63.5070

32005NW0150 63.5070 GARRISON

010

DIAMOND DRILLING REPORT

(SUMMER 1987 PROGRAM)

ON THE

GARRISON TOWNSHIP GOLD PROPERTY

FOR

WINTEROAD RESOURCES LIMITED

LARDER LAKE MINING DIVISION, ONTARIO

Haileybury, Ontario August 24, 1987

.

Robert J. Reukl, B.Sc.

0M87-6-L-100

Ø10C

PAGE

Summary

1.0	Introduction	1	
2.0	Location and Access	3	
3.0	Property Description	5	
4.0	Geology		
	4.1 Regional Geology	6	
	4.2 Detailed Geology	6	
5.0	Geology of the Buffonta Mines Property	8	
	5.1 General Geology	8	
	5.2 Structural Geology	8	
	5.3 Gold Occurrences	9	
	5.4 Ore Reserves	10	
6.0	Results of the 1987 Drill Program	12	
7.0	Conclusions	16	
8.0	Recommendations	17	
9.0	Detailed Budget	18	
Certificate			
References			

IND

APPENDICES

I	Diamond Drill Logs
II	Diamond Drill Sections
III	Assay Certificates

PLANS

/

1.	Garrison Township Claim Map
2.	Map No. 1949-1, Geology of Garrison Township
3.	1987 Diamond Drilling
4.	Diamond Drilling Compilation

SUMMARY

During the months of June and July 1987, a diamond drilling program was completed on the Garrison Township property of Winteroad Resources Limited.

The program totalled 4,079 feet in 14 holes and provided results which are of geological and economic significance, including:

•

- the confirmation of the internal lateral continuity as well as the strike extension of the previously identified quartz carbonate breccia zone from the previously indicated 460' to an effective strike length of 1170'.
- drill intersections up to 34.1' grading 0.273 ounces gold per ton in hole HV-21.

A summary of the significant intersections follows:

<u>t)</u>

HV-23	0.134	15.5
HV – 24	0.108	9.5

vertical depths of intersections of up to 440'.

the determination of an apparent dip to the mineralized zone of 24° N to 29° N.

the probability that the zone is a westerly structural continuance of one of the four well mineralized zones known to occur on the Buffonta Mines property and could persist across the entire east-west dimension of the Winteroad property, a distance of approximately 4,000'.

the geologically inferred probability indicating the structural continuity of other well mineralized zones from the Buffonta Mines property westward onto the Winteroad Resources property.

...It is the opinion of the author that further successful development of the property can be achieved with an aggressive technical program supported by a substantial funding commitment. Such investment should be focused on a program comprised of:

- a detailed surface program consisting of linecutting and geophysics.
- a detailed drilling program on the known mineralized zone to expand on it's lateral and down dip dimensions.

a provision for diamond drilling on other areas of the property to confirm and evaluate the existence of other mineralized zones.

The risk/reward criteria as established by the results acquired to date adequately justifies the expenditure of 1.89 million dollars to complete the recommended technical program.

Details are herein presented.

1.0 INTRODUCTION

During the months of June and July 1987, a diamond drilling program totalling 4,079 feet in 14 holes was completed on the Garrison Township property of Winteroad Resources Limited. The property consists of a group of eight (8) unpatented mining claims located in the southwest quadrant of Garrison Township in the Larder Lake Mining Division, approximately 25 miles east of Matheson, Ontario.

Geologically the property is located 2 miles south of the Destor Porcupine Fault Zone and is situated within a sequence of fine grained andesites and basalts occasionally coarsening to a diabasic texture. Gold mineralization in the area is presently thought to be structurally controlled as evidenced by four well mineralized shear zones documented to occur on the Buffonta Mine property to the west.

Geological inference suggests that one or more of these steeply dipping or flat lying zones may extend onto the Winteroad property, and the recently completed program was designed to further investigate this possibility.

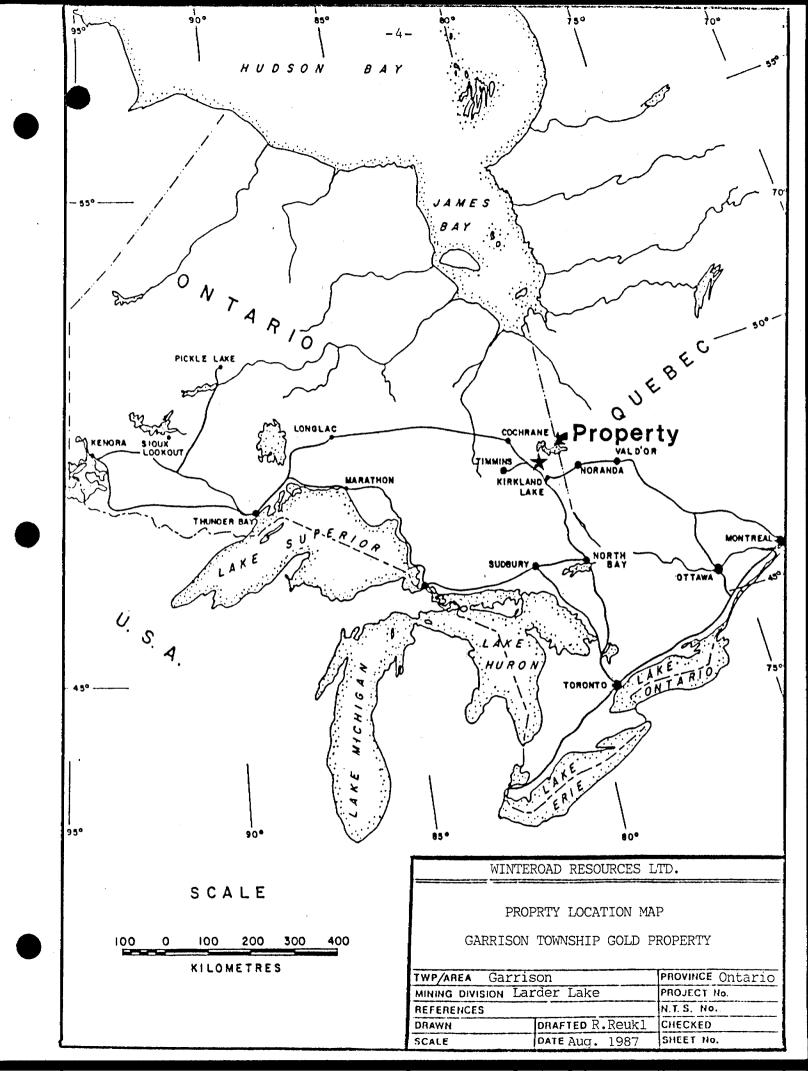
The recently completed program was designed to further explore the internal lateral continuity as well as the strike and dip extensions of the zone delineated in previous drilling programs conducted in 1983 and 1986. It was also hoped that a better understanding of the geometry of the

-1-

mineralized zone would be realized. The eventual success of the program was enhanced by the invaluable advice offered by Mr. Bill Hammerstrom of Haileybury on the basis of his exploration experience in the area which spans the past fifty (50) years.

Finally, it should also be noted that the area is very active in terms of exploration with such companies as American Barrick, Canamax, Cominco, Jon Pol Explorations, Falconbridge controlled Garrison Creek Consolidated Mines, Moneta Porcupine Mines, Noranda and the recently announced Silverside-Proteus-Kerr Addison-Lac Minerals consortium all having established exploration programs in the vicinity.

-2-


2.0 LOCATION AND ACCESS

The property is located approximately 25 miles east of Matheson in the southwest quadrant of Garrison Township, District of Cochrane, Larder Lake Mining Division, Northeastern Ontario.

Specifically the property is reached by travelling approximately 25 miles eastward from Matheson along Highway 101 to a point just past Twin Lakes. From here access to the property is gained by travelling south-southwest along a network of gravel roads for approximately 4 miles.

The Town of Matheson has a well developed infrastructure with Highways 101 and 11 as well as the Ontario Northland Railway providing access to the area. In addition, an airport in Timmins, approximately 61 miles west of the property is serviced by daily flights to and from Toronto.

:

3.0 PROPERTY DESCRIPTION

The property consists of approximately 325 acres in eight (8) contiguous mining claims situated in Garrison Township within the Larder Lake Mining Division, and numbered L.522593 -L.522600 inclusive. A Garrison Township claim map is included in the rear of the report as Plan No. 1.

-5-

4.0 GEOLOGY

4.1 Regional Geology

Regionally the property is situated within a sequence of Keewatin age (Archean), basic to intermediate volcanics with minor sedimentary interbeds which form part of a broad volcano-sedimentary belt, the Abitibi Greenstone Belt, stretching across Northeastern Ontario and Northwestern Quebec. These rocks are stratigraphically overlain by younger, Timiskaming age (early to middle Precambrian), sedimentary rocks consisting of greywacke, quartzite, argillite, slate, conglomerate and iron formation. Intruding both the Keewatin and Timiskaming age rocks are Algoman age intrusive rocks, principally granite, syenite, feldspar porphyry, felsite and lamprophyre. All of these rock types are intruded by later, Keweenawan age (late Precambrian), diabase dikes and sills.

-6-

The Keewatin and Timiskaming age rocks have been extensively metamorphosed and deformed, exhibiting compositional alteration, folding and faulting. Coloured geological map No. 1949-1 is included in the rear of the report as Plan No. 2.

4.2 Detailed Geology

The claim block is extensively overburden covered with only 3 small outcrops reported to be located in the extreme southeastern corner of the property. These outcrops are identified as diabase and spherulitic lavas on coloured geological map No. 1949-1.

5.0 GEOLOGY OF THE BUFFONTA MINES PROPERTY

The following comments with respect to the general geology, structural geology, and gold occurences of the Buffonta Mines property situated east of the Winteroad claim group are of significance as they provide information relevant to the ore controls expected to occur on the Winteroad property. Reference to coloured geological map No. 1949-1 included in the pocket at the rear of the report is suggested.

5.1 General Geology *

The granite-lava contact crosses through the northeastern part of the block of claims. Outcrops of granite are few. The lavas are exposed in many outcrops, which become more numerous in the southwestern part of the claims. They consist of diabasic flows and pillow lavas with minor amounts of spherulitic lavas and interflow sediments. The detailed logging by S. V. Burr for Siscoe Gold Mines, Limited, of the diamond-drill cores in the open-pit area and in N. 5 and No. 6 shear zones has indicated a series of fine to coarse diabasic flows, ranging from 10 to 100 feet in thickness.

5.2 Structural Geology *

A few top determinations in the lavas away from the granite contact indicate that the lavas face south to southwest. Near

-8-

the contact the shearing in the lavas trends approximately N.65 $^{\circ}$ W. and dips from 60 $^{\circ}$ to 80 $^{\circ}$ S.W. .

According to H. F. Taylor two shear zones, called No. 5 and No. 6, have been located by surface work and diamond-drilling. No. 5 shear zone angles across the boundary between claims L.2,884 and 21,774. It strikes $N.38^{\circ}W.$, dips $70^{\circ}S.W.$, and has been traced for 900 feet. No. 6 shear zone is on claim L.21,774 and has a known length of 1,100 feet. It strikes $N.68^{\circ}W.$, cutting the lavas at a slight angle, and dips approximately $70^{\circ}S.$

5.3 GOLD OCCURRENCES *

Three main gold occurrences have been explored by trenching, pitting, and diamond-drilling. These are at the open pit and in the No. 5 and No. 6 shear zones.

The open pit is in the northeastern corner of claim L21,773. In 1947, the upper section of this pit was 60 by 80 feet, and a lower section filled with water was 25 by 50 feet. The pit is about 30 feet deep.

The diamond drilling has indicated the occurrence of gold values in two fractured zones dipping flatly to 30[°]N. within 100 feet of the surface. The upper zone has been designated "A", and the lower parallel zone "B". The known lateral extent

-9-

of these zones is approximately 150 by 300 feet. <u>The zones</u> range in thickness from a foot to a maximum of 30 feet.

At the open pit, the country rock is a light-grey weathering, dark-green, amphibolitized basalt. The rock is minutely fractured. Several occurrences of pegmatitic quartz or quartz breccia may be noted on the walls and slopes of the pit above the water. These occurrences are in the form of discontinuous sheets and are breccia zones of pale-purple, carbonatized lava with quartz or quartz-albite filling, mineralized with coarsely crystalline pyrite. Some crystals of pyrite are as much as half an inch across. It is understood that the gold content is roughly proportionate to the amount of pyrite present. Thinsection study of the pale-purple lava shows that the processes of carbonatization and silicification have completely altered the rock to a quartz-carbonate aggregate.

H. F. Taylor reports that No. 5 zone is exposed in two surface pits and has been intersected by 9 diamond drill holes. The ore shoot has a length of 310 feet. It is a brecciated zone containing carbonate and quartz with medium to coarse pyrite. No. 6 zone is described by him as similar in character to No. 5. It was intersected at a depth of 100 feet by 3 diamond drill holes. The ore shoot is 165 feet long.

5.4 Ore Reserves *

-10-

S. V. Burr, in a report dated January, 1944, made the following tonnage estimates:

The total estimated tonnage was 85,000 tons of 0.295 ounces of gold per ton.

Open Pit Zone - In the open pit zone ore reserves were estimated at <u>32,000 tons of 0.311 ounces per ton</u>, of which 15,000 tons of 0.314 ounces per ton were from the "A" body and 17,000 tons of 0.308 ounces per ton were from the "B" body. Calculations were confined to correlations indicating minimum widths of 5 feet.

No. 5 Zone - The ore reserves in No. 5 zone were estimated at 44,500 tons of 0.282 ounces per ton, calculated on a length <u>310 feet</u> from surface to a depth of <u>250 feet</u>, with <u>widths of</u> from 5 to 9 feet.

No. 6 Zone - In No. 6 zone the ore reserves were estimated at 8,500 tons of 0.217 ounces per ton, calculated on a length of 165 feet from surface to a depth of 100 feet, with widths from 5 to 18 feet.

* 5.1,5.2,5.3,5.4 - pages 21,22, ODM Rpt., Vol.VIII, Part IV, 1949 Geology of Garrison Township.

-11-

6.0 RESULTS OF THE 1987 DRILL PROGRAM

The summer 1987 drill program concluded with a total of 4,079 feet drilled in 14 holes. Core recovery was generally good, however in some instances the mineralized zone and adjacent host rock recovered was badly broken and ground. This is thought to be due to the fact that the mineralized zone is being penetrated near the subcrop surface where groundwater has penetrated and weathered subcrop fractures in the mineralized zone. It is felt that deeper drilling downdip will eliminate this problem. The badly broken and ground sections may also in some instances, represent the north-south faulting suggested on map No. 1949-1.

The recently completed program was designed to further evaluate and expand on the mineralized zone delineated in previous drilling programs in 1983 and 1986. Several dignificant intersections were obtained including 20.5' grading 0.392 ounces gold per ton in hole HV-2A. The program was intended to test the zone along strike and down dip. It was felt that a series of sectional drill holes, two or more holes along a common vertical section, would determine with reasonable certainty the orientation of the zone.

Rock types intersected in the drill program were essentially a monotonous alternating sequence of altered andesite and coarser diabasic flows. Scattered irregular quartz and

-12-

carbonate filled fractures and veinlets were commonly observed throughout. Randomly oriented veinlets and irregular patches of pale green epidote alteration were also observed. Occasionally narrow diabasic and syenitic intrusives were intersected. None of the aforementioned is of any economic significance.

Of economic significance is the well mineralized fault controlled quartz-carbonate breccia vein. This zone was previously outlined in the 1986 drill program and as mentioned yielded intersections up to 20.5' grading 0.392 ounces gold per ton in hole HV-2A. The zone is comprised of abundant quartz-carbonate filled fractures and veinlets exhibiting halos of buff to reddish-brown alteration surrounding intensely brecciated and altered quartzcarbonate filled veins. These quartz-carbonate breccia veins and associated stockworks contain anywhere from 2% - 15% pyrite occurring either as fine grained disseminations or as coarsely crystalline aggregates. Visible gold occurring as discrete isolated grains was also noted. Several significant intersections were obtained including 34.1' grading 0.273 ounces gold per ton in hole HV-21. A summary of significant intersections follow:

Hole	<u>Grade (oz.</u>	<u>Au/ton</u>)	Core Length (feet)		
HV-13	including including	0.340 0.499 0.892	13.0 9.0 4.2		
HV-17		0.103	6.0		
HV-18		0.014	7.5		

-13-

HV-19	including	0.120 0.428	5.5 1.5
HV-20		0.070	7.1
HV-21	including and	0.273 1.090 0.556	34.1 4.5 3.5
HV – 22A		0.169	22.0
H V – 2 3		0.134	15.5
HV-24		0.108	9.5

The most significant intersection of the program is the 13.0 feet grading 0.340 ounces gold per ton from hole HV-13. This intersection was obtained at a vertical depth of 440', the deepest intersection to date from the property, and approximately 600' east of easterly limit of the 1986 drilling. Holes HV-23 and HV-24 spotted 140' west of the westerly limit of the 1986 drilling were successful in extending the zone westward.

An examination of the 1987 Diamond Drilling plan (Plan No. 3 in pocket at rear) will reveal that these intersections occur over a measured east-west trending strike of 1,070' (giving a minimum effective strike length of 1,170'; 50' each side of most easterly and westerly intersections) and possibly represents the westward extension of one of the four well mineralized zones known to occur on the Buffonta Mine property to the east. This zone could possibly persist across the entire east-west dimension of the property, a distance approximating 4,000'.

-14-

An examination of the vertical drill hole sections in which the mineralized zone was intersected reveals the orientation of the zone to be apparently dipping consistently between $24^{\circ}N$ and $29^{\circ}N$ with the exception of the HV-9 and HV-20 which gives an apparent dip of $40^{\circ}N$. This orientation correlates with information available on what was designated as the "A" and "B" zones situated on the Buffonta Mines property east of the Winteroad claim group.

Also derived from the 1987 Diamond Drilling Plan is the suggestion of some north-south faulting of, at present, unknown magnitude. The presence of numerous north-south trending fault zones is evidenced on coloured geological map No. 1949-1 in the pocket at rear. This faulting explains the offset of the westerly extension of the mineralized zones beyond holes HV-23 and HV-24.

7.0 CONCLUSIONS

The recently completed program has resulted in:

the confirmation of the internal lateral continuity as well as the strike extension of the previously identified quartz-carbonate breccia zone from the previously indicated 460' to an effective strike length of 1,170'.

a substantial increase in the down dip potential of the mineralized zone hole HV-13 intersecting 13.0 feet with grading 0.340 ounces gold per ton at a vertical depth of 440 feet.

the determination of an apparent dip to the mineralized zone of $24^{\circ}N$ to $29^{\circ}N$.

the probability that the zone extends well beyond it's currently defined limits and is probably an extension of one of two zones known to occur on the Buffonta Mines property.

the possibility of other zones extending from the Buffonta Mines property onto the Winteroad property.

8.0 RECOMMENDATIONS

With the highly encouraging results acquired to date, an aggressive technical follow-up program involving a substantial funding commitment is warranted.

-17-

Such a program designed to encompass the following activities is recommended:

- Detailed surface exploration program 110,000.
- Diamond drilling program (known zone) 1,400,000.

• Diamond drilling program (other areas) 380,000. The total expenditure to implement the recommended follow-up program is \$1,890,000.00 with a detailed budget following. 9.0 DETAILED BUDGET

Detailed Surface Exploration Program

Linecutting	32 miles @ \$340./mile	11,200.00
Magnetics	32 miles @ \$150./mile	4,800.00
VLF-EM (1)	32 miles @ \$150./mile	4,800.00
VLF-EM (2)	32 miles @ \$150./mile	4,800.00
Ind. Polarization	32 miles @ \$1,500./mile	48,000.00
Supervision	1.5 months @ \$4,000./month	6,000.00
Accomodation, meals	1.5 months @ \$2,000./month	3,000.00
Vehicle, Fuel		2,500.00
	etation, Report Writing and	
Drafting		8,000.00
		\$ 93,100.00
Contingency		16,900.00
		\$ 110,000.00

Diamond Drilling Program (Known Zone)

Diamond Drilling	40,000 feet @ \$22.50/foot	900,000.00
Associated costs	40,000 feet @ \$ 5.00/foot	200,000.00
Assaying	5000 assays @ \$15.00/assay	75,000.00
Supervision	5 months @ \$5,000./month	25,000.00
1 Assistant	5 months @ \$3,000./month	15,000.00
Accomodation	5 months @ \$3,500./month	17,500.00
Vehicle, Fuel	•	8,000.00
	tation, Report Writing and	
Drafting		12,000.00
Consulting Fees	7 months @ \$4,000./month	28,000.00
		1,280,500.00
Contingency		119,500.00
		بمعيرة مراجعة كالشاطات ومعاوده معامير متراسي موادرته

\$ 1,400,000.00

Diamond Drilling Program (Other Areas)

Diamond Drilling	10,000 feet @ \$22.50/foot	225,000.00
Associated costs	10,000 feet @ \$ 5.00/foot	50,000.00
Assaying	1,500 assays @ \$14.00/assay	22,500.00
Supervision	1.5 months @ \$5,000./month	7,500.00
l Assistant	1.5 months @ \$3,000./month	4,500.00
Accomodation	1.5 months @ \$3,500./month	5,250.00
Vehicle, Fuel		2,500.00
	tation, Report Writing and	
Drafting		6,000.00
Consulting Fees	2.5 months @ \$4,000./month	10,000.00
		333,250.00
Contingency		46,750.00
		\$ 380,000.00

Total Expenditure

Haileybury, Ontario August 24, 1987 \$ 1,890,000.00

Respectfully submitted,

) only terst

Robert J. Reukl, B.Sc.

CERTIFICATE

I, Robert J. Reukl, of 590 Brewster Street, in Haileybury, Ontario hereby certify:

- that I am a 1984 Bachelor of Science graduate of Lakehead University in Thunder Bay, Ontario,
- 2. that I am a member in good standing of:
 - (a) The Canadian Institute of Mining and Metallurgy,
 - (b) The Prospector's and Developer's Association of Canada, and
 - (c) The Association of Exploration Geochemists,
- 3. that the attached report is a product of:
 - (a) Data obtained by myself during the period June to August, 1987, and
 - (b) Data listed in the references, and
- 4. that I do not hold, nor do I expect to receive, any interest in the securities of Winteroad Resources Limited.

Haileybury, Ontario August 24, 1987.

Kolers

(i)

REFERENCES

GILLIS, D. J. Report on Diamond Drilling, Fall 1986
1986 Program, Winteroad Resources Property,
Garrison, Township, Ontario, 57p.
Accompanied by 7 appendices and 4
maps.

SATTERLY, J. Geology of Garrison Township, O.D.M. 1949 58th Annual Report, Vol., LVIII, Part IV, 1949, 33p. Accompanied by 1 map, scale 1:12,000.

(ii)

APPENDIX I

Diamond Drill Logs

COMPANY	Winteroad Resources Ltd.

Ρ	R	0	P	E	R	Т	Y	
•		~	•	-				and the second s

Claim No. <u>L.522594 & 593</u>

Township <u>Garrison</u>

~	•	u i m	110+	

		I of 6 Reference June 5, 1987 Location June 9, 1987 See Plan			HOLE No. <u>HV- 13</u> Bearing <u>N 10⁰E</u> Dip: <u>-45⁰</u> @ Collar; <u>-45⁰</u> @ <u>200.0'</u> <u>-47⁰@ 400.0'</u>					
	Started Finished									
Depth										
				SAMPLES		I	,			
FROM	то	DESCRIPTION	NO	FROM TO	WIDTH	Au(oz)				
0.0	94.0	CASING.				ļ				
94.0	108.5	ALTERED ANDESITIC FLOW.	1							
		Fine grained, dark grey-green								
		andesitic flow, magnetic.	4							
		Moderately silicified exhibiting			+					
		randomly oriented veinlets and irregular	·							
		patches of pale green ep alteration	4							
		Occasional broken core.			+					
		104 0 106 E. Continue of anthemplitic laws	+							
		104.0-106.5:Section of spherulitic lava.								
108.5	153.0	SPHERULITIC LAVA.								
			<u> </u>	······	<u> </u>					
		Fine grained, grey-green spheruli-	ļ							
		tic flow exhibiting a spotted, snowflake	¥							
		like, texture throughout and a moderate pervasive silicification.	+		+					
		Randomly oriented fractures and	1				·····			
		irregular patches of pale green ep	1	1	1					
		alteration common.								
		Red hem stained fractures visible								
		in places.	4							
							<u>·</u>			
		108.7-113.7: Intensively altered section.	121401	108.7'-113.7'	5.0'	Trace				
							1			

Drilled by Morisette D.D.

Logged by Robert Reukl

COMPANY	
---------	--

PROPERTY _____

SHEET No. _2 0.

Township _____

Claim No.

FROM TO				SAMPLE	 ;	1	··· •	ASSAYS	
FROM	TO	DESCRIPTION	NO	FROM	то	WIDTH		1	1
		1 108.7-113.7:(continued) Heavily frac-		1		1 1	į		1
		tured, strongly silicified		1			<u> </u>		1
		with strong ep alteration		1					
		and some hem staining.		ł			l	1	
		3-5% disseminated pv.				1	1	1	!
		locally to 10%.		1					1
									1
									1
153.0	338.3	INTERLAYERED ALTERED ANDESITIC AND							1
		DIABASIC FLOWS.		1					
				1				4	1
		Fine to medium grained, dark		•					
		grey-green to green interlayered flows							
		magnetic.							
		Moderate pervasive silicification	•						
		with randomly oriented veinlets and		[i	
		irregular patches of ep alteration.		l		1			!
		Otz-Carb filled fractures common,							
		usually oriented at 40-60° to core axis.							
		Occasional broken core, badly							
		broken and ground in places.							i
								1	1
		156.0:Broken core.	i						
		169.0-170.0:Section of pale green to				i		1	
		buff-green ep alteration				1			
		181.3:Broken core.				1	1	1	
		236.0,242.5:Broken core.							
		270.5-272.0:Broken core, some grind.						1	1
		301.0-308.8:Core badly broken in a							1
		section of moderate to							
		intense Calc filled frac-							
		fracturing.				1			
		319.0:0.8" Otz-Calc vein @ 65°to				<u> </u>			1
		core axis. Fragments of		i 	_				1
		host rock included in vein							
		unmineralized.	1			<u>.</u>	1		
		324.5-328.0:Core broken along Otz-Calc	Í			i i	· · · · · · · · · · · · · · · · · · ·		
		veinlet sub-parallel to				1		:	
		core axis.				••••••			

SHEET No. _3 01

COMPANY _____

PROPERTY _____

		Township		Claim No.						•
FROM	TO	DESCRIPTION		SAMPLES]	A	SSAYS	
	-		NO	FROM	τD	I WIDTH	Au(oz)	<u> </u>		
338.3	339.7	SYENITE INTRUSIVE.		1			1	ļ		
				1			1	L		
		Light green to red-green syenite speckled				1	<u> </u>	1		
		with dark green amphiboles.		ļ				<u> </u>	4	
		Reddish colour in places may be due to hem				1	1	L		
		staining.				1				
		Lower contact exhibits Otz-Calc veinlets		1			1	1		
		parallel to contact @ 59 ⁰ to core axis.						<u> </u>		
				<u> </u>			<u> </u>	<u> </u>		
339.7	647.0	INTERLAYERED DIABASIC AND ALTERED ANDESITIC							1	
		FLOWS.				1				
							1			1
		Similar to the unit described previously								
		from 153.0'-338.3' with coarser flows more	·							
		abundant.				İ				1
		Broken core increases below 615.0'.		1		1				
							ł			
		355.2:0tz-Calc breccia vein @ 65 ⁰ to core								
		axis,								1
		394.0-395.0:Irregular patch of pale green ep						1	1	1
		alteration.		1		i	1		!	
		401.2:Minor Otz-Calc breccia veinlet.				Į	1	,	1	1
		429.1-432.1: Quartz vein: sugary textured	121402	429.1'-431	.2'	2.1'	Trace		1	1
		exhibiting shades of grev, pink	121403	431.2'-432	.1'	0.9'	Trace		1	
		and green, small clots of chl,		1					1	
		1-2% py in clots and in grain		1		1	1		1	
		disseminations. White Otz veinlets		1		1	1		1	1
		adjacent. Lower_contact_exhibiting		1		1	1		1	1
	1	clots of chl and 1-2% disseminated		1		1	1 1		1	1
		py. Upper contact ~54 ⁰ ; lower		1]	1		1	1
		contact 57 ⁰ to core axis. Dissemi-				1	1		1	
		nated py in host adjacent vein		1]	1
		margins.				I	1		1	1
		457.0-459.5:Blocky, broken core.		1					1	
		458.5:0.7! patch of ep alteration sur-		1					·····	
		rounding a 0.4" Otz veinlet @ 56°		1						
		to core axis, 0.15" band of hem		1		4				
	÷	along lower margin.		1					*****	
				1						

COMPANY _____

PROPERTY _____

Township _____

Claim No.

FROM				SAMPLES			Ī	ASSAY	S
	TO	DESCRIPTION	NO	FROM	TO	I WIDTH	Au(oz)	1	I
		468.0:Broken core, ends around.				1	1	1	ł
		501.6-502.6: Quartz vein: pink to white, speck-	121404	500,9'-50	1.6'	0.7'	Trace	1	1
		led with orange-pink clots of Calc.	121405	501.6'-502		1.0'	Trace	1	i
		some red hem staining. Fragments of						1	i
		host, 5-7% py as small cubes and		1		1	1		i
		fine grained disseminations adia-				Ì		I	1
		cent margins and inclusions. Upper							Ī
		contact ground, lower contact ~270						Ī	
		to core axis. Margins of vein are						1	1
		moderate to heavily fractured and		1					1.
		altered to a pale to creamy green						I	1
		colour.							1
		505.5:Broken core, ends ground.		1					<u> </u>
		508.0:Broken core.					1 1	1	1
		535.3:1.6" Otz-Carb-Chl vein breccia @	121492	535.0'-536	6.5'	1.5'	Trace	1	1
		55 ⁰ to core axis containing small					1	1	
		fragments of altered host, 3-5%					1		1
		finely disseminated py most abun-		1		1	1		1
		dant in host adjacent vein margins.		1					
		Minor bleaching of host rock		1			1		1
		adjacent vein margins.							1
		536.0:1.0" Otz-Carb vein breccia @ 46 ⁰ to				1	1	1	1
		core axis exhibiting unaltered		1			-		1
		fragments of host and 1% dissemina-		1				1	1
		ted py.		1		1		·····	
		542.0-546.5, 567.0-578.5:Altered spherulitic		1		1			
		lava.		1		1			
		607.0-616.0:Altered zone. Section exhibits	134517	603.0'-605	5.0'	2.0'	0.002		
		moderate to heavy fracturing and	134518	605.0'-607		2.0'	0.018		
		irregular patches of buff altera-						i	
		tion with strong red-brown altera-		1					
		tion halos commonly associated with				1			
		the fractures within these patches.		1			İ		
····		Up to 10-15% finely disseminated		1	·····			i	1
		py within the altered patches.		•		1	1		,
		Randomly oriented grev Otz and		1		· · · · · · · · · · · · · · · · · · ·		······	
		0tz-Carb veinlets.)		; ;	-		
						•			· · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·				· ·			
		4		· · · · · · · · · · · · · · · · · · ·		***	· · · ·		······································

SHEET No. 5 of

COMPANY _____

PROPERTY _____

		Township		Claim No.					
FROM	то	DESCRIPTION		SAMPLES			ASSAYS		
			ND	FROM TO		Au(oz)			
		607.0-611.2:Heavily altered section with	121493	607.0'-611.2'	4.2'	0.892			
		abundant pale buff patchs and red-							
	·····	brown alteration halos around the							
		fractures, 10-15% disseminated py				1			
		@ 608.5'.			1A.8				
		611.2-616.0:Irregular scattered patches of	121494	611.2'-616.0'		0.156			
		buff alteration with occasional	134519	616.0'-618.0'	2.01	0.024			
		red-brown alteration halos aound			<u> </u>	<u> </u>			
		the fractures. Up to 3-5% finely							
		disseminated py associated with the				<u> </u>			
		altered patches.		Í					
		626.8:2.5" Otz-Carb breccia vein @ 50°							
		to core axis, trace pv,						1	
		629.6-631.8:Randomly oriented Otz-Carb and ep	121495	629.5'-632.0'	2.5'	0.010		ł	
		veinlets exhibiting narrow dark						1	
		red halos and finely disseminated	•				1	1	
		pv.			ļ			1	
					1			7	
		Lower contact brecciated.	<u> </u>					1	
						1	1	1	
						1	1		
647.0	648.7	SYENITE INTRUSIVE.					1	+	
			·····			1 1]		
		Fine grained grey-green to green-red				i –	1	1	
****		svenite speckled with dark green amphiboles.				1		1	
		Randomly oriented Calc filled fractures.						1.	
		Lower contact @ 51° to core axis and			1				
		exhibits a narrow chill margin.			1	1		1	
					1	1	1	1	
					1	1		1	
648.7	717.0	INTERLAYERED DIABASIC AND ALTERED ANDESITIC		· · · · · · · · · · · · · · · · · · ·	{			+	
		FLOWS.	<u> </u>		1	;			
<u></u>					1			1	
		Same as the unit described previously	······································	<u></u>	1		i	4	
		from 339.7'-647.0'.		۵٬۰۰ <u>۰</u>			1		
		and the state of the state of the state of the state of the state of the state of the state of the state of the			1	•			
· •		653.0-671.0:Fault zone. Heavily fractured to							
		brecciated andesite with badly	1		1 1	· · · · · · · · · · · · · · · · · · ·			
		broken core commonly visible			· · · · · · · · · · · · · · · · · · ·				
		along with numerous fault gouge.	<u>،</u>			· · · · · · · · · · · · · · · · · · ·	,		
			فيعاد ويتقاله ويرب التناكي						

COMPANY _____

PROPERTY _____

Township _____

Claim	N.

			SAMPLE	\$		1	AS	SAYS	
FROM TO	DESCRIPTION	NO	FROM	TO	WIDTH	Au(oz)	1	1	1
	653.0-671.0: (continued). Hem staining visible		1		1	1	1	1	1
	on some fracture surfaces.		1			1	1		1
	705.1:Irregular patch of pale yellow								1
	alteration.		1			1	1		
	706.0-707.0:Badly broken, ground core.		1		1	1	1	l	1
	707.0-717.0:Abundant, randomly oriented Otz	121496	707.6'-7	09.6'	2.0'	0.016	1		1
,	Otz-Carb veinlets, commonly cross-						1		T
	cutting and offset suggesting								
	multiple generations. 1-2% py in								
	locally scattered clots. Otz filled		1						
	breccia from 108.0'-108.5'. Core		1		1	I	1	1	1
	badly broken and 5.0' lost due to								1
	arindina between 709.6'-717.0'.								
									1
717.0) END OF HOLE.							1	
			1						1
									T
						1			1
			1			1		1	1
			1			1		1	1
			1		1			1	1
						1		1	1
			1		1	1		1	1
			1		1	•		1	1
·····								1	1
	······································		}		1	1		}	4
			i		1	1		1	1
					1	1		•	1
			ţ		1	1		• •	<u>+</u>
					+ 				1
			1		†	•			÷
			•	<u></u>	1				+
		······	1		1				1
					1				*
					i	· · · · · · · · · · · · · · · · · · ·			•••••••••••••••••••••••
		i	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			.
		·····			1				
	<u></u>					······································			
				Hening alsong	الرديني مارد يغزيك		و کار بندان		

159.0-161.0

121406

		COMPANYWinteroad Re	sources Ltd.		PROPERTY						
	-	Township <u>Garrison</u>			Claim No.	_L.52	2594 & 5	593			
	SHEET No Started Finished Depth	<u>l of 4</u> <u>June 10, 1987</u> <u>June 17, 1987</u> 500.0 FEET	Reference Location <u>See Plan</u> Elevation			Be Di	aringN ip:450 -51.5	HOLE 10 ⁰ E © Colla © @ 400.	NoH ;450 0'	<u>V-14</u> e_200.0	, 1
		DESCRIPTION			SAMPLES		:		AS	SAYS	
FROM	то	DESCRI	TION	NO	FROM	TO	WIDTH	Au(oz)		Τ	T
0.0	132.0	Casing.							<u> </u>		1
			······································				1				4_
		131.0-132.0:Boulder	s						+	4	<u> </u>
										<u> </u>	4-
				·					<u></u>		+
132.0	457.0								+		+
	·····	Diabasic Flows.		······································					<u> </u>		
. <u></u>			·····			<u></u>					+
			ted veinlets and						+		+
			<u>f pale green epidote</u>						<u> </u>	+	+
	<u> </u>	alteration, sometim					+		+		+
		zation.	<u>sphalerite minerali-</u>	····					+	+	+
	<u>, , , , , , , , , , , , , , , , , , , </u>		riented guartz and							· · · ·	+-
		calcite veinlets.	rienced quartz and						<u> </u>		+
			ken core commonly	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · ·			1	+	+
	·····		egular fractures and						+	1	+
		low angle slips.		••••••					1	1	1
. <u></u>									1	1	\uparrow
		133.5-138.0:Section	exhibits scattered						1	1	Γ
			of pale green epi-		_						

Drilled by Morisette D.D. Core Size BQ

dote alteration surrounding sphalerite mineralization.

green epidote alteration, 2-3% pyrite in narrow guartz

159.3-161.0:Irregular patches of pale

veinlets

Logged by _ Robert Reukl

Trace

2.0

SHEET No. 20

COMPANY _____

PROPERTY _____

Township _____

Claim No.

600w	то	DESCRIPTION	SAMPLES			1	ASSAYS	
FROM			NO	FROM TO	I WIDTH	Au I	ł	
		172.5:Broken, rusty 1.0" wide	121407	172.3-173.3	1.1.0	Tracel		
		Otz vein @ 20 ⁰ to core axis.						
		Exhibiting 3-5% py and ep						
		alteration along margins.						1
		187.5-195.0:Blocky core, broken along						
		low angle slips in places.						
		Some irregular Otz-Carb,						
	<u> </u>	veinlets.						
		196,1-196.7:0tz-CarbCh1 cemented						
		fault breccia, inclined						
		at 55-60 9						
		203.0-207.0:Core broken along hem						
		coated slips @ low angle						
		to core axis.						
		229.0-231.0:Core broken at high angle						
		to core axis along Calc.						
		filled fractures.						1
		256.3:2.0" wide Otz-Carb. bre-	121408	255.8-256.8	1.0	Trace		
		ccia vein exhibiting 2-3%						
		py. Upper contact @ 53 ⁰ to						
	_	core axis, lower contact						
		irregular.					1	
		258.0-259.5:Patch of weak ep altera-						
		tion around a core of sph						1
		with minor py.				1		j
		326.5-329.0:Core broken along carb.			1			
		and hem coated fractures				1	1	
		sub-parallel to core axis.				1		1
		330.0-345.0:0tz-Carb veinlets with hem!						1
		lined margins commonly						
		visible.			1	1	1	1
		366.0-368.5:Section exhibits weak ep						
		alteration and silicifica-						
		tion.						1
		386.0-386.5:Otz-Carb breccia vein @	121409	385.0-387.0	2.0	Trace	1	1
		25 ⁰ to core axis with clots						
		of chl and stringers of ep	1					
		Minor py.			•		;	

SHEET No. _3_0

COMPANY _____

PROPERTY _____

Township _____

Claim No.

	DESCRIPTION		SAMPLES		1	ASSA	YS
FROM TO		NO	FROM TD	WIDTH	Au	1	1
	392.2-392.6:0tz-Carb breccia vein @ 350	121410	391.6-393.6	1 2.0	Trace		1
	to core axis (similar to						
	above) exhibiting 5-10%						
	disseminated pv.						
	396.4-398.0:Carb veinlet with hem along			L			
	margins, sub-parallel to			<u> </u>	<u> </u>		·····
	core axis.				<u> </u>	I	
	412.0:Irregular patch of ep al-				<u> </u>	1	
	teration exhibiting hem-			· .	<u> </u>	ļļ_	
	Carb veinlets.				L	ļ	
	431.0-457.0:Core becomes blocky and			ļ	Ļ	ļ	
	increasingly badly broken			ļ		ll	
	toward the end of section.			<u> </u>		I	
				ļ	<u> </u>		
		. <u> </u>		ļ	L		
457.0 468.0	FAULT ZONE			ļ	 		
				<u> </u>	ļ		!
	Blocky, broken core. Badly broken			ļ	<u> </u>		
	and ground in numerous locations,			<u> </u>			
	Chloritic fault gouge material visible.						
	Shearing and brecciation appears to be	<u></u>					
	@ 40-60° to core axis.	· · · · · · · · · · · · · · · · · · ·		(
	Abundant Otz-Carb veinlets random-			<u> </u>			
	ly oriented throughout the zone.			Ļ	 		
				<u></u>			
					i		
468.0 495.5	INTERLAYERED ALTERED ANDESITIC AND			<u> </u>			
	DIABASIC FLOWS.			 		·	·····
				ļ			
	Same as the unit described above			<u>.</u>			
	from 132.0'-457.0'. Exhibiting a per-			 			
	vasive green chl alteration.		و محمد با الا الم من الم الم الم الم الم الم الم الم الم الم				······
	Broken core continues to persist						
	throughout the unit.						}
<u></u>	Otz-Carb stringers present,						i
	decreasing away from the fault zone.				ł		
					······		
	· · · · · · · · · · · · · · · · · · ·		: ••••••••••••••••••••••••••••••••••••				
المتكافي المتقالية والمتقالية							

CD	MP	AN	Y

PROPERTY _____

Township _____

EDO	~~			SAMPLES		1	ASSAYS	
FROM	TO	DESCRIPTION	NO	FROM TO	WIDTH	Au	!	1
		490.0:3-5% disseminated py visible	121411	489,5-490,5	1.0	Trace		
		in a 0.3' altered section.		L	L	ļ		<u></u>
					 	<u> </u>	 	<u> </u>
		Lower contact approximately 70° to			ļ		l	
		core axis.			ļ	ļ		
				· · · · · · · · · · · · · · · · · · ·	 	1	<u> </u>	<u> </u>
						ļ		
495.0	498.2	SYENITE DIKE		· · · · · · · · · · · · · · · · · · ·		 		
	<u> </u>				ļ	ļ		<u></u>
		Medium grained, brownish-red,			ļ	ļ		
		massive syenite intrusive exhibiting						<u> </u>
		1% finely disseminated py.						. <u> </u>
		Core is blocky and ground in pla-		<u> </u>	Į			<u></u>
		ces.			<u> </u>	ļ		<u> </u>
		Occasional randomly oriented Carb			 			
		veinlets.			 	<u> </u>		
							<u>}</u>	
		496.0:0.15' pink Otz-Carb breccia	121412	495.0-498.2	3.2	Trace		<u> </u>
		vein @ 55 ⁰ to core axis.						
		Possible tourmaline along			ļ		ļ	<u> </u>
		upper margin.						<u> </u>
				 	<u>.</u>			
		Lower contact broken.		ł 	1			<u> </u>
								Ļ
				1				
498.2	500.0	INTERLAYERED ALTERED ANDESITIC AND						
		DIABASIC FLOWS.						
	<u> </u>			<u>}</u>				
		Same as the unit previously	······	·····				¦
		described from 132.0'-457.0'						<u> </u>
		Core badly broken and ground.						
	500 0							
	500.0	END OF HOLE.						
<u>.</u>			·····					
	······			· · · · · · · · · · · · · · · · · · ·				
<u></u>								
	· <u>····</u> ·····			,	***			
TPC - NL								********

		COMPANY <u>Winteroad Resources Ltd.</u>		PROPERTY		·	•	
		l of 4 Reference June 17, 1987 Location June 20, 1987		`D	earing <u>N</u> ip : <u>500</u>	HOLE 20 ⁰ W _@ Collar	No. <u>HV-15</u> ; <u>-46°</u> @ 200	. <u>0'</u>
FROM	то	DESCRIPTION		SAMPLES			ASSAYS	
			NO	FROM TO	WIDTH	Au(oz)		
0.0	74.0	CASING.						
		69.0-74.0:Boulders.	+	+		<u> </u>		
		U7.U-14.V:DUUIUEIS.	1			<u> </u>		
			1		-			
74.0	330.0	INTERLAYERED ALTERED ANDESITIC AND DIABASIC						
		FLOWS.						
		Fine to medium grained, green-grey to						
		green interlayered flows, magnetic,	·					
		Irregular patches and randomly oriented			_			
		veinlets of ep alteration.	l	-				
<u></u>		Occasional Otz-Carb filled fractures and						
		veinlets.						
		Some broken core.						
<u></u>		79.0-79.5:Broken Core.						
		82.0-83.0:Short section of brittle deformation	121413	82.0'-83.0'	1.0'	Trace		
		(fracturing and brecciation), exhibi-		1 02.0 -05.0		11ULC		
		ting a pale purple to buff coloured			1			
		alteration accompanied by Otz floo-						
		ding and 3-5% disseminated py.						
		Irregular Otz veining inclined @						
		55 ⁰ to core axis.						
		83.9-84.3:Broken and ground core, chloritic	121414	83.0'-85.0'	2.0'	Trace		
		fault gouge @ 52 ⁰ to core axis.			-			
		97.5-99.0:Section of pale green ep alteration					·	
<u></u>	- र्	exhibiting Otz filled vesicles, some	<u> </u>					+
		vesicles filled with Otz and py.		1		ll	l	1

Drilled by Morisette D.D.

Core Size BO

Logged by <u>Robert Reukl</u>

-

COMPANY _____

Township _____

PROPERTY _____

Claim No. _____

FROM	**			SAMPLES		1	ASSAYS			
ROM	TO	DESCRIPTION	NO	FROM	TO I WI	DTH	Au(oz)		I	i
		102.5:Core broken along low angle slips.			1				1	1
		113.7:Minor broken core along chloritic							1	1
		slips.							1	Ī
		114.5:0.5" hem vein @ 51 ⁰ to core axis.							ł	1
		122.2:Core broken along flow contact.				I			ł	i
		130.0-131.5:Core broken along chloritic slips.								ł
		152.5-155.0:Possible spherulitic flow exhibi-					1			1
		ting strong pale green ep altera-					l			1
		tion, hem staining and 2-5% pv.							I	ļ
		207.7-208.5:Patch of weak ep alteration around								!
		a core of red sugary sph.			ł				1	!
		211.5-213.0:Irregular fractures @ low angle to							I	
		core axis, Carb along fracture								
		surfaces.								
		213.9-214.4:Pale green ep alteration.	•						l	
		214.4-216.0:Core broken along low angle slips.	_		1				Ì	1
		Carb along slips.			ł					1
		216.7-217.2:Broken core, Carb along fracture	··········	ł					1	I
		surfaces.		l					1	1
		217.6-217.8:Low angle slips, Carb along slips.		1	1		1		1	
		218.5-219.5:Low angle slips, Carb along slip			i				1	1
		faces.		ĺ	1	1	1	· · · · · · · · · · · · · · · · · · ·	1	1
		221.5-222.0:Low angle Carb slips.		• • • <u>• • • • • • • • • • • • • • • • </u>	i			,	1	1
		225.5:0.5' irregular patch of ep		1		i			1	Ì
		alteration.			1	1	1	<u></u>	1	1
		228.1:0.5' irregular patch of ep	121415	227.0'-229.	01 2	01 1	Trace			1
		alteration with irregular grev-					1 I Law I		i	
		white Otz veining containing		i	1			······································		1
		fragments of pink to buff sphale-			1	1	1	••••••••••••••••••	 	
		rite and 1-2% pv. Host rock is					†	(i	1-
		moderately silicified with 1-2%			······	1				
		pv,				i				
		243.5-243.8,244.8-245.8:Core broken along		1		i				1
		irregular fractures.								1
		248.5-249.0:Hem filled fracture parallel to	, <u></u>	· · · · · · · · · · · · · · · · · · ·						
	*****	core axis.								
		257.0:Broken core. Hem and Carb along				i				
		fracture surfaces.			1	······	<u> </u>			
					· · · · · · · · · · · · · · · · · · ·		<u>.</u>			
		· · · · · · · · · · · · · · · · · · ·								

								lo. <u>3 0</u> :	F 4		
		COMPANY		PROPERTY					•		
		Township		Claim No.							
				SAMPLES		ASSAYS					
FROM	TÖ	DESCRIPTION	NO	FROM	TO	I WIDTH	IAu(oz)	Zn(ppm)	Cu(ppr	mi)	
		257.0-262.0:Core broken @ 40-60 ⁰ to core axis.		1		1				1	
		258.8-260.1:Fault zone. Badly broken core and									
		small Otz vein breccia at 259.8'.								Í	
		271.0:Carb and hem along fracture, sub-		l						1	
		parallel to core axis.					1		1	1	
		295.5:Patch of pale green ep alteration								1	
		299.5-300.5: Broken core, Carb and hem on								Ţ	
		fracture surfaces.								1	
		302.5:Patch of weak ep alteration.					1			1	
		318.7-319.0:Irregular patch of ep alteration	121416	1 318.3'-320	0.31	2.0'	Trace	240	29	1	
		silicification surrounding pink		ì	~	1	1			1	
		band of sph with 3-5% clots of py.				1				1	
البلود وتستكفلون ويستع		226.0-227.0:Broken core.		1		1	1			1	
		327.0-330.0:Moderately silicified adjacent		1		1	1			1	
·····	ويبي محادية بالمراجعة معرو	lower contact		1		1	1			1	
				1						1	
				1		1	1			1	
330.0	331,9	SYENITE INTRUSIVE.		1			ļ			1	
						1				1	
	······	Fine grained, reddish-brown svenite with	121417	329.0'-33	3.01	4.0'	Trace			1	
		numerous small poorly developed pale red								1	
		(iron stained ?) feldspar phenocrysts, and		1		1	1	<u> </u>		1	
		speckled with dark green clots.		1			i			<u> </u>	
		Minor disseminated py throughout and		1		1		i		i	
		randomly oriented Calc filled fractures		İ		1				 1	
·····		common.		i		•				j	
						1				 	
				1		İ					
331.9	387.0	INTERLAYERED ALTERED ANDESITIC AND DIABASIC		<u>.</u>							
331.9	0/.0			<u>i</u>		<u></u>					
		FLOWS.	·······			3					
		Cimilar to the unit unaviously described		<u> </u>		1					
		Similar to the unit previously described		1							
		_from 74.0'-330.0'.									
				<u></u>							
		338.5-339.5:Badly broken core, possible fault		1					<u> </u>		
		zone.						·····	·····		
		344.5:Patch of pale green ep alteration.		1 			<u> </u>				
		1		I				·		<u></u>	
				i							

C . AL

						SHEET N	e. <u>2</u> 01		
		COMPANY		PROPERTY					
		Township		Claim No	· · · · · · · · · · · · · · · · · · ·				
FROM	TD	DESCRIPTION		SAMPLES	1	ASSAYS			
			I NO	FROM T	D WIDTH	<u> </u>	 	1	
		355.5:0.4" wide pale red Otz vein with	1						
		<u>clots of sugary Otz.</u> 377.0:Narrow (0.2') section of badly							1
		broken core.							1
				1				<u> </u>	
	397 0	END OF HOLE.						<u> </u>	
			1					1	+
				l				•	
		<u> </u>	<u> </u>	<u> </u>		{			
			+						
						11			
			. ·					1	1
									1
			ļ			 			
		·							- <u>+</u>
									+
			<u> </u>	<u> </u>			······································		+
			i	<u> </u>				l	
				Ì					1
						<u> </u>			
				 		<u> </u>			
			 	• • • • • • • • • • • • • • • • • • •				,, 	†
						ļļ			
								·	<u> </u>
						1			
	1				1				
					1		:		
	<u> </u>					<u> </u>			
						•			

		COMPANY <u>Winteroad Resources Ltd.</u>		PROPERTY Claim No				
	SHEET No Started Finished Depth	1 of 4 Reference June 20, 1987 Location June 22, 1987			Bearing Dip :60 ^C	100E	No. <u>HV-16</u> r; <u>-60°</u> @ 200.	0'
FROM	то	DESCRIPTION		SAMPLES			ASSAYS	
0.0	72.0		NO	FROM TO	WIDTH	<u>Au</u>		+
	/2.0	64.0-70.0, boulders.			· · · · · · · · · · · · · · · · · · ·			
72.0	87.9	INTERLAYERED ALTERED ANDESITIC AND BASALTIC FLOWS.						
		86.5-87.0:Minor broken core. 86.8-87.9:Core is light grey exhibiting moderate to strong silicifi- cation.						
		87.4-87.9:Strongly sheared and silici- fied, exhibiting 10-15% py.	121418	87.0 - 88.0	1.0	Trace		
87.9	88.4	FAULT ZONE.		· ·				+
		87.9-88.1:White Otz and Carb cement fault breccia inclined @~55° to core axis.						
		88.1-88.4:Green chloritic fault gouge.					<u> </u>	
		Lower contact @ 45 ⁰ to core axis.						
88.4	325.0	INTERLAYERED ALTERED ANDESITIC AND BASALTIC FLOWS.						

Drilled by Morisette D.D.

Core Size BQ

Logged by <u>Robert Reukl</u>

C	OM	PA	N	Y

Township _____

PC - NL

			İ	SAMPLE	5		T	AS	SAYS	
FROM	TO	DESCRIPTION	NO	FROM	TO	WIDTH	Au	ł	1	1
88.4	325.0	INTERLAYERED ALTERED ANDESITIC AND	i				1	1	1	1
		BASALTIC FLOWS (continued).							1	
	-									
		Numerous randomly oriented ep	1	1						1
		veinlets and scattered patches of ep								1
		alteration, Occasional Otz veinlets.								
		Occasional broken core, commonly								
		associated with low angle slips.								
		105.5:Core broken along low angle		!						1
		slip, hem and Carb on frac-								1
		ture surface.								[
		125.0-126.0:Irregular patch of pale								1
		green ep alteration								
		139.0:Low angle slip, hem and								
		Carb on fracture surface.	·							
		141.0-143.0:Core broken along low angle								!
		slips, 0.25" Otz breccia								
		veinlet @ 142.6', trace py.								1
		170.1:0.3" Otz vein @ 46 ⁰ to core								
		axis, exhibiting 3-5%								
		disseminated py and scat-								
		tered clots of pale green								1
		ер,								
		176.0-177.0:Core broken along low angle								
		slips.								
		198.5:Irregular 0.2' Otz filling,	121419	198.0 -	199.0	1.0	Trace			
		1% disseminated pv. Some								1
		broken core.								
		210.7:0.2' zone of weak to mode-								
		rate shearing @ 50-55 ⁰ to								
		core axis, exhibiting Carb								
		and hem along foliation]					
		planes, Narrow (0,1") band								
		of_chl gouge								I
		221.5:0.8' patch of pale green			1		i			
		ep alteration surrounding		1	1	1	3			
		a core of pinkish-red			1	1				
		sugary Otz.								
		- • •								

SHEET	No.	_3_	-9)-	

COMPANY _____

PROPERTY ___

		1	SAMPLES		1	ASSAYS	
OM TC	DESCRIPTION	NO NO	FROM TO	WIDTH	Au	I Cu I	Zn
	223.0:Minor broken core.			1		(ppm)	(ppm)]
	244.8:0.1' Calc-Otz cemented					<u> </u>	
	fault breccia @ 35-40°to			<u> </u>	ļ		
	core axis. hem stained				<u> </u>		
	fracture surfaces and nar-			<u> </u>	ļ	ļļ	
	row chloritic fault gouges			1		<u> </u>	
	present fault breccia.						
	257.4-258.0:Section of broken core ex-				4		
	hibiting irregular yuggy			· · ·		<u></u>	
	Otz-Calc veining with bre-	<u> </u>			· · · · · · · · · · · · · · · · · · ·		
	cciated fragments of host						
	rock. Scattered ep blades.						
	some hem and trace py.				<u> </u>	1	
	262.0-263.0:Broken and ground core in						
	a section exhibiting local	· [
	moderate shearing, Calc					[]	
	breccia veinlets and chlo-						
	ritic fault gouge @ 262.3"						
	265.1:0.15' silicified fault zor	e 121420	264.5'-266.5'	2.01	Trace		
	a 60-70° to core axis, exhi	_					
	biting finely crushed						
	fragments in a Otz matrix						
	and 1-2% disseminated py.						1
	265.8-266.1:Narrow shear @ 60-65° to				i	1	
	core axis exhibiting some				1		
	Calc along foliation plane	s		1			
	and 5% finely disseminated			1	1	1	
	py, narrow chloritic gouge						1
	289.0-290.5: Irregular zone of ep alter	- 121421	289.0'-290.5'	1.5'	Trace	56	9
	ation accompanied by Qtz						
	filling and 15-20% coarse						
	crystals of pinkish-red				į		
	mineral (sph?), trace						
	sulphides (cpy,py).						
	292.0,293.0:Band of massive sph with					1	
	2-3% disseminated py accom	-		1			
	panied by weak ep altera-	j					
	tion.	1		1		l	
		•					

							SHEET I	No. <u>4</u>		
									•	
		COMPANY		PROPERTY						
		Township		Claim No.)
		Township		Cidim No.						
			1	SAMPLES			1	AS	SAYS	
FROM	TO	DESCRIPTION	NO	FROM	TO	WIDTH		l	1	1
		312.5:Ep alteration surrounding						1		1
		a massive sph core.								ļ
			<u> </u>	ļ		ļ	4	ļ	<u> </u>	<u> </u>
						ļ			<u> </u>	4
		D END OF HOLE.				<u> </u>	+		+	
						<u>}</u>	+		+	+
<u></u>			1	+			+	+	+	+
				1			+	1	+	+
			1	1		1	1	1	1	1
			1	1		1	1	1	1	1
										1
										1
]		
			1			ļ 	L	ļ	1	<u> </u>
				ļ		 		ļ		
				ļ				ļ	<u> </u>	<u></u>
			·				<u> </u>	<u> </u>		4
						[<u> </u>	<u> </u>		
			<u></u>	1 					<u> </u>	+
									<u> </u>	
				<u>.</u>				<u> </u>	<u> </u>	+
		***************************************					·		<u> </u>	
				· · · · · · · · · · · · · · · · · · ·					<u> </u>	<u> </u>
<u></u>	<u></u>		1	 			i		1	+
			1				1	•	1	1
	· · · · · · · · · · · · · · · · · · ·		1	1					<u> </u>	1
							l			
									ļ	
			l	ļ						ļ
		l								<u> </u>
<u></u>			I					<u> </u>	l	
		1	1 •	l 					i 	
			:	, 			 			·····
			1 • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·					<u></u>
								······		
PC - NL	يتري بين من بين الفريق بي ال				o a contecció		لقويبدها تنابر العا			

		COMPANY <u>Winteroad Resources Ltd.</u>		PROPERTY Claim No		-				
	SHEET No Storted Finished Depth	June 23, 1987	HOLE No. <u>HV - 17</u> Bearing <u>N 40⁰E</u> Dip: <u>-45⁰</u> @ Collar; <u>-46⁰</u> @ 201.0'							
FROM	TO	DESCRIPTION		SAMPLES		ASSAYS				
			NO	FROM TO	WIDTH					
0.0	52.0	CASING.								
			1							
		50.8'-52.0', boulders.								
52.0	201.0	INTERLAYERED ALTERED ANDESITIC AND								
		BASALTIC FLOWS.								
			1							
		Irregular patches and randomly	1							
		oriented veinlets of pale green en	•							
		alteration. Small masses of pinkish-red								
		sph sometimes associated with ep patches								
		Occasional irregular Otz veinlets.								
		Occasional broken core.								
		80.0-107.0:Broken core in numerous								
		locations throughout the	ļ							
		section, sometimes badly	ļ							
		broken and ground. Rusty								
<u></u>		fractures common.								
		82.0:Vuggy Otz veinlets in short								
		86.0-88.0:Core broken along low angle								
		fractures, rusty in places.					····			
		93.0:Badly broken, ground core.	+							
	· · · · · · · · · · · · · · · · · · ·	94.5-96.5:Core broken along rusty, low angle fractures. Badly broken								
		and ground around 96.0'.								
			1							

Drilled by MORISETTE D.D.

Core Size BO

Logged by <u>Robert Reukl</u>

-

SHEET No. 20

COMPANY _____

PROPERTY _____

•

Township _____

Claim No. _____

			SAMPLES		ASSAYS			
FROM TO	DESCRIPTION	NO	FROM TO	WIDTH	An(oz)			
	97.0-101.5:Core broken along numerous			1	1			
	rusty fractures.				I			
	101.0-104.5:Numerous Otz veinlets,	121490	102.2'-104.	2' 2.0'	0.092			
	sometimes offset by fractu-							
	ring							
	104.5-106.2:Badly broken core, numerous	121423	104.2'-106.	2' 2.0'	0,216			
	rusty fractures. Otz vein-	121491	106.2'-108.	2' 2.0'	Trace			
	lets and veins present as							
	broken and rusty fragments,							
	113.0:Broken core along Calc							
	filled fractures.							
	150.0,151.0,156.5: Trregular patches of							
	ep alteration surrounding						1	
	cores of pinkish-red sph.							
	174.5-176.0:Shear zone. 174.5'-175.6';	.121422	174.5'-176.	0' 1.5'	Trace			
	moderate to strong shearing							
	@ 50-60° to core axis, exhi-							
	biting strong silicifica-							
	tion and 5-10% disseminated							
	pv. 175.6'-176.0'; Calc							
	infilling in irregular							
	pockets in shear. 177.9';							
	chloritic fault gouge.				I			
	179.0:0.25" Otz vein breccia @						1	
	67 ⁰ to core axis.				1		1	
	188.0-188.6;Broken core.			1.	1			
						Í		
			1					
201.0	END OF HOLE.		1		1			
		·····			1			
				1	1 1		1	
				4				
							1	
							1	
		· · · · · · · · · · · · · · · · · · ·				1		
				1				
			1	1	1			
				!	1	i		
					!			
PG - ML								

		COMPANY Winteroad Resources Ltd, Township Garrison 1 of 3 Reference		PROPERTY Claim NoL.52		594					
	Started Finished Depth	June 23, 1987 Location See Plan June 24, 1987 Elevation	anBearing_ <u>N 40⁰E</u> Dip:60 ⁰ @ Collar;_61 ⁰ @200.0'								
			1	SAMPLES		1	ASS	AYS .			
FROM	то	DESCRIPTION	NO	FROM TO	WIDTH	Au(oz)					
0.0	52.0	CASING.							 		
									ļ		
		48.0-52.0; blocky core.							<u> </u>		
					+	++-					
52.0	204.0	INTERLAYERED ANDESITIC AND DIABASIC				++					
	204.0	FLOWS.		-	+	<u> </u>					
						11-					
	7	Randomly oriented veinlets and									
		irregular patches of ep alteration									
		common.									
		Occasional Carb and Otz veinlets.									
		Some broken core, badly broken and									
		ground in places.									
									L		
		60.5-61.5:White Otz veinlets exhibiting									
<u></u>	•	minor alteration and dissemi-		58.1' - 60.1			···		Į		
		nated py along margins.	121425	60.1' - 62.6	2.5'	0.008					
		61.5-62.9:Core broken along rusty frac-	121426	62.6' - 65.6					ļ		
		tures.				(0.024)					
	,	62.9-65.6:Altered Otz-carbonate breccia	121427	65.6' - 67.6	12.01	Trace					
		vein exhibiting buff coloured				┥━					
		fragments of altered host rock			┨─────	╉━━━━━			<u> </u>		
<u></u>		within a white to buff-white			+	╂			}		
		Qtz vein. 1-2% disseminated		+	+	<u> </u>					
		py also present, some rusty				╉━━━━━┼╸					
		fractures and patches. 62.9'-				<u> </u>					
		63.1'; rusty fragments of			<u> </u>	+					
					L	1l.			<u></u>		

Drilled by MORISETTE D.D.

Core Size BO

Logged by <u>Robert Reukl</u>

SHEET No. 2 of 3

COMPANY _____

PROPERTY _____

C - NL

	Township		Claim No.		●			
FROM TO	DESCRIPTION		SAMPLES		1	A!	SAYS	······
		NO	FROM	TO	WIDTH		4	
	broken Otz. Visible Gold						4	
	noted at 63.2', 63.3'-64.1'.		4				4	
	Weakly altered xenolith of	····	4					
	included host rock. lower							
	margin @ 42° to core axis.				· · · · · · · · · · · · · · · · · · ·			
	65.6'; lower margin @ 44° to							
	core axis.				+			
	66.5-68.0:Core broken along rusty frac-							
	ture.				·		<u> </u>	
	71.0-71.8:Zone of ep alteration and		4				4	
	irregular Otz fillings.							
	72.8:1.1" white Otz vein @ 58° to							_
	core axis, small clots of							
	Carb + chl. 1% disseminated						4	
	pv							
	76.0:2.5" Otz breccia vein exhi-	•	4		<u> </u>			
	biting relatively unaltered	······			<u> </u>			_
	fragments of host rock.							
	Minor hem alteration along		L				4	
فالمرجعة الباليسية والتاريج	margins. 3-5% finely disse-		1					
	minated py within fragments		<u> </u>				1	
	and along margins. Upper		ļ				<u> </u>	
	margin @ 37 ⁰ to core axis,				<u> </u>			
	lower margin @ 54 ⁰ to core				<u> </u>		<u> </u>	
	axis.						<u> </u>	
	80.9:0.7" Otz vein @ 37 ⁰ to core		1					
	axis, minor disseminated py		ļ		<u> </u>		<u></u>	
	associated with scattered	·					+	
	clots of Carb.		ļ		<u> </u>		<u> </u>	
	84.5-85.5:Badly broken and ground core		1		<u> </u>			
	120.0:Core broken along hem frac-		L		<u> </u>			
<u></u>	tures @ low angle to core				ļ		L	
	axis.		 				<u> </u>	1
	150.0-155.0:Broken core in a few places		ļ		<u> </u>		<u> </u>	1
	190.0:Broken core at low angle to						<u> </u>	
	core axis along Carb-hem	·	ł			+	: 	
	fracture.	· · · · · · · · · · · · · · · · · · ·	i • • • • • • • • • • • • • • • • • • •		<u>}</u>		<u>.</u>	
<u></u>			<u></u>		<u> </u>		1	
) 					
			ł					

COM	PA	NY	

PROPERTY _____

Township _____

			SAMPLES				ASSAYS			
FROM	TO	DESCRIPTION	NO	FROM	то	WIDTH	1	1	Î	1
204.0	209.0	SHEAR ZONE.								1
									<u> </u>	
		Zone of fracturing and shearing								
	والمراجع والمتكافي والمتكافي والمتكاف	to varying degrees. Fractures exhibit							<u> </u>	
		Otz, Carb and hem filling. Numerous							1	1
		chloritic fault gouges.		1				<u> </u>	l	
		2-3% finely disseminated py local-						<u></u>	<u> </u>	1
		ly visible.				<u> </u>	L		<u> </u>	1
				L		· · · · ·	<u> </u>	1	<u> </u>	1
		204.0:Fault gouge @ 55 ⁰ to core				<u> </u>			<u> </u>	<u> </u>
		axis.		L			L		<u> </u>	1
		206.5:Fault gouge @ 50-55 ⁰ to core				ļ			ļ	
		axis.					L	<u> </u>	<u> </u>	<u> </u>
		208.0:Shearing @ 50-55 ⁰ to core					L			<u></u>
		axis.	I.	<u> </u>		<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>
			•						<u> </u>	
							L	1		1
	209.0	END OF HOLE.				L	ļ	<u> </u>	ļ	<u> </u>
										<u> </u>
										<u> </u>
	المتحرين وستغلث فداعي ويورون			[
						İ	1		1	
			-							
										1
				1					<u> </u>	
					<u> ، </u>					
				<u> </u>						
				i 	·····					
						i		4		
<u></u>				·						
							1997–1997–1997–1997–1997–1997	Intel ^a tion and and		
C . NL										

COMPANY	Winteroad 1	Resources	Ltd.
CUMPANI	<u>MILLELDad</u>	Resources	

Township Garrison

F	RO	ΡE	RT	'Y	

Claim No. <u>L.522595</u>

	SHEET No Started Finished Depth	June 25, 1987 Location See Plan June 25, 1987	Reference Location Elevation		HOLE No. <u>HV-19</u> Bearing <u>N 10⁰E</u> Dip: <u>-60⁰ @ Collar; @</u>						
				SAMPLES			ASS	AYS			
FROM	TO	DESCRIPTION	NO	FROM TO	WIDTH	Au(oz)					
0.0	52.0	CASING.									
		•									
		51,5-52.0:Boulders.									
									ļ		
52.0	106.0	INTERLAYERED DIABASIC AND MINOR ANDESITIC									
		FLOWS.				 					
						-			ļ		
		Veinlets and occasional patches of pale									
		green ep alteration.				 .			ļ		
		Occasional Carb and Otz veinlets.				-					
		Occasional broken core, commonly associated									
		with rusty fracturing.									
		•				ļ					
		72.5-77.5:Section of broken core, badly broken	121429	72.5'-74.5'	2.0'	Trace					
		and ground in places. Numerous rusty	·								
		fractures.		·		<u>↓</u> ↓					
		74.5-76.0:Broken and vuggy fragments of Otz-	121430	74.5'-76.0'	1.5'						
		Carb breccia. Fragments at 76.0' shows	121431	76.0'-78.0'	2.0'	0.008					
		broken contact @ ~32°to core axis.				-					
		85.0:Weak shearing showing foliation									
		@ 42 ⁰ to core axis. Otz veinlets				↓ ↓					
		and disseminated py parallel to									
		schistosity.									
		85.5-86.0:Badly broken core.									
		89.2-90.7: Moderate fractured section.				<u> </u>					
. 		Fracturing @ 30-35 ⁰ to core axis, filed with Otz-Carb and				<u>├</u>	·				
						┟────┤-			<u></u>		
		hem.									

Drilled by Morisette D.D.

Core Size BQ

Logged by <u>Robert Reukl</u>

1.1

	SHEET No	2 2
PROPERTY		
Claim No.		

COMPANY

Township _____

				SAMPLES					ASSAYS			
FROM	то	DESCRIPTION	NO	FROM	TO	I WIDTH		AS	1			
		89.2-90.7:(continued) 89.2: 0.2' Otz-			···	1	1	1	1			
		Carb breccia vein with 2-3%				1		1	1			
		disseminated py. No altera-				1	1	1	1			
		tion of breccia fragments.				1	1	1	1	1		
		96.0:Core broken along rusty		1		1	1		1	1		
		fragment @ low angle to core		1		1	1	1	1	1		
		axis.		1			1	1	1	1		
		101.5:0tz-Carb fillings, clots of				1	1		T	1		
		chl, minor disseminated py						1	1	1		
		in host.		1		1	1		1	1		
				l					1			
	106.0	END OF HOLE.				1						
						ł						
									1			
										1		
										1		
						1	l	ļ				
				l 		<u> </u>		<u> </u>	l	1		
						<u> </u>			l	1		
				· · · · · · · · · · · · · · · · · · ·		<u> </u>		ļ				
						1			<u> </u>			
								1				
<u></u>			·····							<u> </u>		
 									ļ			
										ļ		
										*		
												
				ļ			·····	ļ		·		
. <u> </u>								ļ!		1		
				<u> </u>				!		<u></u>		
			- <u> </u>	 		i						
						l I	·					
		: • • • • • • • • • • • • • • • • • • •										

	•	COMPANY <u>Winteroad Resources Ltd.</u>		PROPERTY			
	SHEET Na Started Finished Depth	I of 2 Reference June 25, 1987 Location June 26, 1987 Elevation		B		HOLE No 20 ⁰ W _@ Collar;_	• <u>HV-20</u>
FROM	TÕ	DESCRIPTION		SAMPLES			ASSAYS
			NO	FROM TO	WIDTH	Au(oz)	
0.0	44.0	CASING.				·	
		41.5-44.0:Boulders and blocky bedrock.					
		· · · · · · · · · · · · · · · · · · ·			+	<u> </u>	
44.0	91.0	INTERLAYERED ALTERED ANDESITIC ANDESIT	.				
	91.0	AND DIABASIC FLOWS.			-	1	
						++	
		Veinlets and irregular patches of					
		of pale green ep alteration common.	1		~		
	******	Occasional Otz and Calc veinlets.					
		Some broken core, badly broken and					
		ground in places, sometimes associated					
		with rusty fractures.					
		44.0-45.0:Badly broken, ground core.					
	\$	49.0-50.0:Core broken along rusty frac-					· .
		tures.					
		53.2-54.3:Badly broken and ground core.					
		56.5-58.0:Badly broken and ground core.					
		62.5-65.0:Broken and blocky core, beco-	121432	62.8' - 64.8'	2.0'	Trace	
		ming badly broken near end of					
		section.					
		65.0-66.2:Broken fragment of brownish-	121433	64.8' - 66.3'	1.5'	0.040	
	······	white Otz fragment with rusty	121434	66.3' - 68.8'	1.5'	0.036	
		inclusions of altered host	+				
		rock, minor disseminated py,	101405	60 01 70 01	+	· · ·	
<u></u>		66.2-71.0:Green to buff-green altered	121435				
			121436	70.9' - 72.9'	1 2.0'	0.012	

Drilled by __MORISETTE D.D.___

Core Size <u>BQ</u>

Logged by <u>Robert Reukl</u>

-

COMPANY	

PROPERTY _____

SHEET No. 20

Township _____

500H 70			SAMPLES			1	AS	SAYS	
FROM TO	DESCRIPTION	NO	FROM	τo	WIDTH	1)	1	1
······································	brecciated spheriulitic flow							1	
	with disseminated py (1-2%)					<u> </u>		1	
	becoming more abundant (3-						<u>]</u>		1
	5%) near end of section which		1						1
	exhibits red (hematized)		l		İ			1	
	breccia fragments. Otz vein-				1				
	lets common, Broken fragments								
	a 70.9', contacts broken.								1
	76.8-78.0:Weakly altered band of sphe-								
	riulitic lava		1					1	
	81.0-84.0:Altered spheriulitic flow.		l						1
	81.5:Irregular Otz filled, specks								
	of pale green ep.								1
	•								
	•								
91.0	END OF HOLE.								
									1
									1
									1
								[
					1		1	1	
								ļ	
						!			1
					1				1
					l			1	1
			1					1	1
			1					1	
								1	1
			1						1
			l						
	· · · · · · · · · · · · · · · · · · ·		1						1
			1						1
								i	
			1		· · · · · · · · · · · · · · · · · · ·		1	1	
			1		1			-	
					1				
PC · NL									

	•	COMPANY Winteroad Resources Ltd.		PROPERTY							
	Started	Township Garrison . 1 of 4 Reference June 30, 1987 Location See Plan July 1, 1987 Elevation	anBearing _N_10 ⁰ E Dip: _45 ⁰ _@ Collar; _43 ⁰ _@_251.0'								
FROM	то	DESCRIPTION		SAMPLES			AS	SAYS			
	10	DESCRIPTION	NO	FROM T	O WIDTH						
0.0	44.0	CASING.							<u> </u>		
<u></u>											
	. <u></u>				·				<u> </u>		
44.0	99.0										
		BASALTIC FLOWS.							<u> </u>		
								ļ			
		Irregular patches of pale green ep						ļ	<u> </u>		
		alteration sometime surrounding pinkish-									
		red sph mineralization. Randomly orien-						ļ			
		ted ep veinlets also common.									
		Occasional unoriented Otz and Calc									
		veinlets.							<u></u>		
		Occasional broken core.									
		•						·	<u></u>		
		62.0:Core broken along rusty frac-							<u> </u>		
		tures.	<u></u>						<u> </u>		
		65.0-67.0:Core badly broken along rusty		· ·			·····	ļ			
<u></u>		fractures, some grind.	·····			·	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
									ļ		
99.0	110.8	DIABASE DIKE.							ļ		
	·····								<u> </u>		
		Medium to coarse grained, dark	······						<u> </u>		
		green-grey diabase.							 		
		Minor unoriented Calc and chl fil-					·····		<u> </u>		
		led fractures.	·····						 		
		Lower contact broken.									
	·								+		
									1		

Drilled by MORISETTE D.D.

Core Size BO

Logged by <u>Robert Reukl</u>

....

COMPANY _____

PROPERTY _____

Township _____

				SAMPLES	5		1	ASS	AYS	
FROM	TD	DESCRIPTION	NO	FROM	TD	WIDTH	IAu(oz)!		l	1
10.8	251.0	INTERLAYERED ALTERED ANDESITIC AND				1	1			1
		DIABASIC FLOWS.		1		1	1			1
				1						
		Same as previously described from		1		1	1 1			1
		44.0'-99.0'.				1	1			
						1				1
		132.0:0.25" Calc filled breccia								
		veinlet @ 65 ⁰ to core axis.		1 .		1				1
		165.2-166.7:Broken core exhibiting				1			1	1
		rusty, earthy fracture		1		1		i		1
		surfaces		4		ł	1			1
		178.5-179.5:Irregular Otz fillings								1
		exhibiting ep along margins		1		1				1
		and clots of py.		1		1	1 1			1
ملاديب مسائلي ورجاعكم		186.0-188.6:Core broken along low angle	121437	186.0'-1	88.6'	2.6'	0.016			-
		rusty fractures.			hadda dh'ar Nashdi an san a					1
		188.6-220.0:Zone of buff to reddish-				1				
		brown altered Otz-Carb		1		1	1			1
		veins and veinlets with up		1		1	1 1			1
		to 10% disseminated py		1		1	11			1
	······	separated by sections of		1	*****		1			1
		unaltered andesite.		1		1	1 1	i		1
		188.6-193.1:Broken fragments of	121438	188.6'-1	93.11	4.51	1.090			1
		brownish-white Otz and		1			1			1
		rusty andesite with Otz		1						1
******		veinlets					1			1
		193.1-195.6:Weakly altered ande-	121439	103 11-1	05 61	1 51	0 076			
	•	site, a few Otz veinlets			<u></u>			 		
		with minor reddish-brown		!			1			1
		alteration margins.		<u> </u>			†			1
	······································	195.6-198.1:Heavily fractured	121440	195.6'-1	98.11	2.51	0.276			
		section exhibiting strong					1 1			
		buff alteration in fractu-					i i			1
		res, numerous Otz veinlets		1						1
	,	exhibiting disseminated py:		1				1		-
		0.2' breccia vein @ 33°to		•			••			
		core axis at 197.9'.		i			· · · · · · · · · · · · · · · · · · ·			•••••
		198.1-200.1:Weakly altered ande-	121441	198.1-2	00.1	2.0'	0.016			·····
		site, minor Otz-Carb vein-		· · · · · · · · · · · · · · · · · · ·	پستین شد تا راند او	<u> </u>			·····	······································
		lets.		;						

SHEET No. 3 OF

COMPANY _____

PROPERTY _____

Township _____

FROM	то	DESCRIPTION		SAMPLES		1	ASSAYS		
			NO	FROM TO		Au(oz)			
		200.1-203.6:Altered andesite exhi-	121442	200.1'-203.6'	3.5'	0.248			
		biting buff to reddish-brown			ļ	ļ			
		alteration in fractures:			ļ	<u> </u>			
		parallel red-brown altered				ļ			
		breccia veinlets with 1-2%		4	ļ	<u> </u>			
		to core axis at 202.0'.		1	L	<u> </u>			
		203,6-205,1:Weakly altered ande-	121443	203.6'-205.1'	1.5'	0.020			
		site, minor Otz-Carb vein-				ļ			
		lets.			· ·				
		205.1-208.6:Altered andesite exhi-	121444	1205.1'-208.6'	3.5'	0.556			
		biting numerous Otz veinlets				ļ			
		with reddish-brown altera-				<u> </u>			
		tion along margins, 206.4'-		1					
		207,9' exhibits intense							
		fracturing/brecciation							
		adjacent a 0,1' Otz-Carb	•						
		breccia vein @ 21 ⁰ to core		1					
		axis at 207.0'. 2-5% py			İ				
		throughout altered margins,							
		208.6-213.1:Weakly altered ande-	121445	208.6'-213.1'	4.5'	0.010			
		site exhibiting Otz and							
		Otz-Carb veinlets, some							
		veinlets offset by fractu-							
		ring, some minor red-brown							
****	1	alteration around Otz vein-				1	1		
		lets. Otz-Carb veinlets @		1		1 1			
	1	23-28° to core axis.		1		1	1		
		213.1-217.1:Weakly altered ande-	121446	213.1'-217.1'	4.0'	Trace	1		
		site exhibiting Otz-Carb		1	,				
		and minor Otz veinlets.		1		1			
		Some red-brown alteration		1		1			
		and disseminated pv asso-	······						
-		ciated with Otz veinlets.							
		Veinlets commonly between							
		16-26 ⁰ to core axis.					1		
			······			4			
						i .			
				1			· · · · · · · · · · · · · · · · · · ·		
						······································			
		<u>, , , , , , , , , , , , , , , , , , , </u>		· · · · · · · · · · · · · · · · · · ·		,			

SHEET No. 40

COMPANY _____

PROPERTY _____

Township _____

				SAMPLES		i	ASSAYS	
FROM	то	DESCRIPTION	NO	FROM TO	WIDTH	Au(oz)		1
		217.1-220.1:Altered andesite	121447	217.1'-220.1'	3.0'	0.192		1
		exhibiting strong red-brown						
		alteration along margins						
		and 5-7% disseminated py.		1				
		219.1'-220.1' Otz-Carb vein						
		breccia exhibiting inten-						
		selv altered fragment with						
		up to 15% disseminated py						
		visible in places.						
		220.1-222.9:Weakly altered andesite	121448	220,1'-222,9'	2.8'	Trace		
		exhibiting Otz-Carb vein-						
		lets @ low angle to core						
		axis. Also minor minor ep						
		veinlets.		· · · · · · · · · · · · · · · · · · ·	<u> </u>			
		226.0-227.0:Core broken along low angle			ļ			
		hem filled fractures.			<u> </u>			
		228.0:Badly broken core.			ļ			
		233.0:Patch pf wispy ep altera-	121449	232.5'-233.5'	1.0'	Trace		
		tion and 3-5% disseminated						
**************************************		py.	·		[
·····		245.0:Broken core.			ļ			
	251.0	END OF HOLE.				·		
. <u></u>					! 	ļ		
						ļ		
			······					
								·
		 			÷			
·				ا • •- •				
<u></u>		: 		1944 - Maria Maria and Angelanda and Angelanda and Angelanda and Angelanda and Angelanda and Angelanda and Ang 1945 - Angelanda and Angelanda and Angelanda and Angelanda and Angelanda and Angelanda and Angelanda and Angela		<u> </u>		
	 		, , ,					
TPG - ML								

COMPANY Winteroad Resources Ltd.

Ρ	R	n	P	F	R	T	Y	
1	IV.	U	1	_	N		1	

Township <u>Garrison</u>

)

	Started Finished		n		Bearing <u>N</u> Dip: <u>-60⁰</u>	HOLE N 10 ⁰ E _@ Collar	10. <u>H</u> V ;	<u>'-22</u>	
	Depth			SAMPLES			224	AYS	
FROM	то	DESCRIPTION	NO	FROM TO	WIDTH	1			}
0.0	42.0	CASING.				<u> </u>			
		CROING.	······	· · · · · · · · · · · · · · · · · · ·					1
						1 1			1
42.0	75.0	INTERLAYERED ALTERED ANDESITIC AND							1
		DIABASIC FLOWS.							
		-							
		Fine to medium grained dark gree	n						
		to green-grey flows exhibiting disorie							
		ted veinlets and irregular patches of							
		pale green ep alteration.	•						
		A few randomly oriented Calc vein	-						
		lets.							
		Occasional broken core, badly							
		broken and ground in places, commonly						•	
		broken along rusty fractures.							<u> </u>
	·								
	75.0	END OF HOLE. (Hole abandoned due to							
		broken casing).							
						 		·	
						<u> </u> -			
	··			+		 -			
<u></u>									
				1					
							·		
				+		<u> </u>			·

Drilled by Morisette D.D.

Core Size BQ

Logged by Robert Reukl

	•	COMPANYWinteroad_Resources_Ltd. TownshipGarrison		PROPERTY Claim No.	L.522595 &	596		
	Started	I of 5 Reference July 2, 1987 Location July 4, 1987 E, of HV 307.0 FEET Elevation	-22,)		Bearing <u>N</u> Dip: <u>-60</u> °	HOLE N 10 ⁰ E _@ Collar;	Ho. <u>HV-22A</u>	
M	TO	DESCRIPTION		SAMPLES			ASSAYS	
	10	DESCRIPTION	NO	FROM	TO WIDTH	Au(oz)		
0	42.0	CASING.						
		·						
.0	251.0	INTERLAYERED ALTERED ANDESITIC AND						
		BASALTIC FLOWS,						
. <u></u>		·						
		Irregular patches and unoriented		<u> </u>				
		veinlets of pale green ep alteration				ļ		
		common.						

~~~··	**			SAMPLES			ASSATS			
FROM	TO	DESCRIPTION	NO	FROM	TO WID	H Au(c	(Z)			
0.0	42.0	CASING.								
42.0	251.0	INTERLAYERED ALTERED ANDESITIC AND								
		BASALTIC FLOWS.								
		Irregular patches and unoriented								
		veinlets of pale green ep alteration								
		common.								
		Occasional Otz and Carb filled								
		fractures and veinlets.								
		Occasional broken core, often broken								
		along rusty fractures.								
								]		
		55.0-56.0, 57.2-58.5, 62.5:Core broken								
		along rusty fractures.						1		
		74.0-74.7:Irregular Otz filled breccia								
		exhibiting clots and wispy					·			
		stringers of ep and 5-7%						1		
		disseminated pv.						1		
		104.0-126.0:Zone of buff to reddish-				1		1		
		brown altered Otz-Carb								
		breccia veins and veinlets.								
		locally exhibiting up to 15%								
		disseminated py separated by						1		
		sections of altered andesite						1		
		exhibiting aboundant randomly								
		oriented Otz-Carb veinlets.								
And in case of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the loc			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	the second second second second second second second second second second second second second second second se				the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		

Drilled by Morisette D.D.

Core Size BO

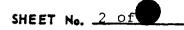
Logged by <u>Robert Reukl</u>

÷.

1 ł

						SHEET NO	<u>2 of</u>
		COMPANY		PROPERTY			
		Township					
				SAMPLES		1	ASSAYS
FROM	TO	DESCRIPTION	NO	I FROM TO	WIDTH	lAu(oz)	ļ
		104.0-106.0:0tz-Carb breccia vein	121450				4
				104.0'-106.0'			1
		@ 35 ⁰ to core axis exhibiting			2.01	0.022	
		strong red-brown alteration		1			
		and 3-5% disseminated pv.				1	1
		Vein is followed by Otz		1			
		filled fractures and vein-					
		lets exhibiting strong al-					
		teration and disseminated					1
		pv.					
		108.0-112.5:Altered andesite ex-	121453	108.01-112.51	4.0'	0.152	
		hibiting strong buff to					
		red-brown alteration along					
		margins and up to 3-5%					
		disseminated pv.	•				1
		112.5-114.5:Altered andesite with	121454	112.5'-114.5'	2.0'	0.040	I
		some irregular Otz veinlets			1		
		exhibiting buff alteration			l		
		along the margins. Dark red				1	
		irregular patch of hem					1
		alteration at 113.0' accom-					
		panied by some buff alter- I					l
		ation.				1	
		114.5-117.5:Strong, pervasive	121455	1114.5'-117.5'	3.0'	0.246	1
) - <u></u> ,		buff to red-brown altera-				1	
		tion associated with abun-				1	
\ <del></del>		dant Otz filled fractures		1		+ •	
		and veinlets. Otz breccia		1		1	ļ
		vein at 115.0'-115.6' @ 20 ⁰		1			j
		to core axis with 5-7%					1
		disseminated pv. Otz-Carb		<u> </u>		1	
·····		breccia vein @ 32 ⁰ to core				1	1
		axis at 117.0'.				1	1
		117.5-122.0:Altered andesite ex-	121456	117.5'-122.0'	4.5'	0.020	
		hibiting abundant randomly		1		1	
		oriented Otz-Carb veinlets.		1			· · ·
		1		i :		· ·	

1


1

4

.

ŧ

t



1 1 _____i

----

----

1

i _____i 

_____

1

____ 1

____ ____ 1 |

1

____

1

i 

1

1 ł :

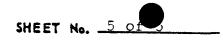
SHEET No. 3 Of 5

COMPANY _____

PROPERTY _____

Township _____

			SAMPLES	ASSAYS				
FROM TO	DESCRIPTION	NO	FROM TO	I WIDTH	Au(oz)	<u>,                                     </u>	1	1
	122.0-126.0:Numerous Otz veinlets	121457	122.0'-126.0'	14.0'	0.245		i	1
	oriented @ 45-55 ⁰ to core		126.0'-128.0'				1	1
	axis exhibiting dissemina-						1	1
	ted py and red-brown alter-						1	1
	ation along margins. Otz-			1	1		1	1
	Carb breccia vein at 124.3'				ļ		ļ	1
	-124.9' exhibiting strong							
	red-brown alteration of the						1	
	fragments and 2-3% dissemi-						1	
	nated py. Specks of VISIBLE						1	1
	GOLD at 124.8'.						1	1
	141.0-143.0:Patch of pale green ep al-							Ĭ
	teration.							1
	174.4:Narrow (0.1') band exhibi-							
	ting wispy layers of ep							
	alteration, thin hematized			I			i	Ī
	bands, silicified with 5%			1				
	disseminated py				i .			
	183.0:0.15' wide Otz-Carb filled							
	breccia, unaltered, minor						1	
	pv.		ł				1	1
	205.3:0.2' wide Otz-Carb filled		1	1			1	Ī
	vein breccia @ 71 ⁰ to core							1
	axis, ep stringers, 1-2%						1	1
	disseminated pv, no alter-			1			1	1
	ation of the fragments.			1				Ţ
	207.0:Core broken along irregular!			ļ				
	fractures.			1			I	Ī
			1	Į				
	Lower contact @ 39 ⁰ to core axis.			ļ			1	Ţ
				l			ļ	
								1
225.6 229	7 SYENITE INTRUSIVE.				I		1	1
								1
	Fine to medium grained, brownish-						I	i
	green syenite intrusive speckled with				1			
	dark green amphibole up to 0.05" and			i ,				
	small irregular pink feldspar fragments.			1				


	$\bullet$						SHEET I	No. <u>4</u> (	of 5	
		COMPANY		PROPERT	Y	<u> </u>				)
		Township		Claim No.						
				SAMPLE	5		1	AS	SAYS	
FROM	TO	DESCRIPTION	NO	I FROM	TO	I WIDTH	I	1	1	1
225.6	229.7	SYENITE INTRUSIVE (continued)		1		1		1	1	
				1	فنداب محمله البريج محمد	1			<u> </u>	
		Finely disseminated specks of		<u> </u>			<u> </u>	1	4	1
	······	white Carb throughout along with minor		1		<u> </u>	ļ	 	<u> </u>	<u></u>
		(<1%) fine grained disseminated py.		1		ļ	 +	ļ	ļ	1
		Randomly oriented Otz-Carb vein-		1		L		ļ	1	<u> </u>
		lets present.					ļ	Ļ	<u> </u>	<u> </u>
		Contact exhibit fine grained mar-		 		 	ļ	ļ	1	<u> </u>
	·	gins.		1		) 	ļ	1	<u> </u>	<u> </u>
		Lower contact @ 40° to core axis.			······································	ļ	ļ	ļ		
				4				ļ	<u> </u>	!
								ļ	<u> </u>	
229.7	307.0	INTERLAYERED ALTERED ANDESITIC AND	·				1	ļ		<u> </u>
		DIABASIC FLOWS.				Į		ļ	<u></u>	
			·			ļ		ļ	<u> </u>	
	_	Same as previously described from				ļ		ļ		<u> </u>
		42.0' to 225.6'.				<u> </u>	ļ	ļ	<u> </u>	
						ļ	! 	<u> </u>	<u> </u>	<u> </u>
		236.0:Broken core.					ļ	ļ	ļ	
		263.0-264.0:Irregular patch of yellow				Ļ	ļ		<u> </u>	 
		to pale green ep alteration		+		ļ			1	
		accompanied by unoriented	·····	<u>}</u>		<u>}</u>	·	<u> </u>	1	<u>}</u>
		Otz-Carb veinlets.		· · · · · · · · · · · · · · · · · · ·		ļ 			<u> </u>	<u> </u>
		265.0-265.5:Zone of irregular patches		<u> </u>			 		<u> </u>	
		of yellow-green (ep?) al-		) 		) •	l		<u> </u>	<u> </u>
		teration accompanied by		1				ļ 	 	
		dark red hematization.		<u> </u>		 				<u> </u>
		267.5-268.0:Hematization visible adja-	·	 		/ 			 	•
·		cent margins of ep filled		+		{ 	·		! •	<u> </u>
		fractures in silicified				• • • • • • • • • • • • • • • • •			! 	
		andesite.		ļ				 	 	<u> </u>
		269.0-269.5:Narrow bands of hem altera-		1					<u> </u>	• •
		tion and disseminated py in		<u> </u>						<u> </u>
		silicified andesite.		<u> </u>						 
		299.0-300.5:Irregular patches of green								<u></u>
		ep alteration accompanied								
		by hematization in clots		1						
		and fractures and irregular	~							
		<u>Otz fillings, minor disse-</u>		i						

PC - NL

1

minated pv.





#### COMPANY _____

PROPERTY _____

Township _____

FROM	то	DESCRIPTION	SAMPLES         ASSAYS           NO         FROM         TO         WIDTH         Au(oz)!         I						
FROM			NO	I FROM	TO I WIDTH	Au(oz)	11	I	1
	307.01	END OF HOLE.	1		1		1	1	
		· -							
97.0	137.0	Sludge.	121497	97.0'-107.	0 10.0	10.060		-	
	1	•····	121498	107.0 - 117.	01 10.0	10.098	1	1	
			121499	117.0'-127. 127.0'-137.	01 110.0	10.144			1
			121500	127.0'-137.	0 10.0	10.022			ļ
		-			1				
			1					ĺ	1
								1	1
				e					
									i
									I
		•	. •					T	1
			1		1		1	I	i
<u> </u>				1	1			1	1
			1				1	1	1
······································					1		1	İ	1
				1			1	1	1
					······				1
			1	]			1	•	1
				1			1		1
				*			+	+	1
<u> </u>			1	<u>;</u>			t		
			1	1			<u>†</u>	<u> </u>	1
			i			1	;		
			1	¦			<u>+</u>	;	1
			1	•••••••••••••••••••••••••••••••••••••••		1	<u>+</u>	<u>.</u>	1
	i			•			†	i	İ
	i		<u>;</u>		1		<u> </u>	i	<u> </u>
			1			1	1		
			<u> </u>			1	t	<u> </u>	1
			]		······		·		i
			1	 		1	1		·
			<u> </u>	<del> </del>					
	1			,		1	· · · · · · · · · · · · · · · · · · ·		
		***							
						•			
	 1					•	· · · · · · · · · · · · · · · · · · ·		
PC . NL									

		COMPANY _Winteroad Resources Ltd	)	PROPERTY Claim No	22595 & 5	96				
	SHEET No Started Finished Depth	1 of 2         Reference           July 8, 1987         Location           July 9, 1987	Bearing <u>North</u> Dip: <u>-50°</u> @ Collar; <u>-47°</u> @_187.0'							
				SAMPLES			ASSAYS			
FROM	то	DESCRIPTION	NO	FROM TO	WIDTH	Au(oz)				
0.0	112.0	CASING.								
					· ·					
112.0	115.0	Boulders, ground and broken core.								
115.0	188.0	ALTERED ANDESITIC FLOW								
							·			
		Fine grained grey-green altered andesitic								
		flow, magnetic. Commonly exhibiting disoriented:								
		veinlets and scattered patches of pale green								
		ep alteration.								
		Occasional Otz and Calc veinlets sometimes								
		accompanied by hem staining along margins.					·			
		118.0-152.5:Zone of brittle deformation and	121475	118.0'-123.0'	5.0'	Trace	· · · · · · · · · · · · · · · · · · ·			
		alteration. Variably deformed and	121476	123.0'-128.0'	3.0'	Trace				
		altered andesite exhibiting modera-	121477	128.0'-131.0'	5.0'	Trace				
		te to intense brecciation accompa-	121478	131.0'-132.0'	1.0'	Trace				
		nied by alteration ranging from	121479	132.0'-137.0'	5.0'	Trace				
		pale buff to shades of green to	121480	137.0'-142.0'	5.0'	Trace				
		purple. Variable pervasive silici-	121481	142.0'-147.0'	5.0'	Trace				
		fication with some sections exhibi-	121482	147.0'-152.5'	5.5'	Trace				
		ting abundant, grey, randomly								
		oriented Otz veinlets and occasion-								
		al Calc veinlets. Occasional								
		patches of deep red hem alteration,					·			
		up to 15% disseminated pv locally								

Drilled by __Morisette D.D.

visible.

Logged by <u>Robert Reukl</u>

-

+

	$\bullet$				SHEET No2.01					
		COMPANY		PROPERTY .					<b></b>	
		Township	Claim No.							
FROM	TO	DESCRIPTION		SAMPLES		4		AYS		
			NO	FROM	TD WIDTH	Au(oz)		, ,	<u> </u>	
		118.0-152.5: (continued). The alteration exhi-	1	 						
		bits a discontinuous banded appea-								
	<u></u>	rance, in places indicative of	]			<u> </u>			<u></u>	
		ductile deformation (shearing).	, 	1						
	<u></u>	Locally magnetic in less altered		<u> </u>				. <u></u>		
	<u> </u>	sections. Occasional rusty fractu- res.	1	1		+			<u> </u>	
		118.6.120.5:Core broken along rusty		1		+	1		÷	
		fractures.							+	
		131.0-132.0:Irregular Otz-Carb filled	1			+				
	<u></u>	breccia with 3-5% disseminated py		1			†	, <del></del>		
		and a few possible specks of gold.				1			1	
		132.3:Core broken at yuggy, earthy (red-		1				• <del>••••••••••••••••••••••••••••••••••••</del>		
		brown) fracture.				1			1	
		148.5:Irregular Bands of magnetite.					1		1	
		149.5:0.5" chloritic fault gouge @ 510		1		1	1 1		1	
		to core axis.	1	1			1		1	
		176.0-177.6:0.2" Otz-Carb filled veinlet sub-		1	1	1			1	
		parallel to core axis and offset							1	
		by fracturing, exhibits hem lined		1	1	1	1		1	
		margins.			1	1	1 1		1	
		180.0-181.8:Patch of pale green ep alteration.			I		1			
					1	ł				
							1			
	187.0	END OF HOLE.				i				
					1					
117.0	187.0	SLUDGE.	134501		'.0' 10.0'				1	
		 		127.0'-137						
			134503	137.0'-147	.0' 10.0'	Trace				
			_134504	147.0'-157		Trace	1	[		
			134505	157.0'-167		Trace			   	
			134506	167.0'-177		Trace	<u> </u>			
			134507	<u>  177.0'-187</u>	01 10.01	Trace	!!	I		
				1	· · · · · · · · · · · · · · · · · · ·	!				
				1						
		۱ ۱		F	; 	1		····		
		1			+	:				

Ţ.

.

		COMPANY Winteroad Resources Ltd Township Garrison	•	PROPERTY			•				
		<u>July 9, 1987</u> <u>July 10, 1987</u> <u>Reference</u> <u>Location</u> <u>See Plan</u>	HOLE No. <u>HV-26</u> <u>Plan</u> Bearing North Dip: <u>-60°</u> @ Collar; <u>-57.5°</u> @ 195.0'								
FROM	то	DESCRIPTION		SAMPLES			ASSAYS				
			NO	FROM TO	WIDTH	Au(oz)					
0.0	97.0	CASING.									
		89.5-94.0:Boulders.	<u> </u>								
		94.0-97.0;Bedrock.						+			
97.0	195.0	INTERLAYERED ALTERED ANDESITIC AND DIABASIC		-							
97.0	195.0	FLOWS.									
		<u>r 10005</u> .		· • • • • • • • • • • • • • • • • • • •							
	<u></u>	Fine to medium grained, green to grev-						+			
		green flows, magnetic, Commonly exhibiting									
		disoriented veinlets and irregular patches of			••••						
		pale green ep alteration.						1			
		Randomly oriented Calc filled fractures					· · ·				
		and veinlets.									
		Occasional broken core, badly broken and									
		ground in places.		· ·							
		110.6-112.2: Zone of brittle deformation, ducti-	121483	110.5'-112.5'	2.0'	Trace					
		le shearing and alteration, Strong-									
		ly sheared and brecciated andesite									
		accompanied by alteration ranging				<b> </b>					
		from pale buff to shades of green.				<u> </u>		1			
		Deformation is Otz filled with									
		occasional Calc veinlets. 5-7% py									
		in scattered clots. Broken core at			- <u> </u>			<u> </u>			
		111.9'.				·		<b> </b>			
						<u> </u>					
					1	<u> </u>		!			

Drilled by Morisette D.D.

Core Size _____BO_____

Logged by <u>Robert Reukl</u>

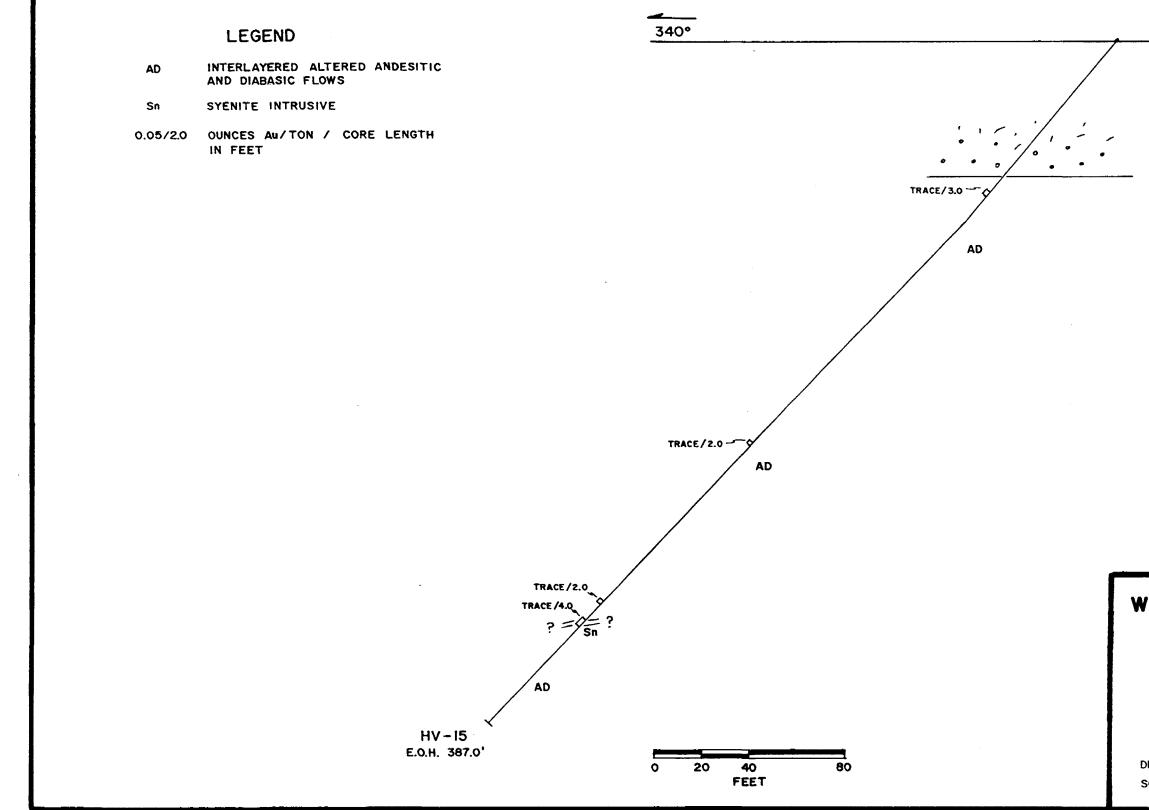
***

#### COMPANY _____

Township _____

PROPERTY _____

Claim No. _____


FROM TO	70	DESCRIPTION		ASSAYS						
	10	DESCRIPTION	NO	FROM	TO	I WIDTH	Au(oz)		1	1
		127.1-128.8:Zone of brittle deformation and	121484	127.0'-1	29.5'	2.5'	Trace		1	1
		alteration. Moderately fractured								1
		to brecciated and exhibiting								1
		alteration similar to that descri-				Ī			ł	1
		bed from 110.6'-112.2' with the							1	1
		alteration decreasing toward the								1
		end of section. Grev Otz filling								1
		around brecciated zone at 127.5'							1	1
		and trace py.							1	1
		129.3:Irregular 0.3' Otz filling, 2-3%		1						1
	-	scattered clots of pv.		}		1	]			1
		143.0-145.0:Fault zone. Calc filled fractu-	· ·			1.2				_ <u>_</u>
		ring and brecciation decreasing				1	1		·	<u> </u>
		toward margins. 0.2" fault gouge				1			[	1
		at 143.6', 0.1' fault gouge @ 45°	•	Ì					1	
		to core axis at 143.8'. Broken				1			ĺ	1
		core at 144.2'.		1		1			]	1
		146.0-169.7:Zone of brittle deformation and	121485	146.0'-1	51.0'	1 5.0'	Trace			
		alteration. Variably deformed and	121486	151.0'-1	56.0'	5.0'	Trace			1
		altered andesite, moderately frac-	121487	156.0'-1	61.0'	5.0'	Trace			
		tured to brecciated accompanied	121488	161.0'-1	66.0'	5.0'	Trace			1
		by alteration ranging in colour	121489	166.0'-1	69.7'		Trace			
		from pale buff to shades of green		1		1	1			1
		Variable pervasive silicification								1
		with some sections exhibiting				1				1
		randomly oriented Otz veinlets				1				T
		and Otz filled breccia, Occasional				1				1
		Calc filled fractures and vein-						1		1
		lets. Rare patches of deep red								1
		hem alteration. 3-5% pv in clots								1
		and disseminations locally visi-				1				1
		ble, Locally magnetic in less				1	1			1
		altered sections. Core broken				Í				1
		at 165.5'.						1		1
		169.8:0.25" fault gouge @ 53 ⁰ to core					1			1
		axis.					1			
		170.0-174.8:Moderately fractured to breccia-				1				
	,	ted, Calc filled, fracturing				1 :				
		commonly @ low angle to core axis;								

	٢				SHEET	No. <u>3 01</u>			
		COMPANY		PROPERTY			<b></b>		
		Township		Claim No.					
FROM	то	DESCRIPTION	SAMPLES			ASSAYS			
FROM	10		NO	FROM TO	WIDTH	1	1		
		170.0-174.8: (continued). Core badly broken in							
		places along these low angle Calc							
		fractures and breccia fillings.		<u></u>					
		175.5:0.3' silicified breccia with		1		······································			
·····		fragments exhibiting pale buff							
		to grey and hematitic (dark red)							
		alteration. 181.8:Irregular (pinching) pink-white							
		Otz-Calc filling, small chl stringers.							
		182.0:Broken core exhibiting small Otz					t		
		filling with clots of pv.							
		189.2,189.6:Narrow hem bands 26 ^o and 38 ^o to					<u>-</u>		
		core axis, banded by Otz-Calc_in		1					
		disseminated clots and disconti-	•						
		nuous bands.							
				1					
	195.0	END OF HOLE.	<u> </u>						
<u></u>				1			1		
				1					
97.0	187.0	SLUDGE.	134508	97.0'-107.0'	10.0' Trace	1			
			134509	107.0'-117.0'	10.01 0.00		1		
			134510	117.0'-127.0'	10.0'  Trac		1		
			134511	127.0'-137.0'	10.0' Trac				
			134512	137.0'-147.0'	10.0'  Trac				
			134513	147.0'-157.0'	10.0' Trac				
				157.0'-167.0'	10.0' Trac		1		
				167.0'-177.0'	10.0' Trac		1		
			134516	177.0'-187.0'	10.0' Trac		1		
							1		
					1 1				
	1						1		
							1		
						1 1	1		
				1					
	1	······································		i	1				
					4 :				
	ļ			1 					
	I			!					

# APPENDIX II

.

Diamond Drill Sections



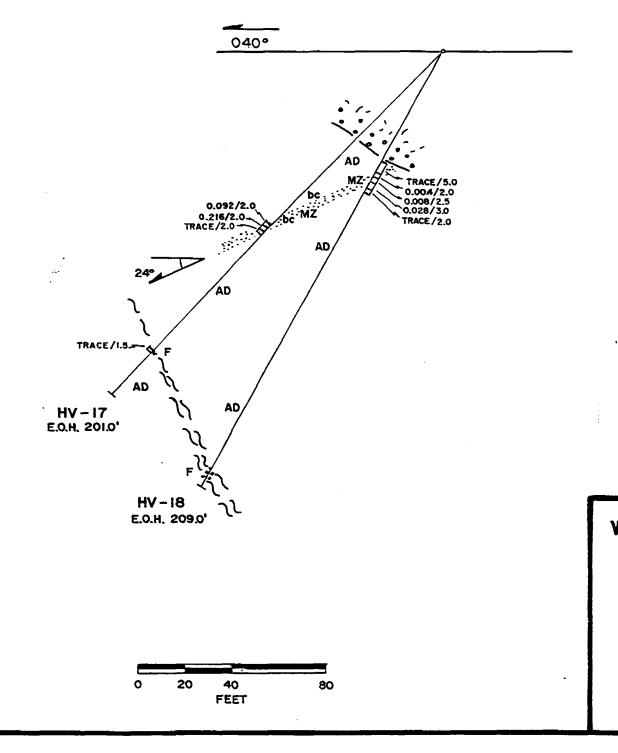
# WINTEROAD RESOURCES LTD.

GARRISON TWP GOLD PROPERTY

VERTICAL SECTION THROUGH HV - 15 LOOKING EAST AZIMUTH: 340°

DRAWN BY R. REUKL DRAFTED BY M. Fourier SCALE : I" = 40' DATE : AUGUST 1987

## LEGEND


- AD INTERLAYERED ALTERED ANDESITIC AND DIABASIC FLOWS
- MZ
   QUARTZ-CARBONATE ALTÉRED

   MINERALIZED ZONE

F, 2 FAULT ZONE

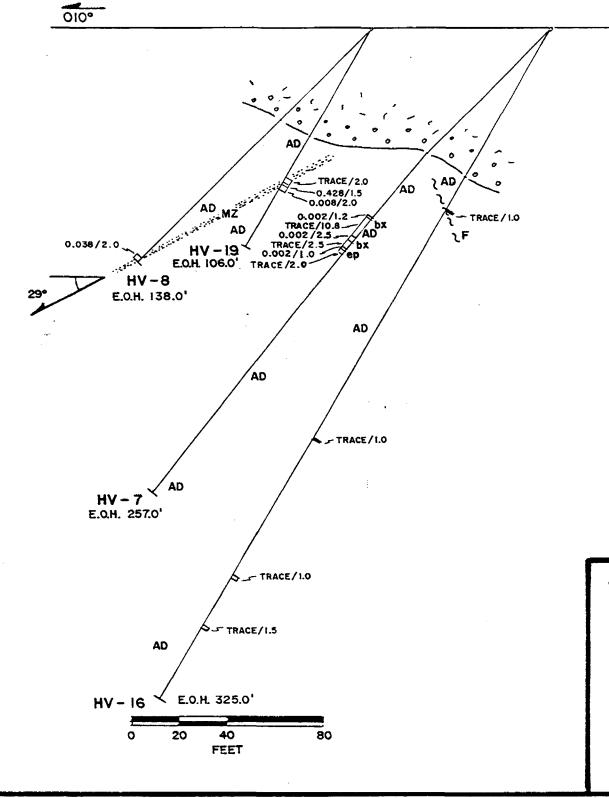
bc BROKEN CORE

0.216/2.0 OUNCES AU/TON / CORE LENGTH IN FEET



# WINTEROAD RESOURCES LTD.

GARRISON TWP GOLD PROPERTY


VERTICAL SECTION THROUGH HV-17 & 18 LOOKING SOUTHEAST AZIMUTH: 040°

DRAWN BY: R. REUKL DRAFTED BY: M. Formular SCALE: 1" = 40' DATE: AUGUST 1987

### LEGEND AD INTERLAYERED ALTERED ANDESITIC AND DIABASIC FLOWS F, ², FAULT ZONE

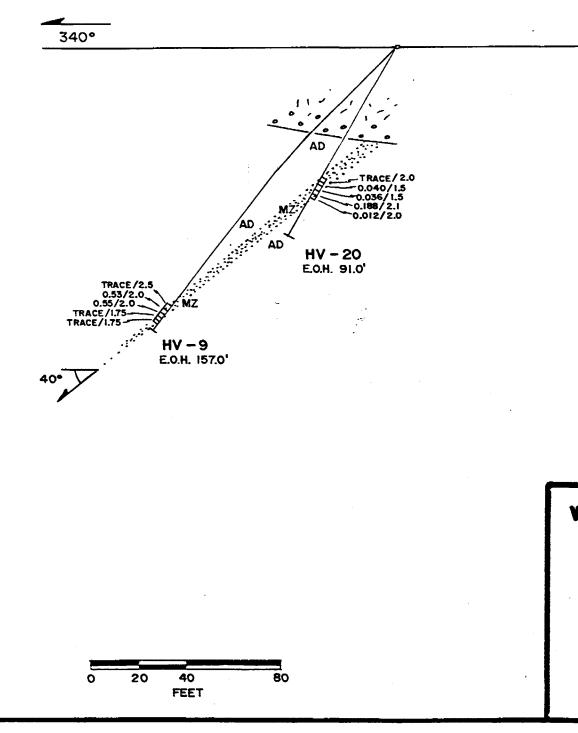
- bx BRECCIA
- ep EPIDOTE ALTERATION
- MZ
   QUARTZ CARBONATE ALTERED

   MINERALIZED ZONE
   X
- 0.428/1.5 OUNCES AU / TON / CORE LENGTH IN FEET



## WINTEROAD RESOURCES LTD.

GARRISON TWP GOLD PROPERTY


VERTICAL SECTION THROUGH HV-7,8,16 & 19 LOOKING EAST AZIMUTH: 010°

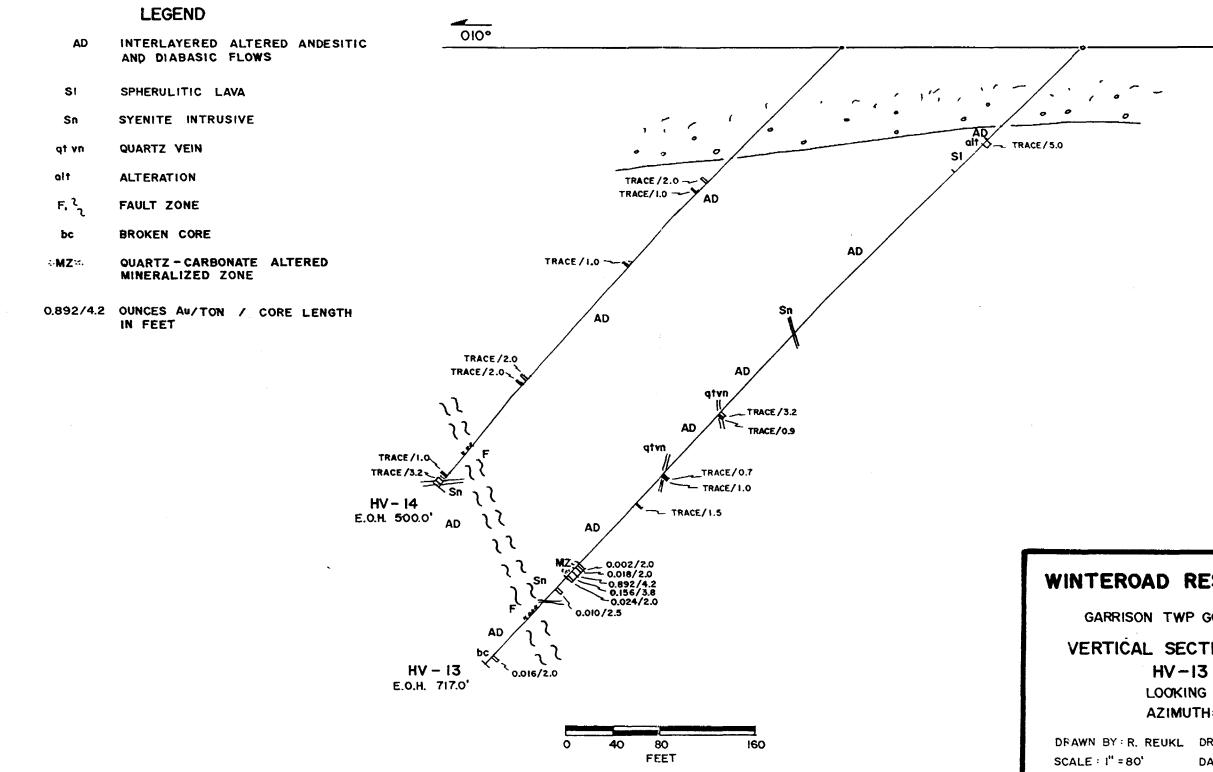
DRAWN BY: R. REUKL DRAFTED BY: M. Fournier SCALE: 1" = 40' DATE: AUGUST 1987

#### LEGEND

AD	INTE	RLAYERED	ALTERED	ANDESITIC
	AND	DIABASIC	FLOWS	

- MZM QUART-CARBONATE ALTERED MINERALIZED ZONE
- 0.55/2.0 OUNCES AU/TON / CORE LENGTH IN FEET




# WINTEROAD RESOURCES LTD.

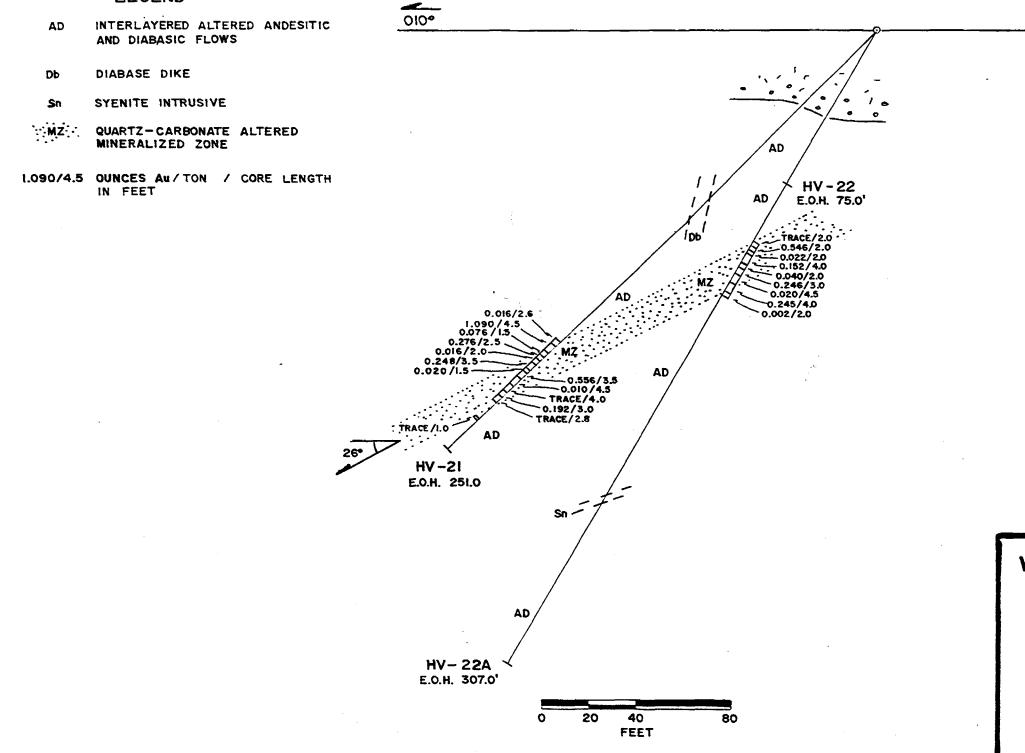
GARRISON TWP GOLD PROPERTY

VERTICAL SECTION THROUGH HV-9820

> LOOKING EAST AZIMUTH: 340°

DRAWN BY: R REUKL DRAFTED BY: M. Formation SCALE: I" = 40' DATE: AUGUST 1987




## WINTEROAD RESOURCES LTD.

GARRISON TWP GOLD PROPERTY

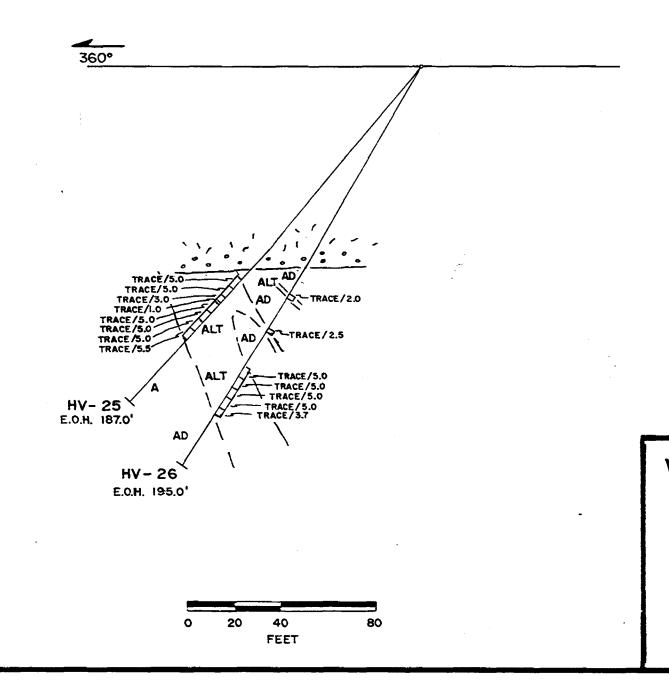
VERTICAL SECTION THROUGH HV-13 & 14 LOOKING EAST AZIMUTH: 010°

DRAWN BY : R. REUKL DRAFTED BY : M. Formier DATE : AUGUST 1987





## WINTEROAD RESOURCES LTD.


GARRISON TWP GOLD PROPERTY

VERTICAL SECTION THROUGH HV-21, 22 & 22A LOOKING EAST AZIMUTH:010°

DRAWN BY : R. REUKL DRAFTED BY : M. Fournier SCALE : 1" = 40' DATE AUGUST 1987

#### LEGEND

- AD INTERLAYERED ALTERED ANDESITIC AND DIABASIC FLOWS
- A ALTERED ANDESITIC FLOW
- ALT VARIABLY DEFORMED ALTERED ANDESITE, MINERALIZED
- 0.05/5.0 OUNCES AU/TON / CORE LENGTH IN FEET



## WINTEROAD RESOURCES LTD.

GARRISON TWP GOLD PROPERTY

VERTICAL SECTION THROUGH HV-25 & 26

> LOOKING EAST AZIMUTH: 360°

DRAWN BY: R. REUKL DRAFTED BY: ۲۸. مستند SCALE: 1" = 40' DATE: AUGUST 1987

#### APPENDIX III

#### Assay Certificates

	E	Bell - WHITE ANALY	TICAL LABORATOR	ES LTD.
	F.	O. BOX 187, HAILEYB	URY, ONTARIO TEL:	672-3107
•		Certificate of	f Analysis	
NO.	2255		DATE:	June 18, 1987
SAMPL	E(S) OF:	Core (5)	RECEIVED:	June 1987
SAMPL	E(S) FROM:	Winteroad Resources	Ltd.	

...

Sample	No.
1214	וח
16.11	2
	3
	4

5

,

<u>0z.</u>	Gold
τ,	

.

.

.

•	,	ace
T	r	ace
T	r	ace
T	r	ace
T	r	ace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

.

. •

÷ .

BELL-WHITE ANALYTICAL LABORATORIES LTD. , J 195

23, 1987
1987

.

Sample No.
121401
2
3
4
5
5

٠

•

Gold ppb	
••	
40	
11	
75	
14	
228	

. .

•

BELL-WHITE ANALYTICAL LABORATORIES LTD.

and the second

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH MERICAL TITH DEEDE THE POLE HICALLY STATED DTHERMOST COT AND SILVER VALUES REPORTED ON THESE SHELTS HA ENOT BEEN ADDISTED TO COMMEN-SATE FOR LOSSES AND MANS NHARENT IN THE FIRE ADDAY PHOLESS

	Bell - White ANALYTIC	CAL LABORATOR	IES LTD.
	P.O. BOX 187, HAILEYBURY	r. ONTARIO TEL:	672-3107
•	Certificate of I	Analysis	
NO. 2426		DATE:	July 10, 1987
SAMPLE(S) OF:	Core (25)	RECEIVED:	July 1987
SAMPLE(S) FROM	: Winteroad Resources Lt	d.	

Sample No.	Oz. Gold
121406	Trace
7	Trace
8	Trace
8 9	Trace
121410	Trace
1.	Trace
2	Trace
3	Trace
4	Trace
5	Trace
2 3 4 5 6 7 8 9	Trace
7	Trace
8	Trace
	Trace
121420	Trace
1	Trace
3	0.215**
4	0.004
3 4 5 6 7 8 9	0.008
6	0.028 - 0.024
7	Trace
8	Trace
-	Trace
121430	0.428**
1	0.008
· · ·	

in the

.

** Checked

N ACCOUTANUE OF THE CONGRESTABLISHED NORTH MARRICAN O COMMINSCENT & SIGNET HEALLY STATED OTHERWISE DOLD AND SIGHT VALUES DEPORTED ON THESE SHELTS HALE NOT ELEN ADUSTED TO COMPEN-SATE FOR LOSSES AND CANE CHIERENT IN THE FIRE ASSAY PHOLESS



	BOX 187. HAILEYBURY, ONTA		
	Certificate of Analy	leie	
NO. 2422		DATE:	July 10, 1987
SAMPLE(S) OF:	Core (5)	RECEIVED:	July 1987
SAMPLE(S) FROM:	Winteroad Resources Ltd.		

Sample No.
121432
3
4
5
6

** Checked

.

0	Z	G	0	1	d	
		 		-		

.

Tr	ace	
0.	040	
0.	036	
0.	184	**
0.	012	

N ACCCRICANSE A THE LONG ESTABLISHED NORTH AMERICAN STOTEMENT TO SEPERATORNORTH THERE SHOULD BE ADD STOLEN KALLES HERDATED ON THESE SHEETS A E NOT BEEN ADD STID TO COMPEN-BATE FOR LOSSES AND DAMS CHERENT IN THE FIRE ASSAT FROZESS BELL-WHITE ANALYTICAL LABORATORIES LTD.

in the second

.*

	Bell-White analyt	ICAL LABORATORI	ES LTD.
	P.O. BOX 187. HAILEYBU	RY, ONTARIO TEL:	672-3107
	Certificate of	Analysis	· . ·
NO. 2423		DATE:	July 10, 1987
SAMPLE(S) OF:	Sludge (4)	RECEIVED:	July 1987
SAMPLE(S) FROM:	Winteroad Resources L	td.	
SAMPLE(S) OF:	-	RECEIVED:	•

Sample No.	Oz. Gold
121497	0.060
8	0.098**
9	0.144**
121500	0.022

÷

•

** Checked

.

) Z .	GOID
_	
0.	060
0.	098**
0.	144**
0.	

.

N ACCOUTANCE WITH LONG-ESTABLISHED NORTH ANER CAN CONTON ONLESS TO DECL CALLY STATED DTHERW SHI DOLD AND SHOPP VALIES HIPOTED ON THESE UNDER THE ENCE DEEN ACLIENT IN THE FIRE ASEAN PROCESS

BELL-WHITE ANALYTICAL LABORATORIES LTD.

¥ .....

B	Bell-White ANALYTICAL LA	BORATORI	ES LTD.
P.	O. BOX 187. HAILEYBURY, ONTAI	RIO TEL:	672-3107
	Certificate of Analy	sis	
NO. 2437		DATE:	July 13, 1987
SAMPLE(S) OF:	Core (2)	RECEIVED:	July 1987
SAMPLE(S) FROM;	Winteroad Resources Ltd.		

Sample No.	Cu ppm	Zn ppm
121416	240	29
121421	56	9

j i

BELL-WHITE ANALYTICAL LABORATORIES LTD.

.

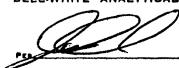
N ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM UNLESS IT IS SPECIFICALLY STATED STHERW SE GOLD AND SILVER VALUES REPORTED ON THESE SHELTS HAVE NOT BEEN ADJUSTED TO COMPEN-BATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS

. •

B	Bell-White analytical laboratories LTD.		
P.	O. BOX 187. HAILEYBURY. ONTA	RIO TEL: 6	72-3107
•	Certificate of Analy	laia	
NO 2572		DATE:	July 24, 1987
SAMPLE(S) OF:	Core (25)	RECEIVED:	July 1987
SAMPLE(S) FROM:	Winteroad Resources Ltd.		· · ·

Sample No.	Oz. Gold
121422 121437	Trace 0.016
8	1,150**
9	0.076
121440	0.298**
1	0.016
2 .	0.243**
3	0.020
4	0.566**
5	0.010
6	Trace
2 3 4 5 6 7 8 9	0.198**
8	Trace
-	Trace
121450	Trace
1	0.557**
2	0.022
2 3 4 5	0.151** 0.040
<b>4</b>	0.246**
5	0.020
6 7	0.245**
	0.002*
8 9	Trace
7	11 406

** Checked .
* Estimated


•

N ACCONTANCE WITH LONG-ESTABLISHED NORTH AMERITAN COSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE TOLD AND SILVER VALUES REPORTED ON THESE WHETCH HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND SAINE INHERENT IN THE FIRE ASSAY PROCESS

.

a a second a second a second a second a second a second a second a second a second a second a second a second a

.



BELL-WHITE ANALYTICAL LABORATORIES LTD.

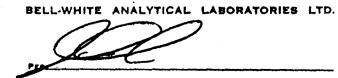
.

•

	Bell-WHITE ANALYTI	CAL LABORATOR	IES LTD.
	P.O. BOX 187, HAILEYBUR	Y. ONTARIO TEL:	672-3107
	Certificate of 2	Analysis	
NO. 2599		DATE:	July 28, 1987
SAMPLE(S) OF:	Sludge (16)	RECEIVED:	July 1987
SAMPLE(S) FROM:	Winteroad Resources	Ltd.	

.

Sample No.	Oz. Gold
134501	Trace
2	. Trace
3 .	Trace
4 .	Trace
5	Trace
6	Trace
7	Trace
8	Trace
9	0,004
134510	Trace
1	Trace
2	Trace
3	Trace
4	Trace
	Trace
5 · · · · · · · · · · · · · · · · · · ·	Trace


<u>.</u>

N ACCONDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CLUTCH UNLESS IT IS SPECFICALLY STATED OTHERWISE JOLD AND SHUTER VALUES REPORTED ON THERE SHEETS HAVE NOT BLEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PHOCESS

•

..

----



.

B	ELL WHITE ANALYT	ICAL LABORATOR	IES LTD.				
P.	O. BOX 187, HAILEYBU	RY, ONTARIO TEL:	672-3107				
Certificate of Analysis							
NO. 2823		DATE:	August 18, 1987				
SAMPLE(S) OF:	Core (22)	RECEIVED:	August 1987				
SAMPLE(S) FROM:	Winteroad Resource	s Inc.					

Sample No.	Oz. Gold
121475	Trace
6	Trace
7	Trace
8	Trace
9	Trace
121480	Trace
1	Trace
2 3	Irace
	Trace
4 5 6	Trace
5	Trace
6	Trace
7	Trace
8	Trace
9	Trace
121490	0.092
1	Trace
2	Trace
3	0.886** 0.163**
2 3 4 5 6	0.010
5 K	0.016
v	

** Checked

,

.

N ACCORDANCE WITH LONG ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

----

2



*

,

			Bell-White analytical laboratories LTD.						
		7	P.O. BOX 187.	HAILEYBURY, O	NTARIO TEL:	672-3107			
•	Oertificate of Analysis								
Ю		2942			DATE:	August	28, 1987		
SA	MPLE(S	) OF:	Core (3)		RECEIVED:	August	1987		
SA	MPLE(S	FROM:	Mr. John Mos	es, Winteroad	Resources Ltd.	• .			

Sample No.	Oz. Gold
134517	0.002*
8	0.018
9	0.024
	•

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

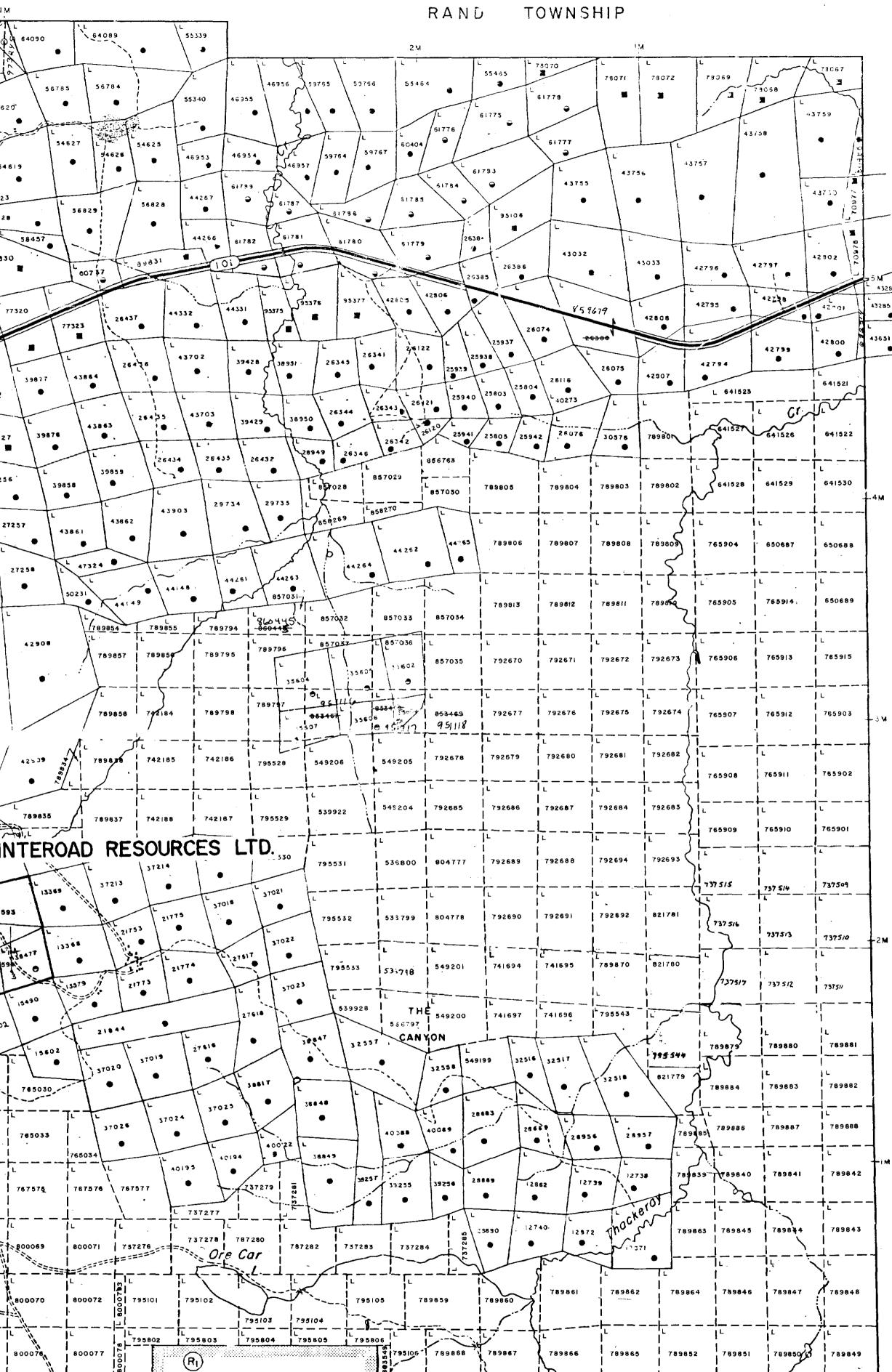
IN ACCOUNTS WITH LONGLESTABLIGHED NORTH AMERICAN TOH DULL T'S SPECIFICALLY STATED DIFERM A VILLAND DIVIEN VALUES REPORTED ON THESE SHETS HALE NOT E EN ADUSTED TO COMPEN-SATE FOR LOSSES AND DA NY INFERENT IN THE FIRE ASSAY PROCESS

#63. 5070



32D05NW0150 63.5070 GARRISON

OM 87-6-L-100


900

THIS SUBMITTAL CONSISTED OF VARIOUS REPORTS, SOME OF WHICH HAVE BEEN CULLED FROM THIS FILE. THE CULLED MATERIAL HAD BEEN PREVIOUSLY SUBMITTED UNDER THE FOLLOWING RECORD SERIES (THE DOCUMENTS CAN BE VIEWED IN THESE SERIES):

D.D log, assays + section	see TORONTO file
For DDH HV-23, HV-24	Garrison TWP DDR #34
On Garrison Gold Property,	R.O.W. #116 for 1988
Winteroad Resources Ltd.,	
Robert J. Reukl, 1987	
9	
••••••••••••••••••••••••••••••••••••••	

88	AREAS WITHDRAWN FROM DISPOSITION		i de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de l		and the second second second second second second second second second second second second second second secon	u 	مەنبەر كۆرى بەر مەنبەر مەنبەر قەرىپى قەرىپى 		
203-3	M.R.O. – MINING RIGHTS ONLY S.R.O. – SURFACE RIGHTS ONLY M.+ S. – MINING AND SURFACE RIGHTS				ABI	τιβι ι	NDIAN	RESE VE	No. 70
Ð	Description Order No. Date Disposition File (a) Sec. 36/ R.S.O./BO. NRW:63/83 2/12/83 S.R.B.M.R.	12 M -	Tonoger		1 2223 2785 ⊗	2 M L L L 784 56224 56	52783 L 5224 56276	L L 58663	IM 158664
	- Applie. under Publie hands Art - Proposed hydro line.		55334		1 <b>a</b> F		⊗ (3) 1 7827 	66524	1 66523 1 66523 1 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 000000 1 00000 1  000000 1 000000 1 000000000 1 00000000 1 0000000000
			(/55337    •	55338 5	5318	~ \ ⁻	5314		621 • • • • • • • • • • • • • • • • • • •
			997943  \ 800493-  \ 	997948 800494-	35319	℃ (153)6 ) •	53315 5464	[- ] <i>]</i>	546 546 11 11 11 11 11 11 11 11 11 11 11 11 11
			//		- L 	84978			69830
		· 13M	11 11 11 11 11 11 11 11 11 11	L 997946 L 900498.		B	-/. \		
			44 17 17 17 17 17 17 1997940 17 10				348.72	84871    8750	0 77049
			L 997939 <del>800486</del>	1 997944		99795L	10823	B + 373 L 17324 CC	21 77 322 DIIIQS
	•		L 643677	1	B F TWAN 423	37 Q X	L		326 L 27256
		14 M-	B97792	42930 1997 L 1976 L 1977 L	Lakes		853171	853172	259 j 27240 272
<u>م:</u>			L 643681	643682	4293 L 42918	8 8531	1 3936	39363	L 2
T W	· · · · · · · · · · · · · · · · · · ·	а Т	L 643683	1 L 643684	• / •	42919		42905	42907
NOS		TOWNSHIP	L TURI 643685	L 7 <i>er</i> 1 6436866 2.	933 42917 •	42916	42915		•
78512		цели. С	714826	736481	2932 12912	42913	L L		
Ó	-	MICHAU	L. 522620	522614	522612	L 522605	42914 /L 522604	42911	42910
		Σ.	L 52(2619		nunt	52260 <b>6</b>	522603	L 522399	WIN
		L. L. L. L. L. L. L. L. L. L. L. L. L. L	L 522618	394 30	522610	52200T	522602	\$12099 52259	6 522593
		16 M		WOY/ 522616	522609	522008	522601	522600	194 1 B Lin 104 1 B 522 599
n ( <b>Nac</b> ional)	• • •	- -	L / 653661	<i>Potho</i>	le bkes	L	765025	1 0000 1 38479 38479 38479	J8475
			L \ 653662	  L  - 653659	800040	E00041	L 765027	L 765028	765029
	·		L   B00046	-	B00044	800043	1 BOQ042		       765032   
		17 M	L 800053	L'\   800082	800051	800050	800047	767573	L 767574
			800508 900508	Dewhirs:	4	800511	800048	B0,0065	800087    1
	· _		L 800515	L   . O   . O   . O	  _   800513	L 800512	800049	B00066====	800068
			L 800516	B00517	800518	L 800519	800054	800074	Lydon L.
38					ف جہ <u>حسب میں م</u>	I	<u>н</u>	<u>/</u>	<u>.</u>
G-36		32D05NW0150 63.5070 (	GARR I SON		200			•	

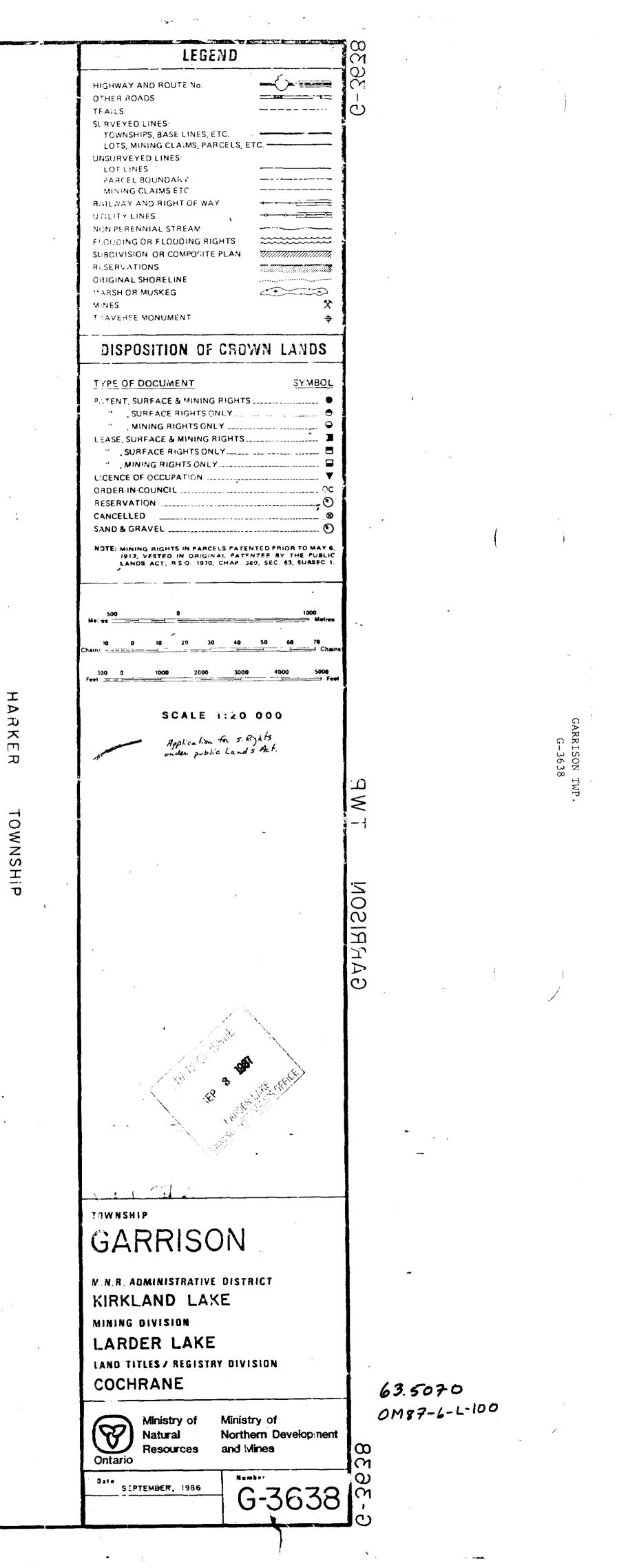
. _ . _ . . . ...

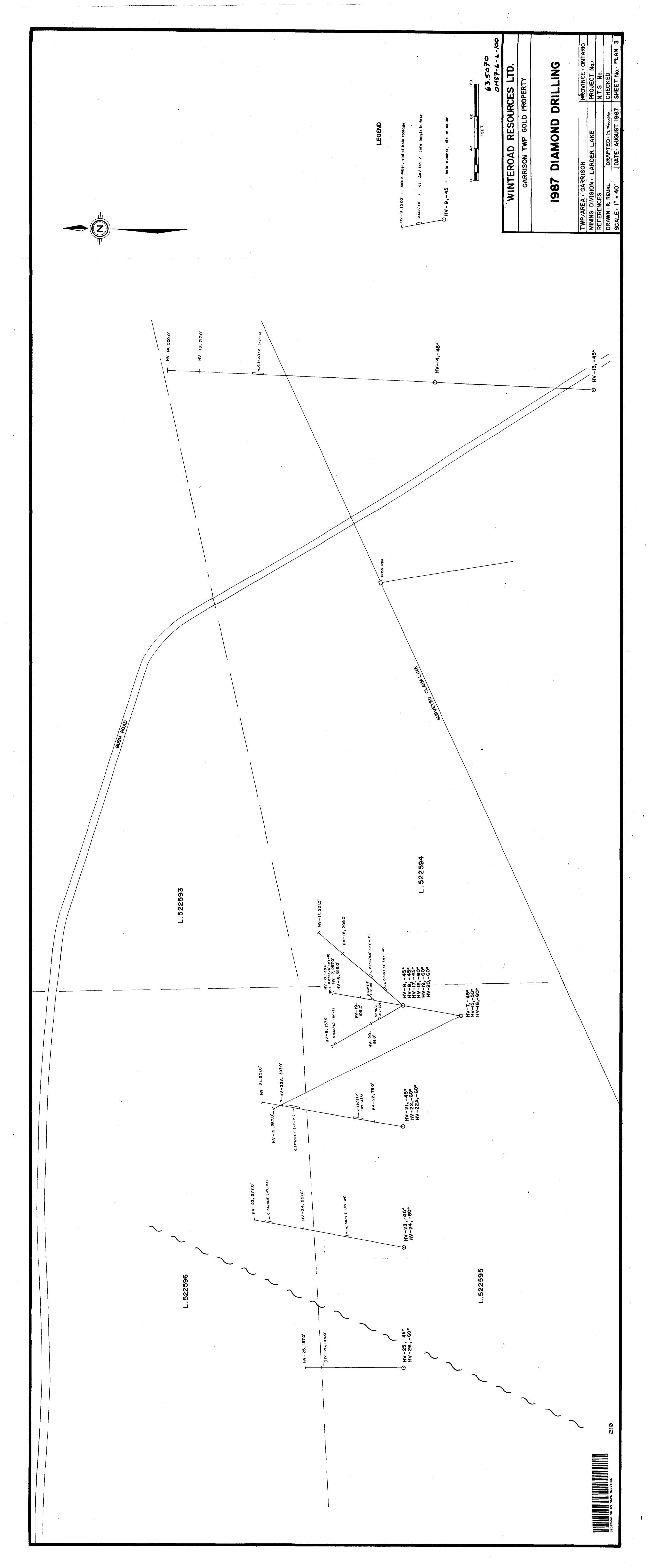


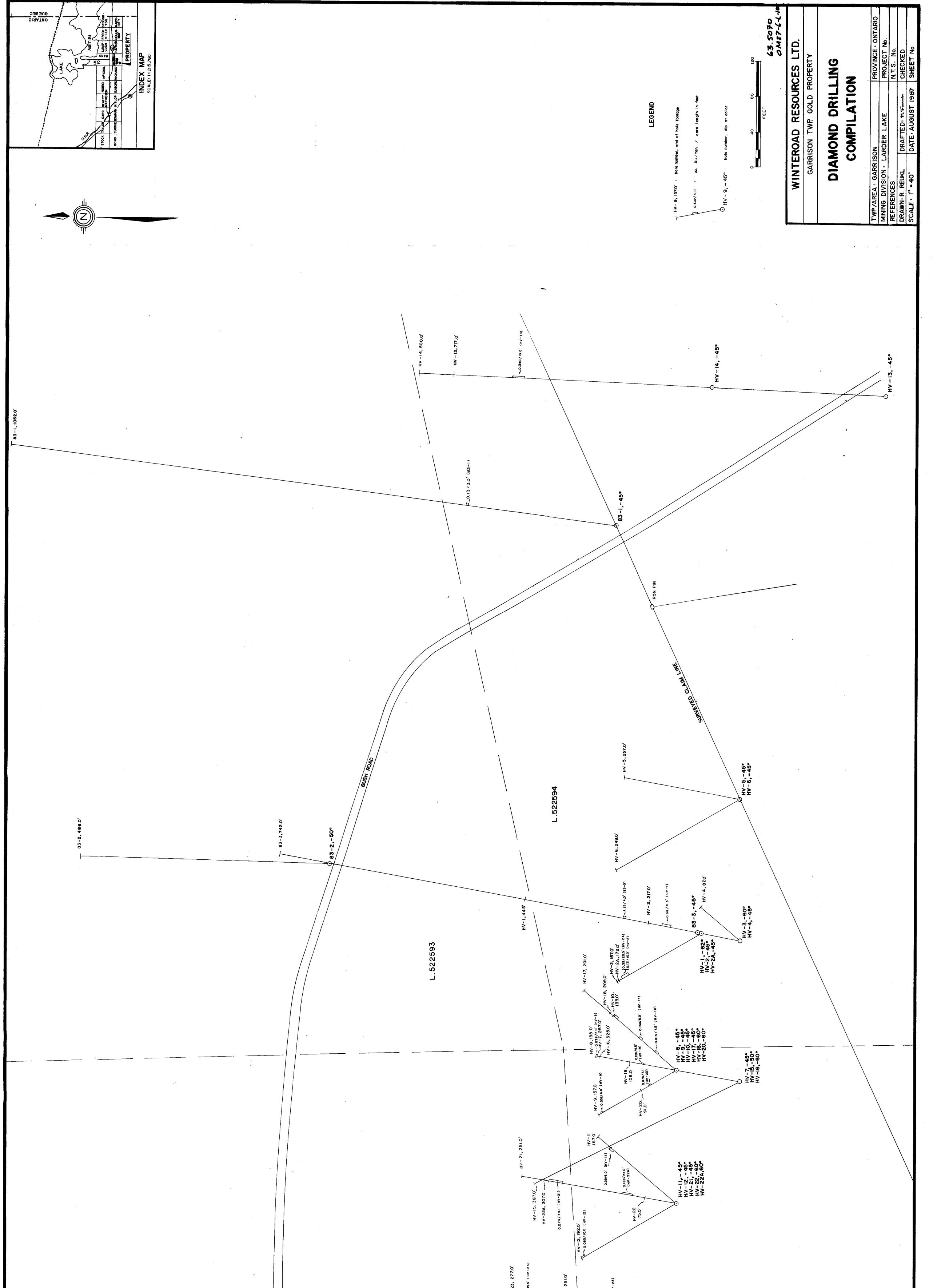
THACKERAY · TOWNSHIP

3 M

•

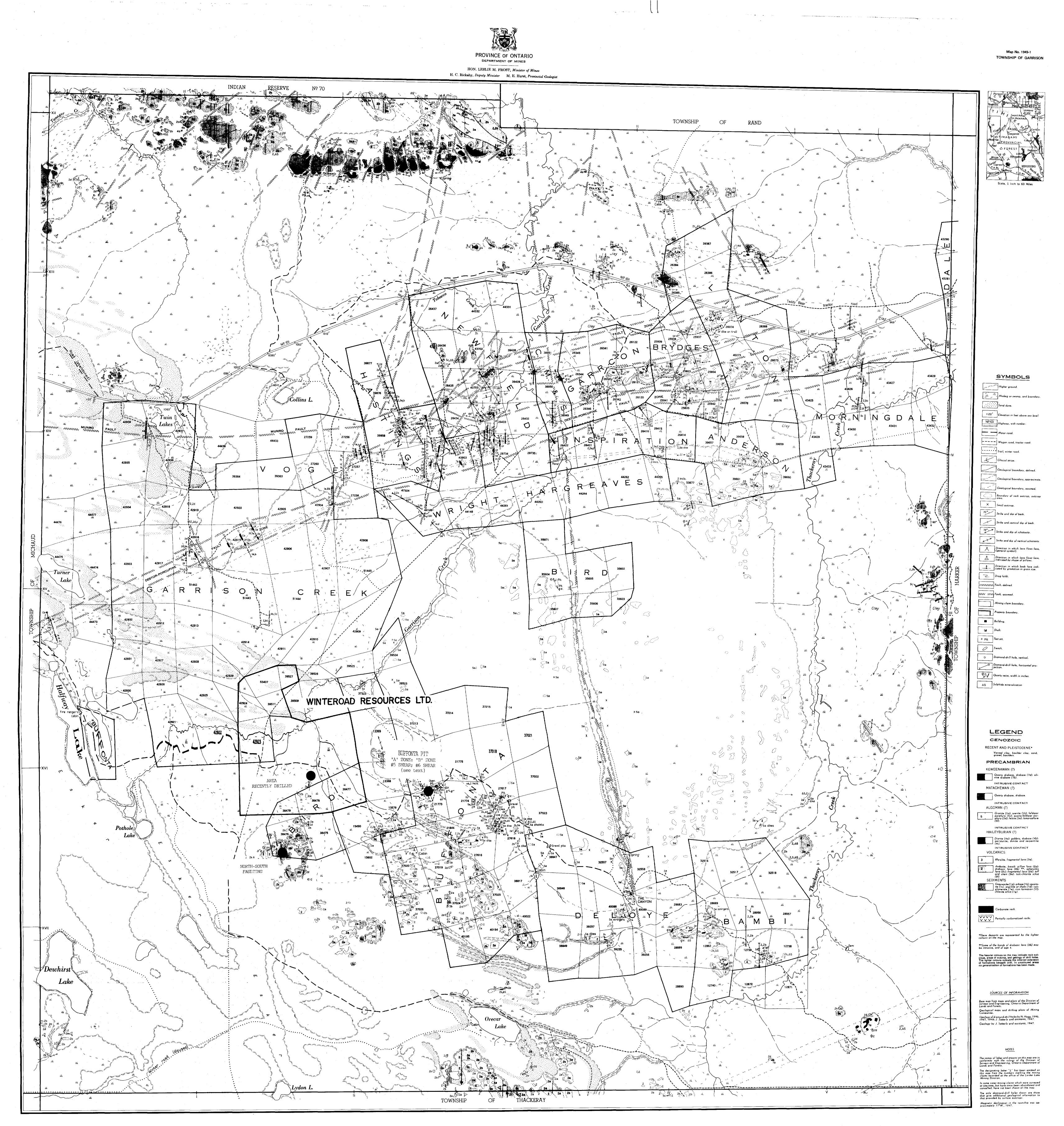

*i* .


4 M


.

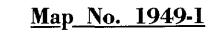
5 M

• ·



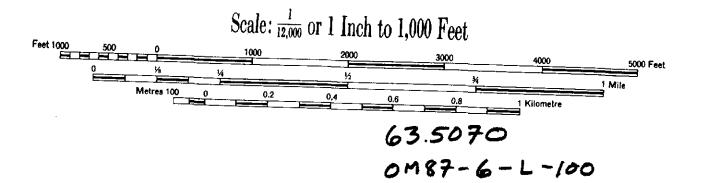






L-522666

220






٠



# **TOWNSHIP OF GARRISON**

DISTRICT OF COCHRANE, ONTARIO

