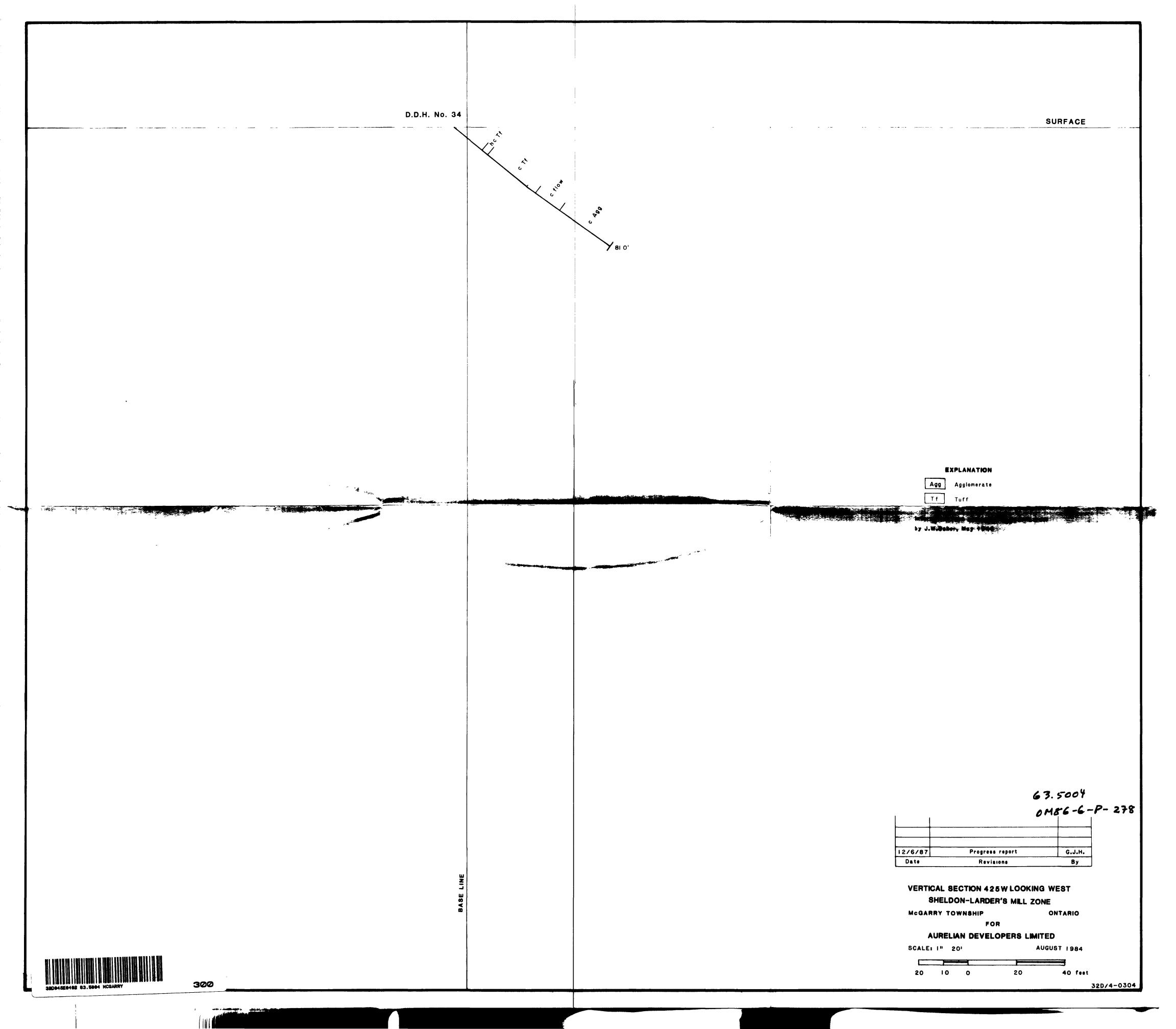
0.41/2.6

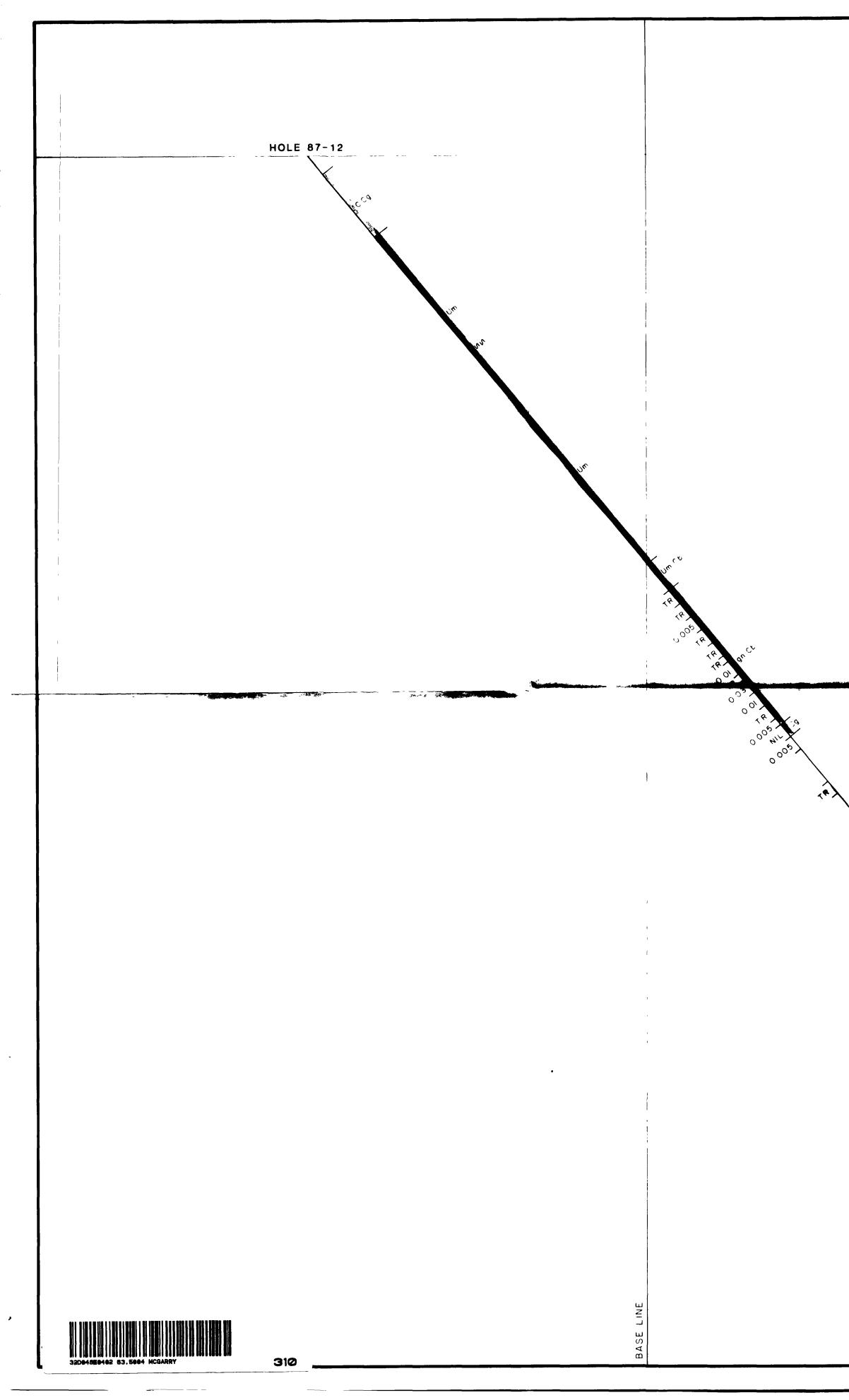
350 0'

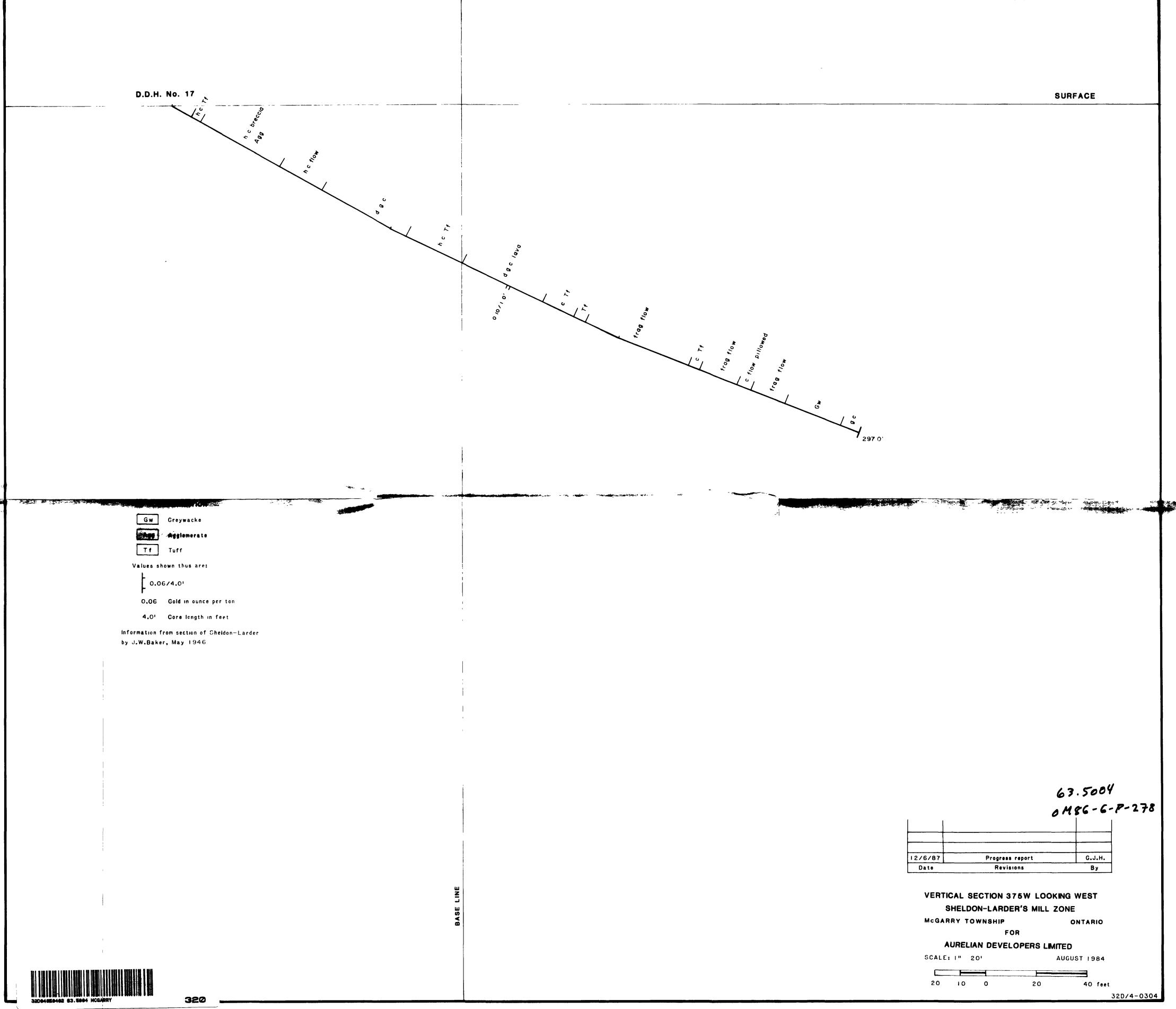

0.41 GOLD IN OUNCE PER TON

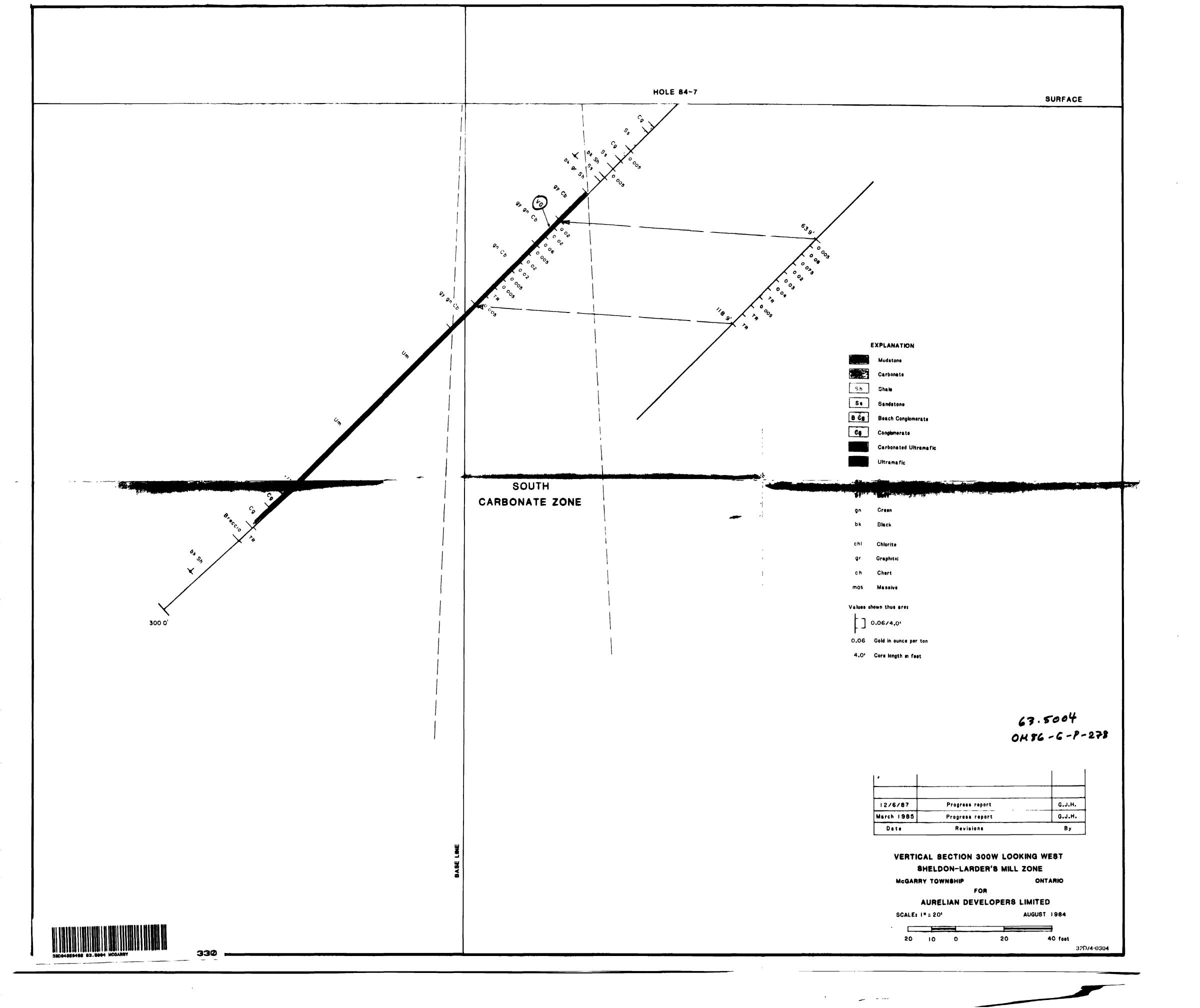

2.6' CORE LENGTH IN FEET

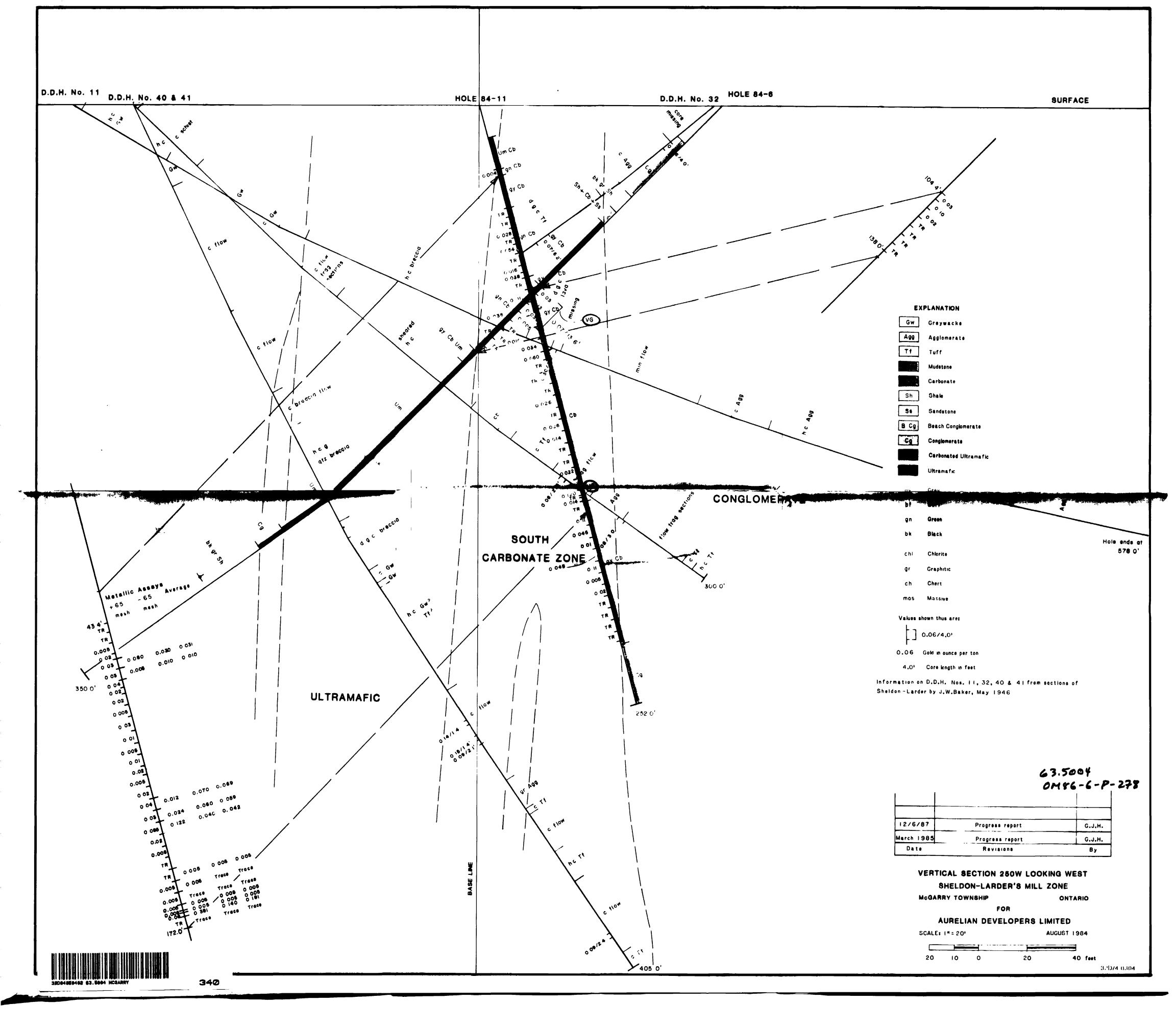

63.5004 OM86-6-P-278

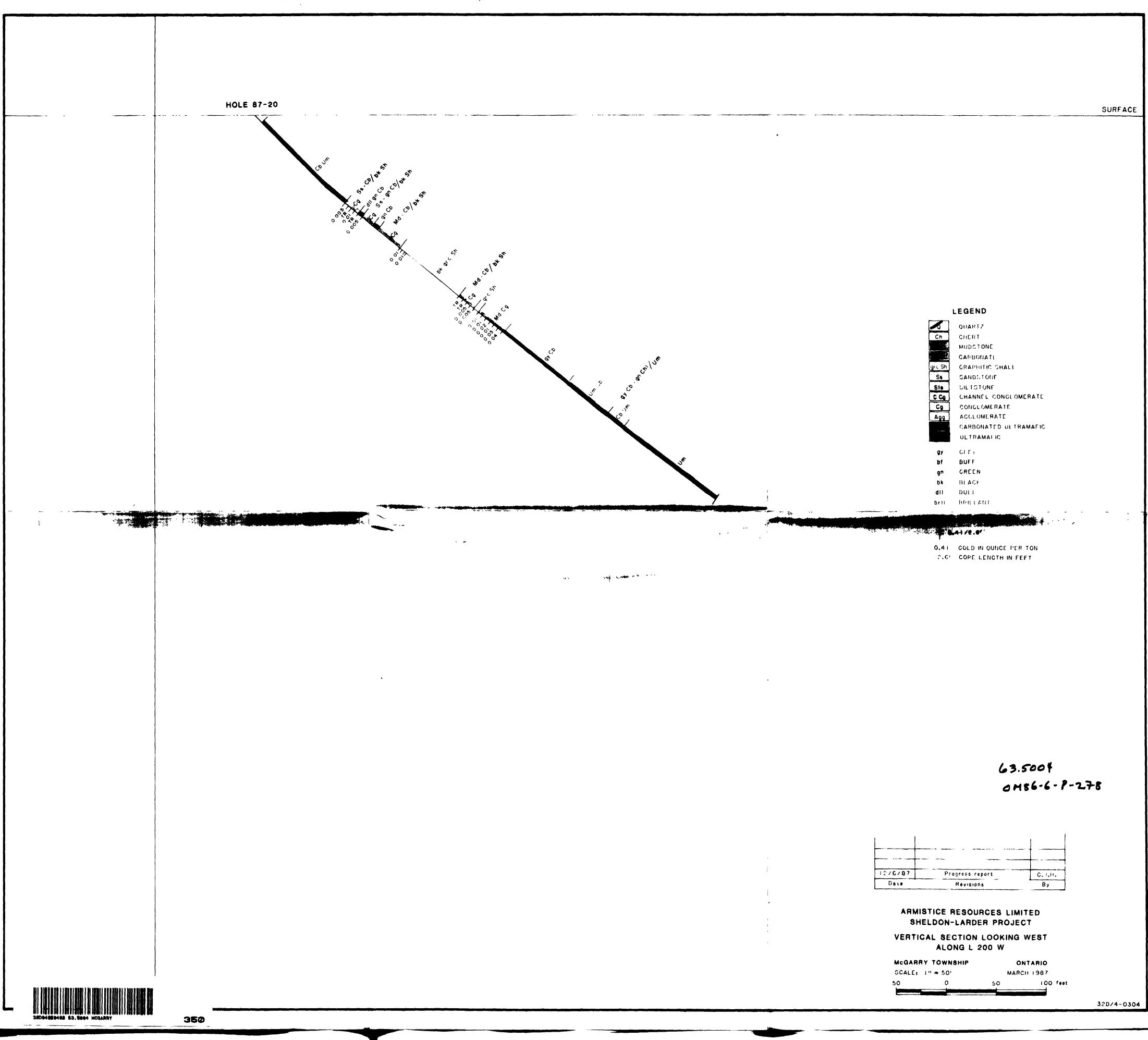

0 / 6 / 0 7			
2/6/87 Date	Progress r Revisio		G.J.H. By
A	RMISTICE RESOL	JRCES LIN	AITED
•	RMISTICE RESOL Sheldon-lard		
		ER PROJ	ECT
	SHELDON-LARD	ER PROJ	ECT
VE	SHELDON-LARD RTICAL SECTION	ER PROJI LOOKING 1200 W	ECT
VE	SHELDON-LARD RTICAL SECTION Along L	ER PROJI LOOKING 1200 W	ECT WEST NTARIO

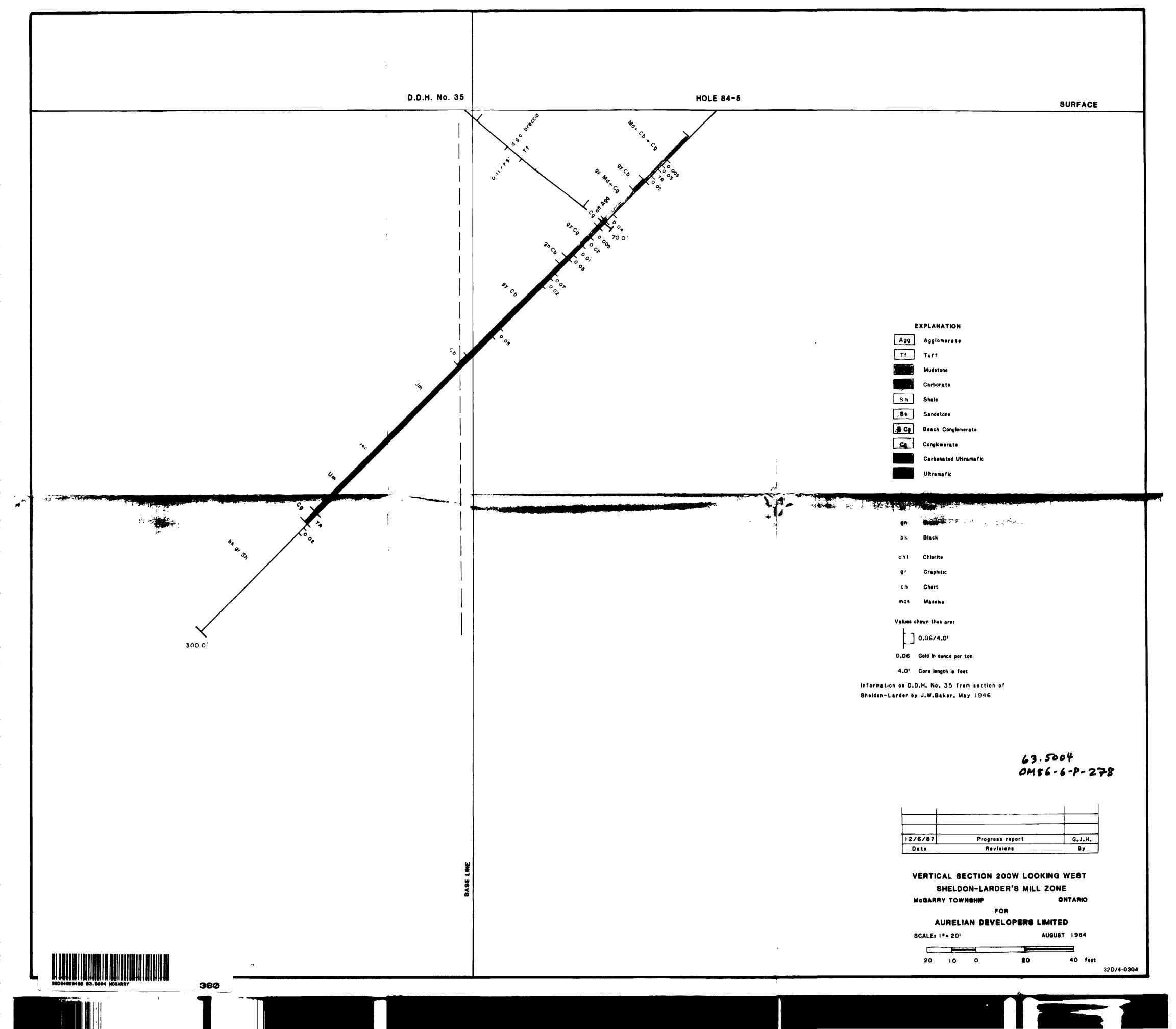

320/4-0304

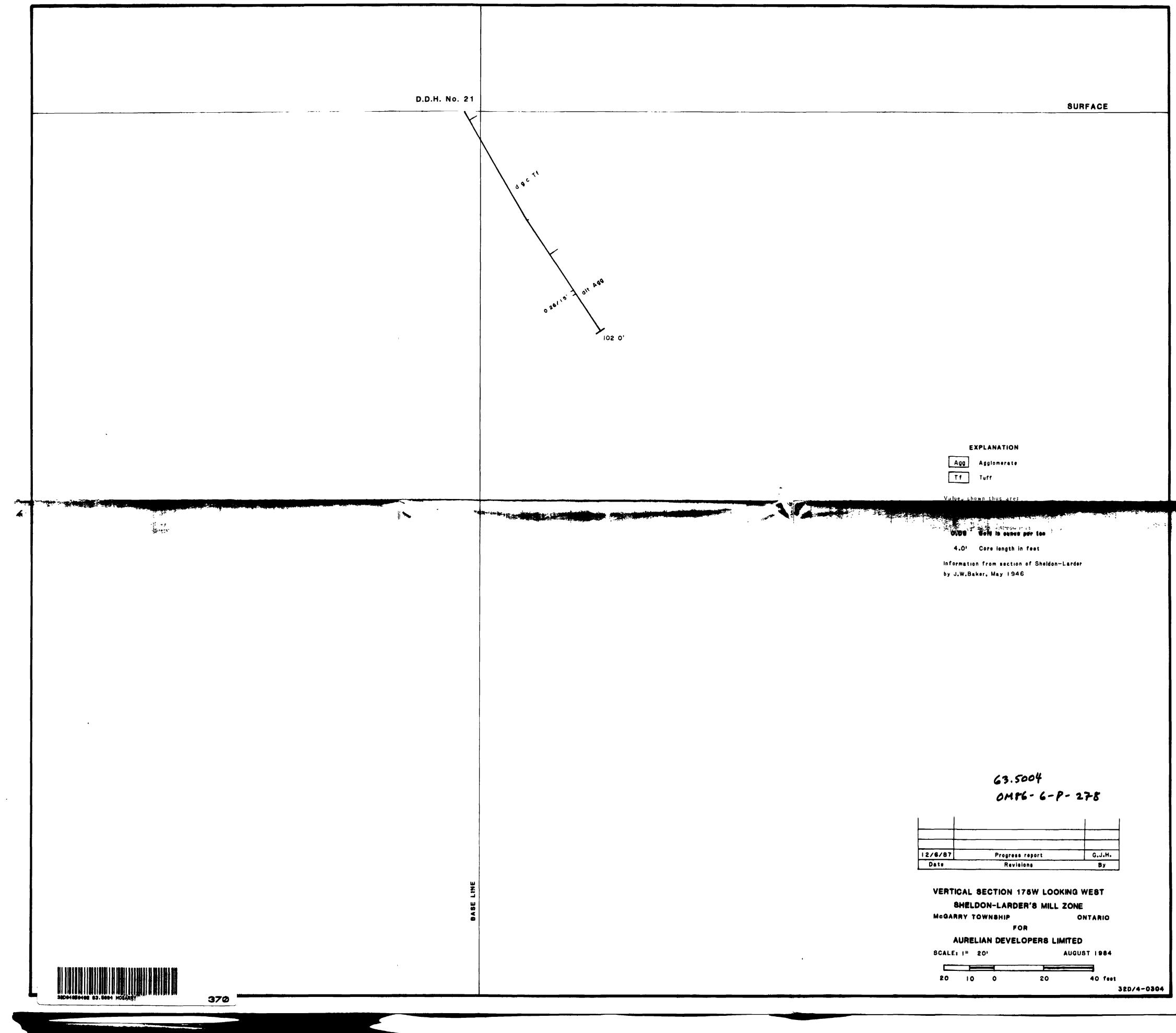


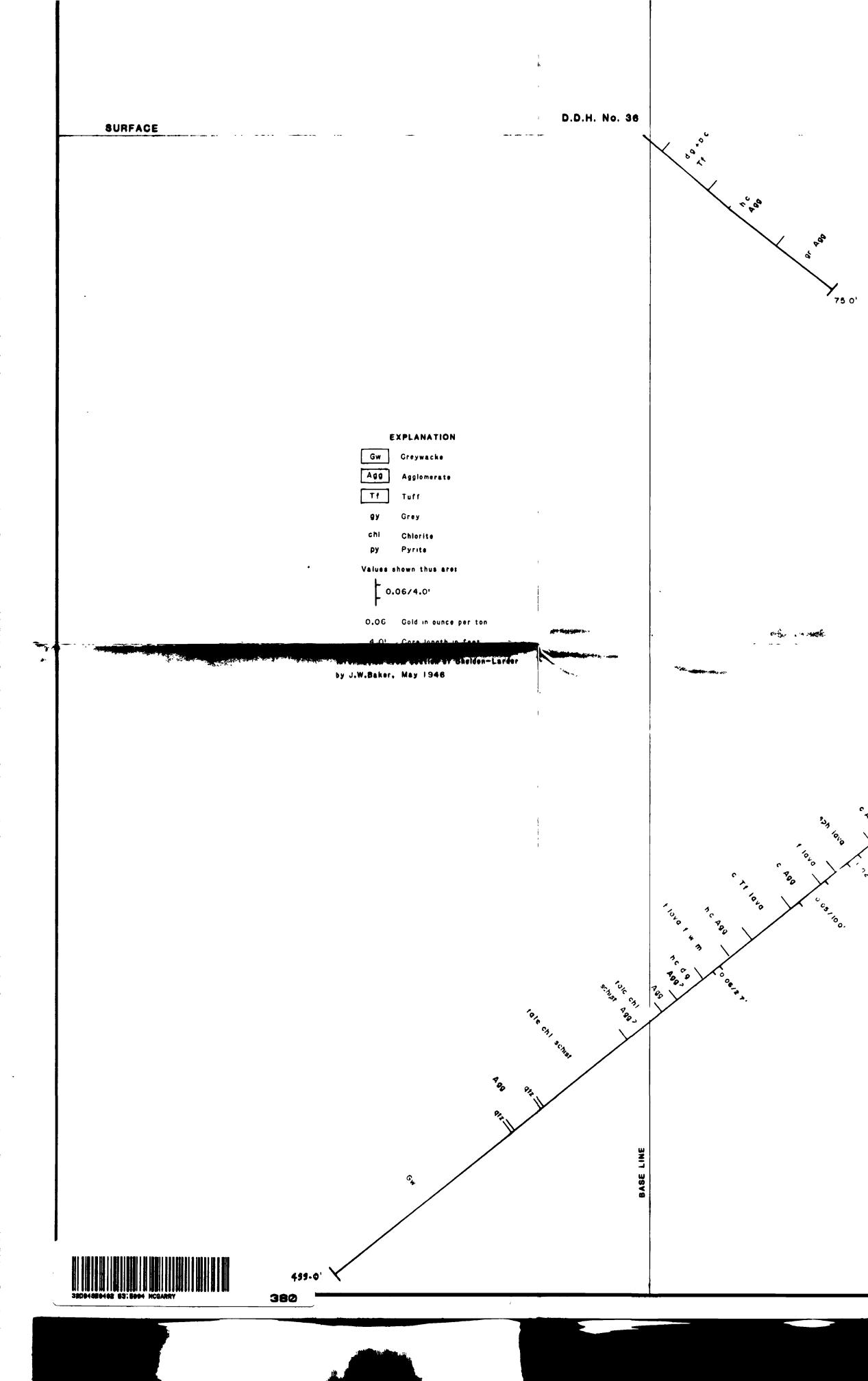


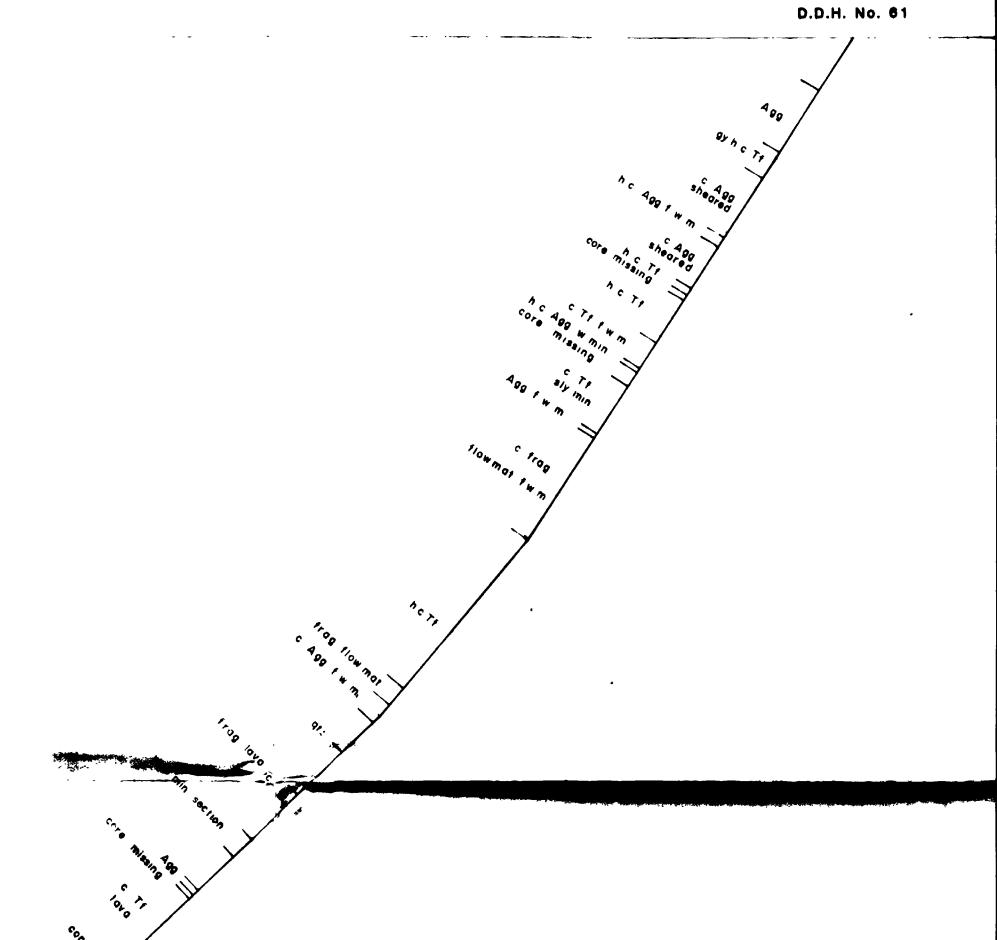

.


		SURFACE
		LEGEND QUARTZ Ch CHERT MUDSTONE CARBONATE Grč Sh GRAPHITIC SHALE Ss SANDSTONE Sta SILTSTONE C.C.Q CHANNEL CONGLOMERATE C.Q CONGLOMERATE Agg AGGLOMERATE CARBONATED ULTRAMAFIC ULTPAMAFIC QY GPEY bf BUFF gn GREEN
oicon con action of the second		bk BLACK di DULL brit BRILLANT C.41/2.6' O.41 GOLD IN OUNCE PER TON 2.6' CORE LENGTH IN FEET
91 5N 59	350 0'	63.5004 OM86-6-8-278
		12/6/87 Progress report C'.H. Date Revisions By ARMISTICE RESOURCES LIMITED SHELDON-LARDER PROJECT VERTICAL SECTION LOOKING WEST ALONG L 400 W McGARRY TOWNSHIP ONTARIO ^CALE: 1" = 20' FEBPUARY 1987 20 40 feet 32D/4-0304


-



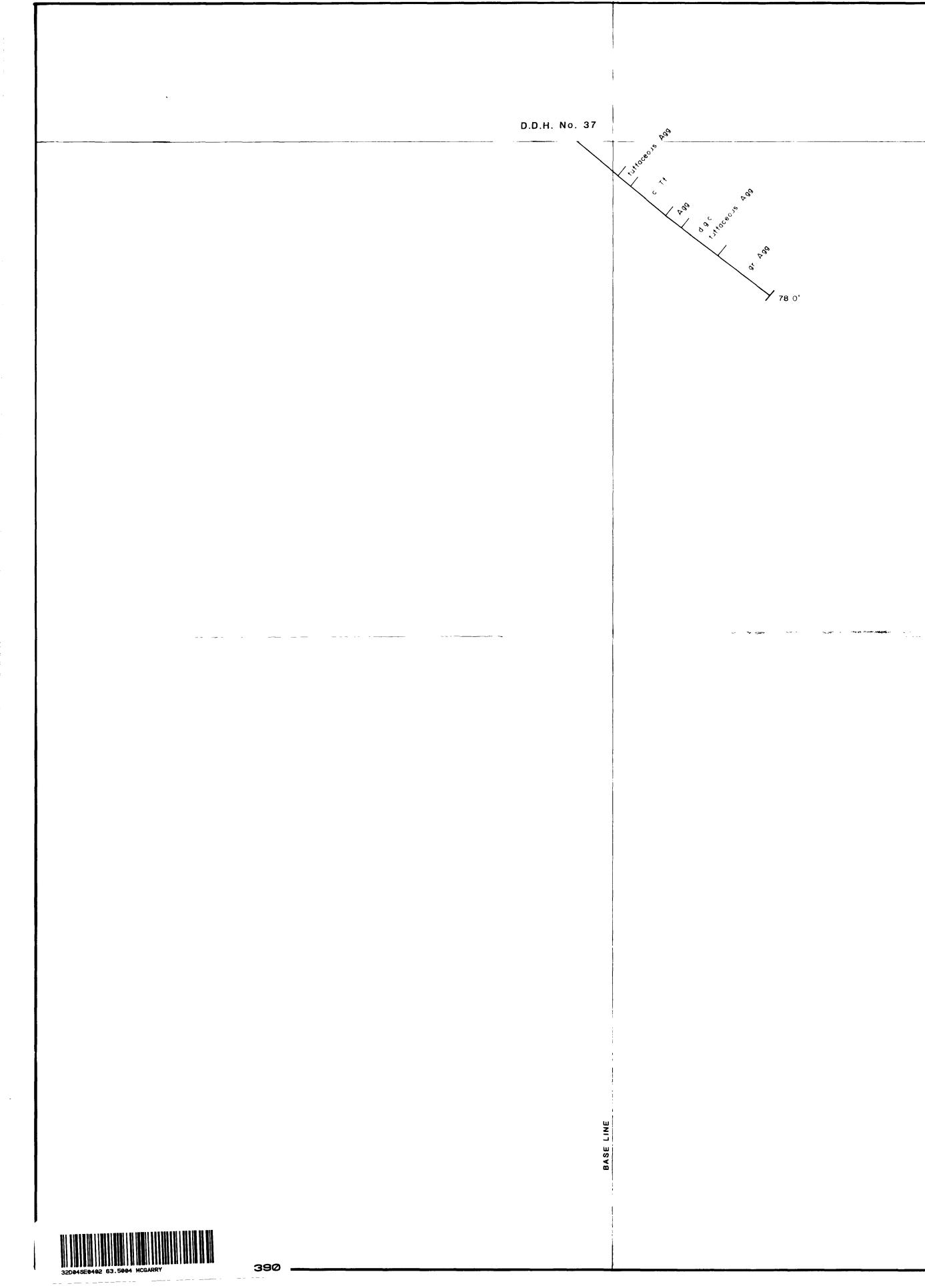




ິງ.

63,5004 UM86-6-P-275

2/6/87 Progress report	G.J.H.
	<u> </u>


VERTICAL SECTION 150W LOOKING WEST SHELDON-LARDER'S MILL ZONE MGGARRY TOWNSHIP ONTARIO FOR AURELIAN DEVELOPERS LIMITED SCALEI 1" 20' AUGUST 1984

20

20 10 0

320/4-0304

40 feet

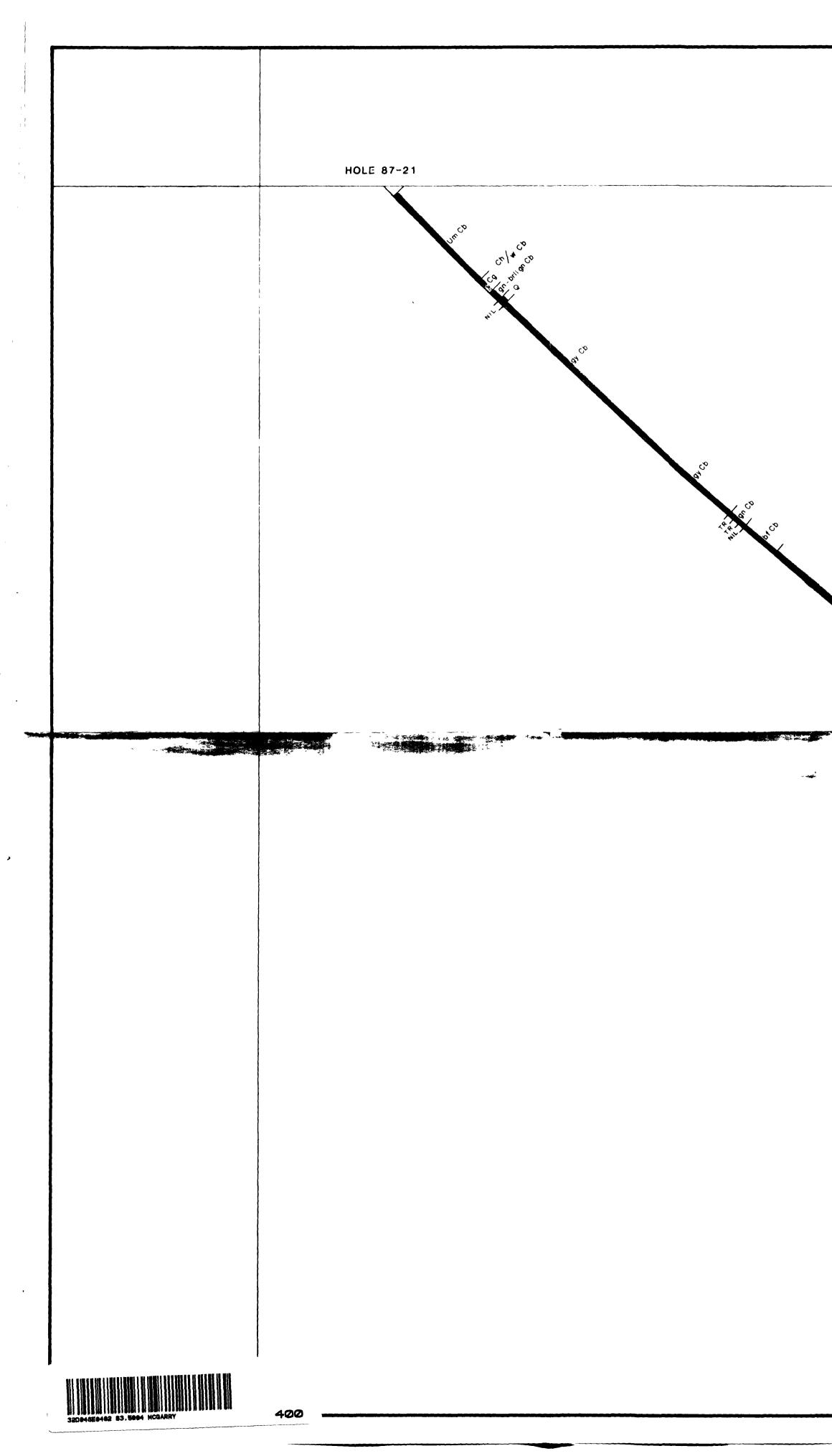
SURFACE

Agg Aggiomerate Tf Tuff

gr Graphitic

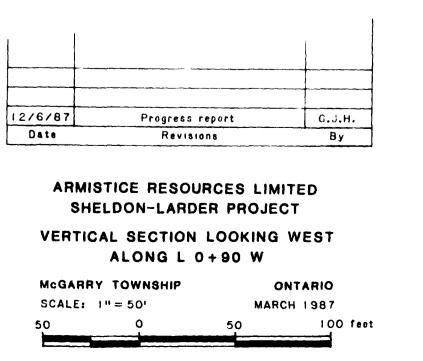
---- ,

EXPLANATION

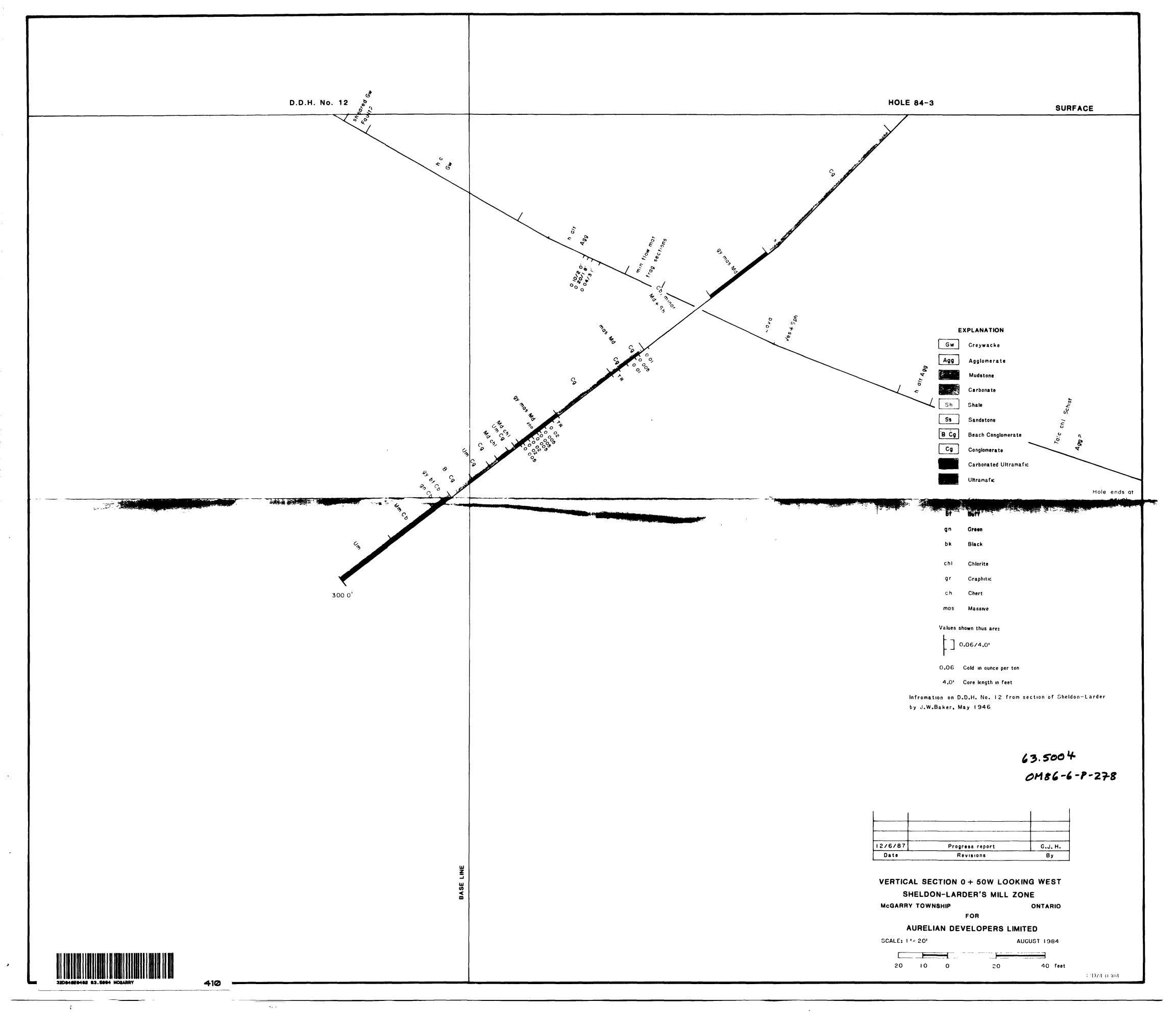

.

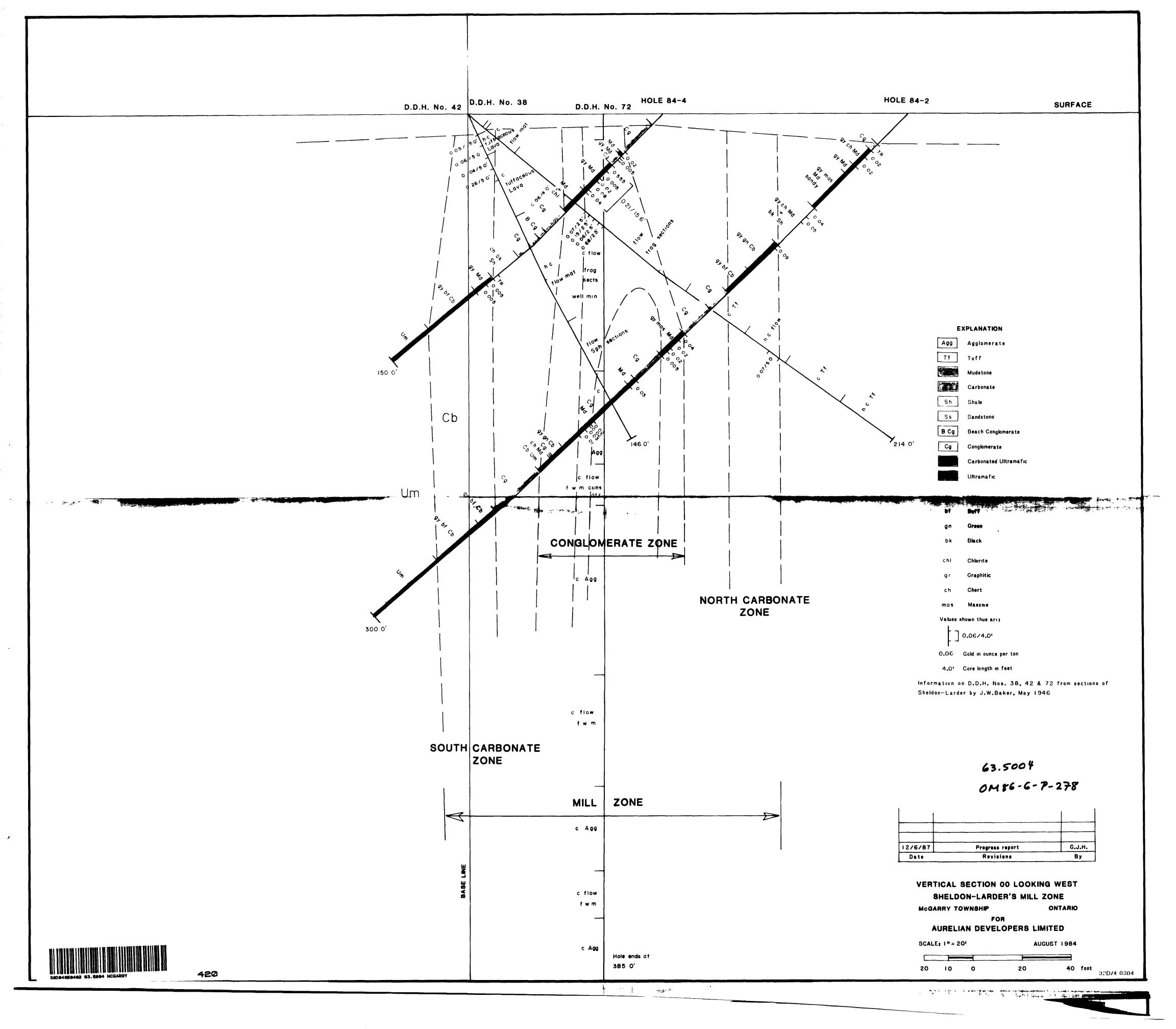
Information from section of Sheldon-Larder by J.W.Baker, May 1946

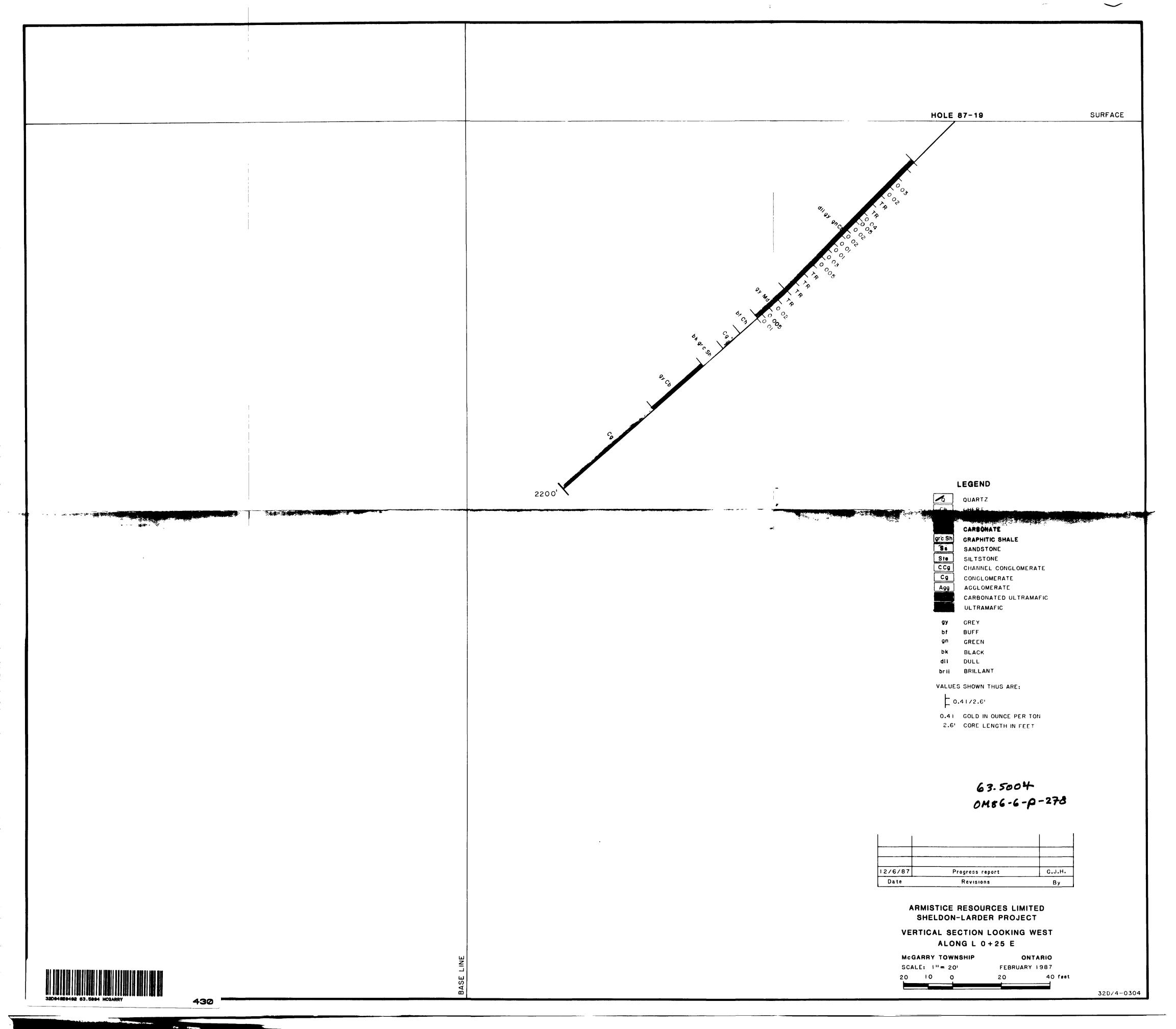
63.5004

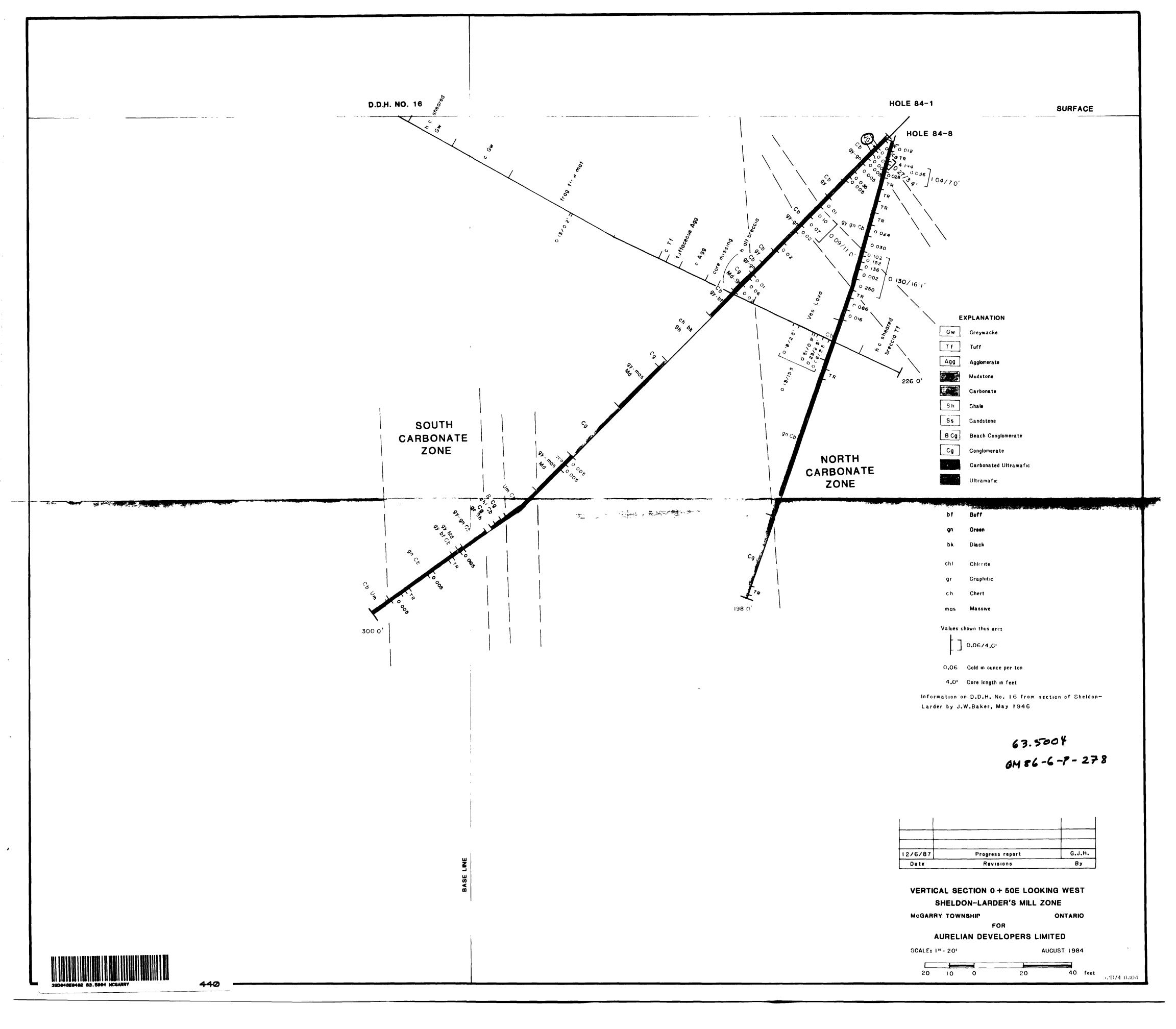

OM86-6-P-278

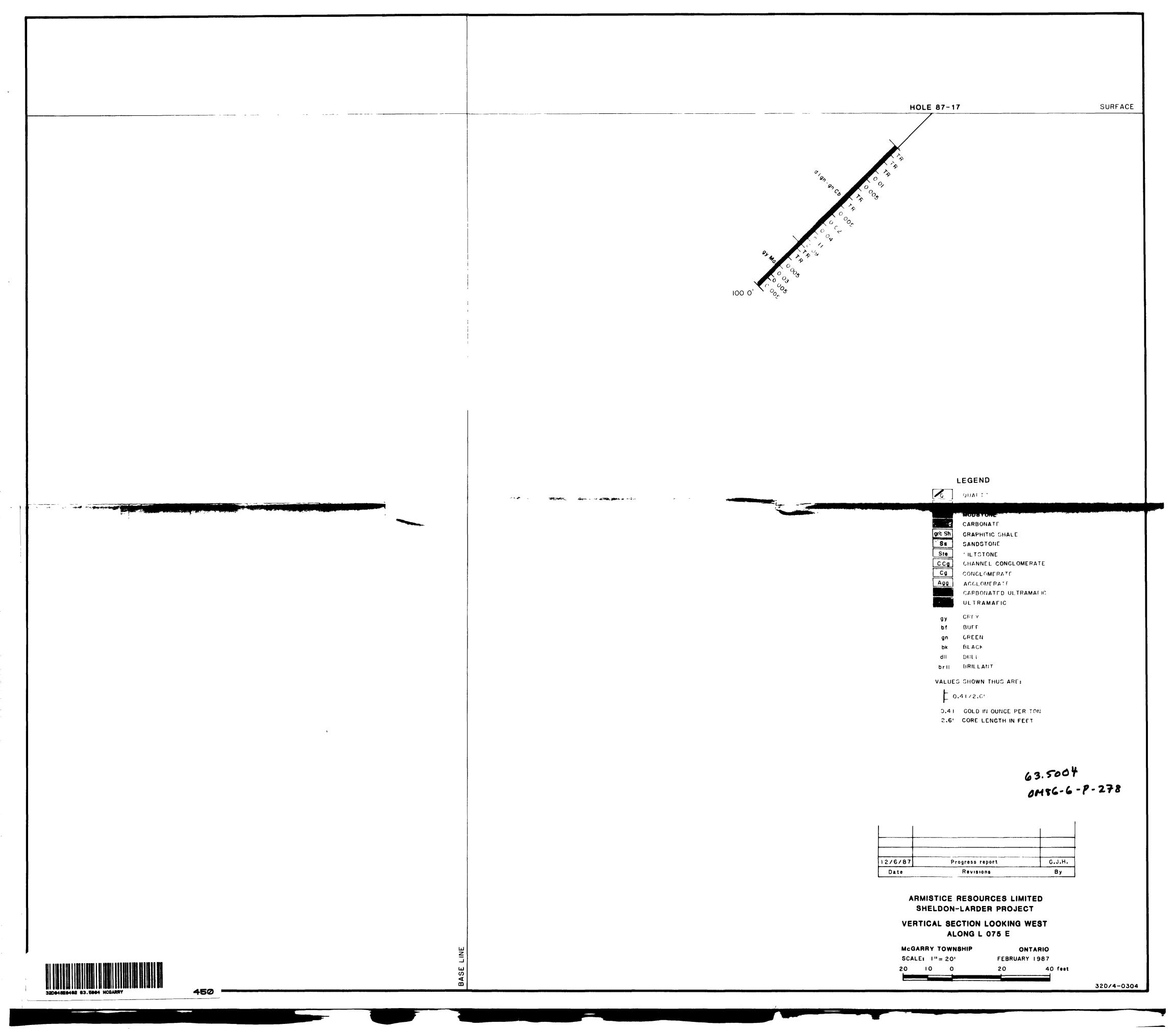
					1	
					+	
					+	
12/6/87		Progress	report		G.J	.н.
Date		Revisio	ons		B	y
McGAF	RY TOWN	SHIP FOR	ł	ONTA	RIO	
A	URELIAN	DEVELO	PERS L	IMITED		
SCALE: 1" = 20'				AUGUS	ST 198	94
					3	
20	10	0	20		40 f	feet




	SURFACE
	LEGEND QUART." Ch Ch Ch Ch GL GL GL GL GL GL GL GL GL GL
colum colum colum 600 0'	GGU CONGLOMERATE GG CONGLOMERATE AGGLOMERATE AGGLOMERATE CARBONATED ULTRAMAFIC ULTRAMAFIC ULTRAMAFIC GY GREY bf BUFF gn GREEN bk BLACK dH DULL bril BFILLANT C.41/2.6' O.41 GOLD IN OUNCE PER TON
	2.6' CORE LENGTH IN FEET


63.5004 Om86-6-P-278




320/4-0304

