Joutel Resources Ltd Mountain Lake Resources Inc.
Summary Report
on the Canagau Property
Ben Nevib, Pontiac Townships Larder Lake Mining Division
Ontario
NTS: 32D5

W.J. McGuinty
A. D. Hunter
Bradley C. Leonard
February 1981

Page
1.0 Introduction 1
2.0 Location and Access 3
3.0 Property Tenure 3
4.0 Previous Work History 11
5.0 Regional and Property Geology 17
6.0 Geological Setting of the Canagau Property 19
7.0 Additional Detailed Mapping 31
8.0 Geophysical Surveys 33
8.1 Horizontal Loop E.M. Survey 34
8.2 Maxi-Probe E.M. Survey 34
8.3 Bore Hole Pulse E.M. Survey 34
9.0 Diamond Drilling Programs 35
10.0 Conclusions and Recommendations 39
References 40
Statement of Qualifications - B. Leonard 41
W. McGuinty 42

LIST OF FIGURES

Page

Figure 1 Property Location 2
Figure 2 Claim Compilation 9
Figure 3 Regional Geology 15
Figure 4 Property Area Geology 16
Figure 5 Geology of Canagau Patented Claims Back Pocket
Figure 6 Canagau-Ehrhart Schematic Section 21
Figure 7a Geology of Labbe Option Stripping Pt. 1 Back Pocket Figure 7b Geology of Labbe Option Stripping Pt. 2 Back Pocket

Figure 8a Geology of Canagau 1990 Stripping Pt. 1 Back Pocket Figure 8b Geology of Canagau 1990 Stripping Pt. 2 Back Pocket Figure 8c Geology of Canagau 1990 Stripping Pt. 3 Back Pocket

Figure 9 Horizontal Loop E.M. Survey 444 Khz Back Pocket
Figure 10 Drill Section Hole CNG-90-2 Back Pocket
Figure 11 Drill Section Hole CNG-80-3 Back Pocket
Figure 12 Drill Section Hole CNG-90-6 Back Pocket
Figure 13 Drill Section Hole CNG-90-1 Back Pocket
Figure 14 Drill Section Hole CNG-90-s, CNG-90-4 Back Pocket

LIST OF TABLES

Table I List of Unpatented Mining Claims 4-8
Canagau Joint Venture
Table II Summary of Diamond Drilling 37 Canagau Project 1990

APPENDICES

Appendix I	Whole Rock Geochemistry and Assay Certificates
Appendix II	Results of Maxi-Probe E.M. Survey for Joutel Resources Inc. Ben Nevis Ontario by GEOPROBE LTD.
Appendix III	Report on Bore Hole Pulse E.M. of Holes
CNG-90-2 and CNG-90-6 Canagau Project	

Exploration for gold and base metals in Ben Nevis township and surrounding areas has been active over a period of 70 years. The main focus of exploration has been the patented 13 claim Canagau Mines Ltd. property, which was first developed in the mid 1920° s. Exploration revealed the presence of 3 narrow, east-west trending, south dipping polymetaliic veins in shear zones in felsic and dioritic intrusive host rocks.

Joutel Resources Ltd. and Mountain Lake Resources Ltd. have been actively exploring the east-central portion of Ben Nevis township for base metals since mid-1989 when an option/joint venture agreement was entered into. In 1990, power stripping, geological and geophybical surveys, lithogeochemical evaluation and 4,839 feet of diamond drilling were undertaken. The purpose of the program was to re-evaluate known information and provide further information with which to establish a paragenesis for mineralization and alteration in the vicinity of the Canagau patents.

Three authors have contributed to the compilation of this report, excluding geophysical interpretations provided by contractors. A.D. Hunter of Earthhunt Resources Inc. provided a report on the geological setting of Canagau which is incorporated as section 6.0 and figures 5 and 6 of this report. B.C. Leonard undertook a detailed backgrounding of the area covered by the Mountain Lake-Joutel joint venture property and participated in mapping newly stripped areas. B. McGuinty also participated in mapping of stripped areas as well as supervising geophysical surveys and diamond drilling.

PROPERTY LOCATION MAP
CANAGAU PROPERTY
BEN NEVIS - PONTIAC TWAS.
SCALE $\because=25 \mathrm{Mi}$ MAY MO

2.0 LOCATION \& ACCESS

The Canagau property consists of 227 contiguous unpatented and 13 patented claims in Ben Nevis and Pontiac townships, Larder Lake Mining Division, Northeastern, Ontario (see Fig. 1).

The Property is located 40 Km NE of Kirkland Lake and 30 Km N of Larder Lake. A seasonal gravel road heads north from Larder Lake and cuts through Ben Nevis township within 2 Km of the Canagau shaft.

3.0 PROPERTY TENURE

The Canagau property is an amalgamation of 3 claim blocks controlled wholly or in part by Joutel Resources Ltd. and held under joint venture agreement with Mountain Lake Resources Ltd. 13 patent claims fall under this agreement:
Mining Rights only:

L 12681	L 16332
L 12782	L 16333
L 16197	L 16455
L 16198	L 16456
L 16200	L 16465
L 16220	L 16472

L16221
A total of 227 unpatented mining claims were incorporated into the joint venture through 3 separate option agreements. Under these agreements claims may be allowed to lapse as the Joint Venture sees fit. Table 1 lists all claims originally recorded under the joint venture. Figure 2 shows the disposition of these claims.

CLAIM ND TOWHEHIF DATE GECD	WORE EXT SU	
1015272 Een Hevis 12/03/87	02/28/90 12/03/93 12/15/89	0.0 Memo Jolette
1015273 Een Nevis $12103 / 87$	02/28/90 12/05/93 12/15/89	0.0 Mero Jolelte
1015274 Ben Nevis 12/03/87	02/28/90 12/03/93 12/15/89	0.0 Memo Jolette
1015275 Een Nevis 12/03/87	02/28/90 12/03/93 12/15/69	0.0 Memo Jolelte
1015275 Ben Nevis 12/03/87	02/28/90 12/03/93 12/15/89	0.0 Memo Jolette
1015277 Ben Nevis 12/0:3/87	02/28/90 12103/93 12/15/89	0.0 Memo Jolelte
1015278 Een Novis 12/03/87	02/28/90 12/03/93 12/15/89	0.0 Memo Jolette
1015283 Een Nevis 12/03/67	02/28190 12/03/43 12/15/89	0.0 Memo Jolette
1015284 Een Nevis 12/03/07	02/28/90 12/03/93 12/15/89	0.0 Memo Jolette
1015285 Een Nevis 12/03/67	02/28/90 12/03/93 12/15/89	0.0 Memo Jolette
1015286 ben Mevis 12/03/87	02/28/90 12/03/93 12/15/89	0.0 Meno Jolette
1015287 Een Nevis 12/03/87	02/28/90 12108/93 12/15/89	0.0 Meno Julgtte
1015288 Een Nevis 12/03/87	02/28/90 12/03/93 12115/89	0.0 Kemo Jolette
1015289 Een Nevis 12/03/87	02/28/50 12103/93 12/15/89	60.0 Merio Jolette
1035231 Sen Nevis 12/03/87	02/28/90 12/03/93 12/15/89	60.0 Hemo Joletie
1015292. Ben Nevis $/ 1$	02/26/50 $1 / 12 / 15 / 89$	0.0 Keno Jolette
1015293 Een Nevis 12/03/87	02/28/90 12/03/93 12/15/83	0.0 Meno Jolette
1015254 Een Nevis $12 / 03 / 87$	02/28/90 12/08/93 12/15/89	0.0 Memo Jolette
1015235 Een Nevis 12/03/67	02/28/50 12/03/93 12/15/83	0.0 Meno bolette
101596 Een Nevis 12103187	02/28/90 12/03/93 12/15/89	0.0 Mene dolette
101597 Een Kevis 12103/87	02/26/30 12/03/93 12/15/83	0.1) Meno Jolette
101598 Een Nevis $12 / 03187$	02/28/90 12103/93 12/15/85	0.0 Kemo jolette
1015293 Ben Novis 12/03/87	02/28/90 12/03/93 08/22/89	60.0 Memo Jolotte
1015500 Een Nevis 12103/87	02/28/90 12/03/53 08/2/89	60.0 Memo Jolette
1015.302 Een Nevis 12/03/87	02/28/90 12/03/93 08/22/83	60.0 Kero jolette
1015312 Een Nevis 12103/87	02/28/90 12103/93 12/15/89	0.0 Kerro Jolette
1015313 Een Nevis $12103 / 07$	02/28/90 12/03/93 12/15/89	0.0 Mexd Jolette
1015314 Een Nevis 12/03/97	02/28/90 12/03/9312/15/89	0.0 Kend Jolette
1015315 Een Nevis 12/03/87	02/28/80 12/03/93 12/15/83	0.0 Mamo Jolette
1015816 Een Nevis 12/03/87	02/28/90 12103/93 12/15/85	0.0 Kemo Jolette
1015417 Een Nevis 12/03/87	02/28/80 12/03/93 12/15/89	0.0 Mamo Jolette
15418 Een Nevis 12/03/87	02/28/90 12/03/93 12/15/89	0.0 Meno Jolette
1015419 Een Nevis 12/03/67	02/28/90 12/03/93 12/15/89	0.0 Mento jolette
1015420 Een Nevis 12/03/87	02/28/90 12103/93 12/15/89	0.0 Mero Jolelte
1015421 Een Kevis 12103/87	02/28/90 12/03/93 12/15/83	0.0 Memo Jolette
105422 Een Nevis 12/03/87	02/28/90 12103/93 12/15/89	0.0 Memo Julette
1015423 Een Nevis 12103/87	02/28/90 12/03/03 12/15/83	0.0 Mems Jolette
1016424 Een Nevis $12 / 03187$	02128/90 12103/93 12/15/83	0.0 Memo Jolette
1015125 Een Vevis 12103187	12/28/90 12/03/93 12/15/83	0.0 Memo Jolette
1015t2e Een Nevis 12/03/87	02/28/90 12/03/9312115/89	0.0 Mero Jolette
1015427 Een Nevis 12/08/87	12/23/30 12/03/93 12/15/89	0.0 Meso jolette
1015128 Een Hevis 12/03/87	02/28/90 12/08/93 12/15/89	0.0 Keno dolette
1015123 Een Nevis $12 / 09 / 67$	02/20/90 12/03/99 12/15/83	0.0 Yemo Jolette
1015430 Een Newis 12/03/87	02/28190 12/09/53 12/15/69	0.0 Yemo Jolette
1015491 Eon Nevis 12/03/67	02/20/90 12/03/93 12/15/83	0.0) Metu Jolette
$10154 \% 2$ Een Nevis 12103/87	02/28/50 12/03/93 12/15/83	0.0 Meno Jolette
1015433 Een Nevis 12/03/87	02/20/90 12/03/93 12/15/89	0.0 Meno Joletle
1015434 Een Revis $12 / 0367$	02/2150 12/03/93 12115/69	0.0 Memo Jolette
1015425 Een Novis $12 / 03 / 07$	02/28/30 12/03/93 12/15/09	0.0 Meno solette

1015436 Een Nevis 12/03/87 $\quad 02 / 28 / 9012 / 03 / 9312 / 15 / 89$ 1015508 Een Nevis $12116 / 87$ 02/28/90 $12109 / 9312115 / 89$ 1015503 Een Revis $12 / 16 / 87$ 02/28/30 12/0.3/93 $12 / 15 / 89$ 1015510 Een Hevis 12/16/87 02/28/90 12/03/93 12/15/89 1015511 Ben Nevis 12/16/87 02/28/90 12/03/93 12/15/89 1015512 Een Nevis $12 / 16 / 87$ 02/28/50 12/03/93 12/15/89 1015513 Een Nevis $12 / 16 / 87$ 02/28/50 12/03/93 12/15/89 1015514 Een Nevis 12/16/87 02/28/90 $12 / 03 / 9312 / 15 / 89$ 1015515 Een Nevis 12/16/37 12/28/90 12/03/93 12/15/89 1015516 Ben Nevis 12/16/87 02/28/50 12/03/93 12/15/69 1015517 Ben Nevis 12/16/87 02/28/80 12/03/83 12/15/83 1015518 Een Nevis 02/08/88 02/28/90 02/68/94 08/22/89 1015519 Een Nevis $02 / 108 / 88 \quad 02 / 28 / 90 \quad 02 / 08 / 9408 / 22 / 83$ 101550 Een Nevis 02/08/88 02/26/90 02/08/94 08/22/89 1015521 Bon kevis 02/08/88 10155% Een Nevis 02/0e/88 1015523 Ben Nevis 02/08/88 1015524 Een Nevis 02/08/88 1015525 Een Nevis 02/08/88 1015526 Een Nevis 02/08/88 1015531 Een Nevis $12 / 03187$ 101552 Gen Nevis $12103 / 67$ 1015533 Ben Kevis 12/03.87 1016008 Een Nevis $02108 / 88$ 1016009 Een Revis 02108/88 1016010 Een Nevis $02 / 08188$ 1015011 Een Revis 02/08/89 1016012 Een Revis $02 / 08 / 88$ 1016013 Een Nevis 02/08/98 1016014 Een Nevis 02/08/es 1016015 Een Hevis $02 / 08 / 88$ 1016015 Een Nevis 0200188 1016017 Een Nevis 02/08/89 1016018 Een Nevis $02 / 08 / 68$ 1016020 Een Nevis $02 / 08 / 88$ 1016021 Een Kevis 02/08/88 1015022 Een Novis 02/08/88 102024 Een Nevis $12107 / 87$ 102025 Een Nevis $12 / 07 / 87$ 10202 E Een Nevis 1207187 102027 Een Kevis $12107 / 87$ 1020028 Ben Mevis $12107 / 87$ 1022029 Een Nevis $12107 / 87$ 102060 Een Mevis $12107 / 87$ 1022031 Een Mevis 12/07/07 102002 Een Nevis $12107 / 67$ 102033 Een Nevis $12 / 07 / 87$ 102024 Een Revis $12 / 07 / 87$ 102035 Een Hevis $12 / 07 / 87$ 102036 Een Nevis $12 / 07 / 87$ 102007 Een Nevis 12007187 102008 Een Mevis $12 / 07187$ n2/28/90 $12 / 0719312115 / 89$
0.0 Memo Joletíe 0.0 Memo Jolette 0.0 Menio Jolette 0.0 Meno Jolette 0.0 Memo Jolette 0.0 Kemo Jolette 0.0 Yeno Jolette 0.0 Mem Joletle 0.0 Memo Jolette 0.0 Memo Jolatle 0.0 Memo Jolette 60.0 Mend Jolette 60.0 Mendo Jolette 60.0 Kemp joletle fo. 0 Memo Jolette 60.0 Meno Joletite 60.1) Meno Jolette 60.0 Memo Juictle 60.0) Kemo Jolette 0.0 Memo Joletie 0.0 Mero Jolette 0.0 Merio Jolette 0.0 Nemo Jolette 0.0 Memo Jolette 0.0 Mano Jolette 0.0 Meno Jolelte 0.0 Mena Jolette 0.0 Meno Solette 0.0 Meas Jololte 0.0 Memo Jinette 0.0 Yeno Jolette 0.0 Meno Jolette 0.0 Memo Jolette 0.0 Memo Jolette 0.0 Mamo Jolette 0.0) Mero Jolette 0.0 Memo Jolelle 0.0 Meno Jilette 0.0 Mapo Jolette 0.0 Meno Jolette 0.0 Kemo Jolette 0.0 Meno Jolette 0.0 Mems Jolette 0.0 Meno Jolette 0.0 Meno Jolette 0.0) Meno Julelle 0.0 Metio Jolette 0.0 Memo Joleble 0.0 Heno dolette 0.0 Meno Jolette 0.0 Hemo Jolette 0.0 Heno Jolette

1022040 Een Nevis 12/07/87	02/28/90	12/07/93 12/15/89
22041 Een Nevis 12/07/87	02/28/90	2/07/93 12/15/89
202042 Een Nevis 12/07/87	02/20/90	2107/93 12/15/89
22043 Een Nevis 12/07/87	02/28/90	12/07/93 12/15/85
046273 Een Nevis 09/08/88	11	09/08/91 08/22/89
047938 Een Nevis 09/01/88	1	09/01/94 05/22/89
048200 Een Nevis 09/01/88	02128190	09/01/94 12115/89
48235 Een Nevis 10/13/89	11	10/13/34 08/24/89
048236 6en Nevis 10/13/08	11	10/13/94 08/24/89
1048404 Een Nevis 03/20/69	11	$1108 / 24189$
	11	09/07/94 08/22/89
048407 Een Nevis 09/07/88	11	09107/94 08/22/89
1048408 Een Nevis 03/20/83	11	03/20195
1048410 Een Nevis 09/01/88	11	09/01/94 09/29/89
1048513 Een Nevis 09/01/88	1	09/01/94 12/15/89
1048518 Een Nevis 09/01/88	02/28/90	09/01/94 12/15/89
1048728 Een Nevis 09/01/88	1	03/01/9408/22199
1048732 Een Nevis 09/01/88	11	09/01/94 08/22/89
1048733 Een Nevis 09/07/88	11	09/07/94 08/22/89
1048734 Een Nevis 09/07/88	11	09/07/94 08/22/89
1048735 Een Nevis 09/07/88	11	09/07/54 08/22/89
1048736 Een Navis 09/01/88	11	09/01/94 08/22/89
1048737 Een Mevis 09/07/28	11	09/07/94 08/22169
1048738 Een Nevis 09/07/88	11	09/07/98 08/22/89
1048789 Een Nevis 09/07/88	,	09/07/94 09/22169
1048854 Een Mevs 09/21/88	11	09/21/9408122/89
1110282 Een Nevis 04113/89	11	04/13/95 08/22/89
1110233 Een Nevis 04/13/89	11	04/13/85 08/22/89
1110234 Een Nevis 04/13/89	11	04/13/95 08/22/69
110235 Een Aevis 04/13/\%3	11	04/13/95 18/22/29
1110236 Een Nevis 04/13/89	11	04/13/5508/22189
10237 Sen Nevis 04/13/89	17	04/13/95 08/22/83
1110235 Een Nevis 04/13/69	11	04/18/95 08/2169
1110239 Een Mevis 04/13/89	1	04/13/35 02/22/89
1110240 Ben Nevis 04/13/89	11	04/13/95 08/22/69
1110241 fen Nevis 08/15/89	11	02/15195
1110242 Een Hevis 04/13/89	11	04/13/95 04/2189
1110243 Een Nevis 04/13/89	1	04/13/95 04/22/89
10244 Een Nevis 05/13/89	,	04/13/9504/22/69
10245 Een Aevis 04/13/89	1	04/13/95 04/22/89
1024 Een Nevis 04/13/89	,	0413195 04/22189
111024 Een Revis 04/13/89	1	04/13/9504/22/89
110248 Een Nevis 07/04/89	1	$07104 / 55$ /
1110243 Een Revis 07/04/09	1	07/04/95
111050 Een hevis 07/04/89	11	$07104 / 95$
3110251 Ben Revis 07/04/89	11	$07 / 04 / 95$
1111659 Een Nevis 07/04/0s	1	$07104 / 95$
1111660 Een Nevis 07/04/89	1	$07104 / 55$
11166] Een Nevis 07/04/89	7	07/04/95 04/22/89
l116f2 Een Meyis 07/04/83	1	07/04/95
111665 Een kivis 07/0469	11	07104/55

0.0 Mond Jolette 0.0 Memo Jolelte 0.0 Kemo Jolette 0.0 Meno Jolette 0.0 Kemo jolatte 20.0 Meno Jolette 20.0) Kemo Joletle 0.0 Meno Jolette 20.0 Mems Jolette 20.0 Memo Jolette 0.0 Yefin Jolette 20.0 Yeno volette 20.0 Memo Jolette 0.0 Meno Jolette 20.0 Keno jolette 20.0 Memo Dolelte 0.0 Meno Jolette 20.0 Meno Jolette 20.0 Meno Jolette 20.0 Memo Jolette 20.0 Mend Jolette 20.0 Meno Jolette 20.0 Memo Jolette 20.0 Meno Jolette 20.0 Kemo Jolette 20.0 Memo Jolelte 20.0 Meno Julette 20.0 Meno Jolelte 40.0 Memio Jolette 20.0 Meno Jolette 20.0 Memo Jolette 20.0 Kemo Jolelte 20.0 Meno Jolette 20.0 Memo Jolelte 20.0 Memo Jolette 20.0 Meno Jolette 0.0 Metas Jolette 20.0 Yemo Jolelte 20.0 Meno Julatte 20.0 Memo Jolette 20.0) Memo Jolette 20.0 Near Jolette 20.0 Mowo Jolette 0.0 Memo Jolatte 0.0) Memo Jolette 0.0 hero Jolette 0.0 Hewo Jolette 0.0 Mewo dolette 0.0 Mamo Jolette 0.0 Meno Jolette 0.0 Mem Jolette 0.0 Memo Jolette

1111654 Sen Never	07/04/89	11	07/04/9.5	11	0.0 Memo Jolette
1111669 Een Nevis	07104189	11	$07104 / 95$	11	0.0 Memo Jolatie
1111670 Ben Nevis	09/07/83	11	09/07/95	11	0.0 Mejo Jolette
1111671 Een Nevis	09/07/83	11	09107/95	11	0.0 Meno Jolette
111672 Een Mevis	09/07/89	11	09/07/95	11	0.0 Mento Jolette
1015317 Fontias	12/07/87	02/28/50	12107/93	12/15/89	0.0 Mewo Jolelte
1015318 Fontiag	$12107 / 87$	02/28/30	12/07/93	12/15/89	0.1) Hemo Jolette
1015319 Pontias	12/07/87	02/28/90	12/07/93	12/15/89	0.0 Meno Jolette
1015320 Fontias	12107/87	02/28/80	12/07/93	12/15/09	0.0 Meno Jolette
1015321 Fontis	12/07/87	02/28/90	$12107 / 93$	12/15/69	0.0 Memo Jolette
1015346 Fontias	12107/67	02/28/80	$12107 / 93$	12/15/89	0.0 Maro Jolelte
1015347 Fontiac	12107/67	02128/90	12/07/93	12/15/89	0.0 Meno Jolette
1015348 Fontiat	12107187	02/28/40	$12107 / 33$	12/15/89	0.0 Yeno Jolelle
1015853 Fontiac	12107/87	02/28/90	12/07/93	12/15/89	0.0 Memo Jolette
1015354 Fontias	12/07/87	02/28/80	12/07/93	12/15/89	0.0 Mewo Jolette
1015855 Pontiat	$12107 / 87$	02/28/50	12/07/93	$12 \mathrm{H} / 88$	0.0 Meno Jolette
1015356 Fontiat	12/07187	02/28/90	$12107 / 93$	12/15/83	0.0 Memo Jolelte
1015857 Fontias	12/07/87	02/28/90	12/07/93	12/15/89	0.0 Memo Jolette
1015858 Fontias	12107187	02/28/30	12/07/93	12/15/89	0.0 Memo Jolette
10156t Pontiac	12107/87	0/20/90	12/07/93	12115/69	0.0 Meno dolette
1015364 Fontiac	12/07/87	02/23/30	12/07/93	12/15/89	0.0) Memo Jolette
1015365 Fontiag	12/07/87	02/28/90	12/07/93	12/15/89	0.0) Meno Jolette
1015365 Fontiac	12/07/87	02/28/90	12/07/33	12/15/89	0.0 Heno Jolette
1015367 Fontiac	12107187	02/28/90	12/07/93	12/15/89	0.0 Mewo Jolette
1015368 Fontiac	12107/87	02/28/90	12/07/93	12/15/83	0.0 Yexin Jolette
1047939 Fontiat	01/03/89	11	01/63/95	11	0.0 Meno jolelte
1047940 Pontias	$01 / 03 / 89$	11	01/03/95	11	0.0 Memo Jolette
104794 Fontias	01/03/83	11	$01 / 08155$	11	0.0 Metuo Jolelte
1047942 Fontiat	01/03/89	11	01/03/95	17	0.0) Keno dolette
1047943 Pontias	01/03/89	11	$01 / 03 / 95$	11	0.0 Meno Jolette
1047844 Fontias	91/03189	11	01103/35	$i 1$	0.0) Kemo Jolette
1046533 Fontiac	01/03/89	11	$01 / 02 / 95$	11	0.0 Meso Jolette
1048524 Fontiac	01/03/89	11	01/03/95	11	0.0 Memo Jolette
10465 5 Fontiac	01/03/89	11	01/03/85	11	0.0 Meno Jolette
1048528 Fontiac	01/03/83	11	01/03/95	11	0.0 Mens Jolette
1046507 Fontiac	01/03/69	11	01/03/55	11	0.0 Meno Jolette
1049212 Fontiac	01/03/69	11	01/03/95	11	0.0 Yemu Jolette
1048213 Fontiac	$01 / 03189$	11	$01 / 03 / 55$	11	0.0 Mens Jolette
1049214 Fontiac	$01 / 03 / 89$	11	01103/95	11	0.0 Meno Jolette
1049215 Fontiac	01/03/89	11	01/03/95	11	0.0 Meno Jolette
1049216 Fontiat	01/03/69	11	01/03/85	11	0.0 Memo Jolette
1049547 Fontiac	01/03/83	11	01/03/95	11	0.0 Meno Jolette
1049548 Fontiac	01/03/89	11	01/03/95	11	0.0 Medo Jolelte
1049649 Fontiac	01103189	11	$01 / 03 / 95$	11	0.0 Memo Jolette
1049650 Fontias	01/03/83	11	$01 / 03 / 95$	11	0.0 Memo Jolette
1089702 fontiac	01/103/8	11	01/03/95	11	0.0 Meng Jolette
1043705 Fontias	01/03/8	11	01/03/95	11	0.0 Meno Jolette
1049704 Fontias	0) 10368	11	01/03/95	11	0.0 Yemo Jolelte
1048705 Pontiat	01/03/63	11	(1)103/95	11	0.0 Memb Jolette
1049706 Fontias	0110368	11	$01 / 03 / 95$	11	0.0 Mems Jolette
1045707 Fontias	01/03/83	11	$01 / 03189$	11	0.0 Mewo Jolette
1049708 Fontiac	$01 / 03183$	11	$01 / 03 / 55$	11	0.0 Memo dolette

1049709 Fontiac 01/03/89	11	01/03/95 / /	0.0 Memo Jolette
1045710 Fontiac 01/03/89	11	$01103 / 95 \quad 1 /$	0.0 Neas Jolette
1049711 Pontias 01/03/89	11	01/03/95 / 1	0.0 Mea Jolette
979925 Een Revis 09/18167	11	09/18/93 12/15/69	60.0 Memo Labte
979926 Een Nevis 09/18/87	11	09/18/93 12/15/83	60.0 Merin Labbe
979927 Een Nevis $05 / 18 / 87$	11	09/18193 12/15/69	60.0 Meno Labbe
979328 Een Nevis 09/18/87	11	09/18/93 12/18/69	60.0 Mem Labbe
979929 Een Nevis 09/18/87	11	09/18/93 12/15/89	60.0 Meno Labtie
973930 Ben Nevis 09/18/87	11	09/18/93 12/18/89	60.0 Memo Labbe
979931 Een Nevis 09/18/87	11	09/18/93 12/15/89	60.0 Memo Latbe
980472 Een Nevis 09/18/87	11	19/18/93 12/15/89	60.0 Mewo Latse
985659 Een Nevis 05/18/67	11	09/18/93 12/15/89	60.0 Mero Labbe
1096885 Een Nevis 02/05/90	1	1111	0.0 Yean Labe
1096886 Een Nevis 02105/90	11	1111	0.0 Memo Labbe
1045732 Een Nevis 08/15/88	11	08/16/94 12/14/89	40.0 Memo Mountain Lake
1046217 Een Nevis 08/16/80	11	08/16/94 12/14/89	40.0 Memo Mountain Lake
1046221 Een Nevis 09/16/89	04/30/	09/05/34 12/14/89	0.0 Meru) Mountain Lake
1111060 Een Nevis 08123163	11	08/28/95 12114/89	0.0 Meno Mountain Late
1111063 Een Hovis 08/28/89	11	08/28/95 12/14/89	0.0 Memo Mountain Lave
1111474 Een Nevis 07112189	11	07112/95 12/14189	0.0 Memo Mountain Late
1111475 Een Nevis 07/12/89	11	07/12/35 12/14/89	0.0 Mekd Mountain Lake
1111476 Een Nevis 07112189	11	07/12/95 12/14/89	0.0 Memo Mountain Lake

4.0 RREVIOUS WORK HISTORY

1926 to present: Canagau Mine Property
The property known as the Interprovincial Mines Limited property was originally staked by P.J. Roche in 1926 on a previously known polymetallic showing (No. 7 on OGS MAP 2283 by L. Jensen). Work done between 1926 and 1936 by Interprovincial Mines Ltd. included extensive surface stripping, trenching a 40 foot deep inclined prospect shaft, and a vertical 346 foot, 3 compartment shaft with 934 feet of underground workings on 3 levels: 34 feet of lateral work on the 125 foot level; 480 feet of lateral work on the 225 foot level and 420 feet of lateral work on the 325 foot level. There is no recorded production, bulk sampling or diamond drilling. In 1936 Canagau Mines Ltd was formed to take over the property from Interprovincial Mines Limited.

In 1946, Canagau Mines Ltd completed geological and geophysical surveys and drilled 8 holes (footage and locations are unknown).

In 1960, ground EM and mag were completed over the property, possibly by Hollinger Mines, who mapped the property at this time.

In 1962, Canagau Mines Ltd. completed further stripping and trenching.

In 1970-1974 Amax Exploration Inc. acquired an option on the claims as part of a regional exploration program. Work conducted by Amax included airborne and ground geophysics, mapping, geochemistry (Cu Zn Ag) and diamond drilling (7 holes totalling 3965 feet on the Canagau claims).

The property remained dormant until 1988 when Westbank Resources Ltd. acquired the ground, and conducted ground geophysics (mag, VLF-EM, selected IP), geological mapping, geochemical soil sampling and large scale mechanical stripping.

In 1989, Mountain Lake Resources Ltd. acquired the property following the withdrawl of Westbank Resources, and entered into a joint venture agreement with Joutel Resources Ltd. Work completed in 1989 included additional geological mapping, litho-geochemical
sampling, and 621.1 metres of drilling in 2 holes.

1948: Preston East Dome Mines Ltd. conducted geological and geophysical (magnetics) surveys on a 21 claim block in the central part of Ben Nevis township tied on to the west boundary of the Canagau property (No. 10 on OGS map 2283 by L. Jensen). Three holes were drilled totalling 1017 feet testing weak magnetic anomalies on strike with the east-west trending shear zones at the Canagau Mine.

1952 to present: Roche Prospect (No. 1 on OGS map 2283 by L. Jensen)

Originally part of the Interprovincial Mines property in the late $1920^{\circ} \mathrm{s}$, this showing had no reported work until 1952, when Sakinaw Lake Copper \& Iron Mining Ltd. conducted geological mapping and trenching in the area. In 1964 Dome Exploration Ltd. and Frobex Ltd. joint ventured the property and conducted geological and geophysical surveys plus 1971 feet of diamond drilling in 6 holes with limited success.

This showing has been controlled 100% by Goldmac Exploration Ltd. since the early $1980^{\circ} \mathrm{s}$. This company has conducted geological and geophysical (mag. VLF-EM) surveys, plus 1269 feet of diamond drilling in 5 holes.

1964 to present: Duvan Copper Company (No. 8 on OGS map 2283 by L. Jensen) controlled 18 claims in the central part of Ben Nevis townehip in the area of the Ehrhart shaft. Reported work consists of Magnetic and EM surveys, with no encouraging results.

In $1989 \mathrm{Mr} . \mathrm{P}$. Labbe acquired 11 claims covering part of the original Duvan copper property and contracted line cutting and geophysical (mag and VLF-EM) surveys. Later in 1989, Joutel Resources Ltd. entered into an agreement with Mr . Labbe to acquire the property.

1964 to present: Beaudry Prospect (No. 5 on OGS map 2283 by L.

Jensen) Raymond Beaudry conducted extensive stripping and trenching in an area north east of the Canagau property close the Ben Nevis - Pontiac township boundary. There was also at least 4146 feet of diamond drilling in 10 holes in this area, adjacent to the north-east corner of the Canagau property. Drilling reported minor $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Au}$ mineralization in dacitic volcanic rocks.

In 1988, McAdam Resources conducted geological and geophysical (mag, VLF-Em and selected IP) surveys over the area followed by 3 diamond drill holes (?). No records of the diamond drilling are present in the assessment files. This showing is controlled 100% by Mr. Ben Kiasyk, who has drilled a minimum of 233 feet in 2 holes.

1970-1974: Amax Exploration Inc. conducted a regional exploration program over central and east Ben Nevis township and west Pontiac township. Work performed consisted of airborne and ground geophysical (mag, IP) surveys, geological mapping, geochemical sampling (in the Canagau Mine area) plus at least 6504 feet of drilling in 15 holes. Targets were mostly I P conductors and, in the case of the Canagau Mine, geochemical anomalies.

1971: Cominco Ltd. conducted a 9 mile airborne $E M$ survey over an 18 claim blook in central Ben Nevis township called the Captain property with no encouraging results.

1975: L. Jensen mapped Clifford, Ben Nevis, Pontiac and Osbian townships at a scale of $1^{\prime \prime}=1 / 4$ mile and published 2 reports:
GR 132. Geology of Clifford and Ben Nevis townships;
GR 125. Geology of Pontiac and Ossian townships.

1977: Conwest Explorations Ltd. conducted geological mapping and geophysical surveys (mag, IP) over and area east of Death Lake in west central Pontiac township on property previously controlled by Amax. 679 feet of diamond drilling in 5 holes was also completed
with no encouraging results.

1977: W. Wolfe made a metallogenic study of Ben Nevis township and published Ontario Geological Survey Study 19, Geochemical exploration of Early Precambrian Volcanogenic Sulphide Mineralization in Ben Nevis township.

1985: L. Jensen and F. Langford published a paper entitled : Ontario Geological Survey MP 123, Geology and Petrogenesis of the Archean Abitibi Belt in the Kirkland Lake Area, Ontario

1986: E. Grunsky studied alteration of the rocks Clifford and Ben Nevis townships and published a chapter in Ontario Geological Survey MP 129, Volcanology and Mineral Deposits, Chapter 8: Recognition of Alteration in Volcanic rocks using Statistical Analysis of Lithogeochemical data.

1986: LAC Minerals conducted 2 ground magnetic surveys in Ben Nevis township, one in the south central part of the township while the other was east central, adjacent to the Beaudry Prospect. There were no encouraging results.

1988: Carl Forbes conducted a magnetic survey on 8 claims tied into the northeast and west of the Canagau patents, and subsequently optioned the ground to Mountain Lake Resources. It is now part of the Mountain Lake-Joutel Joint venture.

1989 The bulk of Joutel Resources Ltd. Canagau property was staked by Mr. R. Jolette and Mr. R. Belanger who performed 2.3 km of IP and 1429 feet of diamond drilling in 2 holes along the east boundary of the Canagau claime. Late in 1989, the 200 plus claim block was optioned by Joutel Resources Ltd.

GRANITIC ROCKS
3
MAFIC : INTERMEDIGTE INTRUSIVE ROCKS
MAFIC,' INTERMEDIATE VOLCANIC ROCKS
©

FELSIC VOLCANIC POCKS MINERAL OCCURRENCE

5.0 REGIONAL AND PROPERTY GEOLOGY

Clifford, Ben Nevis and Pontiac townships are underlain by archean mafic to felsic metavolcanic and intrusive rocks of the Blake River Formation which also host the Noranda area massive sulphide deposits 30 miles to the east (figure 3). Later stage intrusive bodies and sills of mafic, intermediate and granitic composition cut the layered volcanic sequences, and are compositionally similar to the host volcanics.

Low grade regional metamorphism under zeolite facies has affected all rock types of the area. Albite-epidote hornfels metamorphism affects host rocks in the vicinity of all granitic intrusives.

Structurally, the area is located in the centre of a synclinorium that opens to the east. In central Ben Nevis township, an east-west trending anticline occurs flanked by complimentary synclines. A north-south trending anticline has been interpreted by Jensen (1975) to be present in the eastern portion of Ben Nevis township, through the patented Canagau Mine property. The overall pattern of folding is concentric about the Clifford stock located 10 km to the west of the Canagau patents.

A number of radial and short northwest and northeast striking faults occur about the Clifford stock extending throughout the area, with a prominent northeast fault cutting all stratigraphy known as the Murdock Creek - Kennedy Lake fault.

On a property scale, the patented Canagau Mine claims are underlain by a trianglular shaped calc-alkaline intermediate to felsic package of rocks surrounded by andesitic volcanics also of calc-alkaline affinity. This triangular wedge is part of the lower Felsic Volcanic unit, described by Jensen (1975) and is regionally influenced by the north-south trending anticline from emplacement of a granitic stock to the north (Figure 4). Jensen (1975) has subdivided the felsic volcanic rocks into an upper and lower felsic unit based on relative stratigraphic positioning with respect to the Clifford stock and on pillow top determinations in the intervening pillowed andesites.

The intermediate rocks are largely grey to light grey-green dacitic flows, pillowed flows and minor pyroclastics. They are generally east-west to northwest-northeast trending, steeply dipping south to southwest, very hard and weather a light grey.

The felsic volcanic rocks on the Canagau property area are predominantly pyroclastic, composed of coarse fragmental, flow rubble, tuff breccia and ash tuff. These rocks are commonly light coloured, have a whitish weathering surface and in some places can be porphyritic.

The surrounding andesitic rocks are dark grey to green-grey aphanitic flows, pillowed flows and flow top brecoias. They are quite often amygdaloidal, with amygdules less than 5 mm in size and up to 60% in abundance. These rocks are well preserved allowing for pillow top determinations. Pillow tops seem to be towards the south and south-west on the property. In addition massive, nondescript east-west trending mafic tuff units interfingered with the intermediate to felsic volcanics in the shaft area. These units have been previously mapped by Jensen and others (Westbank) as gabbroic intrusives.

Communication with government geologists and interpretation from Hunter (1989) indicate Jensen's view of the geology of the Canagau Mine is misleading. Many of the mafic volcanic rocks have been masked and misidentified as felsic rhyolitic or rhyodacitic rocks in the field because of the pervasive carbonate alteration and local silicification.

6.0 GEOLOGIC SETTING OF THE CANAGAU PROPERTY

 (Contributed by A.D. Hunter)I) Introduction
II) General Geology
III) Lithologic Descriptions
a) Mafic volcanic rocke
b) Dacite
c) Canagau Rhyolite
IV) Structure
V) Alteration
a) Characteristic minerals
b) Whole rock geochemistry
VI) The Character and Place of Mineralization
VII) Summary
I) Introduction

Between late July and November, 1990 a programme of geological mapping was completed mainly on the core patented claims of the Ben Nevis property. In addition, some mapping was done 1) along the secondary access road which traverses the adjoining Goldmac property and ii) on the optioned Labbe claims immediately north of Captain Lake and east of the main access road. A $4.5 \mathrm{sq} . \mathrm{km}$ area was examined in the 1990 field season and results of this work are plotted at scales of 1:2500 and 1:5000. In addition, detailed mapping (1:250) was done in selected bulldozer stripped and washed areas.

The latest field work, the results of which are documented in this report, was deliberately carried out in an area containing many known sulphide occurrences. Work has also resulted in the rediscovery of old base metal prospects which were last worked in the sixties. The main purpose of the field work was to establish a geologic framework within which the place of base and precious metal mineralization can be established. To this end a simplified volcanic stratigraphy has been determined along with structural controls on mineral occurrences. Whole rock analytical work in conjunction with observed alteration assemblages in the rocks (e.g. chlorite, sericite, carbonate) has served to focus the geological target area.

Drill cores from the fall/winter (89/90) exploration programme were also re-examined and further samples taken primarily for whole rock geochemistry.

Prior to commencement of diamond drilling in October, electromagnetic surveys were performed. The drililing programme was suspended while additional surveying was completed in the corridor between the area of the Canagau mine and the Ehrhart zone.

\sim	\sim		
\sim	Δ		
\sim	M		Flow banded
:---			
brecciated			
lava			

CANAGAU - EHRHART

 SCHEMATIC SECTIONGeologic relations, lithologies, structure, mineralization in the Cenagau-Ehrhart area.

II) General Geology

The Canagau property is underlain by a mixed assemblage of mafic to felsic volcanic rocks. The felsic rocks, ranging in composition from dacite to rhyolite are best exposed near the Canagau shaft. Here, flow banded, brecciated and spherulitic lava is interbedded with coarse debris deposits, lapilli-tuff and thin bedded to finely laminated ash tuff. Another distinct felsic unit is dacitic in composition and forms a flow-dike complex extending south from the shaft area on the patented claims to the Ehrhart showing area. This unit is massive to weakly vesicular and is generally nondescript except locally where it displays a coarse spherulitic texture. This dacite unit appears to be a fault bounded facies equivalent to the rhyolite which hosts the Canagau sulphide occurrences. Detailed mapping completed this past season allows the interpretation that the dacite is fault bounded against mafic flow units. Thus the geologic setting of the area between the Canagau mine and the Ehrhart showing can be described as a fault block or caldera. The Ehrhart fault defines the south boundary of this feature (see Fig. 5 and Fig. 6).

Below the Canagau Rhyolite and its facies equivalent dacite unit there is a thick section (1.5 km) of mafic flows which extends west of the main access road. Pillow structures are commonly well developed along with pillow breccia and hyaloclastite in both outcrop and drill core. Massive flows and hyalotuff are also interbedded with rhyolite. These mafic rocks commonly form thin flow units with very fine chlorite filled vesicles which have been described as massive grey tuffs in our drill core logs. There are however, good examples of basaltic tuff at the Canagau prospect shaft and on the road into the property.

III

Lithologic Descriptions
a) Mafic Volcanic Rocks

The mafic volcanic rocks are generally very fine grained, aphyric, pale grey-green to dun brown weathering. The field evidence for pyroclastic rocks in this group is scant whereas flow structures such as pillows/pillow breccia and hyaloclastite are ubiquitous. The flows are commonly amygdaloidal and large stripped exposures such as those at the Ehrhart occurrence exhibit egg size vesicles partially filled with druse quartz. A distinctive feature is a highly vesiculated to scoriaceous pillowed section of the stratigraphy (separate unit?) about 200 metres thick lying immediately below the Canagau Rhyolite. Highly vesicular basalt flows (see analysis WR-90-2 (242-252)) characterized by a grey-green colour and tiny chlorite \& quartz filled anygdules are interbedded with the Canagau Rhyolite about 150 metres northwest of the old mine (see Fig. 5). Some thin vesicular flow units are indistinguishable from massive basalt tuff.

Another distinctive feature of the mafic flows is well developed concentric cooling cracks filled with quartz. This is evident especially in drill core (DDH CNG-90-2).

b) Dacite

The type area for dacite is the Ehrhart occurrence where this rock is intrusive into mafic flows and itself hosts polymetallic eulphide mineralization as described by Hak (1989).

Dacite forms dikes and sills with a complex geometry evident at the Ehrhart where extensive stripping ($250 \mathrm{~m} \times 75 \mathrm{~m}$) was done in 1988. Many small dikes have been mapped and are interpreted to have fed a ponded' flow that has been mapped between the Canagau shaft and the Ehrhart zone.

Unaltered dacite is pale green and glassy on fresh surfaces and buff coloured to pale yellow on weathered surfaces. Although it has a massive aspect it is distinct in the field due to well
developed jointing and its fine vesicular nature. Some flow banded spherulitic dikes closely resemble some layers observed interbedded with fine ash-tuff and coarse rhyolite volcaniclastics.

Where hydrothermal alteration and local deformation have destroyed primary features the dacite may contain waxy sericite and iron-rich carbonate in fractures and along cleavage planes (e.g. planes specimen from DDH CNG-90-1 at 173').

The type dacite dike at the Ehrhart showing occurs in a fault zone and repeated fracturing is evident due to local tectonic brecciation of altered mineralized dacite. Local sericite schist is developed along with box-work quartz-sulphides (primarily pyrite) and $A u-A g$ mineralization.
c) CANAGAU RHYOLITE

For convenience the informal unit Canagau Rhyolite refers to the prominent felsic outcrop area forming the hill at the former Canagau mine.

This felsic unit comprises flows, associated coarse debris, pyroclastic and local thinly laminated ash-tuff. These rocks are pale yellow weathering to off-white or bone coloured when silicified. They are weakly feldspar phyric to aphyric, no quartz phenocrysts have been noted in felsic volcanics with the exception of one mappable dacite sill (800 m southwest of the Caragau shaft).

Structurally, the rhyolite forms massive, well jointed and flow banded/brecciated spherulitic lava. The recent stripping now provides excellent exposures of pyroclastics, including laminated ash-tuff, lapilli-tuff and coarse debris interbedded with thin flow layers (150 m northwest of the Canagau mine).

Where altered near the former Canagau mine, the rhyolite is chloritized and sericitized and may contain patchy, disseminated carbonate. This is especially evident in drill cores from the upper part of DDH CNG-90-2.

Structure

The volcanics strike east to southeast and observed dips are steep to the south and southwest where observed. A well developed sub-vertical foliation parallels stratigraphy in a gross sense. Shearing is only locally developed usually in sericite-carbonate rich zones.

Although a broad flexure or fold in the volcanics is evident from the 1:5000 scale map, tight folds can only be demonstrated at outcrop scale (see Fig. Ba). Here the structure is complex and probably in part reflects early non-penetrative deformation (e.g. Elumping).

Jensen's interpretation (OGS Map 2283) places the Canagau mine in a crossfold or a structural dome position. Although there is a thick section of rhyolite here it is not as thick as was previously believed. This is due to widespread hydrothermal alteration which has masked pale, bleached mafic volcanics previously mapped as rhyolite (see alteration section below). Current understanding of the structure is poor due to a lack of tops determinations. Pillow lavas north of Captain Lake in newly stripped outcrops on the Labbe option suggest tops southwest. However, there is compelling evidence for stratigraphy facing toward the northeast in the Canagau-Ehrhart section where most of the detailed work has been done (see Fig. 6, schematic section). Here numerous dacite dikes cut the mafic volcanics at a high angle and appear to feed flow(s) higher up. At the Ehrhart zone the mineralized dacite dikes can be traced northeastward into a thick stratiform unit of rock which is now considered to be a flow/dike complex. Detailed mapping also shows that the Ehrhart structure fault bounds this dacite which is interpreted to be "ponded" against mafic flow rocks. Another dacite dike which is subparallel to the Ehrhart structure occurs near a cabin about 600 metres to the northwest. The gross geologic setting appears to be that of a caldera. The floor of this structure corresponds to a mafic-felsic contact that lies immediately north of the large stripped area about the Ehrhart shaft. Diamond drill holes CNG-

90-3 and CNG-90-6 cast doubt on such a simple interpretation. The possibility that stratigraphic relations are complicated due to folding must be considered. In time section drilling will provide the answer.

V) Alteration

a) Characteristic Minerals

Hydrothermal alteration is widespread on the Canagau property. An extensive iron carbonate (ankerite-ferrodolomite (siderite?)) sericite alteration event is best recorded in the mafic volcanic rocks. This is particularly evident in the vesicular flow/flow breccias that occur southwest and in contact with the Canagau Rhyolite. These mafic rocks are interpreted to form the stratigraphic footwall to the felsic rocke, and to occupy the floor of an recently interpreted caldera underlying the area between the Canagau mine and the Ehrhart zone. The mafic-felsic contact does not appear on Jensen's Map 2283 (Jensen 1975).

Chlorite and sericite are also widespread in occurrence but best developed in the area of the Canagau mine. This is evident from an examination of rocks on the mine dump (Hunter, 1989). In drill hole CNG-90-2, put down under the shaft of the oldmine, there is an impressive 100 m core length of chloritic and sericitic alteration with attendant stringer sulphides (see "mineralization" section below). Whole rock geochemical sampling here resulted in analyses which show strong soda depletion typical of proximal volcanogenic massive sulphide (VMS) host rocks.

Chlorite and sericite alteration is a salient feature of the geology between the Canagau Mine and the Ehrhart Fault, a distance along strike of about 0.6 km . The alteration occurs across a stratigraphic thickness of about 0.5 km . The extensive stripping done in 1988 at the Ehrhart occurrence coupled with core from drill hole CNG-90-1 shows intense development of all alteration types, Fe-carbonate, sericite and chlorite. At the Ehrhart, alteration extends across about 250 metres of stratigraphy and in
the gross sense this alteration is fault bounded. Southeast of the Ehrhart Fault the juxtaposed mafic volcanics are essentially unaltered and carbonatized rocks that are equivalent to those forming the caldera floor are offeet at least 200 metres to the northeast.

b) Whole Rook Geochemistry

Whole rock chemical analyses of a suite of volcanic rocks was presented in a previous report (Hunter, 1989). This past field season, concomitant whole rock sampling and detailed mapping were performed. Whole rock analytical data form an appendix to this report. (Appendix I).

The data indicate that these are mafic volcanics ranging in composition form basalt to andesite (note $\mathrm{SiO}_{2} \mathrm{vs} \mathrm{TiO} 2$). There is a group of samples with between $65-73 \%$ SiO2 which corresponds to the dacite unit. Rhyolite flows and fragmental rocks contain between $73-82 \% \mathrm{SiO}_{2}$ based on all analyses performed to date.

Hydrothermal alteration has clearly resulted in the formation of carbonate throughout a thick section of the stratigraphy. Sericite commonly occurs in carbonate altered zones. Chemically this is indicated by 2-4 times the normal content of $\mathrm{K}_{2} 0$ in the altered basaltic rocks.

Alteration attendant to proximal VMS deposits, such as those in the Blake River Group volcanics at Noranda, is of the feldspar destructive type. This is reflected in marked sodium (Naz0) and usually calcium (CaO) depletion in the area of known deposits to levels typically less than 1% Nazo. On the Canagau property, the Blake River volcanic rocks show extreme soda depletion and many exhibit concomitant calcium depletion (e.g. analyses WR-90-8, WR-90-9). However the Canagau rocks have been carbonatized unlike the well studied rocks in the central Noranda mining camp. The fact that multiple overlapping alteration events have occurred makes the rock geochemistry more difficult to assess. The fact that strong sodium and calcium depletion exists in conjunction with sericitized and chloritized zones where there is also strong
base metal enrichment is significant. The environment at Canagau appears to have been ideal for the formation of massive polymetallic sulphides.

VI) The Character and Place of Mineralization

Polymetallic sulphide showings are widespread which may reflect either a primary stratigraphic "stacking" of sulphidic zones or repetition of mineralization by folding. Both these observations may apply and only a resolution of the structure will provide the answer. The scale of salient alteration with ascociated base metal, silver and gold enrichment in the volcanios is impressive and defines an area about 1 km by 0.6 km . Field work and observations from examination of drill core reveal several different modes of mineralization, namely;

1) Sulphide mineralization comprised of pyrite, arsenopyrite, galena, sphalerite and minor chalcopyrite form semi-massive and massive conformable veins and stringer type mineralization in the Canagau shaft area. Some of the massive pyrite-sphalerite mineralization is banded and resembles typical volcanogenic massive sulphide. An example of this occurs 60 metres northeast of the Canagau mine in an altered basalt outcrop. Detailed mapping (1:250) northwest of the mine, in an area recently stripped and washed, has revealed what appears to be strata-related sulphide mineralization. This occurs as disseminated sulphides at basalt-rhyolite contacts in a structurally complex outcrop.
ii) Diamond drill cores reveal that important concentrations of base metal sulphides, gold and silver are associated with small deformed quartz carbonate veins. Where sulphides and quartz-carbonate occurs together, the former, particularly pyrite is often seen to be comminuted or pulled apart and in-filled by the gangue minerals which display a honeycomb or cellular texture. Fine grained massive pyrite bands appear to predate other sulphides. Honey sphalerite is typical of these small veins which range in size from 0.1 to
0.5 feet. The largest vein recognized to date occurs in core from DDH CNG-90-6 (438-433'). This is associated with a dacite dike at or near a basalt/rhyolite contact. Intense alteration is manifested by massive chlorite and sericite bands within the mineralized section. The dacite dike is also locally strongly chloritized and contains conspicuous chalcopyrite. Shearing and the presence of a brecciated quartz-carbonate vein emphasize the atructural control of the mineralization.
iii) Conformable mineralization is characterized by disseminations of sulphide occurring as amygdule fillings along with quartz and carbonate. Although the mineral pyrite is most abundant, sphalerite and chalcopyrite are also common. This style of mineralization occurs in both carbonate-sericite altered and chloritized mafic volcanic rocks. A very extensive zone of copper enrichment in cores from $D D H$ CNG-90-1 is associated with chloritized basalt. A similar zone of mineralization occurs in DDH CNG-90-6 (448515*). These are excellent examples of the grossly stratiform mineralization that is known to be asBociated with massive sulphide deposits in Noranda, such as the Corbet orebody.
1v) Very fine grained disseminated pyrite and associated sphalerite and galena occurs in strongly chloritized zones in felsic volcanic rocks. A good example of this type of mineralization occurs in DDH CNG-90-2 drilled below the Canagau Mine workings. This is analogous to stringer sulphide mineralization that has been well described for many Abitibi Belt base metal deposits. A notable exception is the relatively low copper content of the altered section in this particular hole. However, strong copper enrichment occurs with chlorite in drill holes CNG-90-3 and CNG-90-6 only 250 metres away to the southeast.
v) Mineralized dacite dikes are sericitized and commonly contain disseminated fine grained cubic pyrite with or
without arsenopyrite. Many dikes also contain finely disseminated and blebby chalcopyrite. Pale honey coloured sphalerite forms stringers and veins, commonly with galena, which together postdate the iron and arsenic rich sulphides. At the Ehrhart occurrence electrum and tetrahedrite have also been recognized (Hak, 1989). These minerals account for some erratic high grade gold and silver values in the altered quartz-rich sections of the dacite.

For simplicity the various forms of mineralization and attendant alteration can be visualized by reference to Fig. 6 a schematic section. This must be viewed more as a cartoon until the structure is resolved.

VII) Summary

The area of the Canagau Mine in east central Ben Nevis township can be described as a focal point or centre of both volcanic and hydrothermal activity. Field relations record rapid alteration of mafic and felsic volcanic rocks, specifically thin well vesiculated basaltic flows interlayered with flow banded spherulitic rhyolite and related volcaniclastic and laminated ashtuff units. These volcanic rocks form a steeply dipping assemblage which is locally highly folded. The structure is largely unresolved in the absence of marker horizons. However, gross geologic relations support the existence of a volcanotectonic structure which links mineralization between the Canagau mine and the polymetallic Ehrhart structure.

Hydrothermal alteration is widespread and marked by a broadly conformable Fe-carbonate/sericite zone and more localized chloritized and silicified sections. Sulphide mineralization is ubiquitous and well developed especially with chlorite, as i; chalcopyrite-pyrite-sphalerite-quartz vesicle fillings, quartz-carbonate- sulphide veins and as etringers and pods of pyrite with chalcopyrite (DDH CNG-90-3 (26-48')) and ii; as very fine grained disseminations and films of sphalerite and galena in chlorite and
sericite altered zones.
Geochemical data combined with geologic relations indicate a complex multi-stage event of mineralization. Diamond drilling has intersected a strongly altered, $\mathrm{Pb}-\mathrm{Zn}$ enriched zone, resembling a stringer sulphide zone, near the Canagau Mine. However, only 3400 m to the southeast zones of $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Ag}$ enriched chloritized volcanics appear to lie at about the same stratigraphic position. Evidence to date shows that $\mathrm{Au}-\mathrm{Ag}$ mineralization is concentrated in relatively late quartz-sulphide veins. A good example of this occurs on the Ehrhart structure which was discovered by prospecting methods. Further progress on the Canagau property will depend on deep geophysical surveying and diamond drilling.

7.0 ADDITIONAL DETAILED MAPPING

1:250 scale mapping was carried out in two areas of the Canagau property during September and October 1990 as a follow up to mechanical and hydraulic stripping. An area of the Labbe option claims with a known sulphide-chert showing was selected (Figs 7a,b). The second area of stripping is located west to north of the Canagau shaft on a series of low knolls where large areas could be effectively cleared (Figs 8a,b, c).

Stripped areas in the Labbe claims expose a sequence of basalt flows, pillowed flows, vent breccias and coarse flow breccias which are cut by dacitic dykes and one andesitic dyke. In the northern most stripped area (Fig. 7b) a pillowed basalt unit trends roughly 100 degrees and tops are determined to be north. This is one of the few areas where such orientations could be determined. This orientation contrasts sharply with vent breccia contacts seen to the south (Fig. 7a) which strike north easterly and appear to top to the west by inference from the location of silica dumping.

The known showings on the Labbe claims (Fig. 7a) are both found to be basalt vent breccia pipes whose cores have been silicified. Coarse basalt fragments have been strongly bleached
in the pipe while fine basalt material common to the groundmass outside the pipe have been washed away and replaced with chert and pyrite. Outside the core of the pipe and "downslope" to the northeast a frothy, scoriaceous flow breccia can be observed. A whole rock sample taken from the unmineralized host basalt, No. 8514, shows a marked silica depletion indicating a very strong hydrothermal system at work. At least three flow breccias are found in the vicinity of the chert pipe, indicating a plurality of such vents nearby or multistage extrusion of flow material from this vent. One flow breccia contains angular fragments of dacite. The andesite dyke was also lithogeochemically sampled confirming its composition (sample 8515). This dyke has a strong core but its contacts are diffuse, injecting andesitic material into the interstices of the pillowed sequence it intrudes. The term "tuff dyke" was used by one visitor to the site.

Base metal mineralization is associated to the two mapped vent pipes and to the dacite dykes seen on Fig. 7b. Pyrite with minor amounts of sphalerite and chalcopyrite are seen in both areas. Sulphides, mainly pyrite, are also noted in the strongly carbonate altered basalts at the north end of the Labbe stripping. Disseminated and amygdule fill sulphide are both seen.

Stripping to the west and north of the Canagau shaft targeted several rediscovered mineral showings an areas of projected extent of the Canagau Rhyolite. The intention was to improve structural understanding of the area. Geology of the areas stripped is presented on figures $8 \mathrm{a}, \mathrm{b}$, and c .

Far from simplifying the geological setting, stripping added still more complexity. Figure 8 a demonstrates that both sharp paleorelief and folding contribute to a complex pattern of interbanding of rhyolitic and basaltic flows and tuffe. On the main outcrop south of the road in figure 8 a a unit of rhyolite is found to be pinched into the core of a synformal fold. Away from the fold nose a sequence of cherty bands of rhyolite strike roughly 100 degrees. This original bedding is crosscut and completely replaced by an axial planar foliation towards the fold
nose, whose axis trends roughly 050 degrees. A narrow band of basalt tuff forms the next unit in the fold sequence. This tuff grades locally to a felsic ash on the southern limb while the northern limb appears to attenuate.

Further southwesterly on the main outcrop, irregular contacts between massive basalts and massive rhyolites suggest paleorelief contacts as basalt filled in swales and crevasses between viscous rhyolite flow ridges.

Folding and penetrative foliation related to folding are visible in all new exposures and involve thin to thick interbedded packages of basalt and rhyolite with minor occurrences of intermediate ash. One dacite dyke is seen to intrude along a fold limb.

Mineralization and alteration are a consistent with those forms described by A.D. Hunter (this report). Sulphide mineralization can be seen in narrow bands along contacts between rhyolites, ashes and basalts as well as within chloritized rhyolites (L150E 125N) and basalts (LIW ON). It is unclear whether mineralization seen in this stripping is structurally controlled but is not believed to be so.

Whole rock samples ($\# 8503$ to 8513 incl.) taken from the new Canagau area stripping shows variable alteration levels throughout the area in both basalts and rhyolites. As with mineralization, alteration such as soda depletion ls not believed to be structurally controlled.

8.0 GEOPHYSICAL SURVEYS

Three geophysical surveys were undertaken during the fall and winter of 1990-1991. All three were electromagnetic in nature and were intended to identify potential base metal conductive zones in the Canagau sequence.

8.1 Horizontal Loop E.M. Survey (Fig 8)

Approximately 28 Km of 444 Khz horizontal loop Max-Min $2+$ survey was conducted over the Canagau grid. Readings were taken at 25 metre stations on lines 50 metres apart. Transmitterrecelver separation was 150 metres.

Only one in-phase E. M. anomaly was detected during the survey, centred at $L 1+50 \mathrm{E} \quad 1+50 \mathrm{~S}$. This anomaly has no corresponding quadrature response. The anomaly was drill tested by hole CNG-90-3 with no success. It is believed this anomaly may be due to mass effect caused by topographic relief.

8.2 Maxi-Probe Survey

Four 1600 metre long grid lines were traversed by Geoprobe Limited using a Maxi-Probe deep E.M. System. A discussion of the survey parameters and results by Geoprobe Limited is found in Appendix II.

In summary four zones of anomalous, low apparent resistivity were defined by the survey. Three of these anomalies correspond to altered zones at what are believed to be major lithological contacts. The fourth is quite deep seated and unexplained in overburden. Anomaly C was drill tested by hole CNG-90-6. The proposed anomaly was found to coincide with a thick sequence of well altered and mineralized basalts and rhyolites with amygdules and fracture filling pyrite and gphalerite mineralization.

8.3 Pulae-F.M. Survey

Holes CNG-90-2 and CNG-90-6 were both tested by a Crone Pulse E.M. downhole geophysical system in order to test the envelope of rock surrounding these holes. The pulse system can sense to a radius of 75 metres using surface ground loop transmissions with a down hole sensor. Profiles for the two surveys are presented in Appendix III.

Both down hole surveys failed to define a conductor of any
significance either transecting the hole (an 'in-hole' anomaly) or in adjacent rocks (an 'off-hole' anomaly).

9.0 DIAMOND DRILLING PROGRAMS

Two phases of diamond drilling were undertaken during 1990. A total of 4839 feet of $B Q$ drilling was completed during January and February (2005) and during October and November (2834). Three holes were completed in the vicinity of each of the major showings, the Canagau and the Ehrhart.

Hole CNG-90-2 (Fig. 10) sectioned the volcanic sequence under the Canagau shaft for 1008 feet. The hole intersected a sequence of interbedded, altered amygdaloidal basalts, massive fine grained basalt tuff, basalt flow breccias and rhyolite flows. Beyond 779 feet in hole 2 relatively unaltered rhyolite flow with thin to thick interbeds of unaltered basalt tuff predominate. General alteration consists of strong carbonate, chlorite $+/-$ sericite with minor pyrite. In basaltic rocks, amygdules, often mineralized with pyrite $+/-$ sphalerite $+/-$ galena or chalcopyrite, are preferentially chlorite altered followed by flow breccia groundmass, selvages and finally more massive basalt. Rhyolite exhibits chloritization preferentially along sericitic bands which represent rotation of flow banding.

Both rock types have stringers and veins of disjointed "pullapart" pyrite infilled with quartz carbonate gangue, sphalerite and galena. The amount of base metal mineralization absociated with these stringer veins appears proportional to the volume of gangue.

Holes CNG-90-3 (Eig. 11) and CNG-90-6 (Fig.12) were collared on a parallel section roughly 200 metres east of hole CNG-90-2. These holes were intended to evaluate the rock package equivalent to the Canagau shaft area in this vicinity and to test a horizontal loop E.M. conductor and a two Maxi Probe E.M. anomalies.

Hole CNG-90-3 drilled from south to north, collared in extremely well chloritized and sericitized rhyolites and basalts.

Stringer veins and sulphide filled amygdules are common in this sequence. Below 454 feet in hole CNG-90-3 almost 95% of the core recovered is fresh weakly altered basalt.

Hole CNG-90-6 was collared north of hole CNG-90-3 and drilled north to south to section the entire altered zone in which hole CNG-90-3 was collared. CNG-90-6 also drill tested a deep seated Maxi-Probe anomaly (anomaly C) further to the south. This hole intersected 1480 feet of predominantly well altered chloritized basalt and rhyolite. Less rhyolite was encountered than expected in hole CNG-90-6 indicating that the thick unit mapped at surface may be the result of fold repetition. Sulphide stringer veins and sulphide amygdule fillings are pervasive in basalts encountered in this hole. Rhyolites are well chloritized and sericitized but sulphide mineralization is restricted to veins and fractures. One dacite dyke is found in hole CNG-90-6 at 443.2 feet in a lawalt. A five foot zone of basalt on the upper contact. of this dyke is strongly altered to chlorite-sericite as well as tectonically brecciated. Mineralization consists of quartz-dolomite-pyrite-arsenopyrite-sphalerite-galena-chalcopyrite, similar to the polymetallic assemblage found at the Canagau prospect shaft.

Hole CNG-90-6 was stopped at 1480 feet after transecting the proposed Maxi Probe conductor. No obvious change in the alteration or mineral concentration was noted at the predicted location of anomaly C (Appendix II).

TABLE 2

Summary of Diamond Drilling Canagau Project 1990

Hole	Location	Az/Incl.		Depth
CNG-90-1	$56 \mathrm{~m} \mathrm{Az157}$ from $2+50 \mathrm{E}$ 8+31S	337/-45	997 ft	Ehrhart fault and IP anomalies
CNG-90-2	$1+00 \mathrm{~W} 0+54 \mathrm{~S}$	053/-5	1008 ft	Canagau shaft section
CNG-80-3	$1+00 \mathrm{E}^{2+15 S}$	045/-45	754 ft	E.M. anomaly, Canagau Rhyolite
CNG-90-4	$2+04 \mathrm{E}$ 6+60S	130/-45	250 ft	Ehrhart fault
CNG-90-5	$2+04 \mathrm{E}$ 6+60S	130/-60	350 ft	Ehrhart fault
CNG-90-6	25m grid east $1+50 \mathrm{E} 1+35 \mathrm{~S}$	225/-60	1480 ft	Canagau Rhyolite Maxi-Probe Anomaly C

$$
2839 \mathrm{ft}
$$

In the Ehrhart area, 3 holes tested local geology. Hole CNG-90-1 sectioned strata through the dacite dyke swarm at the base of the "ponded" sequence described by Hunter (this report). Holes CNG-90-4 and CNG-90-5 were drilled to evaluate the Ehrhart fault and its relationship to the polymetallic mineralization found in dacite and basalt rocks in the vicinity.

Hole CNG-90-1 (Fig. 13) was drilled north westerly across the projected trend of the Ehrhart fault. A possible cross fault lies between the drill hole trace and the last exposure of the Ehrhart fault. No significant shear was seen in core although the cross fault was identified at 209.5 feet. Hole CNG-90-1 intersected eight dacitic dykes. Several of these are strongly silicified and mineralized with iron carbonate. These altered dacites are also sulphide mineralized having fracture controlled pyrite, podiform
and breccia fill aggregates with pyrite, galena, quartz carbonate and sphalerite. These dykes inject a sequence of frothy, amygdaloidal basalts which have undergone chlorite-sericite alteration of variable intensity throughout the section. This alteration is not related to the dykes and is present well beyond the limit of their intrusion.

Northwest of the dacite dyke swarm, amygdaloidal basalts become interbedded with massive fine grained basalt tuff and a peculiar flow breccia seen only in core to date. This breccia consiste of rounded blocky fragments of basalt in a black aphanitic chloritic groundmass. Fragments often have "mated" contours as if the blocks moved against each other while still hot. This rock is very altered and fine grained chalcopyrite is found in the breccia groundmass.

Holes CNG-90-4 and CNG-90-5 (Fig. 14) were collared at the same location and drilled on the same section at 45 degrees and 60 degrees respectively. The purpose was to section the Ehrhart fault below a known surface exposure and create a vertical profile for study.

Both holes sectioned a rapidly alternating sequence of dacites and amygdaloidal basalts. Contacts are fault controlled or intrusive and occur at variable core angles. The Ehrhart fault is actually a set of tight slip faults in a strongly shear banded section of dacite and basalt. Several tight faults occur outside the zone of shear banding. One tight fault in particular, at 196.5 feet in hole CNG-90-4 and 247.2 feet in hole CNG-90-5 is believed to be the major offset in the system, bringing the ponded dacite rhyolite sequence into juxtaposition with relatively fresh basalt. The true thickness of the deformation zone is roughly 70 feet.

Mineralization in the deformation zone consists of veins and irregular masses of pyrite and sphalerite, galena and some arsenopyrite. One such 6 inch vein returned an assay of 2.1 oz/ton Au over 1 foot.
10.0 CONCLUSIONS AND RECOMMENDATIONS

Exploration of the Canagau property during 1990 has resulted in a fuller and more detailed understanding of the geology and mineralization of the area. Surface mapping and diamond drilling have defined a 1 Km by 0.6 Km area of moderately to strongly altered basalt and rhyolite. The sequence is thinly to thickly bedded and locally folded. All rocks exhibit chlorite alteration with variable amounts of sericite alteration. This alteration and attendant strong soda depletion are typical of alteration haloes surrounding volcanogenic massive sulphide deposits. Strongly anomalous copper and zinc mineralization is widespread through the map area and located in stringers and more particularly in vesicles indicating a proximal source for base metal mineralization.

Structural complexity within the altered package of rock in the Ehrhart and Canagau area has not been resolved. Large scale folding and irregular paleorelief features with respect to interflow contacts defy extrapolation of small scale features to a general interpretation.

Mineralization and alteration found to date underline the merit of continued exploration of the Canagau property. Further drilling and a broadening of scope in surface mapping to include a large radius of study are recommended.

REEERENCES

| Grunsky, E. C. 1986 | Recognition of Alteration in Volcanic
 Rocks using Statistical Analysis of |
| :--- | :--- | :--- |
| Lithogeochemical Data. O.G.S. M.P. 129 | |
| and Open file 5628. | |

I, William John McGuinty of 63 Rand Avenue, West in the town of Kirkland Lake in the Province of Ontario,

Do hereby certify:

1. That I am a graduate of the University of Ottawa (1983) with a degree of Bachelor of Science (B.Sc.) with Honours in Geology.
2. That I have been practicing my profession as a Geologist and been engaged in mineral exploration since 1981.
3. That this report is based on visits to the property and personal appraisal of available data.
4. That 1 have disclosed in this report all relevant material which to the best of my knowledge might have a bearing on the viability or recommendations to the project.
5. That I do not have, nor do I expect to receive, directly or indirectly any interest in the property reported on herein.
6. That I am exploration manager for Joutel Resources Limited.

CERTIFICATE OF QUALIFICATIONS

I, Bradley C. Leonard of 2081 Sunnyside Road in the
City of Sudbury, in the Province of Ontario
Do Hereby Certify that:

1) I am a graduate of the University of Toronto (1983) with a bachelor of Science degree (B.Sc.) with honours in geological sciences.
2) I have been practicing my profession as a geologist since 1983, and a consultant since 1988.
3) I have no interest, directly or indirectiy in the property, Joutel Resources Ltd. or Mountain Lake Resources Inc., nor do I expect to acquire any interest, directly or indirectly in either of the aforementioned companies, or the property.
4) This report was prepared by me using government maps and reports; miscellaneous data on file in the files of the resident geologist, Ministry of Northern Development and Mines, Kirkland Lake, Ontario; and field visits to the property.

Bradley C. Leonard B.Sc. Consulting Geologist Kirkland Lake, Ontario November 17, 1990.

APPENDIX I

WHOLE ROCK GEOCHEMISTRY
AND
ASSAY CERTIFICATES

Swastika Laboratories

A Divislon of Assayers Corporation Ltd.

Geochemical Analysis Certificate

Company: QUEENSTON MINING
Project: BEN NEVIS
Atn: W. MCGUINTY

Date: SEP-04-90
Copy 1. BOX 193, KIRKLAND LAKE, ONT P2N 3H7
2. FAX TO 567.7002

We hereby certify the following Geochemical Analysis of 29 ROCK samples submitted AUG-28-90 by A. D. HUNTER.

$\mathrm{As}, \mathrm{Sb}, \mathrm{Sn}, \mathrm{WRA}$ results to follow

P.O. Box 10, Swastika, Ontario P0K 1T0

$\mathbb{C}_{\mathrm{E}}^{\mathrm{M}} \mathrm{t}$ tititate nf Aualynia

Certificate No. OW-1263-RGl
Date September 17, 1990
Received \qquad
1990
14 samples of Rock
Submitted by Queenston Mining Inc., Kirkland Lake, Ontario
Attention: Mr. B. McGuinty Page one of three WHOLE ROCK ANALYSIS

SAMPLE NO:
$\mathrm{SiO}_{2} \%$
$\mathrm{Nl}_{2} \mathrm{O}_{3} \%$
13.99
5.78

WR-90-2 WR-90-3
WR-90-4
WR-90-5
$\mathrm{Fe}_{2} \mathrm{O}_{3} \%$
CaI \%
$\underbrace{0}_{\operatorname{van}_{2} 0} \%$
$\mathrm{K}_{2} \mathrm{O}$ \%
$\mathrm{TiO}_{2} \%$
Mn \%
$\mathrm{P}_{2} \mathrm{O}_{5}$ \%
3.96
4.97
1.03
3.22
1.81
4.15
1.66
1.78
4.91
1.55
3.32
0.73
3.56
4.22
3.65
0.96
1.73
1.42
0.64
$0.93^{`}$
0.54
0.85
0.43
0.78
0.33
0.11
0.08
0.02
0.14
0.05

LOT \quad ?
0.11
0.15
0.15
0.15
0.11

Ba PPM
4.92
4.41
2.87
4.48
3.08

281
468
322
536
241
Cr PPM
866
129
835
631
664
1081
195
204
318
182
87
122
51
105
66
34
44
22
39
368
534
476
341
468

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244.

FAX (705)642-3300

Swastika Laboratories
Page_ 2

WHOLE ROCK ANALYSIS
SAMPLE NO: WR-90-6
WR-90-7 WR-90-8
WR-90-9 WR-90-10
SiO_{2} \%
$\mathrm{Nl}_{2} \mathrm{O}_{3}$ \%
65.76
13.65
72.26
72.87
71.58
48.75
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ \%
CaO \%
$\mathrm{Na}_{2} \mathrm{O} \%$
$\mathrm{K}_{2} \mathrm{O}$ \%
TiO_{2} \%
MnO \%
4.29
4.86
1.48
1.71
2.25
2.55
4.92
1.24
0.15
0.01
0.01
1.54
2.31
1.95
1.41
2.04
1.25
0.38
0.29
0.31
0.35
0.73
$\mathrm{P}_{2} \mathrm{O}_{5}$ \%
L01 \%
0.15
0.08
0.03
0.08
0.15
0.11
0.11
0.14
0.15
4.89
3.51
3.97
13.52

217
702
205
100
655
478
551
246
311
255
351
Nb PPM
236
296
33
37
399
15
25
92
$44 \quad 39$
25
478
376
300

WHOLE ROCK ANALYSIS
SAMPLE NO:
WR-90-11
WR-90-12 WR-90-13 WR-90-14
$\mathrm{SiO}_{2} \%$
$\mathrm{Al}_{2} \mathrm{O}_{3}$ \%
74.86
61.42
73.68
52.79
12.22
11.29
10.56
16.45
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ \%
$\mathrm{CaO} \%$
2.15
6.31
3.15
9.61

1. 75
6.11
2.78
5.11
0.56
3.58
0.71
6.35
$\mathrm{Na}_{2} \mathrm{O}$
3.31
2.15
2.75
3.53
$\mathrm{K}_{2} \mathrm{O}$ \%
2.15
1.03
1.63
0.52
TiO_{2}
0.22
0.65
0.29
0.89

MnO \%
0.03
0.11
0.06
0.15
$\mathrm{P}_{2} \mathrm{O}_{5}$ \%
I_OI \%
Ba PPM
Cr PPM
$\mathrm{Nb} \quad$ PPM
Sr PPM
$\begin{array}{ll}Y & \text { PPM } \\ \text { Zr } & \text { PPM }\end{array}$
0.11
2.61
170
1259
359
46
41
468
0.19
7.08
125
530
593
93
34
403

0.11	0.22
4.11	4.33
328	71
1798	320
542	451
102	198
43	34
405	418

Slight Chromium contamination due to use of hard chrome steel
(pulverizer plates.

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation?

Geochemical Analysis Certificate

Company: JOUTEL RES. LTD.
Project: C/O QUEENSTON MINING INC.
Alln:

Date: OCT-01-90
Copy 1. BOX 193, KIRKLAND LAKE P2N 3H7
2. FAX TO 567-7002

We hereby certify the following Geochemical Analysis of 26 CORE/ROCK samples submitted SEP-25-90 by .

Whole Rock Analysis results to follow where requested.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244. FAX (705)642-3300

Swastika Laboratories
 A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Clartitirate nf Aualyzig

\qquad
Certificate No. OW-1458-RG1
Date October 9, 1990
Received \qquad September 25, 1990 18 Core/Rock Samples \qquad
Submitted by Joutel Res. Ltd., c/o Queenston Mining_Inc, Kirkland_Lake ont. WHOLE ROCK ANALYSIS
SAMPLE NO: WR-90-15 WR-90-16 WR-90-17 WR-90-18

SiO_{2}	\%	79.41	47.65	56.92	65.05
$\mathrm{Al}_{2} \mathrm{O}_{3}$	\%	9.69	12.79	10.76	12.48
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	\%	2.98	7.19	5.01	6.12
CaO	\%	1.43	10.84	4.38	4.89
MgO	\%	0.63	4.17	2.29	1.57
- ${ }^{1}$	\%	0.01	1.23	0.78	2.89
$\mathrm{K}_{2} \mathrm{O}$	\%	2. 59	1.62	2.31	1.13
TiO_{2}	\%	0.15	0.75	0.42	0.88
Mn0	\%	0.22	0.25	0.27	0.11
$\mathrm{P}_{2} \mathrm{O}_{5}$	\%	0.06	0.1	0.09	0.13
1.01	\%	2.76	13.21	16.53	4.66
Ba	PPM	192	169	202	293
Cr	PPM	1024	781	347	630
Nb	PPM	144	118	336	98
Sr	PPM	15	81	55	71
Y	PPM	31	20	31	34
7 r	PPM	185	146	214	207

WHOLE ROCK ANALYSIS

SAMPLE NO:
SiO_{2} \%
$\mathrm{Al}_{2} \mathrm{O}_{3} \%$
$\mathrm{Fe}_{2} \mathrm{O}_{3} \%$
CaO \%
MgO \%
$\mathrm{Na}_{2} \mathrm{O} \%$
$\mathrm{K}_{2} \mathrm{O} \%$
$\overbrace{\text { Mino }}^{\mathrm{TiO}_{2}} \%$
$\mathrm{P}_{2} \mathrm{O}_{5}$ \%
LOI \%
Ba PPM
$\mathrm{Cr} \quad \mathrm{PPM}$
$\mathrm{Nb} \quad \mathrm{PPM}$
Sr PPM
$\begin{array}{ll}\mathrm{Y} & \mathrm{PPM} \\ \mathrm{Zr} & P P M\end{array}$

WR-90-19 WR-90-20
61.09
14.14
12.51
0.41
4.56
5.32
1.37
1.46
0.82
0.09
0.21
0.13
0.12
0.19
0.09
0.14
0.11
0.19
0.11
6.93

284
225
<10
53
<10
154
WR-R2
WR-R3
WR-R4
53.29
55.99
65.21
$12.47 \quad 13.55$
12.62
15.42
14.99
9.01
6.19
4.02
3.67
4.29
2.73
2.31
0.01
1.68
2.06
4.76
1.27
0.01
2.41
0.19
0.69
1.76
1.86
1.12
4.48

315
748
44
10
19
186
4.44
2.09
0.73

35
147
420
848
42
52
84
110
162
83
$44 \quad 45$
83
234
255
337

WHOLE ROCK ANALYSIS

WHOLE ROCK ANALYSIS
SAMPLE NO:
$\mathrm{SiO}_{2} \%$
$\mathrm{Al}_{2} \mathrm{O}_{3} \%$
$\mathrm{Fe}_{2} \mathrm{O}_{3} \%$
CaO \%
MgO \%
$\mathrm{Na}_{2} \mathrm{O}$ \%
$\mathrm{K}_{2} \mathrm{O}$ \%
$\mathrm{TiO}_{2} \%$
$\mathrm{P}_{2} \mathrm{O}_{5}$ \%
LOI \%
Ba PPM
Cr PPM
Nb PPM
Sr PPM
$Y \quad$ PPM
Zr PPM

CNG-90-2	CNG-90-2
$401 / 411$	$517 / 527$
75.21	73.93
12.39	13.76
4.83	4.75
0.21	0.27

CNG-90-2	CNG-90-2	CNG-90-2
$642 / 653$	$753 / 763$	$896 / 906$
48.01	71.29	73.39
15.86	13.54	13.21
8.82	4.35	1.82
7.26	1.26	2.88

2.12	1.54
0.01	0.01

5.51
2.24
1.05
0.06
0.01
0.01
2.22
2.59
2.27
2.59
3.09
0.19
0.23
0.98
0.22
0.21
0.09
0.08
0.25
0.33
0.15
0.05
0.05
0.12
0.05
0.05
2.61
2.72
10.71
4.03
4.05

423
413
283
307
385
1285
236
82
590
833
<10
16
32
201
188

146

51
31
20
35
38
32
245
184

Established 1928

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Uritituate nif Alalyzita

\qquad
Certificate No. OW-1458-RG1

Date \qquad Nov. 2. 1990

Received Sept. 25, 1990 5
Submitted by Joutel Resources, Kirkland Lake. On Ont \square
\qquad
\square Canagad

 Donna Gardner

P.O. Box 10, Swastika, Ontario P0K 1T0

SWNASTIKA LABROATLRRIES

TELEFHDNE : 05-642-3244
FAX : : 705-692-3300
I.C.A.P. WHOLE ROCK

LITHIUM METABORATE FUSION

SWASTIKA LAES
SHASTIKA ONT.
T.S.L. REPORT No. : M - 8427-1
T.S.L. File No. : NOOPFiA
T.S.L. Invaice No. :

ALL RESULTS FFM

LDOA Joutel Resources Inc Box 193
Kirkland Lake, Ontario P2N 3H7

1

1.5\% LATE CHARGE OVER 30 DAYS (ANNUAL RATE 18\%)

vil		2 ,	291	90	141
51		2.5	299	77	108
45		1.7	251	98	239
17		1.0	96	35	173
34	41	1.8	185	89	501
38		2.7	671	167	372
24		1.8	959	47	225
31		1.3	210	82	302
58		0.3	40	14	145
7		0.3	63	17	188

Certified by

G. Lebel / Manager
(W)
SWASTIKA LABORATORIES LIMITED
P.O. BOX 10, SWASTIKA, \quad ONTARIO POK 170
TELEPHONE: (705) $642-3244$

Jovâ Joutel Resources

 Box 193Kirkland Lake, Ontario P2N 3H7

1.5\% LATE CHARGE OVER 30 DAYS (ANNUAL RATE 18\%)

Cenified by

P.O. Box 10, Swastika, Ontario P0K 1 T0

Telephone (705) 642-3244.
FAX (705)642-3300

1207	202	171			3	153
1208	34		0.7	223	3	170
1209	24		-1.4	241	5	1370
1210	Nil					
1211	NiI					
1212	Nil					
1213	$\mathrm{Ni}!$					
1214	NII					
1215	Nil					
1216	7				.	
1217	7					
1218	N!					

P.O. Box 10, Swastlika, Ontario P0K 1 T0 . Thelanham:(705) 642,3244

\qquad
\qquad Box 193
Kirkland Lake, Ontario \qquad
1.5\% LATE CHARGE OVER 30 DAYS (ANNUAL RATE 18\%)

SWASTIKA LABORATORIES

(A DIVISION Ö ASSAYERS CORPORATION LIMIED)

ONTARIO POK 1 TO
FAX (705) 642-3300

1.5\% LATE CHARGE OVER 30 DAYS (ANNUAL RATE 18\%)

Kirkibild lake, ontarıo
P2N $3 H 7$

1.5\% LATE CHARGE OVER 30

DAYS (ANNUAL RATE 18\%)

SWASTIKA LABORATORIES

(A DIVISION OF ASSAYERS CORPORATION LIMITED) PO. BOX 10, SWASTIKA, ONTARIO ! POK 1 TO TELEPHONE: (705) 642-3244 FAX (705),642 93300

```
\mathrm{ vendual Solol Queenston Mining Inc}
Queenst
Kirkland Lake, Ontario
P2N 3H7
```

nin 30
DAYS (ANNUAL RATE 18%)

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705)642-3300

SWASTIKA LABORATORIES

(A DIVISION OF ASSAYEAS CORPORATION LIMITED)

Cenified by

SWASTIKA LABORATORIES

yendua
 Box 193
Kirkland Lake, Ontario

1.5\% LATE CHARGE OVER 30 DAYS (ANNUAL RATE 18\%)

SWASTIKA LABORATORIES
(A DIVISION OF ASSAYERS CORPORAIION LIMITED)
P.O. BOX 10, SWASTIKA, ONTARIO POK $1 T 0$ TELEPHONE: (705) 642-3244 vendua quenston Mining Inc Box 193 Kirkland Lake, Ontario P2N 3H7

SWASTIKA LABORATORIES
(a division of assayers corporation umiteln na P.O. BOX 10. SWASTIKA, ONTARIO GEOK 1 TO-
\qquad Box 193 P2N 3H7
\qquad
1.5\% LATE CHARGE OVER 30 DAYS (ANNUAL RATE 18\%)

WNO OEXENPT, DE TAXE PROV:
WQRtGs
PROV. LICENCE NO.
 TAE NO. DE COMMANDE
GQ MG
YOUR OROER NO.
 DESCRIPTION

Swastika Labarataries F．0．B心； 10 Swas kia，Ontario SOLD TO：

Joutel Fesgurces E／D Dueenstan Mine，Bow 193
ビirkland Lake，Ontario
FZN 3H7

INVOICE

NO 23527

DAIT 10－30－90
page： 1 af 1

Same

Swastika Labor atar ies
F.G EG\% 10

Swa ika, Ontaria
FOF $1 T 0$

SOLD TO:

INVOICE

```
    NO: 23538
```

DAE: $10-31-90$
PAGE:
1 of 1

Joutel Fesqurees
E/D Queenstan Mine, Eaw i 93
Same
Kirkland Lake, Ontarig
F NN 3 H 7

wastika Laborataries -0. 10 wast lay Ontaria ト $1 T 0$

INVOICE

NO: 235E4
DAIE: 11-02-90

Joutel Fesourres
E/D Queenston Mine, Eox 193
Kirkland Lake, Ontaria
F2N 3H7

Same

Th

Swastika Laboratories!
F.0. Bo: 10

Swas lia, Dntario

SOLD TO

INVOICE

Same
Queenston Mining Inc.
F.O. Eo: 193

Kirkland Lake, Ontario
F2N 3 H7

TR

Siwasmika Leboratoriess F.O. $O \times 10$
wastika. Onterio Ok. $1 T 0$

SOLD TO:
Joutel Fiesources
C/Cl Queenston Mine, Box 193
Kirkland Lakey Ontario
F'2N BH7

SHIPTO:

INVOICE

NO
23875
DAIE:
$12-06-90$
PAGE:
1 of 1

Same

\checkmark			
RTM Smastika Ladodratories			
		INVOICE	
QuSok 1T0 as			
16tmit.ins tom:		No:	
			23940
		DAtE:	12-17-90
SOLD TO:	SHIP TO:	page:	1 of 1
Joutel Fesources			of
C/D Queenston Mine, Eox 193			
Kirkland Lake, Ontario			
$\mathrm{F} 2 \mathrm{~N} \mathbf{3 H 7}$			

stika Laboratories Eo: 10
Swastika, Ontario FOK 1TD

2396
DATE:

$$
12-20-90
$$

PAGE:
SHIP TO:

Joutel Fiesources C/D Queenston Mine, Box 193 kirkland Lake, Dntario F2N $3 \boldsymbol{H} 7$

Cerified by Lomma Sandran

APPENDIX II

RESULTS OF MAXI-PROBE E.M. SURVEY FOR JOUTEL RESOURCES INC

BEN NEVIS, ONTARIO
BY GEOPROBE LTD

GEOPROBE LIMITED

3045 UNIVERSAL ORIVE
MISSISSAUGA (TOFONTO), ONTARIO

TELEPHONE: (416) 238-8546
TELEX: 06-967583 IBC-TOA
FAX: (416) 238-8547

VIA COURIER

October 9, 1990
Mr. W.J. (Bill) McGuinty
Exploration Manager
The Queenston Group
4 Al Wende Avenue
Kirkland Lake, Ontario
P2N 3H7
RE: MAXI-PROBE E.M. RESULT on Line $150+00$ E in Ben Nevis Twp, ont.
Dear Mr. McGuinty:
Enclosed are the results of one line of MAXI-PROBE survey on your property in Ben Nevis, performed using a Tx-Rx separation of 400 metres. The results are shown in two E.M. profiles and in one depth-section.

The Plot No. 1 shows Tilt-angle profiles of frequencies from 58.6 KHz to 220 Hz . Abundance of the high frequency anomalies indicates many pockets of small sulphide zones at near surface. These have been marked with open circles. A good low frequency anomaly usually represents a good conductor. Absence of any low frequency anomaly on this line indicates that there is no highly conductive sulphide zones present down to 600 metres. The most useful frequency for this ground is 7.32 KHz which has screened through the smaller near surface pockets of sulphides to look deeper. An anomaly at this frequency usually represents a medium to poor conductor, such as a shear-zone, alterationzone and mainly Zn-mineralization. Four anomalies are obtained at this frequency at $1000 \mathrm{~S}, 725 \mathrm{~S}, 300 \mathrm{~S} \& 25 \mathrm{~S}$, from south to north end of the line. The Plot No. 2 shows only the middle to low frequency E.M. profiles from 10.7 KHz to 220 Hz , at an enlarged tilt-angle scale. This clearly shows the four main conductor responses. (It is rather surprising that no anomalies were obtained in an UTEM survey!) The low frequency data is noisy due to lack of good conductors. The anomalies on this line have been rated as targets from good to poor:

2/....

Anomaly at	
1000 S	Symbol
300 S	Food
25 S	Fair
725 S	Poor

The depth-section (Plot No. 3) shows the apparent resistivities from a depth of 100 metres down to 600 metres. The four conductors outlined are steeply dipping, except for the conductor at 25 S which dips more gently towards south at a depth starting around 200 metre. The conductor at 300 S dips steeply north. Other conductors dip steeply south.

The top of the conductor at 1000 S is deep which is around 300 metres and it extends down to about 600 metres. The conductor at 300 S has the best conductivity around 200-250 metres and the conductivity continues at least down to 400 metres. The conductor at 25 S is a much smaller body.

It is recommended that adjacent lines are to be surveyed to select the best conductor which has continuity at more than one line for drilling.

MKG:mm
Encl.

Yours sincerely
GEOPROBE LIMITED

Mrinal K. Gosh, Ph.D., P. Eng. president
cc: Mr. Charles Page Vice President

Electromagnetic (E.M.) Survey with MAXI-PROBE EMR-16* (MK-III) (Frequency Range: 1-60,000 Hz) (128 Discrete Frequencies)

Receiver

Transmitter

DEPTH-DETERMINATION by E.M. Sounding CONDUCTOR-DETECTION by E.M. Profiling

PURPOSE:

MAXI-PROBE EMR-16 system may be used for DEPTH-DETERMINATION by performing E.M. sounding and for CONDUCTOR-DETECTION by performing E.M. profiling. These result in geological mapping from measurements made on the ground surface.
MAXI-PROBE EMR-16 system determines the electrical resistivity of the ground at different depths inductively using different frequencies, it thereby reveals the electrical resistivity section of the ground, which corresponds to the geological section. Prior knowledge of the resistivities of various layers in the ground is not necessary for interpreting MAXI-PROBE measurements. E.M. sounding is performed using a fixed transmitter-receiver separation and changing the frequencies to obtain variable penetration. E.M. profiling is performed using either a fixed transmitter set-up and moving the receiver, or moving the transmitter-receiver array along a survey line.

* Canadian Patent No. 993,512
* U.S. Patent No. 3,936,728
* Australian Patent No. 498,816
* Patents pending in other countries

GEOPROBE*

1640 Bonhill Road
Suite: \#10 \& \#11
Mississauga (Toronto)
Ontario, L5T 1C8, Canada

DESCRIPTION:

MAXI-PROBE EMR-16 system is a multi-channel ground elctro-magnetic (E.M.) system operating in the frequency range 1 Hz to $60,000 \mathrm{~Hz}$. This innovative E.M. system consists of a portable transmitter and a partable receiver, without any physical cable connecting the two. Frequencies are selected bya 16 -position rse control switch, and an 8-position fine control switch. Coarse control selects frequencies separated by a factor of two. Fine control provides 8 frequencies in-between two coarse control positions. In total, $16 \times 8=128$ frequencies may be obtained in this manner.
A large magnetic dipole moment is created at the transmitting station by sending a square wave current of up to 60 amperes into set of loops of cable placed on the ground. A range of transmitter loop sizes are available from approximately 5 to 150 metres in diameter.
One to three transmitting loops may be connected in parallel to increase the dipole moment of the transmitting station to yield large depth penetration.
Proper choice of the transmitting loop is made according to the desired depth of penetration. Energy at each frequency scans a different depth in the ground. Any discontinuity in the uniformity of the ground is reflected in the measurements. This allows accurate determination of the electrical conductivities, depths and sizes of various material present in the ground.

DEPTH OF PENETRATION:

A maximum depth of penetration equal to 2000 metres may be achieved using this system in favourable geological conditions. The receiver may be located at a maximum distance of 2000 metres from the transmitting loop, thereby allowing the greatest depth of penetration. However, depths as small as 20 metres may also be investigated. Thick conductive overburden may be penetrated for mineral exploration. Both high and low resistivity very thin layers such as coal, lignite, sulphide, etc. may be mapped.
MEASUREMENT PARAMETERS:
The parameters that may be measured using this system are:

1) Inphase and quadrature components of the vertical magnetic field,
2) Inphase and quadrature components of the horizontal magnetic field,
3) Inphase and quadrature components of the orthogonal electrical field (optional).

The measurement of phase is normally with respect to a crystal-clock in the receiver. However, using a highly stable crystal-clock (optional), the phase with respect to the transmitter current may also be measured for both magnetic and electrical fields.
From these measurements, other following quantities may be calculated:
a) Amplitude and phase of vertical magnetic field,
b) Amplitude and phase of horizontal magnetic field,
c) Amplitude and phase of orthogonal electric field,
d) Tilt angle and ellipticity,
e) Ratio and phase difference between any two vector fields.

DATA PROCESSING:

The data is processed using a ruggedised field computer and plotted on a digital plotter in the form of "depth" vs. "apparent resistivity" for each frequency. This proprietary data processing technique and computer programs have been developed by GEOPROBE LTD. especially for MAXI-PROBE system. Plots of different stations may be stacked side by side to produce a vertical section showing true depth of interfaces. Any discontinuity in the "apparent resistivity" curve indicates a different medium in the ground. These different media may be correlated from station to station to reveal the structure. Thickness and electrical resistivities of different media can be determined. Faults are identified by station to station correlation of data.
ACCURACY:
\bar{A} high degree of accuracy has been established in predicting depths. Depth estimates were confirmed by drilling to show an accuracy of 95% and better. Thin steeply dipping sulphide conductors have been mapped down to 1300 meters in precambrian shield areas with very high accuracy.
CONCLUSIONS:
Previous systems used in geophysics have been limited to only average readings and qualitative results. MAXI-PROBE EMR- 16 system reveals the entire structure of the ground from the surface down to the maximum depth of penetration. Test results obtained using this system have been confirmed by drilling. This system is very useful for deep exploration work in areas of conductive cover. The equipment is portable, and a crew of only four can perform field operations. Setting-up of the stations and making measurements at 40 frequencies takes only about 15 minutes. This system has been used both for reconnaissance surveys in virgin areas and for detailed surveys around existing mines to find continuity of mineralisation and to detect new mineralisation.

MAXI-PROBE EMR-16 (MK-III)
 Equipment Specifications

1.

a) Frequency Range
b) Number of Frequencies
c) Ground Parameter Measured
d) True depth estimate
e) Detection Capability
f) Depth scan by frequency
g) Depth penetration
h) Distance between transmitter \& receiver
i) Set up time
j) Measurement Time
k) RUGGEDISED FIEID COMPUTER \& PLOTTER SYSTEM
I) Portability
m) Transmitter-Receiver remote operation
2. TRANSMIITER:
a) Power
: $1.60,000$ Hertz.
: 128
16 Coarse selection x 8 Fine Selection. Consecutive frequencies are 12.5\% apart.
: Apparent-resistivity and true-depth at each frequency.
: Accuracy 95% or better.
: 3\% change in apparent resistivity.
: At 128 depth points at a maximum 128 frequencies.
: 20 meters to 2000 meters.
: Maximum 2000 meters. Minimum 100 meters.
: 5 minutes for shallow depth 15 minutes for very deep.
: 5 minutes per station for shallow depth. 30 minutes per station for very deep.
: An integral part for MAXIPROBE survey operation, specifications in a separate sheet.
: Transmitter, Receiver and field accessories are provided with back pack so that these can be carried on back to any place including hilly area where a vehicle cannot go.
: There is no cable connection between the transmitter and receiver stations. These stations are independent of each other. Transmitter \& receiver operators communicate by portable walkie-talkies (not included with MAXI. PROBE system).
: The power requirement for transmitter varies from 40 V to 60 V D.C. depending on shallow $\&$ deep depth investigation. This power source is 2.5 KW portable motor generators on back pack. This type of motor generator system is specially designed for the MAXI.PROBE transmitter to control and to stabilize the transmitter currents for very low and very high frequencies of operation. This motor generator system is also specially designed with high efficiency, high speed and low weight engine so that the total weight is about 34 Kg . for the sake of portability. The low weight together with our specially designed frame and back pack will enable the motor generator to be carried by a person even on hilly areas where a vehicle cannot go. The transmitter can be oper. ated with one or two 2.5 KW motor generators. The transmitter has a capacity of handling a maximum power up to 5 KW for investigation in dif. ficult geological areas. This 5 KW power is obtained by connecting two portable
b) Frequency Range
c) Wave Form
d) Transmitter Loops:
generators in parrallel each of power 2.5 KW to the transmitter console. This way we have achieved a maximum of 5 KW power keeping the system portable on back pack.
: 1-60,000 Hertz.
: Square wave.
: The loops for MAXI-PROBE System are as follows:

LOOPS	SMALL	MEDIUM	SUPER	ULTRA
Diameter (in meters)	5	10	50	150
No. of Loops	1	2	3	3
No. of Turns/Loop	8	8	3	1

e) Current

0 Transmitter Console
: Maximum 60 Amps.
: Approximate size of the trans. mitter console is $60 \mathrm{CM} \times 45$ $\mathrm{CM} \times 30 \mathrm{CM}$. This is portable and attached to a back pack for easy carrying. Approximate weight is 25 Kg .
g) Maximum Dipole Moment $: 1.5 \times 10^{5} \mathrm{AMP}$. M^{2}.
3. GENERATOR:
a) Output
: 40-60 Volts D.C.
b) Power
: 2.5 KW
c) Maximum Current
: 90 Amps
d) RPM
: 3600 r.p.m.
e) Phase
f) Special Circuit
g) Back pack
h) Weight
4. RECEIVER:
a) Input Power
b) Reading
c) Measurements
d) Optional Measurements
e) Noise Rejection Filters
f) Field Strength Sensitivity
g) Integration Time
h) Receiver Console:
5. RECEIVER ANTENNA:
: 3 Phase
: Special circuitry for regulation to feed power to transmitter operating from very low to very high frequencies.
: Frame exclusively designed to be carried on back pack.
: 34 Kg .
: 18 V, D.C.
Power source is a portable back pack of light weight large capacity rechargeable Gel Cell batteries guaranteed for one full day of field operation. These can be used up to 3000 recharge cycles if used properly.
: 4 channel readings
Vertical \& horizontal magnetic field vectors in two channels simultaneously.
Electric field vector. Phase with respect to transmitter current may be measured using a highly stable crystal clock.
($60 \mathrm{~Hz}, 180 \mathrm{~Hz}$) OR (50 Hz , 150 Hz) 1.VLF Station tunable filter. Low Pass \& High Pass filters. Special filter for below 10 Hz operation. : In the order of 10^{-9} ampere/ metre.
: $1 / 4,1,4,16,64$ seconds
: Receiver console has been improved with fibreglass casing for durability. The approximate size is $50 \mathrm{CM} \times 40 \mathrm{CM} \times 22 \mathrm{CM}$. Weight is about 15 Kg . This is portable and attached to a back pack for easy carrying.
: 4 ferrite core coils in the shape of a frame housed inside a fibreglass ball with foam packing. Circular ring type tripod, levelling by a bubble.

Flow-chart of data acquisition and data processing

APPLICATIONS

A. RESOURCE ENERGY:

1. Coal
2. Lignite
3. Uranium
4. Oil \& gas
5. Geothermal Energy
6. Heavy Oil, Oil Shale, etc.
B. MINERALS:
7. Massive Sulphides
8. Porphyry Copper
9. Skarns
10. $\mathrm{Pb}-\mathrm{Zn}$ (Mississippi Valley Type)
11. Bauxite
C. NON-METALS:
12. Evaporites
13. Phosphates
D. GEOLOGICAL PROBLEMS:
14. Basement mapping
15. Stratigraphic mapping
16. Faults \& Shear zones
17. Horst \& graben structures
18. Basin \& range problems
E. ENGINEERING PROBLEMS:
19. Radio-active waste disposal
20. Overburden thickness
21. Construction and foundation work
22. Dam site evaluation
23. Permafrost thickness

F. GROUND WATER:

1. Discrimination of clay and gravel/sand
2. Detection of fault line \& shear zone for:
(i) Thermal water
(ii) Karst water
3. Fracture location in rock masses
4. Fresh water-brine border location and monitoring.

GEOPROBE*

1640 Bonhill Road
Suite: \#10 \& \#11
Mississauga (Toronto)
Ontario, L5T 1C8, Canada

APPENDIX III

REPORT ON BORE HOLE PULSE E.M.
OF HOLES CNG-90-2 AND CNG-80-6
CANAGAU PROJECT

| Client | JoDTEL-RESOURCES | | |
| :--- | :--- | :--- | :--- | :--- |
| Grid | Hole | CNG-90-2 | |
| Time Base | 16.66 ms | Tx Loop | 1 |
| Ramp Time | 1.50 ms | Date | Feb 10,1991 |
| Gcale | $1: 1000$ | File | CNG902T1.PEM |

AXIAL COMPONENT dBa/dt nanotrala/gec - 20 channelb and PP
AXIAL COMPONENT $\mathrm{dBa} / \mathrm{dt}$ nanoTrala/sec

APPENDIX IV

DIAMOND DRILL LOGS AND ASSAYS
DRILL HOLES CNG-90-1 TO CNG-80-6 INCLUSIVE

QUEENSTON GFOUF：

DJAMOND DFILL FEFOFT FEGE 1 of 9

COMTENCED：	Samamy 17，1500	
FTNJMMED ：	Jamuary 2 ，	1990
Cofe gaze：	Ex $1 \times 1 \times$	
TOTAK DFF゙T	$9 \% 7 \mathrm{ft}$	

FFOTEC＂：Camagan
Moumbain bave

CONTFACTOF：Fayje Drin inmo
LOEGED EY：W．J Mceuinty

FROFEFTY：Camegeu
TOWN：HTF：Exan NEvis
FROVTNOE／NTE：Ontarjo
GOQATION：
（re Grid！：WE metres

1以णm $2+50 \mathrm{O}+315$
（re Claim）；

DOH NO：CNGOO－1
EしたV：
AEM：BE7 Geg
DIF：coller

$$
550 \quad-41 \quad 460
$$

$$
500 \quad-9 \quad+5
$$

750 －$-2 \boldsymbol{6}$
$99, \quad-81 \quad 409$

UNIT：
Fet \qquad

16.5
$9.5 \quad 3.0$
Cssing in 玉wammy averbur
Equagr cuttimge from tasel dill
Amyduladdal basedt－wedty altered emyghenes are roume to el．ipptixal with mo preferreat arjentatiga，moneredely to weat ly与世以iwdtized pillows 25．0，37．1，4．4．0 pilluw selvages 20．0－2l． 2 flow brecria
 Et．0－4\％O prewominantly Earicite adterea gless with some wettions af pillower basadt， swme disweminated pyrite o 3\％．0－3\％．0，40．0－ 42.0

$51.5 \quad 5.13 .6$
Gerby dacite－pele buff grey colour，weld frectured，fine swnicite mineralization stromgest amo foliated rear fractures，s\％ discemineter eutherrel pyrate －uprar and lower contetas are orarp oo degrees and EO deg to C．A．rewmettively，ru wantat effects apmaremt Fixeturimg owetrs tmangrout sertion in so amy 60 wegree mets．

55.1	75.3	2 O	Amymatridal bemelt G7．Q－El．o fine grainea，messive，grev white colomr，few anygdules $1-$－want pyrite in ロットに E1．0－65，ghassy flow brectia，rare pyrite E5． $3-75.3$ ramedve amymadmadal bacald，clear quantar fille日 amyquales ame jointed amd mimeralizeg fy white whemtz pyrite amd honey colored sohelerite； 1 －2\％pyrite dismemineted trmabigtomt section．
75.3	77%	$\cdots \mathrm{O}$	Crerty dycite breceig，irregulem tpper comtect，mutus js meimly the rectit ot ctionitizatjun of fractume plames fragments are elliptical，buff coloreg， pyojte mimeralization ta f＂ectures sub parallel to C．A．and in brectiated pouts．
77.3	7%.	1． 3	```Myglalwjdel bemadt, Etromgly mer imitixed wit,``` ```irmegular.```
$76 . E$	\％0．7	2.1	も © A． ghalerite ema tox work in quapte matojx ＂pull abay＂wemas－galemempantz－sptedentte jெ 5ecomatar 7% 0－80． 7 flow banter clevty tacite －－w\％pyite in groumbmess dacite is fine grentag，buft àlour．
9.7	92． 4	11.7	Amydedwdel tasedt，Etromg weratite alteration， 10% pyrite，uwper rontact is a z ＂puld awey＂py＂ite bende witt；guarter fill． Wenne vary from 45 deg 0 G．A ．to irreguler Sumperallel to C ．A． －thimmer wande with lesw secmmary ifil orcum 4nmmolmut sectign．
－2．4	94.3	1．${ }^{\text {a }}$	Gterty fatte－ $2-3 \%$ fremture rontralled geleme．

908	106.1	11.9	Amydalaidal basalt very strong sericite alteration throughout, amygules have zonation of quartz fill jointer sulphide bances common 55.0-95. 9 40\% pyrite 9E.0-105.0 5-10\% pyrite 97.3 cherty dacite fragment? 95.e $1 / 4$ " quartz vejn with siome pyrite tetratredrite and sphalerite
10E. 1	124.9	13.e	Cherty tacite, strongly sericitized foliented at 4 E deg to C.A., upper contact at 20 deg to C.A. 106. 1-107. 5 stromg silicification apparently fracture controlied - some box worl: after calcite 106.1-10E. 4 3O\% pyribe, 2% gajena $107,5-109.0$ strongly banded arid frectured zome with sericitic alteration and knots of pyrite to 1/4" diameter 108.0 galena in fracture 109.0 quartz veinlet with galena and bow worl: 112.6 quarta veinlets - shamp contacts 45 deg to C.A., some siphalerite $112.9-11 \mathrm{E} 1 \mathrm{fracture}$ controlled grey ghalerite mineralization, less than 2% 120.1 1/E" quartz veinlet, homey sphalerite, some galena 121.7 rark coloured irregular band with 1 inct lomg pod of tomey colouned sphaderite 121.7-124.2 brecciated derite with rusty brown tolomjejc alteration - likely golution type breccia 124.4 rusty sericitice fracture 124.4-124.9 massive jointed pyrite band, some bok work, upper contact jrregular, lower contart so deg to C.A.
124.9	209.1	84.2	Eericitic gecitemessive, grey buff colour, fine grained, $-\boldsymbol{- 3 \%}$ dissemimated fine grained pyrite (eutnedral), joint sets at 30 deg and 4E deg to C.A. $134.0-150.0$ "glassy" chloritic alteration in irregular frartures throwgout section crosscut by later fracturing $150.0-160$. 0 darker coloured section similar to $1340-150.0$ 160.0 irregular banded quartz vein no related wulphide

180.0-209. 1 pele buff coloured dacite as at.
134.0-150.0 with dark chloritized fractures
:\% digwemineted pyrite
155.4 corrwoded quartz cadeite veim
FE, 2-leE.E calcite filled crackie breccia
19% 4-19\%.0 broken core multiple fractures

contect 30 deg tio C.A., wispy ritorite,
possibly rivolidec tuff

$1 / 4$ inct wide

fractured
1 GE . $5-205$. 0 tromen core

two buevtz plases uraite after clear
OE, 5-玉OE, O wllite quartz vein
207. 9 200. A quartz vein
HIIE Quevtz vejn upper contact as deg to C.A.
Feult zome monty fatit gobat quartz petates
in grey-biack metrix - upper contact 4 - deg
to C.A. b wow comtact riot hefimed

Amygalmidel beselt weat dy alterea pillow selvages are common but not pyonoumced，mure messive sectioms mave irregulma（glassy） chlorytic flow tops，glassy areas are ofter sericitized．Amyguldes ame gumにtz filled some with irregular cores of pyrite and chadcomyrite
minom thin quapte veins at 50 deg to C．A．are crosscut by deter vein sets at 10 deg and as GEg t．o C．A．
zás． 549.3 strongly senicitizew flow，yelluw－
 visimue
 small petrtues wf sptajerite
 fracture日，urper contact 20 बEg to $\mathrm{C} . \mathrm{A}$. smed．blebs cpy newn upper comtact，lower wnitect 25 deg tr C．A．
$2 \pm .0-4 \%$ ． 0 concentric comling fractures with comcentricelly aligned amygutas oncur over entire 5 Ection
2EA．O white／clear quartz vein witt minor rhat copynite

25．4 $1 / \%$ wiote banded phartz sericite vein
O5 GE t曰 C．A
 －pyride mimeradizatiom，sub－parallel to
C．A．，EOme local quarte fillem breccia
ge． 5 irregular white quartz vein，swrae
Fyrite

BOE．E－Bos． 3 messive white querta vein

blocky rjow breccia with sintwr puats and
2 quartz filled amyadules，some sphalerite，
pyrite found with guart．z．
$307.0-35.0$ general increese in sulptide with
bencs or disseminatigms of pyrite，$\%$
twrountout．
e2e 0－32天 5 low angle flow selvage vein， 10%
fyrite intertemaded with phentz
345．0－850．8 flow breccia
350． Bm 4 az o mainly pillowed basalt with
stromg selvages，locelixed flow brectias arm interflow treccias，amygotes to 1 inct Giemeter
39．5 jointed Fypite band flowded by celeite E6O．O－SEO．fatht－voluanic mutale couted
with sulphide in sparry calcite matrix
3E． $9,3 E 2.7,37 E .1-3 y E .7$ vaggy pink calcite
veinime
于2． 0 － 35.0 increased pyrite mineralization
jn ang rimitrig amyouldes，strimgers
preferentially formea along cowling
fractumes－تorme sphalerite in emygdules
409 ． $5-40$ ． 8 quarta fillen fatlt with ralcite wn comtacts 25 deg to C．A．
412．5－1／2＂pyrite－swhelerita band 45 teg 40 CA
4\％．$-1 / 4 "$ chalcopyrite－pyrite－quarta
Golomite vein， 45 deg to C．A

10% Gюy 50 deg to C．A．

 a glasey premab flow wreccia texture，

 $\%$ pyrite throbghout．

Evefedig decite，massive，fime graimed grey colour，gradetiomel or jncipient upper wontect with assimilaten metjc material at．

30 Deg toc.A., stamp lower content with semolitti, some blect coloured frectures rare, uispersed spterulitic pyrite, some weduite veinimg with pyrite stringers and 6月5\%

499.4	501.9	2.5
501.9	509.9	7.9

5098
511.7
574.3
517.6
918.7
570.1
570.1
575.4
3.3
1.1
5.4
5.3

Clomdized amygutwidel tasatt

```
Dencite at a9\% 4-499. 4
    505. \(3-505\) 5emi messive pypite band 35-40\%
    फy, 45 deg to C.A.
    SOE, 马, 5OE, g quartz-caluite-pyride veins
    "stringen" vein typre where quartz + calcite
    post detes pyrite, \(10 \%\) pyrite
```

 cturydjzEgtasadt 5\% pyodte in patctiy blets

deg ta C.A.; starp thin tidack Gemols pared del
t.. (wntatt may be coulimg feetures, lower
contact $A 5$ deg to C.A. j 5 weat 1 y incipient

Chomitic erveraloigel esselt E17.3-517.5 irregular quertz carbonete vein with 10% pyrite

Masive grey basatic turf with 5% fine granded chelcopyrite - upper and lower contacts 40 deg tor C.A.

Maseive chloritizeg amyodadodel beselt as at 442.0-487.0, carbonate present in stringers and amygdules 519.4-519.E quartr-pink calcite vein 50.0-527.0 several tarren $1 / 2 "$ white caleite Veinlete 45 dey toc C. A. $548.0-1 "$ band semi messive pyrite about thin calcite vein, no preference to host or vein, 10 deg to C.A. irregular
$540.0-560.0$ fine grained chelwopymite keyed to thin calcite stringers or blets through out section
560 0-570. 1 flow brece ia? irregular shaped f ragments dispersed throwhout core with long ases $45-70$ deg to C.A 569.5-570.0 strong cartomate reaction contact effect?

Messive orey beseltic tuff, fine grained, gpherulitic and vesicular - spherules are ctomatic and mineralized with pyrite, several wispy ctilorite filled fractures

75	59.6	12.2	"Eandeg tyedrelestjte" jrrepular bands or blems af pale senicitic volcamic - possibiy dacitic, set in fine grained ctaloritic glasey "مaireg" or mested witt" chlowite tetwem" inodcatimg riacjuic material was mome vjecous than ctiloritic mato" x
$5 \% 7 . E$	592.5	4.9	Messive grey tuseltic tuft - sporulitic
52.5	E40.7	43.2	Wedty charjtizey mygdeloidel besat floutuectias, some "clasts" of macidic meteriat, trece dissemimated chalcopyrite Jocelly disseminated pypite, less than i\% throughout.
640.7	EAS.0	7.3	Mespive grey baseltic thff urper contact G4\% 5-mis. 6 traded quertz combonate vein minor pyrite, some quamtz sericite fregnents is well altered with quarta Eericite, brecciatem quartz vein at core 46 deg to C.A., vejn is frectured amm recermented witr grey quartz
43.0	7159	67.9	"Eandeg hyeloclestite" as at 575. $4-587.5$ hacal pyrite enmatiment.
715.9	717.9	2.0	Amydetoddel tasajt
717.9	$7 \% 4 . E$	$E .7$	Massive sericitic decite? greenist colour ctionjtic 1 ractures witt some dissemineted byide
$7 \% 4.6$	$7 \% 7$	3	Weaty ctiorjtic grygalgigel wagedt
$7 \% 7.9$	955	127.4	Messive grey tesaltic thft, fime grajmed, ctanombiaed gpteruless, vesicular, pervative general. corbmate alteration from $757.0-805.0$ $727.9-7 \%$. 6 massive amorptous al teratima greminal sericitic tinge 7 G2. -7 g o irregular quartz caleite vein, zo HEG tie C.A. $73 ; 740$. 5 derk gremn ctionitic sectiom with emygutes (?) to ane incti, weals y mrenulated ctomette sericite wispe 50-AO deg to C.A., pervasive cartmate alteratiom, wispy solptide in more beraded sections

E5.

965

GEE. 5
955.5
966.5
972.2
110.2

1.0

6.7
$784.0,740.0-740.5-1 / 4-1 / 2$ pyrite band, 5055 deg to C.A.

769.0-770.0 weak flow breccja?

Bo0.0-877.0 flow top zone? increased quartz-sericite-choorite, carbonate absent
goo s pads of pyrite in irregular swace filling wish dolomite
gos z thin caleite vein with peripheral
pyrite strimgers
807.0-509.5 cooling fractures

E09.5-817.0 mandy brectiated ctiloritic material with locally sericitized bands 809. 9-810.1, $910.7-810.9,513.7-814.0,-$ semi messive pyrite calcite "stringer veins"
e19. o-ess massive spherulitic turf, some calcite veming
1/4" wide - 45 deg to C.A.
Ampadelodel taseltic flow - manly pillows,
pillow breccia and flow top breccia -
 1/e inct diameter, small interbeds of grey basaltic turf occur locally as do interflow sedimentary type deposits of putartz sericite altered glass material, concentric cooling fractures occur often with regid orientation changes, disseminated blety pyrite occurs throughout section
307. 0-908. $32-3 \%$ pyrite rejateg to carbonate strimgens
90t. $3-908.7$ quertz--carbonatemalphide stringer vein, semi massive pyrite (25\%)-spmalerite (5*)-gelena (2z)-ctadcopyrite (\%\%)-
arsemopyrite (minor)
319.0 wlems apele mrem sericite

Fault zome 40 deg to C.A. upper contact veined w.t" pyrite-caroonate-sericite
955.E $1 / 2$ inch sulphime bamd
$955.6-955$ banded quartz-chloriterartunate, minor pyrite
$555,9-965,1$ chaymantz cemented fanlt gume with small acictalar fragments, matrix supported
95E. 1 - mes. 5 trittle gouge
Messive grey beseltic tuff sericitized and weakly banded, defined by thin derk chloritic bande et 30 deg to C.A.
2--3\% dissemimated pyrite and blets to $1 / 2 "$ dianeter

WHOLE FOCK CHIE SAMFLE LOCATION

Hole CNG OO－1
7213

7214
（W－z）Crinty Gacite

7 \％15（b－g）At tereg dacite

7226
$72 \boldsymbol{2 1 7}$

$7229 \quad(W-7)$ Massive grem－grey tutf

Eサ，E，$\quad 70.5, \quad$ E4．

54． 3 日， $2, \quad 91.7,111.3,1172$ 120.5
$127.0, \quad 12.0, \quad 197.4, \quad 144.0,147.5$, 15E．7，1E4．5，170．E
$29.0,245.7,25 E .3,2 世 5.2,270$, $29.8,301.2,307.3,37.0,3360$, 341．0，349．2，359．2，3世4．E，369．4，

$470.0,479.5,494.0,59.5,525.5$, $59,3,534.3,58,4,551.0,558.2$, $5 \% 2.7$
 E7\％． 1 ，E7E．0，E\％7．5，EG5．2， 700.0 ， 705.7
$751.1,758.5,765.2,772.7,75.0$,
 $55.2,341.9$

> QUEENETON GFOUF DTAMOND DFILIL FEFOFT FEgE 1 of

FROFEFTY: Canagau
TOUN:HIF: EEn Nevis
FGOUNWE/NTG: Ontarjo
LOCATION:
(re Griog: L. $1+00$ W $0+540$

FFOTECT: Canagau
Moumtain latee Opt.
DOH NO: CNGGO-2

ELEV:

AEIM: OSS deg
DIF: O - 51 Jeg
$250-43$ - 20
500 - 58 deg
$750-35$ deg

COIMENCED:

FTNJEHED:
COFE SJE: EQ $\quad \exists / \% "$

TOTAL DEFTH: 100 ft

CONTFACTOF: Fayjo Drillimg
LOGGED EY: W. J. MeGuindy
(ree Clam):

231.7-260.E thlorjtized zone, fractures and anygdules are preferemtially altered, core is generally dark green-grey in colour pyrite is foum in stringers, aggregates and in quarte pyrite stringers, $1-2 \%$ overadl, locally 5% over $e^{\prime \prime}$ wicths
 wyrite-chedcepyrite vein 10% sulphide 257.0-2.20.E increased pyrite mineralization in quartz-carbomate haloed stringers, wead bends and petchy zgoregates some attendent aspy at 578.0-579.4, lower contact sharp and foliated 40 deg. to C.A.

200.6	264.1	3.5	Cherty brectie with sulphides 2e0.6-2ez. 7 siliceous grey black breccia with dark chlorite bearimg groundmess, no visitule sulphides ese. 7-re4 1 massive sulphide, distended pull-away fyrite bande remineralized by quarte-arsenopyritegalenamphaleritem delomite veins, host roct strongly charj.t.ised, $\mathrm{e5}-40 \%$ sulptide.
2eA. 1	271.3	7.2	Alteren tuff - chamitization on irregular fractures and in amydules: mumerous sulptide strimgers with distended pyrite and quatz-carbonate re-mineralizetion. thimner stringers with mjnor pemineralisation are ctionitic, $5-8 \%$ sulphide 270.7-W7.e messive white quartz veirs, $1 / 2^{\prime \prime}$ messive pyrite band on upper eontact 25 deg to C. A. Jwer contact area giticified and brectiated with thin becciated band of pyrite
27.3	27%	2.0.	Chloritic brecsia gimilar to $260.6-26.7$ wth fewer ctienty fragments possitly extension of altered tuft?
27.3	20.0	11.7	Btyederite? porphyritic felropar possible fiout banding at $00-40$ deg. ta C. A $273.3-27.3$ strongly sericitized areen colotm pervasive with thin sewicite wises do deg to C.A. generally but with "faldeg" or warpes zones $277.9-2970$ grey colmurea pormbritic. goft possityy etacritaced gromenass supportins harder: paler brectia fragnenta

	915.9	80.E	EuEtciater turt? stromply chionitic fragmemts in pelw etighty marder grommmess breroiz grewific - langer petwhes dis... tremoded ems rewmineralized 95 0 09%, messive tuf; rficmitamenicitatands at as deg. to C.A.,
3156	25.6	10.2	Fompyritic rryodecte? simidar to 27s, 32E5. O moderately ctionitizen amo sericitized in wismy bemos 30-40 de日. to C.A. minor to trace pyrite.
\%	$9 \% 0$	442	Tuf aplomerete? tuff similer to $255.0-315.5$, locally brectiated. Agylomerate consistes meinly of greyish rounded frements in a dark chatoritic: groundrass wittr strong chloute-sericite wisps keyed to fragment bombaries at 55 deg. to C A. , trecciated areas may we massive flum trectia, sulphides $2-5 \%$ (рynite) $325.9-30.0$ aghomerate wit small brectiated venes
			finer grajned rounded fregnents, mome felsic appearance 342.9-35. m assive agglomerate, brecciated near upper contact 35s. E-S5e. massive white quartz vein 30 deg. to O.A.
			ciljcjfjcetion with thin gharta veimimg mainly within fragmemts small quarta blebs mefnly extemsimm of veins in fregments inta groundmess, bands of choritewsericite term imete quartz veims 34, 4, 351. 3 sulptive strimars re.
			 tended pyritewradeppyrite strimger filled witt puswtz-cwrbonetemersemopyrite-sphalEnd EE: EO\% Fy 20% cFy, $5-10 \%$ ottien sulptimes
			9世9. 5 thin drag-folded querta veim]ets tost, $4-5 \%$.

	507.3	34.4	Amyogeloigal mefic tuff chloritized and sulphidized amygdules mear mpper comtact (top? for 1. E feet, umit is similar to sericitic with interbande of compse lapilad sixed tuff, bamomg at 40 deg. ti. C.A. AE2. 5 thin sulphimemalema bama, less than $1 / 4$ inct.
507.3	510.2	2. 9	Ghomitic tuff agalomerate with chlarit. ic fragruents in pele groumbmess, upper contart. js ginasy amu dismupter, roct: is similan $285,0-915.0$.
510.2	$51 \% 0$	1.8	Thin messive ryyolite irreghlar mpper contant sijucified lower comtact some sercitized fractures amd thin sulptide stringer veine
5120	59.6	97.6	Gloritic tuff - tuff Ereccia disgeminated
59	6.97 .4	97.9	Ftyolitemmyodacite? tuf\%, massive to banded fine grainea tw aphenitic, locally porphyritic or lapalli bearimg lapilli are more chloritic then massive portions which are sericite altered, weak bamding in evimence lwoully $55-40$ deg. be C.A. usually associated with nomeased senicite -rhamrite wisps some agglomerate sized fregments visible from El5.0-GE7. 4 -some weat rones of increased dissemineted Fyrite also associated to sericite-chiorite bands, less than 1% thmoughout come with wnall $2-3$ incti lengtis ta $\%$ EEE, E thin quate vein parallel to C.A. with euthedral gatema
697	7 O	ES.	Masive fipe graines gey besettic tuff 40 जEg. to C.A. EOT E-EdO O weaty amypdaloinal, swne with "stringer veins" jointed pyrite betnde with quartzoraptomate-galena-spraderite fill, wese metal sulphades increase with highen quevter combent. mumangus sudplide strimgers, pyrite filled

by guartz－5phalerite with ctionite adterea contects and a genereal increase in sericite mineralizetion
G74．0－Eg2．0 numerous barren white guartz－
 possibly joint fillimg at 30,45 and 50 Geg to C．A．
E日7．5－E．G1．O quarteralcite filley fracture suthraral］el do quantz vedn numerous sidvers of bost tuff，swme sericite amo pyribe（less tran 2% ？
$705.3 \quad 79.0 \quad 75.8$
$779.0 \quad$ 于玉．
 Generally derfer and more ctimuitic than atrove，feldspar lapilli mome defimed
 Fost rock fragments，30 meg to C．A．， cuttimebandmer rost mear go deg．
$756.0-7 \% 6$ rtryol ite bomb
$746,5-747.5$ irregular quertz－carbonete filleg fracture parallel ta C．A．，trace pyrite
 strimger tyme veinaets－little apparemt． base metad sulphides（xspy－sph）ano litule quenter influx
$74 \% .7-747.9 \quad 1 / 2-1 "$ stringer vein，irregular comtacts，مyritemarsemaryrjewsphalerite－ claderpyrjde－wtide quarta $747.5-764.0$ imcreased chinitic content and fome homogememus unit．Lapilli ere smaller and greenistr rhyolitic meteried is mosedy absent
 rivolutic mot comtacts gragetiomal 7 EG． 7 thin fandt－wpper contact brectiated 45 बEg to C．A．
 fid led fractures
$771.5-77 \%$ ． 0 mumerous thin strimger veins with weat：guartz－hasemetal sulptide combent $776.9 \cdots 77 . E$ gle fatct host rock fragments in tommimuted groumdrazes wf gimilar materjal． AO deg．to C．A．，well ammeled．

Emdey volcence interbedred yellow－green Sericitived massive rryalite mith inter－ baras of Garker tuffaceous material．以andim et E－ 40 deg tie C．A．，weat sulphide （Fy）Gevelomment in marter areas． 79e．E stringer vein lower comtact chloritizeg，pyrite and quartz．

805	27.7	21.9	Messive grey tesaltic tuff fime grained wearly armydaloidal similar to $77.6-124.9$ Bos. $8-607.3$ sericitized contact zone EO5. 9 trin disseminater pymite band, 10%
27.7	\%73.6	51.9	Etyolite? massive variably altered valcamic weak banding implien in rones of strongen sericite alteration, small stringer veins with quarte thmoughout core, irrespective of Gegree of alteration B27. 7 -.-47. 0 massive yellow -white rivolite?, similar to yellow portions in 779 . 0-805. 6 , sulptite bearing fractures show sericitic haloes, ghosted amygules or versicles present g47 o-ecs o massive greyist rtayolite? less sericitic than yedumbish zomes althoum texturlly similar 847.0
979,6	E6.0	$E .4$	Massive fine graimeg mafic tuff wedfly chlondej fracturimg amb weat gericite mimeradization -quartz-colcite filled fracturing occurs throughout sectigm parallel to C.A.
296.0	921.5	35.5	Massye yed wo ryyol ite 910.0-914.0 amyguanidel section greyist ageinst mos groumbmass $914.0-921.5$ silicerus sectiom, some amygutues persist.
91.5	\%6,	5.0	Tramedtienad rontact-fedrapar-wrystadlatolilin groumbmess with chlowitic meterie] becoming Gomjment neer gez. 5 prevalent berading at 40 deg. to C.A.
96.5	9 E 1.5	5.0	Grey weseldic tuff sudiar to $77.6-72.9$ well sericitized, messive, upper comtert greawtional mayked wy increased sericite, some amyafules locally have bleactod taloes strimger veims.

581.5	944.0	12.5	Bryelitic lepili tuff mimilar to 5 gs e67.4 banding at 40 geg. to C.A. crystal lapilij and small fragments visitule in intercalated bands of chalopitic and nomctiloritic rayol itic meterial.
944.0	999.0	5.4	Meseive grey Lasaltic tuff fime graimeg-upper comtact gradational some feldspar crystal Lapil. i. Fesemt. locally, weat gnientation of wiswy foliation 45 der. to C.A., lit.te or no alteration visible, no sulphiote strimgen veins present.
$99 \% .0$	100\% 0	10.0	Ftyplitic lawilli tuff as at gal 5-9i4.0 gradetiomed urper contact increasima serfoite and ctanorite edteretion 1000.0 tio 100日. 0
1008.0			ENW OFF HOIE

Notes mat Feferemee fasey Gentiricates; Ewastita Luts

```
DIAMOND DFTLL FEFOFT:
ASSAY FESULT:
O.JECT: Camagaud
FAGE
\begin{tabular}{|c|c|c|c|c|}
\hline \%\% 0 & 370.0 & 5.0 & 1150 & 372 \\
\hline \(9 \% 0\) & 275.0 & 5.0 & 1151 & 96 \\
\hline 395.0 & \%0.0 & 5.0 & \(115 \%\) & Nil \\
\hline 360 & 865.0 & 5.0 & 115 & Nil \\
\hline 55.0 & 990.0 & 5.0 & 1154 & 17 \\
\hline 390.0 & 395.0 & 5.0 & 1155 & 14 \\
\hline 35.0 & 400.0 & 5.0 & 1156 & 7 \\
\hline 415.0 & \(41 \% 0\) & 30 & 1157 & Nil \\
\hline 456 & 439.0 & 3.0 & \(115 \%\) & 10 \\
\hline 439.0 & 44.4.0 & 5.0 & 1159 & Nil \\
\hline 4620 & \(45 \%\) 0 & 5.0 & 1180 & Ni. 1 \\
\hline 4 EV . 0 & \(4)^{3}\) & 3.0 & 1161 & Nil \\
\hline 507.0 & \(51 \%\) \% & 5.0 & 116 & Nil \\
\hline 512.0 & 517.0 & 5.0 & 1163 & 24 \\
\hline 517.0 & \(5 \%\). 0 & 5.0 & 1165 & Nil \\
\hline 5 E 9.0 & 52.0 & 5.0 & \(11 \%\) & 17 \\
\hline 540.0 & 545.9 & 5.0 & 1167 & Nid. \\
\hline 5 E 5 0 & 56.0 & 5.0 & 116 & I \\
\hline 56.0 & 565.0 & 5.0 & 1169 & Ni. 1 \\
\hline 5 E . 0 & 598.0 & 5.0 & 1170 & Nil \\
\hline E\% 9 & E2.0 & 5.0 & 1171 & Nil \\
\hline E玉2.0 & E\%7.0 & 5.0 & 1772 & Nj] \\
\hline 650.5 & 554.0 & 3.5 & 1173 & 34.5* \\
\hline 664.0 & 60.9.0 & 5.0 & 1174 & Ni. \(]\) \\
\hline 6 F & E92.0 & 5.0 & 1175 & Nil \\
\hline 702.0 & 767.0 & 5.0 & 1176 & 17 \\
\hline 746.5 & 749. & 3.0 & 1177 & N.i. \(]\) \\
\hline \(7 \% .0\) & 778.0 & 5.0 & 1178 & Nij \\
\hline 778.0 & 7 B . 0 & 5.0 & 1179 & Nil \\
\hline 7980 & 7980 & 5.0 & 1180 & Ni3 \\
\hline
\end{tabular}

Notes amorerenemce fascey Gertificete); Swastita Labs OW-027-FGT
average of two ancilyses (生\}
average of tour

\begin{tabular}{|c|c|c|c|c|}
\hline 79.0 & 790.0 & 5.9 & 1181 & Nil \\
\hline 9e. & 83 \% & 5.0 & 1182 & NiJ \\
\hline  & ES\% . 0 & 5.0 & 1183 & Ni. 1 \\
\hline 957.0 & 8620 & 5.0 & 1194 & 10 \\
\hline 995.0 & 900.0 & 5.0 & 1185 & 7 \\
\hline 900.0 & 905.0 & 5.0 & 1156 & 12 \\
\hline 905.0 & 910.0 & 5.0 & 1187 & Ni. 1. \\
\hline 92 E & 929.0 & 2.5 & 119 & \(\because 4\) \\
\hline
\end{tabular}


72221 (W-5) massive amygdaloidal tuff;
\(72 \boldsymbol{2 g}\) (w-1) brectiated tuff;
\(72 \boldsymbol{2 0}\) (W-10) ryymidarite tuff;
\(7 \% 2\) (w-1\%) yellow rityolitu;
91.0, 55.4, 90.5, 100.8, 106.4 105.9, 118.5, \(119.6,123.4\)

15世.
 \(213.1,223.227 .0,231.5,245.8\)
\(2 \% 7.5,2640,297.0,307.0,3120,37.5\), 96, 0, 322. 5, 35.0, 351.4, 360.0, 365.5

5AE. 4, 550. \(5,556,0,56.7,567.2,574.4\), 579.9. 594.9, 5\%9.0, 594. 日, 599.4, EOE.0,

 9.54. 999.7, 904.3, 909.1, 913.7, 918.?

GUENSTON GROUF
DIAMOND DKILL FEFORT

CONMENCED:
FINTEHEO: Octwber 1 : 1990
COFE BIEE: EQ
TOTAL DEFTH: 754 fewt.

FROFEFTY: Camagau
TOWMSHIF: EEn Nevis
FFOVINCE/NTS: Dntarjo
LOCATCON:
(ME Grid): L 1+OOE

Fage 1 凹f E

FHOSECT: Camagat
DOH NO: CNGMOMO
Elev:
AzIm: oAS Jeg
DIF: -43 deg. coltar

CONTFAMCTOF: Fi Yost
LOGGED EY: W. J. Mceuinty (re cieim):
UNITS:
FEet
COFE
FFOM

10
43.4
3.4

Amypualojatatagalt, stromgly altered, chloriteGeric: dewameswite? (dolomite?), mo cartumate resction, quartzwrarbomate amyoulate fill with chlorite telwes and sulptime foyritet


 rempomad to chlmitio zone in flow texture
 sphalerite 3-5\% roubhy farallel to bambing OO-45 rieg to C.A. variable
 coloured lobes in ctioritic groumdmass
\(43.4 \quad 74.6 \quad 25.2\)
\(74.6 \quad 1012 \quad\) FE.E
\(101.2102 .2 \quad 1.0\)
Chloritemrtyolite gericite altarea, apparent Wemding wefimed by chiorite at 45 deg to C.A. Amypuldes with pyrite cores and ctilorite Falows occur throughout section S1.OWEO.0 ctadxopyrite im amygdule cores

Massive-rtyolijte five grajmed, garl grey colour, pervasively ctaoritized with \(10 \%\) diss pyrite chalcomyrite and locel charite puartz strimgers with pyrite (95w102) smelt chartote thets also common

Fhyol ite breccia-ampular rtiyulite frauments and flattemed chtoritidzed ash fragments Upper contact As deg to C.A., lower montect 90 deg

－ag tac．A．
\(15.0 \quad 420.9 \quad 253.9\)
6.7
 Heg to C．A．some fime grained pyritet／－．． sphalerite blets

Mascive baselt，buff fragnents in chloritized grionmotrass mear upper contact．

175．0－162．0 diss chalcopyritemsptalerite mineral ization 1－玉\％cemtred on amygulates
\(1 \%\) ． 4 pyritempuarta band \(1 / 2 "\)
17E． \(7-177.6\) silic：bumping
1ש2．9－153．O very strong chamite with mimor chadropyrite
1玉A．2－2To． 4 grey，weekly ctiloritized beselt 184．E－ 984.3 silica dumping
16E，ostrimger of pyritewctagcopyrite，no chamite
1世7．0－190．0 frottry armaraloidel baselt with pyrite－spladerite mineradization
 sub－parallel la C．A．with fracture controlled ureat：pyrites，sphalerite
198．0－15E． 0 massive，wearly altered basedt pyrite in amyoderses
 Emvadudes
Gद．- gor 0 fine graineq beselt，weet由HIorite alteratign
19日．4，200． 4 pyrite－quartz stryngers with chamitic comtacts

GOA． 7 chorite stringer
207．0－20\％A chloritemandrowyrite stringer zome z\％ctedcopyrite with quaptr contects sharp EO－7O deg to C．A．
 Lasel t
 ェックを
\(210.4-2.9 .7\) mass j．ve pale grey armgoloidel फeseltw以refn core on rist．y fractures 212．7－218．0 fütty section witt pyrite

fracture controlleg pyrite，chalcopyrite （ \(1 \%\) ）

at o－2g4．o stromg chlorite alteratiom sphalerite strimger 2ge 8
 parallel to C．A．
```

24%.5-24\#.3 irregular quartar brecciat vein
contects 45 GEy 10 C.A
24E.0-9E1.5 massive grey basalt, local
Melcite Vejums
2%.4 dry fanlt gmuge 40 meg tiv C.A.
2%7.0meg.2 breccia, fine grained bawalt.
fragments gf veriable size, fine fragments
maly %Es.0-2ES.4
2t7.E chalcopyrite blebs
27马, O-2%O.0 pyritew-sphajerite mineralization
in fractures and green tramslucent mineral
in amygotales, (ctorysocolda??

```

```

 2g7.0-2ge.0 &anbonate sefj.cite
 m\mp@code{meraliqetamm}
 9#7,0-307.O weat: ctamwite alteratimm
 02.0-3O4.0 Fimt: calcite mtrimgers
 307.0-3%9.0 trace pyrite
 89.0-3%2.5 flow top zome
 %5, 3%7.O brereiateg puartaz rearite veim
 %9.E carbonatempyritemsphalerite veinlet.
 \#%.5-A%e.g massive grey meditum gradned
wasalt, locally amygmaloddal numerobs
irregular bemdes of silice dumpimg, weat: ly
porplayritije feldspar with ctigorite after
pyrawene some celcite filleg joimts lower
contact 40 Jeg t.g C.A.

```

Fryolitemololonitzem, \(10 \%\) pyrite in bletoy tamos louen contact 90 deg to C.A.

Amygheloidal besalt madium gradned minor Fyrite, criloritized lower comtact irregular

Finyolitercmanitizeg, sericitizedwfow benomed trece pyrite, Jower comtact \(A O\) deg tac. \(A\).

Weat ly chioritixed basalt lower comtact irregular

Floyol iterfow banded, efomateized, locedly sericitized, hower contact go deg to C.A., i"「"gula

Massive amyduandat Easedt. 454.2-46\%.0 grey coloumed ménum greimed amyodalaidal, pyrite and trace Ephalerite Some pele grewn minerad. (ctmysmomlad) 4ES.9-473.4 increased ctilonitizatian perticularily in eroypuldes ama fractures 4E9.0-470.0 weat fracture comtrollet

Ftromatemfow-bambed, thloritic, rare pyrite \(473.5-47 \% .7\) bandes quarto carbonate vein contacts and banols at 45 dee to \(C . A\).

Quanty vein 4E deg to C.A., barren
Amyghadojdel basalt general weat to moderate ctioritization as well as im amyoules amd frectures
 vedn with some acjexemt chanite alteration G"10\% pyrite


 ตEd Ema
 495.0-455. 2 twnder quantz carbomate vein with pyritemophatendtewthalcopyrite
455 - 513.5 flow top treccia zome weat ly clammitived
EOO.0 py"ite amo sphalerite in emyghtles

 fractures ralcite filled

S5 deg to \(G A\). some pyrite stringers at.
lower contact - contact defined by gharp dip
5 57.0 quayty-6arbonatewpyrdewsphalerite vein 30 deg to C.A.
\(57.5-576\) certomate reaction
578.8 chalcorvite im joints
 1 incti cartamate-pyritemephalerdte stringer amo calcite velnimy
505. 0-6OE O carbomade reactiom

GOE, O-ED O flow top treccia
E1, O-GE, 5 quantz veimimg in Etromgly aflwitixed baselt - now sulphide
 wesedt

E45. \(-646,5\) white ghantrodolomite vein
E4t. \(5-755.0\) - fine mandum grexined beselt
trace pyrite gemerally
GAS G-ade charite bumd, molomite-pyritespaderitemgenam stringer at cone


> angle banded white quart.t. vejus
> E59.7-676. 4 carbonade reactiwn
707. G, 70E. 4-70E. 7 maderate chlorjtizatima
\(710.1-712.5\) carbmate reactaom

> on lower contate
> 71 \% . -7.77 .8 cartonate reactian

> 40 deg t.g C.A
> \(7 \% .3-755\) : o carbonate reaction

END OF HOI..E
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{MAMOND DFILI FEEOFT OTECT: Canagat EROFEETY: \(\qquad\)} & & \multicolumn{2}{|l|}{\begin{tabular}{l}
ASSAY FESULTE DOH NO. CNGGO-3 \\
TOWNGHEF:EED NEVjS
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{} \\
\hline 21.0 & \(2 \pm 0\) & 5.0 & L4126 & Nil & \\
\hline 2 E 0 & 31.0 & 5.0 & 4197 & 14 & \\
\hline 31.0 & 8 E & 5.0 & \(412 \%\) & 105\% & \(82 / 180\) \\
\hline E6.0 & 41.0 & 5.0 & 4123 & 27 & \\
\hline 41.0 & 纸, O & 5.0 & 4130 & 3 & \\
\hline 4E.0 & 49.4 & 3.4 & 4131 & Ni]. & \\
\hline 4*, 4 & 54.4 & 5.0 & 4132 & Nid & \\
\hline E4. 4 & 59.4 & 5.0 & 419 & NiJ & \\
\hline 59.4 & EA. 4 & 5.0 & 4134 & Nil & \\
\hline E4.4 & \(E\) E. 4 & 5.0 & 4135 & Nil & \\
\hline \(6 \% .4\) & 74.6 & 5.2 & 4136 & Nil & \\
\hline \(74 . E\) & 79.6 & 5.0 & 4137 & Nil & \\
\hline \(7 \% .6\) & \(\% 4.6\) & 5.0 & 419 & Nit & \\
\hline Eu E & E9.6 & 5.0 & 413 & Nid & \\
\hline \(8 \% .6\) & 94.6 & 5.0 & 4140 & Nil & \\
\hline 94. & 9 E & 5.0 & 414 & NiJ & \\
\hline \(9 \% .6\) & 104.0 & 4.4 & 414 & 4 4.5* & \(51 / 34\) \\
\hline 104.0 & 109.0 & 5.0 & 4143 & 45 & \\
\hline 109.0 & 114.0 & 5.0 & 4144 & Wi. 1 & \\
\hline 174.0 & 119.0 & 5.0 & 4145 & 34 & \\
\hline 135 & 1975 & 1.0 & \(414 E\) & 7 & \\
\hline 137.5 & 140.0 & E. 0 & 4147 & Nil & \\
\hline 165 & 15\%.4 & \# 2 & 414 & NiL & \\
\hline \(1 \%\) \% 4 & \(17 \% .5\) & 5. 1 & 4149 & NiJ & \\
\hline \(17 \% .5\) & 177.0 & 3.5 & 4150 & 14 & \\
\hline 177.0 & 1 12.0 & 5.0 & \(4{ }^{4}\) & Ni. 1 & \\
\hline 162.0 & 155.0 & \(\cdots\) & 4152 & Wil & \\
\hline 150 & 197.0 & 5.0 & 415 & Nil & \\
\hline \(1 \% 7.0\) & "O\%.0 & 5.0 & 4154 & Ni. & \\
\hline ण. 0 & 207.0 & 5.0 & 4155 & Ni. 1 & \\
\hline 207.0 & 210.5 & 3.5 & 4154 & 105 & \\
\hline  & 485.0 & 4.0 & 4157 & Nil & \\
\hline 485.0 & 450.0 & 5.0 & 4158 & Nid & \\
\hline 490.0 & 455.0 & 5.0 & 415 & 3 & \\
\hline 495 & 500.0 & 5.0 & 416 & 10 & \\
\hline
\end{tabular}


QUEENGTON GFOUF
DTAMOND DFTLI. FEFGFT

Fage 1 of 4
FFO.JECT: CANAGAU
DDH NO: CNGSO-4

\section*{Elev:}

AEIM: 130 DE日
DIF: \(\quad-45 \quad\) Meg

TOTAL 以F"TH: 50 feet atcollam

CONTFACTOF; Fi. Yost


\begin{tabular}{|c|c|c|c|}
\hline  & \(7 E . E\) & 13 & \begin{tabular}{l}
Dacite, massive weat ly foloritized, gark colaur Locally ariygataloidal and weat: y feldspar porptiyritic \\
 \(\because\) © .
\end{tabular} \\
\hline \(7 E . E\) & 90.5 & 3.9 & \begin{tabular}{l}
Decite, sericiterchlorite alterew \(75.5-60.5\) pyritestrimgers, z-3\% pyrite 45 deg to G. A. \\
75.52 inch semi messive bend with pyrite-gphederite-galema
\end{tabular} \\
\hline 80.5 & 83.0 & 2.5 & Dewite, dark grey umaltereg \\
\hline \% . 0 & 97.5 & 4.5 & \begin{tabular}{l}
Dacite, serjcitemotionde altereg with fracture contriolle日 pyrite \\

\end{tabular} \\
\hline 87.5 & 91.0 & 3.5 & Darite, ctimitizat massive appearance dart rolout sif rontrolded lower contact at. 2 घG w. C.A. \\
\hline 91.0 & 96 & 5.0 & Fasalt, stromg warbimate altaret.ion witt petety sericite hower contact 25 deg to C.A wn 5eriotite-carbomate sidf \\
\hline 96.1 & 98.0 & 1.9 & Midued aone - brectiater decite witta aignif icant carbomate-sericitempyrite bandimg. Erecciated pyrite bembimg witt आuartz-cartomatemsphalendte fill \\
\hline 920 & \(9 \% 1\) & . 1 & Sherp cerbonate-sericite slip zone 45 geg to C.A. \\
\hline 9E. 1 & 109. & 11.1 & \begin{tabular}{l}
Dawite, rassive, sericite altered 95.5-100. 2 semi massive silicificu sulphita band \(15 \%\) pyrite trare sphaderite-gelena \(100.2-108.7\) strong sericitz alteration \(2-3 \%\)戶уrite in strimgers amo disseminations \\
 100 - -108.7
\end{tabular} \\
\hline 105.2 & 117.6 & 6. 4 & Eawelt, shear banded strongly carbonate altered. Garbonate sericite foliation at ge 45 deg to C.A. celcite in froctures, inregular wispy sulptide bands parallel to foliation \\
\hline 117.6 & 117.9 & . 2 & Stexr bended quartursericitemsulptide vein \\
\hline
\end{tabular}
fractures, gtrongly brecciated 119.0-100.5 very broken core and fatit gouge t5 deg to C.A. strongly fractured 121.0-121. 6 broken core \(121.8-122.7\) weakly silicified sericite teanding - sharp lower contact 45 deg to C.A.

Dacite, massive grey coloum, few pyrite bands with sericite haloes, lower contact gradational

Dacite sericite altered, messive moderately fractured with pyrite-galema-mphalerite mineralizetion
\(125.5-12 \mathrm{~F}\). moderate shear banding with sericite tands and pyrite-galena-sptialerite stringers
\(126.5-127.2,127.5-127.5\) quartz sulphide veins
\(152.5-135.9\) sidicified zone with fracture control hed pyrite-sphederite \(12 \mathrm{E-15} \mathrm{\%} 4\) quartz-sulphide filled fault Grectia, contacts 45 deg to C.A. 1 en. 2 suphime filled fath gouge as deg to C.A.

Decite, massive, dark grey to grey, fine grained, chamutized phenocrysts (?) strong to moderate carbonate alteratimn \(145.9-146.3\) banded quartz vein, minor pyrite sphalerite an upper boumary

Fault zome - crushed dacite contacts 45 deg to C. A.

Dacite, corroded bue to adjacent fatht zone \(163 . E-1 E S .7\) fatht gouge 45 deg to C.A.

Dacite, grey to yellow grey, sericitized, cabomate and choride alteration alsa apperent with disseminated blebs of pyrite, Lower contact charitized, brecciated

Easalt, brecciaded amydaloidal, some sulphide in amygdules, weakly sheared lower contact with chlorite

Dacite, cartmate altered, grey colour sheared lower contact with chlorite
\begin{tabular}{|c|c|c|c|}
\hline 161.6 & 165.3 & 3.7 & Essalt, chabrite-carbonate altered flow top zone \\
\hline 15 & 192.9 & 7.6 & Dacite lotesc? in basalt flow top zone lower contact 30 deg to C.A. irregular with ctilorite \\
\hline 192.9 & 15E. & 3.6 & Dacite, carbonate sericite ajtered with pyrite stringers at 4 C deg to \(\mathrm{C} . \mathrm{A} .-\mathrm{lower}\) contact. AO deg to C. A. with some brecria \\
\hline 196 & 250.0 & 53.5 & Easelt massive, amygaloidaj, grey colour concentric cooling frecturess, continuous pid low zome \\
\hline 250.0 & & & END OF HOLE \\
\hline
\end{tabular}

 average of two amalyses (t)
avera戶e of four " (束)

QUFENETON GROUF
DIAMOND DFILL FEFOFT Frage 1 -i 3

COMIENCED:
FTNISHED)

COFE SIEE: EQ
TUTAL DEFTH: GO feet
CONTFACTOF: Fi YOES

LOGGED EY: w. I McGuinty (re Clajm:

FFOFERTY: Camagau
TOWNSHIF: Ewn NEVis

FFOVINCE/NT: Onterio
BOCATTON:
(re (ind )

FROTECT: Canagau
DIDH NO: CNGOO-S
EbEV:

AEIM: 130 Jeg
DIF: EO deg collar UNIT:

FEst
COFE

Casjug
4.0

70 .
EE B
Easalt massive amygulodidal, fine gratmea general çrbonate alteratiom, fiss pyrite tiets and Fyrite in amyglules \(1-2 \%\) overall, small chamide bleta
70.3
115.4
45.1

Decite messive -amb grey to yel bu grey anferjtic (oulomitic) alteretion pervesive G1. 1 - quartz-carbomate-pyritewophalerite vein
 fractures arod disseminatad
马uartz-sericite-wantomate veim. arsenopyrite ( \(10 \%\) ), pyrite ( \(80 \%\) ), Ephelerite (iow), galena (s\%) E\&. \(1 \cdots-110.1\) mandy dark grey macike minor pyritewsolalevite blebs
 Fataderde vedn
110.1-110. 110 - -110.3 ghartz-warbonete-pypite-
 115.4 lower comtawt poorly defineut
\(115.4 \quad 11.3\)
Eacalt, Enyadeloidal carbomate altered wite emygumes with rimonite rims and ro sulphime laz 0-1F. o bleby pyrite amo sphalerite, H5sceminated

14.
152.9
155.6
155.0
161.7
162.5
155.0
161.7
.5
1.2
6.7
.8

Dacita, breccieted, stromgy silicifieg amy sewicitized, well veimed \(5-10 \%\) sulphide
 1F\% .5-13a. 1 20\% chalcopyrite + pyrite + swaterite, lower contact ratated from LFper at 40 Deg to C.A.
135.0 dower vein contact 20 deg to G.A. 135.0-13世.5 silicifiat brecwiated dacite 10\% pyride in fracture montrolled breccia Eamys, lower comtact S5 deg toc.A.

Wasedt, strear bamded with carbonete-sericite bambs alomg numerols quarte vein comtacts, 5\(10 \%\) vein controlled pyrite with minoy swhalerite and galena lower contact so deg to C. A. stmarp

Dacite, silicified, sericite-carmonate altered with minor breceietion 145.5-14E.0'4-5\% pyrite
 pypite with smbelaydue
 (as in tale \#4) lower contact 4 ! deg to \(C \cdot A\).

\section*{Cterty quartz vein, grey colour, frarthre controlled pyrite, thin black sulptide seem on lower contect 45 Geg to C.A.}

Dacite, sijucifjed, sericite aldereat, \(5-10 \%\) stringer and fracture controlled pyrite 152.1-15z. 3 breccia zome with late faut gwage ma تg beg to C.A.

Eawalt, amygdedwiwed, pyrite in fractures ana amyouldes, sericite amu cartomate alteration pervasive
\(152.3-15 \%\) breccia zwne \(159 . \sigma\) lower comtect 90 geg to C.A. strapp

Deinte, silicifieg, chlorite-sulphice tama on merp jrregular lower contact

Fesalt - weak iy sheared
Ereccia zone, weakly foliaten at 45 reg to C. A., quembecalcite breccia fill surroumding grey suffriofe ano matrix material 1F2 \(4-162.5\) grey stiphide band


4E. 1 Dacite Giljcified, gericite altered, yellow colour, \(5 \%\) fracture controlleg pyrite ano sptamer ite locally \(159.5-177.0, \quad 190.0-205.0\) 5twom sijucificatiom
1.9
34.7
350.0

END OF HOLE

 average of two amalyses (d)玉verate gifour " (tw)


QUEENSTON GROUF DIAMOND DFTLL REFORT

COMMENCED: WOV \(23 / 50\)
FINISHED:
COFE STzE: EO
TOTAL DEFTH: \(\quad 4\) OO feet

FROFEFTY: GEMEQALA
TOWWSHP: EEn NEvj.s

FFOVINCE/NTS: Gntaria
LOGATION:
(re Grid): zemgrja east.
-1 \(1+50 \mathrm{~F}+\mathrm{t} 5 \mathrm{~S}\)

LOGGED EY: \(W\), J. NeGuinty

Fage 1 af 9
FFO.JECT: CEMagen
ODH NO: CNGSO-E

\section*{ELEV:}

ACIN: \(2=5\) deg ex
\begin{tabular}{|c|c|c|}
\hline DTF: & -60 deg & casing \\
\hline EOO & -47 サex & \\
\hline 900 & --44 deg & \\
\hline 1200 & -41 deg & \\
\hline 1480 & -36 deg & \\
\hline
\end{tabular}

UNITS FEET


weal to maderately charitized, amygodues

 replacement with irregular nuartar-molumite -oyrite-sprox erite vein on lower contact 25 HEg t.O C.A.

 deg to C.A.

Z2. \(\quad\) / 2 " dmbmbe vein with minar ctrelcopyrite
 i.rregular shafes

AE. 9 lower cortact \(A 5\) deg to C.A. Gtarp
\(46.9 \quad 59.7\) 52.
Fryolite - moderade to strongly chioritized, lucally flow banded, locally brectiated, pale green whide to black in colour, groumdrass preferemtiad dy mbloritizem
de. \(9-70.0\) altermately flow bamaed and flow brecciated, well cmowritized
5E. O-EG. O quarte-dolwide veimimg with pyritemponalerite mineradizetion \(5 \%\) lucaly
\(70.0-69.7\) predeminently massive, fine grevmed, wewkly flow bamded, well
(t) orjtjzed
 and in frewtures with relomite
77.2 chloritized stringer with pyrite sphateride dolonite barid and then quartz veimlet witt specks galema
82.0-55.0, 97.0-99.7 very stromg rtionite replarememt with some vestigial riyolite fragments, lower contacts stamp
\(9.7 \quad 121.4 \quad 21.7\)
121.4
149.2
150.5
154.6
155.2
156.0
145.2
150.5
154.6
15.2

156
\(2 世 6.6\)
27.8
1.3
4.1
\(E\)
.\(E\)
112.E

Amyguloided basalt massjve pale grey rolour 99.7-102.5 crilorite mineradized amygules amat :xidice dumping in evidence
102.5-10\%. O mamerous amygdules with pyriteswralerite cores
110.0-111.0 bolomite pyrite strimgers
135.5 pink calcite veimlet with speck galema

Fhyolite, massive, docally weatiy porptypitic, fannt tamdimg apparent throughout, weat c"imuitisation causimg grey colour
 fractures with dalamite, lower contact sharp, brecciated, chloritizeg

Amygualojady wamalt, well chamuttized, lower contact strarp at 45 deg to \(C . A\).

Messive chamritized riyolite as at I2l. 4-143.2 lower aømtaxt ir"entlar at mo beg to C.A.

Fryolite as at \(21.4 \cdots 14 \% .2\)
Mascive anyonaloidex besejt, some flow top सr" 5 15世, 0-200.0
 preferentidelly al tered trace pyrite \(1 \% 1.0-171.5,17 \% .0-175.5,175.0-176.0\) weat 1y bembed white quanta-tolomjte veime minow ascociated pyrite irregudar contacts. \(174.0 \cdots 175.0\) troken core, stugngly ctioritiazer
 trexe pyrite - some fost rock fragments 1:E O-1 some pyrite
190. 4-w . 4 pele grey buff zeloured arygualoidaj baselt, silica dumping Evident in nerrow irregular bande, thin seams of chloritizad mederial. in flow top brecida groumbmass and alomg puarta -rolomitemprite veinlet comtacts 190.4-190.6 pale beselt ctips
\(190.6-190.3\) narrow persistent flow banding 50-40 deg to C.A.
\(29.0-29.0, \quad 297.0-259.0,243.5-244.2\) moderately chloritized flow brectia
\(250.5-251.4\) bended quartz-dalomite-pyrite vein, contacts at so deg to C:A. \(1 \%\) pyrite, trace sphalerite
5bl A-2es o chloritized basalt well altered with black chlowite, pyrite stringers and anartzododonitesphaderite veins
\(254.8-259.6\) massive white guartz vein sone pyrite banding near lower contact
26.0-26e. massive grey amygdaloidal baselt fine grained lit.tle evidence of flow top meterial
EEA.1-271.0 intermittently strong
chloritization
2E4. 1-254.6, 2E5. 4-255.5, 2EB.0-265.6 strong ctaloritation possitily selvage controlled. Eome awsociated pyrite.. quatte-dolomite veining
2EE.E 270.7

270
7
416.0
145.3

372.3 banded quartz- dolomite-pyrite veins various orientations
374.3-374.5 calcite filled falt breccia 45 deg to C.A. Sharp contact 374.8 thin vagy calcite veinlet nailhead spar and modular pyrite
\(389.8-50.1\) - chlorite tand with quartzdoumitempyrite vein at core
Sge zuartz-whomiterpyrite-sphalerite vein go deg to C.A.
AO1. \(2-\operatorname{loz} \mathrm{E}\) increasen chloritization with matuerous pyrite thets and stringers and quartz-dolomite-wyrite veins

41 E .0

42 E

45 E .2
432.5
43.2
43.2
165.0
5.7
5.0

Banded baseltic flww top/ash zone, interbedued beseltic material with mixed beds of bagaltic felsic ash material general chlorite alteration with moderate sericite alteration, apmaent banding at 45 deg to C.A
 deg to C.A. lower comtact on shampsif plane
492. \(2-492\) a 4 semmated chalcopyrite sphalerite mineralization
```

Massive basalt, weathy amygdaloidal, chioritizes 497.5 quarta-molomberpyrite vein 15 geg to

``` C.A.

Sulphide zone - host is highly altered (chlorite-sericite) brectiated basalt, sulphide mineralization found as bands broken Wands and pods. Upper combact defined by contorted quartz vein approximately 40 deg to C.A. 4E, 2-499.0 25\% Fyrite, 2\% grey yellow gotelerite and later brown sphalerite, 1\% chalcopyrite 499. 0-499. 7 chloritized besalt. 49.7-4no.2 pyrite band sme quarta-dolumite 40 deg to C.A. Go\% pyrite \(440.2 \cdots 42.0\) strong chlorite sericite alteretion pyrite-arsemapyrite-sphalerite -chatopyrite mineradization in irregular bands
sone weak mineral segregation 10-15\% subphide overall.
442.0-443.2 chlorjte-sericite rock with \(10 \%\) pyrite sphalerite mineralization upper contact is deg to C.A. defined by slip and \(1 / 4\) inct quartz vein

```

 amy@gules elomgated 4s deg tw C.A.
 E4.0-875.2 lotyy flow tof amygdaloided.
Easalt with chomritizeof imterflow selvages
"ashy" tecture between lobes nomemately
ctooritized, calcite mineralizatiom in
amyomades amod in "ast""
BA%.%-कA%.4 fatit zome weatclv cemented
uneltered rumble

```
978.
ex. 1
915.3
92.4
992.3
10.5

Ftyvolite, weakly sericitized and chloritized unper contact 60 deg to C.A. fathed lower contact sharp at EO deg defined by o. ft banded quarta-carbonate-sericite vein

Amygelagidal besalt, upper 3 inches strongly sericitized lower contact sharf at 60 deg to C.A. weat pyrite, trere chalcopyrite

Fthylite, massive, wealdy pomplayidic, moderately
chloritized and sericitized
Ee5.4 1 inch sulphide fatilt zome 70 deg tia C. A.
woter contact sherp, charitimed fergem tow CA.

Anyodedoidel bagelt weady mimematiaet with, myrite in amyputes lower contact sharp eo deg te CA
```

 Fuymi i.e, aren brectaz and fault zome
    ```

```

 rtyolite trecria with carbonate-
 ctolcopyriterpyrite fild
    ```

```

 rhyol ite with severel shamp rhamite slipe
 rontrol ing ertomate veinimg, minor pyrite
 9e5.5-920. 7 gen fath brercia with white
    ```

```

 on framment bomraries: serieite alteration
 etwana
    ```

```

 witnjestrongy charidized and sericitized
 rayol ite
    ```

```

 and ctoloritized rtyolide, \(10 \%\) stringer and
 disserninated pyrite
 gil owge. 9 viggy crystallime coerse praineat
 quante, pink calcite vein with chloritized-
 sericitized rtivolite fragments and blebs
 chatcopyrite contacts irregular
    ```
99.3
947.5
945.7
952.3016 .3
1015.

101E． 7
\(1016.7 \quad 198.9\)
\(102 \mathrm{~F} \quad 1046.2\)
\(104 E .2 \quad 1155.0\)
\(11250 \quad 1148.0\)
\(146.0 \quad 1160.6\)

Amygdalodowl basext dark grey colour， charoritzed，pyrite and chalcopyrite an amygoules jower contact subuperallel to C．A．

Ftyolite，trecciated and veined，strongly sericitizeg， \(3-5 \%\) irregularly bamded and dissemimated pyrite．Veimimg is mainly quarte cartoomate lwwer combert streared 30 deg tio C．A．

2． 1 Amygradmidal basalt，chagjtized，lower


Finyolite，massive，weat ly porphypitit as at


Amypodambal basedt amygdules are small amo very atommant．
\(934.8-955\) ． 4 ，1000． \(2-1000.3, \quad 1009-100 \%\) ． 4 bedred est interflow sediment，calcite mineralization with quartor and dolomite in amyoutles

Ftyolite，weakly sericitiser massive，contacts a゙も क゙marp ama ewnformatole

Amyguadodad bazalt，damk grey，cwarse amypotles with pyritemuertz－cartomete ara sericite fill，lower cmomet smawp sap on 50 deg to C．A．

Rhymute ás at \(1015.3 \cdots 1016.7\)

Amygdadoidal basalt，ank grey，wath amygdules еб et \(1015.7-1098.9\) \(1049.6 \cdots 1049.7\) fadit ponge，calcite qement， min mor py＂ite

 \(1101.0-11020\) silica Dumping


Easelt，messive，Fomogememus，pels grey， irregular ta wod atmygules are mparee wjth grewn charidized cores \(1145.7-1145,9\) rivolite fragment lower contact stamp conformable 45 deg to C．A．

Thymijue？massive，pele greem grey，sericite wispe thmoughout，upfer contect amea chilled

calcite veinimg, lower contart irregular conformadie
16.6
1315.5
146.9 Amygalodidal besedt,

116日. G-llea moderately to well chloritized, mineralized with pyrite in amygdules and in selvages with silica dumping
\(1184.0-1209.0\) pale grey umattered anygutoldal tesalt
1206.0 silise bumping
1203.0-1214.3 moderately to well chloritized end moderately sericitized basalt, localized silijca dumping
1214.3-1219.5 strongly sericitized \(z^{\prime \prime}\) pyritearsenopyrite band on upper contact with ctiondte and carbonate
\(1214.7-1215.0\) rtyolite layer fractured and minerelized with sphaleritergalera-pyritectaleopyrite
1215.0-1215.5 basalt witte pyrite mineralizatimm
1215.5-127.0 sheared quartzomamite vejn 15 Gea toc.A.
\(1217.0-1219.0\) strong sericite
\(1219.0-1215.5\) banded quartz-bolomite vejn at 15 deg to C.A
125. 0-1249.0, 125E.0-1257.0, 1253.5w1265.0 inoreased fracture ard amygule controlled galena-sphalerite +/- chateopyrite mimeralization
1 wo.8-1251.2 bended dalwmite vein
\(1279.0-1275.8\) stmong sericite alteration \(1279.4 \cdots 1274\) banded quantz dolomite vein AO deg to C.A. some sericite slips
1277.9 shamp fath \(1 / e^{\prime \prime}\) : 35 teg to C.A
 silica rumping
\(1281.0-1310.0\) silica tumping common \(129.9-1290.4\) rhyoldte layer?
\(1312.0-1313.0\) baselt flow ruble in chlorite groundmass
\(1315.5 \quad 1387.5 \quad 220\)

Fryol jte, fime graimed 1515.5-1\%5. o brecciated, yel Low green rtraidite \(25-\mathrm{Bo} \mathrm{\%}\) quartz cartomate veining minor pyrite an seams
\(15 \mathrm{~S}-1937,3\) dark coloured chloritized end sericitized massive rhyolite, \(3 \%\) pyrite and trace ctaloopyrite (1300.0-1357.0 - 5 feet missing core)
\begin{tabular}{|c|c|c|c|}
\hline 13575 & 1345 & E.E & Fault xome broken come paondy consaliodated fault putge calcite mineralization fatit brectia material. is sericitizead baselt \\
\hline FAE. & 134E.4 & 3 & Moderately foliated basalt, well sericite eltered \\
\hline 1346, 4 & 1387.1 & 40.7 & \begin{tabular}{l}
Amygatadrad tacadt \\
 in amygates some pyrite amd chalcopyrite \(1352.5-1354.0,1355.0-1356.6: 1353.5-1360.5\) sericite carbomade altered breccia ! \(37 \%\). 0-1367. O moderate chloritization lower comtact sharp 70 geg to C.A. chloritizeg
\end{tabular} \\
\hline \(18 \% 7.1\) & A AOM 7 & \(14 . E\) & Fhyolite? messive, pale grey, with chionitized phenocrysts or amygules lower contert oodeg toc.A. \\
\hline 1401.7 & 14030 & 1.3 & Gramitizey bagelt, lower comtext comformeble \\
\hline 14.03 & 1404.1 & 1.1 & Rhyol ite lote witt concentric jeyer of beduen imterflow sealment emelosimg on upper amd dower кontacts \\
\hline 1404.1 & 1408,2 & 4.1 &  \\
\hline 140\% \% & 1409 & 1.0 & Fityolite flow rubble, top uptoole? \\
\hline 4092 & \(146 E\) S & 57.1 & Fhyolite, massive, weakly chiloritized, fale grey dark grey in colour \\
\hline 1AEE, & 1480.0 & E8.7 & \begin{tabular}{l}
Amyadelondal basalt well chamitized, amypulas have reare sulphides \(1425.0-7400\) o brace chalcopyrite and sphaleribe \\
1443.0 Golomite vein 15 deg tw C.A. \\
1472.3 quarta ctadcopyrite mineralization
\end{tabular} \\
\hline 14\%0.0 & & & END OF HOLE \\
\hline
\end{tabular}


Notes and Feference (Assay Centificate): Gwastita Labs ow-lgel-Figl OU-1990-RG1 0W-1961-FGG1
average of two analyses (o) average of four " (米)

\begin{tabular}{|c|c|c|c|c|c|}
\hline 44.0 & 448.0 & 5.0 & SEES & QE & \\
\hline 446.0 & 459.0 & 5.0 & 5667 & 27 & \\
\hline 459 & 456.0 & 5.0 & 5668 & 17 & \\
\hline 458.0 & 4E3 ． 0 & 5.0 & 5605 & 31 & \\
\hline 48.0 & 465.0 & 5.0 & \(5 \pm 70\) & 14 & \\
\hline \(4 E .0\) & \(47 \% .0\) & 5.0 & 5671 & 24 & \\
\hline \(47 \%\) ． 0 & \(47 \%\) ． 0 & 5.0 & 5672 & 21 & \\
\hline 47 E ．0 & 4 S .0 & 5.0 & 567\％ & 2于束 & \(31 / 27\) \\
\hline 497.0 & 502.0 & 5.0 & \(5 E 74\) & 21 & \\
\hline 502.0 & 507.0 & 5.0 & 5675 & Ni． 1. & \\
\hline \(5 \pm 1.0\) & 5 5\％0 & 5.0 & \(5 \pm 76\) & 17 & \\
\hline 56.0 & 591.0 & 5.0 & 567 & 17 & \\
\hline \(5 \pm 1.0\) & 596 & 5.0 & 5679 & 14 & \\
\hline 62． 0 & E\％7．0 & 5.0 & \(5 E \%\) & 21 & \\
\hline E\％7．0 & E1．0 & 4.0 & 5690 & 17 & \\
\hline 697.0 & 702.0 & 5.0 & SEw & 10 & \\
\hline 72.0 & 707.0 & 5.0 & 56.2 & 10 & \\
\hline 707.0 & 712.0 & 5.0 & 569 & 5\％ & 10／7i1 \\
\hline 712.0 & 717.0 & 5.0 & 56.4 & Nil． & \\
\hline 777.0 & 722.0 & 5.0 & 5695 & Nil & \\
\hline 722.0 & \(7 \% 70\) & 5.0 & 569 & Nil． & \\
\hline \(7 \% 7.0\) & 7920 & 5.0 & 5597 & 17 & \\
\hline \(7 \% 20\) & \(7 \% 7.0\) & 5.0 & 569 & 10 & \\
\hline 757.0 & 742.0 & 5.0 & 5697 & Nil & \\
\hline 742.0 & 747.0 & 5.0 & 5690 & Nil & \\
\hline 747.0 & 7520 & 5.0 & \(5 \in 91\) & Nil & \\
\hline 7 ¢． 0 & 757.0 & 5.0 & 569 & 14 & \\
\hline 757.0 & 762.0 & 5.0 & 56 & Nil & \\
\hline 762.0 & 767.0 & 5.9 & 5694 & Ni．l & \\
\hline 7 E 7.0 & \(77 \%\) 0 & 5.0 & 5695 & Nil & \\
\hline 7\％\％．0 & 777.0 & 5.0 & 569 & 14 & \\
\hline 777.0 & \(7 \% 2.0\) & 5.0 & 56.97 & Ni．J & \\
\hline \(7 \times 2.0\) & 767.0 & 5.0 & 565 & Nil． & \\
\hline 787.0 & 792.0 & 5.0 & 5695 & Ni．］． & \\
\hline \(7 ツ 2.0\) & 797.0 & 5.0 & 5700 & Nil 1 & \\
\hline 52.4 & 927.4 & 5.0 & 5701 & 934 & \(35 / 315\) \\
\hline \(5 \% 7.4\) & 9 E ¢ & 3 E & 5702 & \(\cdots 7\) & \\
\hline 9 ET 0 & 95.0 & 2.0 & 5703 & Nil & \\
\hline \(9 \% .0\) & \(9 \% .0\) & 5.0 & 5704 & 45 & \\
\hline 93.0 & 842.0 & 4.0 & 5705 & Nil & \\
\hline 94.0 & 945.0 & 3.0 & 570 & \(308.5 \%\) & 315／302 \\
\hline 104E． & 10512 & 5.0 & 5707 & Nil & \\
\hline 10512 & 1056． & 5.0 & 5708 & Ni． 1 & \\
\hline 1180 & \(17 \% 4.0\) & 5.0 & 5703 & Ni． 3 & \\
\hline
\end{tabular}

Notes and Reference（Assay certifirate）：Swastika Lats ow－1egl－figl OW－19\％O－FG1 OW－19E1－FGT

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1774.0 & \(117 \% .0\) & 5.0 & 5710 & Ni． 1 & \\
\hline 1212.0 & 1217.0 & 5.0 & 5711 & 1\％3．56 & \(180 / 157\) \\
\hline 1217.0 & 1221.0 & 5.0 & 5712 & Nil． & \\
\hline 1221．0 & 126．0 & 5.0 & 5713 & Nil & \\
\hline 1290 & 12010 & 5.0 & 5714 & Nil & \\
\hline 1291.0 & \(12 \% .0\) & 5.0 & 5775 & Nil & \\
\hline 12960 & 1241.0 & 5.0 & 5716 & NiI & \\
\hline \(1 \% 4.0\) & 1246.0 & 5.0 & 5717 & Nil． & \\
\hline \(12 \boldsymbol{4}\) & 1\％4シ， 0 & 3.0 & 5716 & 10 & \\
\hline 12560 & 12 E 1．0 & 5.0 & 5719 & Nil & \\
\hline 1 1\％ 0 & \(1 \times E E\) O & 5.0 & \(57 \% 0\) & Nil & \\
\hline 1FEE．0 & 1511.0 & 5.0 & 57 & Mil & \\
\hline \(1 \% 15.0\) & 1300 & 9.0 & \(5 \%\) & Nil & \\
\hline 1320.0 & 1325.0 & 5.0 & 5723 & 10 & \\
\hline 15 E 10 & 130.0 & 5.0 & \(5 \% 4\) & 24 & \\
\hline 1897.0 & 13420 & 5.0 & 5725 & Nil & \\
\hline \(13 \pm 0\) & 1347 －0 & 5.0 & 5726 & Z1 & \\
\hline 1347.0 & 13520 & 5.0 & 5727 & Ni］ & \\
\hline 13520 & 15570 & 5.0 & \(5 \%\) \％ & NSL & \\
\hline 1357.0 & 13世2．0 & 5.0 & 579 & NiJ． & \\
\hline 185\％ 0 & 1347.0 & 5.0 & 5780 & Nil & \\
\hline 1367.0 & 19720 & 5.0 & 5751 & Nil & \\
\hline 1495．0 & 1490.0 & 5.0 & 5732 & 10 & \\
\hline
\end{tabular}

[JW-1930-FG] OW-19世1-FC1
```

average g% tww amelyses (t)
average of f%ur" " (本)

```





63.6144
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PROV. & ONTA & & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{MOUNTAIN LAKE RESOURCES JOUTEL RESOURCES LTO.}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \text { JOINT } \\
& \text { VENTURE }
\end{aligned}
\]}} \\
\hline TWP. & \multicolumn{2}{|l|}{BEN NEVIS} & & & & & & & \\
\hline NTS & \multicolumn{2}{|l|}{3205} & & & & & & & \\
\hline \multicolumn{3}{|l|}{REF.} & \multicolumn{7}{|c|}{GEOLOGY OF} \\
\hline DWN. BY & \multicolumn{2}{|l|}{\(\digamma\)} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\[
\text { CANAGAU } 1990 \text { STRIPPING }
\]
\[
\text { PART } 2
\]}} \\
\hline REVISIONS & Date & BY & & & & & & & \\
\hline & & & SCALE & \(1: 250\) & DATE & MAR/91 & PLAT & \(E\) F & FIGURE 86 \\
\hline
\end{tabular}
\(\square\)
\(\square\)
\(\square\)


 \(x^{2}\) \(\cdots\) \(x+x=\) \(3+x+2\)
\(: 4-8 x\) \(+2\)



A-x




\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
SAMPLE \\
NUMBER
\end{tabular} & IWTERVAL METERS & \[
\begin{gathered}
A V \\
\text { Ppb }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Ag} \\
\mathrm{Ppm}
\end{gathered}
\] & \[
\underset{\text { Copm }}{C u}
\] & \[
\begin{gathered}
\text { pb } \\
\text { pom }
\end{gathered}
\] & \[
2 n
\] \\
\hline 4427 & 0.6 & 24 & 0.8 & 94 & 146 & 2380 \\
\hline 28 & 0.3 & * 34.5 & 22 & 122 & 190 & 3210 \\
\hline 29 & 15 & N/I & 0.1 & 20 & 25 & 183 \\
\hline 30 & 1.6 & N/I & 03 & 32 & 21 & 725 \\
\hline 31 & 1.5 & N/1 & 2.0 & 74 & 78 & 5090 \\
\hline 32 & 15 & N/I & 2.6 & 49 & 99 & 1350 \\
\hline 33 & 1.5 & N/I & 0.4 & 25 & 17 & 840 \\
\hline 34 & 1.2 & N/ & 0.1 & 15 & 7 & 421 \\
\hline -35 & 15 & \(N / 1\) & 0.3 & 21 & 43 & 489 \\
\hline 36
37 & 0.9
1.6 & \({ }_{N / 1} /\) & 08 & 101 & \(\frac{51}{34}\) & \(\frac{1310}{3640}\) \\
\hline 38 & 1.6 & V/ & 3.3 & 382 & 241 & 4790 \\
\hline 39 & 12 & N/ & \(\frac{1.8}{0.1}\) & 148 & 141 & 3060 \\
\hline 41 & 15 & w & 0.1 & 8 & 2 & 401 \\
\hline 42 & 1.5 & N/I & 0.5 & 32 & 16 & 784 \\
\hline 43 & 1.6 & N/ & 10 & 101 & \(9 /\) & 4750 \\
\hline 44 & 1.5 & N/ & 0.5 & 116 & 105 & 2290 \\
\hline 45
46 & 1.6 & N/1/ & \(\frac{0.4}{0.6}\) & 62
36 & 3 & 169 \\
\hline 47 & \(15^{\circ}\) & Wir & 0.3 & 35 & 5 & 466 \\
\hline 48 & 12 & 14 & 1.8 & 254 & 57 & 2960 \\
\hline 49 & 12 & * 12 & 0.2 & 46 & 3 & 2250 \\
\hline 50 & 1.4 & 10 & 0.2 & 46 & 2 & 44 \\
\hline 5651 & 0.8 & N/1 & 04 & 47 & 86 & 1010 \\
\hline 52
53 & 1.5 & N/I
\(N / 1\) & 0.6 & 48 & 50 & 473 \\
\hline 54 & 15 & 28 & 2.9 & 827 & 78 & 530 \\
\hline 55 & 1.3 & \(3 /\) & 10.2 & 4060 & 277 & 871 \\
\hline 56 & 16 & N/ & 2.1 & 671 & 100 & 2070 \\
\hline 57 & 15 & N/ & 53 & 556 & 194 & 1250 \\
\hline 58 & 1.2 & + 27 & 49 & 2500 & 156 & \$334 \\
\hline 50 & \(\frac{0}{15}\) & \({ }^{*} \quad 60\) & \(\stackrel{4}{4}\) & 2800
208 & 18 & \(\frac{43000}{1430}\) \\
\hline 61 & 1.6 & N/i & 1.4 & 197 & 24 & 331 \\
\hline 62 & 0.6 & 34 & 40 & 1150 & 33 & 6.33 \\
\hline 63 & 16 & 21 & 38 & 1870 & 25 & 490 \\
\hline 64 & \(\frac{1.7}{16}\) & \% 478 & 6 & 1310 & 178 & 846
16800 \\
\hline 66 & 1.5 & 206 & 360 & 837 & 593 & 1800 \\
\hline 67 & 1.5 & 27 & 3.9 & 458 & 108 & 556 \\
\hline 68 & 15 & 17 & 3.3 & 322 & \(1 / 3\) & 793 \\
\hline 69 & 16 & 31 & 22 & 250 & 55 & 702 \\
\hline 70 & 15 & 14 & 28 & 254 & 82 & 680 \\
\hline 71 & 1.5 & 24 & 2.5 & 358 & 131 & 5566 \\
\hline 73 & 16 & * 29 & 3.9 & 422 & 141 & 2380 \\
\hline 74 & 15 & 21 & 3.2 & 436 & 542 & 5520 \\
\hline 75 & 1.6 & N/I & 22 & 217 & 154 & 7580 \\
\hline 76 & 1.6 & 17 & 0.7 & 75 & 25 & 154 \\
\hline 77 & 1.5 & 17 & 11 & 326 & 37 & \(\frac{606}{1080}\) \\
\hline 78 & \(\frac{1.5}{1.6}\) & \(\frac{14}{21}\) & \(\frac{55}{0.8}\) & \(\frac{1330}{14}\) & 54 & \(\frac{1480}{900}\) \\
\hline 80 & 12 & 17 & 0.2 & 9 & 9 & 417 \\
\hline 81 & 1.5 & 10 & 25 & 385 & 39 & 202 \\
\hline 82 & 1.5 & 10 & 28 & 575 & 36 & 293 \\
\hline 83 & 1.6 & * 5 & 3.8 & 873 & 31 & 196 \\
\hline 84 & \(1 / 3\) & \(\xrightarrow{N / 1}\) & +10. & 650
2770 & 37 & 222 \\
\hline 86 & 15 & N/ & 6.3 & 1320 & 66 & 255 \\
\hline 87 & 16 & 17 & 124 & 2790 & 110 & 357 \\
\hline 88 & 15 & 10 & 37 & 621 & 73 & 232 \\
\hline 89 & 15 & N/1 & 87 & 1600 & 89 & 214 \\
\hline 90 & 15 & \(\frac{N / i}{\text { Wil }}\) & 22 & 348 & 27 & \(\frac{98}{92}\) \\
\hline 92 & 15 & 14 & 1.4 & 230 & 19 & 177 \\
\hline 93 & 15 & N/ & 34 & 574 & 4 & 139 \\
\hline 94
95 & \(\frac{15}{1.6}\) & N/I & 55 & 1370
708 & 93 & 251 \\
\hline 96 & 15 & 14 & 73 & 1010 & 88 & 298 \\
\hline 97 & 1.5 & \(\cdots\) & 94 & 1190 & 156 & 370 \\
\hline 98 & 15 & N/V & 7.2 & 922 & & 258 \\
\hline 99800 & \(\frac{16}{15}\) & Nil
Nil & 25 & 294 & 77 & 265 \\
\hline 0 & 15 & * 334 & 278 & 3030 & 96 & 104 \\
\hline 02 & 11 & 27 & 177 & 1900 & 225 & 1090 \\
\hline 03 & 0.7 & \({ }^{\prime \prime}\) & 10.7 & 1310 & 98 & 281 \\
\hline 04 & 15 & 45 & 5.4 & 1270 & 101 & 1260 \\
\hline 05 & 12 & \(N_{1} /\) & 6.2 & 621 & 119 & 552 \\
\hline 06 & 09 & * 3085 & 149 & 220 & 230 & 127 \\
\hline 07 & 15 & \(\mathrm{N}_{1} /\) & 15 & 138 & 85 & 245 \\
\hline 08 & 15 & w/ & 2.6 & 331 & 139 & \(4 / 6\) \\
\hline 09 & 15 & Nil & 18 & 264 & 473 & 535 \\
\hline 10 & 16 & \(N /\) & 06 & 78 & 122 & 663 \\
\hline ./1 & 15 & 1335 & 6.4 & 263 & \(\stackrel{1570}{275}\) & 7720 \\
\hline 12 & \(1 / 16\) & \(\frac{N / 1}{N / 1}\) & \(\frac{0.8}{06}\) & 96 & \(275^{\circ}\) & 421 \\
\hline 13 & 16 & N/I & 06 & 88 & \(1 / 2\) & 194 \\
\hline 14 & 15 & \(N\) & 06 & 28 & 524 & 448 \\
\hline 15 & 1.5 & \(\stackrel{N / 1}{ }\) & \(\frac{09}{22}\) & 80 & \begin{tabular}{l}
583 \\
\hline 193
\end{tabular} & \% 8327 \\
\hline 16 & 16 & \(\underline{N / 1}\) & 22 & 127 & 293 & 3320 \\
\hline 18 & 09 & 10 & 42 & 245 & 2850 & 6280 \\
\hline 19 & 16 & N/ & \(1 \cdot 3\) & 122 & 649 & 1060 \\
\hline 20 & 15 & N/IT & 35 & 223 & 1670 & 5160 \\
\hline 21 & 15 & Ni/ & 26 & 239 & 794 & 2100 \\
\hline 22 & 15 & N/ & 0.3 & -152 & 49 & 161 \\
\hline 23 & 16 & 10 & 10 & 388 & 121 & 150 \\
\hline 24 & - \(1 / 5\) & 24 & \(\frac{15}{0.6}\) & 729 & 100 & \begin{tabular}{|c}
193 \\
81 \\
\hline 1
\end{tabular} \\
\hline 26 & 16 & 21 & \(\frac{0.9}{09}\) & 30 & 24 & 62 \\
\hline 27 & 1.5 & W/T & 0.3 & 108 & 5 & 127 \\
\hline 28 & 1.5 & Ni/ & 0.4 & 83 & 16 & 119 \\
\hline 29 & 15 & N/1 & \(1 / 1\) & 182 & 31 & \(\frac{156}{254}\) \\
\hline 30 & 1.6 & \(\frac{N /}{N /}\) & 04 & 447
390 & 37 & \(\frac{254}{222}\) \\
\hline 32 & 16 & 10 & 0.7 & 238 & 4 & 132 \\
\hline
\end{tabular}



Foult, sulphide
in sparry calcite
BMYGDALOIDAL BASALT

MASSIIE CHLORITIZED
AMYGD. BASFLT
Fine gre coy:
MASSIVE GREY BASALTIC TUFF, F.g.
Mas. GREY basaltic turf
massive grey biasaltic tuff
bandeo hyaloclastite
AMVGOALOIDAL BASALT
AISIVE SERICITIC DACTE
FMYGDALODIAL BASALT

MASSIVE GREY BASALTIC TUEF

63.6144
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline PROV. & ONTAR & & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{MOUNTAIN LAKE RESOURCES INC. JOINT
JOUTEL RESOURCES LTD}} \\
\hline TWP. & \multicolumn{2}{|l|}{BEN NEVIS} & & & & & & \\
\hline NTS & \multicolumn{2}{|l|}{3205} & \multicolumn{6}{|r|}{JOUTEL RESOURCES LTD. VENTURE} \\
\hline REF. & & & \multicolumn{6}{|c|}{\multirow[t]{3}{*}{\begin{tabular}{l}
DRILL SECTION \\
DDH No. CNG.90-1 \\
CANAGAU PROPERTY
\end{tabular}}} \\
\hline DWn. By & \multicolumn{2}{|l|}{A} & & & & & & \\
\hline REVISIIONS & date & BY & & & & & & \\
\hline & & & SCALE & 1.500 & date & JAN, 190 & plate & F/G. 13 \\
\hline
\end{tabular}
```

