

MINING AND GEOLOGICAL REPORT
ON
THE 1987 NORTEK EXPLORATION

By
Gordon B. French, President
FRENCH AND ASSOCIATES, INC.
Highway 112, Tarzwell
Ontario, POK IVO

OM87-6-L-239

0.0 ABSTRACT I
Certification A
1.0 REGIONAL GEOLOGY OF the area dominated by the round lake batholith 1-1
1.1 TECTONIC FRAMEWORK 1-5
1.2 REGIONAL STRATIGRAPHIC FEATURES 1-7
1.2.1 Site Specific Stratigraphic Features 1-8
1.3 SITE SPECIFIC GEOLOGY 1-10
1.3.1 Greenstones 1-10
1.3.2 Local Basalts 1-10
1.3.2.1 Field \& Petrographic Characteristics of Exposed Rocks 1-11
1.3.2.2 Pillows and Lava Toes 1-14
1.3.2.3 Pillows in Tholeitic Basalts 1-14
1.3.3 Clastic Flows 1-17
2.0 GOLD MINERALIZATION GENERALIIATIONS 2-1
2.1 MAFIC ROCK ALTERATION TYPES 2-1
2.1.2 Burial Metamorphism 2-1
2.1.2 Contact Metamorphism 2-1
2.1.3 Intense Carbonatization 2-1
2.2 GOLD MINERALIZATION TIMING 2-3
2.3 GENERAL GEOLOGY IMPORTANT TO MINERALIZATION 2-5
2.3.1 Summary of Geological Features 2-6
2.4 PETROGENESIS OF DEVELOPMENT 2-7
2.5 MODEL FOR GOLD MINERALIZATION 2-12
3.0 NORTEK/SHENANDOAH/MILLER-INDEPENLENCE PROPERTIES 3-1
3.1 LOCATION AND ACCESS 3-1
3.2 ORIGIVAL MILLER-INDEPENDENCE PROPERTY 3-1
3.2.1 Miller-Independence History 3-1
3.2.2 Shenandoah-Miller Exploration 1983-1986 3-13
3.3 NORTEK 1987 EXPLORATION PROGRAM \& GOALS 3-14
4.0 RESERVE CALCULATIONS 4-1
4.1 METHODOLOGY 4-1
4.1.1 Limits of Ore Body 4-1
4.1.2 Thickness of Ore Body 4-1
4.1.3 Specific Gravity 4-1
4.1.4 Gold Grade 4-2
4.1.4.1 Borehole Data 4-2
4.1.4.2 Outcrops 4-5
4.1.4.2.1 Eastern Section 4-5
4.1.4.2.2 Western Segment of Ore Body 4-6
4.1.5 Average Gold Grade of The Mineralized Zone 4-6
4.1.6 Nugget Effect Discussion 4-9
4.1.7 Discussion of Reserve Results 4-9
4.2 SUGGESTED 1988 NORTEK EXPLORATION PROGRAM 4-11
4.2.1 Proposed Miller Ore Body
Completion Drilling 4-14
4.2.2 Assessment Status 4-15
4.2.3 Details of Ramp Development 4-17
4.2.3.1 Underground Bulk Sampling Description 4-17
4.2.3.2 Sampling To Be Conducted 4-17
4.2.3.3 Underground Bulk Sampling Costs 4-18

TABLE OF CONTENTS

Continued
5.0 OTHER NORTEK OR JOINT VENTURE RESOURCE POTENTIALS . . . 5-1
5.1 ALTERNATE EXPLORATION AREA 5-1 5.1.1 Preliminary 8 Hole Drilling Program 5-1 5.1.2 Magnetic Anomaly Drilling 5-1 5.1.3 Farm Out Possibilities 5-4
APPENDIX Which Includes Core Logs and Assay Data
Figure 1-1 Geological Map of The Timmins-Kirkland Lake Area 1-1
Correlation Chart 1950's Geology to 1988 Geology, Part I. 1-2
Correlation Chart 1950's Geology to 1988 Geology, Part II 1-3
Geological Map Boston-Pacaud Township, Pocket $1-4$
Geological Map Boston-McElroy Township, Pocket $1-4$
Figure 1-3 Site Specific Area Geology $1-5$
Figure 1-4 Site Specific Stratigraphy 1-6
Figure 1-5 Diagrammatic Stratigraphic Section 1-10
Figure 1-6 Basalt Family Cation Diagram 1-13
Figure 1-7 Basalt Flow Sequence On Site 1-14
Figure 1-8 Typical Pillow Basalt Structure 1-14
Photo 1 Typical Pillow Lava Exposure On Site 1-16
Photo 2 Elongated Pillows Showing Flow Direction 1-17
Photo 3 Later Stage Joint Development In Pillows 1-17
Photo 4 Clastic Intermediate Volcanic flow 1-19
Photo 5 Clastic Flow With Glacial Stria \& Jointing 1-19
Photo 6 Drill Core Basalts Showing Alteration Types 2-2
Photo 7 Intense Carbonatization Example 2-3
Gold Mineralization \& Carbonatization Timing Chart 2-4
Hypothetical Sequence Of Local Gold Mineralization 2-8
Hypothetical Sequence of Local Gold Mineralization 2.9
Hypothetical Sequence Of Local Gold Mineralization 2-10
Diagramatic Representation Of Sequence of Geological Processes 2-11
Photo 8 Miller Ore Body Outcrop 2-13
Photo 9 Miller Ore Body Brecciation 2-13
Photo 10 Miller Surface Outcrop Weathering 2-14
Photo 11 Granitoid Mineralization-North Area 2-14
Photo 12 Core Showing Granitoid Intruded In Basalt 2-15
Photo 13 Contact Zone With Lamphrophyre Dike 2-15
Photo 14 High Grade Gold Mineralization 2-16
Highway Map Showing Property Location 3-2
Nortek Property Holdings \& Local Possible Affiliation Land Owners 3-3
Magnetometer Survey, Adjacent Perron Property 3-15
Nortek Drill Hole Pattern Plan View 3-16
Nortek Cross Sections Ore Body 3-16
Recapitulation Of Volumes \& Tons \& Grades of \# 1 Vein 4-5a
Reserve Calculation Map Showing Partitioning 4-7
Suggested 1988 Exploration Program Chart 4-13
Chart I Boston Status of MNR Lease Claims 4-15
Chart II McElroy Status Of MNR Lease Claims 4-16
Proposed Core Holes \& Ramp Development Map 4-19
Figure 5-1 Alternate Funded Core Hole Program 5-2
Figure 5-2 Alternate Magnetic Anomaly Orilling 5-3
Figure 5-3 Magnetic Anomaly Map $N \frac{1}{2}$, Lot 10, Conc. VI. 5-5
Figure 5-4 Ground VLF N $\frac{1}{2}$, Lot 10, Conc. VI. 5-6

CERTIFICATE

I, Gordon B. French, of R.R.\# 1, Highway 112, Tarzwell, Ontario, POK 1V0, do hereby certify that:

1. I am a registered fellow in good standing of the Geological Association of Canada and a registered U.S. Professional Geologist, \#2414, of the American Institute of Professional Geologists; a member of the Canadian Institute of Mining and Metallurgy; a member of the American Institute of Mining Engineers; a member of the Rocky Mountain Association of Geologists; and a past director of the Colorado Mining Association.
2. I am a graduate of Missouri School of Mines (B. Sc., 1954)(M. Sc., 1956).
3. I have been practicing my profession, as a geologist and mining engineer, for thirty-two years and have worked in the field of mineral exploration for over twenty years.
4. I do not have nor have I ever had any interest, direct or indirect or contingent, in the shares of Nortek Minerals Ltd., Shenandoah Resources Ltd., or Miller-Independence Mining Ltd., or any other property within a radius of 10 Kilometers of the Miller-Independence properties.
5. I have conducted a completely independent analysis of all data available for this property.
6. I have spent over four and one-half years supervising the exploration on these properties with the majority of the time spent on site.

DATED at Tarzwell, Ontario this 30th day of March, A.D., 1988.

0.0 ABSTRACT

The attached Report has been prepared to provide details of the Phase I Joint Venture(Nortek Minerals Ltd./Shenandoah/Miller-Independence) Field Exploration Program. This work was completed during the 1987 exploration season, commencing in September of 1987 and being completed by March 1988. The project was composed of the following specific tasks:

TASKS
A. DRILL 36 CORE HOLES WHICH WOULD BETTER DELINEATE THE PREVIOUSLY DEFINED ORE BOOY LIMITS. TOTAL FOOTAGE DRILLED WAS 7,294 LINEAR FEET.
B. IDENTIFY ROCK TYPES AND MINERALIZED SEQUENCES AND CONDUCT DETAILED PETROGRAPHIC EXAMINATIONS OF THIN SECTIONS AND POLISHED SECTIONS TO IDENTIFY MINERAL SUITES, GRAIN SIZES AND THE ASSOCIATED HOST ROCK PETROGENESIS.
c. OBTAIN BY ORILLING AND BLASTING A FRESH REPRESENTATIVE BULK SAMPLE OVER 600 KG IN WEIGHT AND CONDUCT DETAILED PROCESSING TESTS, WHICH WOULD IDENTIFY PROCESS FLOW SHEET DESIGN FACTORS AND CONFIRM THE ABILITY TO ECONOMICALLY RECOVER THE DISSEMINATED FINE GRAIN GOLD MINERALIZATION.
D. ESTABLISH A 1:2000 METRIC BASE MAP AND OUTLINE THE PRINCIPLE PROPERTY BOUNDARIES WITH PERMANENTLY ESTABLISHED SURVEYED CUT LINES.
E. SURVEY IN ALL DRILL HOLES; LOCATE AND MAP MAJOR GEOLOGICAL FEATURES; TO further establish the lack of complexity of the ore mineralization zone and TO BETTER DEFINE ITS' OVERALL CONTINUITY WITH DETAILED CROSS SECTIONS.
F. COMPLETE THE REQUIRED ASSESSMENT WORK ON THE MCELROY AND BOSTON HOLDINGS AND FURTHER DELINEATE THE GEOLOGICAL CONTROL FEATURES, AS WELL AS POTENTIAL mineralized zones located on these properties.
G. CONDUCT REGIONAL AND LOCAL GEOLOGICAL FIELD OBSERVATIONS AND RELATE THESE findings to development of a role model to define local gold mineralization.

The final report presented hereafter takes into consideration the results from this program, as well as results from previous exploration programs when deemed reliable.

The main results might be summarized as follows:
0.1 CHANGE OF RESERVE CATEGORY:

From: Inferred

TO: Probable

Graphic Summary of the Results of the 1987-1988 Exploration Program

Gold Reserves Increase

Original Estimate Included Perron Property, then under lease Perron not included in Joint Venture Partners at this time

GRAPHIC SUMNARY OF THE
RFSULTS OF THE 1987-1988 EXPLORATION PROGRAM

* Origina: Estimate Included Perron Properiy, Then Under Lease.
**Perron Not included In Joint Venture Partners At This Time.

0.2

INCREASE IN MINEABLE TONNAGE:		
From:	Miller/Searles	378,000 NT
	Perron	122,000 NT
	Total	$500,000 \mathrm{NT}$

T0:

Miller/Searles	588,000 NT	$(+55.6 \%)$
Perron (*)	220,000 NT	$(+80.3 \%)$
Total	808,000 NT	$(+62.0 \%)$

(*) Results of Perrons' latest field program.
0.3 INCREASE IN GOLD RESERVES

From: Miller/Searles $120,000 \mathrm{oz}$.

Perron $\quad 40,000$	oz.
Total $\quad 160,000 \mathrm{oz}$.	

TO:
Miller/Searles 197,000 02. ($+64.2 \%$)

| Perron (*) $\quad 70,00002 .(+75.0 \%)$ |
| :--- | :--- |
| Total $267,00002 .(+66.8 \%)$ |

0.4 INCREASE IN GOLD GRADE

From: $\quad 0.32 \mathrm{oz} / \mathrm{NT}$

TO: $\quad 0.33502 / N T(+1.1 \%)$
0.5 PROCESSING TESTS

Processing tests on the 600 kg bulk sample show that adequate flow sheet selection would lead to potentially economic gold recoveries in excess of 97%.
0.6

FUTURE COURSE OF ACTION
A PHASE 2 field Program has been prepared. It is estimated at $\$ 860,000$ and would provide the following principle results:
A. Add additional reserves in the vein \# 1 system
B. Define probable reserves of the D-Vein and Miller North
C. Conduct a limited contract mine ramp development to provide representative bulk samples for detailed processing tests and establish engineering parameters to be used to complete a high degree of reliability feasibility study. These would include but not be limited to: ore grade and mineability factors; production mining design factors and equipment limitations; rock mechanics parameters; and general ground control and hydrology.

0.7 ASSESSMENT WORK

This study contains also a proposal for required assessment work to keep the claims located in Boston and McElroy Townships in good standing, as well as an alternate exploration program, which might be conducted outside the framework of the current Joint Venture, if financing possibilities arose.

.0 2EGIONAL GEDLOGY OF THE AREA DOMINATED BY THE ROINMO LAKE BATHOLITH

Figure 1-i. Geological mao of the Timmins - Kirkland Lake area.

The preceding Geological Map(Figure 1-1) provides a regional generalized ayerNew of the dominant geological features. Dur principle area of interest lies in the Southern Fault Block, adjacent to the north east flank of the Round ake Satholith (defined as Archean 10 tonalite and trondhjemite). As with all areas that have a significant geological interest, with time the original geological nomenclature is revised. A correlation chart listing the formations original naming system through today is included as Figure 1-2.

Specific area Geological Maps No.-1950-3, 'Township of McElroy' and Map No. '1957-4, 'Boston Township and Part of Pacaud Township' provide more details of the specific area of evaluation. See correlation chart for name changes.

Figure 1-3. Area within circle defines

Floure 1-3. Sketch map of the lltho-structural subdivisions in the SW Abilibl belt.
Ornamentallon: stlppled -
Pro-Timlsksming sodimentary rocks; hatchured - intrusions; "V" paltern - trachytos; solld - Bosion Iron Formatlon. Operation x minos: 1-Macessa; 2 Lakeshore: 3 - McBoan; 4-Kerr Addison. Townshlp boundaries are 10 km apart. (Toogood. 1986).
is shown in the above figure 1-3 - the area of interest is located in the Boston, Mclroy, Pacaud, Catharine Townships concentrically disposed away from the Round Lake Batholith. For reference, the operating mines of the kirkland area are also shown. Our interest will be confined within domains 1, 2, 3 \& a, as shown on the above figure 1-3.

The area of interest is dominated by ultramafic and felsic lavas with significant zones of tholeiitic and calc-alkalic mafic volcanic rocks. Intercalated with the volcanic rocks(specifically in McElroy Twp.) are subordinate sedimentary units. All of these assemblages have been invaded by a multitude of andesite and syenite stocks, sills and dikes.

Very low grade regional metamorphism is ubiquitous. Deformation is widespread and is most commonly evidenced by moderate to steep dipping beds. Isoclinal folding
and penetrative planar and linear fabrics are well developed. The granitoid and elsic stocks and dikes all appear to have been injected parallel to tension and on shear resulting from the compressional stage of the Round Lake Batholith.

(Atter R.H.Ridler GSC 10.5)
Figure 1-4.

1.1 TECTONIC FRAMEWORK

The Timmins-Kirkland Area may be subdivided into eight domains which have definitive lithological associations and structural imprints. Some of these domains are narrow panels representing high strain or deformation zones (domains 1, 3, 5 and 71 which separate larger and less strongly deformed crustal blocks. See figure 1-3.

Lower Supergroups (Keewatin)

Domain 1: A narrow zone, a few hundred metres wide, of intensely foliated and altered rocks surrounds the Round Lake Batholith and the steeply dipping transposition foliation is co-planar with the gneissic banding along the contact of the intrusion. This deformation zone corresponds to the Pacaud Tuffs.

Domain 2: North and east of domain 1 is a succession of mafic lavas with komatiitic and tholeiitic affinities which mostly face and dip uniformly outwards from the batholith. No major folds or pervasive foliations are visible in this domain. The volcanic rocks belong to the Wabewawa and Catherine Groups. The area
is strongly faulted by both shear and tension folds: owing to the scale of figure -3, the numerous granitoid bodies injected parallel to the fold system can not be shown. See detailed Site Geological Maps attached in the sections containing the property descriptions.

Domain 3: Between domains 2 and 4 is a narrow, northwest-trending deformation zone containing a sub-vertical transposition foliation together with extensive carbonate alteration products. Domain 3 merges with domain 5 near the Adams Iron Ore Mine. For the most part this domain falls within units mapped as part of the Skead Group volcanics. It is thought to be the surface expression of a rapidly filling basin. See Figure 1-4

Domain 4: Lithologically distinct from the monotonous sequence of mafic lavas in domain 2 is a heterogeneous assemblage of ultramafic to felsic volcanic rocks together with their plutonic equivalents and considerable intercalated clastic sediments all belonging to the Larder Lake and Skead Groups which constitute domain 4. In contrast to domain 2 these units exhibit large scale fold interference oatterns resulting from the overprinting of a north-northwest-trending isoclinal fold set by northeasterly trending tight-to-isoclinal folds. In both cases the folding is associated with steeply dipping foliations and steeply plunging lineations. This domain is the last of the specific groups within the area of interest. The remaining domains are included for completeness of definition only. As you can see from the correlation chart, the area of interest does not contain extensive exposures beyond Keewatin-Early Pre-Cambrian, exceot for the numerous granitoid intrusions.

Domain 5: This deformation zone attains a maximum width of 1.5 km east of the Lebel Stock. Westwards from here it becomes narrower, merges with domain 3 and curves north of the otto stock. The domain contains a subvertical transposition foliation, mylonites, talc chlorite schsists and an isoclinally folded banded iron formation(Boston Iron Formation). Assemblages in this domain have been placed in the Larder Lake and Skead Groups.

Timiskaming Group

Timiskaming sedimentary rocks generally strike east, have steep dips and face south. Marked facies changes and variations in deformation patterns between the

Timiskaming in Teck and Kenogami Townships in the west and Gauthier, McVittie and GGarry Townships in the east allow the subdivision of the belt into two domains.

Domain 6: The southern contact of this deformation zone with domain 4 occurs at the Kirkland-Larder Lake Break while the northern contact with domain 8 is faulted. Between two and three foliations are strongly developed in this domain and are related to right-lateral, strike slip movement in a shear zone associated with the formation of the Break. These foliations include classic shear-related S-C fabrics present in discrete linear zones, the most prominent of which coincides with the Break itself and a more commonly encountered northeasterly trending younger overprint. Carbonatization and silicification are locally intense. The relationship between high strain domains 5 and 6 is obscured by glaciofluvial deposits.

The Timiskaming lithologies are characterized by graded-bedded greywackes. minor conglomerate horizons and laterally extensive trachyte flows.

Domain 7: The domain limits are the same as those for domain 6 except that the northern faulted contact gives way to an unconformity at three localities. Defarmation throughout the domain is weak and only the younger northeast trending foliation is penetratively developed. A panel within the Timiskaming, bounded by the Kirkland Lake Main Break and the Murdock Creek Fault Zone, is non-foliated. The dominant facies are conglomerates, current bedded sandstones and subordinate pyroclastic units.

Domain 8: The Timiskaming in both domains 6 and 7 is bounded to the riorth by mafic volcanic assemblages and minor felsic volcanic rocks of the kinojevis and Blake River Groups that extend northwards into the central Abitibi. Deformation in this extensive domain is weak and there appear to be no penetratively developed foliations.

1.2 REGIONAL STRATIGRAPHIC FEATURES

A consistent shelf to basin tectonic pattern is symmetrically disposed about the presumed Round Lake Batholith basement diapir(Ridler, 1976). Consider:
a) The enormous increase in stratigraphic thickness and complexity on either side of the "divide."
b) Distal oxide exhalite on the basement uplift; carbonate and sulphide in the basin, in part proximal.
c) Distal volcanics on the shelf; large volcanoes in the basins.
d) No known or apparent basement massifs in the basins.
e) Alkaline volcanism(kirkland Lake, Matachewan) on the shelf, calc-alkaline in the basins and,
f) A paleocurrent sense flowing eastward away from the "divide" in the Timiskaming clastic sediments of the Kirkland Lake area.

1.2.1 Site Specific Stratigraphic Features.

Specifically, stratigraphic analysis of the area controlled by Nortek / Shenandoah/Miller suggests that a symmetrical shelf to the basin facies is transitional about the basement high centered on the Round Lake Batholith(see Figure 1-4).

The tectonically controlled distribution of felsic eruptive centers with associated differential subsidence leading to basin development is well shown in an analysis of a section from the Round Lake Batholith northeast toward the Misema River and the syenite stocks(11) centered in this basin. This is viewed as the orime cause of the sequential arrangement of mafic to felsic volcanic seauences and associated clastic metasediments and iron formations. The main periods of basin subsidence were broadly synchronous with the felsic eruptions. The development of steep transport gradients promoted clastic sedimentation. The felsic pyroclastic piles provided local detrital sources(see photos page). The banded iron formations to the northwest in the basin is attributed to volcanic exhalative origin and is transitional from volcanic to clastic sedimentary associations, thereby demonstrating the essential contemporaneity of volcanism and sedimentation. Overall, the presence and source of this volcano-tectonic basin, between the Round Lake Batholith and the Kirkland-Larder Lake Break to the north, is only hinted at by earlier geological papers.

Figure 1-5.

The 59th Annual Report, Vol. LIX, Part VI, 1950 by Abraham, has the preceding (Figure 1-5) cross-section taken east of the major subsiding area centered on the felsic eruptive centers. The northwest trending mafic volcanic bandsometimes referred to as a lapolith) roughly parallels the resulting large depressions produced by regional crustal subsidence and by collapse brought about by eruption of large quantities of magma associated with felsic eruptions(Adams iron ore deposits centered in these depressions during periods of quiet volcanic activity).

Domain 2 contains all of the joint ventures(Nortek, Shenandoah, Miller) drilled ore bodies.

1.3.1 Greenstones

The original stratigraphic sections were a world of undifferentiated understatement. These sections mapped, usually green in color, constituted a "huge" segment of the Keewatin, as basic and intermediate volcanic rocks. If this were a!l that was needed to classify igneous rocks, we might only have three or four rock types. As it was, this group included all the rocks from andesite to basalt or diabase in their composition, including and undifferentiating their metamorphic equivalents and flow breccias. The features, they had in common, were mostly darkgreen commonly referred to as "greenstones". They included a group of mostly massive from fine to coarse-grained rocks. The finer grained varieties might contain vesicles, amygdules, variolites and pillows. The coarse grained might include diorites, diabase and gabbroic lavas. A notably poor mapping job included Catharine Township using this nomenclature system. Unfortunately, all of Searles and the Kennedy properties are in Catharine Township. Mapping improved, ever so slightiy. and the Townships of McElroy, Pacaud and Boston were geologically mapped. All of the areas covered by Shenandoah/Miller-Independence claims are now mapped as Keewatin, Basic or Intermediate Volcanics, largely undifferentiated. Only the intrusive granitoids were separated and over 50% of their occurrences were not mapped, including their structural implications. Next, a broad area geological map called all of these metavolcanics, which was understood to include both intermediate and mafic metavolcanics.

1.3.2 Basalts

For the most part, the Miller-Independence ore body is contained within basalts (probably tholeiftic basalts). For our purposes, this is: "poor in or lacking olivine and containing minor quartz with a diabase being a coarse-grained equivalent." Major minerals are calcic plagioclase and augite. The term "tholeiite" was first used in 1840 by Steininger for naming basaltic rocks near Tholey, Saar land, Germany (American Geological Institute Glossary 1970). However, the term "tholeiite" did not receive prominence until Kennedy(1933) and Tilley(1950) applied the term to a magma type. Reviews of this historical development concerning the use of "tholeifite" to refer to a saturated to oversaturated magma series showing an iron enrichment trend, have been given by Turner and Verhoogen(1960), Barth
(1962), Wilkinson (1967), and Irvine and Baragar(1971).

Since 1970, many major element classifications of volcanic rocks have been proposed to distinguish the tholeiitic rocks from the alkaline volcanic and calcalkalic volcanic rocks, and also to distinguish tholeitic rocks from different tectonic environments(Irvine and Baragar 1971; Middemost 1972, 1974, 1975; Pearce 1974; Miyashiro 1974, 1975; Jolly 1975; Church 1975; Le Maitra 1976, Jensen 1976a; Delong and Hoffman 1975; Johnson 1979). Examinations of all these classifications are beyond this scope.

1.3.2.1 Field and Petrographic Characteristics Of The Exposed Mafic Domain 2 Rocks.

Detailed descriptions of the tholeitic volcanic rock types in parts of the Kirkland Lake area have been made by Jensen(1978a, 1978b) and Jackson (1980). Much of the description of tholeitic lavas will be done in terms of the mineral morphologies within them in order to interpret their cooling histories and modes of extrusion.

Magnesium-rich tholeific basalts are dark green to grey, or light green to grey, on weathered and fresh surfaces. These rocks occur as tabular flows, pillowed lavas, and pillow-breccias. The tabular flows are 1 to 100 m thick. The thicker flows can be traced along strike for several kilometeres in areas where bedrock is well exposed. In places, the tabular flows can grade into pillowed lavas either along strike, or vertically.

The pillows are 30 to 150 cm in diameter and have dark green, deeply weathered selvages 1 to 3 cm thick. Pillowed flows form mappable units 10 to 600 m thick. which can be traced up to several kilometres where well exposed. The pillows may be closely packed, or they may be separated from one another by thick zones of hyaloclastite. In places, the pillows may be extensively fractured so that they can be described as pillow breccias. The fragments of pillows occurred in a hyaloclastic matrix composed of fine-grained chloritized glass globules and shards.

Magnesium-rich tholeific basalt consists of 30 to 40% augite and 50 to 60% plagioclase $\left(A n_{55}\right.$ to $\left.A n_{70}\right)$. Magnetite, ilmenite, and sulphide grains form the remaining 1 to 3% of the rock. Some thick flows contain sparse enstatite phenocrysts, 0.5 to 1 cm in size altered to bastite, antigorite, and talc and, in other flows light, yellowish green to white phenocrysts of plagioclase, 0.5 to 3 cm across are present(Pearce and Birkett 1974; Jensen 1978a). The feldspar phenocrysts can form 0.5 to 15% of the rock, and are seen in the coarser grained sections throughout
the flow, including the fine-grained top and selvage; this suggests that the phenorysts were formed at depth and then transported to surface. Flows with feldspar phenocrysts similar to those above have been described in other greenstone terrains by Green(1975), and in ocean-floor basalts with similar chemical compositions by Langmuir et dl.(1977) and Rhodes et al.(1979).

Grains of plagioclase, clinopyroxene, and magnetite in the flow-tops and near the margins of pillows are small, and have spherulitic or dendritic habits. Without detailed chemical analysis differentiating the tholeiitic basalts from calc-alkaline or komatiitic is impossible. The family cation diagram involving percentages of $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{FeO}+\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{TiO}_{2}$ and MgO is as follows:

Figure 1-6

The basalts exposed, adjacent to the mineralized zone outcrop and the cabin, exhibit a pillow flow character. This stratigraphic zone dips under to the north and the further north one traverses, the rock changes from a pillow flow to a finegrained basalt to a diabasic textured basalt (about $N-87-6$) to a gabbroic textured basalt(near the Pacaud Township line). See the following diagram.

Figure 1-7
Since the mineralized zone on exposure is confined to the pillow basalts, we will look further into their character.

Figure 1-8

1.3.2.2 Pillows And Lava Toes (Map and Log Defined as Stage 1).

Controversy, over the definition and manner of formation of pillows, has existed in geological literature for a considerable time. In 1938 Stark reported the occurrence of ellipsoidal structures within subaerial lavas of Borabora, Society Islands and he used the term "pillow" to describe these structures. Immediately, he was criticized by McKinstry(1939), who pointed out that the structures were in fact pahoehoe lava toes, and suggested that a clear distinction be made between such structures that form by a bulbous-budding mechanism, and what he called "ordinary or typical pillows". He described as typical pillows examples from the Porcupine District, Ontario, and emphasized their discrete, ball-like form. A short time earlier Stearnes(1937) had defined pillows as "...spheroidal and ellipsoidal ball-like masses of lava, coated with glass and generally detached from one another". More recently Snyder and Fraser(1963) in a review of recent literature on pillow lavas concluded that a distinction between pillows and pahoehoe structures should be made.

These ideas were critized by Jones(1968), who suggested that the majority of ellipsoidal structures in submarine lavas have the morphology of lava toes and are formed by a budding mechanism; and in the next five years several more papers have appeared in which the terms "pillow" or "elongate pillow" are applied to toelike structures within submarine lavas(Moore 1970; Moore et al 1973a; Arculus 1973).

The term pillow is now used to describe two distinctly different types of structure: "true" or "discrete" pillows, which are ellipsoidal sacs of lava, completely separated from one another; and lava toes. This situation is well illustrated in Catharine \& Pacaud Townships where both types of structure have been mapped.

1.3.2.3 Pillows In Tholeitic Basalts.

Although, it is not possible to determine the overall morphology of these structures, in many cases a three dimensional exposure is present and in such cases the discrete, ball-like form of the tholeitic pillows is apparent. These structures range in diameter from 10 cm to more than 2 metres. Their upper surfaces are convex and their lower surfaces are moulded so as to conform to the shape of underlying pillows. Fine-grained hyaloclastite or clastic sedimentary material may be present in interstices between pillows. Glassy rims or selvages ranging in thickness from 2 to 6 cm completely enclose each pillow; no budding or branching, or connections between pillows have been observed.

Typical Pillow Lava Exposure.

The interstices between the pillows are filled with chert, quartz, carbonate or sulphides locally, but more commonly they are devitrified. In the thicker flows, the pillows grade downward (or upward) into coarser grained lava, which for the most part has a diabasic texture, although invariably completely altered. This grades rapidly into dense fine-grained material at the base of the flow. Amygdules may occur in this fine-grained phase. The tops of many flows are composed of thin breccias, consisting of fine-grained, devitrified lava fragments imbedded in a matrix of the same type. The flow-top breccias may be used to determine the tops of flows, although it is not always easy to establish whether the breccia belongs to the flow on the one or the other side. In some flows, the surface of the flow is made up of pillows, on others, the flow-top breccia forms the surface, and pillows, if they occur, lie below it.

Fine-grained dacite cut
ting thru the earlier
formed
basalt
pillow lava.
Actual dacite
width, about
12 inches.

Photo-?

Elongated pillows with flow direction roughly parallel to injected dike. (Stage 1).

Both sea water and burial metamporphism creates chlorite altered zones on the pillows.

Extensive pillows showing later developed joint patterns, secondary selvages growing inward. Note pillow sac-like form, as well as

The process envisioned for the development of pillows involves extrusion of a lassive, mobile lava flow. During flowage, or following the cessation of movement, selvages grow downwards from the top of the flow and divide the massive lava into a large number of ellipsoidal cells. In some cases selvage formation is arrested before completion and only the upper part of the flow becomes pillowed. In other cases the process goes to completion and the entire flow becomes pillowed. Pillows, once they form by this process, may become separated from the flow. Sediment may be incorporated between the pillows at this stage, or the pillows may break up and a pillow breccia or hyaloclastite may form.

The mechanism of selvage growth is not understood. Certainly the process is triggered and motivated by the chilling effect of seawater, but the actual mechanism involved is a matter for speculation.

Osborn(1949) compared pillows in lavas with cells formed within synthetic glasses. These cells develop when a large volume of molten glass is poured into a metal trough. Their formation apparently is triggered by the chilling effect of the cool metal. Osborn explained the formation of the cells in the synthetic glasses, and pillows in lavas by the action of short-lived convection cells which operate during the cooling of molten material. Selvages or cell margins form at the margins of the convection cells as a result of chilling of the cooler downgoing material.

The formation of pillows may alternatively be analagous to the development of droplets of one liquid in emulsion within another. Under some conditions emulsions form spontaneously between two immiscible liquids: The process involved may be similar in some respects to that which leads to the formation of pillows.

It is quite apparent that these explanations are highly speculative. The process of selvage growth within massive lava to produce pillows is strongly supported by field evidence, but more work and imaginative thought is required before the mechanisms involved will be understood.

1.3.3 Clastic Flows

Higher in the geological section, but still within the undifferentiated Basic and Intermediate Volcanic Rocks is a mappable NW trending Fragmental Meta-Clastic flow, as shown on the following photo.

Photo-4

Clastic Intermediate Volcanic Flow.
Note: Glacial stria - actual direction of ice is $S 10^{\circ} \mathrm{E}$.

Additional photo of Intermediate Volcanic Clasic flow showing large size of included fragments and effect of glacial scour, as well as the fresh character of the nearly unweathered surface. Note: Secondary jointing developed on or after cooling.

1. Vertically all the gold mineralization is hosted by tholeiitic and komatitic basalt flow units.
2. Whether the wallrocks are mafic or ultramafic, they have been effected by carbonate alteration.
3. Quartz feldspar porphyry or porphyritic andesite(same material) intrusions are present to bound all mineralized zones.
4. The auriferous alteration quartz veins cut the porphyry intrusive bodies.
5. Porosity of the original basalts, such as hiatus formed re-worked now loss circulation) zones, define the mineralized zones and may have provided the original plumbing.

2.1 ROCK ALTERATION GENERALIZATIONS

2.1.1. Burial Metamorphism

The earliest hydrothermal event to have effected the basaitic rocks resulted from lower temperature(less than $300^{\circ} \mathrm{C}$) sea water/rock interaction. Some evidence besides the pillow edge chloritization is the presence of caicite and Quartz, which fills primary porosity(vesicles) in the basalt flows. The absence of zeolites or clay can be attributed to greenschist regional metamorphic a:erpr:nt.

2.1.2. Contact Metamorphism

The greenschist metamorphic assemblages formed during the intrusion of the kenoran aged granitoid bodies(north of holes N-37-5 and N-37-4). This greenschist facies consists of chlorite, epidote, albite, quartz and minimal calcite. These were probably superimposed upon pre-existing seawater alteration assemblages.

2.1.3. Intense Carbonatization

This type of alteration is characterized by the development of hydrous alteration i.e., hydration of basaltic rock, marked by the formation of chiorite in veinlets and nearby replacement of rock matrix. Not present in the Boston Creek Area, but regionally common, is the intense carbonatization to produce sericite and fuchsite. These micas formed simultaneously with ferroan dolomite. Overall the carbonatization resulted from reaction with CO_{2} bearing hydrothermal fluids, which gained access along regional extensive deformation zones and dispersed through the less extensive subsidiary planar zones, such as shear zones and flow contacts and pillow surfaces where a brief hiatus occurred, along quartz veins, dike contacts
dikes drilled, showed
any envelope-type altero: "Csi aricent is the carbonatization, which is subparallel to the flow toss or cirtacts and inc:ises fow top breccia areas.

Photo-6

Drill core of Basalts, showing the numerous zones of
chlorite and other greenschist metamorphic assemblages.
Note: Jasper: high angle $\frac{i_{2}}{}{ }^{\prime \prime}$ wide fracture filling; Quartz zones: $2 "$ to 4 " long and the overall extensive \mathfrak{l} ?teration of the original Basalt.

2.? GOLD MINERALIZATION TIMING

The following Sequence of Geological Development provides a time frame for the gold mineralization event on the Nortek Properties. Section 1.0 should be consulted for stratigraphic sequence.

GEOLOGICAL DEVELOPMENT OF THE KIRKLAND \& LARDER LAKES

2.3 GENERAL GEOLOGY IMPORTANT TO MINERALIZATION

The Geological Sequence defined in Section 1.0 can be summarized for the Nortek area as follows:

GENERAL GEOLOGY

1. THE SEQUENCE OF LITHOLOGIC UNITS IS CONCENTRICALLY OISPOSED AROUND THE NE SIDE OF the round lake batholith and dip and face mostly outwards from the BATHOLITH CONTACT.
2. THE AREA REPRESENTED IS A BROAD GEO-SYNCLINAL STRUCTURE WITH THE SOUTH LIMB IN McELROY AND BOSTON TOWNSHIP AND THE HINGE IN HEARST TOWNSHIP IN THE LARDER LAKE SYNCLINE.
3. the hinge area of the structure is in meelrov township. the felsic core OF ANTICLINE IS THE SKEAD PYROCLASTICS.
4. THE HOMOCLINAL SEQUENCE (LARDER LAKE GROUP) LOWEST MEMBER IS THE PACAUD group gordering the round lake batholith.
5. THE CENTER SANK AS IT WAS FILLED RESULTING In the ROCKS beCOMING ROTATED to subvertical attitude as the volcanic pile grew.
6. THE KIRKLAND-LARDER LAKE BREAK IS LOCATED ON A STRAT!GRAPHIC ZONE FORMED BY VOLCANIC PROCESS IN/OR JUST BELOW THE SEA FLOOR WITH A CLOSE SPATIAL RELATIONSHIP BETWEEN CARBONATE-RICH ROCKS AND THE THIN CONTINUOUS HOR:ZON OF VOLCANIC ROCKS.
7. THE NEARBY ADAMS OPEN PIT IRON ORE MINE IS THE RESULT OF IRON FORMATIONS OEPOSITED AS A SHALLOW WATER FACIES OF STRATIFORM CARBONATE RICH HORIZONS.
8. OVER THE ENTIRE SEQUENCE IS AN ALKALI VOLCANIC-SEDIMENTARY CAP LOCALIZEO in the large scale tensional structures.

2.3.1 Further Summary of Geological Features

It is necessary to understand the area Overall Geological Features, in order to relate to the specific mineralization exhibited in the Miller Area. These are summarized in the following two charts: 1. Overall Geological Features; and 2. The Deformation History.

OVERALL GEOLOGICAL FEATURES

1. The great thickness of volcanic section - Lack of dissemination of Au mineralization.
2. The generally low grade metamorphic features except close to the Batholith.
3. The limited depth extension of the greenstone belt.
4. Stratigraphic contacts exhibit a steep dip; Contacts parallel greenstone belts; Granitoids intrude the greenstones.
5. Over broad areas the stratigraphic topo face uniformly in one direction with short amplitude isoclinal folds. Major structures are greatly higher magnetic anomalies.
6. Folds can be traced around the hinge but facings change abruptly and units do not match on opposite sides of the axial trace.
7. There was an extremely high geothermal gradient in Archean times. The gold deposits are:
A. Zones of intense carbonatization adjacent to porphyry intrusive bodies.
B. Two porphyries commonly found are Quartz-Feldspar sub-alkaline and Feldspar alkalic.
C. Gold is invariably associated with Quartz veins and Sulphide mineralization.

DEFORMATION HISTORY

1. Intrusion of the porphyries, gold mineralization and the penetrative deformation is tied to crustal melting and rise of granitoid diapirs on boundaries of greenstone belts.
2. The deposition of volcanic-sedimentary rocks was on a sialic crust in areas of high extrusional strain; Typically with normal faulting and development of folds associated with the largest faults and related to oblique slip.
3. There is progressive rotation of the strata in hanging wall blocks i.e., normal faults with curved, concave upward fault planes; The steep dip is due to rotation on faults.
4. "The Kirkland-Larder Lake Break is caused by movement on faults" with leftlateral strike slip movement.
5. The porphyry bodies are emplaced along fault zones. These fault zones and surrounding rocks are intensely hydrothermally altered and locally mineralized with gold and a penetrative foliation and lineation is developed. The batholiths represent a compressional phase.

The following is a Petrogenesis of the development of the four township area and thus, serves to define the major events leading up to and including mineralization and beyond.

PETROGENESIS OF THE COMMON CORNER AREA OF BOSTON, PACAUD, CATHARINE AND MCELROY TOWNSHIPS

1) KOMATIITIC and THOLEIITIC LAVAS
thickening and subsiding by subduction and faulting central axis NW-SE in McElroy and Boston twps. above mile post II hinge NW trend on east edge of O'Donald Lake. Metamorphism of buried lavas differentials formed rising to surface.

1a) ACCUMULATION OF ADOITIONAL KOMATIITIC and THOLEIITIC ROCKS new megacauldron marginally subsiding forming thick outward facing homoclinal successors i.e.: Round Lake Batholith. Remains of margin Pacaud Tuffs in Boston Twp. near Batholith attests to volcanic phase.

1b) SUCCEEDING MEGACAULDRONS
developed east of Round Lake Batholith and the formation of the east facing homoclinal sequence of Wabewawa-CatharineSkead Supergroup dated $2710 \pm 2 \mathrm{Ma}$ over 16 Km thickness overlaying 80% of subject area.
2) CALC-ALKALIC MAGMAS
thick accumulation in center of megacauldron with continued subsidence partial melting of subducted basal calc-alkalic forming trondhjemitic magmas including cores of calc-alkalic pile's. Distal calc-alkalic tuffs and sedimentary rocks depusited cin maryins of piles. Now the growth of core trondhjemitic rocks formed composite batholiths of low specific gravity and the central area of McElroy stopped subsiding. Instead, the denser marginal volcanics were drawn downward and inward under the batholith and margins tilted to face away from the batholith.

2a) YOUNGEST MEGACAULDRON
pyroclastic and sedimentary rocks of the Larder Lake Group formed mostly from sources to NE outside area of interest aated 2703 ± 2 Ma say 5 km thickness.

2b) FINAL MULTIPLE GRANITOID INTRUSIONS TYPICAL EXAMPLES MCElroy Batholith, Planet, Tagliamonti, Miller Independence, and other tension/shear related intrusives. Last period of high geothermal gradient downfolding and faulting injection on dilatant fracture zones.

Late intrusive dikes, etc.
Lamprophyres and diabase dikes last igneous activity.

Gold originally deposited in sedimentary acid reducing environment.
MCELROY TWP. ! BOSTON TWP. . DACAUD TWP. --

Za;in floor subsides as fractures form $3 t$ edge of the shelf. Uliramafic and nafic flows make נa komatil:es. Fault zone generates peridotic magma(modififed from L. S. Jensen ig80).

MGELROY TWP. \quad GOSTON TWP. DACAUO TWO.

rone east jf o'Donald Lake, the ultramafic rocks are aisized os serpemeinite.

MCELROY TWP. \quad BOSTON TWP. PACAUC TWF.

Inward collapse of volcanics toward center of basin with dilation of tault zoneltension faults

```
nct shown preceding view). Fressure at depth causes melting ist telsic magma which intruces upper rocks and re-distributes \(\mathrm{Au} . \mathrm{SiO}_{2}, \mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) thus producing Au in and near granite intrusions. Heat from granitic magma(geothermal gradient) divers Si-CO, S-Au rich solutions upward into tholeite flows to form quartz carbonate veins in tractures or silicilied and zarbonatized zones. Gold which was in sedimentary re-work sequences now found near hydro:hermallv aliered zones and granitoids. Overall control based an tension and shear zones tormed tue 0 basin subsidence and compression release from Round Lake Batholith intrusive.
```

STAGE V

The compression of the fracture zone of STAGE IV by the intrusion of granitic batholiths on the other side of the fault zone, like the McElroy Batholith located at the end of the cross section depicted. This causes tight folding and additional fracturing along the fault zones. Migration of gold into the hinge zones of folds and other dilation zones probably occurred ot this stage.

In graphic form, this same Petrogenesis can be shown on the following figure:

PROCESS

Diagrammatic representation of the proposed seguence of geological processes which resulted in the present geology of the Timmins-kirkland Lake area.

The following model covers all modes thought possible for gold mineralization within the four township area under Nortek control. The model thought applicable to the Miller Ore Body Area is both stratiform No. 3, as well as lode No. 1 for the northwestern area.

MODEL FOR GOLD MINERALIZATION

STRATIFORM

1. Gold is deposited with clastic and or chemical sedimentary rocks.
2. Gold is precipitated at and near surface by hydrothermal solutions by penetrating fracture induced permeability along major fault zones during the accumulation of volcanic and sedimentary rocks.
3. Gold is concentrated epigenetically in the rocks along fault zones during late tectonic and felsic igneous activity.
$\angle 1 O D E$
4. Epigenetically associated with the late alkalic porphyritic to granitic textured intrusions; gold in veins, fractures, alteration zones and metamorphic aureoles around these intrusions. Preferentially intruded along fault systems.

Shallow dipping ore body with a central core of white b:ll quartz intruding an the old erosion surface within the basalt flows. Adjacent to this core, botn the footwall and hanging wall have been carbonatized, altered, silicified and mineralized by this ore phase invasion.
$240+0-0$

The brecciated and nearly flat nature of the mineralization is well shown in this area.

The surface outcron of the ore zone including both mineralized edges is an average of 6 feet in thickness. The contact zones weather light to dark brown as shown on this photo due to conversion of included pyrite to limonite.

Photo-11

In addition to the drili proven, flat lying ore body mineralization, there is an, as yet undefined, mineralized zone within the granitoid intrusions.
The above photo shows a typical quartz intrusion zone within the granitoids.
These zones and the control mecharisms are difficult to quantify and very difficult to accurately estimate tonnage ootertials due to
their possible discontinuous nature.

```
    Typtcal core taken adiacent in one of these granitoid stocks N-87-14 shows
```

 the greer, jasalts, or ginal to the ares. injected by fingers of mineralized granitoids.
 2hr:2-1?

Upper zone core is a mineralized granitoid injecting into the basalts(green broken core, front of photo).

Late stage lamprophyre dikes
occur in the area but do not appear to effect the mineralization.

Photo-i3

Very hign grade gold mineralization associjsed with the quartz veining is shown in the following photo:

Photo-14

A sample of quartz showing
very high grade gold mineralization.

2.6 SITE SPECIFIC MINERAL:ZATION FEATURES

In calculating reserves, the mineralized zone has only been considered where the thickness was six feet or better. The central quartz segement is from 1 to 4 feet thick and may be continuous or brecciated, or in more than one layer. Both the hanging wall and the foot wall are altered and pyritized and mineralized for at least two feet on each side of the central quartz zone. Overall, the mineralized zone is a low angle, 10° to 15°, tabular body of remarkable continuity over the area used to calculate tonnage and reserves. Generally speaking, the best grades are in the foot wall segment, but this is not true in all cases. The quartz central zone, if it is brecciated and contained numerous fragments of included altered carbonatized/silicified/pyritized basalt, can be high grade. In the highest assay grade area, i.e. parallel with the $10,000 \mathrm{~N}$ line, the total mineralized zone is over 10 feet thick. The intercept of the central quartz zone can be predicted prior to drilling the hole to $=2$ feet over the entire area, wherein the tonnage was calculated to exist.

A total of 38 localiKirkland Lake) similar, but higher dip ore bodies were evaluated from literature MNR data search. In all instances, the grade varied to the same extent shown by these core holes. To be economically successful, the key ingredient was total thickness of the mineralized zone. If a thickness of six feet or more existed, all mines evaluated proved to be economical to mine. As the thickness improved, the grade recovered also improved. Mines which had less than four feet of mineralized zone were generally not economical or produced only small Lonnages. A successful mine was associated with: A. quartz mineralization; B. altered carbonatized pyritized ore zone; C. had an altered mineralized thickness of six feet or better.

3.0 NORTEK/SHENANDOAH/MILLER-INDEPENDENCE PROPERTIES

3.1 LOCATION AND ACCESS

The Miller-Independence properties consists of approximately 480 acres of patented fee simple land located about 26 kilometres southeast of Kirkland Lake, Ontario, within the Boston-Skead gold area. The property is located adjacent to a good gravel road extension of Highway 564 , about 8.5 km east of the village of Boston Creek in Pacaud and Catharine Townships as shown on the following map.

Good access to the property is provided in non-snow months, but the highway is unmaintained from Boston Creek to the site during the winter. Local Department of Transportation personnel indicated that maintenance would be resumed year around if a mine were developed on the site. A 150 KVA Hydro line runs parallel with the properties about 3.2 km west, and Boston Creek is on the main line of the Canadian National Railroad with sidings for loading or unloading.

The Miller-Independence properties are made up of two main groups: Group 1 consists of approximately 320 acres of patented claims which include all of Lot 1, Concession VI, Pacaud township; Group 2 is a 160 acre patented claim comprising the South half of Lot 12, Concession VI, Catharine Township, Patent number 2352. See attached total property map, Figure 0-0, for claim locations.

3.2 ORIGINAL MILLER-INDEPENDENCE

3.2.1 Miller-Independence History

The original Miller-Independence Mine is located in Lot 1, Concession VI, Pacaud Township and includes Patents 17936, 17937, 17938, 17939 and 3529. The property was purchased from Ozora Marie McCarthy, the daughter of George Miller. The previous owners in order were: Lord Joice(land grant); purchase in 1915 by Joseph McDonough of Haileybury, Ontario and Fred M. Connell of Toronto; purchase by George J. Miller of Toledo, Ohio in 1916 and at the same time acquiring the name Miller Independence Mines Ltd.

The main ore body is a flat lying(No. 1 vein) quartz vein system with free goid and tellurides. The vein material is milky white quartz, in which are associated tellurides and pyrites and some galena. The chief telluride is a slightly Au-depleted calaverite. The country rock is primarily greenstones (basalts) with north-south trending, shear related porphyritic intrusions.

The Northern Miner provides some additional insight into the operations: he following excerpts are provided to show the early activity levels:

December 18, 1915
Page 6

STAMPS FOR BOSTON CREEK

The Nissen stamp that was taken out of the Dome mill has been sold to the Miller Independence Mining company at Boston Creek. The Miller Independence company own the controlling interest in the McDonough property in Pacaud township. Camps are being built a winter road has been cut and a small plant will be installed very shortly.

It is the desire of the company to make production from the rich vein on the McDonough property as quickly as possible.

December 18, 1915
Page 6

MILLER INDEPENDENCE MINES

The syndicate of capitalists taking over the McDonough claims in Pacaud township has been incorporated as the Miller Independence Mines, with its main business of fice at Dayton. Ohio.

The preparing for opening up the veteran claims acquired by the Miller interests at goston Creek are being advanced rapidly.

December 4. 1915
Page 3
STARTING WORK ON MCDONOUGH CLAIMS
From Boston Creek a road has already been cut halt way to the McDonough property, which Mr. Geo. Miller and his associates have taken up in Pacaud Township. Over this road as soon as it is completed will be taken a small boiler and a hoist and compressor and a mill of :en stamps for testing purposes. Mr. Frank Horne of the Dome staff has been placed in charge. Camps are being built and preparations made to start operations on a considerable scale.

January 22. 1916
Page 2

NEW VEIN AT MILLER [NDEPENDENCE

Plant at Old McDonough Claim

A new vein has been found on the property of the Miller Independence Mine at Boston Creek, It strikes directly across the first discovery made. At one point where it has been uncovered there is a width of several feet of quartz, and in this quartz there is a good deal of free gold and sulphides. It is, moreover, not as flat an ore body as the first oiscovery.

A shaft is being sunk on the original discovery. Owing to the character of the ore body there has been some difficulty in following it. It has been in and out of the shaft once or twice already in the short distance to which the shaft has been sunk now.

A boiler has recently been taken in over the trail from Boston Creek, and as a compressor and other equipment, including a small Nissen stamp mill purchased from the Dome, proceeded it, the Miller Independence should soon be working under steam. The thick crust which formed on the snow last week made the breaking of roads quite difficult for some time, but the passage of the boiler over the trail from Boston Creek should make it quite good for the rest of the the winter.

Some ore has already been bagged from the original discovery and taken to an ore house which has been erected.

Feoruary 19, 1916
Page 5

BOSTON CREEK PROSPECTS

A Promising Camp

There are two prospects being worked at Boston Creek, one within three quarters of a mile of the track, at Boston Creek, a station just established 51 miles south in Pacoud Township.

February 19, 1916(cont'd)
The first and more important of these two prospects is the property of the R.A.P. Mining ProsCting and Developing Company. The R. in the syndicate stands for Mr. E.M.Richardson, the A. for Mr. W.B.Albright, both of New York and the P. for Mr. J.A.Papassimakes, who is aiso manager of the company affairs at Boston Creek. There are two claims upon which work bas been done by the R.A.P. Syndicate at Boston Creek. One of these is the Kenzie, in which Messrs. A.M.Scott, J.P.Bickell and others bought an interest. It is sunk upon one end of the long vein uncovered for some hundreds of feet. The shaft was put down 28 feet upon a remarkable showing last summer and so remains today. The other claims the R.A.P. Syndicate are now conducting work upon with a small steam plant. The vein has been followed to the 100 -foot level. where the station is now being cut, before sinking another hundred feet and also drifting on the vein. The vein is from four to five hundred feet wide at the 100 -foot level. At 75 feet in the shaft there was five or six inches of remarkable high grade ore, and it now appears to be coming in to the working at the 100 -foot level. The vein on the surface shows three short but phenomenally rich ore bodies. Across six and a half feet of one of these short ore bodies the ore gave an average of $\$ 91$, the high grade six to eight inches wide running $\$ 400$ to $\$ 500$ to the ton and the wall rock about $\$ 8$.

The ore is remarkable for the quantity of free gold it carries and also the fineness of the sulphides.

The Miller Independence

The other working property is the Miller Independence, o Dayton company. This company purchased the McDonough veteran claim from Mr. Fred Connell and his partner McDonough, and they have already completed all payments. The vein upon which the spectacular exposure of free gold ore was discovered last fall is strong and has been traced for upwards of 33 chains on the Miller independence and the veteran claim to the east. Several tons of quartz very rich in free gold have been sacked ready for crushing with the Nissen stamp that has been taken into the property but not erected. The vein is almost flat and it's estimated by the company that 1800 tons of ore can be taken out of this rich pocket almost at the surface and with very little trouble. The wall rock on oither side of the vein also carries values. The vein faulted, but has just been picked up again, showing that it had been thrown about four feet. Work had not much more than commenced this week on the faulted extension of the vein but it showed that there is a good body of quartz though there is but little free gold showing in the ore and the values ore very much lower. The gold is closely associated with galena and a copper telluride. Careful sampling shows that the gold is not confined to the quartz. Sulphides are not as plentiful in the vein as at the R.A.P. mine.

The company has been handicapped in their construction by the severe weather, ine depth of snow and in the fall the difficulty of getting material over a bad road. Under the circumstances they have made excellent headway. The compressor should be running in three weeks time in the power house, good camps have been built and ground is now being broken for the erection of the Nissen stamp. There are about twenty men working under the direction of Mr. Adams, previously at the Dome staff.

Other Prospects

To the east the veteran claim upon which the extension of the vein has been traced has been optioned by Mr. Weldy Young, with whom are associated Messrs. A.M.Scott. Bickell and others. Mr. Papassimakes also has a property adjoining with o vein carrying free gold.

There are more prospectors in the bush in Pacaud and Catharine townships than in any other part of the Northern Ontario field. There is such a depth of snow that little work is being attempted but the whole section will be very lively when warmer weather comes. Options are very much in demand.

Boston Creek Settlement

The centre of all this activity is at Boston Creek. On the R.A.P. Syndicate property the company has erected a most comfortable semi-public hotel and a boarding and sleeping camp all in the same building. Apart from that there are not more than two or three buildings, two of which are small stores erected on the other side of the rock cut near the iron bridge over Boston Creek.

MILLER INDE PENDENCE

Plant Is Now Running

The plant at the Miller Independence Mine at Bosion Creek is now running and much speedier progress will now be made with sinking the shaft on the main vein. The installation of the Nissen stamp, with which it is intended to treat the gold ore which can be mined from the lode on or near the surface, is proceeding rapidly.

May 6, 1916
Page 1

FIRST BRICK FROM BOSTON

The gold brick which will shortly be shipped from the Miller Independence at Boston Creek will not be the first from that district. Mr. J.C.O'Donald shipped a small brick to the Canadian Mint some years ago, and one of the original owners of the McCrea claims has just melted down a good-sized button from gold leaf in the ore taken from their claims.

While there is no ore actually blocked out at any prospect at Boston Creek there are so many veins of excellent promise that it will be remarkable if it does not make a camp.

May 13, 1916
Page 1
WONDERFUL ORE ON MILLER
Shot Out of Surface vein
Some remarkable ore has been shot out of the vein on the Miller independence for treatment in their Nissen stamp mill. Some specimens are as rich as the high grade from the Croesus mine and there are several hundred pounds that will run very high indeed in the yellow metal.

July 1, 1916
Page 8

FIRST GOLD FROM BOSTON CREEK

Small Shipment Made

Mr. George Miller, from the Miller independence, has shipped about a couple of tons of high grade ore taken from the surface of his vein on the Miller independence to Campbell \& Devell's for sampling purposes. He has also taken out some small bars of gold as a result of preliminary runs with the small Nissen mill, which has now been shut down on account of shortage of power.

Cartwrights In Boston Creek
Mr. Morgan Cartwright has bought the six Beatty and Duggan claims in Boston Creek.

January 27. 1917
Page 1

FLOTATION AT BOSTON CREEK

Machine Installed But Waiting For Ball Mill
The Groche flotation machine has been installed at the Miller Independence plant at Boston Creek. It will be used after the slimes have passed over the amalgamating plates and its purpose will be to concentrate the tellurides. As the Hardinge ball mill, of about forty tons a day capacity, has not yet arrived, it will be some time before the first flotation plant on gold ores in Northern Ontario will be tried out.

At present only a small gang is working on the Miller Independence. Surtace work is being done, but it is proposed to sink a shaft on the second vein. Diamond drilling will also be done.

It is expected that the ball mill being installed in the Miller independence mill at Boston Creek will be ready for operations inside o month. It is expected to start with a daily capacity of about thirty tons, though the mill is capable of treating twice that.

Development of No. 2 vein through B shaft is in full swing. It is now thought that No. 1 vein is connected in some way with No. 2 vein and owing to the large difference in size work will be concentrated on the latter. A feldspar porphyry dyke cut through the shaft and on slashing into it free gold and tellurides made their appearance. This dyke is being drifted on and is showing a width of from nine to fifteen feet.

The milling process will be amalgamation and concentration by flotation.
Five or six directors of the company will be visiting the property next week.

June 9, 1917
Page 6

ANOTHER VEIN ON MILLER

Discovery in Centre Of Boston Creek

Another vein has been found on the Miller Independence in Boston Creek. It was six inches wide on surface, but widened to ten inches wide with the first few rounds and gives indications of still further width. The new discovery was made alongside a third porphyry dyke discovered about four hundred feet west of where work was previously carried on. The vein is alongside the porphyry dyke and both carry visible gold and tellurides.

Following discoveries in a geological way that tend to clear up some features that have given the management some worry, it has been decided to continue the first shaft to a depth of about 150 feet and crosscut both ways to the porphyry dykes alongside which the veins are thought to be at depth.

It is proposed to have the mill working in two weeks. It is estimated that there is available about three month's ore.

June 30, 1917
Page 7

BOSTON CREEK'S FIRST PRODUCER

Miller Independence Mill Running
The Miller Independence mill was started last week for a series of test runs. Some changes are being made in the method of hoisting rock to the mill and when these changes are made operations will be carried on regularly. By the middle of the coming week it is expected that all necessary changes will have been made and Boston Creek's first producer will be regularly turning out bullion.

The process used is to amalgamate, after which the oulp is subject to oil flotation by which it is expected to concentrate the tellurides. This is the first flotation plant installed to treat gold ore in Northern Ontario and the results of its operation will be watched with considerable interest.

The flotation machine was installed by the Growards Company.
The ore for the mill is being broken on surface, though some ore from development work will also be available. Operations are being carried on almost across the company's holdings of about a hsif mile in width.

November 10, 1917
Page 1

> THE MILLER INDEPENDENCE PROPERTY
> Report On Boston Creek Property

The Miller Independence property is a veteran claim of 160 acres, located in south half. Lot 1 , Concession 6. Pacaud Township, known as the Crawtord Vet., owned by Lord Joice. North Humberland Castle,
-ngland. Gold was found on it in August. 1915, by Joseph McConnagh, of Haileybury, Ont., who together with Fred M. Connell of Toronto, purchased same from Lord Joice. Joseph McDonnagh sold same to Geo. J. Miller. Secy. and Mrg. of the Miracle Mines Ltd., at South Porcupine who organized the Miller Independence Mines Ltd, with a capitalization of $\$ 500,000$, at Dayton Ohio. The company is a closed syndicate and the stock is held by strong Dayton-Germantown and Toledo Ohio interests. Geo. J. Miller, Toledo, President and Manager.
N. W. Kirkpatrick, Vice President, Dayton, Ohio, Capitalist.
J. C. Schaeffer. Secretary, Germantown, Ohio, President and Secretary of Germantown Lumber Co. Sécretary Building and Loan Co., Germantown.
President Germantown Telephone Co. Dr. Edd Rittuick. Treasurer, Germantown, Ohio.
Vice President Germantown Natl. Bank, who are also directors together with Judge 0. B. Brown, Atty, and capitalist John A. Read, retired merchant. Adam Begard, Tobacco Merchant, Adam Bergard, Tobacco Jatiust.

The mine is located $23 / 4$ miles from B.C. and is reached by company road. The management has cut three roads to date to property.

Number Of Veins

A number of veins have been located at surface but all work has been done on the Number 1 , which was the original find on the property. This vein cuts across the property in a north westerly and southeasterly direction for at least f mile and gold and tellurides occur all along tor the entire length showing an enrichment over the entire ore body. Three main porphyry belts cross the property in an north westerly and southeasterly direction carrying fair gold values and showing free gold in places.

First Work

The first work was started on the property in December, 1915, and development work has continued down to the present time. Suitable camps were built at once and a small test mill consisting of a $60 \mathrm{~h} . \mathrm{p}$. boiler, 3 drill Rand Compressor, $40 \mathrm{~h}, \mathrm{p}$. engine for mill. o 1400 1b. Nissen Stamp and amalgamating plates were installed as a test plant. This first plant was operated for a short itme but owing to the heavy gold tellurides in the ore same was shut down until a method of treatment could be found for same. The first ore was hand picked and the free gold and tellurides was bagged for future treatment. After hand picking the quartz was found to contain a fair amount of gold which was collected on the plates. A small amount of high grade was run and a good extraction was obtained on the plates but the tellurides were carried in the tailing floating out on the water. All the gold taken out in this preliminary test is in Germantown. Ohio.

Present Plant and Buildings

Camps to accomodate 40 men.
Staft quarters and office.
Competent assay and testing laboratory.
Blacksmith shop, complete.
Power plant-two 60 h.p. boilers, 3 orill Rand compressor, direct connected lighting outfit. Mill equipment--one $40 \mathrm{~h} . \mathrm{p}$. steam engine. One 4×5 Standard Ball Mill, just installed. Two 12×5 amalgamating plates. One oil flotation machine, 60 tons. Crushers and etc., for 50 ton mill. All camps, mill and mine lighted with electric lights. Milling operation will start in course next few days. Delayed by delivery of parts for same.

Shafts

Two vertical shafts and two incline. A shaft down 76 feet and drift run 120 feet to south but No. 1 vein not cut owing to faulting. C shaft down 40 feet and cut No. 1 vein at that level. Three teet ore showing gold and tellurides. Drifting just started on three sides of shaft.

B incline shaft down 165 feet on the No. 1 vein, gold and tellurides showing entire length of same.

D incline down 140 feet on No. 1 vein showing gold and tellurides for entire length of shaft.

Test Pits

A number of test pits were put down on No. 1 vein at surface from 6 to 10 feet deep and in every place opened up the vein has started to widen out and heavy gold and tellurides can be seen in place in bottom. These test pits were sunk at different places on No. i vein at intervals for about 1000 feet on No. 1 vein.

At the present three eight hour shifts are employed. An ore bin has been built at surface. The main tramway is being connected up with the ore bin.

> Staft

Mr. W. W. Hotskins, consulting engineer.
Mr. Peter Sampson, mine captain.
Mr. Wm. R. Adams, mill supt.
Formation
Basalt with porphyry intrusion.

August 10, 1918
Page 8

WORK AT MILLER INDEPENDENCE
 Several Shafts Sunk On The Property

The spectacular ore in "D" shaft at the Miller independence at Boston Creek continues. The gold is free and in tellurides. Several pits and shafts have been sunk, described as follows:
"A" shaft - This shaft was put down 76 feet. No vein was cut and a crosscut was driven from that depth, 120 feet south with no results. This work was done previous to 1917 . It is intended that this shaft be used as a permanent one for what is known os "D" vein.
" 8 " shaft - This pit was down 21 feet vertically when a vein, its objective was cut. A drift was run 174 feet south on the vein, good values being met with.

INCLINE shaft - A vein averaging about two feet on surface was followed by this incline shaft 141 feet. Drifts east and west were started and values were met. This work was done in 19168 1917.
"C" shaft - This shaft was sunk 110 feet. The vein was cut at 44 teet, at 62 feet a mud seam 30 inches wide was cut. A crosscut was driven south 112 feet and north 60 . This work was done in 1917 and 1918.

JUMBO shaft - This pit was put down 14 feet. A vein, average about 30 inches was followed. The vein carried good values.
"D" shaft - About the middle of May, this year, a vein, called "D" was discovered on surface and work on it was commenced at once. The shaft is down 120 leet. A level was established at 100 feet and drifting east and west is under way. The drifts are now about twenty five feet. The vein has widened considerable from surface, and the drift do not show either wall. Values have also improved. The spectacular section is up to four feet in width and runs very high.

To the immediate north of this vein are four parallel fractures carrying values. The jumbo also parallels and is 400 feet south. These veins dip south and strike about 30 degrees north of east.

Future underground work as now planned includes continuing "D" shaft to a depth of 200 feet and drifting on the vein at that depth. This will allow steady work on four faces.

On surface the work being done includes a new two story dining room with bedrooms above, a new house for the assistant manager. The mill is to be enlarged. Another boiler. 80 horse power. is to

We installed and set up with a 10 drill compressor. A dam is being made 120 feet long and between two bluffs about 100 feet northeast of the power house. This is expected to give a more or less permanent resevoir of water and should more than meet requirements. The management state that eleciric power has been arranged for and is to be ready for when the present wood supply is exhausted. The line will probably be begun this winter or early next spring.

Some of the Miller Independence directors were at the property this week.

January 25, 1919
Page 3
MILLER INOEPENDENCE ANNUAL
On about the 5 th of February, the annual meeting of the Miller Independence Mines Limited will be held at Dayton, Ohio.

July 24, 1920
Page 1

MILLER INDE PE NDE NCE

that crosscut very close to

VEIN SHOWN BY INDICATIONS

IN THREE HUNDRED
The Miller Independence, Boston Creek, expected to cut "0" vein from 300 to 350 feet out $f r o m$ the shaft. The crosscut is now 300 feet long and the first indications that the expectations were correct are beginning to appear. The vein should be struck any day now. All the signs that surrounded the vein near surface are exhibiting themselves.

The other work on the property including southwesterly drifting operations and crosscuting north through fractured ground to the boundary, is being continued.

September 4. 1920
Page 1

FINDS ON MILLER-INDEPENDENCE

SEVERAL PROMISING LOOKING STRINGERS CUT ON
FIVE HUNDRED - D SHAFT DEWATERED
While crosscutting at the 500 foot level, several highly mineralized and promising looking stringers were cut on The Miller Independence, Boston. The stringers are narrow and many are verv rich in iron and copper sulphides. They run in an east and west direction toward what is known an the property as the Jumbo porphyry.

This porphyry showed some gold on surface and the "Jumbo vein" runs into it. To hit the jumbo vein and porphyry 160 teet more drifting along the stringers will have to be done.

The Miller Independence drove 343 feet at the 500 foot level from the shaft. From this point a crosscut runs north west and one cuts of f north east.
"D" vein is probably still a hundred feet distant in the crosscut that heads for it. On "O" vein an incline shaft had been sunk 200 feet. It has been dewatered and it is the intention to continue exploration from it very shortly.

It is very possible that the company will scrape together from the plant that was burned, sufficient machinery to equip a small mill for the purpose of running through ore from the No. 1 Vein.

NOTE: Page numbers below dates given indicate page of Northern Miner issue.

The following was taken from the 1957 Annual Report of the Ontario Department of Vines. Volume LXVI. Part 5.

C shofl, Miller Independence property, Pocoud township.
Miller Independence Mines, Limited
The Mille badepeadeare property occupies the som thill of lot 1 . concession VI. Pacaud township. It is a gold prospect in the Boston Creck area that has been ide for many years. A motor road extending eastward from the village of Boston Creek provides easy access to the property:

The property is underlain largely by Keewatin basic lavas. They are developed here as a fairly uniform succession of flows, which strike northwesterly and face northeast. The tops of the flows are finer-grained and are marked by the development of pillowed structure. The interiors of the flows are massive, medium to coarse-grained phases of dioritic or gabbroic composition in which pillowed structure is lacking. Small outcroppings ni Haileyburian (?) hornblendite and serpentinite occur in the western part of the property, and a lew dikes of Algoman fedspar perphyry are entended into the k ecwatin.

The property has been described by Burrows and Hoopkins' as follows:
Gold was frest discovered on the lot in No. 1 yein by Joseph. MeDonough in. July, 1915. Three years later W. Adans, then mine captain. discovered the "Independence Vein." which धntains a small shoot of ore carring a precious telluride, calaverite.

Abstract

The original No. 1 vein has been traced on the property for about 600 feet in an east and west direction and for several hundred feet easterly into Catharine township. It is narrow. averaging a bout a foot in width, and has a low dip to the north. usually about 20° or less, at one place being aimost horizontal. The vein material is milky white quartz, and the mineralization is more or less concentrated toward the fontwall side of the vein. Tellurides. copper pyrites, pyrite, specular iron ore. and galena are observed in the quartz. Wative gold occurs irequently with the telluride in a met-like arrangement in the quart alms the fontwall. + bismuch telluride brilliant erey in colour. and containine snme seleminme, xemars almudantly with the gold. A darkercolmured telluride perzie', is alson preeme in smaiter ammunts. The vein has been prospected by means of a number of trenches. pits amd shaits, irmm which some high-grate ure was bagred. and a snall production recorded. Hong parts oi both walls oi the vein there is a narrow dike of grey feldspar-porphyry: The porphyry contains much calcite and nther carbonates, as well as disseminated irnn pyrites and is cut by veinlets of quart?.

The Independence vein, containing the small shoot of exceptionally high-grade ore, strikes $\therefore 20^{\circ} \mathrm{E}$., and dips 55° southeasterly. The rich ore was found between the depths 30 feet and 160 feet in the inclined shatt, but could not be traced for any great distance on the 100 -foot level. The hanging wall of the shaft is a strong fault plane. Beiow this is a second fault plane nearls parallel to the upper one, the planes varying from a foot to three feet apart. Below the lower fault plane is a series of irrezular quartz veiniets, from a fraction of an inch to one inch in width and -oughly parallel to the fault plane. A few veins are terminated sharply at the fault plane midicating that some of the faulting is later than the mineralization. About ten feet above the 100 .finot level the veinlets occur over a width oi cour ieet. These veinlets can be followed down to 160 feet in the hait helow which the oock is less altered. Wherc the veinlets oceur, the dark basilt has beell sitered for a few inches :o a light zrey rock carrying abundant iron pyrites. The quartz carries in places iron pyrites and copper pyrites together with a cold telluride, calaverite. The telluride orcurs chiefly in minute veinlets and small masses i: and with the copper pyrites and is sometimes acinmonnied by native gold. Faulted sections of Hat-lving quartw veins were observed hetween the an iin fault planes about fifty feet betow the 100 . foot level.

Shait. No. A has been sunk verticaily to a depth of 500 feet and extensive exploration carrierd In at this level. The strone faults on which the inclined shaft " D " was sunk to the 200 . foot level were encountered in the cross-cut on the 500 -inot level. 190 feet north of " A " shait: drifting alone thase faults did not reveal any ore of similar character to the rich tellurite ore which was found in "I)" shatit. Seven diamond -frill hnies were made from the 300 -foot level.

In all, six shafts were sunk on the property. These shafts were named "A" hrough "D". The "A" shaft was 515 feet deep and the " D " shaft was 500 feet deep. The mine operated sporadically from 1916 through 1934. Official 1918 production was 58 ounces of gold and 70 ounces of silver. Little data survives today. In 1930, the Allied Gold Mines property($N \frac{1}{2}$, Lot 1) was merged with the Miller Independence to form the 320 acre block as it is today. Only the "C" shaft intersected the No. 1 vein at about the 44 foot depth.

For a brief period in 1934, the Miller Independence re-opened, with the "C" shaft development of 185 feet of cross cuts and 1,049 feet of drifting, as well as 1,000 feet of diamond drill holes completed. All apparently without success, for it closed soon after.

A portion of this drill data has survived: Diamond drill hole No. 1 is a vertical hole intersecting the No. 1 vein at 150 foot depth. Data on this drilling was obtained from the local Kirkland Lake office of the Ontario Ministry of Mines and later confirmed by private letters obtained from the former owner. It was collared in what was logged as grey porphyry; encountered 23.5 feet of fine grained basalt above 153 feet; and found the vein from 153.3 feet to 160 foot depth, apparently dipping 10°. The vein averaged $0.57 \mathrm{0z} /$ ton of gold across 3.4 foot of width. This hole provides a down dip positive extension of the outcropping vein by more than 750 feet in length.

Diamond drill hole No. 3 is also vertical for 267 feet. Near the surface, it encountered the altered hydrothermal vein system, logging it as altered porphyry 18.2 feet to 19.5 foot depth with a \dot{d} inch quartz veinlet. This zone assayed $2.09 \mathrm{oz} / \mathrm{ton}$.

The "C" shaft was sunk to about 150 feet, through the currently delineated ore zone at 44 feet and only in the 1930's was development, on this ore body, started. The poor mill recovery of the ore and the stabilized, low gold price were largely responsible for the mine's closure. This shallow, dipping ore body was a problem to mine in 1930. It was developed by limited drifting on strike with a winze sunk to follow the 11° to 12° dip with levels cut on strike, so that track haulage could be utilized. The mined ore was then transferred to the shaft by rail and hoisted up the winze by air operated tuggers. Modern trackless loadhaul dumps could now be used to mine the ore body and its' tabular nature and minimal faulting would allow room and pillar techniques to further reduce mining costs. The possible less mineralized zones could be plotted ahead and pillars turned for maximum recovery of the highest grade zones.

In 1983, Shenandoah Resources Ltd. had optioned the Searles, approximately 160 acre, claim in the $S \frac{1}{2}$ of Lot 12 . Concession VI, Catharine Township and dozed nearly 400 linear feet of surface outcrop of the No. 1 vein. Samples, which have been composited, were cut from this vein, an average 6 foot vertical height and from 6 inches to 8 inches of width, at the locations shown on the following assay map. This sampling proved conclusively that the vein system was thick enough to economically mine and that the grade was, as is normal to local gold deposits, variable over very short distances. The large bulk of the samples taken and the overall average grade in excess of $0.3502 /$ ton indicating a mineable resource.

The following winter, the adjacent Miller, 320 acre property, was purchased outright. This allowed the dozed outline of the ore body outcrop to be continued to the west in the early spring. In addition, a series of shallow holes, numbered 101 through 108, were drilled. In all, the ore body surface exposure was extended for 1100 feet on strike. Samples were cut wherever the vein outcropped and an old adit on strike was pumped sufficiently to allow for sampling of the ribs. All of this sampling indicated a highly variable grade, typical gold ore mineralization, with statistically an ore grade probable in excess of 0.32 0z/ton.

The following fall, a total of four core holes 201 to 204 were drilled in line on strike, down dip of the ore body outcrop which confirmed the extension of the mineralized zone for over 700 linear feet. Again, the grade was highly variable, but very encouraging.

Now the area was forced to sit while financing was arranged.

3.3 NORTEK 1987 EXPLORATION PROGRAM

During the 1987 Exploration Season, Nortek Minerals Ltd. completed the following three main projects as defined in their Program Plan:

COMPLETED 1987 EXPLORATION

PROGRAM PLAN

```
ACTION ITEM
1.
Drill }24\mathrm{ holes 7000士 feet of
    core on Miller-Independence
    properties. Log and assay.
Prepare ore cross sections
    and estimates.
2.
Complete assessment work
    on lease ground. Obtain
    existing MNR aerial photos.
Topo map properties.
```

3.

Obtain representative samples Define sequence of
for petrographic, polisned deposition and control ore and metallurgical testing.
deposition and control mechanisms.

Define ore body.
Establish need for adjacent leases.
Establish possible mining techniques.

Doze sultide zone access. Evaluate new and existing exposed ground by geological mapping and field sampling.

Prepare composite maps to guide future work.
3.

Obtain representative sample for petrographic, polisned

OBJECT

GOAL
GOAL

Obtain in excess of $500,000 \mathrm{NT}$ of relatively high grade reserves with ground added if necessary to control ore body

Develop role model for mineralization to validate next years activities and reduce holdings of specifically nigher cost leases, with possible farm outs.

Understanding of mineralogy and pre-milling technology potentials.

In all 36 core holes were drilled with locations as defined in the following olan Mapisee porket attached of the Miller mineralized area. In drilling these holes, locations were adjusted as information was available from each hole drilled. A total of 7,294 linear feet of "BQ" drill hole was drilled to provide a probable ore body containing in excess of 588,000 NT with a grade thought to be slightly better than one-third ounce per ton. The southern and southeastern portions of the ore body are well defined. The north and western limits will require additional infill drilling, as well as outside limit definition. The western edge appears to coincide with a granitoid dike system, but mineralization is irregular and not specifically limited by this dike. The northern ore body extreme appears to grade into an area of the same dike system which is bulbous in appearance. At least six holes will be required to better define this zone. The north central portion of the ore body extends to the adjacent Perron Claim L-565521. Perron has drilled a total of six holes within this area(shown on the attached Plan Map as G-series) with the result of defining an additional

250 foot zone north of the property line. See attached cross sections ($\mathrm{H}-\mathrm{H}^{\prime}$). It is probable that as much as one-third of the total ore body will underlie the Perron property. Magnetometer Surveys conducted during the 1984 period, while Shenandoah held the lease on this adjacent property, clearly define the limits of the ore body; when coupled with the completed Nortek drilling program. See the following segment of this magnetometer mapping:

4.0 RESERVE CALCULATIONS

4.1 VEIN \# 1

4.1.0 Methodology
4.1.1 Limits Of Ore Body

The ore body as defined by this calculation(see attached map) was delineated by:
a. Visible and assayed outcrops, essentially at the southern limits.
b. Property lines as is the case for most of the northern and western limits.
c. An assumed line linking estimated limits of mineralized areas together. As a rule the zone of influence of one borehole was considered to reach always the halfway point between two holes. This method was mainly used at the eastern limit of the deposit where limits of old underground workings were also taken into consideration.

4.1.2 Thickness Of Ore Body

The thickness of the mineralized zone has been taken from core logs and the measured width of outcrops.
4.1.3 Specific Gravity

Five(5) selected samples were forwarded to Swastika Laboratories for specific gravity determination. The results were as follows:

Sample Description Specific Gravity
O-Vein, heavily mineralized
2.91

Mineralized core(about 30\% quartz) from Vein \# 1
2.90

Outcrop rock of \# 1 Vein (about 91\% quartz)
2.71

Mineralized core(quartz/country rock brecciated) from Vein \# 2.81
Core(100\% quartz) from Vein \# 12.67
The average density was established by calculating the arithmetic average of all Vein \# 1 samples. This value used for reserve calculations has been calculated at: 2.77.
4.1.4 Gold Grade
4.1.4.1 Boreholes

Borehole \#	Mineralized Width In Feet	Assays in 0z/NT	Remarks
$\mathrm{N}-87-1$	2.00	0.045	
	2.00	.nil	
	2.00	0.015	
	1.00	0.088	
	7.00	$\overline{0.029}$ say	0.03
N-87-2	1.00	0.26	
	1.00	0.0005	
	2.00	0.015	
	2.00	0.1075	
	6.00	0.085 say	0.09
N-87-3	1.60	0.0675	
	1.00	0.045	
	1.40	0.020	
	1.00	0.3675	
	1.00	0.03	
	$\overline{6.00}$	$\overline{0.096}$ say	0.10
N-87-4	ore zone not reached		
N-87-5	ore zone not reached, drilling problems		
N-87-5a	2.00	0.025	
	2.00	0.61	
	4.00	0.3175 say	0.32
	1.00	$0.325\left\{\begin{array}{l} \text { fort } \\ \text { not } \end{array}\right.$	y feet below
	1.00	$0.13\} \text { rese }$	rve calculations.
	2.00	$0.2275 \quad \text { say }$	0.23
N-87-6	2.50	1.765 say	1.77
N-87-7	Barren, out of deposit		
N-87-8	0.82	0.05	
	1.50	nil	
	1.58	0.01	
	1.91		
	1.50	0.01 (
	1.41	20.325 (average of four assays)	
	$\underline{1.58}$	0.14	
	$1 \overline{0.30}$	$\overline{2.81}$ say	2.81

Borehole \#	Mineralized Width In Feet	Assays in $02 / \mathrm{NT}$	Remark	
N-87-19	1.00	0.002		
	1.00	0.015		
	1.00	0.010		
	1.50	nil		
	1.00	nil		
	$\overline{5.50}$	0.0049	say	0.01
N-87-20	1.56	0.015		
	1.50	0.002		
	0.67	nil		
	1.58	0.0175		
	5.31	0.0102	say	0.01
N-87-21	Stopped at 11 feet - drilling problems			
$\mathrm{N}-87-21 \mathrm{a}$	1.41	0.0375		0.04
N-87-22	1.00	0.355		
	2.00	0.590		
	2.00	nil		
	2.00	0.2025		
	7.00	$\frac{0.277}{}$	say	0.28
N-87-23	2.00	0.115		
	2.00	0.61		
	2.00	0.20		
	2.00	0.3625		
	8.00	0.321875	say	0.32
N-87-24	Barren			
N-87-25	1.00	0.5325	say	0.53
N-87-26	2.00	0.0475	say	0.05
N-87-27	Barren			
N-87-28	Barren			
$\mathrm{N}-87-29$	Barren			
N-87-30	6.00	0.045	say	0.05
N-87-31	4.00	0.002		
N-87-32	Barren			
201*	2.00	0.24		
202*	2.00	0.06		
203*	4.00	0.02		
204*	4.00		1.32	

(* Shenandoah holes)

4.1.4.2 Outcrops

Outcrops were sampled by Shenandoah/Miller-Independence prior to the 1987/1988 Nortek Exploration works. For our calculations, two sections were considered:

1. The eastern section located mainly on the former Searles property.
2. The western section located on the Miller-Independence property.

4.1.4.2.1 Eastern Section

26 channel samples over an average width of 6 feet each can be listed as follows:

\# of order from East to West	Assay result in 0Z/NT	Extended outcrop length 12 feet
1	0.08	20
2	0.12	40
3	0.02	25
4	0.05	20
5	0.02	18
6	0.02	12
7	0.32	12
8	0.05	35
9	1.71	33
10	0.73	12
11	0.71	12
12	0.14	10
13	1.27	14
14	0.12	15
15	0.08	13
16	0.05	11
17	4.24	10
18	0.83	10
19	0.14	15
29	0.07	18
21	0.11	20
22	0.05	22
23	0.08	20
24	0.005	15
25	0.25	20
26	0.02	10
TOTAL		462

Arithmetical Average	0.434	17.8 feet
Weighted Average used in calculations	$0.372(1)$	

(1) Note: The average gold grade of the 600 kg bulk sample forwarded to "Lakefield Research Laboratories" for processing tests, taken randomly in the same area, was assayed at $0.39102 / \mathrm{nt}$.

RECAPITULATION OF VOLUMES TONS AND GRADES

OF THE VEIN \# 1 DEPOSI.T

$\begin{gathered} \text { BLOCK } \\ \hline \end{gathered}$	$\begin{gathered} \text { BOREHOLE } \\ . \end{gathered}$	SURFACE IN FEET ${ }^{2}$	$\begin{gathered} \text { THICKNESS } \\ \text { IN FEET } \\ \hline \end{gathered}$	$\begin{gathered} \text { VOLUME IN } \\ \text { YARD } \end{gathered}$	NET TONS	$\begin{aligned} & \text { GRADE } \\ & \text { OZ/NT } \end{aligned}$	total 02.	ASSAY RESULTS $F T^{2} / A S S A Y$	$\begin{gathered} \text { y OF } \\ \text { ASSAYS } \end{gathered}$
1	N-87-5a	37.500	4.00	5,556	12,945	0.32	4,142	37,500	1
2	N -87-15	28,500	11.17	11.791	27,473	0.39	10.714	28,500	1
3	$\mathrm{N}-87-3$	28.500	6.00	6.333	14,756	0.10	1.476	28,500	1
4	$\mathrm{N}-87-14$	30,000	1.00	1,111	2.589	0.03	78	30.000	1
5	$\mathrm{N}-87-2$	30,000	6.00	6.667	15.534	0.09	1,398	30,000	1
6	$\mathrm{N}-87-6$	30.000	2.50	2.778	6,473	1.77	11,457	30,000	1
7	N-87-1	30,000	7.00	7.778	18,123	0.03	544	30,000	1
8	$\begin{array}{ll} 201, & 202 \\ 203, & 204 \end{array}$								
	DH 1	64,500	3.00	7,167	16,699	0.50	8.350	12,900	5
9	N-87-17	70,500	3.34	8,721	20,320	0.08	1.626	70,500	1
10	Outcrops	280.500	6.00	62.356	145.289	0.37	53.757	10.792	26
11	Outcrops								
	\& Incline	85,075	6.00	18,906	44,051	0.31	13,656	21,269	4
12	N-87-20								
	$\mathrm{N}-87-21 \mathrm{~A}$	43.275	3.36	5.385	12.547	0.02	251	21,638	2
13	$\mathrm{N}-87-25$	31.050	1.00	1.150	2.679	0.53	1,420	31,050	1
14	N-87-22	22,400	7.00	5,807	13.530	0.28	3,788	22.400	1
15	$\mathrm{N}-87-30$	37.975	6.00	8.439	19.663	0.05	983	37.975	1
16	$\mathrm{N}-87-19$	26.250	5.50	5.347	12,458	0.01	125	26.250	1
17	N-87-18	25.500	7.00	6.611	15,404	0.05	770	25,500	1
18	$\mathrm{N}-87-8$	26.250	10.30	10.014	23.333	2.81	65.566	26,250	1
19	$\mathrm{N}-87-9$	22,500	7.75	6,458	15,047	0.39	5.868	22,500	1
20	N-87-10	22,500	7.50	6.250	14,563	0.08	1.165	22,500	1
21	$\mathrm{N}-87-11$	25,500	6.46	6,101	14.215	0.08	1,137	25,500	1
22	$\mathrm{N}-87-12$	22.500	5.41	4.508	10.504	0.07	735	22.500	1
23	$\mathrm{N}-87-13$	23,250	4.42	3.806	8,868	0.08	709	23,250	1
24	N -87-23	35,700	8.00	10,578	24,647	0.32	7.887	35,700	1
TOTALS		1,079,825		219.618	511.710		196,716		57
average			5.47			0.384		18,944	

Four samples were considered of which one came from inside an old incline.

\# of Order From East to West	Assay Results in OZ/NT	Extended Outcrop Length in Ft.
1	0.06	12.5
2	0.32	50.0
3	0.17	25.0
$4(1)$	0.76	12.5

Arithmetical Average
0.33
25.0

Weighted Average (2)
0.31
N.A.
(1) Assay from incline
(2) Considered in reserve calculations

4.1.5 Average Gold Grade Of The Mineralized Zone

The deposit was subdivided into 24 different reserve blocks of variable grade and thickness. Volumes, tonnages, grades and results per block and the total deposit are listed in the following table.

The following is the result of this compiliation:

Total volume	$219,618 \mathrm{yd}^{3}$
Total mineralized tonnage	$511,710 \mathrm{NT}$
Average grade(weighted average)	$0.384 \mathrm{oz} / \mathrm{NT}$
Total ounces	$196,716 \mathrm{oz}$

The preceding compiliation did not take into consideration the dilution to be added to determine mineable tonnage and mineable grades.

The following are the criteria used to establish the dilution:

- Considered minimum mining height

4 feet

- Overbreak dilution from both foot and hanging wall foot
he non-mineralized mineable tonnages to be added were calculated as follows:

Reserve Block $\#$	Surface in Ft^{2}	Thickness To Be Mined in Ft	NT Dilution Material
1	37,500	0.5	1,924
2	28,500	0.5	1,462
3	28,500	0.5	1,462
4	30,000	3.0	9,233
5	30,000	0.5	1,539
6	30,000	1.5	4,617
7	30,000	0.5	1,539
8	64,500	0.5	3,309
9	70,500	0.66	4,774
10	280,600	0.5	14,394
11	85,075	0.5	4,364
12	43,275	0.64	2,841
13	31,050	3.00	9,557
14	22,400	0.50	1,149
15	37,975	0.50	1,948
16	26,250	0.50	1,347
17	25,500	0.50	1,308
18	26,250	0.50	1,347
19	22,500	0.50	1,154
20	22,500	0.50	1,154
21	25,500	0.50	1,154
22	22,500	0.50	1,154
23	23,250	0.50	1,193
24	37,700	0.50	1,934
	$1,079,825$	N.A.	$75,857 \mathrm{NT}$

The total mineable reserves has been calculated as follows:

	NET TONS	GRADE OZ/NT	OUNCES GOLD
Mineralized tonnage	511,710	0.384	196,716
Dilution tonnage	75,857	\ldots	196,716
Total mineable tonnage	587,567	0.335	197,716

For all practical purposes the following reserve figures c an be assumed:

Mineable Tonnage
Ounces of Gold Weighted Average Gold Grade

Dilution Factor

588,000 NT
197,000 0Z
0.335 02/NT
12.5%

4.1.6 Nugget Effect

Some reserve calculations are made by systematically reducing all gold assays over $1 \mathrm{oz} / \mathrm{NT}$ to $1 \mathrm{oz} / \mathrm{NT}$ to correct for the so called nugget effect.

We believe that this method might be justified when dealing with placer deposits or an ore deposit showing coarse grained gold only, but it is in no way statistically justified as long as correction factors are only used for the high values without correcting the low assays. However, to further eliminate this effect, all high value assays were obtained from four different pulps.

We have not applied this method for the following reasons:

1. Up to four assays per high grade sample have shown \pm variation in the 10 or 15% range from the mean value which we have used for our reserve calculations.
2. Microscopic studies of the polished ore sections have demonstrated the fact that the gold ore mineralization is actually linked to significant sulphide/telluride mineralization where gold inclusion averaged 10 to 20 microns with occasional values up to 50 microns. A grain size certainly not to be considered as coarse.

4.1.7 Discussion of Results

The reserve figures obtained might be classified as probable reserves. The assay density is: "The number of square feet by assayed vein intercept." According to Ontario Stock Exchange Commission rules this figure shnuld he in the $10,000 \mathrm{ft}^{2}$ /intercept ranoe to he ronsidered as a drill oroven reserve.

The average figure for the Vein \# 1 deposit amounts to $18,944 \mathrm{ft}^{2} /$ inter cept with a maximum of $70,500 \mathrm{ft}^{2} /$ intercept and a minimum of $10,792 \mathrm{ft}^{2} / i n t e r-$ cept. It must be noted in this context that the maximum figure covers a low grade ore zone whereas our higher grade ore zone assay densities are much closer to the average figure.

It is for this reason that ore reserves have been defined between the probable and drill proven reserve categories.

As far as the average grade is concerned, we consider the value obtained through the 600 kg bulk sample which assayed at 0.391 oz/NT as representative for this deposit. The calculated value of $0.34302 / N T$ is therefore certainly realistic.

Whatever method one might apply to obtain a representative gold grade. Oe old saying that the grade is only known once the deposit is mined out is particularly true for gold deposits.

The Vein \# 1 deposit is no exception to this rule. As noticed through outcrop sampling and also by analyzing old underground sample maps, grades ocillate within feet up to 80 fold.

We do not think that increasing the number of drill holes within the already delineated deposit will increase the confidence level.

The drilling of say 50 drill holes(about $15,000 \mathrm{ft}$. of core drilling) costing about $\$ 375,000$ will certainly allow to consider this probable reserves as drill proven resources, but would we really gain more knowledge as far as grade, mining behavior, roof stability, etc. of the deposit is concerned? We doubt it !

The only realistic way to improve the confidence level as far as reserves, grades, mining engineering parameters is concerned is to obtain a reasonable bulk sample through underground sampling of representative parts of the deposit. This method, combined with some core drilling at the limits of the deposit should be applied in Phase 2 of this exploration program to obtain at the end of this phase all data required to make a mine development decision.

Joint Venture 1988 Exploration Program

Total Expendlture $\$ 860,000$ Less Overhead, Home Offlce and Contingencles

The suggested Nortek/Shenandoah/Miller-Independence Properties Exploration will consist of eight main phases. They are:

1. The continued core drilling of the Miller properties associated ore bodies. Proposed core hole locations are shown on the following Plan Map as red circles. In all about 10,500 linear feet of "BQ" core will be drilled, geologically logged and mineralized zones assayed. Approximately 25 holes will be required. Total core drilling costs are estimated at about $\$ 220,000$
2. Assessment drilling and sampling. Proposed core drilling to complete currently required assessment drilling is estimated at about 2,000 linear feet. One month of field mapping and surface sampling will also be required prior to drilling to delineate additional potential targets beyond those known to exist from last years dozing assessment work. Two tables are attached which show the claims affected and the type and magnitude of work required. Total costs to maintain all claims in good standing is estimated at about . . $\$ 40,000$
3. 700 linear feet of underground 6×6 ramp and a mining milling cost feasibility study done in-house. It is proposed to construct a declining ramp approximately 700 feet long and an on strike lateral development within budget limitations. From this mining, a 50 NT bulk sample, representative of the ore body, will be obtained and delivered to Lakefield Laboratories for detailed testing. An in-house mining, milling feasibility study will be produced based on mining data derived and milling data obtained from testing. Total cost of contract mine development is estimated at about $\$ 400,000$
4. Bulk sample laboratory testing. A 50 NT bulk sample will be obtained from the mined ore from the ramp and cross cuts. This will be metallurgically tested by Lakefield Research Laboratories to determine milling procedures, equipment requirements and reagent usage.

Processing tests. The quartering rejects, about 50 NT , which represents, in our opinion, a representative bulk sample will be forwarded to Lakefield Research Laboratories for bench testing to optimize the flow-sheet and processing equipment selection. Processing tests to be performed will be as outlined in the Lakefield Research proposal, but exçlude all roasting related
tests since it seems to be impossible to obtain roasting related emission perits. This program is estimated to cost about $\$ 40,000$
5. Site Supervision and Engineering. On site supervision, miscellaneous, is estimated to cost about $\$ 110,000$
6. Field obtained contract help. Local contract help will be required part time during May and June for field sampling and geological mapping. Additional help will be required to assist in grade surveys, sample selection, channel sample cutting, etc. during ramp development. Total costs for this help are estimated at about . $\$ 10,000$
7. Assays, sample preparation, etc. Swastika Laboratories assay work will be required throughout the program. There are other costs associated with field sampling and surveying, etc. The total costs are estimated at . . \$9,000
8. Miscellaneous contracts. In order to clear sites, develop ore storage pads, provide access roads, etc., contract equipment will be required. It is estimated that the total cost for dozing, etc. will be about . . . $\$ 24,000$

The grand total for this proposed program exclusive of Nortek Minerals' overneads, etc. is estimated at . $\$ 860,000$

See timing summary chart which follows:

NORTEK/SHENANDOAH/MILLER-INDE PENDENCE PROPERTIES

fAl

4.2.1 Complete Miller Ore Body Drilling

The northwestern and western extremes of the Miller ore body will be delineated by additional drill holes, and the 200 foot spaced pattern will be turned into a 5 spot, 150 foot spaced pattern. The granitoid(dike bulge) area will be drilled by at least six more 500 foot holes(this area currently thought to be a potential for open pitting). The northern, adjacent to the granitoid dike, mineralized zones as defined by surface sampling will also be drilled. The " D " vein drilling will be completed and potential reserves in this system identified. In all, over 10,000 linear feet of drilling is thought to be required. Results should increase in place reserves, as well as improve the category of resource. See attached core hole pattern in the Map Pocket.

TABLE OF DRILL HOLE DATA

PROPOSED DRILL HOLE \#	PROPOSED DEPTH	LOCATION
1	80^{\prime}	see map location
2	$100 '$	see map location
3 \& 3a	$200 '$ \& 400'	"D" vein exploration
$4 \& 4 \mathrm{a}$	200' \& 400'	Each hole number only at 50° and
5 \& 5a	$300{ }^{\prime}$ \& 500'	a series holes are nearly verti-
6 \& 6a	$300 '$ \& 500'	cal, say 80° to 90°.
7	$350{ }^{\prime}$	see map location
8	$400{ }^{\prime}$	see map location
9	$400{ }^{\prime}$	see map location
10	$500{ }^{\prime}$	see map location
11	$550 '$	see map location
12	5001	see map location
13	$500{ }^{\prime}$	see map location
14	$500{ }^{\prime}$	see map location
15	500^{\prime}	see map location
16	$400{ }^{\prime}$	see map location
17	4001	see map location
18	4001	see map location
19	$400{ }^{\prime}$	see map location
20	$300{ }^{\prime}$	see map location
21	500^{\prime}	see map location
SUBTOTAL	9,600 feet	
22-26		Reserved for expansion as data is developed

Total drilling 10,500 linear feet.

BOSTON 1OWNSHIP CLAIMS HELD 50% SHENANDUAH RESOURCES LTU. $/ 50 \%$ MILLER-INDEPENDENCE MINING LTD.
Tebruary 20, 1988

Claim Current Assessment Work Credit							Staked Recorded		$\begin{gathered} \text { Assessn } \\ 1987 \end{gathered}$	nt Man 1988	Days 1989	Needed 1990
						Totals						
	822554	96.42PS	2.85 ML	1.51AS	40.2200	141.	12/19/84	1/15/85			59	
	822555	96.42PS	2.85ML	1.10AS	40.6600	141.03	12/19/84	1/15/85			59	
	822556	96.42PS	2.85 ML .	1.51AS	40.2200	141.	12/19/84	1/15/85			59	
	822575	96.42PS	2.85 ML	1.51 AS	40.2200	141.	12/17/84	1/15/85			59	
	822576	96.42PS	2.85 ML	1.51 AS	40.2200	141.	12/17/84	1/15/85			59	
	822577	96.42PS	2.85ML	1.51AS	40.2200	141.	12/17/84	1/15/85			59	
	822578	96.42PS	2.85ML	1.07AS	40.6600	141.	12/18/84	1/15/85			50	
	822579	96.42PS	2.85 ML	1.07AS	40.6600	141.	12/18/84	1/15/85			59	
${ }_{i}^{+}$	822580	96.42PS	2.85ML	1.07AS	40.6600	141.	12/19/84	1/15/85			59	
$\stackrel{\rightharpoonup}{\sim}$	822581	96.42PS	2.85ML	1.07AS	40.6600	141.	12/18/84	1/15/85			59	
	822582	96.42PS	2.85ML	1.07AS	40.6600	141.	12/18/84	1/15/85			59	
	822583	96.42PS	2.85 ML	1.51AS	40.2200	141.	12/19/84	1/15/85			59	
	842959	100.PS	2.85 ML	.15AS		103.	5/26/85	6/05/85		37	60	
	842960	100.PS				100.	5/21/85	6/05/85		40	60	
	842961	100.PS				100.	5/21/85	6/05/85		40	60	
	842962	100.PS	2.85 ML	.15AS		103.	5/26/85	6/05/85		37	60	
	842963 ;	100.PS	2.85ML	.15AS		103.	5/26/85	6/05/85		37	60	
	842964 '	100.PS	2.85 ML	.15AS		103.	5/26/85	6/05/85		37	60	
	843632	100.PS	2.85 ML	.15AS		103.	5/26/85	6/05/85		37	60	
	843633	100.PS	2.85 ML .	.15AS		103.	5/27/85	6/05/85		37	60	
	843634	100.PS	2.85 ML	.15AS		103.	5/27/85	6/05/85		37	60	
	843635	100.PS	2.85 ML	.15AS		103.	5/29/85	6/05/85		37	60	
	843636	100.PS	2.85 ML	.15AS		103.	5/29/85	6/05/85		37	60	
	843637	100.PS	2.85 ML	.15AS		103.	5/29/85	6/05/85		37	60	
	843638	100.PS	2.85 ML	.15AS		103.	5/29/85	6/05/85		37	60	

[^0]AS = Assay credit
$C L=$ Core library donation of core
$\rightarrow \perp \quad D=0$ iamond Drilling credits
is $\quad \mathrm{ML}=$ Manual labor credits
$\dot{\sim} \quad P S$: Power strippiny by dozer credits

MCELROY TOWNSHIP CLAIMS HELO 50\% SHENANUOAH RESOURCES LTD./50\% MILLER-INDEPENDENCE MINING LTO.
February 20, 1988

ClaimNo. L-							Staked	Recorded	Assessment Ma 19871988		$\begin{aligned} & \text { Days } \\ & 1089 \end{aligned}$	Needed 1990
						Totals						
822532	96.42PS	2.85 ML	1.51AS	40.2200		141.	12/11/84	1/04/85			59	
822533	96.42PS	2.85ML	1.90AS	40.2200	18.45Cl	159.84	12/11/84	1/04/85			41	
822547	96.A2PS	2.85 ML	1.51AS	40.2200		141.	12/13/84	1/04/85			59	
822548	96.42PS	2.85 ML	1.59AS	40.2200	19.92 Cl	161.	12/13/84	1/04/85			39	
822549	96.42PS	2.85 ML .	1.51AS	40.2200		141.	12/14/84	1/04/85			59	
822550	96.42PS	2.85ML	1.51AS	40.2200		111.	12/15/84	1/04/85			59	
822551	96.42PS	2.85 ML	1.51AS	40.2200		141.	12/15/84	1/04/85			59	
822552	96.42PS	2.85 ML	1.51AS	40.2200		141.	12/18/84	1/04/85			59	
822553	96.42PS	2.85ML	1.51AS	40.2200		141.	12/18/84	1/04/85			59	
822562	96.42PS	2.85 ML	1.51AS	40.2200		141.	12/13/84	1/04/85			59	
822563	100.PS	2.85 Ml	.15AS			103.	12/13/84	1/04/85		37	60	
822564	96.42PS	2.85 ML	. 51AS	40.2200		140.	12/13/84	1/04/85			60	
822565	96.42PS	2.85 ML	. 51AS	40.2200		140.	12/14/84	1/04/85			60	
822568	100.PS	2.85ML	.15AS			103.	12/15/84	1/04/85		37	60	
822569:	100.PS	2.85ML	2.35AS			105.2	12/15/84	1/04/85		35	60	
$822570^{\prime \prime}$	100.PS	2.85 ML	2.35AS			$105 . ?$	12/15/84	1/04/85		35	60	
822571	100.PS	2.85ML	2.35AS			105.2	12/15/84	1/04/85		35	60	

AS = Assay credits
$C L=$ Core library donation of core
$00=0$ iamond Drilling credits
$M L=$ Manual labor credits
PS = Power stripping by dozer credits

4.2.3.1 Underground Bulk Sampling Program Work Description

In order to obtain a representative bulk sample for ore processing tests and to ascertain with more accuracy:
a. Average grade of the \# 1 Vein deposit
b. Hanging wall behavior
c. Rock stability in general
d. Blasting parameters
e. Grade variations in strike and dip direction

The following underground exploration should be carried out:

1. Driving of 700 feet of an inclined ramp, directed approximately in south/ north direction starting at 9,120 north $/ 10,070$ east. The section of this ramp will be a normal 6×6 foot; will cover about 700 feet of the central part of the deposit; yielding about 2,600 NT of ore; ore zones may dictate an increased mining height.
2. Driving of cross-cuts, as the budget allows, in the strike direction of the deposit to better define mineralization pattern in east-west direction. The 6×6 foot cross-cuts will produce about $1,300 \mathrm{NT}$ of ore.

4.2.3.2 Sampling

To obtain a representative sampling of the deposit two sampling methods will be used:
a. Channel sampling at regular intervals of say 5 feet on the east and west or north and south walls of the incline and cross cuts i.e., practically one channel sample for each 2.5 feet.
b. A sampler will recover randomly 3 shovels by mine car(about $12 \mathrm{~kg} / \mathrm{NT}$) and stockpile this material in one heap. For each drift increment of 5 feet, about 220 kg of randomly selected sample material per 18.5 NT or 1.3% will be available for testing purposes. Sample material will be quartered down until the quantities required for assaying are obtained.
c. Assay results from channel and shovel samples will be correlated.
d. The quartering rejects, about 50 NT will be stockpiled for processing tests.
4.2.3.3 UNDERGROUND BULK SAMPLING COSTS

700 feet of ramp driving	$\$ 227,600$
Available for cross cuts	106,500
Sampler costs	10,000
Bulk Sample Preparation:	
Loading, transportation	15,000
Mobilization/demobilization, etc.	41,000
Total	$\$ 400,000$

5.0 OTHER NORTEK OR JOINT VENTURE RESOURCE POTENTIALS

ALTERNATE EXPLORATION AREA

The 1988 Nortek Minerals exploration program is proposed to consist of
four iterative principal phases, each defined to add substantially to reserves to increase the existing 685,000 probable reserves on the Miller property, and thus justify construction of an site milling facility. The total expenditure for exploration during 1988 could be as high as $\$ 860,000$ (not including lease payments). See suggested exploration program Sec. 4.2). If additional resources are deemed desirable and cash flow allows an alternate 8 hole drill pattern on the $N \frac{1}{2}$ of Lot 10 is suggested.

5.1.1 Preliminary 8 Hole Pattern $N \frac{1}{2}$, Lot 10; October-November

This preliminary 8 hole pattern is designed to core drill the surface sampled and geologically mapped, dozer exposed mineralized fault zone in the southwest corner of the North $\frac{1}{2}$ of Lot 10, Concession VI, Catharine Township* and the extension of this possible ore body into adjacent Perron claim L-565523 (see hole locations map, Figure 5-1). This area has been dozed, mapped and is accessible for early exploration with the completion of some road work which includes installing three $10^{\prime \prime}$ culverts; about 5 days of dozing; and the haulage of 50 to 70 yards of gravel. Drill water impoundments have been constructed and are available for use as the weather permits. Assay results and the strong width and length of the exposed silicified faulted mineralized zone make this a prime alternate target for core drilling. If a sufficient number of core holes intersect mineable ore, it is possible to greatly increase the reserves with drilling this area only. In all, a total of about 8 noles will be required as a minimum, with contemplated average depths of 200 feet. After analysis of core results, it may be necessary to drill additional deeper holes to further define the ore body. Initial drilling and evaluation is expected to cost about $\$ 20,000$ with potential costs for deeper, more extensive drilling adding an additional $\$ 40,000$ at a later stage.

5.1.2 Magnetic Anomaly Drilling

With the completion of drill site installation in the areas shown on attached Figure $5-2$ (principal axis of dozing areas), a series of five core drill holes(minimum) could be drilled, at a later time, to an average depth

[^1]

of 400 feet each, on the dozed and geologically mapped conductors as defined the March 1984 Geological Survey(see Geophysical maps attached as Figures 5-3 and 5-4). The indicated strong North/South trending conductor is thought to be a source of additional potential reserves. After conpletion of prescribed dozing, the final location of core holes will be selected. However, tentative locations, based on geophysical data only, are shown on the attached figures. Costs for this phase are expected to be about $\$ 55,000$. Total results at this point may be sufficient so that limited additional core drilling will be required to define neeeded reserves. Since this is an alternate site for drilling, no costs have been included in this year's program. If however, reserves are limited or funds become available, this site is recommended.
5.1.3 Farm Out Possibilities

The $N \frac{1}{2}$ of Lot 10 , Concession VI, property potential represents a totally separate area on patented land, which could be farmed out - joint ventured or used as a separate exploration venture. It is included so that preliminary information is available for possible dissemination to interested parties.

SHENANDOAH RESOURCESLTD. N $1 / 2$, LOT 10 , CATHARINE TOWNSHIP GROUND MAGNETOMETER SURVEY
ISOMAGNETIC CONTOURS AT 100 GAMMA'S INTERVAL PROTRON MAGNETOMETER - GEOMETRICS G-8S6

SHENANDOAH RESOURCES LTD.
N1/2, LOT 10; CONCESSION VI, CATHARINE YOWNSHIP
GROUND VLF - EM SURVEY
CONTOUR INTERVAL 10 UNITS, FREQUCNCY $24.0 \mathrm{KH}_{2}$
GEONICS VLF - EM16 on NAA CUTLER, MAINE
Topographic relief not in excess of 5^{\prime} over area of survey
FIGURE 5-4

DRILL HOLE LOGS AND ASSAY DATA
FOR
PERIOD FROM NOVEMBER 1987 THRU FEBRUARY 1988

LOCATION: $9,845 \mathrm{~N}, 10,100 \mathrm{E},+29$ feet above lake level
INCLINATION: Vertical Hole
CORE SIZE: BQ Core
Page 1 of 4

Hole:	N-87-8	Vertical Scale: $1^{\prime \prime}=61$		Total Dep	h: 199 feet
DEPTH	CORE LOG	DESCRIPTION	($\begin{gathered}\text { Joints } \\ \text { "DIP" }\end{gathered}$	$\begin{aligned} & \text { Number of } \\ & \text { ASSAY } \end{aligned}$	SAMPLE thickness
0					
$2+$ \%					
$f \text { cos' }$					
$4{ }^{\circ}$					
$-$			10,45		
6 Basalt,	Py ${ }^{\prime}{ }^{\prime}$	6-7 Vertical ${ }^{\text {" }}$ pyrite zone	15,60		
$\underbrace{\text { green-gre }}$	Py	8-9 Pyrite blebs to $1 / 8^{n}$	90,40		
8 Hard, nume	$\therefore \quad{ }^{i} P_{1}$	8-9 Pyrite blebs to $1 / 8^{\prime \prime}$	30,75		
- silicoous			15		
$10{ }^{\text {b iated pyr }}$		10.5 $\mathrm{t}^{\prime \prime}$ zone W/pyrite blebs 875°	20.20		
$17+$ minor	$p=$	$111^{\prime \prime}$ Quartz	40		
$12+$ cite on t		123 thin quartz bands 875°	25		
ture sur-	Py Q	13 $4^{\prime \prime}$ pyrite + quartz zone 20°	25.20		
14 faces	Q Py $=$	f14.5 !" quartz + minor pyrite \& 5°			
	Q Py=	14.5 i yuartz + minor pyrite ${ }^{\text {a }}$	$[70,20$		
16		-16-25 Competant core			
18			20		
20			30,25		
		I			
22					
24			50,50		
-	Q Py $=$	24 ${ }^{\text {" }}$ quartz + minor pyrite 60°	20,25		
			10,15		
26		-			
		-	35		
28	Calcit	28 1" calcite vug filling			
30			30		
$32+32.5$		32.5-38 Altered zone, numerous quartz			
Taltered Ba		- fracture fillings	35,20		
34 solt. med	M-1": Qtz=	$340.3^{\prime \prime}$ quartz 40°	$\begin{aligned} & 65 \\ & 30 \end{aligned}$		
fgreen sil 36 ceous			$\beta 0$		
			60		
$38{ }^{-38}$ Basalt	ptz -	38 ${ }^{1 \times \prime}$ quartz	60		
dasalt		38-50 competant core			
40 dark gree grey		99-40 Quartz filling zone to "	So		
42		2-43 Slightly altered			
444^{44}			55		
- Basalt			55		
46 green to			45		
folack		d7.5-49.5 moderately altered zone	50		
48 Hard.	$Q_{\text {Py }} \mathrm{Ca}$	with quartz + colcite to :",	50		
${ }^{\text {poyrite ble }}$		minor pyrite associated w/quartz			
50			90		

LOCATION: $9,845 \mathrm{~N}, 10,100 \mathrm{E},+29$ feet above lake level
INCLINATION: Vertical Hole CORE SIZE: BQ Core

Page 2 of 4

LOCATION: $9,845 \mathrm{~N}, 10,100 \mathrm{E},+29$ feet above lake level
INCLINATION: Vertical Hole
CORE SIZE: BQ Core
Page 3 of 4

LOCATION: $9,845 \mathrm{~N}, 10,100 \mathrm{E},+29$ feet above lake level
INCLINATION: Vertical Hole
CORE SIZE: BQ Core
Page 4 of 4

87-10-30

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO TELEPHONE: (705) 642.3244 FAX: (705) 642-3300 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS

(UPrtifirate nf Analyaia

Certificate No. \qquad 68783

Date \qquad
Received Oct. 30, 1987 \qquad Samples of Split Core \& Broken Rock

Submitted by Nortek Minerals Ltd., c/o G. B. French, Tarzwell, Ontario.

SAMPLE NO.	$\begin{aligned} & \text { GOLD } \\ & \text { Oz/ton } \end{aligned}$
5655	0.050
5656	Nil
5657	0.010
5658	0.002
5659	0.010
$\begin{gathered} 5660 \\ \text { Second Pulp } \end{gathered}$	$\begin{aligned} & 22.24 / 22.48 \\ & 18.42 / 18.16 \end{aligned}$
5661	0.140
5801	22.34/22.24
5802	2.92
5803	1.18
5804	0.080
5805	0.040
5806	0.035
5807	0.250
$\begin{gathered} 5808 \\ \text { Second Pulp } \end{gathered}$	$\begin{aligned} & 38.18 / 38.72 \\ & 46.18 / 45.46 \end{aligned}$

LOCATION: $9,845 \mathrm{~N}, 10,250 \mathrm{E}$, elevation +29 feet above lake level INCLINATION: Vertical Hole CORE SIZE: BQ Core

Page 1 of 4

LOCATION: 9,845N, 10,250E, elevation +29 feet above lake level
INCLINATION: Vertical Hole CORE SIZE: BQ Core

Page 2 of 4

LOCATION: 9,845N, 10,250E, elevation +29 feet above lake level
INCLINATION: Vertical Hole
CORE SIZE: BQ Core
Page 4 of 4

SWASTIKA LABORATORIES LIMITED
P．O．BOX 10，SWASTIKA，ONTARIO POK 1 TO
TELEPHONE：（705）642．3244 FAX：（705）642－3300
ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS
Orrtifitate of Analysio

Certificate No． \qquad Date：November 12， 1987
Received November 6． 1987 \qquad 5 Samples of \qquad
Submitted by＿Nortek Minerals Limited，c／a G．B．Erench．Iarzwell，Ontario

んーシノーツ	
SAMPLE NO．	GOLD
	OZ／TON
5662	$0.56 / 0.54$
5663	0.030
5664	0.075
5665	0.035
5666	$1.62 / 1.63$

LOCATION: 9,850N, 10,400E, elevation +22 ' above lake level INCLINATION: Vertical hole CORE SIZE: BQ core

SEARLES LEASE

LOCATION: $9,850 \mathrm{~N}, 10,400 \mathrm{E}$, elevation +22 ' above lake level INCLINATION: Vertical hole CORE SIZE: BQ core

SEARLES LEASE

LOCATION: 9,850N, 10,400E, elevation $+22^{\prime}$ above lake level INCLINATION: Vertical hole CORE SIZE: BQ core

SEARLES LEASE

LOCATION: 9,850N, 10,400E, elevation $+22^{\prime}$ above INCLINATION: Vertical hole CORE SIZE: BQ core

SEARLES LEASE

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642.3244 FAX: (705) 642-3300
ANAYLTICAL CHEMISTS • ASSAYERS•CONSULTANTS
(Tprtifirate of Analygig
Certificate No. 68969

Date: Nov. 23, 1987
Received \qquad 11 Samples of Bulk \& Split Core

Submitted by \qquad Nortek Minerals Ltd., c/O G. B. French, Tarzwell, Ontario.

G. Lebel - Manager /ns

LOCATION: 9,850N, 10,575E, + 30 feet above lake level elevation INCLINATION: Vertical hole CORE SIZE: BQ Core
Total Depth:

Estimated mode	
Epidote	62
Quartz	10
Carbonate	7
Amphibole	19
Chlorite	trace
Sphene	1
Fe-Ti oxides	1
Pyrite	trace
Chalcopyrite	trace

This is a rock of similar mineralogy to the previous sample. Macroscopically (see stained cut-off block) it appears more homogenous, but in thin section it is found to show patchy (crudely-banded?) textural variations.

Overall it is an intimate, of ten very fine-grained intergrowth of the four main constituents, in various proportions, in which primary textures are destroyed or, in part, pseudomorphed.

Epiciote is the dominant constituent and of ten shows a very fine-grained, almost felted, aggregate form.

One half of the slide is composed largely of epidote with intimately intergrown amphibole- which is notably different from the pale, actinolitic form of the previous slide and is a strongly pleochroic, blue-green to pale green variety of more hornblendic aspect. This locally forms networks outlining blocky to rounded masses of minutely fine-grained epidote which may be pseudomorphing original plagioclase crystals. Elsewhere the epidote and hornblende are intimately and randomly intergrown, and have diffuse patches of interstitial carbonate. Indications of a relict meshwork texture are sonetimes seen, suggesting an igneous parentage.

The other half of the slide has notably more fine-grained quartz and carbonate intergrown with the epidote/amphibole. Quartz sometimes forms a matrix to clumps of fibrous hornblende-epidote or appears to pseudomorph a sub-oriented, microlitic fabric. late quartz is seen cutting and replacing epdiote via thread-like veinlets.

Fine-grained sphene occurs as rins to disseminated granules of te-Ti oxides. Rare specks of pyrite and chalcupyrite are also seen.

This rock appears to be a strongly altered rock of mafic-intermediate igneous origin - possibly a diabase or andesitic volcanic.

Estimated mode	
Hornblende	50
Chlorite	23
Epidote	12
Plagioclase	5
Sericite	3
Quartz	2
Sphene	trace
Ilmerite	3
Pyrite	2
Chalcopyrite	trace

This is another intensely altered rock of greenstone mineralogy. It is probably of similar general character to the previous two samples, but differs in that amphibole is the dominant constituent and chiorite is a prominent accessory. It also lacks carbonate and contains a little recognizable plagioclase.

It shows compositional variations which appear to reflect a foided banding aiad/or coarse fragmental structure.

In the core of the folded structure or coarse fragment at one end of the slide, the rock consists of abundant, random, small, fibrous or sheaf-like hornblende clusters with interstitial, minutely fine-grained, fresh plagioclase of recrystallized aspect; a few pockets of granular quartz are present. This assemblage grades outwards to a similar fabric in which compact chlorite takes the place of the plagioclase. This, in turn, grades to an intimate intergrowth of compact epidote and chlorite without hornblende. Randomly oriented, lathlike grains of ilmenite occur throughout these assemblages.

The rest of the slide consists of dispersed, partially assimilated patches of these various assemblages, plus some wisps of strongly sericitized plagioclase, all cemented or permeated by irregular pockets and veinlike masses of felted chlorite (which shows an intense purple-blue anomalous birefringence).

The chlorite segregations are the preferential host to disseminated sulfides. These consist of clumps of pyrite cubes, $0.1-0.5 \mathrm{~mm}$ in size, complexly embayed by (intergrown with) granular epidote and quartz. Traces of chalcopyrite occur, independent of the pyrite. The sulfides would appear mainly to be contemporaneous with the chlorite stage of alteration.

LOCATION: $9,850 \mathrm{~N}, 10,575 \mathrm{E},+30$ feet above lake level elevation INCLINATION: Vertical hole
CORE SIZE: BQ Core
Page 3 of 3

| Hole: $\mathrm{N}-87-11$ | Vertical Scale: $1^{\prime \prime}=6^{\prime}$ | Total Depth: |
| :--- | :--- | :--- | | | OESCRIPTION | SAMPLE |
| :--- | :--- | :--- | :--- | :--- | :--- |

LOCATION: 9,850N, 10,575E, + 30 feet above lake level elevation INCLINATION: Vertical hole CORE SIZE: BQ Core

Page 1 of 4
Hil..... F 5

LOCATION: 9,850N, 10,575E, + 30 feet above lake level elevation INCLINATION: Vertical hole CORE SIZE: BQ Core

LOCATION: $9,850 \mathrm{~N}, 10,575 \mathrm{E},+30$ feet above lake level elevation INCLINATION: Vertical hole CORE SIZE: BQ Core

LOCATION: 9,850N, 10,575E, + 30 feet above lake level elevation INCLINATION: Vertical hole CORE SIZE: BQ Core

LOCATION: $9,825 \mathrm{~N}, 10,725 \mathrm{E}$, Elevation $+28^{\prime}$ above lake level
INCLINATION: Vertical Hole
CORE SIZE: BQ Core

LOCATION: 9,825N, 10,725E, Elevation $+28^{\prime}$ above lake level
INCLINATION: Vertical Hole

LOCATION: 9,825N, 10,725E, Elevation + 28' above lake level
INCLINATION: Vertical Hole
CORE SIZE: BQ Core

LOCATION: 9,825N, 10,725E, Elevation $+28^{\prime}$ above lake level INCLINATION: Vertical Hole CORE SIZE: BQ Core

Estinated mode	
Plagioclase	50
Augite	38
Altered mafic	10
Magnetite	2
Pyrite	trace
Chalcopyrite	trace

This is a fresh diabase, of grain size 0.2-1.5mm, showing perfectly preserved primary textures. It consists of a random meshwork of fresh, well-twinned plagioclase prisms intergrown with pale brown clinopyroxene, probably augite. The plagioclase is of labradorite composition, is totally fresh and exhibits classic ophitic relations with the coarser augite. A proportion of augite also occurs as anhedral grains interstitial to the plagioclase laths.

The augite also appears totally fresh. However, an altered form of mafic, consisting of olive brown and green felted material, occurs scattered throughout. This mostly forms discrete, equant to irregular grains exhibiting a cellular texture, and may represent a form of serpentine, possibly after accessory olivine. More diffuse development of this brownish alteration occurs in acicular form in a few microcrystalline pockets probably representing original. glassy segregations.

Opaques are dominantly magnetite, as evenly disseminated, partially skeletal grains and clunps. Rare traces of pyrite and chalcopyrite occur as minute specks.

This rock differs from the other diabasic sample (87-5A 305') in being strikingly fresh, in containing probable accessory olivine and in lacking accessory quartz. It shows no apparent metamorphic effects.

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642-3244 FAX: (705) 642.3300 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Uertifirate of Analygia

Certificate No. \qquad Date: _Nove 30, 1987

Received_Nov. 23, 1987 \qquad 5 Samples of \qquad
\qquad Submitted by Nortek Minerals Ltd., c/o G. B. French. Tarzwell, Ontario.

SAMPLE NO.	GOLD			
	O2/ton		N-87-12	
:---	:---			
5672	Nil			
5673	0.050			
5674	$0.125 / 0.140$			
5675	0.035			
5676	0.025			

LOCATION: $-9,936.55 \mathrm{~N}, 10,888.52 \mathrm{E},+12 \mathrm{l}$ above lake level elevation INCLINATION: Vertical hole CORE SIZE: BQ Core

LOCATION: $9,936.55 \mathrm{~N}, 10,888.52 \mathrm{E},+12 \mathrm{l}$ above lake level elevation
INCLINATION: Vertical hole
Page 2 of 3
CORE SIZE: BQ Core

LOCATION: $9,936.55 \mathrm{~N}, 10,888.52 \mathrm{E},+12 \mathrm{l}$ above lake level elevation INCLINATION: Vertical hole

Page 3 of 3 CORE SIZE: BQ Core

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642-3244 FAX: (705) 642.3300 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Uertifirate af Analygir

Certificate No. $\frac{69251}{} \quad$| Date: $\frac{\text { Dec. 17, } 1987}{}$ |
| :--- |
| Received Dec. 8, 1987 |
| Submitted by Nortek Minerals Ltd., c/0 G. B. French, Tarzwell, Ontario. |

SAMPLE NO.	GOLD
	PPB
5677	20
5678	Nil
5679	Nil
5680	1130
5681	$3430 / 4110$
Second Pulp	$6170 / 4800$

LOCATION: $10,278 \mathrm{~N}, 9,762 \mathrm{~W},+30^{\prime}$ elevation above lake level INCLINATION: Vertical hole

Page 1 of 9 CORE SIZE: BQ Core
HOle: N-87-14

LOCATION: $10,278 \mathrm{~N}, 9,762 \mathrm{~W},+30^{\prime}$ elevation above lake level INCLINATION: Vertical hole CORE SIZE: BQ Core

LOCATION: $10,278 \mathrm{~N}, 9,762 \mathrm{~W},+30^{\prime}$ elevation above lake level INCLINATION: Vertical hole

Page 3 of 9 CORE SIZE: BQ Core

LOCATION: $10,278 \mathrm{~N}, 9,762 \mathrm{~W},+30^{\circ}$ elevation above lake level
INCLINATION: Vertical hole
CORE SIZE: BQ Core

LOCATION: $10,278 \mathrm{~N}, 9,762 \mathrm{~W},+30^{\prime}$ elevation above lake level
INCLINATION: Vertical hole
Page 8 of 9 PRE SIZE: BQ Core

LOCATION: $10,278 \mathrm{~N}, 9,762 \mathrm{~W},+30^{\prime}$ elevation above lake level
INCLINATION: Vertical hole
Page 9 of 9
CORE SIZE: BQ Core

Fine grained granite

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642-3244 FAX: (705) 642-3300
ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS
$\mathbb{C r P r t i f i t a t r}^{\text {of }}$ Analygin

Certificate No. 69350
Received \qquad Dec. 18, 1987

2
Date: \qquad

Submitted by Nortek Minerals Ltd., c/o G. B. French, Tarzwell, Ontario.
\qquad
Samples of Split Core

SAMPLE NO. GOLD
0z/ton

5682
$\mathrm{Ni}]$
5683

$$
0.010 / 0.010
$$

SWASTIKA LABORATORIES LIMITED
 P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO
 TELEPHONE: (705) 642-3244 FAX: (705) 642.3300
 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS
 $\mathbb{U}_{\text {ertificate }}$ of Analygig

Certificate No. \qquad Date: Jan. 5, 1988
Received Dec. 29, 1987 11 Split Core

Submitted by Nortek Minerals Ltd., Tarzwell, Ontario.

SAMPLE NO.	GOLD $0 z /$ ton
NT-87-14	
5684	$0.002 / 0.002$
5685	Nil
5686	Nil
5687	0.002
5688	Nil
5689	Nil
5690	Nil
5691	$0.030 / 0.035$
5692	0.005
5693	0.002
5694	0.002

LOCATION: 10,531.5N, 9,760.6W, +20' above lake level
INCLINATION: Vertical Hole

LOCATION: 10,531.5N, 9,760.6W, +20' above lake level
INCLINATION: Vertical Hole

LOCATION: $10,531.5 \mathrm{~N}, 9,760.6 \mathrm{~W},+20^{\prime}$ above lake level
INCLINATION: Vertical Hole
Page 7 of 9 CORE SIZE: BQ Core

LOCATION: 10,531.5N, 9,760.6W, +20' above lake level
INCLINATION: Vertical Hole
Page 8 of 9
CORE SIZE: BQ Core

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642.3244 FAX: (705) 642.3300 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate No. $\frac{69512}{} \quad$ Date: Jan. 21, 1988		
Received Jan. 18, 1988	35	Samples ofSplit Core Submitted by \quad Nortek Minerals Ltd., c/o G. B. French, Tarzwell, Ontario.

SAMPLE NO.	GOLD OZ/ton	SAMPLE NO.	GOLD OZ/ton
N-87-15		N-87-15	
5695	0.002	5713	0.002
5696	Nil	5714	0.020
5697	Nil	5715	0.005
5698	0.002	5716	0.002
5699	0.002	5717	$0.025 / 0.030$
5700	$3.41 / 4.28$	5718	0.010
5701	0.005	5719	0.020
5702	0.002	5720	0.010
5703	0.160	5721	0.005
5704	0.005	5722	0.002
5705	0.005	5723	0.002
5706	0.002	5724	0.002
5707	$0.250 / 0.270$	5725	0.020
5708	0.050	5726	0.005
5709	0.015	5727	$0.055 / 0.050$
5710	0.002	5728	0.005
5711	0.005	5729	0.030
5712	0.002		

308 E.O.H. 308 TOTAL DEPTH This hole logged by Peter J. Proudlock. 1988-01-24

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO

TELEPHONE: (705) 642-3244 FAX: (705) 642.3300 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS

©ritifitatr of Analygig

SAMPLE NO.	$\begin{aligned} & \text { GOLD } \\ & \text { Oz/ton } \end{aligned}$	SILVER Oz/ton
5730	0.002	Trace
5731	Nil	---
5732	Nil	---
5733	0.010	---
5734	0.010	---
5735	0.025/0.020	---
5736	0.005	---
5737	0.002	---

LOCATION: 9,913m N, 9,984.5m E, INCLINATION: Vertical Hole CORE SIZE: Wire Line

Certificate No. 69704	Date: February 5, 1988
Received_February 3, 1988	5
Submitted by Nortek Minerals Ltd., c/o G. B. French, Tarzwell, Ontario	

SAMPLE NO.	GOLD $0 Z / T O N$
5738	Nil
5739	0.005
5740	0.035
5741	$0.150 / 0.145$
5742	$0.045 / 0.050$

LOCATION: 9,994m N, 10,050m E,
INCLINATION: Vertical Hole
Page 2 of 2
CORE SIZE: Wire line

Certificate No. \qquad Date: Feb. 11, 1988

Received \qquad Feb. 5, 1988 8 Samples of Solit Core Submitted by Nortek Minerals Ltd., c/o G. B, French, Tarzwell, Ontario.

$N^{\prime}<1.1$	
SAMPLE NO.	$\begin{aligned} & \text { GOLD } \\ & \text { 0z/ton } \end{aligned}$
M-5743	0.002 ,
5744	0.070/0.080
5745	0.040
5746	0.040
5747	0.115/0.130
5748	0.020
5749	0.015
5750	Nil

LOCATION: $9,902 \mathrm{~m} N, 10,089.5 \mathrm{~m}$ E, elevation +2 feet above lake level INCLINATION: Vertical Hole

Elev 2 ft wive line
Venteinl Hate

SWASTIKA LABORATORIES LIMITED
P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642-3244 FAX: (705) 642-3300 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Crrtifitate af Analygia
Certificate No. \qquad Date: \qquad
Received \qquad Feb. 8, 1988 7 \qquad Samples of Split Core
Submitted by Nortek Minerals Ltd., c/o G. B. French, Tarzwell, Ontario.

SAMPLE NO.	GOLD
	$0 z /$ ton
M-5751	Nil
5752	Nil
5753	0.002
5754	$0.015 / 0.010$
5755	0.010
5756	Nil
5757	Nil

LOCATION: 9,869.5m N, 10,135.5m E, INCLINATION: Vertical Hole

Page 1 of 2
CORE SIZE: Wire line

LOCATION: $9,869.5 \mathrm{~m} N, 10,135.5 \mathrm{~m}$ E, INCLINATION: Vertical Hole CORE SIZE: Wire line

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 FAX: (705) 642.3300 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS $\mathbb{U}_{\text {rrtifitate }} \mathfrak{n f}$ Analygia

Certificate No. \qquad Date: Feb. 15, 1988
Received \qquad Feb. 11, 1988 8 \qquad Samples of \qquad Split Core

Submitted by Nortek Minerals Ltd...c/e G. B. French, Tarzwell, Ontario.

SAMPLE NO.	GOLD
	$0 \mathrm{z} /$ ton
M-5758	0.015
5759	0.002
5760	$0.020 / 0.015$
5761	Nil
5762	Nil
5763	Nil
5764	Nil
5765	$0.035 / 0.040$

Certificate No. \qquad 69834 Date: Feb. 15, 1988

Received \qquad Feb. 11, 1988 \qquad
8
Samples of \qquad Split Core \qquad
Submitted by _Nortek Minerals Ltd.,.c/e G. B, French, Tarzwell, Ontario.

SAMPLE NO.	GOLD
	Oz/ton
M-5758	0.015
5759	0.002
5760	$0.020 / 0.015$
5761	Nil
5762	Nil
5763	Nil
5764	Nil
5765	$0.035 / 0.040$

G. Lebel - Manager /ns

LOCATION: $9,898 \mathrm{~m} N, 10,219.5 \mathrm{~m}$ E,
INCLINATION: Vertical Hole
CORE SIZE: Wire line

LOCATION: 9,898m N, 10,219.5m E, INCLINATION: Vertical Hole Page 2 of 2 CORE SIZE: Wire line

Certificate No. $\quad 59906$
Date: February 19, 1988
Received February 15,1988 8_ Samples of Split Core
Submitted by Nortek Minerals Ltd., c/o G. B. French, Tarzwe 11, Ontario

SAMPLE NO.	COLD
N-87-22	$02 /$ TON
5766	0.002
5767	$0.360 / 0.350$
5768	$0.58 / 0.60$
5769	Nil
5770	$0.185 / 0.220$
5771	Nil
5772	0.010
5773	Nil

9,774 11,024
LOCATION: $9,825 \mathrm{~N}, 10,038 \mathrm{E},+11 \mathrm{l}$ above lake level.
INCLINATION: Vertical Hole
Page 2 of 3
Core Size: Wireline

SWASTIKA LABORATORIES LIMITED
 P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO TELEPHONE: (705) 642.3244 FAX: (705) 642.3300 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS
 (Unrtifiratr of Analygiz

Certificate No. \qquad 69953

Date: \qquad Feb. 24, 198

Received Feb. 19, 1988 6

Samples of Split Core
Submitted by Nortek Minerals Ltd., c/o G. B. French, Tarzwell, Ontario.

SAMPLE NO. GOLD
Oz/ton
N-87-23
5774
0.115

5775
0.62/0.60

5776
0.200

5777
$0.370 / 0.355$
5778
0.005

5779
0.275

LOCATION: 9,825N, 11,188E, Elevation $+20^{\prime}$ above lake level.
INCLINATION: Vertical Hole
CORE SIZE: Wireline = $B Q$

SWASTIKA LABORATORIES LIMITED
P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642-3244 FAX: (705) 642.3300
ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS
Urrtifirate of Analygia

Certificate No. \qquad 70155

Date: \qquad
\qquad
Received \qquad 1988 \qquad 6 Samples of \qquad
\qquad
Submitted by \qquad Nortek Minerals Itd., c/O_G.B. Erench, Tarzwell, Ontario

SAMPLE NO.	$\begin{aligned} & \text { GOLD }, \operatorname{Oz/ton}, \end{aligned}$
M-5780	0.035
5781	0.005
5782	0.495/0.57
5783	0.010
5784	0.090
5785	0.002

[^0]: 3
 3
 \vdots
 \vdots

[^1]: *Assumes readers have read Shenandoah \& Miller-Independence Geological Report.

