

320055E0025 63.6144 BEN NEVIS

010

Joutel Resources Ltd Mountain Lake Resources Inc. Summary Report on the Canagau Property Ben Nevis, Pontiac Townships Larder Lake Mining Division Ontario

NTS: 32D5

W.J. McGuinty A. D. Hunter Bradley C. Leonard February 1991

DMIP 90 - 109

Ø10C

TABLE OF CONTENTS

(•

Page

1.0	Introduction	1
2.0	Location and Access	3
3.0	Property Tenure	3
4.0	Previous Work History	11
5.0	Regional and Property Geology	17
6.0	Geological Setting of the Canagau Property	19
7.0	Additional Detailed Mapping	31
8.0	Geophysical Surveys 8.1 Horizontal Loop E.M. Survey 8.2 Maxi-Probe E.M. Survey 8.3 Bore Hole Pulse E.M. Survey	33 34 34 34
9.0	Diamond Drilling Programs	35
10.0	Conclusions and Recommendations	39
	References	40
	Statement of Qualifications - B. Leonard W. McGuinty	41 42

LIST OF FIGURES

				Page
Figure	1	Property Location		2
Figure	2	Claim Compilation		9
Figure	3	Regional Geology		15
Figure	4	Property Area Geology		16
Figure	5	Geology of Canagau Patented Claims	Back	Pocket
Figure	6	Canagau-Ehrhart Schematic Section		21
		Geology of Labbé Option Stripping Pt.1 Geology of Labbé Option Stripping Pt.2		Pocket Pocket
Figure	8b	Geology of Canagau 1990 Stripping Pt. 1 Geology of Canagau 1990 Stripping Pt. 2 Geology of Canagau 1990 Stripping Pt. 3	Back	Pocket
Figure	9	Horizontal Loop E.M. Survey 444Khz	Back	Pocket
Figure	10	Drill Section Hole CNG-90-2	Back	Pocket
Figure	11	Drill Section Hole CNG-90-3	Back	Pocket
Figure	12	Drill Section Hole CNG-90-6	Back	Pocket
Figure	13	Drill Section Hole CNG-90-1	Back	Pocket
Figure	14	Drill Section Hole CNG-90-8, CNG-90-4	Back	Pocket

. (

LIST OF TABLES

Table I	List of Unpatented Mining Claims Canagau Joint Venture	4-8
Table II	Summary of Diamond Drilling Canagau Project 1990	37

APPENDICES

Appendix IWhole Rock Geochemistry and Assay
CertificatesAppendix IIResults of Maxi-Probe E.M. Survey for
Joutel Resources Inc. Ben Nevis Ontario

Appendix III Report on Bore Hole Pulse E.M. of Holes CNG-90-2 and CNG-90-6 Canagau Project Val D'or Geophysique Ltée

by GEOPROBE LTD.

Appendix IV Diamond Drill Logs and assays, drill holes CNG-90-1 to CNG-90-6 inclusive

1.0 INTRODUCTION

Exploration for gold and base metals in Ben Nevis township and surrounding areas has been active over a period of 70 years. The main focus of exploration has been the patented 13 claim Canagau Mines Ltd. property, which was first developed in the mid 1920's. Exploration revealed the presence of 3 narrow, east-west trending, south dipping polymetallic veins in shear zones in felsic and dioritic intrusive host rocks.

Joutel Resources Ltd. and Mountain Lake Resources Ltd. have been actively exploring the east-central portion of Ben Nevis township for base metals since mid-1989 when an option/joint venture agreement was entered into. In 1990, power stripping, geological and geophysical surveys, lithogeochemical evaluation and 4,839 feet of diamond drilling were undertaken. The purpose of the program was to re-evaluate known information and provide further information with which to establish a paragenesis for mineralization and alteration in the vicinity of the Canagau patents.

Three authors have contributed to the compilation of this geophysical interpretations provided by report. excluding contractors. A.D. Hunter of Earthhunt Resources Inc. provided a geological setting of Canagau which is report on the incorporated as section 6.0 and figures 5 and 6 of this report. B.C. Leonard undertook a detailed backgrounding of the area covered by the Mountain Lake-Joutel joint venture property and participated in mapping newly stripped areas. B. McGuinty also participated in mapping of stripped areas as well as supervising geophysical surveys and diamond drilling.

2.0 LOCATION & ACCESS

The Canagau property consists of 227 contiguous unpatented and 13 patented claims in Ben Nevis and Pontiac townships, Larder Lake Mining Division, Northeastern, Ontario (see Fig. 1).

The Property is located 40 Km NE of Kirkland Lake and 30 Km N of Larder Lake. A seasonal gravel road heads north from Larder Lake and cuts through Ben Nevis township within 2 Km of the Canagau shaft.

3.0 PROPERTY TENURE

The Canagau property is an amalgamation of 3 claim blocks controlled wholly or in part by Joutel Resources Ltd. and held under joint venture agreement with Mountain Lake Resources Ltd. 13 patent claims fall under this agreement: Mining Rights only:

L12681	L16332
L12782	L16333
L16197	L16455
L16198	L16456
L16200	L16465
L16220	L16472
L16221	

A total of 227 unpatented mining claims were incorporated into the joint venture through 3 separate option agreements. Under these agreements claims may be allowed to lapse as the Joint Venture sees fit. Table 1 lists all claims originally recorded under the joint venture. Figure 2 shows the disposition of these claims.

CLATH NO	TRUNCHIP	DATE SECO	UNDE EXT	CHEU CYT	LAST_UPDTD	DAVE UDDV	нено	
1015272	Pan Navie	12/03/87	02/28/90	12/02/92	LAST_UPDTD 12/15/89 12/15/89 12/15/89 12/15/89 12/15/89 12/15/89 12/15/89 12/15/89 12/15/89 12/15/89 12/15/89 12/15/89 12/15/89	0.0	Mana	lalatta
1015273	Ran Navie	12/03/07	02/20/00	12/03/93	12/15/29	0.0	Mono	Jolette
1015278	Ran Navie	12/03/87	02/22/90	12/03/93	12/15/29	0.0	Mana	Jolotta
1015275	Ban Navie	12/03/87	02/20/00	12/02/92	12/15/89	0.0	Mono	Jolette
1015276	Ban Navie	12/03/87	02/28/90	12/03/23	12/15/09	0.0	Mana	Jolotta
1015270	Ren Nevis	12/03/87	02/20/30	12/03/93	12/15/89	0.0	Mana	Jolette
1015278	Ren Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Mano	Inlatta
1015283	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Nean	Jolette
1015284	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Мака	Talatta
1015285	Een Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Meno	Jalette
1015286	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Kenn	Jolette
1015287	Ren Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Мело	Jolette
1015288	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Кеза	Jolette
1015289	Ren Nevis	12/03/87	02/28/90	12/03/93	12/15/89	60.0		Jolette
1015291	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	60.0		Jolette
1015292	Ben Nevis	1 1	02/28/90	1 1	12/15/89	0.0		
1015293	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Мала	Jolette
1015294	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Мелл	Jolette
1015295	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Menn	Jolette
1015296	Ren Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Иево	Jolette
					12/15/89			
					12/15/89			
					08/22/89			
					08/22/89			
					08/22/89			Jolette
					12/15/89			
					12/15/89			
					12/15/89			
					12/15/89			
					12/15/89			
					12/15/89			
					12/15/89			
1015419	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Memo	Jolette
					12/15/89			
1015421	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Memo	Jolette
1015422	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Memo	Jolette
1015423	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Memo	Jolette
1015424	Ben Nevis	12/03/87			12/15/89			Jolette
	Ben Nevis		02/28/90	12/03/93	12/15/83			Jolette
	Ben Nevis				12/15/89			Jolette
1015427	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Memo	Jolette
	Ben Nevis				12/15/89			Jolette
	Ben Nevis				12/15/89			Jolette
	Ben Nevis				12/15/89			Jolette
	Ben Navis				12/15/89	0.0	Memo	Jolette
	Ben Nevis				12/15/89	0.0	Meno	Jolette
	Ben Nevis		02/28/30	12/03/93	12/15/89	0.0	Keno	Jolette
1015434	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Memo	Jolette
1015435	Ben Nevis	12/03/87	02/28/90	12/03/93	12/15/89	0.0	Meno	Jolette

-6-

.

1015436 Ben				12/03/93		0.0	Memo	Jolette
1015508 Ben				12/03/93		0.0	Meao	Jolette
1015509 Ben				12/03/93				Jolette
1015510 Ben				12/03/93				Jolette
1015511 8en				12/03/93				Jolette
1015512 Ben				12/03/93		0.0	Memo	Jolette
1015513 Ben				12/03/93		0.0	Meno	Jolette
1015514 Ben				12/03/93		0.0	Meno	Jolette
1015515 Ben				12/03/93		0.0	Memo	Jolette
1015516 Ben				12/03/93		0.0	Nemo	Jolette
1015517 Ben				12/03/93		0.0	Memo	Jolette
1015518 Ben				02/08/94		60.0	Meno	Jolette
1015519 8en				02/08/94				Jolette
1015520 Ben				02/08/94				Jolette
1015521 Ben				02/08/94				Jolette
1015522 Ben				02/08/94				Jolette
1015523 Ben				02/08/94				Jolette
1015524 Ben				02/08/94				Jolette
1015525 Ben				02/08/94				Jolette
1015526 Ben				02/08/94				Jolette
1015531 Ben				12/03/93				Jolette
1015532 Ben				12/03/93				Jolette
1015533 Ben				12/03/93				Jolette
1016008 Ben				02/08/94				Jolette
1016009 Een				02/08/94				Jolette
1016010 Ben				02/08/94				Jolette
1016011 Ben				02/08/94				Jolette
1016012 Ben				02/08/94				Jolette
1016013 Ben				02/08/94				Jolette
1016014 Ben				02/08/94				Jolette
1016015 Ben				02/08/94				Jolette
1016016 Ben				02/08/94				Jolette
1016017 Ben				02/08/94				Jolette
1016019 Ben				02/08/94				Jolette
1016020 Ben				02/08/94				Jolette
1016021 Ben				02/08/90				Jolette
1016022 Ben				02/08/94				Jolette
1022024 Ben								Jolette
1022025 Ben				12/07/93				Jolette
1022026 Ben				12/07/93				Jolette
1022027 Ben				12/07/93				Jolette
1022028 Ben				12/07/93				Jolette
1022029 Ben				12/07/93				Jolette
1022030 Ben				12/07/93				Jolette
1022031 Ben				12/07/93				Jolette
1022032 Ben				12/07/93				Jolette
1022033 Ben				12/07/93				Jolette
1022034 Ben				12/07/93				Jolette
1022035 Ben				12/07/93				Jolette
1022036 Ben				12/07/93		0.0	Nemo	Jolette
1022037 Ben				12/07/93				Jolette
1022038 Ben	Nevis	12/07/87	02/28/90	12/07/93	12/15/89	0.0	tieno	Jolette

-7-

1022039 Be	en Nevis	12/07/87	02/28/90	12/07/93	12/15/89	0.0	Memo Jolette
1022040 Be	en Nevis	12/07/87	02/28/90	12/07/93	12/15/89	0.0	Memo Jolette
1022041 Be	en Nevis	12/07/87	02/28/90	12/07/93	12/15/89	0.0	Memo Jolette
1022042 Bi	en Nevis	5 12/07/87	02/28/90	12/07/93	12/15/89	0.0	Meno Jolette
1022043 Be	en Nevis	12/07/87	02/28/90	12/07/93	12/15/89	0.0	Nemo Jolette
1046223 B	en Nevis	6 09/08/88	11	09/08/94	08/22/89	20.0	Memo Jolette
1047938 Be	en Nevis	6 09/01/88	11	09/01/94	08/22/89	20.0	Memo Jolette
1048200 Bi	en Nevis	5 09/01/88	02/28/90	09/01/94	12/15/89	0.0	Memo Jolette
1048235 Be	en Nevis	5 10/13/89	11	10/13/94	08/24/89	20.0	Memo Jolette
1048236 6	en Nevis	5 10/13/88	11	10/13/94	08/24/89	20.0	Memo Jolette
1048404 86	en Nevis	i 03/20/89	11	11	08/24/89	0.0	Memo Jolette
		5 09/07/88	11	09/07/94	08/22/89	20.0	Meno Jolette
1048407 86	en Nevis	09/07/38	11	09/07/94	08/22/89	20.0	Memo Jolette
1048408 Bi	en Nevis	5 03/20/89	11	03/20/95	11	0.0	Memo Jolette
1048410 Be	en Nevis	09/01/88	11	09/01/94	09/29/89	20.0	Memo Jolette
1048513 B	en Nevis	5 09/01/88	11	09/01/94	12/15/89	20.0	Memo Jolette
		s 09/01/88	02/28/90	09/01/94	12/15/89	0.0	Memo Jolette
1048728 B	en Nevis	5 09/01/88	11	09/01/94	08/22/89	20.0	Memo Jolette
1048732 B	en Nevis	69/01/88	11	09/01/94	08/22/89	20.0	Memo Jolette
1048733 B	en Nevis	\$ 09/07/88	11	09/07/94	08/22/89	20.0	Memo Jolette
1048734 Be	en Nevis	69/07/88	11	09/07/94	08/22/89	20.0	Memo Jolette
1048735 B	en Nevis	5 09/07/88	11	09/07/94	08/22/89	20.0	Memo Jolette
1048736 B	en Nevis	5 09/01/88	1 1	09/01/94	08/22/89	20.0	Memo Jolette
1048737 B	en Nevis	s 09/07/88	11	09/07/94	08/22/89	20.0	Memo Jolette
1049738 Bi	en Nevis	5 09/07/88	11	09/07/94	08/22/89	20.0	Memo Jolette
1048739 E	en Nevis	5 09/07/88	11	09/07/94	08/22/89	20.0	Memo Jolette
1048854 Bi	en Nevis	s 09/21/88	11	09/21/94	08/22/89	20.0	Memo Jolette
1110232 B	en Nevi	5 04/13/89	11	04/13/95	08/22/89	20.0	Memo Jolette
1110233 B	en Nevis	5 04/13/89	11	04/13/95	08/22/89	40.0	Memo Jolette
1110234 B	en Nevis	5 04/13/89	1 1	04/13/95	08/22/8 9	20.0	Memo Joletie
1110235 B	en Kevis	5 04/13/89	1 1	04/13/95	08/22/89	20.0	Memo Jolette
1110236 B	en Nevi	5 04/13/89	11	04/13/95	08/22/89	20.0	Memo Jolette
		5 04/13/89	11		08/22/89		Memo Jolette
		5 04/13/89	11		08/22/89		Memo Joleite
		5 04/13/89	11		08/22/89		Memo Jolette
		5 04/13/89	11		08/22/89		Memo Jolette
		5 08/15/89	1 1		11		Memo Jolette
		5 04/13/89	11		04/22/89		Kemo Jolette
		5 04/13/89			04/22/89		Memo Jolette
		5 04/13/89	11		04/22/89		Memo Jolette
		5 04/13/89	1 1		04/22/89		Memo Jolette
		5 04/13/89	11		04/22/89		Kemo Jolette
		5 04/13/89	11		04/22/89		Memo Jolette
		5 07/04/89	11	07/04/95			Memo Jolette
		5 07/04/09		07/04/95			Memo Jolette
		5 07/04/89	11	07/04/95			Memo Jolette
		5 07/04/89	11	07/04/95			Memo Jolette
		5 07/04/89	11	07/04/95			Nemo Jolette
		5 07/04/89		07/04/95			Memo Jolette
		5 07/04/89			04/22/89		Memo Jolette
		5 07/04/89		. 07/04/95			Memo Jolette
1111663 B	en Nevi	s 07/04/89	1 1	07/04/95	1 1	0.0	Nemo Jolette

-8-

	(

1111664 Ben Nevis	07/04/89	11	07/04/95	1 1	0.0 Mem	o Jolette
1111669 Ben Nevis	07/04/89	11	07/04/95	11	0.0 Mem	o Jolette
1111670 Ben Nevis	09/07/89	11	09/07/95	11	0.0 Mem	o Jolette
1111671 Ben Nevis	05/07/89	11	09/07/95	11	0.0 Mem	o Jolette
1111672 Ben Nevis	09/07/89	11	09/07/95	11	0.0 Mem	o Jolette
1015317 Pontiac	12/07/87	02/28/90	12/07/93	12/15/89		o Jolette
1015318 Pontiac	12/07/87		12/07/93			o Jolette
1015319 Pontiac	12/07/87		12/07/93			o Jolette
1015320 Pontiac	12/07/87		12/07/93			o Jolette
1015321 Pontiac	12/07/87		12/07/93			o Jolette
1015346 Pontiac	12/07/87		12/07/93			o Jolette
1015347 Pontiac	12/07/87		12/07/93			o Jolette
1015348 Pontiac	12/07/87		12/07/93			o Jolette
1015353 Pontiac	12/07/87		12/07/93			o Jolette
1015354 Pontiac	12/07/87		12/07/93			o Jolette
1015355 Pontiac	12/07/87		12/07/93			o Jolette
1015356 Pontiac	12/07/87		12/07/93			o Jolette
1015357 Pontiac	12/07/87		12/07/93			o Jolette
1015358 Pontiac	12/07/87		12/07/93			
	12/07/87		12/07/93			o Jolette
1015363 Pontiac						o Jolette
1015364 Pontiac	12/07/87		12/07/93			o Joiette
1015365 Pontiac	12/07/87		12/07/93			o Jolette
1015366 Pontiac	12/07/87		12/07/93			o Jolette
1015367 Pontiac	12/07/87		12/07/93			o Jolette
1015368 Pontiac	12/07/87		12/07/93			o Jolette
1047939 Pontiac	01/03/89	11	01/03/95	11		o Jolette
1047940 Pontiac	01/03/89	1 1	01/03/95	11		o Jolette
1047941 Pontiac	01/03/89	11	01/03/95	11		o Jolette
1047942 Pontiac	01/03/89	1 1	01/03/95	1 1		o Jolette
1047943 Pontiac	01/03/89	11	01/03/95	11		o Jolette
1047944 Pontiac	01/03/89	1 1	01/03/95	11		o Jolette
1048523 Pontiac	01703789	11	01/02/95	1 1	0.0 Mem	o Jolette
1048524 Pontiac	01/03/89	11	01/03/95	11	0.0 Mem	o Jolette
1048525 Pontiac	01/03/89	11	01/03/95	11		o Jolette
1048526 Pontiac	01/03/89	11	01/03/95	11		o Jolette
1048527 Pontiac	01/03/89	11	01/03/95	11	0.0 Mem	o Jolette
1049212 Pontiac	01/03/89	1 1	01/03/95	11	0.0 Mem	o Jolette
1049213 Pontiac	01/03/89	11	01/03/95	11	0.0 Mem	o Jolette
1049214 Pontiac	01/03/89	11	01/03/95	11	0.0 Mem	o Jolette
1049215 Pontiac	01/03/89	11	01/03/95	11	0.0 Mem	o Jolette
1043216 Pontiac	01/03/89	11	01/03/95	11	0.0 Mem	o Jolette
1049647	01/03/89	11	01/03/95	11	0.0 Mem	o Jolette
1049648 Pontiac	01/03/89	11	01/03/95	111	0.0 Mem	o Jolette
1049649 Pontiac	01/03/89	11	01/03/95	11	0.0 Mem	o Jolette
1049650 Pontiac	01/03/89	11	01/03/95	11		o Jolette
1049702 Fontiac	01/03/89	11	01/03/95			o Jolette
1049703 Pontiac	01/03/89	11	01/03/95	11		o Jolette
1049704 Pontiac	01/03/89	11	01/03/95			o Jolette
1049705 Pontiac	01/03/89	11	01/03/95	11		o Jolette
1049706 Pontiac	01/03/89	11	01/03/95			o Jolette
1049707 Pontiac	01/03/89	11	01/03/89	11		o Jolette
1049708 Pontiac	01/03/89		01/03/95			o Jolette
1992100 LANATOL	911 901 09	, ,	411 VOI 20	, ,	V.V 415*	5 9916196

1049709	Pontiac	01/03/89	1	1	01/03/95	1	1	0.0	Meno	Jolette
1049710	Pontiac	01/03/89	1	1	01/03/95	1	1	0.0	Neno	Jolette
1049711	Pontiac	01/03/89	1	1	01/03/95	1	1	0.0	ňeno.	Jolette
979925	Ben Nevis	09/18/87	1	1	09/18/93	12/1	5/89	60.0	Meno	Labbe
979926	Ben Nevis	09/18/87	1	1	09/18/93	12/1	5/89	60.0	Meno	Labbe
979927	Ben Nevis	09/18/87	1	1	09/18/ 9 3	12/1	5/89	60.0	Meno	Labbe
979928	Ben Nevis	09/18/87	1	1	09/18/93	12/1	8/89	60.0	Neao	Labbe
979929	Ben Nevis	09/18/87	1	1	09/18/93	12/1	5/89	60.0	Meno	Labbe
973930	Ben Nevis	09/18/87	1	1	09/18/93	12/1	8/89	60.0	Memo	Labbe
979931	Ben Nevis	09/18/87	1	1	09/18/93	12/1	5/89	60.0	Meno	Labbe
980472	Ben Nevis	09/18/87	1	1	09/18/93	12/1	5/89	60.0	Memo	Labbe
983359	Ben Nevis	09/18/87	1	1	09/18/93	12/1	5/89	60.0	Meno	Labbe
1096885	Ben Nevis	02/05/90	1	1	11	1	1	0.0	Neao	Labbe
1096886	Ben Nevis	02/05/90	1	1	11	1	1	0.0	Meno	Labbe
1045732	Ben Nevis	08/16/88	1	1	08/16/94	12/1	4/89	40.0	Keno	Mountain Lake
1046217	Ben Nevis	08/16/88	1	1	08/16/94	12/1	4/89	40.0	Meno	Mountain Lake
1046221	Ben Nevis	09/16/88	04/3	0/	09/06/94	12/1	4/89	0.0	Meno	Mountain Lake
1111060	Ben Nevis	08/28/89	1	1	08/28/95	12/1	4/89	0.0	Memo	Mountain Lake
1111063	Ben Nevis	08/28/89	1	1	08/28/95	12/1	4/89	0.0	Memo	Mountain Lake
1111474	Ben Nevis	07/12/89	1	1	07/12/95	12/1	4/89	0.0	Memo	Mountain Lake
1111475	Ben Nevis	07/12/89	- 1	1	07/12/35	12/1	4/89	0.0	Mean	Mountain Lake
1111476	Ben Nevis	07/12/89	1	1	07/12/95	12/1	4/89	0.0	Meno	Mountain Lake

·

4.0 PREVIOUS WORK HISTORY

1926 to present: Canagau Mine Property

The property known as the Interprovincial Mines Limited property was originally staked by P.J. Roche in 1926 on a previously known polymetallic showing (No. 7 on OGS MAP 2283 by L. Jensen). Work done between 1926 and 1936 by Interprovincial Mines Ltd. included extensive surface stripping, trenching a 40 foot deep inclined prospect shaft, and a vertical 346 foot, 3 compartment shaft with 934 feet of underground workings on 3 levels: 34 feet of lateral work on the 125 foot level; 480 feet of lateral work on the 225 foot level and 420 feet of lateral work on the 325 foot level. There is no recorded production, bulk In 1936 Canagau Mines Ltd was sampling or diamond drilling. formed to take over the property from Interprovincial Mines Limited.

In 1946, Canagau Mines Ltd completed geological and geophysical surveys and drilled 8 holes (footage and locations are unknown).

In 1960, ground EM and mag were completed over the property, possibly by Hollinger Mines, who mapped the property at this time.

In 1962, Canagau Mines Ltd. completed further stripping and trenching.

In 1970 - 1974 Amax Exploration Inc. acquired an option on the claims as part of a regional exploration program. Work conducted by Amax included airborne and ground geophysics, mapping, geochemistry (Cu Zn Ag) and diamond drilling (7 holes totalling 3965 feet on the Canagau claims).

The property remained dormant until 1988 when Westbank Resources Ltd. acquired the ground, and conducted ground geophysics (mag, VLF-EM, selected IP), geological mapping, geochemical soil sampling and large scale mechanical stripping.

In 1989, Mountain Lake Resources Ltd. acquired the property following the withdrawl of Westbank Resources, and entered into a joint venture agreement with Joutel Resources Ltd. Work completed in 1989 included additional geological mapping, litho-geochemical sampling, and 621.1 metres of drilling in 2 holes.

1948: Preston East Dome Mines Ltd. conducted geological and geophysical (magnetics) surveys on a 21 claim block in the central part of Ben Nevis township tied on to the west boundary of the Canagau property (No. 10 on OGS map 2283 by L. Jensen). Three holes were drilled totalling 1017 feet testing weak magnetic anomalies on strike with the east-west trending shear zones at the Canagau Mine.

1952 to present: Roche Prospect (No. 1 on OGS map 2283 by L. Jensen)

Originally part of the Interprovincial Mines property in the late 1920's, this showing had no reported work until 1952, when Sakinaw Lake Copper & Iron Mining Ltd. conducted geological mapping and trenching in the area. In 1964 Dome Exploration Ltd. and Frobex Ltd. joint ventured the property and conducted geological and geophysical surveys plus 1971 feet of diamond drilling in 6 holes with limited success.

This showing has been controlled 100% by Goldmac Exploration Ltd. since the early 1980's. This company has conducted geological and geophysical (mag. VLF-EM) surveys, plus 1269 feet of diamond drilling in 5 holes.

1964 to present: Duvan Copper Company (No. 8 on OGS map 2283 by L. Jensen) controlled 18 claims in the central part of Ben Nevis township in the area of the Ehrhart shaft. Reported work consists of Magnetic and EM surveys, with no encouraging results.

In 1989 Mr. P. Labbe acquired 11 claims covering part of the original Duvan copper property and contracted line cutting and geophysical (mag and VLF-EM) surveys. Later in 1989, Joutel Resources Ltd. entered into an agreement with Mr. Labbe to acquire the property.

1964 to present: Beaudry Prospect (No. 5 on OGS map 2283 by L.

Jensen) Raymond Beaudry conducted extensive stripping and trenching in an area north east of the Canagau property close the Ben Nevis - Pontiac township boundary. There was also at least 4146 feet of diamond drilling in 10 holes in this area, adjacent to the north-east corner of the Canagau property. Drilling reported minor Cu, Zn, Ag, Au mineralization in dacitic volcanic rocks.

In 1988, McAdam Resources conducted geological and geophysical (mag, VLF-Em and selected IP) surveys over the area followed by 3 diamond drill holes (?). No records of the diamond drilling are present in the assessment files. This showing is controlled 100% by Mr. Ben Kiasyk, who has drilled a minimum of 233 feet in 2 holes.

1970-1974: Amax Exploration Inc. conducted a regional exploration program over central and east Ben Nevis township and west Pontiac township. Work performed consisted of airborne and ground geophysical (mag, IP) surveys, geological mapping, geochemical sampling (in the Canagau Mine area) plus at least 6504 feet of drilling in 15 holes. Targets were mostly I P conductors and, in the case of the Canagau Mine, geochemical anomalies.

1971: Cominco Ltd. conducted a 9 mile airborne EM survey over an 18 claim block in central Ben Nevis township called the Captain property with no encouraging results.

1975: L. Jensen mapped Clifford, Ben Nevis, Pontiac and Ossian townships at a scale of 1" = 1/4 mile and published 2 reports: GR 132. Geology of Clifford and Ben Nevis townships; GR 125. Geology of Pontiac and Ossian townships.

1977: Conwest Explorations Ltd. conducted geological mapping and geophysical surveys (mag, IP) over and area east of Death Lake in west central Pontiac township on property previously controlled by Amax. 679 feet of diamond drilling in 5 holes was also completed

-13-

with no encouraging results.

1977: W. Wolfe made a metallogenic study of Ben Nevis township and published Ontario Geological Survey Study 19, Geochemical exploration of Early Precambrian Volcanogenic Sulphide Mineralization in Ben Nevis township.

1985: L. Jensen and F. Langford published a paper entitled : Ontario Geological Survey MP 123, Geology and Petrogenesis of the Archean Abitibi Belt in the Kirkland Lake Area, Ontario

1986: E. Grunsky studied alteration of the rocks Clifford and Ben Nevis townships and published a chapter in Ontario Geological Survey MP 129, Volcanology and Mineral Deposits, Chapter 8: Recognition of Alteration in Volcanic rocks using Statistical Analysis of Lithogeochemical data.

1986: LAC Minerals conducted 2 ground magnetic surveys in Ben Nevis township, one in the south central part of the township while the other was east central, adjacent to the Beaudry Prospect. There were no encouraging results.

1988: Carl Forbes conducted a magnetic survey on 8 claims tied into the northeast and west of the Canagau patents, and subsequently optioned the ground to Mountain Lake Resources. It is now part of the Mountain Lake-Joutel joint venture.

1989 The bulk of Joutel Resources Ltd. Canagau property was staked by Mr. R. Jolette and Mr. R. Belanger who performed 2.3 km of IP and 1429 feet of diamond drilling in 2 holes along the east boundary of the Canagau claims. Late in 1989, the 200 plus claim block was optioned by Joutel Resources Ltd.

Kilometres

GEOLOGY OF THE BEN NEVIS AREA (AFTER GRUNSKY, 1986)

5.0 REGIONAL AND PROPERTY GEOLOGY

Clifford, Ben Nevis and Pontiac townships are underlain by archean mafic to felsic metavolcanic and intrusive rocks of the Blake River Formation which also host the Noranda area massive sulphide deposits 30 miles to the east (figure 3). Later stage intrusive bodies and sills of mafic, intermediate and granitic composition cut the layered volcanic sequences, and are compositionally similar to the host volcanics.

Low grade regional metamorphism under zeolite facies has affected all rock types of the area. Albite-epidote hornfels metamorphism affects host rocks in the vicinity of all granitic intrusives.

Structurally, the area is located in the centre of a synclinorium that opens to the east. In central Ben Nevis township, an east-west trending anticline occurs flanked by complimentary synclines. A north-south trending anticline has been interpreted by Jensen (1975) to be present in the eastern portion of Ben Nevis township, through the patented Canagau Mine property. The overall pattern of folding is concentric about the Clifford stock located 10 km to the west of the Canagau patents.

A number of radial and short northwest and northeast striking faults occur about the Clifford stock extending throughout the area, with a prominent northeast fault cutting all stratigraphy known as the Murdock Creek - Kennedy Lake fault.

On a property scale, the patented Canagau Mine claims are underlain by a trianglular shaped calc-alkaline intermediate to felsic package of rocks surrounded by andesitic volcanics also of calc-alkaline affinity. This triangular wedge is part of the lower Felsic Volcanic unit, described by Jensen (1975) and is regionally influenced by the north-south trending anticline from emplacement of a granitic stock to the north (Figure 4). Jensen (1975) has subdivided the felsic volcanic rocks into an upper and lower felsic unit based on relative stratigraphic positioning with respect to the Clifford stock and on pillow top determinations in the intervening pillowed andesites. The intermediate rocks are largely grey to light grey-green dacitic flows, pillowed flows and minor pyroclastics. They are generally east-west to northwest-northeast trending, steeply dipping south to southwest, very hard and weather a light grey.

The felsic volcanic rocks on the Canagau property area are predominantly pyroclastic, composed of coarse fragmental, flow rubble, tuff breccia and ash tuff. These rocks are commonly light coloured, have a whitish weathering surface and in some places can be porphyritic.

The surrounding andesitic rocks are dark grey to green-grey aphanitic flows, pillowed flows and flow top breccias. They are quite often amygdaloidal, with amygdules less than 5mm in size and up to 60% in abundance. These rocks are well preserved allowing for pillow top determinations. Pillow tops seem to be towards the south and south-west on the property. In addition massive, nondescript east-west trending mafic tuff units interfingered with the intermediate to felsic volcanics in the shaft area. These units have been previously mapped by Jensen and others (Westbank) as gabbroic intrusives.

Communication with government geologists and interpretation from Hunter (1989) indicate Jensen's view of the geology of the Canagau Mine is misleading. Many of the mafic volcanic rocks have been masked and misidentified as felsic rhyolitic or rhyodacitic rocks in the field because of the pervasive carbonate alteration and local silicification.

- 6.0 GEOLOGIC SETTING OF THE CANAGAU PROPERTY (Contributed by A.D. Hunter)
 - I) Introduction
 - II) General Geology
 - III) Lithologic Descriptions
 - a) Mafic volcanic rocks
 - b) Dacite
 - c) Canagau Rhyolite
 - IV) Structure
 - V) Alteration
 - a) Characteristic minerals
 - b) Whole rock geochemistry
 - VI) The Character and Place of Mineralization
 - VII) Summary

I) Introduction

Between late July and November, 1990 a programme of geological mapping was completed mainly on the core patented claims of the Ben Nevis property. In addition, some mapping was done i) along the secondary access road which traverses the adjoining Goldmac property and ii) on the optioned Labbe claims immediately north of Captain Lake and east of the main access road. A 4.5 sq. km area was examined in the 1990 field season and results of this work are plotted at scales of 1:2500 and 1:5000. In addition, detailed mapping (1:250) was done in selected bulldozer stripped and washed areas.

The latest field work, the results of which are documented in this report, was deliberately carried out in an area containing many known sulphide occurrences. Work has also resulted in the rediscovery of old base metal prospects which were last worked in the sixties. The main purpose of the field work was to establish a geologic framework within which the place of base and precious metal mineralization can be established. To this end a simplified volcanic stratigraphy has been determined along with structural controls on mineral occurrences. Whole rock analytical work in conjunction with observed alteration assemblages in the rocks (e.g. chlorite, sericite, carbonate) has served to focus the geological target area.

Drill cores from the fall/winter (89/90) exploration programme were also re-examined and further samples taken primarily for whole rock geochemistry.

Prior to commencement of diamond drilling in October, electromagnetic surveys were performed. The drilling programme was suspended while additional surveying was completed in the corridor between the area of the Canagau mine and the Ehrhart zone.

-20-

CANAGAU 0.6 KM WMS-~ 🏹 circoninent TOTE FLOW HHLLL [ch] dacite feeder J Y .c C $\cdot \circ$ dike zone 13,0° \bigcirc в \Diamond 2 ? - LEGEND Chlorite - sericite Coarse with stringer rhyolite Δ Sulphides (py, sp, gn, cpy) Δ Volcanic lastics Pervasive Fe-carbonate 'cı,c'c'ı 00 \bigcirc Matic flows alteration with Flow breccias 11/11/11 0 disseminated sulphides Basalt Limit of flow/tuff broadly conformable horizon mineralization Flow banded \sim brecciated ΔΔΔ \sim lava. CANAGAU - EHRHART SCHEMATIC SECTION Geologic relations, lithologies, structure, mineralization in the Canagou - Ehrhart area. FIG. 6

II) General Geology

The Canagau property is underlain by a mixed assemblage of felsic volcanic rocks. mafic to The felsic rocks, ranging in composition from dacite to rhyolite are best exposed near the Canagau shaft. Here, flow banded, brecciated and spherulitic lava is interbedded with coarse debris deposits. lapilli-tuff and thin bedded to finely laminated ash tuff. Another distinct felsic unit is dacitic in composition and forms a flow-dike complex extending south from the shaft area on the patented claims to the Ehrhart showing area. This unit is massive to weakly vesicular and is generally nondescript except locally where it displays a coarse spherulitic texture. This dacite unit appears fault bounded facies equivalent to the rhyolite which to be a the Canagau sulphide occurrences. hosts Detailed mapping completed this past season allows the interpretation that the dacite is fault bounded against mafic flow units. Thus the geologic setting of the area between the Canagau mine and the Ehrhart showing can be described as a fault block or caldera. The Ehrhart fault defines the south boundary of this feature (see Fig. 5 and Fig. 6).

Below the Canagau Rhyolite and its facies equivalent 'dacite unit' there is a thick section (1.5 km) of mafic flows which extends west of the main access road. Pillow structures are commonly well developed along with pillow breccia and hyaloclastite in both outcrop and drill core. Massive flows and hyalotuff are also interbedded with rhyolite. These mafic rocks commonly form thin flow units with very fine chlorite filled vesicles which have been described as massive grey tuffs in our drill core logs. There are however, good examples of basaltic tuff at the Canagau prospect shaft and on the road into the property.

III Lithologic Descriptions

a) Mafic Volcanic Rocks

The mafic volcanic rocks are generally very fine grained, aphyric. pale grey-green to dun brown weathering. The field evidence for pyroclastic rocks in this group is scant whereas flow structures such as pillows/pillow breccia and hyaloclastite are ubiquitous. The flows are commonly amygdaloidal and large stripped exposures such as those at the Ehrhart occurrence exhibit egg size vesicles partially filled with druse quartz. Α distinctive feature is a highly vesiculated to **BCOTIACEOUS** pillowed section of the stratigraphy (separate unit?) about 200 metres thick lying immediately below the Canagau Rhyolite. Highly vesicular basalt flows (see analysis WR-90-2 (242-252⁽⁾)</sup>characterized by a grey-green colour and tiny chlorite & quartz filled anygdules are interbedded with the Canagau Rhyolite about 150 metres northwest of the old mine (see Fig. 5). Some thin vesicular flow units are indistinguishable from massive basalt tuff.

Another distinctive feature of the mafic flows is well developed concentric cooling cracks filled with quartz. This is evident especially in drill core (DDH CNG-90-2).

b) Dacite

The type area for dacite is the Ehrhart occurrence where this rock is intrusive into mafic flows and itself hosts polymetallic sulphide mineralization as described by Hak (1989).

Dacite forms dikes and sills with a complex geometry evident at the Ehrhart where extensive stripping (250m x 75m) was done in 1988. Many small dikes have been mapped and are interpreted to have fed a 'ponded' flow that has been mapped between the Canagau shaft and the Ehrhart zone.

Unaltered dacite is pale green and glassy on fresh surfaces and buff coloured to pale yellow on weathered surfaces. Although it has a massive aspect it is distinct in the field due to well

-23-

developed jointing and its fine vesicular nature. Some flow banded spherulitic dikes closely resemble some layers observed interbedded with fine ash-tuff and coarse rhyolite volcaniclastics.

Where hydrothermal alteration and local deformation have destroyed primary features the dacite may contain waxy sericite and iron-rich carbonate in fractures and along cleavage planes (e.g. planes specimen from DDH CNG-90-1 at 173').

The type dacite dike at the Ehrhart showing occurs in a fault zone and repeated fracturing is evident due to local tectonic brecciation of altered mineralized dacite. Local sericite schist is developed along with box-work quartz-sulphides (primarily pyrite) and Au-Ag mineralization.

c) CANAGAU RHYOLITE

For convenience the informal unit <u>Canagau</u> <u>Rhyolite</u> refers to the prominent felsic outcrop area forming the hill at the former Canagau mine.

This felsic unit comprises flows, associated coarse debris, pyroclastic and local thinly laminated ash-tuff. These rocks are pale yellow weathering to off-white or bone coloured when silicified. They are weakly feldspar phyric to aphyric, no quartz phenocrysts have been noted in felsic volcanics with the exception of one mappable dacite sill (800m southwest of the Canagau shaft).

Structurally, the rhyolite forms massive, well jointed and flow banded/brecciated spherulitic lava. The recent stripping now provides excellent exposures of pyroclastics, including laminated ash-tuff, lapilli-tuff and coarse debris interbedded with thin flow layers (150m northwest of the Canagau mine).

Where altered near the former Canagau mine, the rhyolite is chloritized and sericitized and may contain patchy, disseminated carbonate. This is especially evident in drill cores from the upper part of DDH CNG-90-2.

IV <u>Structure</u>

The volcanics strike east to southeast and observed dips are steep to the south and southwest where observed. A well developed sub-vertical foliation parallels stratigraphy in a gross sense. Shearing is only locally developed usually in sericite-carbonate rich zones.

Although a broad flexure or fold in the volcanics is evident from the 1:5000 scale map, tight folds can only be demonstrated at outcrop scale (see Fig. 8a). Here the structure is complex and probably in part reflects early non-penetrative deformation (e.g. slumping).

Jensen's interpretation (OGS Map 2283) places the Canagau mine in a crossfold or a structural dome position. Although there is a thick section of rhyolite here it is not as thick as was previously believed. This is due to widespread hydrothermal has masked pale, bleached mafic volcanics alteration which previously mapped as rhyolite (see alteration section below). Current understanding of the structure is poor due to a lack of tops determinations. Pillow lavas north of Captain Lake in newly stripped outcrops on the Labbe option suggest tops southwest. However, there is compelling evidence for stratigraphy facing toward the northeast in the Canagau-Ehrhart section where most of the detailed work has been done (see Fig. 6, schematic section). Here numerous dacite dikes cut the mafic volcanics at a high angle and appear to feed flow(s) higher up. At the Ehrhart zone the mineralized dacite dikes can be traced northeastward into a thick stratiform unit of rock which is now considered to be a flow/dike Detailed mapping also shows that the Ehrhart structure complex. fault bounds this dacite which is interpreted to be "ponded" against mafic flow rocks. Another dacite dike which is subparallel to the Ehrhart structure occurs near a cabin about 600 metres to the northwest. The gross geologic setting appears to be that of a caldera. The floor of this structure corresponds to a mafic-felsic contact that lies immediately north of the large stripped area about the Ehrhart shaft. Diamond drill holes CNG-

-25-

90-3 and CNG-90-6 cast doubt on such a simple interpretation. The possibility that stratigraphic relations are complicated due to folding must be considered. In time section drilling will provide the answer.

V) Alteration

a) Characteristic Minerals

Hydrothermal alteration is widespread on the Canagau property. An extensive iron carbonate (ankerite-ferrodolomite (siderite?)) sericite alteration event is best recorded in the mafic volcanic rocks. This is particularly evident in the vesicular flow/flow breccias that occur southwest and in contact with the Canagau Rhyolite. These mafic rocks are interpreted to form the stratigraphic footwall to the felsic rocks, and to occupy the floor of an recently interpreted caldera underlying the area between the Canagau mine and the Ehrhart zone. The mafic-felsic contact does not appear on Jensen's Map 2283 (Jensen 1975).

Chlorite and sericite are also widespread in occurrence but best developed in the area of the Canagau mine. This is evident from an examination of rocks on the mine dump (Hunter, 1989). In drill hole CNG-90-2, put down under the shaft of the old mine, there is an impressive 100m core length of chloritic and sericitic alteration with attendant stringer sulphides (see "mineralization" section below). Whole rock geochemical sampling here resulted in analyses which show strong soda depletion typical of proximal volcanogenic massive sulphide (VMS) host rocks.

Chlorite and sericite alteration is a salient feature of the geology between the Canagau Mine and the Ehrhart Fault, a distance along strike of about 0.6km. The alteration occurs across a stratigraphic thickness of about 0.5km. The extensive stripping done in 1988 at the Ehrhart occurrence coupled with core from drill hole CNG-90-1 shows intense development of all alteration types, Fe-carbonate, sericite and chlorite. At the Ehrhart, alteration extends across about 250 metres of stratigraphy and in

-26-

the gross sense this alteration is fault bounded. Southeast of the Ehrhart Fault the juxtaposed mafic volcanics are essentially unaltered and carbonatized rocks that are equivalent to those forming the caldera floor are offset at least 200 metres to the northeast.

b) Whole Rock Geochemistry

Whole rock chemical analyses of a suite of volcanic rocks was presented in a previous report (Hunter, 1989). This past field season, concomitant whole rock sampling and detailed mapping were performed. Whole rock analytical data form an appendix to this report. (Appendix I).

The data indicate that these are mafic volcanics ranging in composition form basalt to andesite (note SiO2 vs TiO2). There is a group of samples with between 65-73% SiO2 which corresponds to the dacite unit. Rhyolite flows and fragmental rocks contain between 73-82% SiO2 based on all analyses performed to date.

Hydrothermal alteration has clearly resulted in the formation of carbonate throughout a thick section of the stratigraphy. Sericite commonly occurs in carbonate altered zones. Chemically this is indicated by 2 - 4 times the normal content of K20 in the altered basaltic rocks.

Alteration attendant to proximal VMS deposits, such as those in the Blake River Group volcanics at Noranda, is of the feldspar destructive type. This is reflected in marked sodium (Na20) and usually calcium (CaO) depletion in the area of known deposits to levels typically less than 1% Na20. On the Canagau property, the Blake River volcanic rocks show extreme soda depletion and many exhibit concomitant calcium depletion (e.g. analyses WR-90-8, WR-90-9). However the Canagau rocks have been carbonatized unlike the well studied rocks in the central Noranda mining camp. The fact that multiple overlapping alteration events have occurred makes the rock geochemistry more difficult to assess. The fact strong sodium and calcium depletion exists in conjunction that with sericitized and chloritized zones where there is also strong

-27-

base metal enrichment is significant. The environment at Canagau appears to have been ideal for the formation of massive polymetallic sulphides.

VI) The Character and Place of Mineralization

Polymetallic sulphide showings are widespread which may reflect either a primary stratigraphic "stacking" of sulphidic zones or repetition of mineralization by folding. Both these observations may apply and only a resolution of the structure will provide the answer. The scale of salient alteration with associated base metal, silver and gold enrichment in the volcanics is impressive and defines an area about 1 km by 0.6 km.

Field work and observations from examination of drill core reveal several different modes of mineralization, namely;

- **i**) Sulphide mineralization comprised of pyrite, arsenopyrite, galena, sphalerite and minor chalcopyrite form semi-massive massive conformable veins and and stringer type mineralization in the Canagau shaft area. Some of the massive pyrite-sphalerite mineralization is banded and resembles typical volcanogenic massive sulphide. An example of this occurs 60 metres northeast of the Canagau mine in an altered basalt outcrop. Detailed mapping (1:250) northwest of the mine, in an area recently stripped and washed, has revealed what be strata-related sulphide appears to mineralization. This occurs as disseminated sulphides at basalt-rhyolite contacts in a structurally complex outcrop.
- ii) Diamond drill cores reveal that important concentrations of base metal sulphides, gold and silver are associated with small deformed quartz carbonate veins. Where sulphides and quartz-carbonate occurs together, the former, particularly pyrite is often seen to be comminuted or pulled apart and in-filled by the gangue minerals which display a honeycomb or cellular texture. Fine grained massive pyrite bands appear to predate other sulphides. Honey sphalerite is typical of these small veins which range in size from 0.1 to

0.5 feet. The largest vein recognized to date occurs in core from DDH CNG-90-6 (438-433'). This is associated with a dacite dike at or near a basalt/rhyolite contact. Intense alteration is manifested by massive chlorite and sericite bands within the mineralized section. The dacite dike is also locally strongly chloritized and contains conspicuous chalcopyrite. Shearing and the presence of a brecciated quartz-carbonate vein emphasize the structural control of the mineralization.

- iii) Conformable mineralization is characterized by disseminations of sulphide occurring as amygdule fillings along with quartz and carbonate. Although the mineral pyrite is most abundant, sphalerite and chalcopyrite are also common. This style of mineralization occurs in both carbonate-sericite altered and chloritized mafic volcanic rocks. A very extensive zone of copper enrichment in cores from DDH CNG-90-1 is associated with chloritized basalt. A similar zone of mineralization occurs in DDH CNG-90-6 (448-5151). These are excellent examples of the grossly stratiform mineralization that is known to be associated with massive sulphide deposits in Noranda, such as the Corbet orebody.
- Very fine grained disseminated pyrite and associated 1v) sphalerite and galena occurs in strongly chloritized zones in felsic volcanic rocks. A good example of this type of mineralization occurs in DDH CNG-90-2 drilled below the Canagau Mine workings. This is analogous to stringer sulphide mineralization that has been well described for many Abitibi Belt base metal deposits. A notable exception is the relatively low copper content of the altered section in this particular hole. However, strong copper enrichment occurs with chlorite in drill holes CNG-90-3 and CNG-90-6 only 250 metres away to the southeast.
- v) Mineralized dacite dikes are sericitized and commonly contain disseminated fine grained cubic pyrite with or

without arsenopyrite. Many dikes also contain finely disseminated and blebby chalcopyrite. Pale honey coloured sphalerite forms stringers and veins, commonly with galena, which together postdate the iron and arsenic rich sulphides. At the Ehrhart occurrence electrum and tetrahedrite have also been recognized (Hak, 1989). These minerals account for some erratic high grade gold and silver values in the altered quartz-rich sections of the dacite.

For simplicity the various forms of mineralization and attendant alteration can be visualized by reference to Fig. 6 a schematic section. This must be viewed more as a cartoon until the structure is resolved.

VII) Summary

The area of the Canagau Mine in east central Ben Nevis township can be described as a focal point or centre of both volcanic and hydrothermal activity. Field relations record rapid alteration of mafic and felsic volcanic rocks, specifically thin well vesiculated basaltic flows interlayered with flow banded spherulitic rhyolite and related volcaniclastic and laminated ashtuff units. These volcanic rocks form a steeply dipping assemblage which is locally highly folded. The structure is largely unresolved in the absence of marker horizons. However, gross geologic relations support the existence of a volcanotectonic structure which links mineralization between the Canagau mine and the polymetallic Ehrhart structure.

Hydrothermal alteration is widespread and marked by a broadly conformable Fe-carbonate/sericite zone and more localized chloritized and silicified sections. Sulphide mineralization is ubiquitous and well developed especially with chlorite, as i; chalcopyrite-pyrite-sphalerite-quartz vesicle fillings, quartzcarbonate- sulphide veins and as stringers and pods of pyrite with chalcopyrite (DDH CNG-90-3 (26-48')) and ii; as very fine grained disseminations and films of sphalerite and galena in chlorite and

-30-

sericite altered zones.

Geochemical data combined with geologic relations indicate a complex multi-stage event of mineralization. Diamond drilling has intersected a strongly altered, Pb-Zn enriched zone, resembling a stringer sulphide zone, near the Canagau Mine. However, only 3400m to the southeast zones of Cu-Zn-Ag enriched chloritized volcanics appear to lie at about the same stratigraphic position. Evidence to date shows that Au-Ag mineralization is concentrated in relatively late quartz-sulphide veins. A good example of this occurs on the Ehrhart structure which discovered by was prospecting methods. Further progress on the Canagau property will depend on deep geophysical surveying and diamond drilling.

7.0 ADDITIONAL DETAILED MAPPING

1:250 scale mapping was carried out in two areas of the Canagau property during September and October 1990 as a follow up to mechanical and hydraulic stripping. An area of the Labbé option claims with a known sulphide-chert showing was selected (Figs 7a,b). The second area of stripping is located west to north of the Canagau shaft on a series of low knolls where large areas could be effectively cleared (Figs 8a,b,c).

Stripped areas in the Labbé claims expose a sequence of basalt flows, pillowed flows, vent breccias and coarse flow breccias which are cut by dacitic dykes and one andesitic dyke. In the northern most stripped area (Fig. 7b) a pillowed basalt unit trends roughly 100 degrees and tops are determined to be north. This is one of the few areas where such orientations could be determined. This orientation contrasts sharply with vent breccia contacts seen to the south (Fig. 7a) which strike north easterly and appear to top to the west by inference from the location of silica dumping.

The known showings on the Labbé claims (Fig. 7a) are both found to be basalt vent breccia pipes whose cores have been silicified. Coarse basalt fragments have been strongly bleached in the pipe while fine basalt material common to the groundmass outside the pipe have been washed away and replaced with chert and pyrite. Outside the core of the pipe and "downslope" to the northeast a frothy, scoriaceous flow breccia can be observed. A whole rock sample taken from the unmineralized host basalt, No.8514, shows a marked silica depletion indicating a very strong hydrothermal system at work. At least three flow breccias are found in the vicinity of the chert pipe, indicating a plurality of such vents nearby or multistage extrusion of flow material from this vent. One flow breccia contains angular fragments of dacite.

The andesite dyke was also lithogeochemically sampled confirming its composition (sample 8515). This dyke has a strong core but its contacts are diffuse, injecting andesitic material into the interstices of the pillowed sequence it intrudes. The term "tuff dyke" was used by one visitor to the site.

Base metal mineralization is associated to the two mapped vent pipes and to the dacite dykes seen on Fig. 7b. Pyrite with minor amounts of sphalerite and chalcopyrite are seen in both areas. Sulphides, mainly pyrite, are also noted in the strongly carbonate altered basalts at the north end of the Labbé stripping. Disseminated and amygdule fill sulphide are both seen.

Stripping to the west and north of the Canagau shaft targeted several rediscovered mineral showings an areas of projected extent of the Canagau Rhyolite. The intention was to improve structural understanding of the area. Geology of the areas stripped is presented on figures 8 a, b, and c.

Far from simplifying the geological setting, stripping added still more complexity. Figure 8a demonstrates that both sharp paleorelief and folding contribute to a complex pattern of interbanding of rhyolitic and basaltic flows and tuffs. On the main outcrop south of the road in figure 8a a unit of rhyolite is found to be pinched into the core of a synformal fold. Away from the fold nose a sequence of cherty bands of rhyolite strike roughly 100 degrees. This original bedding is crosscut and completely replaced by an axial planar foliation towards the fold nose, whose axis trends roughly 050 degrees. A narrow band of basalt tuff forms the next unit in the fold sequence. This tuff grades locally to a felsic ash on the southern limb while the northern limb appears to attenuate.

Further southwesterly on the main outcrop, irregular contacts between massive basalts and massive rhyolites suggest paleorelief contacts as basalt filled in swales and crevasses between viscous rhyolite flow ridges.

Folding and penetrative foliation related to folding are visible in all new exposures and involve thin to thick interbedded packages of basalt and rhyolite with minor occurrences of intermediate ash. One dacite dyke is seen to intrude along a fold limb.

Mineralization and alteration are a consistent with those forms described by A.D. Hunter (this report). Sulphide mineralization can be seen in narrow bands along contacts between rhyolites, ashes and basalts as well as within chloritized rhyolites (L150E 125N) and basalts (L1W ON). It is unclear whether mineralization seen in this stripping is structurally controlled but is not believed to be so.

Whole rock samples (#8503 to 8513 incl.) taken from the new Canagau area stripping shows variable alteration levels throughout the area in both basalts and rhyolites. As with mineralization, alteration such as soda depletion is not believed to be structurally controlled.

8.0 GEOPHYSICAL SURVEYS

Three geophysical surveys were undertaken during the fall and winter of 1990-1991. All three were electromagnetic in nature and were intended to identify potential base metal conductive zones in the Canagau sequence.

8.1 Horizontal Loop E.M. Survey (Fig 9)

Approximately 28 Km of 444 Khz horizontal loop Max-Min 2+ survey was conducted over the Canagau grid. Readings were taken at 25 metre stations on lines 50 metres apart. Transmitterreceiver separation was 150 metres.

Only one in-phase E. M. anomaly was detected during the survey, centred at L1+50E 1+50S. This anomaly has no corresponding quadrature response. The anomaly was drill tested by hole CNG-90-3 with no success. It is believed this anomaly may be due to mass effect caused by topographic relief.

8.2 Maxi-Probe Survey

Four 1600 metre long grid lines were traversed by Geoprobe Limited using a Maxi-Probe deep E.M. System. A discussion of the survey parameters and results by Geoprobe Limited is found in Appendix II.

In summary four zones of anomalous, low apparent resistivity were defined by the survey. Three of these anomalies correspond to altered zones at what are believed to be major lithological contacts. The fourth is quite deep seated and unexplained in overburden. Anomaly C was drill tested by hole CNG-90-6. The proposed anomaly was found to coincide with a thick sequence of well altered and mineralized basalts and rhyolites with amygdules and fracture filling pyrite and sphalerite mineralization.

8.3 Pulse - E.M. Survey

Holes CNG-90-2 and CNG-90-6 were both tested by a Crone Pulse E.M. downhole geophysical system in order to test the envelope of rock surrounding these holes. The pulse system can sense to a radius of 75 metres using surface ground loop transmissions with a down hole sensor. Profiles for the two surveys are presented in Appendix III.

Both down hole surveys failed to define a conductor of any

-34-

significance either transecting the hole (an 'in-hole' anomaly) or in adjacent rocks (an 'off-hole' anomaly).

9.0 DIAMOND DRILLING PROGRAMS

Two phases of diamond drilling were undertaken during 1990. A total of 4839 feet of BQ drilling was completed during January and February (2005) and during October and November (2834). Three holes were completed in the vicinity of each of the major showings, the Canagau and the Ehrhart.

Hole CNG-90-2 (Fig. 10) sectioned the volcanic sequence under the Canagau shaft for 1008 feet. The hole intersected a sequence of interbedded, altered amygdaloidal basalts, massive fine grained basalt tuff, basalt flow breccias and rhyolite flows. Beyond 779 feet in hole 2 relatively unaltered rhyolite flow with thin to thick interbeds of unaltered basalt tuff predominate. General alteration consists of strong carbonate. chlorite +/sericite with minor pyrite. In basaltic rocks, amygdules, often mineralized with pyrite +/sphalerite +/galena or chalcopyrite, are preferentially chlorite altered followed by flow breccia groundmass, selvages and finally more massive basalt. Rhyolite exhibits chloritization preferentially along sericitic bands which represent rotation of flow banding.

Both rock types have stringers and veins of disjointed "pullapart" pyrite infilled with quartz carbonate gangue, sphalerite and galena. The amount of base metal mineralization associated with these stringer veins appears proportional to the volume of gangue.

Holes CNG-90-3 (Fig. 11) and CNG-90-6 (Fig.12) were collared on a parallel section roughly 200 metres east of hole CNG-90-2. These holes were intended to evaluate the rock package equivalent to the Canagau shaft area in this vicinity and to test a horizontal loop E.M. conductor and a two Maxi Probe E.M. anomalies.

Hole CNG-90-3 drilled from south to north, collared in extremely well chloritized and sericitized rhyolites and basalts.

-35-

Stringer veins and sulphide filled amygdules are common in this sequence. Below 454 feet in hole CNG-90-3 almost 95% of the core recovered is fresh weakly altered basalt.

Hole CNG-90-6 was collared north of hole CNG-90-3 and drilled north to south to section the entire altered zone in which hole CNG-90-3 was collared. CNG-90-6 also drill tested a deep seated Maxi-Probe anomaly (anomaly C) further to the south. This intersected 1480 feet of predominantly well altered hole chloritized basalt and rhyolite. Less rhyolite was encountered than expected in hole CNG-90-6 indicating that the thick unit mapped at surface may be the result of fold repetition. Sulphide stringer veins and sulphide amygdule fillings are pervasive in basalts encountered in this hole. Rhyolites are well chloritized and sericitized but sulphide mineralization is restricted to veins and fractures. One dacite dyke is found in hole CNG-90-6 at 443.2 feet in a basalt. A five foot zone of basalt on the upper contact of this dyke is strongly altered to chlorite-sericite as well as tectonically brecciated. Mineralization consists of quartzdolomite-pyrite-argenopyrite-sphalerite-galena-chalcopyrite, similar to the polymetallic assemblage found at the Canagau

prospect shaft.

Hole CNG-90-6 was stopped at 1480 feet after transecting the proposed Maxi Probe conductor. No obvious change in the alteration or mineral concentration was noted at the predicted location of anomaly C (Appendix II).

Summary of Diamond Drilling Canagau Project 1990

Hole	Location	Az/Incl.	Depth
CNG-90-1	56m Az157 from 2+50E 8+31S	337/-45 997 ft	Ehrhart fault and IP anomalies
CNG-90-2	1+00W 0+54S	053/-5 1008 ft	Canagau shaft section
CNG-90-3	1+00E 2+15S	045/-45 754 ft	E.M. anomaly, Canagau Rhyolite
CNG-90-4	2+04E 6+60S	130/-45 250 ft	Ehrhart fault
CNG-90-5	2+04E 6+60S	130/-60 350 ft	Ehrhart fault
CNG-90-6	25m grid east 1+50E 1+35S	225/-60 1480 ft	Canagau Rhyolite Maxi-Probe Anomaly C

2839 ft

In the Ehrhart area, 3 holes tested local geology. Hole CNG-90-1 sectioned strata through the dacite dyke swarm at the base of the "ponded" sequence described by Hunter (this report). Holes CNG-90-4 and CNG-90-5 were drilled to evaluate the Ehrhart fault and its relationship to the polymetallic mineralization found in dacite and basalt rocks in the vicinity.

Hole CNG-90-1 (Fig. 13) was drilled north westerly across the projected trend of the Ehrhart fault. A possible cross fault lies between the drill hole trace and the last exposure of the Ehrhart fault. No significant shear was seen in core although the cross fault was identified at 209.5 feet. Hole CNG-90-1 intersected eight dacitic dykes. Several of these are strongly silicified and mineralized with iron carbonate. These altered dacites are also sulphide mineralized having fracture controlled pyrite, podiform and breccia fill aggregates with pyrite, galena, quartz carbonate and sphalerite. These dykes inject a sequence of frothy, amygdaloidal basalts which have undergone chlorite-sericite alteration of variable intensity throughout the section. This alteration is not related to the dykes and is present well beyond the limit of their intrusion.

Northwest of the dacite dyke swarm, amygdaloidal basalts become interbedded with massive fine grained basalt tuff and a peculiar flow breccia seen only in core to date. This breccia consists of rounded blocky fragments of basalt in a black aphanitic chloritic groundmass. Fragments often have "mated" contours as if the blocks moved against each other while still hot. This rock is very altered and fine grained chalcopyrite is found in the breccia groundmass.

Holes CNG-90-4 and CNG-90-5 (Fig. 14) were collared at the same location and drilled on the same section at 45 degrees and 60 degrees respectively. The purpose was to section the Ehrhart fault below a known surface exposure and create a vertical profile for study.

Both holes sectioned a rapidly alternating sequence of dacites and amygdaloidal basalts. Contacts are fault controlled or intrusive and occur at variable core angles. The Ehrhart fault is actually a set of tight slip faults in a strongly shear banded section of dacite and basalt. Several tight faults occur outside the zone of shear banding. One tight fault in particular, at 196.5 feet in hole CNG-90-4 and 247.2 feet in hole CNG-90-5 is believed to be the major offset in the system, bringing the ponded dacite rhyolite sequence into juxtaposition with relatively fresh basalt. The true thickness of the deformation zone is roughly 70 feet.

Mineralization in the deformation zone consists of veins and irregular masses of pyrite and sphalerite, galena and some arsenopyrite. One such 6 inch vein returned an assay of 2.1 oz/ton Au over 1 foot.

-38-

10.0 CONCLUSIONS AND RECOMMENDATIONS

Exploration of the Canagau property during 1990 has resulted in a fuller and more detailed understanding of the geology and mineralization of the area. Surface mapping and diamond drilling have defined a 1 Km by 0.6 Km area of moderately to strongly altered bagalt and rhvolite. The sequence is thinly to thickly bedded and locally folded. All rocks exhibit chlorite alteration with variable amounts of sericite alteration. This alteration and attendant strong soda depletion are typical of alteration haloes surrounding volcanogenic massive sulphide deposits. Strongly anomalous copper and zinc mineralization is widespread through the map area and located in stringers and more particularly in vesicles indicating a for proximal воигсе base metal mineralization.

Structural complexity within the altered package of rock in the Ehrhart and Canagau area has not been resolved. Large scale folding and irregular paleorelief features with respect to interflow contacts defy extrapolation of small scale features to a general interpretation.

Mineralization and alteration found to date underline the merit of continued exploration of the Canagau property. Further drilling and a broadening of scope in surface mapping to include a large radius of study are recommended.

Grunsky, E. C. 1986 Recognition of Alteration in Volcanic Rocks using Statistical Analysis of Lithogeochemical Data. O.G.S. M.P. 129 and Open file 5628. Jensen L. S. 1975 Geology of Pontiac and Ossian township OGS G.R. 125. Jensen L. S. 1975 Geology of CLifford and Ben Nevis townships. O.D.M. G.R. 132. Jensen L. S. 1986 Mineralization and Volcanic Stratigraphy in the Western Part of the Abitibi Subprovince. O.G.S. M. P. 129. Wolfe W. J. 1977 Geochemical Exploration of Sulphide Mineralization. Ben Nevis township. O.G.S. - study paper 19.

CERTIFICATE OF QUALIFICATIONS

I, William John McGuinty of 63 Rand Avenue, West in the town of Kirkland Lake in the Province of Ontario,

Do hereby certify:

- 1. That I am a graduate of the University of Ottawa (1983) with a degree of Bachelor of Science (B.Sc.) with Honours in Geology.
- 2. That I have been practicing my profession as a Geologist and been engaged in mineral exploration since 1981.
- 3. That this report is based on visits to the property and personal appraisal of available data.
- 4. That I have disclosed in this report all relevant material which to the best of my knowledge might have a bearing on the viability or recommendations to the project.
- 5. That I do not have, nor do I expect to receive, directly or indirectly any interest in the property reported on herein.
- 6. That I am exploration manager for Joutel Resources Limited.

W. J. McGuinty, Kirkland Lake, Ontario

January 1991

CERTIFICATE OF QUALIFICATIONS

I, Bradley C. Leonard of 2081 Sunnyside Road in the City of Sudbury, in the Province of Ontario Do Hereby Certify that:

- 1) I am a graduate of the University of Toronto (1983) with a bachelor of Science degree (B.Sc.) with honours in geological sciences.
- I have been practicing my profession as a geologist since 1983, and a consultant since 1988.
- 3) I have no interest, directly or indirectly in the property, Joutel Resources Ltd. or Mountain Lake Resources Inc., nor do I expect to acquire any interest, directly or indirectly in either of the aforementioned companies, or the property.
- 4) This report was prepared by me using government maps and reports; miscellaneous data on file in the files of the resident geologist, Ministry of Northern Development and Mines, Kirkland Lake, Ontario; and field visits to the property.

Bradley C. Leonard B.Sc. Consulting Geologist Kirkland Lake, Ontario November 17, 1990.

APPENDIX I

)

WHOLE ROCK GEOCHEMISTRY

AND

ASSAY CERTIFICATES

Swastika Laboratories nnsar

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

7-126V R

Geochemical Analysis Certificate

Company:	QUEENSTON MINING	
Project:	BEN NEVIS	Сор
Attn:	W. MCGUINTY	

Date: SEP-04-90 py 1. BOX 193, KIRKLAND LAKE, ONT P2N 3H7 2. FAX TO 567-7002

C

We hereby certify the following Geochemical Analysis of 29 ROCK samples submitted AUG-28-90 by A. D. HUNTER.

Sample	Au	Ag	As	Cu	Pb	Sb	Sn	Zn
Number	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm
WR-90-1				30	38			83
WR-90-2				36	28			124
WR-90-3				3	11			85
WR-90-4				31	1			224
WR-90-5				22	3			78
WR-90-6				35	9			94
WR-90-7				38	43			1020
WR-90-8				54	27			179
WR-90-9				8	18			162
WR-90-10				3	6			106
R -90-11				6	5			43
WR-90-12				80	2			77
WR-90-13			•	10	. 5			39
<u>WR-90-14</u>				51	1	المراجع والمراجع المتحافظ المحافظ والمراجع	and a stand of the stand of the state of the	91
128716	10	3.0		313	94			9540
128717	282/278	41.2		833	12600			24900
128721	7	2.9		114	290		and the second se	1480
128722	27	16.4		228	8800	and the second s		9000
128723	14	34.1		263	20600			3440
128724	7	2.6		220	74			486
128725	Nil	0.4		22	129			133
128731	7	0.6	- Start Starter	25	82			65
128732	14	0.4	Contraction of the second s	19 [°]	46			89
128734	10	2:0		71	942			1530
128735	مس <i>بة</i> 847/85,7 / 847	32.7		402	23400			47100
72237	Nil							
72238	Nil							
72239 72239	24	23.9		548	10500			37200
main-shaft (no tag)	14	2.7		176	1250			8680

As,Sb,Sn, WRA results to follow

Certified by

G. Lebel / Manager

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

Swastika Laboratories A Division of Assayers Corporation Ltd. A Division of Assayers Corporation Ltd. Established 1928 SEP 19 1950 A Division of Assayers Corporation Ltd. OULLING A Division of Assayers Corporation Ltd. OULLING A Division of Assayers Corporation Ltd. A Division Corporation Ltd. A Division Cor									
	tificate No. <u>OW</u> -			Date <u> </u>	eptember 17,				
	ceived Augus				ntaria				
Sub	omitted by <u>Quee</u>	enston Mining							
			<u>ntion: Mr. B</u> DLE ROCK ANALYS	,	<u>Page_on</u> 1668	<u>e of three</u>			
	SAMPLE NO:	WR-90-1	WR-90-2	WR-90-3	WR-90-4	WR-90-5			
SiO ₂	аў.	62.08	66.09	69.41	58.01	72.25			
^1 ₂ 0 ₃	ay X	13.99	12.84	14.42	15.28	12.38			
^{Fe} 2 ⁰ 3	°,	5.78	6.41	4.86	8.11	3.81			
Ca0	%	3.96	4.97	1.03	3.22	1.81			
0	%	4.15	1.66	1.78	4.91	1.55			
Na ₂ 0	×	3.32	0.73	3.56	4.22	3.65			
к ₂ 0	X	0.96	1.73	1.42	0.64	0.93			
^{Ti0} 2	%	0.54	0.85	0.43	0.78	0.33			
Mn0	%	0.11	0.08	0.02	0.14	0.05			
P2 ⁰ 5	z	0.11	0.15	0.15	0.15	0.11			
1.01	%	4.92	4.41	2.87	4.48	3.08			
Ba	РРМ	281	468	322	536	241			
Cr	РРМ	866	835	631	664	1081			
Nb	РРМ	129	195	204	318	182			
Sr	РРМ	87	122	51	105	66			
Y	PPM	29	34	44	22	39			
Zr	РРМ	368	534	476	341	468			

Per_ G. Lebel-Manager/rl

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

Page_

2

	WHOLE ROCK ANALYSIS							
	SAMPLE NO:	WR-90-6	WR-90-7	WR-90-8	WR-90-9	WR-90-10		
⁵ⁱ⁰ 2	%	65.76	72.26	72.87	71.58	48.75		
^{^1} 2 ⁰ 3	%	13.65	11.26	12.75	12.53	13.79		
^{Fe} 2 ⁰ 3	%	4.29	4.84	5.58	5.85	7.27		
CaO	%	4.86	2.38	0.11	0.81	7.78		
	° oʻ	1.48	1.71	2.25	2.55	4.92		
Na ₂ 0	ay R	1.24	0.15	0.01	0.01	1.54		
к ₂ 0	%	2.31	1.95	1.41	2.04	1.25		
Ti0 ₂	%	0.38	0.29	0.31	0.35	0.73		
MnO	x	0.15	0.08	0.03	0.08	0.15		
P2 ⁰ 5	x	0.11	0.11	0.11	0.14	0.15		
LOI	ý,	5.71	4.89	3.51	3.97	13.52		
Ba	РРМ	381	217	702	205	100		
Cr	PPM.	571	655	478	551	246		
Nb	PPM	236	296	311	255	351		
Sr	РРМ	55	33	15	25 .	92		
Y	PPM	33	37	44	39	25		
Zr	PPM	415	399	478	376	300		

Î,

Per.

G. Lebel-Manager/rl

Established 1928

	WHOLE ROCK ANALYSIS						
	SAMPLE NO:	WR-90-11	WR-90-12	WR-90-13	WR-90-14		
Si02	%	74.86	61.42	73,68	52.79		
^{A1} 2 ⁰ 3	%	12.22	11.29	10.56	16.45		
^{Fe} 2 ⁰ 3	X	2.15	6.31	3.15	9.61		
Ca0	%	1.75	6.11	2.78	5.11		
	L	0.56	3.58	0.71	6.35		
Na ₂ 0	у́,	3.31	2.15	2.75	3.53		
к ₂ 0	%	2.15	1.03	1.63	0.52		
^{Ti0} 2	ž	0,22	0.65	0.29	0.89		
Mn0	%	0.03	0.11	0.06	0.15		
P205	%	0.11	0.19	0.11	0.22		
LOI	X	2.61	7.08	4.11	4.33		
Ba	РРМ	170	125	328	71		
Cr	PPM .	1259	530	1798	320		
Nb	₽PM	359	593	542	451		
Sr	РРМ	46	93	102	198		
Y	РРМ	41	34	43	34		
Zr	PPM	468	403	405	418		

Slight Chromium contamination due to use of hard chrome steel pulverizer plates.

Per_ G. Lebel-Manager/rl

S	
Establish	ned 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

- Geochemical Analysis Certificate

Company:	JOUTEL RES. LTD.
Project:	C/O QUEENSTON MINING INC.
Attn:	

Date: OCT-01-90 Copy 1. BOX 193, KIRKLAND LAKE P2N 3H7 2. FAX TO 567-7002

Kidos

 Ω

061-9

111 "

1560

0W-1458-RG1

We hereby certify the following Geochemical Analysis of 26 CORE/ROCK samples submitted SEP-25-90 by .

	Samp I e	Au	Ag	Cu	Zn	
	Number	ррь	ppm	ppm	ppm	
	WR-90-15			14	65	
	WR-90-16			88	93	
	WR-90-17			469	99	
19.5	WR-90-18			60	91	
· -	WR-90-19			35	666	
	-WR-90-20				93	
. Г	WR-RI			6	44	and the second of the second
Rob. 1	WR-R2			17	114	A CONTRACT OF C
Kon 1	WR-R3	Ni l	0.1	55 M LEAN	113	
l	WR-R4	ACTIVITY AND A PARTY AND	CON THE REAL PROPERTY OF	14	43	
	R-R5			39	62	
	- NG-90-1 423-433		nertinger in einen sonstene	39 119	520	l sharandi ya shuka s eka ta ka ta ka ka sa ka
	CNG-90-1 494-497.5			358	31	
	CNG-90-1 556-566			660	207	
	CNG-90-1 707-717			182	191	
	CNG-90-1 887-897			99	519	
	CNG-2-90 42-52			53	224	
Ł	CNG-2-90 285-295			271	3210	
10	CNG-2-90 401-411			56	4010	
\mathcal{J}^{ϵ}	CNG-2-90 517-527			98	4810	
	CNG-2-90 642-653			57	301	
	CNG-2-90 753-763			15	174	
	CNG-2-90 896-906			12	601	
ŕ	10122	51/41	1.6	7860	150	
059	10123	Nil	0.1	88	83	A MARKET THE REPORT OF THE
	125065	10	0.1	23*****	65	
ber		ant shift	CONTRACTOR MONTH	No manufacture of		
	المعادمات المراجع المنافع المعادية المعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعا	and high is they a short and				
	the sector with new term the sector the the termination of the sector of					
-	Whole Rock Analysis resu	ilts to follow	where reque	sted	1	A .
	Whole Rock Marysis resu		mere reque	5100.		
					41	
					71.0	1.11
			Certifie	d by	/ / /	WW 1

G. Lebel / Manager

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

الم المعالية المالية المالية المعالية معالية معالي	Swastika Laboratories A Division of Assayers Corporation Ltd. Assaying - Consulting - Representation
	Certificate of Analysis
Certificate No. OW-145	8-RG1 Date October 9, 1990
Received September	25, 1990 18 Core/Rock Samples

Submitted by Joutel Res. Ltd., c/o Queenston Mining Inc, Kirkland Lake Ont.

	WHOLE ROCK ANALYSIS								
	SAMPLE NO:	WR-90-15	WR-90-16	WR-90-17	WR-90-18				
Si0 ₂	or Ko	79.41	47.65	56.92	65.05				
A12 ⁰ 3	%	9.69	12.79	10.76	12.48				
Fe203	у,	2.98	7.19	5.01	6.12				
CaO	K and a second s	1.43	10.84	4.38	4.89				
MgO	<i>k</i>	0.63	4.17	2.29	1.57				
	X	0.01	1.23	0.78	2.89				
К ₂ 0	%	2.59	1.62	2.31	1.13				
Ti02	X	0.15	0.75	0.42	0.88				
Mn0	%	0.22	0.25	0.27	0.11				
P2 ⁰ 5	х,	0.06	0.1	0.09	0.13				
L01	%	2.76	13.21	16.53	4.66				
Ba	РРМ	192	169	202	293				
Cr	РРМ	1024	781	347	630				
Nb	PPM	144	118	336	98				
Sr	РРМ	15	81	55	71				
Y	РРМ	31	20	31	34				
7r	PPM	185	146	214	207				

th Per_

G. Lebel-Manager/f1

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244. FAX (705) 642-3300

1

Certificate No. OW-1458-RG1

Page____

.

2

		WHOLE	ROCK ANALYSIS			
	SAMPLE NO:	WR-90-19	WR-90-20	WR-R2	WR-R3	WR-R4
sio ₂	x	61.09	55.98	53.29	55.99	65.21
^{A1} 2 ⁰ 3	x	14.14	16.01	12.47	13.55	12.62
^{Fe} 2 ⁰ 3	z	12.51	7.26	15.42	14.99	9.01
Ca0	%	0.41	4.56	6.19	4.02	3.67
Mg0	%	5.02	5.32	4.29	2.73	2.31
Na ₂ 0	%	0.01	1.37	1.68	2.06	4.76
к ₂ 0	%	1.27	1.46	0.01	2.41	0.19
T102	2	0.69	0.82	1.76	1.86	1.12
Minu	X	0.19	0.09	0.21	0.13	0.12
P2 ⁰ 5	%	0.11	0.09	0.14	0.11	0.19
LOI	۰. ۲	4.48	6.93	4.44	2.09	0.73
Ba	PPM	315	284	36	986	35
Cr	PPM	748	225	147	420	848
Nb	PPM	44	<10	42	52	84
Sr	PPM	10	53	110	162	83
Y	РРМ	19	<10	44	45	83
Zr	РРМ	186	154	234	255	337

Per.

G. Lebel-Manager/rl

Established 1928

Î,

Page_

3

WHOLE ROCK ANALYSIS

c : 0	SAMPLE NO:			CNG-90-2 42/52	CNG-90-2 285/295
^{Si0} 2	%	60.48	53.34	52.74	73.45
^{A1} 2 ⁰ 3	%	13.45	15.68	14.53	12.88
^{Fe} 2 ⁰ 3	ý,	10.81	8.65	7.03	5.58
Ca0	%	5.01	4.35	6.67	0.24
Mg0	%	3.68	6.39	5.09	1.74
Na20	%	3.22	0.02	0.63	0.01
к ₂ 0	a,	0.22	2.08	1.51	2.35
1i0 ₂	ay Ko	1.21	0.78	0.82	0.21
Μπυ	2	0.14	0.25	0.22	0.09
P205	%	0.19	0.11	0.11	0.04
L01	ay Ko	1.53	8.21	10.49	3.32
Ba	PPM	77	161	245	489
Cr	PPM	759	538	378	706
Nb	PPM	75	72	33	<10
Sr	РРМ	143	29	74	12
Y	РРМ	89	15	19	28
Zr	PPM	428	146	171	201

h Per_ G. Lebel-Manager/rl

Established 1928

Certificate No. <u>OW-1458-RG1</u>

Page_

4

WHOLE ROCK ANALYSIS

	SAMPLE NO:	CNG-90-2	CNG-90-2	CNG-90-2	CNG-90-2	CNG-90-2
^{Si0} 2	%	401/411 75.21	517/527 73.93	642/653 48.01	753/763 71.29	896/906 73.39
^{A1} 2 ⁰ 3	%	12.39	13.76	15.86	13.54	13.21
^{Fe} 2 ⁰ 3	ž	4.83	4.75	8.82	4.35	1.82
CaO	X	0.21	0.27	7.26	1.26	2.88
Mg0	x	2.12	1.54	5.51	2.24	1.05
Na ₂ 0	X	0.01	0.01	0.06	0.01	0.01
к ₂ 0	X	2.22	2.59	2.27	2.59	3.09
Ti0 ₂	×	0.19	0.23	0.98	0.22	0.21
Mirro	X	0.09	0.08	0.25	0.33	0.15
P205	X	0.05	0.05	0.12	0.05	0.05
LOI	%	2.61	2.72	10.71	4.03	4.05
Ba	PPM	423	413	283	307	385
Cr	PPM	678	1285	236	590	833
Nb	РРМ	18	<10	82	51	31
Sr	РРМ	11	16	59	20	35
Ŷ	РРМ	34	32	20	38	32
Zr	РРМ	188	201	146	245	184

Per. G. Lebel-Manager/rl

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Certificate of Analysis

Cert	ificate No	<u>OW-1458-R</u>	RG1	Date_	Nov. 2, 199	0
Rece	eived Sept. 2	25, 1990	5		core samples	
			ces, Kirkland Lake	Ontario		1668
5401						Canagau
			WHOLE ROCK AN	ALYSIS		
S	AMPLE NO:	WR-R1	90-1 494-497.5	CNG-90-1 556-566	CNG-90-1 707-717	CNG-90-1 887-897
SiO2	æ	73.38	73.64	53.84	50.12	48.74
λ1203	Q	13.52	11.60	14.76	14.45	14.61
Fe203	95	3.01	1.97	11.19	10.87	8.15
CaO	с. С	2.02	3.57	3.03	5.23	8.58
MgO	B	0.38	0.86	5.55	5.75	4.68
Na2O	8	4.38	0.44	0.19	0.15	0.11
Т Ш	ጽ	1.54	2.64	1.86	2.24	2.52
Ti02	8	0.13	0.30	0.74	0.76	0.76
MnO	ç	0.04	0.10	0.17	0.33	0.55
P205	8	<0.02	<0.02	0.08	0.08	0.12
TOI	ક	1.18	4.95	7.57	10.38	10.60
Ba	PPM	342	189	111	179	321
Sr	PPM	86	35	20	23	44
7.r	РРМ	246	179	84	92	95
Y	PPM	37	36	16	15	19
Sc	PPM	6	6	14	14	19
		5				

Jundner Per

Donna Gardner

SWABTIKA LABORATORIES

P.D. BOX 10

TELEPHONE #1 05-642-3244 FAX #1 705-642-3300

I.G.A.P. WHOLE ROCK ANALYSIS Lithium MetaBorate Fusion

SWASTIKA LABS SWASTIKA DNT.	QUEENS	M NOR	INING	INC			(T.S.L. T.S.L.	File	No. 1	I N
YOUR REFERENCE -	0w-1699-R01						1,9.4,	involce	10. 1	
Sample 1	Bi02	A1203	Fe203	CaO	MgD	Na20	K.20	T102	Mn	۱D

Sample 4	5i02	A1203	Fe203	CaO	MgD	Na20	K20	T102	MnD	F205	LÜI	TOTAL
	X,	X	%	¥.	X	አ	%	X	X	%	۲	4
9 50J	77.48	12,45	1.22	0.33	0.37	0,38	3,46	0.25	0.04	0,10	1,93	9B.03
8504	66.53	16.55	5.63	0.(17	1.34	0.32	4.02	0.66	0.31	0.16	4.03	\$9.63
8505	64.20	17.06	6.28	0.22	1.10	0.34	4,18	0.70	0.32	0,18	3,85	98,43
8506	77.82	11.58	2.59	0,07	0.35	0.20	3.20	0.26	0.17	0.12	2,28	98.64
B507	60.51	17.33	7.85	0.65	2.18	0.29	- 4,00	0.97	0,38	0.22	4.73	99.10
8308	75,00	11.37	3.56	0.B6	0.56	0,18	3.08	0.26	0.57	0.14	2,97	98,56
8509	63.05	\$6.69	5.93	0.90	2,11	0.35	3.92	0.68	0,50	0.16	4,79	99.07
85	77.66	9.19	4.91	0.09	2.59	0.17	1.50	0.24	0.10	0,12	3.05	99.63
95	74.42	12.81	3.08	0.97	1.17	0,52	2.80	0.26	0.11	0.12	3.44	99,70
512	54.51	15.93	9.02	3.25	4,43	(), 35	2,56	1.01	0,53	0.22	7.66	99.26
8513	72.74	13.04	3,05	1.92	0.87	2.67	2.0B	0.29	0.07	0.10	2,73	99.56
8514	30.12	22.12	22.09	0,19	13.74	0,17	0,90	1.29	0.10	0.30	9,88	100.91
8515	57.08	15.81	8.81	3.97	3.56	3.02	0.72	0.73	0.10	0.18	4.27	98.24
8520 ,	57,42	16.81	7.48	7.18	3.59	5,20	0.64	0.82	0.12	0,20	1.19	100.64
8521	53,16	15.06	11,29	3.03	7.28	0.89	2.24	2.38	0.17	0.56	4.83	100.92
8522	63.93	16.15	5.94	2,38	2,86	1.92	3,76	0,69	0,08	0.26	2,78	100.94
8523	52.37	17.57	9.85	3.35	6.80	2.52	2,10	0.92	0,17	0,24	4.53	100.63

BIGNED , Damiel. Bulish.

١.__

NAA CT ON TRIOL SMHOLINH CHR

7

H - 8427 - 1

N007RA

SWASTIKA LABORATORIES

P.O. BOX 10

TELEPHONE #: 05-642-3244 FAX #: 705-642-3300

I.C.A.P. WHOLE ROCK

LITHIUM METABORATE FUSION

T.S.L. REPORT No. : M - B427 - 1 T.S.L. File No. : NO09RA T.S.L. Invoice No. :

7

YOUR REFERENCE - OW-1699-RG1

SWASTIKA LABS

SWASTIKA ONT.

SAMPLE #	Ba	Sr	2r	Ŷ	Sc
	ppm	ppm	ppm	ppm	ppm
8503Ì	451	21	149	36	6
8504	419	21	127	16	11
8505	473	20	111	17	13
8506	407	11	145	27	5
8507	435	20	111	18	21
and the second se					
8508	315	16	144	27	6
8509	401	25	129	15	12
8510	183	11	137	33	5
851	355	29	121	$\overline{30}$	7
ε	363	34	99	18	21
-					
8513	349	49	170	31	7
8514	331	14	157	12	19
8515	706	142	97	18	17
8520	154	244	135	19	17
8521 Flord	426	101	187	24	23
Flore					
8522)	1026	180	148	17	18
8523	393	270	188	17	18

ALL RESULTS PPM

DATE : NOV-14-1990

Daniel Bierok.

SIGNED :

. •		(21685
SIL	SWASTIKA LABORATORIES LIMITP.O. BOX 10,SWASTIKA,ONTARIOPOKTELEPHONE: (705) 642-3244FAX (705) 642-3244	1TO Q	DATE MOIB ANNÉE Feb 1990 MONTH YEAR	TRANSPORTEUR
É Box 19	nd Lake, Ontario 7 FEB 19 19		% LATE CHARGE (YS (ANNUAL RATE	
NO. D'EXEMPT. DE TA FED. LICENCE N QUANTITÉ QUANTITY	KIRKLAND LA	COUNTER NO DE CO	NET 30 DAYS	REP. DES VENTES SALES REP. MONTANT AMOUNT
41 41 41	Au assays Ag Cu Pb Zn PPM Sample Handling Cert.#OW-0016-RG1 Feb. 5, 1990		\$ 8.75 15.00 3.00	\$ 358.75 615.00 123.00
Description	Arct, Dept. Ur Ralales. 2019 001	banag	Sub-total	1096.75
			-10%	109.68
	i			
			••••••	
		TICAL CHEM STS	• ASSAYERS • CON	\$ 987.07 ISULTANTS
<u> </u>	· · ·	ESTAB	LISHED 1928	\checkmark
U {	NI 1 51 45 17 34 41	2 . 291 2.5 299 1.7 251 1.0 96 1.8 185	77 H 98 2 35 H	41 08 39 73 01
	38 24 31 58 7	2.7 671 1.8 959 1.3 210 0.3 40 0.3 63	167 3 47 2 82 3 14 1	72 25 02 45 88
	Certified b	y	fehl	_
		G. Lebel / M	anager	

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 FAX (705)642-3300

			®	,		(L		21706
		SWASTIKA LAE P.O. BOX 10, SWAS TELEPHONE: (705) 642-	στικά, ον		к 1то	JOUR MC	DIB ANNÉE	TRANSPORTEUR BHIPPED VIA
	Box 193	d Lake, Ontario		IL DETT	1599		TE CHARGE C NNUAL RATE	
1. * 1. 1	EXEMPT. DE TAXE		T. DE TAXE PROY.	YOUR C		OUR ORDER NO.	CONDITIONS NET 30 DAYS TERMS	REP. DES VENTES
				DESCRIPTION			PRIX UNITAIRE UNIT PRICE	
	39 39 39 Doseth	Au assays Ag Cu Pb Zn PPM Sample Handling Gert_//OW-0041-F)	2, 1990			\$ 8.75 15.00 3.00	\$ 341.25 585.00 117.00
	June	7.1	1.1.1.1	Dect,	Dr		-total	. 1043.25
		- Alle Alle	2219T		38.92	Cr.		··· · · · · · ·
			······································			-10	22	. 104.33
	Date						DTAL	\$ 938.92 M o
		NA	CTURE/INV	DICE ANAL	YTICAL CHE	EMISTS • AS	SAYERS • CON ED 1928	ISULTANTS
			3713	1.4	77		100 100	
	1101 1102 1103		Ni 1 Ni 1 10	1.9 0.9 0.7	135 78 46	407 74 59	1050 170 193	
l :	1103 1104	N	I/NII NII	2.1 2.6	293 374	60 69	329 200	
	1105 1106		10	4,2	402	111	197	
	1107 1108		Ni I Ni I	3.6 2.5	287 109	41 33	148 151	
	1109 1110		10 Ni I	17.5 8.7	2670 1030	140 120	72 224	
	•		P.O. Bo	Certified x 10, Swastil	G. 1	Lebel / Manag POK 1T0	ger de la companya de	•.

Telephone (705) 642-3244 FAX (705) 642-3300

J contention

			28 DATE MORE 28 DATE MORE	ANNIEE 1990 Year	21846 Talahsportelw 8hipped via
00/ 100	Source RinkLand Lake			CHARGE O' IUAL RATE 1	
NO DEXEMPTI DE TAXE PE PED LICENCE NO TELER BUANTITE PRO	PROV LICENCE NO	VOTRE NO DE COMMANDE VOUR ORDER NO SCRIPTION	NOTRE NO DE COMMANDE OUR ORDER NO	CONDITIONS NET 30 DAYS TEAMS PRIX UNITAIRE UNIT PRICE	REP. DES VENTES BALES REP MONTANT AMOUNT
69 S	u g Cu Pb Zn PPM ample Handling <i>CいG</i> ert.#OW-0227-RG1 ✓	FJ- 2		\$ 8.75 15.00 3.00	\$ 603.75 1035.00 207.00
Liescheiden A	U assays g-Cu-Pb-Zn-PpM ample Handling20/9 6 0/ ert.#0W-0234+RG1	DI 1. 1661.18 hare 611.54 B Q	10227.07L	8.75 15.00 3.00	472.50 45.00 162.00
			Sub-t	otal	2525.25 252.53
Uele Ung #		TANAL VTICAL C	TOTAL HEMISTS • ASSAN ESTABLISHED	ERS • CON	\$ 2272.72
1207 1208 1209 1210 1211 1212	202 1 34 24 NI 1 NI 1 NI 1 NI 1 NI 1	71	- 0.7 - 1.4	223 241	3 15 5 137
1213 1214 1215 1216 1217 1218	NI NI NI 7 7 NI	······			х Х
		Certified by	. Lebel / Manager	hilf	_
:	P.O. Box	10, Swastika, Ontai	rio POK 1T0 XX (705)642-3300		

,

Telenhope (205) 612-3244 FAX (705) 642-3300

}

Per

G. Lebel - Manager /ns

Ø -----

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244.

FAX (705)642-3300

هر								22221
	TELEPHONE: (705) 642 21 Resources	SSAYERS CORP ASTIKA,	TION LIMITE	D)	 در م		1990 CHARGE O	/EB 30
Box 1	93 and Lake, Ontar:	0			D	AYS (ANI	NUAL RATE 1	8%)
FED LICENCE QUANTITÉ QUANTITY	\$P\$1.549 (1)的 (\$P\$1)	ENPT. DE TAXE PROV.	海 经外生	E NO. DE COMMANDE I STANDARIA I OUR ORDER NO. DN	OUR OR		A RET 30 DAYS STERMS PRIX UNITAIRE UNIT PRICE	BALES REP. MONTANT AMOUNT
1	Ag Cu Pb Zn Pl Sample Handlin Cert.#OW-0519	ng	19, 199	0			\$_15.00 3.00	\$_15.00
Doscrin		Acel. 2019	Dept.	Dr (6-20	Cr.		otal	18.00
					Careeg	-10%.	••••••••••	1.80
		N .	······································					
Date					****** ******	TOTAL	••••	.\$ 16.20
C	()	ACTURE/IN	vþice 1			● ASSA BLISHED	YERS • CON 9 1928	SULTANTS
		·	Certifi		Lebel / Ma	<u>Al</u> h anager	1	
	ľ	P.O. Bo elephone (7		tika, Ontar)	I	

23101

VENDU A SOLD TO QUE PIS Box 19	(A Divis P.O.BOX 4011 TELEPHONE: (1 tSF MihIng 3 hd Lake, 0 killing And L	05) 642 ¹ B244 CPHC	ON LIMITED)		ANNEE	
NO. D'EXEMPT. DE TA	KE FÉD.	NO. D'EXEMPT, DE TAXE PROV.	VOTRE NO. DE COMMANDE BEN NEVIS	NOTRE NO DE COMMANDE	CONDITIONS NET 30 DAYS	REP. DES VENTES
FED. LICENCE N QUANTITÉ QUANTITY	0.	PROV. LICENCE NO.	YOUR ORDER NO. ESCHIPTION	OUR ORDER NO.	TERMS PRIX UNITAIRE UNIT PRICE	BALES REP. MONTANT AMOUNT
2 2 1	ay a gan gargar na sayan sa sa	263-RG1 Sept. 7,	1990	1.1	5.50 6.80 Sub-total	\$ 12.60 11.00 6.80 30.40 3.04
Dute Chq	· · · · · · · · · · · · · · · · · · ·	EACTURE/INVOI		HEMISTS • ASSA		TMO

.

-	,	÷.)		23115
Box 1	P.9. BRKGIP, TELEPHONE: (P	ing Inc		POK 1TO	1.5% LAT	ANNEE 1920 E CHARGE OV	
NO. DEXEMPT. DE TA P2N 31 NO. DEXEMPT. DE TA FED. LICENCE QUANTITE QUANTITE	17 XXE FED.	NO. D'EXEMPT. DE TAXE PROV		NO. DE COMMANDE	NOTRE NO DE COMMANDE	CONDITIONS NET 30 DAYS TERMS PRIX UNITAIRE UNIT PRICE	REP. DES VENTES BALES REP. MONTANT AMOUNT
14 14 14	Au assays Ag Cu Pb Z Sample Han	dling			· · · ·	\$ 8.75 15.00 3.00	\$ 122.50 210.00 42.00
Descriptus SWASTIK		313-RG1_Sept. Acct. Dep				Sub-total	374.50
	· · · · · · · · · · · · · · · · · · ·					-10%	37.45
				•			
e et Gitte 2		P FACTURE/IN	I AN	ALYTICAL C	HEMISTS • ASS		\$ 337.05 SULTANTS

.

.

		and the second se	Ç.			(23146
VENDU A SOLD TO	Box	(A DIV P.O. BOX 10, TELEPHONE: Inston Minir 193 land Lake,		PORATION LIMITE	B) -1 (2) [][] POK 1TO)64238300 2. F.	1.5% LAT	TE CHARGE O	VER 30
NO.	D'EXEMPT. DE	TAXE FED.	NO. D'EXEMPT. DE TAXE PRO		E NO. DE COMMANDE	NOTRE NO DE COMMANDE	CONDITIONS NET 30 DAYS	HEP. DES VENTES
QU	FED. LICENC	CE NO.	PROV. LICENCE NO.	DESCRIPTI	YOUR ORDER NO. DN	OUR ORDER NO.	TERMS PRIX UNITAIRE UNIT PRICE	SALES REP. MONTANT AMOUNT
	14	Whole Cert. #	Rock Analysis IOW-1263-RGI Se Cha Culy FacyURE/II					\$ 420.00 42,00 378.00 SULTANTS
						LOTADEIONE	.0 1320	
' 2`'5	ħ	0	.11 0	.15	0.15	0.15	0.11	
1.01	X			.41	2.87	4.48	3.08	
Ba	ррм	2		68	322	536	241	
Cr	PPM	8	66 8	35	631	664	1081	
Nb	PPM	1	29 1	95	204	318	182	
Sr	РРИ	8	7 1	22	51	105	66	
Y	РРМ	2	9 3	4	44	22	39	
Zr	РРМ	3	68 5	34	476	341	468	

Per_ G. Lebel-Manager/rl

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244

Montes Constan Issing Assestan

FAX (705)642-3300

	· ·				23054	
SWASTIKA LABORATORIES (A DIVISION OF ASSAYERS CORPORATION LIMITED) P.O. BOX 10, SWASTIKA, ONTARIO TELEPHONE: (705) 642-3244 NBUA Oueenston Mining Inc Box 193 Kirkland Lake, Ontario P2N 3H7 DATE MOIN Sept 1990 SEP 14 1990 COM GOLDA COM						
NO. D'EXEMPT, DE TAXE FÉD. FED. LICENCE NO.	NO. D'EXEMPT, DE TAXÉ PROV. PROV. LICENCE NO.	VOTRE NO. DE COMMANDE BEN NEVIS Your orden no.	NOTRE NO DE COMMANDE OUR ORDER NO.	CONDITIONS NET 30 DAYS TERMS	REP. DES VENTES	
13 Ag Cu 4 9 Petc Julion Samp Cert 14 14 19 10 19 10 10 10 10 10 10 10 10 10 10	ssays J Pb Zn PPM D-Zn-PPM	SCRIPTION 1, 1990 576-82		PRIX UNITAIRE \$ 8.75 15.00 11.50 3.00 Sub-total	MONTANI \$ 131.25 195.00 161.00 87.00 574.25 57.43	
	FACTURE/INVOIC	E-ANALYTICAL C	HEMISTS . ASS		\$ 516.82 SULTANTS	

23175 SWASTIKA LABORATORIES BUISSEDT 1990 LPORTINUR" (A DIVISION OF ASSAYERS CORPORATION LIMITED) לא ודם EP 26 P.O. BOX 10. SWASTIKA. ONTARIO TELEPHONE: (705) 642-3244 FAX (705) 644-1300 QUITTIN LORGE ALD MALES NDU Å Queenston Mining Inc KINALAND LATE CHARGE OVER 30 Box 193 DAYS (ANNUAL RATE 18%) Kirkland Lake, Ontario P2N 3H7 NO. D'EXEMPT. DE TAXE PROV. NO. D'EXEMPT, DE TAXE FED. VOTRE NO. DE COMMANDE -NOTRE NO DE COMMANDE CONDITIONS REP. DES VENTES STATISTICS (ST an and the 1、18、18、11月1日。 19 1. Sec. 1 NET 30 DAYS BALES REP. FED LICENCE NO. YOUR ORDER NO. OUR ORDER NO. TERMS PROV. LICENCE NO. MONTANT QUANTITE PRIX UNITAIRE DESCRIPTION 2 \$ 8.75 \$ 17.50 Au assays 15.00 15.00 Ag Cu Pb Zn PPM 3.00 6,00 Sample-Handling Desc Septern20, 1990 Acct. Dect ert.#0W-1397-RGI 38.50 Sub-total. Dept. Dr 668 YT2 650 O.S.C. Jler 3.85 0%. . . . Cho k $G_{\rm eff}$ OTAL 34.65 ++++ ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS RE/INVOICE TABLISHED 1928 ES Certified by G. Lebel / Manager P.O. Box 10, Swastika, Ontario POK 1T0

	$\mathcal{O}_{\mathcal{O}}$)	, ,	23225
Box 1	and Lake, Ontario	284 2 bentral 1.5% LATE (DAYS (ANNU	CHARGE OVI	
FED LICENCE N		NOTRE NO DE COMMANDE	CONDITIONS	BALES REP.
BUANTITÉ 3 3 3	As PPM Sb PPM DescSmiiRPM Acct. Dept. Dr Cert.#0W-1263-RGI Sept. 26, 1990 Aurusthan 1668 So, 2	Cr Dwry Al 2	PRIX UNITAIRE UNIT PRICE \$ 6.30	MONTANT AMOUNT 16.50 20:40 55.80
	Line Chy Market Chr.	-10 Continent TOT	2	5. 58
	FACTURE/INVOICE ANALYTICAL CH	HEMISTS ASSAYE ESTABLISHED 1		

· .

.

		23332
SWASTIKA LABORATORIES (A DIVISION OF ASSAYERS CORPORATION LIMITED) P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 VENDU A Joutel Resources c/o Queenston Mining Inc Box 193 Kirkland Lake, Ontario P2N 3H7		HANGPORTEUR BHIPPED VIA VER 30 8%)
FED. LICENCE NO. PROV. LICENCE NO. YOUR ORDER NO. DUR ORDER NO.	CONDITIONS ET 30 DAYS TERMS	REP, DES VENTES
QUANTITÉ QUANTITY DESCRIPTION	PRIX UNITAIRE UNIT PRICE	MONTANT
18 Whole Rock Analysis Cert.#OW-1458-RG1 Oct. 9, 1990	\$ 30.00	\$ 540.00
Deprinting		· · · · · · · · · · · · · · · · · · ·
Sevasteria Lele. 1665 45% 00	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·
-10%.		54.00
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TOTAL		\$ 486.00
Chiq // FACTURE/INVOICE ANALYTICAL CHEMISTS • ASSAYE ESTABLISHED 1		SULTANTS

					23414
Box 1	TELEPHONE: (705) 642-3244 ston Mining Inc 93 and Lake, Ontario	TION LIMITED) ARIO POK 1TD FAX (705) 642-3300	GKLAND PYE CAHE	CHARGE ON	VER 30 8%)
FED. LICENCE N	The second s	VOTRE NO. DE COMMANDE	NOTRE NO DE COMMANDE	CONDITIONS NET 30 DAYS	REP. DES VENTES
QUANTITÈ		DESCRIPTION	OUN ONDER NO.	PRIX UNITAIRE UNIT PRICE	MONTANT
	As PPM Sb PPM Description Certenton Cortenton Cortenton Cortenton Cortenton Cortenton Cortenton Cortenton Cortenton Cortenton Cortento Corte	47, 19901. Dr 68 /6.7	<u>Cr.</u> 1	\$ 6.30 5.50 6.80 b-tota1	\$ 6.30 5.50 6.80 18.60
			· · · · · · · · · · · · · · · · · · ·	0%	1.86
		P3 Cong Cong	TIO	TAL	\$ 16.74
	FACTURE/INVO	ICE ANALYTICAL C	HEMISTS • ASSA ESTABLISHED		TM O

.

a fr	- بر ال			23465
TELEPHONE: (705) 642-3244		i: Si Jour Z Adate 244 Oct 244 A Oct	Annes 2 19903 620	
VENDUA SOLD TO Joutel Resources Box 193 Kirkland Lake, Ontario P2N 3H7			CHARGE O' IUAL RATE 1	
NO. D'EXEMPT. DE TAXE FED.		1 A Market Market and Annual Annual State (1998)	CONDITIONS	SALES REP.
OUANTITÉ OUANTITY	DESCRIPTION	OUN ONDER NO.		MONTANT AMOUNT
20 Au assays 20 Ag Cu Pb Zn PPM 20 Sample Handling Urgripton Cert.#OW-1595-RG1/2Oct.	24. 1990 Dr	Cr Sub-tota	\$ 8.75	\$ 175.00 300.00 60.00 535.00
Surastika fals 1668	481.59	Sub-Lord	Å 4 • • • • • • • • • •	555.00
		-10%	•	53.50
	Kas Contact	TOTAL		\$ 481.50
FACTUREZIN	VOICE ANALYTICAL CI	HEMISTS • ASSAY		SULTANTS

.

,

<u> </u>
Sec. Sp

		NASTIKA LAE					
	P.O. BOX 1	0, SWASTIKA,	ONTA	RIO	POK 1TO		
	TELEPHON	IE: (705) 642-3244	FAX (705) 642-3300				
SOLD TO JOUTE	el Resour	rces					
Box 1	the second second second second				ananta de temper se de las compassiones en la		
Kirkl	and Lake	e, Ontario					
P2N 3	3K1	and a sub-sector water and a sub-			-8-18-18-18-18-18-18-18-18-18-18-18-18-1	• • •	
							
NO. D'EXEMPT. DE TA	XE FÉD.	NO. D'EXEMPT. DE TAXE	PROV.		E NO. DE COMMANDE	NOTE	
FED. LICENCE	NO.	PROV. LICENCE NO			OUR ORDER NO.		
ALQUANTITY SET	1. 1. 1. 1. 1. 1. 1.	Stands of the second	₿ĊĊŢĊŢŎĔ	SCRIPTIC	SN SAFETY STORY		
3	Cu 7	Zn PPM					
3	Samr	ole Handling					
		.#OW-1651-RG1	Oct. 2	9, 19	90		

1.5% LATE CHARGE OVER 30 DAYS (ANNUAL RATE 18%)

NO. D'EXEMPT. DE TA		NO. D'EXEMPT. DE		Sec. to Sec.	E NO. DE COMMANI		Sugar 1	CONDITIONS NET 30 DAYS TERMS		REP. DES VENTES
AL QUANTITE	The California State								1 11	MONTANT
33	Samp	Zn PPM ble Handling t.#OW-1651-R	Gl Oct.	29, 19	90			\$ 8.00 3.00	\$	24.00 9.00
			<u>y </u>				Sub-	total		33.00
Dos	ription	<u> </u>	Acct.	Dept.	Dr	Cr	-			
	ueliky	Laus	1668		29:70		-10%	•••••••••		3.30
	und fin tages at manage analysis a	• • • • • • • • • • • • • • • • • • •) a faalle afgebe af het het gest gestaarde Ne het alse de staar ook de staar ook de staar ook de staar ook de Ne het alse de staar ook de staar ook de staar			· · · · · · · · · · · · · · · · · · ·		
		19,000,000,000,000,000,000,000,000,000,0			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
							τοτα	L	\$	29.70
Care Care	\$	PASTI	URE/INVOI	CE AI	NALYTICAI	CHEMISTS			SUL"	
-			U				,			

Swastika Laboratories P.D. Box 10 Swastika, Ontario POK TO

INVOICE

NO: 23527

DAIC: 10-30-90

PAGE: 1 of 1

SOLD TO: Joutel Resources C/O Queenston Mine,Box 193 Kirkland Lake, Ontario P2N 3H7 SHIP TO:

Same

47	Description	Au Assay Ag Cu Pt Sample A	, Zn F FM.		Ref A	8,750 15,000	411.25 705.00
47	1	Cert#0W- 10% Dist	-1640-RGI	Dr	()7 	3.000	141.00 125.73-
	Sumetilia	Lab. 16	68	1131.52	ا المحمد المحمد الم		
	- spinster - state		7	······································			
	City S	ZANK					
MMENTS: Net 30 Days		والمتعالمة المستعمل وسيستعمل والمستعمل والمستعمل والمستعمل والمستعمل والمستعمل والمستعمل والمستعمل والمستعمل و	<u>derina derina</u>			NOVALLY	1,131.52

Swastika Laboratories P.O. Box 10 Swalika, Dotario POK 1TO

NUV -, 1990	
SHIP TO:	

INVOICE

NO.:	23538
DATE:	10-31-90
PAGE:	1 of 1

Same

SOLD TO:

Joutel Resources C/D Queenston Mine, Box 193 Kirkland Lake, Ontario P2N 3H7

	UNIT, PRIDE	ANDUN TO MARKE
25 1 Au Assays	8.750	218.75
$\frac{1}{4\varepsilon_{\text{Br}}^{\text{ctr}} + 4\Theta_{\text{L}}^{\text{ctr}} + 649 - 267} \frac{1}{200} Cr.$	15.000	375.00
And Discourt		59.38-
Sweating Leeles 1668 534.37		
Date A Destructure Cong Structure		
Cho #		
COMMENTS:		
	TOTAL A	534.37

فاستنقشه فدغشية بشتته ستنت

1.1

Swastika Laboratories F.D. Fox 10 Swastea, Ontario K 1TO	NOV 3 1990	INVOIC	E
	CUEENS MILES	NO.:	23564
		DATE:	11-02-90
SOLD TO:	SHIP TO:	PAGE:	1 of 1
Joutel Resources C/O Queenston Mine,Box Kirkland Lake, Ontario P2N 3H7	193 .	Same	

NUMER AND UNITED			AN AIDESCHIPTION WAS ST	and a management of the l		AMOUNT, AN AN
5	. 1	Whole	Rock Analysi W-1458-RG1	5	30.000	150.00
************			Discouot			15.00
Description			net for	Cr.		
Awast	ihadal	> 1668 .	135.	1 1 50 10 10 10 10		
· *** /···· *********	ղերածքներներն, են, ենք ենքի պետերում ենչորը։	ama ,		4		
1,91 + 8-14 - 14 - 14 14 - 1 4 - 14 - 14 - 14 - 14 - 14 - 14 - 14	gen 19 Merodarah 843 - gant senda nan		and the second second			
·* . #****		1.92 viroja ministra - ministra				
in		Holding and hold	Gene	nest -	-Materies BAAMERSHELLENSEN	
IS: Lin 4 BO Days					S. ALOUALLX	135.0
			······································		44	
rrm	246	179	84	92	95	
PPM	37	36	16	15	19	
PPM	6	6	14	14	19	

Mininer Per. Donna Gardner

i i i i

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

۲.

Man sai sa faoi Sant sa

Real and A cards and 27 -41 றாணாம **மா**த Swart ka Laboratories P.O. (ox 10 Swastika, Ontario NOV 2.3 TESU INVOICE N PØK 1TØ CUL TO . NO.: 23749 Kilonia (kilonia) DATE: 11-21-90 SOLD TO: SHIP TO: PAGE: 1 of 1 Joutel Resources C/O Queenston Mine, Box 193 Same Kirkland Lake, Ontario P2N 3H7 ANALUNIT AND BE CREATED AND A COMPANY DESCRIPTION AND A CARD AND A ACTUNIT PRICE AND AMOUNT HERE 30.000 90.00 Whole Rock A Act. Cert发热的W-14691-RG1 Daney June 9.00 NY Discount (3.4 is, mun Au 13:3 Date Chu-# OMMEN Net 30 Days 81.00

SIGNED :

Vanilf. Bileshi

SOLD TO: ANTHING HIM TUNNE PAGE:	06-90
Queenston Mining Inc. R. D. Roy 197	fi

Same

•

.

• • •

Queenston Mining Inc. P.O. Box 193 Kirkland Lake, Ontario P2N 3H7

JEMMOL	S BELVARIUNG				BISHIPATON MAN		044		MAMOUNT AND AND
	3	1			Analysi	.5		30.000	90.00
ſ	Unscription	1	Witzep 1	e Banck	AØ-RG1 Annilysi	s Cr		30.000	510.00
-		A A		Disco					60.00-
	Swast	iku / c	13 466	2	351:12			• • • •	
	د. همچنچ هده طور و ماه و هم و هم و م		757	A. B	81.00	510	0.0		
	~ \$141 \$1 \$1\$9\$(b)\$\$####	1949 - 2094 (kala an dina 1946) (kala an dina 1946)	167		i an internetienet in i chi i sin i chi i sin	,			
		****	/						
	No. Commentarian Walt		Art-		n an	. "idita			
MENTS:		······································	102 M-	······································					
	Uni d Dabtamar	-	Toll					Juneur V	540.00
	Personal and a second s				<u></u>				

Swastika Laboratories P.O. Wastika, Ontario PØK 1TØ

1990 10 DEC - MINES · ; :: "%. Ninnenit's LAKE SHIP TO:

INVOICE

NO.:	
	23875
DATE:	
	12-06-90
PAGE:	
	1 of 1

SOLD TO:

Joutel Resources C/O Queenston Mine,Box 193 Kirkland Lake, Ontario P2N 3H7

Same

LIEM NORMAN MANUANTINA		AN ASSAULT AND ADDRESS OF STORY AND ADDRESS ADDRE	PANAL UNIT, PHICE AND SHA	MAMDUNT MAANK
24 24 24 Description Surreslike La		Au Assays Ag Cu Fb Zn Sample Handling Curt#ØW 1091-RG1 Sct. 102 Discount (/ 667 572	8.750 15.000 3.000	210.00 360.00 72.00 64.20-
MENTS: Chiq #	- Ar PV -		ionality :	577.80

Swastika Laboratories DE+D HoxULØ Swastika. Ondario OU DK 1TØ dis Nintrad Ladi

SOLD TO:

INVOICE

NO.:
23940
DATE:
12-17-90
PAGE: 1 of 1

Joutel Resources C/D Queenston Mine,Box 193 Kirkland Lake, Ontario P2N 3H7 SHIP TO:

Same

ITEM NO.	DUANTITY &		and we are	in an and an e	DESCRIPTION	· 1883年1月1日(1943)	F P	WE UNIT PRICEASES	
J325	68	1	Au Ag	Assays Pb	5			8.750 8.000	595.00 544.00
	Descention 69	1	, CLI	Zn.	andling	Cr.	1	7.000	483.00 207.00
·, · ·		ې د ۲۰۰۰ و. ۱۹ مېرو د و. د و. د و. د و. د و. ۱۹ مېرو د و. د و. د و. د و.	Cer		1930-RG1	· • • • • • • • • • • • • • • • • • • •			182.90-
	Suvaste	katale	1668		1641 10	• • • • • • • • • • • • • • • • • • •			
					~ & T (] =			
		**							
	······································		••••						
	souls and a second second second	· / /		9.95 si si ta tata 6 si si 9. 9.	* * - *** }*****************************	- Autoritati		1	
MMENTS	Chq #		感天					total 🖡	1,646.10
Net	Day:	and the second second	an a				al effe		1,040.10

(/ Sastika Laboratories Box 10 Swastika, Ontario PØK 1TØ

INVOICE

NO: 23963 DATE: 12-20-90 PAGE: 1 of 1

SOLD TO:

Joutel Resources C/D Queenston Mine,Box 193 Kirkland Lake, Ontario F2N 3H7 SHIP TO:

Same

J325		Yawa Arika UNIT。3834 A Filosofia Filosofi 1	Au Assays		Actuation of Fi	P	B.750	122.50
	Descript A		Ag Cu Pb Z Sample Har Cert#ØW-19 -10% Disco	ndling 761-RG1	<u>0r.</u>		15.000 3.000	210.00 42.00 37.45-
	Swas to	te Lb.		ana ang ang ang ang ang ang ang ang ang				
		······	· · · · · · · · · · · · · · · · · · ·					
	Date		<u>1</u>	: (************************************				
COMMENT	· Circi a statistica						total 🖡	337.05

Jandner Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

the second se	,		
SVastika Laboratories		INVOIC	
			· C
POR 1TO HH CUEDATEOREANNA HH RHREAND LAGE		NO.:	24021
		DATE:	
GSPLREgistration Number: R 100294743 SHIP TO:		PAGE:	01-09-91
-			1 of 1
Joutel Resources			
C7D Queenston Mine,Box 193 Kirkland Lake, Ontario P2N 3H7	Same		

Description -10Kdaisconant Dr Cr. 3 3-jGST @ 7%, Excluded 1 Swaarling July 1668 - 28-89		AMOUNT R	WAR UNIT PRICE CAR			MSDEDCHIP					S. ITEM NO (12)
Description -1022disschant Dr Cr. 3 3-1657 @ 7%, Excluded Iwasilihuden 1668 28-82	.00	30.	30.000	3					1	1	J3225
Swaaitikustel 1668 28.82	.00- .89]	Cr. 3	Dr	connt	10%dis		ption	Descri	
	.07	• 1				/ /* 9	1001 9				
				9	28.8	-S	!	Lel	ias Libra	Sau	
			-				1	*****			
				• 			 	n an an redenante a desarra en pério S			•
								unia ia ay ing ang ga ga di Pi In-di-gadi (g. 1	\$*\$*\$**\$**\$ \$*** ** marks \$* \$**		
water a two waters and a state and a				e - y a realither Hollowich and and a		· · · · · · · · · · · · · · · · · · ·	1	ا در به موسود مید میشود.			•
Uate Chy Chy Chy Chy				n an an an an an ann ann ann an an La 1861a 117 La nann an ann an ann ann ann ann an an		by Gia	1.	Ń	د دېسېورد و خانډر بنو څخ کې د	Date	
COMMENTS							VI	X		Chi A	COMMENTS:
Net 30 Days	.89	28.					1			ays	Net 30 1
							Arrian				

SIGNED :

•

•

APPENDIX II

RESULTS OF MAXI-PROBE E.M. SURVEY FOR JOUTEL RESOURCES INC BEN NEVIS, ONTARIO BY GEOPROBE LTD

GEOPROBE[®] LIMITED

3045 UNIVERSAL DRIVE MISSISSAUGA (TORONTO), ONTARIO CANADA, L4X 2E2

TELEPHONE: (416) 238-8546 TELEX: 06-967583 IBC-TOR FAX: (416) 238-8547

VIA COURIER

October 9, 1990

Mr. W.J. (Bill) McGuinty Exploration Manager The Queenston Group 4 Al Wende Avenue Kirkland Lake, Ontario P2N 3H7

RE: MAXI-PROBE E.M. RESULT on Line 150+00 E in Ben Nevis Twp, Ont.

Dear Mr. McGuinty:

Enclosed are the results of one line of MAXI-PROBE survey on your property in Ben Nevis, performed using a Tx-Rx separation of 400 metres. The results are shown in two E.M. profiles and in one depth-section.

The Plot No. 1 shows Tilt-angle profiles of frequencies from 58.6 KHz to 220 Hz. Abundance of the high frequency anomalies indicates many pockets of small sulphide zones at near surface. These have been marked with open circles. A good low frequency anomaly usually represents a good conductor. Absence of any low frequency anomaly on this line indicates that there is no highly conductive sulphide zones present down to 600 metres. The most useful frequency for this ground is 7.32 KHz which has screened through the smaller near surface pockets of sulphides to look deeper. An anomaly at this frequency usually represents a medium to poor conductor, such as a shear-zone, alterationzone and mainly Zn-mineralization. Four anomalies are obtained at this frequency at 1000 S, 725 S, 300 S & 25 S, from south to north end of the line. The Plot No. 2 shows only the middle to low frequency E.M. profiles from 10.7 KHz to 220 Hz, at an enlarged tilt-angle scale. This clearly shows the four main conductor responses. (It is rather surprising that no anomalies were obtained in an UTEM survey!) The low frequency data is noisy due to lack of good conductors. The anomalies on this line have been rated as targets from good to poor:

..../2

	GEOPA	0BE
2/		
Anomaly at	Symbol	Target
1000 S		Good
300 S	\mathbf{O}	Medium
25S	·	Fair
725 S	$\mathbf{\Phi}$	Poor

The depth-section (Plot No. 3) shows the apparent resistivities from a depth of 100 metres down to 600 metres. The four conductors outlined are steeply dipping, except for the conductor at 25 S which dips more gently towards south at a depth starting around 200 metre. The conductor at 300 S dips steeply north. Other conductors dip steeply south.

The top of the conductor at 1000 S is deep which is around 300 metres and it extends down to about 600 metres. The conductor at 300 S has the best conductivity around 200 - 250 metres and the conductivity continues at least down to 400 metres. The conductor at 25 S is a much smaller body.

It is recommended that adjacent lines are to be surveyed to select the best conductor which has continuity at more than one line for drilling.

Yours sincerely

GEOPROBE LIMITED

Mninal K. Ghosh, Ph.D., P. Eng. President

MKG:mm Encl.

cc: Mr. Charles Page Vice President

Electromagnetic (E.M.) Survey with MAXI-PROBE EMR-16* (MK-III) (Frequency Range: 1-60,000 Hz) (128 Discrete Frequencies)

Receiver

Transmitter

DEPTH-DETERMINATION by E.M. Sounding CONDUCTOR-DETECTION by E.M. Profiling

PURPOSE:

MAXI-PROBE EMR-16 system may be used for DEPTH-DETERMINATION by performing E.M. sounding and for CONDUCTOR-DETECTION by performing E.M. profiling. These result in geological mapping from measurements made on the ground surface.

MAXI-PROBE EMR-16 system determines the electrical resistivity of the ground at different depths inductively using different frequencies, it thereby reveals the electrical resistivity section of the ground, which corresponds to the geological section. Prior knowledge of the resistivities of various layers in the ground is not necessary for interpreting MAXI-PROBE measurements. E.M. sounding is performed using a fixed transmitter-receiver separation and changing the frequencies to obtain variable penetration. E.M. profiling is performed using either a fixed transmitter set-up and moving the receiver, or moving the transmitter-receiver array along a survey line.

- * Canadian Patent No. 993,512
- * U.S. Patent No. 3,936,728
- * Australian Patent No. 498,816
- * Patents pending in other countries

GEOPROBE* 1640 Bonhill Road Suite: #10 & #11 Mississauga (*Toronto*) Ontario, L5T 1C8, Canada

LIMITED Telephone: (416) 673-1527 Telex: 06-983639 MSGA

DESCRIPTION:

MAXI-PROBE EMR-16 system is a multi-channel ground elctro-magnetic (E.M.) system operating in the frequency range 1 Hz to 60,000 Hz. This innovative E.M. system consists of a portable transmitter and a partable receiver, without any physical cable connecting the two. Frequencies are selected by a 16-position

Wrse control switch, and an 8-position fine control switch. Coarse control selects frequencies separated by a factor of two. Fine control provides 8 frequencies in between two coarse control positions. In total, 16×8=128 frequencies may be obtained in this manner.

A large magnetic dipole moment is created at the transmitting station by sending a square wave current of up to 60 amperes into set of loops of cable placed on the ground. A range of transmitter loop sizes are available from approximately 5 to 150 metres in diameter.

One to three transmitting loops may be connected in parallel to increase the dipole moment of the transmitting station to yield large depth penetration.

Proper choice of the transmitting loop is made according to the desired depth of penetration. Energy at each frequency scans a different depth in the ground. Any discontinuity in the uniformity of the ground is reflected in the measurements. This allows accurate determination of the electrical conductivities, depths and sizes of various material present in the ground.

DEPTH OF PENETRATION:

A maximum depth of penetration equal to 2000 metres may be achieved using this system in favourable geological conditions. The receiver may be located at a maximum distance of 2000 metres from the transmitting loop, thereby allowing the greatest depth of penetration. However, depths as small as 20 metres may also be investigated. Thick conductive overburden may be penetrated for mineral exploration. Both high and low resistivity very thin layers such as coal, lignite, sulphide, etc. may be mapped.

MEASUREMENT PARAMETERS:

The parameters that may be measured using this system are:

- 1) Inphase and quadrature components of the vertical magnetic field,
- 2) Inphase and quadrature components of the horizontal magnetic field,
- 3) Inphase and quadrature components of the orthogonal electrical field (optional). The measurement of phase is normally with respect to a crystal-clock in the receiver. However, using a highly stable crystal-clock (optional), the phase with respect to the transmitter current may also be

measured for both magnetic and electrical fields. From these measurements, other following quantities may be calculated:

a) Amplitude and phase of vertical magnetic field,

- b) Amplitude and phase of horizontal magnetic field,
- c) Amplitude and phase of orthogonal electric field,
- d) Tilt angle and ellipticity,
- e) Ratio and phase difference between any two vector fields.

DATA PROCESSING:

The data is processed using a ruggedised field computer and plotted on a digital plotter in the form of "depth" vs. "apparent resistivity" for each frequency. This proprietary data processing technique and computer programs have been developed by GEOPROBE LTD. especially for MAXI-PROBE system. Plots of different stations may be stacked side by side to produce a vertical section showing true depth of interfaces. Any discontinuity in the "apparent resistivity" curve indicates a different medium in the ground. These different media may be correlated from station to station to reveal the structure. Thickness and electrical resistivities of different media can be determined. Faults are identified by station to station to station correlation of data.

ACCURACY:

A high degree of accuracy has been established in predicting depths. Depth estimates were confirmed by drilling to show an accuracy of 95% and better. Thin steeply dipping sulphide conductors have been mapped down to 1300 meters in precambrian shield areas with very high accuracy.

CONCLUSIONS:

Previous systems used in geophysics have been limited to only average readings and qualitative results. MAXI-PROBE EMR-16 system reveals the entire structure of the ground from the surface down to the maximum depth of penetration. Test results obtained using this system have been confirmed by drilling. This system is very useful for deep exploration work in areas of conductive cover. The equipment is portable, and a crew of only four can perform field operations. Setting-up of the stations and making measurements at 40 frequencies takes only about 15 minutes. This system has been used both for reconnaissance surveys in virgin areas and for detailed surveys around existing mines to find continuity of mineralisation and to detect new mineralisation.

MAXI-PROBE EMR-16 (MK-III) **Equipment Specifications**

1. GE Frequency Range : 1-60,000 Hertz. Number of Frequencies : 128 16 Coarse selection x 8 Fine Selection. Consecutive frequencies are 12.5% apart. c) Ground Parameter Measured : Apparent-resistivity and true-depth at each frequency. True depth estimate Accuracy 95% or better. **Detection Capability** 3% change in apparent resistivity. Depth scan by frequency : At 128 depth points at a maximum 128 frequencies. Depth penetration 20 meters to 2000 meters. Distance between transmitter : Maximum 2000 meters. & receiver Minimum 100 meters. Set up time : 5 minutes for shallow depth 15 minutes for very deep. **Measurement Time** : 5 minutes per station for shallow depth. 30 minutes per station for very deep. k) RUGGEDISED FIELD An integral part for MAXI-**COMPUTER & PLOTTER** PROBE survey operation, **SYSTEM** specifications in a separate sheet. Portability : Transmitter, Receiver and field accessories are provided with back pack so that these can be carried on back to any place including hilly area where a vehicle cannot go. m) Transmitter-Receiver : There is no cable connection remote operation between the transmitter and receiver stations. These stations are independent of each other. Transmitter & receiver operators communicate by portable walkie-talkies (not included with MAXI-PROBE system). 2. TRANSMITTER: a) Power : The power requirement for transmitter varies from 40V to 60V D.C. depending on shallow & deep depth investigation. This power source is 2.5 KW portable motor generators on back pack. This type of motor generator system is specially designed for the MAXI-PROBE transmitter to control and to stabilize the transmitter currents for very low and very high frequencies of operation. This motor generator system is also specially designed with high efficiency, high speed and low weight engine so that the total weight is about 34 Kg. for the sake of portability. The low weight together with our specially designed frame and back pack will enable the motor generator to be carried by a person even on hilly areas where a vehicle cannot go. The transmitter can be operated with one or two 2.5 KW motor generators. The trans-

mitter has a capacity of hand-

ling a maximum power up to 5 KW for investigation in dif-

ficult geological areas. This

5 KW power is obtained by

connecting two portable

a) b)

d)

e)

Ð

Q)

h)

i)

i)

Ð

generators in parrallel each of power 2.5 KW to the transmitter console. This way we have achieved a maximum of 5 KW power keeping the system portable on back pack. : 1 - 60,000 Hertz. Frequency Range ь) Wave Form Square wave. c) Transmitter Loops: The loops for MAXI-PROBE d) System are as follows: LOOPS MEDIUM SUPER SMALL **ULTRA** Diameter (in meters) 5 10 50 150 1 2 3 3 No. of Loops No. of Turns/Loop 8 8 3 1 Current : Maximum 60 Amps. e) Transmitter Console Approximate size of the trans-£ mitter console is 60 CM x 45 CM x 30 CM. This is portable and attached to a back pack for easy carrying. Approximate weight is 25 Kg. g) Maximum Dipole Moment : 1.5 x 105 AMP. M2. 3. GENERATOR: : 40 - 60 Volts D.C. Output a) Power : 2.5 KW Ы) Maximum Current : 90 Amps c) **RPM** 3600 r.p.m. d) • Phase : 3 Phase e) **Special Circuit** Ð Special circuitry for regulation to feed power to transmitter operating from very low to very high frequencies. g) Back pack : Frame exclusively designed to be carried on back pack. h) Weight : 34 Kg. 4. RECEIVER: Input Power : 18 V, D.C. a) Power source is a portable back pack of light weight large capacity rechargeable Gel Cell batteries guaranteed for one full day of field operation. These can be used up to 3000 recharge cycles if used properly. b) Reading 4 channel readings Vertical & horizontal magnetic Measurements c) field vectors in two channels simultaneously. **Optional Measurements** Electric field vector. Phase d) with respect to transmitter current may be measured using a highly stable crystal clock. e) Noise Rejection Filters (60 Hz, 180 Hz) OR (50 Hz, 150 Hz) 1-VLF Station tunable filter. Low Pass & High Pass filters. Special filter for below 10 Hz operation. : In the order of 10⁻⁹ ampere/ f) Field Strength Sensitivity metre. Integration Time 1/4, 1, 4, 16, 64 seconds g) Receiver console has been Receiver Console: h) improved with fibreglass casing for durability. The approximate

5. RECEIVER ANTENNA:

: 4 ferrite core coils in the shape of a frame housed inside a fibreglass ball with foam packing. Circular ring type tripod, levelling by a bubble.

size is 50 CM x 40 CM x 22 CM.

a back pack for easy carrying.

Weight is about 15 Kg. This

is portable and attached to

Mississauga (Toronto) Ontario, L5T 1C8, Canada Telex: 06-983639 MSGA

APPENDIX III

REPORT ON BORE HOLE PULSE E.M. OF HOLES CNG-90-2 AND CNG-90-6 CANAGAU PROJECT

CRONE GEOPHYSICS & EXPLORATION LTD VAL D'OR GEOPHYSIQUE LTEE BOREHOLE PEM

CRONE GEOPHYSICS & EXPLORATION LTD VAL D'OR GEOPHYSIQUE LTEE BOREHOLE PEM

Client	:	JOUTEL-RESOURCES		Hole	:	CNG-90-6
Grid	:	CANAGAU	- , -	Тя Боор	:	2
Time Base	;	16.66 ms		Date	:	Eeb 9, 1991
Ramp Time	:	1.50 ms		File	:	CNG906T2.PEM
Scale	:	1:1000				

AXIAL COMPONENT dBa/dt nanoTesla/sec - 20 channels and PP

.

ŧ

APPENDIX IV

DIAMOND DRILL LOGS AND ASSAYS DRILL HOLES CNG-90-1 TO CNG-90-6 INCLUSIVE

			QUEENSTON GROUP DIAMOND DRILL REPORT	Page 1 of 9
				PROJECT: Canagau Mountain Lake
COMMENCED:	January	17,1990	PROPERTY: Canagau	DDH NO: CNG90-1
FINISHED:	January	22, 1990	TOWNSHIP: Ben Nevis	ELEV:
CORE SIZE:	BQ 1 37	'a"	PROVINCE/NTS: Ontario	AZIM: 337 deg
TOTAL DEPT	H: 997 f	t.	LOCATION:	DIP: Collar
CONTRACTOR	: Rayjo D	rilling	(re Grid): 56 metres Azim 157 deg	
LOGGED BY:	W. J. M	1cGuinty	from 2+50E 8+318 (re Claim);	750' -32 deg 997' -31 deg
UNITS:	Faet	n, waa laan ka		nen par dan dan merunakan dar dan dan dan dan dan dan semunah gipi dan merunakan semunakan perinakan semunakan
FROM	TO	CORE LENGTH		
0	16.0	16.0	Casing in swampy overburd	en
16.0	16.5	. 5	<u>Boulder cuttings</u> from bas	al till.
16.5	51.5	35.0	Amygdaloidal basalt - wea amygdules are round to e preferred orientation, m sericitized pillows 25.0, 37.1, 44.0 pillow 20.0-21.2 flow breccia 27.0-29.0 disseminated p 38.0-48.0 predominantly glass with some section some disseminated pyrit 42.0 48.0 small banded white wide anastomosing bands	lliptical with no oderately to weakly selvages syrite sericite altered s of pillowed basalt, e @ 38.0-39.0, 40.0- quartz vein, 1/2"
51.5	55.1	3.6	<u>Cherty dacite</u> - pale buff fractured, fine sericite strongest and foliated m disseminated euhedral py -upper and lower contact degrees and 60 deg to C. contact effects apparent Fracturing occurs throug and 60 degree sets.	Mineralization mear fractures, 3% mite s are sharp 30 A. respectively, no

55.1	75.3	20.2	<pre>Amygdaloidal basalt 57.0-61.0 fine grained, massive, grey white colour, few amygdules 1-2% dark pyrite in blebs 56.5-57.5, 68.7-69.6 thin chloritic glass horizons 61.0-65.9 glassy flow breccia, rare pyrite 65.9-75.3 massive amygdaloidal basalt, clear quartz filled amygdules are jointed and mineralized by white quartz pyrite and honey colored sphalerite, 1-2% pyrite disseminated throughout section.</pre>
75.3	77.3	2.0	<u>Cherty dacite breccia</u> , irregular upper contact, matrix is mainly the result of chloritization of fracture planes fragments are elliptical, buff colored, pyrite mineralization to 5% in irregular fractures sub parallel to C.A. and in brecciated pods.
77.3	78.6	1.3	<u>Amygdaloidal basalt,</u> strongly sericitized with 5-10% disseminated pyrite, upper contact irregular.
78.6	80.7	2.1 ·	<pre>Cherty dacite upper contact sharp at 50 deg to C.A. 78.6-79.0 brecciated with pyrite, galena sphalerite and box work in guartz matrix pyrite occurs as jointed and locally rotated "pull away" bands - galena-quartz-sphalerite is secondary 79.0-80.7 flow banded cherty dacite 2-3% pyrite in groundmass dacite is fine grained, buff colour.</pre>
80.7	92.4	31.7	Amygdaloidal basalt, strong sericite alteration, 10% pyrite, upper contact is a 3 inch breccia band with cherty matrix and sericitized basalt fragments 83.7, 84.2, 87.3, 88.6 - 1/2" wide, jointed "pull away" pyrite bands with quartz fill bands vary from 45 deg to C.A. to irregular sub-parallel to C.A. -thinner bands with less secondary fill occur throughout section.
92.4	94.2	1.8	<u>Cherty dacite</u> - 2-3% fracture controlled pyrite, sharp upper contact 30 deg to C.A. 92.5 1/4" pyrite filled fracture with minor galena.

.

	106.1	1.9	Amygdaloidal basalt very strong sericite alteration throughout, amygdules have zonation of quartz fill jointed sulphide bands common 95.0- 95.9 40% pyrite 96.0-106.0 5-10% pyrite 97.3 cherty dacite fragment? 99.6 1/4" quartz vein with some pyrite tetrahedrite and sphalerite
106.1	124.9	18.8	<u>Charty dacite</u> , strongly sericitized foliated at 45 deg to C.A., upper contact at 20 deg to C.A. 106.1-107.5 strong silicification apparently fracture controlled - some box work after calcite 106.1-106.4 30% pyrite, 2% galena
		· · · · · · · · · · · · · · · · · · ·	<pre>107.5-109.0 strongly banded and fractured zone with sericitic alteration and knots of pyrite to 1/4" diameter 108.0 galena in fracture 109.0 quartz veinlet with galena and box work 112.6 quartz veinlets - sharp contacts 45 deg to C.A., some sphalerite 112.9-113.1 fracture controlled grey sphalerite mineralization, less than 2% 120.1 1/8" quartz veinlet, honey sphalerite, some galena 121.7 dark coloured irregular band with 1 inch long pod of honey coloured sphalerite 121.7-124.2 brecciated dacite with rusty brown dolomitic alteration - likely solution type breccia 124.4 rusty sericitic fracture</pre>
			124.4-124.9 massive jointed pyrite band, some box work, upper contact irregular, lower contact 30 deg to C.A.
124.9	209.1	84.2	Sericitic dacite massive, grey-buff colour, fine grained, 2-3% disseminated fine grained pyrite (euhedral), joint sets at 30 deg and 45 deg to C.A. 134.0-150.0 "glassy" chloritic alteration in irregular fractures throughout section crosscut by later fracturing 150.0-180.0 darker coloured section similar to 134.0-150.0 160.0 irregular banded quartz vein no related sulphide

			<pre>173.0-175.0, 180.0-181.0, 182.0-184.0 - broken core 183.5 2" quartz vein 180.0-209.1 pale buff coloured dacite as at 134.0-150.0 with dark chloritized fractures 3% disseminated pyrite 185.4 corroded quartz calcite vein 186.2-186.6 calcite filled crackle breccia 189.4-192.0 broken core multiple fractures 192.0-192.8 silicified zone, banded lower contact 30 deg to C.A., wispy chlorite, possibly rhyolitic tuff 192.9 vuggy pink calcite veinlets less than 1/4 inch wide 194.0-197.2 massive white quartz veins well fractured 196.5-205.0 broken core 204.0-205.0 small quartz veins 1/4" to 1/2" two quartz phases white after clear 205.5-206.0 white quartz vein 207.9-208.4 quartz vein</pre>
209.1	209.5	. 4	<u>White guartz vein upper contact 45 deg to C.A.</u>
209.5	210.1	. 6	<u>Fault zone</u> - rubbly fault gouge quartz pebbles in grey-black matrix - upper contact 45 deg to C.A., lower contact not defined
210.1	493.4	283.2	Amygdaloidal basalt weakly altered pillow selvages are common but not pronounced, more massive sections have irregular (glassy) chloritic flow tops, glassy areas are often sericitized. Amygdules are quartz filled some with irregular cores of pyrite and chalcopyrite minor thin quartz veins at 50 deg to C.A. are crosscut by later vein sets at 10 deg and 45 deg to C.A. 248.5-249.3 strongly sericitized flow, yellow- brown colour, amygdules washed out but still visible 249.0 oval quartz blebs - vesicles? with small patches of sphalerite 249.3-252.0 massive white quartz vein, well fractured, upper contact 20 deg to C.A., small blebs cpy near upper contact, lower contact 25 deg to C.A. 252.0-420.0 concentric cooling fractures with concentrically aligned amygdules occur over entire section 254.0 white/clear quartz vein with minor chalcopyrite

258.4 1/2" wide banded guartz sericite vein 25 deg to C.A. 267.7-269.5 fracture related quartz-sericite -pyrite mineralization, sub-parallel to C.A., some local quartz filled breccia 280.5 irregular white guartz vein, some ovrite 298.6 small spar calcite vein 308.6-308.8 massive white quartz vein 281.0-283.0, 308.8-313.0, 332.0-336.0, blocky flow breccia with sinter pods and 2 quartz filled amygdules, some sphalerite, ' pyrite found with guartz 307.0-345.0 general increase in sulphide with bands or disseminations of pyrite, 2% throughout 323.0-323.5 low angle flow selvage vein, 10% pyrite interbanded with guartz 345.0-350.8 flow breccia 350.8-442.0 mainly pillowed basalt with strong selvages, localized flow breccias and interflow breccias, amygdules to 1 inch diameter 359.5 jointed pyrite band flooded by calcite 360.0-360.3 fault - volcanic rubble coated with sulphide in sparry calcite matrix 361.9, 362.7, 376.1-376.7 vuggy pink calcite veining 382.0-395.0 increased pyrite mineralization in and rimming amygdules, stringers preferentially formed along cooling fractures - some sphalerite in amygdules 409.5-409.8 guartz filled fault with calcite on contacts 25 deg to C.A. 412.5 - 1/2" pyrite-sphalerite band 45 deg to C.A. 418.8 - 1/4" chalcopyrite-pyrite-quartzdolomite vein, 45 deg to C.A. 419.2-419.3 chalcopyrite-quartz-calcite vein 10% cpy 50 deg to C.A. 441.4]" guartz vein fractured and filled with pink calcite, 5% pyrite in thin bands 442.0-487.0 chloritized section imparting a classy pseudo flow breccia texture, chosted cooling fractures and amygdules locally visible, chloritization occurs in rounded or angular shaped zones 40% of core, 2% pyrite throughout

493.4

499.4

6.0

<u>Sericitic dacite</u>, massive, fine grained grey colour, gradational or incipient upper contact with assimilated mafic material at

30 deg to C.A., sharp lower contact with xenolith. some black coloured fractures rare, dispersed spherulitic pyrite, some calcite veining with pyrite stringers and hlaha 501.9 499.4 2.5Chloritized amygdaloidal basalt Dacite as at 493.4-499.4 7.9 501.9 509.8 505.3-505.5 semi massive pyrite band 35-40% py, 45 deg to C.A.506.3, 506.9 guartz-calcite-pyrite veins "stringer" vein type where guartz + calcite post dates pyrite, 10% pyrite 511.7 1.9 509.8 Chloritized basalt 5% pyrite in patchy blebs 511.7 514.3 2.6<u>Massive grey basaltic tuff</u>, upper contact 45 deg to C.A.; sharp thin black bands parallel to contact may be cooling features, lower contact 45 deg to C.A. is weakly incipient 514.3 517.6 3.3 Chloritic amygdaloidal basalt 517.3-517.5 irregular quartz carbonate vein with 10% pyrite 517.6 1.1 Massive grey basaltic tuff with 5% fine 518.7 grained chalcopyrite - upper and lower contacts 40 deg to C.A. 518.7 5.4 Massive chloritized amygdaloidal basalt as at 570.1 442.0-487.0, carbonate present in stringers and amygdules 519.4-519.6 guartz-pink calcite vein 520.0-527.0 several barren 1/2" white calcite veinlets 45 deg to C.A. 548.0 - 1" band semi massive pyrite about thin calcite vein, no preference to host or vein, 10 deg to C.A. irregular 540.0-560.0 fine grained chalcopyrite keyed to thin calcite stringers or blebs through out section 560.0-570.1 flow breccia? irregular shaped fragments dispersed throughout core with long axes 45-90 deg to C.A. 569.5-570.0 strong carbonate reaction contact effect? 5.3 Massive grey basaltic tuff, fine grained, 570 1 575.4 spherulitic and vesicular - spherules are chloritic and mineralized with pyrite,

-6-

several wispy chlorite filled fractures

575	587.6	12.2	<u>"Banded hyaloclastite"</u> irregular bands or blebs of pale sericitic volcanic - possibly dacitic, set in fine grained chloritic glassy groundmass. Dacitic fragments are often "paired" or nested with chlorite between indicating dacitic material was more viscous than chloritic matrix
587.6	592.5	4.9	<u>Massive grey basaltic tuff</u> - spherulitic
592.5	640.7	48.2	Weakly chloritized amygdaloidal basalt flow breccias, some "clasts" of dacitic material, trace disseminated chalcopyrite locally disseminated pyrite, less than 1% throughout
640.7	648.0	7.3	Massive grey basaltic tuff upper contact 10-15 deg to C.A., lower contact irregular 643.5-643.8 banded quartz carbonate vein minor pyrite, some quartz sericite fragments 647.0-648.0 sulphide enriched zone - host is well altered with quartz sericite, brecciated quartz vein at core 45 deg to C.A., vein is fractured and recemented with grey quartz
648.0	715.9	67.9	<u>"Banded hyaloclastite"</u> as at 575.4-587.6 local pyrite enrichment
715.9	717.9	2.0	Amygdaloidal basalt
717.9	724.6	6.7	<u>Massive sericitic dacite?</u> greenish colour chloritic fractures with some disseminated pyrite
724.6	727.9	3.3	Weakly chloritic amygdaloidal basalt
727.9	855.3	127.4	<u>Massive grey basaltic tuff</u> , fine grained, chloritized spherules, vesicular, pervasive general carbonate alteration from 757.0-805.0 727.9-732.6 massive amorphous alteration greenish sericitic tinge 732.6-733.0 irregular quartz calcite vein, 30 deg to C.A. 733-740.5 dark green chloritic section with amygdules(?) to one inch, weakly crenulated chlorite sericite wisps 30-40 deg to C.A., pervasive carbonate alteration, wispy sulphide in more banded sections

			<pre>734.0, 740.0-740.5 - 1/4-1/2 pyrite band, 50- 55 deg to C.A. 738.0 clay seam 1/8" wide 30 deg to C.A. 769.0-770.0 weak flow breccia? 800.0-817.0 flow top zone? increased quartz- sericite-chlorite, carbonate absent 800.3 pods of pyrite in irregular space filling with dolomite 805.2 thin calcite vein with peripheral pyrite stringers 807.0-809.5 cooling fractures 809.5-817.0 mainly brecciated chloritic material with locally sericitized bands 809.9-810.1, 810.7-810.8, 813.7-814.0,- semi massive pyrite calcite "stringer veins" 819.0-855.3 massive spherulitic tuff, some calcite veining 1/4" wide - 45 deg to C.A.</pre>
855.3	965.5	110.2	<pre>Amyqdaloidal basaltic flow - mainly pillows, pillow breccia and flow top breccia - strongly amygdaloidal, 25-30% of core, 1/3 to 1/2 inch diameter, small interbeds of grey basaltic tuff occur locally as do interflow sedimentary type deposits of quartz sericite altered glass material, concentric cooling fractures occur often with rapid orientation changes, disseminated bleby pyrite occurs throughout section 907.0-908.3 2-3% pyrite related to carbonate stringers 908.3-908.7 quartz-carbonate-sulphide stringer vein, semi massive pyrite (25%)-sphalerite (5%)-galena (2%)-chalcopyrite (2%)- arsenopyrite (minor) 919.0 blebs apple green sericite</pre>
965.S	966.5	1.0	Fault zone 40 deg to C.A. upper contact veined with pyrite-carbonate-sericite 965.6 1/2 inch sulphide band 965.6-965.9 banded quartz-chlorite-carbonate, minor pyrite 965.9-966.1 clay-quartz cemented fault gouge with small acicular fragments, matrix supported 966.1-966.5 brittle gouge
966.5	973.2	6.7	<u>Massive grey basaltic tuff?</u> sericitized and weakly banded, defined by thin dark chloritic bands at 30 deg to C.A. 2-3% disseminated pyrite and blebs to 1/2" diameter

23.8

Massive amygdaloidal basalt, grey colour, carbonate altered 990.0 - pillow selvage? 982.6 pyrite filled joints less than 1/16" wide 55 deg to C.A. 991.0 1/4" pyrite vein 55 deg to C.A.

977.0

END OF HOLE

	WHOLE ROCK CHIP SAMPLE LOCATION										
\bullet	Hole CN6	i 90-1									
72213	(W-1) Altered Amygdaloidal basalt		67.6, 70.5, 84.6								
72214	(W-2) Cherty dacite	54.3, 81.2, 120.5	91.7, 111.3, 117.2,								
72215	(W-3) Altered dacite	127.0, 132.0, 156.7, 164.5,	137.4, 144.0, 147.5, 170.6								
72216	(W-4) Unaltered Amyghaloidal basalt	290.8, 301.2,	256.3, 265.2, 273.0, 307.3, 317.0, 336.0, 359.2, 364.6, 369.4, 408.0, 421.5								
72217	(W-5) chloritized basalt		484.0, 521.5, 525.5, 538.4, 551.0, 558.2,								
72218	(W-6) Banded hyaloclastite		654.5, 658.8, 663.0, 687.5, 695.2, 700.0,								
72219	(W-7) Massive green-grey tuff		766.2, 772.7, 775.0, 793.2, 818.4, 824.1,								

QUEENSTON GROUP DIAMOND DRILL REPORT Page 1 of 9

COMMENCED:	PROPERTY: Canagau	PROJECT: Canagau Mountain Lake Opt. DDH NO: CNG90-2
FINISHED:	TOWNSHIP: Ben Nevis	ELEV:
CORE SIZE: BQ 1 3/8"	PROVINCE/NTS: Ontario	AZIM: 053 deg
TOTAL DEPTH: 1008 ft.	LOCATION:	DIP: 0 -51 deg
CONTRACTOR: Rayjo Drilling	(re Grid): Ł 1+00 W 0+548	250 - 43 deg 500 - 38 deg
LOGGED BY: W. J. McGuinty	(re Claim):	750 - 35 deg

UNITS:	Feet	an alle file file base post prot reading and	
FROM	TO	CORE LENGTH	
0	18.0	18.0	Casing in Overburden
18.0	33.0	15.0	<u>Sericitized amyodaloidal basalt</u> , coarse amyodules to 3/4", sericite concentrated near amyodule boundaries, amyodule banding @ 45 deg. to C.A.
33.0	33.5	. 5	<u>Banded interflow sediment</u> grey fine grained cross-bedded or brecciated -1-2% disseminated pyrite.
33.5	41.7	8.2	<u>Amygdaloidal basalt</u> as at 18-33, amygdules range from less than 1/16 to 1/4" and are less sericitic, upper contact irregular 34.5 - 35.2 selvage or flow contact zone with increased silica flooding, flow banding (amyg) varies quickly over short distances.
41.7	57.1	15.4	<u>Massive weakly banded tuff</u> , grey colour, fine grained, weakly vesicular, fine, angular dark green chloritic minerals @ 5% of core, weak banding at 30 deg. to C. A. -upper contact sharp with 1/2" chloritic band @ 50 deg. to C. A.
57.1	77.6	20.5	Amyodaloidal basalt, amyodules increasing in size and number down hole to 58.5 57.1-63.6 weakly sericitic 63.6-73.0 very coarse amyodules and aggre- gate amyodaloidal masses in quartz sericite- matrix, some pyrite in amyodules and sericitic edges.

77.6	124.9	47.3	 Massive grey tuff similar to 41.7-57.1, upper contact defined by thin irregular chlorite band @ 30 deg. to C. A. -upper section well banded at 45 deg. to C.A. and massive to 84.9 84.9-90.0 moderate to strong chlorite-sericite mineralization with some attendant quartz and pyrite occurring preferentially along fractures 86.4-88.6 breccia zone with quartz flooding and strong sericite mineralization 90.0-93.3 chloritic lapilli, 1/4" and small amygdules 93.3-93.7 brecciated quartz-ankerite? vein some boxwork at upper contact, no visible sulphides, sharp contacts at 45 deg. to C.A. 93.7-117.0 massive grey locally amygdaloidal tuff 107.0-109.0 wispy fracture controlled sericite alteration, weak pyrite mineralization parallel to banded quartz veining @ 15 deg. to C.A. 117.0-122.6 well fractured tuff with quartz-calcite fill, pyrite-galena-aspy mineral-ization, fractures are irregular, sub-parallel to C.A.
124.9	333.0	8.1	Flow top breccia in basalt with disrupted stringer type mineralization consisting of brecciated, distended pyrite bands interstitially filled with quartz ankerite? and galena 2-5% sulphide overall 128.6-129.2 thin shear, 25 deg. to C.A. 10% brecciated pyrite 129.2-133.0 increased chlorite alteration with 3-5% disseminated euhedral pyrite.
133.0	149.8	16.8	<u>Pillowed amygdaloidal basalt</u> sericitic alteration and pyrite-sphalerite-galena? filled amygdule and amygdaloidal aggregates from upper contact (top south indicated) to 147.0, numerous selvage zones with 3-5% pyrite-galena-sphalerite.
149.8	260.6	110.8	Massive weakly amygdaloidal tuff 149.8-200.0 weak pervasive sericitization and thin irregular quartz-calcite filled fracturing, amygdules are zoned with diffuse contacts 200.0-231.7 massive tuff with weak sericit- ization and local sulphide aggregates less than 1 inch width.

•			231.7-260.6 chloritized zone, fractures and amygdules are preferentially altered, core is generally dark green-grey in colour pyrite is found in stringers, aggregates and in quartz pyrite stringers, 1-2% overall, locally 5% over 6" widths 238.5-238.8 guartz-chlorite-arsenopyrite- pyrite-chalcopyrite vein 10% sulphide 257.0-260.6 increased pyrite mineral- ization in quartz-carbonate haloed stringers, weak bands and patchy aggregates some attendant aspy at 578.0-578.4, lower contact sharp and foliated 40 deg. to C.A.
260.6	264.1	3.5	<u>Cherty breccia</u> with sulphides 260.6-262.7 siliceous grey-black breccia with dark chlorite bearing groundmass, no visible sulphides 262.7-264.1 massive sulphide, distended pull-away pyrite bands re-mineralized by quartz-arsenopyrite-galena-sphalerite- dolomite veins, host rock strongly chlor- itized, 35-40% sulphide.
264.1	271.3	7.2	<u>Altered tuff</u> - chloritization on irregular fractures and in amygdules, numerous sulphide stringers with distended pyrite and quartz-carbonate re-mineralization, thinner stringers with minor re-mineral- ization are chloritic, 5-8% sulphide 270.7-271.3 massive white quartz veins, 1/2" massive pyrite band on upper contact 25 deg. to C. A. lower contact area silicified and brecc- iated with thin brecciated band of pyrite.
271.3	273.3	2.0.	<u>Chloritic breccia</u> similar to 260.6-262.7 with fewer cherty fragments possibly extension of altered tuff?
273.3	285.0	11.7	<u>Rhyodacite?</u> porphyritic feldspar, possible flow banding at 30-40 deg. to C. A. 273.3-277.9 strongly sericitized green colour pervasive with thin sericite wisps 40 deg. to C.A. generally but with "folded" or warped zones 277.9-287.0 grey coloured porphyritic, soft possibly chloritized groundmass supporting harder, paler breccia fragments.

285	315.6	30.6	<u>Brecciated tuff?</u> strongly chloritic frag- ments in paler slightly harder groundmass - 3-5% disseminated and patchy pyrite not breccia specific - larger patches dis- tended and re-mineralized 285.0-292.5 massive tuff 292.5-305.7 brecciated tuff 305.7-315.6 massive tuff banded with chlorite-sericite bands at 35 deg. to C.A., upper contact 30 deg. to C.A.
315.6	325.8	10.2	<u>Porphyritic rhyodacite?</u> similar to 273.3- 285.0 moderately chloritized and sericitized in wispy bands 30-40 deg. to C.A. minor to trace pyrite.
325.8	370.0	44.2	Tuff agglomerate? tuff similar to 285.0-315.6, locally brecciated. Agglomerate consists mainly of greyish rounded fragments in a dark chloritic groundmass with strong chlorite-sericite wisps keyed to fragment boundaries at 35 deg. to C.A., brecciated areas may be massive flow breccia, sulphides 2-5% (pyrite) 325.8-338.0 agglomerate with small brecciated zones 338.0-342.9 lapilli tuff unit? finer grained rounded fragments, more felsic appearance 342.9-358.6 massive agglomerate, brecciated near upper contact 358.5-358.8 massive white quartz vein 30 deg. to C.A. 358.8-361.4 silicified agglomerate pervasive silicification with thin quartz veining mainly within fragments small quartz blebs mainly extension of veins in fragments into groundmass, bands of chlorite-sericite term inate quartz veins 349.4, 351.3 sulphide stringers re- mineralized with qtz-dol-aspy-cpy 361.4-370.0 tuff agglomerate, chloritic groundmass similar to 325.0-338.0 368.4-368.9 massive sulphide "vein" dis- tended pyrite-chalcopyrite stringer filled with quartz-carbonate-arsenopyrite-sphal- erite, 60% py 20% cpy, 5-10% other sulphides 369.5 thin drag-folded quartz veinlets 368.0-370.0 increased sulphide (py cpy) in host, 4-5%.

			1
379	373.0	3.0	<u>Sericitized and chloritized amygdaloidal</u> <u>tuff</u> (basalt?) upper contact 35 deg. to C.A. 372.8 thin vein, less than 1", 10% py in qtz- aspy-cpy matrix.
373.0	380.8	7.8	<u>Chloritic Tuff agglomerate</u> similar to 325.0-338.0 well veined with quartz-cpy-aspy in pyrite stringers, generally silicified.
380.8	385.7 •	4.9	Sericitized and chloritized amygdaloidal tuff as at 370.0-373.0 several distended pyrite stringers, quartz and other sulphides are rare in these veins.
385.7	453.3	67.6	 <u>Chloritic tuff-tuff agglomerate</u> as at 325.0-338.0 386.3-387.0 distorted stringer vein showing chloritized halo on non offset contacts. Offset is dextral and offset plane has quartz sulphide smear, cpy-aspy present within stringer vein, 20% sulphide. 387.0-418.0 numerous slightly re-mineralized sulphice stringers and disseminated pyrite throughout core, 5% overall. 415.4-415.6 re-mineralized stringer vein, 15% py in quartz-sericite matrix. 418.0-427.0 increased silicification and veining keyed to banded structure at 30 deg. to C.A., quartz filled joints occur in this area and are parallel to direction of banded structures , no associated sulphides 439.5-444.6 zone of silicification, pale buff colour associated with diffuse sulphide bands likely due to addition of quartz to sericitic bands 439.9-440.2, 441.5-442.0 and 442.7-443.2 sulphide bands show weak 30 deg. to C.A. orientation, 10-15% py 444.6-453.3 chloritic tuff locally brecc-iated.
453.3	456.6	3.3	<u>Massive fine grained weakly amyodaloidal tuff</u> upper contact occupied by small quartz breccia vein with minor pyrite.
456.6	412.9	16.3	<u>Porphyritic volcanic (rhyolite?) breccia,</u> strong sericite alteration quartz flooding, weak banding 40 deg. to C.A.

--5--

507.3	34.4	Amyodaloidal mafic tuff chloritized and sulphidized amyodules near upper contact (top?) for 1.5 feet, unit is similar to 77.6-124.9, mainly fine grained, massive, sericitic with interbands of coarse lapilli sized tuff, banding at 40 deg. to C.A. 482.5 thin sulphide-galena band, less than 1/4 inch.
510.2	2.9	<u>Chloritic tuff agglomerate</u> with chloritic fragments in pale groundmass, upper contact is glassy and disrupted, rock is similar 285.0-315.0.
512.0	1.8	Thin massive rhyolite irregular upper contact silicified lower contact some sercitized fractures and thin sulphide stringer veins.
539.6	27.6	<u>Chloritic tuff</u> - tuff breccia disseminated and "stringer type" pyrite veins throughout core 2-3%, weak banding 30 deg. to C.A.
637.4	97.8	<u>Rhyolite-rhyodacite? tuff</u> , massive to banded fine grained to aphanitic, locally porphyritic or lapilli bearing, lapilli are more chloritic than massive portions which are sericite altered, weak banding in evidence locally 35-40 deg. to C.A. usually associated with increased sericite -chlorite wisps, some agglomerate sized fragments visible from 615.0-637.4 -some weak zones of increased disseminated pyrite also associated to sericite-chlorite bands, less than 1% throughout core with small 2-3 inch lengths to 2% 636.6 thin quartz vein parallel to C.A. with euhedral galena.
703.2	65.8	Massive fine grained grey basaltic tuff similar to 77.6-124.9 upper contact 40 deg. to C.A. 637.6-640.0 weakly amygdaloidal, some with chlorite-pyrite cores 638.2, 638.6, 639.3, 651.4, 652.1-652.3 "stringer veins" jointed pyrite bands with quartz-carbonate-galena-sphalerite fill, base metal sulphides increase with higher quartz content 664.0-668.3 sulphide-alteration zone numerous sulphide stringers, pyrite filled
	510.2 532.0 539.6 637.4	510.2 2.9 512.0 1.8 539.6 27.6 637.4 97.8

-6-

by quartz-sphalerite with chlorite altered contacts and a general increase in sericite *mineralization* 674.0-692.0 numerous barren white guartzcalcite veinlets 1/16" to 1/2" width, possibly joint filling at 30, 45 and 50 deq. to C.A. 687.5-691.0 guartz calcite filled fracture sub-parallel to guartz vein numerous slivers of host tuff, some sericite and pyrite (less than 2%75.8 Rhyodacitic? tuff similar to 539,6-637,4, Generally darker and more chloritic than above, feldspar lapilli more defined 702.3 late fault, unconsolidated gouge with host rock fragments, 30 deg. to C.A., cutting banding of host near 90 deg. 736.0-736.5 rhyolite bomb 746.5-747.5 irregular guartz-carbonate filled fracture parallel to C.A., trace pyrite 715.0-724.0 several pyrite pods and stringer type veinlets - little apparent base metal sulphides (aspy-sph) and little quartz influx 748.7-747.9 1/2-1" stringer vein, irregular contacts, pyrite-arsenopyrite-sphaleritechalcopyrite-white quartz 747.5-764.0 increased chloritic content and more homogeneous unit. Lapilli are smaller and greenish rhyolitic material is mostly absent 764.0-766.5 massive fine grained pale rhyolitic unit contacts gradational 768.7 thin fault-upper contact brecciated 45 deg. to C.A. 768.0-775.0 numerous irregular fine calcite filled fractures 771.5-778.0 numerous thin stringer veins with weak guartz-basemetal sulphide content 776.9-777.6 old fault, host rock fragments in comminuted groundmass of similar material 40 deg. to C.A., well annealed. 26.8 Banded volcanic interbedded yellow-green sericitized massive rhyolite with interbands of darker tuffaceous material, banding at 35-40 deg to C.A., weak sulphide (py) development in darker areas.

798.6 stringer vein lower contact chloritized, pyrite and quartz.

-- 7---

779.0

703.3

779.0

805	827.7	21.9	Massive grey basaltic tuff fine grained weakly amygdaloidal similar to 77.6-124.9 805.8-807.3 sericitized contact zone 805.9 thin disseminated pyrite band, 10% pyrite.
827.7	879.6	51.9	 <u>Rhyolite?</u> massive variably altered volcanic weak banding implied in zones of stronger sericite alteration, small stringer veins with quartz throughout core, irrespective of degree of alteration 827.7-847.0 massive yellow -white rhyolite?, similar to yellow portions in 779.0-805.8, sulphide bearing fractures show sericitic haloes, ghosted amygdules or versicles present 847.0-865.0 massive greyish rhyolite? less sericitic than yellowish zones although texturlly similar 865.0-879.6 yellowish rhyolite as at 827.7-847.0
879.6	886.0	6.4	<u>Massive fine grained mafic tuff</u> weakly chloritic fracturing and weak sericite mineralization -quartz-calcite filled fracturing occurs throughout section parallel to C.A.
.0	921.5	35.5	Massive yellow rhyolite 910.0-914.0 amygdaloidal section greyish against host groundmass 914.0-921.5 siliceous section, irregular, wispy quartz rich interbands, some amygdules persist.
921.5	926.5	5.0	<u>Transitional contact</u> feldspar-crystal- lapilli in groundmass with chloritic material becoming dominant near 922.5 prevalent banding at 40 deg. to C.A.
926.5	931.5	5.0	<u>Grey basaltic tuff</u> similar to 77.6-124.9 well sericitized, massive, upper contact gradational marked by increased sericite, some amygdules locally have bleached haloes 926.5-928.3 some brecciation with py stringer veins.

931.5	944.0	12.5	<u>Rhyolitic lapilli tuff</u> similar to 539.6- 637.4 banding at 40 deg. to C.A. crystal lapilli and small fragments visible in intercalated bands of chloritic and non- chloritic rhyolitic material.
944.0	998.0	5.4	<u>Massive grey basaltic tuff</u> fine grained-upper contact gradational some feldspar crystal lapilli present locally, weak orientation of wispy foliation 45 deg. to C.A., little or no alteration visible, no sulphide stringer veins present.
998.0	1008.0	10.0	<u>Rhyolitic lapilli tuff</u> as at 931.5-944.0 gradational upper contact increasing sericite and chlorite alteration 1000.0 to 1008.0
1008.0			END OF HOLE

DIAMOND DRILL REPORT

ASSAY RESULTS

	Canagau : <u>Canaga</u> u	(Mountain Lake		DDH ND. CNG90-2 TOWNSHIF:Ben Nevis
FROM	TO	LENGTH	SAMPLE #	ASSAY RECHECK
85.0	90.Ŭ	5.0	1120	49.5*
90.0	95.0	5.0	1121	10
100.0	105.0	5.0	1122	Nil.
105.0	110.0	5.0	1123	Nil
116.0	121.0	5.0	1724	Ná 1
121.0	125.0	4.0	1125	N i 1
125.0	130.0	5.0	1126	N i L
130.0	133.5	3.5	1127	10
133.5	138.5	5.0	1128	Ni l
138.5	143.5	5.0	1129	Nil.
143.5	148.5	5.0	1130	Ni 1
157.0	162.0	5.0	1131	Nil
162.0	167.0	5.0	1132	Ni.1
212.0	217.0	5.0	1133	N i. 1
232.0	236.0	4 . O	1134	7
236.0	238.5	2.5	1135	Nil
238.5	239.0	0.5	1136	Nil
239.0	244.0	5.0	1137	Nil
244.0	249.0	5.0	1138	Ni 1
256.0	261.0	5.0	1139	7
261.0	266.0	5.0	1140	175*
266.0	270.0	4.0	1141	17
270.0	273.5	3.5	1142	N i 1
273.5	278.5	5.0	1143	N i l
285.0	290.0	5.0	1144	Ni 1
290.0	295.0	5.0	1145	Nil
305.0	310.0	5.0	1146	34
348.6	353.8	5.2	1147	21
353.8	358.6	4.8	1148	Nil
358.6	362.0	Θ.4	1149	8.5*

Notes and Reference (Assay Certificate): Swastika Labs OW-0227-RG1

average of two analyses (*) average of four " (**)

DJECT:			SSAY RESULTS	PAGE OF DDH NO. CNG90-2 TOWNSHIP:Ben Nevis
367.0	370.0	З.0	1150	372*
370.0	375.0	5.0	1151	96
375.0		5.0	1152	Nil
380.0	385.0	5.0	1153	Nil
385.0	390.0	5.0	1154	17
390.0	395.0	5.0	1155	14
395.0	400.0	5.0	1156	7
415.0	418.0	3.0	1157	Ní l
436.0	439.0	3.0	1158	10
439.0	444.0	5.O	1159	Nil
452.0	457.0	5.0	1160	Ni l
482.0	485.0	3.0	1161	N i. 1.
507.0	512.0	5.0	1162	Nil
512.0	517.0	5.0	1163	24
517.0	522.0	5.0	1165	Nil
527.0	532.0	5.0	1166	17
540.0	545.0	5.0	1167	Ni l
558.0	563.0	5.0	1168	21
563.0	568.0	5.0	1169	Nil
583.0	588.0	5.0	1170	N i. 3.
627.0	632.0	5.0	1171	Nil
632.0	637.0	5.0	1172	Nil
650.5	654.0	3.5	1173	34.5*
664.0	669.0	5.0	1174	N i. I.
687.0	692.0	5.0	1175	N i. 1.
702.0	707.0	5.0	1176	17
746.5	749.5	3.0	1177	N i 1
773.0	778.0	5.0	1178	14 j 1
778.0	783.0	5.0	1179	Nil
788.0	793.0	5.0	1180	Nil

Notes and Reference (Assay Certificate): Swastika Labs OW-0227-RG1

average of two analyses (*) average of four " (**)

DIAMOND DI DJECT: DPERTY	RILL REPÒRTS Canagau <u>Canagau</u>		ASSAY RESULTS	PAGE DF DDH ND. CNG90-2 TOWNSHIP:Ben Nevis
793.0	798.0	5.0	1181	Nil
828.2	833.2	5.0	1182	Nil
833.2	838.0	5.0	1183	Nil
857.0	862.0	5.0	1184	10
895.0	900.0	5.0	1185	7
900.0	905.0	5.0	1186	12
905.0	910.0	5.0	1187	N i.].
926.5	929.0	2.5	1188	24

Notes and Reference (Assay Certificate): Swastika Labs OW-0227-RG1 average of two analyses (%) average of four " (**)

WHOLE ROCK CHIP SAMPLE LOCATIONS Hole CNG 90-2

72220 -	(W~8)	grey basalt tuff;		85.4, 119.6,	90.5, 123.4	100.8,	106.4	108.9,
72221	(W-9)	massive amygdaloidal tuff;	186.2,	188.6,	165.6, 198.5, 227.0,	203.4,	207.7,	•
72223	(W-11)	brecciated tuff;			297.0, 356.0,			
72222	(W-10)	rhyodacite tuff;		584.9,	556.0, 589.0,		-	
72224	(W-12)	yellow rhyolite;			838.8, 904.3,	-		

QUEENSTON GROUP DIAMOND DRILL REPORT Page 1 of 6 PROJECT: Canagau COMMENCED: PROPERTY: Canagau DDH NO: CNG-90-3 TOWNSHIP: FINISHED: October 16, 1990 ELEV: Ben Nevis CORE SIZE: ΞQ PROVINCE/NTS: Ontario AZIM: 045 deg TOTAL DEPTH: 754 feet LOCATION: DIP: -45 deg. collar (re Grid): L 1+00E CONTRACTOR: R. Yost 2 + 155LOGGED BY: W. J. McGuinty (re Claim): UNITS: Feet CORE FROM TO LENGTH 10 Casing in Overburden Ō – 10 10 49.4 39.4 Amygdaloidal basalt, strongly altered, chloritesericite-ankerite? (dolomite?), no carbonate reaction, quartz-carbonate amygdule fill with chlorite haloes and sulphide (pyrite+ sphalerite) cores 26.0-48.3 brecciated pyrite stringers and pods with chalcopyrite. Sulphide appears to respond to chloritic zone in flow texture 33.0-45.0 increased bleby chalcopyrite and sphalerite 3-5% roughly parallel to banding 30-45 deg to C.A. variable 45.0-48.3 "loby" flow breccia, buff coloured lobes in chloritic groundmass 74.6 49.4 25.2 Chlorite-rhyolite sericite altered, apparent banding defined by chlorite at 45 deg to C.A. Amygdules with pyrite cores and chlorite haloes occur throughout section 51.0-60.0 chalcopyrite in amyodule cores 74.6 101.2 26.6 Massive-rhyolite five grained, dark grey colour, pervasively chloritized with 10% diss pyrite chalcopyrite and local chlorite quartz stringers with pyrite (95-102) small chlorite blebs also common 1.0 101.2 102.2 Rhyolite breccia-angular rhyolite fragments and flattened chloritized ash fragments Upper contact 45 deg to C.A., lower contact 90 deq.

102.2	103.9	1.6	Rhyolite as at 74.6-101.2, well chloritized
	129.2	25.3	<pre>Intermediate to felsic ash, sericitic, weakly foliated, locally fragmental, pale grey white to dark grey colour. Wispy chlorite mineralization throughout, possibly altered fragments 103.9-107.0 general chloritization 110.0-111.0, 117.0-118.0 quartz-dolomite- pyrite-sphalerite stringer vein zones 111.0-117.0 amygdaloidal with trace pyrite in cores 120.5-124.0 increased chlortization, some veinlets with honey colored sphalerite near 121.0 128.4-129.2 flow breccia with sharp irregular lower contact (top up hole?)</pre>
129.2	157.3	28.1	Basalt massive, grey white colour 131.0-133.0 numerous slips with weak chlorite 133.0-134.6 coarse amygdules, frothy appearance some chlorite haloes with sulphide cores 135.0-138.7 increased chloritization 136.7-137.0 strong alteration zone 136.7-136.8 silica dumping overlying band of pyrite-sphalerite mineralization 135.8-137.0 chloritic breccia-fragments are buff, carbonate altered basalt lower contact 45 deg to C.A. 137.0-138.7 gradual decrease in chlorite alteration 138.7-157.3 amygdaloidal basalt-carbonate altered, pyrite and minor sphalerite in amygdules, blebs and stringers, no associated chlorite 149.6-149.9 some sericite mineralization 152.8-154.4 chloritized flow top some breccia 152.9-153.4 154.4-156.2 chloritized amygdules 156.2-157.3 intense chloritization with banded pyrite
			157.0-157.2 lower contact defined by irregular quartz sulphide band
157.3	165.2	7.9	Flow banded and flow brecciated rhyolite, well chloritized, banding at 70 deg to C.A. pyrite in blebs and stringers parallel to banding
165.2	168.3	3.1	Chloritized massive basalt, lower contact defined by strong chlorite zone, sharp at 90

``			deg to C.A.
168	175.0	6.7	Rhyolite as at 157.3-165.2 lower contact 80 deg to C.A. some fine grained pyrite+/- sphalerite blebs
175.0	4.28.9	253.9	 Massive basalt, buff fragments in chloritized groundmass near upper contact. 175.0-184.2 chloritized basalt 175.0-182.0 diss chalcopyrite-sphalerite mineralization 1-2% centred on amygdules 175.4 pyrite-quartz band 1/2" 175.4 pyrite-quartz band 1/2" 175.7-177.6 silica dumping 182.0-183.0 very strong chlorite with minor chalcopyrite 186.0 stringer of pyrite-chalcopyrite, no chlorite 187.0-190.0 frothy amygdaloidal basalt with pyrite-sphalerite mineralization 190.0-193.0 quartz-dolomite-sericite vein sub-parallel to C.A. with fracture controlled weak pyrite, sphalerite 193.0-196.0 massive, weakly altered basalt synite in amygdules 196.0-198.6 chalcopyrite and sphalerite in amygdules 196.6-207.0 fine grained basalt, weak chlorite alteration 195.4.200.4 pyrite-quartz stringer 20.1 chalcopyrite-pyrite-quartz stringer 20.4.1 chlorite stringer 207.0-208.4 chlorite-chalcopyrite stringer zone 2% chalcopyrite-chloritized basalt 208.4-207. massive weakly chloritized basalt 209.8-210.4 chalcopyrite-chlorite stringer zone 2% chalcopyrite-chlorite stringer zone 207.0-208.1 chalcopyrite-chlorite stringer 207.0-218.0 frothy section with pyrite 209.8-210.4 chalcopyrite-chlorite stringer zone 21.7-218.0 frothy section with pyrite 22.7-218.0 frothy section with pyrite 23.7-231.0 weak chloritized basalt 23.1.0-246.0 chloritized basalt 23.0-246.0 strong chlorite alteration sphalerite stringer 233.8 23.0,0,237.0,238.0 sphalerite stringers sub parallel to C.A.
			-

			 242.5-243.3 irregular quartz breccia vein contacts 45 deg to C.A. 246.0-381.5 massive grey basalt, local calcite veins 252.4 dry fault gouge 40 deg to C.A. 267.0-269.2 breccia, fine grained basalt fragments of variable size, fine fragments only 268.0-268.4 267.8 chalcopyrite blebs 279.0-280.0 pyrite-sphalerite mineralization in fractures and green translucent mineral in amygdules (chrysocolla?) 298.0, 303.0 sphalerite bleb 297.0-298.0 carbonate sericite mineralization 297.0-307.0 weak chlorite alteration 302.0-304.0 pink calcite stringers 307.0-369.0 trace pyrite 369.0-382.5 flow top zone 376.377.0 brecciated quartz calcite vein 379.6 carbonate-pyrite-sphalerite veinlet 381.5-428.9 massive grey medium grained basalt, locally amygdaloidal numerous irregular bands of silica dumping, weakly porphyritic feldspar with chlorite after pyroxene some calcite filled joints lower
1 28.9	429.8	.9	contact 40 deg to C.A. Rhyolite-chloritzed, 10% pyrite in bleby bands lower contact 30 deg to C.A.
429.8	433.9	4.1	Amygdaloidal basalt medium grained minor pyrite, chloritized lower contact irregular
433.9	440 2	6.3	Rhyolite-chloritized, sericitized-flow banded trace pyrite, lower contact 40 deg to C.A.
440.2	441.6	1.4	Weakly chloritized basalt lower contact irregular
441.6	454.2	12.6	Rhyolite-flow banded, chloritized, locally sericitized, lower contact 90 deg to C.A., irregular
454.2	473.4	19.2	Massive amygdaloidal basalt 454.2-468.0 grey coloured medium grained amygdaloidal, pyrite and trace sphalerite some pale green mineral (chrysocolla) 468.0-473.4 increased chloritization particularily in amygdules and fractures 469.0-470.0 weak fracture controlled

			pyrite, specks galena lower contact 45 deg to C.A.
473.4	475.2	1.8	Rhyolite-flow-banded, chloritic, rare pyrite 473.5-473.7 banded quartz carbonate vein contacts and bands at 45 deg to C.A.
475.2	475.4	. 2	Quartz vein 45 deg to C.A., barren
475.4	754.0	267.6	<pre>Amygdaloidal basalt general weak to moderate chloritization as well as in amygdules and fractures 478.8-478.9 quartz-pyrite-carbonate banded vein with some adjacent chlorite alteration 5-10% pyrite 478.9-495.0 chloritized, silicified zone dark grey black colour 485.0-495.0 stringers and veins of chalcopyrite-pyrite-sphalerite- galena 495.5-495.0 - 2-3% basemetal sulphides 495.0-495.2 banded quartz carbonate vein with pyrite-sphalerite-chalcopyrite 495.2-513.5 flow top breccia zone weakly chloritized 500.0 pyrite and sphalerite in amygdules 513.5-606.0 medium grained grey basalt 525.0-526.0 chloritized with brittle fractures calcite filled 557.0-558.5 vuggy quartz-pink dolomite vein 35 deg to C.A. some pyrite stringers at lower contact - contact defined by sharp dip 567.0 quartz-carbonate-pyrite-sphalerite vein 30 deg to C.A. 571.5-578.5 carbonate reaction 578.8 chalcopyrite in joints 581.8-582.3 strong chlorite alteration with 1 inch carbonate-pyrite-sphalerite stringer and calcite veining 595.0-606.0 carbonate reaction 506.0-621.0 flow top breccia 621.0-626.5 quartz veining in strongly chloritized basalt - no sulphide 626.5-631.0 weakly chloritized amygdaloidal basalt 631.0-645.0 carbonate reaction in grey basalt 645.0-646.5 white quartz-dolomite vein 645.8-648.9 chlorite band, dolomite-pyrite- sphalerite-galena stringer at core 643.0-650.0, 650.5-651.2, 652.8-653.0 low</pre>

-5-

angle banded white quartz veins 653.7-676.4 carbonate reaction 682.2-705.4 carbonate reaction, trace pyrite 707.6, 708.4-708.7 moderate chloritization 710.1-712.5 carbonate reaction 716.1-716.3 banded quartz vein, chlorite on lower contact 718.1-737.8 carbonate reaction 738.8- 739.0 banded quartz vein 40 deg to C.A 739.3-755:0 carbonate reaction

755.0

END OF HOLE

AMOND DRILL REPORT

ASSAY RESULTS

OJECT :	Canagau			DDH ND. CNG90-3			
PROPERTY	: Canagau			TOWNSHIP:E			
FROM	<u> </u>	LENGTH	SAMPLE #	ASSAY			
21.0	26.0	5.O	L4126	Ni 1			
26.0	31.0	5.0	4127	14			
31.0	36.0	5.0	4128	106*	82/130		
36.0	41.0	5.0	4129	27			
41.0	46.0	5.0	4130	З			
46.0	49.4	3.4	4131	Nil	,		
49.4	54.4	5.0	4132	Nil			
54.4	59.4	5.0	4133	N i 1			
59.4	64.4	5.0	4134	Nil			
64.4	69.4	5.0	4135	Ni 1			
69.4	74.6	5.2	4136	Nil			
74.6	79.6	5.0	4137	Ni 1			
79.6	84.6	5.0	4138	Nil			
$\otimes 4$, 6	89.6	5.0	4133	Nil			
89.6	94.6	5.0	4140	Nil			
94.6	99.6	5.0	4141	Ni 1			
99.6	104.0	4.4	4142	42.5*	51/34		
104.0	109.0	5.0	4143	45	i		
109.0	114.0	5.0	4144	Nil			
114.0	119.0	5.0	4145	34			
136.5	137.5	1.0	4146	7			
137.5	140.0	3.0	4147	Nil			
165.2	168.4	3.2	4148	Nil			
168.4	173.5	5.1	4149	Nill			
173.5	177.0	Э.5	4150	14			
177.0	182.0	5.0	4151	Ni 1			
182.0	185.0	З.О	4152	Nil			
192.0	197.0	5.0	4153	Ni l			
197.0	202.0	5.0	4154	Nil			
202.0	207.0	5.0	4155	Nil			
207.0	210.5	3.5	4156	103			
481.0	485.0	4 , O	4157	Nil			
485.0	490.0	5.0	4158	Nil			
490.0	495.0	5.0	4159	31			
495.0	500.0	5.0	4160	10			

Notes and Reference (Assay Certificate): Swastika Labs OW-1595-RG1 0W-1640-RG1

average of two analyses (*)average of four " (**)

DIAMOND DRILL	REPORTS	ASSAY	RESULTS	PAGE	OF
FROJECT:				DDH NO.	
DPERTY				TOWNSHIP:	

581.5 582.5 1.0

4161

10

Notes and Reference (Assay Certificate): Swastika Labs OW-1595-RG1 0W-1640-RG1 average of two analyses (*) average of four " (**)

•			QUEENSTON GROUP DIAMOND DRILL REPORT	Page 1 PROJECT	
COMMENCED:			PROPERTY: Canagau	DDH NO;	
FINISHED:			TOWNSHIF: Ben Nevis	ELEV:	
CORE SIZE:	: BQ		PROVINCE/NTS: Ontario	AZIM:	130 deg
TOTAL DEPT atcollar	H: 250 fe	et	LOCATION:	DIP:	-45 deg
CONTRACTOR	R: R. Yos	t.	(re Grid):		
LOGGED BY:	W.J.M	cGuinty	(re Claim):		
UNITS:	Feet	· · · · · · · · · · · · · · · · · · ·	na nas tau ont vas van tau das ont mut tau sas det tau son tau tau sas sut tau tau sas sut tau tau sas		anna dheo shadi dheo shine dana takat dhat anna yana teo. wan teo anna ann
FROM	<u>70</u>	CORE LENGTH			
Ŏ	5.0	5.0	Casing		
9 5.0	13.2	8.2	Amygdaloidal basalt, car reaction) disseminated coloured rock		
13.2	14.3	1.1	Dacite lobe, light grey	colour, am	ygdaloidal
14.3	16.7	2.4	Altered amygdaloidal bas	alt as at	5.0-13.2
16.7	17.2	. 5	Dacite dykelet, contacts irregular	70 deg, s	harp and
17.2	20.6	3.4	Altered amygdaloidal bas lower contact 15 deg to		5.0-13.2
20.6	43.0	22.4	Dacite pale grey to grey irregular shaped chlori (amygdule alteration?)		
43.0	45.5	2.5	Dacite yellow sericite a quartz-carbonate-pyrite		
45.5	52.7	7.2	Dacite massive grey colo	ur	
52.7	57.5	4.8	Dacite carbonate-sericit veinlets and 2% fractu (55.5-56.5)		

- 1 ---

.

.

56.4-56.5 semi massive band of pyritesphalerite-arsenopyrite-galena

576	76.6	19.1	Dacite,massive weakly chloritized, dark colour locally amygdaloidal and weakly feldspar porphyritic 63.3-64.3 slip/fracture zone 15-20 deg to C.A.
76.6	80.5	3.9	Dacite, sericite-chlorite altered 78.5-80.5 pyrite stringers, 2-3% pyrite 45 deg to C.A. 79.5 2 inch semi massive band with pyrite- sphalerite-galena
80.5	83.0	2.5	Dacite, dark grey unaltered
83.0	87.5	4.5	Dacite, sericite-chlorite altered with fracture controlled pyrite 83.8-86.5 2-8% pyrite
87.5	91.0	3.5	Dacite, chloritized massive appearance dark colour slip controlled lower contact at 25 deg to C.A.
91.0	96.0	5.0	Basalt, strong carbonate alteration with patchy sericite lower contact 25 deg to C.A. on sericite-carbonate slip
96.1	98.0	1.9	Milled zone - brecciated dacite with significant carbonate-sericite-pyrite banding. Brecciated pyrite banding with quartz-carbonate-sphalerite fill
98.0	98.1	. 1	Sharp carbonate-sericite slip zone 45 deg to C.A.
98.1	109.2	11.1	Dacite, massive, sericite altered 99.5-100.2 semi massive silicified sulphide band 15% pyrite trace sphalerite-galena 100.2-108.7 strong sericite alteration 2-3% pyrite in stringers and disseminations 108.7-109.2 silicified 2-3% pyrite as at 100.2-108.7
109.2	117,6	8.4	Basalt, shear banded strongly carbonate altered. Carbonate sericite foliation at 35- 45 deg to C.A. calcite in fractures, irregular wispy sulphide bands parallel to foliation
117.6	117.9	.3	Shear banded quartz-sericite-sulphide vein

-2-

117	122.7	4.8	Dacite, silicified with sericite and pyrite in fractures, strongly brecciated 119.0-120.5 very broken core and fault gouge 35 deg to C.A. strongly fractured 121.0-121.8 broken core 121.8-122.7 weakly silicified sericite banding - sharp lower contact 45 deg to C.A.
122.7	125.0	2.3	Dacite, massive grey colour, few pyrite bands with sericite haloes, lower contact gradational
125.0	138.0	13.0	Dacite sericite altered, massive moderately fractured with pyrite-galena-sphalerite mineralization 125.5-128.2 moderate shear banding with sericite bands and pyrite-galena-sphalerite stringers 126.8-127.2, 127.6-127.9 quartz sulphide veins 132.5-133.9 silicified zone with fracture controlled pyrite-sphalerite 132.8-133.4 quartz-sulphide filled fault breccia, contacts 45 deg to C.A. 133.2 sulphide filled fault gouge 45 deg to C.A.
● ^{138.0}	158.8	20.8	Dacite, massive, dark grey to grey, fine grained, chloritized phenocrysts(?) strong to moderate carbonate alteration 145.9-146.3 banded quartz vein, minor pyrite sphalerite on upper boundary
158.8	159.2	. 4	Fault zone - crushed dacite contacts 45 deg to C.A.
159.2	163.7	4.5	Dacite, corroded due to adjacent fault zone 163.6-163.7 fault gouge 45 deg to C.A.
163.7	179.1	15.4	Dacite, grey to yellow grey, sericitized, carbonate and chlorite alteration also apparent with disseminated blebs of pyrite, lower contact chloritized, brecciated
179.1	180.5	1.4	Basalt, brecciated amygdaloidal, some sulphide in amygdules, weakly sheared lower contact with chlorite
180.5	181.6	1.1	Dacite, carbonate altered, grey colour sheared lower contact with chlorite

-3-

1

181.6	185.3	3.7	Basalt, chlorite-carbonate altered flow top zone
185	192.9	7.6	Dacite lobes(?) in basalt flow top zone lower contact 30 deg to C.A. irregular with chlorite
192.9	196.5	3.6	Dacite, carbonate sericite altered with pyrite stringers at 45 deg to C.A lower contact 40 deg to C.A. with some breccia
196.5	250.0	53.5	Basalt massive, amygdaloidal, grey colour concentric cooling fractures, continuous pillow zone
250.0			END OF HOLE

PROPERTY: Canagau

ASSAY RESULTS DDH ND. CNG90-4 TOWNSHIP: Beb Nevi

PROPERTY	<u>: Canagau</u>			TOWNSHIP	Ben Nevis
FROM	TO	LENGTH	SAMPLE #	ASSAY	RECHECK
43.4	45.4	2.0	L4162	17	
45.4	50.4	5.0	4163	10	
50.4	54.4	4.0	4164	10	
54.4	57.4	3.0	4165	1181	
68.5	73.5	5.0	4166	Nil	
73.5	78.5	5.0	4167	Nil	
78.5	83.5	5.0	4168	936	
83.S	87.0	3.5	4169	504	
87.0	92.0	5.0	4170	14	
92.0	96.0	4.0	4171	Nil	
96.O	101.0	5.0	4172	274	
101.0	106.0	5.0	4173	45	
106.0	109.0	3.0	4174	62	
109.0	114.0	5.0	4175	10	
114.0	117.5	3.5	4176	17	
117.5	120.5	3.0	4177	723	
120.5	125.0	4.5	4178	75	
125.0	128.0	З.О	4179	1937	
128.0	131.0	3.0	4180	394	
131.0	135.0	A, O	4181	1306	
135.0	137.0	2.0	4182	463	
167.0	172.0	5.0	4183	24	

.

Notes and Reference (Assay Certificate): Swastika Labs OW-1640-RG1 average of two analyses (*) average of four " (**)

• •			QUEENSTON GROUP DIAMOND DRILL REPORT	Page 1 of 3 PRDJECT: Canagau
COMMENCED;			PROPERTY: Canagau	DDH ND: CNG90-5
FINISHED:			TOWNSHIP: Ben Nevis	ELEV
CORE SIZE:	BQ		PROVINCE/NTS: Ontario	AZIM: 130 deg
TOTAL DEPT	H: 350 fe	eet	LOCATION: (re Grid):	DIP: 60 deg collar
CONTRACTOR	R. Yos	st.	ere erindizi	
LOGGED BY:	W. J. M.	Guinty	(re Claim):	
UNITS:	Feet		an waa taa ula ula taa taa ula taa ka k	New Mars and Mars and Anno Mars and Mars and Mars and Mars and Anno Mars and Mars and Anno Mars and Mars and
FROM	TO	CORE LENGTH		
0	4.O	4.0	Casing	
4.0	70.3	66.3	Basalt massive amygdaloi carbonate alteration, d pyrite in amygdules 1-2 chlorite blebs	
70.3	115.4	45.1	<pre>Dacite massive dark grey ankeritic (dolomitic) a 81.1 - quartz-carbonate vein 82.0-88.0 sericite alte fractures and dissemin 83.6-84.0 semi-massive quartz-sericite-carbo arsenopyrite (10%), p sphalerite (10%), gal 88.1-110.1 mainly dark pyrite-sphalerite bleb 98.1 - irregular quart sphalerite vein 110.1-110.5 pale yellow 110.2-110.3 quartz-car sphalerite vein, band 115.4 lower contact pool</pre>	Alteration pervasive pyrite-sphalerite eration 3% pyrite in hated banded sulphide- onate vein, yrite (30%), .ena (5%) grey dacite minor
115.4	126.7	11.3	Basalt, amygdaloidal car amygdules with chlorite 122.0-126.0 bleby pyrit disseminated 126.7 lower contact irr	e rims and no sulphide e and sphalerite,

126.7	138.5	126.7	Dacite, brecciated, strongly silicified and sericitized, well veined 5-10% sulphide 133.5-135.0 quartz vein, upper contact 50 deg 133.5-134.1 20% chalcopyrite + pyrite + sphalerite, lower contact rotated from upper at 40 deg to C.A. 135.0 lower vein contact 20 deg to C.A. 135.0-138.5 silicified brecciated dacite 10% pyrite in fracture controlled breccia
			bands, lower contact 35 deg to C.A.
138.5	144.1	5.6	Basalt, shear banded with carbonate-sericite bands along numerous quartz vein contacts, 5- 10% vein controlled pyrite with minor sphalerite and galena lower contact 30 deg to C.A. sharp
344.1	146.0	1.9	Dacite, silicified, sericite-carbonate altered with minor brecciation 145.5-146.0° 4-5% pyrite
1 <i>4E</i> .0	148.1	2.1	Basalt, sericite-carbonate alteration, 5% pyrite with sphalerite 147.9-148.1 sulphide-sericite shear banding (as in hole #4) lower contact 45 deg to C.A.
148.1	148.4	.3	Cherty quartz vein, grey colour, fracture controlled pyrite, thin black sulphide seam on lower contact 45 deg to C.A.
148.4	152.3	3.9	Dacite, silicified, sericite altered, 5-10% stringer and fracture controlled pyrite 152.1-152.3 breccia zone with late fault gouge on 35 deg to C.A.
152.3	153.8	1.5	Basalt, amygdaloidal, pyrite in fractures and amygdules, sericite and carbonate alteration pervasive 152.3-153.5 breccia zone 153.8 lower contact 90 deg to C.A. sharp
153.8	155.0	1.2	Dacite, silicified, chlorite-sulphide band on sharp irregular lower contact
155.0	161.7	6.7	Basalt - weakly sheared
161.7	162.5	.8	Breccia zone, weakly foliated at 45 deg to C.A., quartz-calcite breccia fill surrounding grey sulphide and matrix material 162.4-162.5 grey sulphide band

162	210.6	48.1	Dacite silicified, sericite altered, yellow colour, 5% fracture controlled pyrite and sphalerite locally 162.5-177.0, 190.0-205.0 strong silicification
210.6	212.5	1.9	Weak shear zone in dacite, silicified, 15-20 deg to C.A. grey colour (rock powder?)
212.5	247.2	34.7	Dacite, massive, fine grained, grey, unaltered weakly amygdaloidal 212.0-215.0 weak foliation 212.5-221.0 pervasive carbonate reaction 219.3-219.6 quartz-carbonate-pyrite vein 30 deg to C.A. 221.0-221.5 fault zone - unconsolidated gouge 30 deg to C.A. upper contact has calcite veining 223.7-224.0 fault gouge 229.0-247.2 increased sericite alteration lower contact area chloritized contact sharp, irregular at 45 deg to C.A.
247.2	347.0	100.5	Basalt, massive, grey, amygdaloidal mainly flow top/pillow material weak to moderate pervasive carbonate alteration (calcite) minor disseminated pyrite 279.0-293.0, 300.0-301.5 localized pods of pyrite + sphalerite in frothy flow zones along selvages 347.7 lower contact sharp, irregular with chlorite halo
347.7	350.0	2.3	Dacite - silicified, 2% disseminated and amygdaloidal fill pyrite, weak sericite, no calcite.
350.0			END OF HOLE

· _ _----

	DRILL REPOR	1.		ASSAY RESULTS
PROPERTY	Canagau : Canagau			DDH NO. CNG90-5 TOWNSHIP: Ben Nevis
FROM	TO	LENGTH	SAMPLE #	TOWNSHIP: Ben Nevis ASSAY RECHECK
53.6	57.0	3.4	L4184	Nil
57.0	59.0	2.0	4185	Níl
63.O	64.0	1.0	4186	N i 1
78.5	83.5	5.0	4187	Nil ·
83.5	84.5	1.0	4188	76800* 75635777966
84.5	87.5	3.0	4189	82
87.5	92.5	5.0	4190	Nill
97.0	102.0	5.0	4191	N i].
102.0	107.0	5.0	4192	S1
126.7	130.0	3.3	4193	27
130.0	133.5	3.5	4194	14
133.5	135.0	1.5	4195	305* 3157295
135.0	138.5	3.5	4196	79
138.5	144. Ó	5.5	4197	147
144.0	148.0	4.0	4198	99
148.0	353.0	5.0	4199	1:30
153.0	158.0	5.0	4200	79
158.0	161.7	3.7	4201	27
161.7	163.7	2.0	4202	271
163.7	168.7	5.0	4203	99
168.7	172.0	3.3	4204	113
172.0	176.0	4.0	4205	1503.5* 1416/1591
176.0	181.0	5.0	4206	27
181.0	186.0	5.0	4207	17
186.0	191.0	5.0	4208	51
191.0	196.0	5.0	4209	82
196.0	201.0	5.0	4210	58
201.0	206.0	5.0	4211	127
206.0	210.5	4.5	4212	51
210.5	215.5	5.0	4213	104.5* 113796
229.0	234.0	5.0	4214	14
289.0	292.5	3.5	4215	14
300.5	305.5	5.0	4216	10

Notes and Reference (Assay Certificate): Swastika Labs OW-1640-RG1 average of two analyses (*) average of four " (**)

DDH NO. DPERTY TOWNSHIP:	DIAMOND DRILL	REPORTS	ASSAY	RESULTS	F	PAGE	OF
	PEOJECT:				l	DDH NO.	
The way part and white birt birt birt birt birt birt birt birt							

347.0	350.0	Э.О	4217	24

Notes and Reference (Assay Certificate): Swastika Labs OW-1640-RG1 average of two analyses (*) average of four " (**)

QUEENSTON GROUP DIAMOND DRILL REPORT Page 1 of 9

		PROJECT: Canagau
COMMENCED; Nov. 23/90	PROPERTY: Canagau	DDH NU: CNG90-6
FINISHED:	TOWNSHIP: Ben Nevis	ELEV:
CORE SIZE: BQ	PROVINCE/NTS: Ontario	AZIM: 225 deg ast.
TOTAL DEPTH: 1480 feet	LOCATION: (re Grid): 25m grid east	DIP: -60 deg casing 600 -47 deg
CONTRACTOR :	of L1+50E 1+358	900 -44 deg
LOGGED BY: W. J. McGuinty	(re Claim):	1200 -41 deg 1480 -36 deg

UNITS:	Feet		
577 ET (T) 194	TO)	CORE	
EROM O	8.0	<u>LENGTH</u> 8.0	Casing in overburden
8.0	46.9	38.9	Basalt, grey to dark grey, weakly amygdaloidal, well to moderately chloritized, amygdules preferentially chloritized 23.8-24.2 very strong black chlorite replacement with irregular quartz-dolomite -pyrite-sphalerite vein on lower contact 25 deg to C.A. 27.7-28.1 chlorite replacement with 1/2" quartz-dolomite-pyrite-sphalerite band at 30 deg to C.A. 30.8-31.2 strong chlorite replacement 32.6 1/2" dolomite vein with minor chalcopyrite 36.4-36.5 quartz-pyrite-sphalerite vein irregular shapes
46.9	99.7	52.8	<pre>46.9 lower contact 45 deg to C.A. sharp Rhyolite - moderate to strongly chloritized, locally flow banded, locally brecciated, pale green white to black in colour, groundmass preferentially chloritized 46.9-70.0 alternately flow banded and flow brecciated, well chloritized 58.0-63.0 quartz-dolomite veining with pyrite-sphalerite mineralization 5% locally 70.0-99.7 predominantly massive, fine grained, weakly flow banded, well chloritized 75.5 specks red-brown sphalerite in rhyolite and in fractures with dolomite</pre>

-1-

•			77.2 chloritized stringer with pyrite sphalerite dolomite band and then quartz veinlet with specks galena 82.0-85.0, 97.0-99.7 very strong chlorite replacement with some vestigial rhyolite fragments, lower contacts sharp
99.7	121.4	21.7	Amygdaloidal basalt massive pale grey colour 99.7-102.5 chlorite mineralized amygdules and silica dumping in evidence 102.5-107.0 numerous amygdules with pyrite- sphalerite cores 110.0-111.0 dolomite pyrite stringers 115.5 pink calcite veinlet with speck galena
121.4	149.2	27.8	Rhyolite, massive, locally weakly porphyritic, faint banding apparent throughout, weak chloritization causing grey colour 128.0 specks red-brown sphalerite in thin fractures with dolomite, lower contact sharp, brecciated, chloritized
149.2	150.5	1.3	Amygdaloidal basalt, well chloritized, lower contact sharp at 45 deg to C.A.
150.5	154.6	4.1	Massive chloritized rhyolite as at 121.4-149.2 lower contact irregular at 30 deg to C.A.
154.6	155.2	. 6	Chloritized amygdaloidal basalt
155.2	156.0	.8	Rhyolite as at 121.4-149.2
156.0	268.6	112.6	Massive amygdaloidal basalt, some flow top areas 156.0-200.0 156.0-190.4-chloritized section, groundmass preferentially altered trace pyrite 171.0-171.5, 173.0-173.5, 175.0-176.0 weakly banded white quartz-dolomite veins minor associated pyrite irregular contacts. 174.0-175.0 broken core, strongly chloritized 186.0, 186.5-187.0 quartz dolomite veining trace pyrite - some host rock fragments 188.0-190.4 increased, narrow flow banding some pyrite 190.4-251.4 pale grey buff coloured amygdaloidal basalt, silica dumping evident in narrow irregular bands, thin seams of chloritized material in flow top breccia groundmass and along quartz -dolomite-pyrite veinlet contacts 190.4-190.6 pale basalt chips

-2-

190.6-198.3 marrow persistent flow banding 30-40 deg to C.A. 233.0-234.0, 237.0-239.0, 243.5-244.2 moderately chloritized flow breccia 250.9-251.4 banded guartz-dolomite-pyrite vein, contacts at 50 deg to C.A.1% pyrite, trace sphalerite 251.4-262.0 chloritized basalt well altered with black chlorite, pyrite stringers and quartz-dolomite-sphalerite veins 254.8-259.6 massive white guartz vein some pyrite banding near lower contact 262.0-268.6 massive grey amygdaloidal basalt fine grained little evidence of flow top material 264.1-271.0 intermittently strong chloritization 264.1-264.6, 265.4-265.5, 268.0-268.6 strong chloritzation possibly selvage controlled. Some associated pyritequartz-dolomite veining 268.6 270.7 2.1Chloritized felsic ash, approximately 90 deg to C.A. 270.7 416.0 145.3 Massive grey basalt as above 271.6-271.9, 272.6-273.0 banded guartzdolomite-pyrite veins 50 deg to C.A. 275.0-310.0 disseminated and amygdule fill pyrite 1-2% 275.6-275.9 white quartz dolomite vein 275.9-278.2 chalcopyrite mineralization, fracture controlled with guartz-dolomite pyrite veining or as discrete specks or stringers 285.5, 292.6-292.7, 295.9 guartz-dolomite -sulphide veining 298.7-299 1, 301.7-302.2, 303.0-303.2, 306.6 weak to strong chloritization with quartz-dolomite-pyrite veining 300.0-307.0 increased pyrite, disseminated and in amygdules 2-3% 307.0-315.0 numerous specks and thin discontinuous stringers chalcopyrite in addition to 2-3% pyrite 317.0-317.2, 317.9-318.4, 322.0-322.4 chloritized zones with quartz-dolomite -pyrite veining 356.4-357.0 banded quartz dolomite pyrite -sphalerite vein, upper contact host rock chloritized ·357.5, 358.0-358.1, 362.0-362.5, 363.7, 368.6-368.7, 371.1-371.3 (chloritized)

			 372.8 banded quartz-dolomite-pyrite veins various orientations 374.3-374.5 calcite filled fault breccia 45 deg to C.A. sharp contact 374.8 thin vuggy calcite veinlet nailhead spar and nodular pyrite 389.8-390.1 - chlorite band with quartz-dolomite-pyrite vein at core 398.3 quartz-dolomite-pyrite-sphalerite vein 80 deg to C.A. 401.2-402.3 increased chloritization with numerous pyrite blebs and stringers and quartz-dolomite-pyrite veins
416.0	432.5	165.0	Banded basaltic flow top/ash zone,interbedded basaltic material with mixed beds of basaltic felsic ash material general chlorite alterat- ion with moderate sericite alteration,apparent banding at 45 deg to C.A. 428.8-429.3 quartz-dolomite-pyrite vein 30 deg to C.A. lower contact on sharp slip plane 432.2-432.4 disseminated chalcopyrite sphalerite mineralization
432.5	438.2	5.7	Massive basalt, weakly amygdaloidal, chloritized 437.5 quartz-dolomite-pyrite vein 15 deg to C.A.
438.2	443.2	5.0	<pre>Sulphide zone - host is highly altered (chlorite-sericite) brecciated basalt, sulphide mineralization found as bands broken bands and pods. Upper contact defined by contorted quartz vein approximately 40 deg to C.A. 438.2-439.0 25% pyrite, 2% grey yellow sphalerite and later brown sphalerite, 1% chalcopyrite 439.0-439.7 chloritized basalt 439.7-440.2 pyrite band some quartz-dolomite 40 deg to C.A. 60% pyrite 440.2-442.0 strong chlorite sericite alteration pyrite-arsenopyrite-sphalerite -chalcopyrite mineralization in irregular bands some weak mineral segregation 10-15% sulphide overall 442.0-443.2 chlorite-sericite rock with 10% pyrite sphalerite mineralization upper contact 15 deg to C.A. defined by slip and 1/4 inch quartz vein</pre>

14.8

Dacite dyke-grey green colour moderately to strongly sericitized-quartz-dolomite-pyrite fracture filing throughout

445.7-446.1 silicified hematized zone with chloritized section on upper contact. Chloritized section has minor chalcopyrite.

silicified zone has 2% euhedral arsenopyrite 446.6-446.8 silicified zone 447.0-448.0 guartz-dolomite vein with

chlorite-sericite fragments and pyrite blebs

448.0

- 875.2
- 427.2 Amygdaloidal basalt, abundant quartz-pyrite filled amygdules

448.0-510.0 5-7% pyrite in amygdules and disseminated, weak to moderate chloritization

448.0-448.7 weakly foliated upper contact 479.2 quartz veining, specks chalcopyrite 510.0-544.0 pale grey moderately

amygdaloidal, trace pyrite

544.0-665.0 grey to pale grey coarsely amygdaloidal to frothy basalt narrow bands silica dumping throughout, 45 deg to

C.A.minor to trace pyrite

581.0-583.0 chalcopyrite, sphalerite and pyrite in amygdules

589.0-599.0 increased chlorite sericite alteration with pyrite and chalcopyrite

624.0-629.0 sphalerite, honey colored in amygdules

665.0-707.0 grey weakly to moderately chloritized basalt 2-3% pyrite, in amygdules with quartz carbonate

707.0-742.0 well chloritized with

predominantly quartz filled amygdules with pyrite chalcopyrite cores 2-3% pyrite, 1/2 -1% cpy

718.5, 722.3 cpy rich, frothy flow selvages 2 inches

742.0-757.0 sericite alteration in addition to chloritic, cpy weaker in this zone

757.0-791.0 chloritized basalt as at 707.0-742.0 with minor pervasive chalcopyrite in amyodules with pyrite

771.0 fault zone at 35-40 deg to C.A.

791.0-805.0 chloritized basalt as at 757.0-

791.0 chalcopyrite absent, 3-5% pyrite.

805.0-825.0 pale grey weakly amygdaloidal massive basalt

825.0-834.0 amygdaloidal basalt pyritequartz-dolomite fill, less that 1% pyrite,

--5--

•			amygdules elongated 45 deg to C.A. 834.0-875.2 loby flow top amygdaloidal basalt with chloritized interflow selvages "ashy" texture between lobes moderately chloritized, calcite mineralization in amygdules and in "ash" 842.3-842.4 fault zone weakly cemented unaltered rubble
875.2	878.8	3.6	Rhyolite, weakly sericitized and chloritized upper contact 60 deg to C.A. faulted lower contact sharp at 60 deg defined by 0.8 ft banded quartz-carbonate-sericite vein
878.8	881.1	2.3	Amygdaloidal basalt, upper 3 inches strongly sericitized lower contact sharp at 60 deg to C.A. weak pyrite, trace chalcopyrite
881.1	919.3	38.2	Rhyolite, massive, weakly porphyritic, moderately chloritized and sericitized 895.4 l inch sulphide fault zone 70 deg to C.A. lower contact sharp, chloritized 65 deg to C.A.
919.3	922.4	3.1	Amygdaloidal baselt weakly mineralized with pyrite in amygdules lower contact sharp 60 deg to C.A.
922.4	932.9	10.5	 Rhyolite, open breccia and fault zone 922.3-923:4 silicified and sericitized rhyolite breccia with carbonate- chalcopyrite-pyrite fill 923.4-925.5 sheared and strongly sericitized rhyolite with several sharp chlorite slips controlling carbonate veining, minor pyrite 925.5-928.7 open fault breccia with white carbonate fill 2-3% pyrite disseminated and on fragment boundaries, sericite alteration strong 928.7-929.9 siliceous ash? in irregular bands within strongly chloritized and sericitized rhyolite 929.9-931.0 sulphide enriched, sericitized and chloritized rhyolite, 10% stringer and disseminated pyrite 931.0-932.9 vuggy crystalline coarse grained quartz, pink calcite vein with chloritized- sericitized rhyolite fragments and blebs chalcopyrite contacts irregular

932.9	939.3	6.4	Amygdaloidal basalt dark grey colour, chloritized, pyrite and chalcopyrite in amygdules lower contact sub-parallel to C.A.
939.3.	947.6	8.3	Rhyolite, brecciated and veined, strongly sericitized, 3-5% irregularly banded and disseminated pyrite. Veining is mainly quartz carbonate lower contact sheared 30 deg to C.A.
947.6	949.7	2.1	Amygdaloidal basalt, chloritized, lower contact conformable 25 deg to C.A.
949.7	992.3	42.6	Rhyolite, massive, weakly porphyritic as at 881.1-919.3 lower contact irregular
992.3	1015.3	2.3	Amygdaloidal basalt amygdules are small and very abundant 994.8-995.4, 1000.2-1000.3, 1003-1003.4 bedded ash interflow sediment, calcite mineralization with quartz and dolomite in amygdules
1015.3	1016.7	1.4	Rhyolite, weakly sericitized massive, contacts are sharp and conformable
1016.7	1038.9	22.2	Amygdaloidal basalt, dark grey, coarse amygdules with pyrite-quartz-carbonate and sericite fill, lower contact sharp slip on 50 deg to C.A.
1038.9	1046.2	7.3	Rhyolite as at 1015.3-1016.7
1046.2	1135.0	88.8	Amygdaloidal basalt, dark grey, with amygdules as at 1016.7-1038.9 1049.6-1049.7 fault gouge, calcite cement, minor pyrite 1085.0-1086.2 bedded interflow sediment 1086.2-1088.0 strong chloritization 1101.0-1102.0 silica dumping 1102.0-1136.0 concentric cooling fractures
1135.0	1148.0	13.0	Basalt, massive, homogeneous, pale grey, irregular to oval amygdules are sparse with green chloritized cores 1145.7-1145.9 rhyolite fragment lower contact sharp conformable 45 deg to C.A.
1148.0	1168.6	20.6	Rhyolite? massive, pale green grey, sericite wisps throughout, upper contact area chilled 1167.0-1168.6 jointed section with vuggy

-7-

calcite veining, lower contact irregular conformable

168.6

1315.5

146.9

22.0

- Amygdaloidal basalt,
 - 1168.6-1184.0 moderately to well chloritized, mineralized with pyrite in amygdules and in selvages with silica dumping
 - 1184.0-1209.0 pale grey unaltered
 - amygdaloidal basalt
 - 1206.0 silica dumping
 - 1209.0-1214.3 moderately to well chloritized and moderately sericitized basalt, localized silica dumping
 - 1214.3-1219.5 strongly sericitized 2" pyritearsenopyrite band on upper contact with chlorite and carbonate
 - 1214.7-1215.0 rhyolite layer fractured and mineralized with sphalerite-galena-pyrite-chalcopyrite
 - 1215.0-1215.5 basalt with pyrite mineralization
 - 1215.5-1217.0 sheared quartz-dolomite vein 15 deg to C.A.
 - 1217.0-1219.0 strong sericite
 - 1219.0-1219.5 banded quartz-dolomite vein at 15 deg to C.A.
 - 1236.0-1249.0, 1256.0-1257.0, 1263.5-1269.0 increased fracture and amygdule controlled galena-sphalerite +/- chalcopyrite mineralization
 - 1260.8-1261.2 banded dolomite vein
 - 1273.0-1275.8 strong sericite alteration 1273.4-1274.4 banded quartz dolomite vein
 - 40 deg to C.A. some sericite slips
 - 1277.9 sharp fault $1/8^{\prime\prime}$, 35 deg to C.A. 1279.7-1281.2 banded interflow sediment and
 - silica dumping 1281.0-1810.0 silica dumping common
 - 1289.9-1290.4 rhyolite layer?
 - 1312.0-1313.0 basalt flow rubble in chlorite groundmass

1315.5 1337.5

- Rhyolite, fine grained 1315.5-1325.0 brecciated, yellow green rhyolite 25-30% quartz carbonate veining minor pyrite on seams 1325-1337.3 dark coloured chloritized and sericitized massive rhyolite, 3% pyrite and trace chalcopyrite (1330.0-1337.0 - 5 feet missing core)

1337.5	1346.1	8.6	Fault zone broken core poorly consolidated fault gouge calcite mineralization fault breccia material is sericitized basalt
1346.1	1346.4	. 3	Moderately foliated basalt, well sericite altered
1346.4	1397.1	40.7	Amygdaloidal basalt 1346.4-1373.0 well chloritized particularily in amygdules some pyrite and chalcopyrite 1352.5-1354.0, 1355.0-1356.6; 1359.5-1360.5 sericite carbonate altered breccia 1373.0-1387.0 moderate chloritization lower contact sharp 70 deg to C.A. chloritized
1387.1	1401.7	14.6	Rhyolite? massive, pale grey, with chloritized phenocrysts or amygdules lower contact 30 deg to C.A.
1401.7	1403.0	1.3	Chloritized basalt, lower contact conformable
1403.0	1404.1	1.1	Rhyolite lobe with concentric layer of bedded interflow sediment enclosing on upper and lower contacts
1404.1	1408.2	4.1	Chloritized, moderately amygdaloidal basalt
1408.2	1409.2	1.0	Rhyolite flow rubble, top uphole?
409.2	1466.3	57.1	Rhyolite, massive, weakly chloritized, pale grey dark grey in colour
1466.3	1480.0	63.7	Amygdaloidal basalt well chloritized, amygdules have rare sulphides 1425.0-1430.0 trace chalcopyrite and sphalerite 1443.0 dolomite vein 15 deg to C.A. 1472.3 quartz chalcopyrite mineralization
1480.0			END OF HOLE

-9-

DIAMOND DRILL REPORT DJECT: Canagau

ASSAY RESULTS DDH NO. CNG90-6

	Canagau			DDA NU. C	
PROPERTY	<u>: Canagau</u>			TOWNSHIP:	Ben Nevis
FROM	TO	LENGTH	SAMPLE #	ASSAY	RECHECK
21.8	23.5	1.7	4427	24	
27.7	28.7	1.0	4428	54.5*	58/51
47.0	52.0	5.0	4429	Nil	
52.0	57.0	5.0	4430	Nil	
57.0	62.0	5.0	4431	N i 1	
62.0	67.0	5.0	4432	Nil	
75.0	80.0	5.0	4433	Ni1	,
80.0	84.0	4.0	4434	Nil	
84.0	89.0	5.0	4435	Nil	
89.Q	92.0	3.0	4436	Nil	
92.0	97.0	5.0	4437	Nil	
97.0	100.0	3.0	4438	Ni 1	
100.0	104.0	4.0	4439	Nil	
152.0	157.0	5.0	4440	Ni 1	
157.0	362.0	5.0	4441	Nil	
162.0	167.0	5.0	4442	Ni L	
172.0	177.0	5.0	4443	Nil	
186.0	191.0	5.0	4444	Nil	
191.0	196.0	5.0	4445	Nil	
237.0	242.0	5.0	4446	Nil	
242.0	247.0	5.0	4447	Nil	
247.0	251.0	4.0	4448	14	
251.0	255.0	4.0	4449	1:2*	10/14
255.0	259.6	4.6	4450	10	
259.6	262.0	2.4	5651	Nil	
262.0	267.0	5.0	5652	Nil	
267.0	271.0	4.0	5653	Ni1	
271.0	276.0	5.0	5654	28	
276.0	280.0	4 . Ŭ	5655	31	
296.0	301.0	5.0	5656	Ni 1	
301.0	306.0	5.0	5657	Nil	
306.0	310.0	4.0	5658	27	
356.0	357.0	1.0	5659	60*	65755
416.0	421.0	5.0	5660	N i. 1	
421.0	426.0	5.0	5661	Nil	
426.0	428.8	2.8	5662	34	
428.8	432.5	Э.7	5663	21	
432.5	438.0	5.5	5664	45	
438.0	443.0	5.0	5665	778.5*	792/765

Notes and Reference (Assay Certificate): Swastika Labs OW-1891-RG1 OW-1930-RG1 OW-1961-RG1 average of two analyses (*) average of four " (**)

DIAMOND DRILL REPORTS ASSAY RESULTS PTOJECT: Canagau

PROPERTY Canagau	•	TOWNSHIP:Ben M	Vevis
		- IUWNONIE DEN I	46V15
mit ber wirft ferme binter berte berte genen gerte erten berte ber	and the basis which when allow space safes being basis dated and page party basis which which are a same to	tenter effett anget effete beter meter deter mene te un weter biter webe menes menes at	ants meste rente meres state erens

443.0	448.0	5.0	5666	206	
448.0	453.0	5.0	5667	27	
453.0	458.0	5.0	5668	17	
458.0	463.0	5.0	5669	SI	
463.0	468.0	5.0	5670	14	
468.0	473.0	5.0	5671	24	
473.0	478.0	5.0	5672	21	
478.0	483.0	5.0	5673	29*	31727
497.0	502.0	5.0	5674	21	
502.0	507.0	5.0	5675	Nil	
581.0	586.0	5.0	5676	17	
586.0	591.0	5.0	5677	17	
591.0	596.0	5.0	5678	14	
622.0	627.0	5.0	5679	21	
627.0	631.0	4.0	5680	17	
697.0	702.0	5.0	5681	10	
702.0	707.0	5.0	5682	10	
707.0	712.0	5.0	5683	5*	10/ni1
712.0	717.0	5.0	5684	Nil	
717.0	722.0	5.0	5685	Nil	
722.0	727.0	5.0	5686	Nil	
727.0	732.0	5.0	5687	17	
732.0	737.0	5.0	5688	10	
737.0	742.0	5.0	5689	Nil	
742.0	747.0	5.0	5690	Nil	
747.0	752.0	5.0	5691	Nil	
752.0	757.0	5.0	5692	14	
757.0	762.0	5.0	. 5693	Nil	
762.0	767.0	5.0	5694	Nil	
767.0	772.0	5.Ŭ	5695	Nil	
772.0	777.0	5.0	5696	14	
777.0	782.0	5.0	5697	Nil	
782.0	787.0	5.0	5698	Nil	
787.0	792.0	5.0	5699	N i 1	
792.0	797.0	5.0	5700	Nil	
922.4	927.4	5.0	5701	334*	353/315
927.4	931.0	Э.6	5702	27	
931.O	933.0	2.0	5703	Ni L	
933.0	938.0	5.0	5704	45	
938.0	942.0	4.0	5705	Nil	
942.0	945.0	S.0	5706	308.5*	3157302
1046.2	1051.2	5.O	5707	Nil	
1051.2	1056.2	5.0	5708	Nil	
1169.0	1174.0	5.0	5709	Nil	

Notes and Reference (Assay Certificate): Swastika Labs OW-1891-RG1 OW-1930-RG1 OW-1961-RG1

average of two analyses (*) average of four " (**)

DIAMOND DRILL REPORTS ASSAY RESULTS EEOJECT: Canagau

PAGE OF 3 DDH NO.CNG90-6

PROPERTY	<u>Canagau</u>	 TOWNSHIP:Ben Nevis

1179.0	5.0	5710	Nil	
1217.0	5.0	5711	133.5*	130/137
1221.0	5.0	5712	Nil	
1226.0	5.0	5713	Nil	
1231.0	5.0	5714	Nil	
1236.0	5.0	5715	N i 1	•
1241.0	5.0	5716	Nil	
1246.0	5.0	5717	Nil	
1249.0	Э.О	5718	10	
1261.0	5.0	5719	Nil	
1266.0	5.0	5720	Nil	
1311.0	5.0	5721	Nil	
1320.0	5.0	5722	Níl	
1325.0	5.0	5723	10	
1330.0	5.0	5724	24	
1342.0	5.0	5725	Nil	
1347.0	5.0 J	5726	21	
1352.0	5.0	5727	Nil.	
1357.0	5.0	5728	Nil	
1362.0	5.0	5729	Nil	
1367.0	5.0	5730	Nil	
1372.0	5.0	5731	Ni 1	
1430.0	5.0	5732	10	
	1217.0 1221.0 1226.0 1231.0 1236.0 1241.0 1246.0 1249.0 1261.0 1266.0 1311.0 1325.0 1325.0 1325.0 1342.0 1347.0 1352.0 1357.0 1362.0 1367.0 1372.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1217.0 5.0 5711 $133.5*$ 1221.0 5.0 5712 $Ni1$ 1226.0 5.0 5713 $Ni1$ 1231.0 5.0 5714 $Ni1$ 1236.0 5.0 5715 $Ni1$ 1241.0 5.0 5716 $Ni1$ 1244.0 5.0 5717 $Ni1$ 1249.0 3.0 5718 10 1261.0 5.0 5719 $Ni1$ 1266.0 5.0 5720 $Ni1$ 1311.0 5.0 5721 $Ni1$ 1325.0 5.0 5723 10 1330.0 5.0 5724 24 1342.0 5.0 5725 $Ni1$ 1347.0 5.0 5727 $Ni1$ 1352.0 5.0 5727 $Ni1$ 1352.0 5.0 5727 $Ni1$ 1352.0 5.0 5728 $Ni1$ 1357.0 5.0 5729 $Ni1$ 1362.0 5.0 5730 $Ni1$ 1372.0 5.0 5731 $Ni1$

Notes and Reference (Assay Certificate): Swastika Labs OW-1891-RG1 OW-1930-RG1 OW-1961-RG1

ł

average of two analyses (*)average of four " (**)

5 LAMPROPHYRE 4 MAFIC INTRUSIVE ROCKS 4a Diorite/Gabbro 3 FELSIC VOLCANIC ROCKS / Dacite f' Rhyolite 3 Nsubdivided 3a Massive, well jointed lava 3b Flow breccia / banded lava 3c Lapilli - tuff f' tuff breccia 3d Rsh tuff, commonly well bedded 3e Breccia containing calcareous tuff fragments 3f Vesicular lava or subvolconic intrusion
ing Symbols - 2 DACITIC SUBVOLCANIC ROCKS 2 Unsubdivided
outcrop 29 Quartz - phyric dacite
nown, inclined, vertical un, inclined, vertical (arrow) in Iava flow nes și packing I Unsubdivided I I Unsubdivided I I Unsubdivided I I Unsubdivided I I I I I I I I I I I I I I I I I I I
iary, observed (solid) f wreted. le Massive tuff If Phreatic breccia le projected vertically f hole identification hotes hole Solidation le Massive tuff If Phreatic breccia G3.6144 PROV. ONTARIO TWP. BEN NEVIS NTS 3205 REF. DWN. BY RDH / RZ OF THE
ę ho

SCALE 1. 5000 DATE NOV 90 PLATE FIG. 5

.

32D055E0025 63.6144 BEN NEVIS

.

l'a							
	1+ sok					63.614	4
	-	PROV. TWP.	ONTAN BEN NI	<u> </u>	MOUNTAIN JOUTEL R	LAKE RESOURCES	
		NTS REF.	3203	5		GEOLOGY OF	
		DWN. BY	R		CAI	NAGAU 1990 ST.	
11 11111 111 1111111111111111111111111		REVISIONS	DATE	BY	-	PART 2	
					SCALE /: 250	DATE MAR. /91	PLATE FIGURE 86

Wat Fill	N 00 + 0/	9+00M	8+00 M	M 00 + 2 .	K 00W	5+00 N	¥+00 M	3+00 W	7 SC 4	2.00.2									
		•								·				· •	·		,		
		x			•					0-2	3-1.	6-2 6-1		· · · · · · · · · · · · · · · · · · ·					
				· · ·						2 -1 1 -2		3-1/ 5-1 5-1/ 3-1 2-1/ 3-1		ł			,		.,
				· · · · · · · · · · · · · · · · · · ·						2 0 2	0 -1 / 3 -1 3 -2 / 3 /0 1 /0 / 4 0 (3 -1 3 -1 4 -1 -1 2 -1 3 -1	-						· · · ·
	• •						· · ·					0-1 -1 -1	-20			 			
	· · · ·			• • •						2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2-1 3-1					:			,
					·							3 -1 0 0 2 2 -1 0 0 2 2 -1 0 0 2			A 10 40 40 40 40 40 40 40 40 40 40 40 40 40				· .
				•				2		7 -1 -2 (4			0 3 - 3			•	4 · ·	

4/29 1.5 2.7 $1.3.6$ 1.950 3.09 6.830 $4/30$ 1.5 3 3.8 3.79 1.92 3.590 $4/31$ 1.1 $N.1$ 3.4 51.7 1.57 1.750 $4/32$ 1.5 $N.1$ 0.9 20.8 1.6 4355 $4/33$ 1.5 $N.1$ 0.9 20.8 1.6 4355 4.133 1.5 $N.1$ 0.9 20.8 1.6 4355 4.134 1.5 $N.1$ 0.8 56 1.13 2566 4.135 1.6 $N.1$ 0.4 5.9 0.8 4.72 4.135 1.6 $N.1$ 0.4 5.9 0.8 4.72 4.135 1.6 $N.1$ 0.6 8.7 5.3 1.930 4.137 1.6 $N.1$ 0.8 8.7 5.3 1.930 4.138 1.5 $N.1$ 2.4 601 71 1.460 4.140 1.5 $N.1$ 1.6 1.99 4.2 505 4.140 1.5 $N.1$ 1.0 9.3 3.7 2.160 4.142 1.3 4.25 5.3 4.04 1.70 33.30 4.142 1.3 4.25 5.3 4.04 1.70 33.30 4.144 1.6 $N.1$ 0.8 1.00 3.2 3.95 4.144 1.6 $N.1$ 0.8 1.00 3.2 3.95 4.144 1.6 <t< th=""><th>4168</th><th>1.5</th><th>106</th><th>21.2</th><th>34/0</th><th>3//</th><th>93.90</th></t<>	4168	1.5	106	21.2	34/0	3//	93.90
$4/3/1$ 1.1 $N_1/1$ 3.4 517 1.37 $1/250$ $4/3.2$ 1.5 $N_1/1$ 0.9 208 $1/6$ 435 $4/3.3$ 1.5 $N_1/1$ 0.7 289 71 444 $4/3.4$ 1.5 $N_1/1$ 0.8 56 $1/3$ 296 $4/3.4$ 1.5 $N_1/1$ 0.6 5.9 88 472 $4/3.5$ 1.6 $N_1/1$ 0.6 5.9 88 472 $4/3.5$ 1.6 $N_1/1$ 0.6 5.9 88 472 $4/3.5$ 1.6 $N_1/1$ 0.8 87 53 1930 $4/3.8$ 1.5 $N_1/1$ 0.8 87 53 1930 $4/4.9$ 1.5 $N_1/1$ 1.6 $N_1/1$ 1.6 1.71 1640 $4/4.4$ 1.6 $N_1/1$ 1.0 43 37 2160 $4/4.4$ 1.6 $N_1/1$ 1.0 42 505	4129	1.5	27	13.6	1950	389	6830
4/32 1.5 $Ni/$ 0.9 208 $1/6$ 435 $4/33$ 1.5 $Ni/$ 0.7 289 71 464 $4/34$ 1.5 $Ni/$ 0.8 56 $1/3$ 296 $4/35$ 1.6 $Ni/$ 0.8 56 $1/3$ 296 $4/35$ 1.6 $Ni/$ 0.6 59 88 472 $4/36$ 1.5 $Ni/$ 0.6 87 53 1930 $4/37$ 1.6 $Ni/$ 0.6 87 53 1930 $4/38$ 1.5 $Ni/$ 1.6 $Ni/$ 1.6 119 115 2840 $4/40$ 1.5 $Ni/$ 1.0 43 37 2160 $4/44$ 1.6 $Ni/$ 1.0 43 37 2840 $4/44$ 1.6 $Ni/$ 0.8 $1/0$ 32.2 995 $4/45$ 1.5 34 $1/1$ $1/11$ $1/17$ 307	4/30	1.5	3	3.8	379	192	3.590
4/33 1.5 Ni/l 0.7 289 $7/l$ 444 $4/34$ 1.5 Ni/l 0.8 56 $1/3$ 296 $4/35$ 1.6 Ni/l 0.6 59 0.8 472 $4/35$ 1.6 Ni/l 0.9 86 6.5 6.31 $4/37$ 1.6 Ni/l 0.8 87 53 1930 $4/38$ 1.5 Ni/l 2.6 $60/l$ $7/l$ $1/460$ $4/39$ 1.5 Ni/l $1/6$ Ni/l 10.8 87 53 1930 $4/40$ 1.5 Ni/l $1/0$ 93 37 2160 $4/44$ 1.6 Ni/l 1.0 49 42 505 $4/44$ 1.6 Ni/l 1.0 49 42 505 $4/44$ 1.6 Ni/l 0.8 $1/10$ 320 986 $4/44$ 1.6 Ni/l 0.8 $1/10$ 322 <t< th=""><th>4/3/</th><th>1.1</th><th>Nil</th><th>3.4</th><th>517</th><th>137</th><th>1250</th></t<>	4/3/	1.1	Nil	3.4	517	137	1250
4/34 1.5 $Ni/$ 0.8 56 $1/3$ 296 $4/35$ 1.6 $Ni/$ 0.6 53 0.8 472 $4/36$ 1.5 $Ni/$ 0.9 86 65 $63/$ $4/37$ 1.6 $Ni/$ 0.8 87 53 1990 $4/38$ 1.5 $Ni/$ 2.6 $60/$ $7/$ 1660 $4/39$ 1.5 $Ni/$ 1.6 $Ni/$ 1.6 190 $4/39$ 1.5 $Ni/$ 1.6 $Ni/$ 1.6 2840 $4/400$ 1.5 $Ni/$ 1.0 93 37 2180 $4/400$ 1.5 $Ni/$ 1.0 49 42 505 $4/41$ 1.6 $Ni/$ 1.0 49 42 505 $4/42$ 1.3 425 5.3 404 170 3330 $4/42$ 1.3 425 5.3 404 170 3330 $4/43$ 1.5 45 1.39 417 318 936 $4/44$ 1.6 $Ni/$ 0.8 $1/0$ 32 995 $4/45$ 1.5 34 1.1 $1/1$ $1/7$ 907 $4/45$ 1.5 34 1.1 $1/1$ $1/7$ 907 $4/45$ 0.9 $Ni/$ 1.8 253 104 2220 $4/46$ 0.3 7 0.6 23 85 1640 $4/47$ 0.9 $Ni/$ 1.5 333 22 1740	4132	1.5	Nil	0.9	208	16	435
4/35 1.6 $Ni/$ 0.6 5.9 8.8 4.72 $4/36$ 1.5 $Ni/$ 0.9 8.6 6.5 6.31 $4/37$ 1.6 $Ni/$ 0.8 8.7 5.3 1.930 $4/38$ 1.5 $Ni/$ 2.6 601 $7/$ 1.640 $4/39$ 1.5 $Ni/$ 1.6 1.9 1.5 2.840 $4/40$ 1.5 $Ni/$ 1.6 1.9 1.5 2.840 $4/41$ 1.6 $Ni/$ 1.0 9.3 3.7 2.160 $4/42$ 1.3 4.25 5.3 404 1.70 3.330 $4/42$ 1.3 4.25 5.3 404 1.70 3.330 $4/43$ 1.5 4.5 $1.3.9$ 41.7 3.8 9.36 $4/44$ 1.6 $Ni/$ 0.8 1.00 3.2 9.95 $4/44$ 1.6 $Ni/$ 0.8 1.00 3.2 9.95 $4/44$ 1.6 $Ni/$ 0.8 1.00 3.2 9.95 $4/45$ 1.5 3.4 1.1 1.11 11.7 9.07 $4/46$ 0.3 7 0.6 2.3 8.5 1.640 $4/47$ 0.9 $Ni/$ 1.8 2.53 10.4 2.220 $4/46$ 0.3 7 0.6 2.3 8.5 1.640 $4/47$ 0.9 $Ni/$ 1.5 3.5 51 1.560 $4/48$ 0.9 $Ni/$ 1.5	4/33	1.5	Nil	0.7	289	71	464
4.136 1.5 $Ni/$ 0.9 86 6.5 6.31 4.137 1.6 $Ni/$ 0.8 87 5.3 1.930 4.138 1.5 $Ni/$ 2.6 601 7.1 1.640 4.139 1.5 $Ni/$ 1.6 $Ni/$ 1.6 1.9 1.5 2.840 4.140 1.5 $Ni/$ 1.0 9.3 3.7 2.180 4.142 1.3 4.25 5.3 4.04 1.70 3.330 4.142 1.3 4.25 5.3 4.04 1.70 3.330 4.142 1.3 4.25 5.3 4.04 1.70 3.330 4.143 1.5 4.5 $1.3.9$ 4.17 3.18 9.36 4.144 1.6 $Ni/$ 0.8 1.00 3.2 9.95 4.144 1.6 $Ni/$ 0.8 1.00 3.2 9.95 4.144 1.6 $Ni/$ 0.8 1.01 <	4/34	1.5	Nil	0.8	56	113	296
4.137 1.6 $Ni/$ 0.8 87 53 1.930 4.138 1.5 $Ni/$ 2.6 COI $7/$ 1.440 4.139 1.5 $Ni/$ 1.6 1.19 1.15 2.840 4.140 1.5 $Ni/$ 1.0 93 37 2.180 4.140 1.5 $Ni/$ 1.0 4.9 4.2 505 4.142 1.3 4.25 5.3 4.04 1.70 3.330 4.143 1.5 4.5 1.3 4.25 5.3 4.04 1.70 3.330 4.143 1.5 4.5 1.3 4.25 5.3 4.04 1.70 3.330 4.143 1.5 4.5 1.3 4.25 5.3 4.04 1.70 3.330 4.144 1.6 $Ni/$ 0.8 1.0 3.2 9.95 4.145 1.5 3.4 1.1 1.11 1.17 907 4.146 0.3 7 0.6 2.3 8.5 1.640 4.147 0.9 $Ni/$ 1.8 2.53 10.4 2.220 4.148 0.9 $Ni/$ 1.5 3.5 51 1.560 4.148 0.9 $Ni/$ 1.5 3.33 2.2 1.740 4.150 1.1 1.4 3.9 1.240 7.5 8.88 4.151 1.5 $Ni/$ 1.2 3.31 3.4 7.36 4.152 0.9 $Ni/$ 1.1 </th <th>4/35</th> <th>1.6</th> <th>Nil</th> <th>0.6</th> <th>59</th> <th>88</th> <th>472</th>	4/35	1.6	Nil	0.6	59	88	472
4/38 1.5 N/I 2.6 $60/I$ $7/I$ 1640 $4/39$ 1.5 N/I 1.6 $1/19$ $1/15$ 2540 $4/40$ 1.5 N/I 1.0 93 37 $2/80$ $4/41$ 1.6 N/I 1.0 4.9 4.2 505 $4/42$ 1.3 4.25 5.3 4.04 1.70 3330 $4/43$ 1.5 4.5 $1.3.9$ 4.17 3.18 936 $4/44$ 1.6 N/I 0.8 $1/10$ 32 995 $4/45$ 1.5 3.4 1.1 1.11 1.17 907 $4/45$ 0.3 7 0.6 2.3 85 1640 $4/47$ 0.9 N/I 1.8 2.53 10.4 2.220 $4/48$ 0.9 N/I 1.5 3.3 2.2 $1/740$ $4/47$ 0.9 N/I 1.5 3.3 2.2 $1/740$ 7.5 <th>4136</th> <th>1.5</th> <th>Nil</th> <th>0.9</th> <th>86</th> <th>65</th> <th>631</th>	4136	1.5	Nil	0.9	86	65	631
4/39 1.5 $Ni/$ 1.6 $1/9$ $1/5$ 2840 $4/40$ 1.5 $Ni/$ 1.0 93 37 2180 $4/41$ 1.6 $Ni/$ 1.0 49 42 505 $4/42$ 1.3 425 5.3 404 170 3330 $4/43$ 1.5 45 1.39 417 318 936 $4/44$ 1.6 $Ni/$ 0.8 $1/0$ 32 995 $4/44$ 1.6 $Ni/$ 0.8 $1/0$ 32 995 $4/45$ 1.5 34 1.1 111 117 907 $4/46$ 0.3 7 0.6 23 85 1640 $4/47$ 0.9 $Ni/$ 1.8 253 104 2220 $4/48$ 0.9 $Ni/$ 1.5 35 51 1560 $4/49$ 1.6 $Ni/$ 0.3 33 22 1740 $4/50$ 1.1 14 3.9 1240 75 888 $4/51$ 1.5 $Ni/$ 7.5 2150 212 2030 4152 0.9 $Ni/$ 1.1 202 40 1600 4153 1.6 $Ni/$ 2.1 162 49 3260 4155 0.5 $Ni/$ 2.2 637 3.3 807 4155 0.5 $Ni/$ 2.2 637 3.3 807 4155 0.5 $Ni/$ 2.2 637 3.3 807 </th <th>4137</th> <th>1.6</th> <th>Nil</th> <th>0.8</th> <th>87</th> <th>53</th> <th>1930</th>	4137	1.6	Nil	0.8	87	53	1930
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4138	1.5	Nil	2.6	601	7/	1640
$4/4/1$ 1.6 $N/1$ 1.0 49 42 505 $4/42$ 1.3 425 5.3 404 170 3330 $4/43$ 1.5 45 13.9 417 318 936 $4/44$ 1.6 $Ni1$ 0.8 $1/0$ 32 995 $4/45$ 1.5 34 1.1 111 117 907 $4/46$ 0.3 7 0.6 23 85 1640 $4/47$ 0.9 $Ni1$ 1.8 253 104 2220 $4/48$ 0.9 $Ni1$ 1.5 35 51 1560 $4/48$ 0.9 $Ni1$ 1.5 35 51 1560 $4/49$ 1.6 $Ni1$ 0.3 33 22 1740 $4/50$ 1.1 14 3.9 1240 75 888 $4/51$ 1.5 $Ni1$ 7.5 2150 212 2030 $4/52$ 0.9 $Ni1$ 1.1 202 40 1600 $4/53$ 1.6 $Ni1$ 2.1 162 49 3240 $4/55$ 0.5 $Ni1$ 2.2 437 33 807 $4/55$ 0.5 $Ni1$ 2.2 437 33 807 $4/55$ 0.5 $Ni1$ 2.2 437 33 807 $4/56$ 1.1 $\times 110$ 17.0 7020 227 1750 $4/57$ 1.3 $Ni1$ 0.7 2.8 281 258	4139	1.5	Nil	1.6	119	115	2840
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4140	1.5	Nil	1.0	<i>93</i>	37	2180
4/43 1.5 45 13.9 417 318 936 $4/44$ 1.6 $Ni/$ 0.8 $1/0$ 32 995 $4/45$ 1.5 34 1.1 111 117 907 $4/46$ 0.3 7 0.6 23 85 1640 $4/47$ 0.9 $Ni/$ 1.8 253 104 2220 $4/48$ 0.9 $Ni/$ 1.5 35 51 1560 $4/49$ 1.6 $Ni/$ 0.3 33 22 1740 $4/50$ 1.1 14 3.9 1240 75 888 $4/51$ 1.5 $Ni/$ 7.5 2150 212 2030 $4/52$ 0.9 $Ni/$ 1.1 202 40 1600 $4/53$ 1.6 $Ni/$ 2.1 162 49 3260 $4/55$ 0.5 $Ni/$ 2.1 162 49 3260 $4/55$ 0.5 $Ni/$ 2.2 637 33 807 $4/55$ 0.5 $Ni/$ 2.2 637 33 807 $4/57$ 1.3 $Ni/$ 0.7 28 $28/$ 258 $4/58$ 1.5 $Ni/$ 0.9 81 685 683 $4/59$ 1.5 $Ni/$ 0.9 81 685 683 $4/59$ 1.5 $Ni/$ 0.9 81 685 683 $4/59$ 1.5 1.6 3.6 336 202 4500	4/41	1.6	Nil	1.0	49	42	505
$4/44$ 1.6 $Ni/$ 0.8 $1/0$ 32 995 $4/45$ 1.5 3.4 1.1 111 117 907 $4/46$ 0.3 7 0.6 2.3 85 1640 $4/47$ 0.9 $Ni/$ 1.8 253 104 2220 $4/48$ 0.9 $Ni/$ 1.5 35 51 1560 $4/49$ 1.6 $Ni/$ 0.3 33 22 1740 $4/50$ 1.1 $1/4$ 3.9 1240 75 888 $4/51$ 1.5 $Ni/$ 7.5 212 2030 $4/52$ 0.9 $Ni/$ 1.1 202 40 1600 $4/53$ 1.6 $Ni/$ 2.1 1622 40 1600 $4/53$ 1.6 $Ni/$ 2.1 162 49 3260 $4/53$ 1.6 $Ni/$ 2.1 162 49 3260 $4/55$ 0.5 $Ni/$ 2.2 637 33 807 $4/55$ 0.5 $Ni/$ 2.2 637 33 807 $4/56$ 1.1 $\times 110$ 17.0 7020 227 1750 $4/57$ 1.3 $Ni/$ 0.9 81 685 683 $4/59$ 1.5 3.1 11.8 2140 1230 4570 $4/59$ 1.5 10 3.6 336 202 4580	4142	1.3	42.5	5.3	404	170	3330
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4/43	1.5	45	13.9	417	318	936
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4/44	1.6	Nil	0.8	110	32	995
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4/45	1.5	34	1.1	111	117	907
$4/48$ 0.9 $Ni/$ 1.5 35 $5/$ 1560 $4/49$ 1.6 $Ni/$ 0.3 33 22 $1/40$ $4/50$ 1.1 14 3.9 $1/240$ 75 888 $4/51$ 1.5 $Ni/$ 7.5 2150 212 2030 $4/52$ 0.9 $Ni/$ 1.1 202 40 1600 $4/53$ 1.6 $Ni/$ 2.1 162 49 3260 $4/53$ 1.6 $Ni/$ 2.1 162 49 3260 $4/53$ 1.6 $Ni/$ 2.1 162 49 3260 $4/55$ 0.5 $Ni/$ 1.2 331 34 736 $4/57$ 1.5 $Ni/$ 1.2 637 33 807 $4/56$ 1.1 \star 110 17.0 7020 227 1750 $4/57$ 1.3 $Ni/$ 0.7 28 $28/$ 258 $4/58$ 1.5 $Ni/$ 0.9 81 685 683 $4/59$ 1.5 31 $1/8$ $2/40$ 1230 4570 $4/60$ 1.5 10 3.6 336 202 4580	4146	0.3	7	0.6	23	85	1640
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4147	0.9	Nil	1.8	253	104	2220
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4148	0.9		1.5	35	51	1560
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4149	1.6	Nil	0.3	33	22	1740
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4150	1.1	14	39	1240	75	888
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4151	1.5	Nit	7.5	2150	212	2030
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4152	0.9	Nil	1.1	202	40	1600
4155 0.5 N:1 2.2 637 33 807 4156 1.1 * 110 17.0 7020 22.7 1750 4157 1.3 Nil 0.7 2.8 2.81 258 4158 1.5 Nil 0.9 81 685 683 4159 1.5 31 11.8 2140 1230 4570 4160 1.5 10 3.6 336 202 4580	4153	1.6	Nil	2.1	162	49	3260
4/56 1.1 $*$ $1/0$ 17.0 7020 227 1750 $4/57$ 1.3 Nil 0.7 28 281 258 $4/58$ 1.5 Nil 0.9 81 685 683 $4/59$ 1.5 31 11.8 $2/40$ 1230 4570 4160 1.5 10 3.6 336 202 4580	4154	15	Nil	1.2	33/	34	736
4/57 13 Nil 0.7 28 281 258 4/58 15 Nil 0.9 81 685 683 4/59 1.5 31 11.8 2140 1230 4570 4160 1.5 10 3.6 336 202 4580	4155	0.5	Nil	2.2	637	33	807
4158 1.5 N:1 0.9 81 685 683 4159 1.5 31 11.8 2140 1230 4570 4160 1.5 10 3.6 336 202 4580	4156	1.1	* 110	17.0	7020	227	1750
41591.53111.821401230457041601.5103.63362024580	4157	1.3	Nil	0.7	28	281	258
4160 1.5 10 3.6 336 202 4580	4/58	1.5	Nil	0.9	81	685	683
	4159	1.5	31	11.8	2140	1230	<u> </u>
4161 0.3 10 2.4 122 383 6820	4160	1.5	10	3.6	336	202	
	4161	0.3	10	2.4	122	383	6820

PROV. TWP. NTS	ONTAR. BEN NEV 32D5	15	MOUNTAIN LAKE RESOURCES JOINT JOUTEL RESOURCES LTD. VENTURE					
REF.	R	. <u>.</u>		DL	••••••	SECTIOI CNG - 90		
REVISIONS	DATE	BY		CA	TNAGAL	I PROPER	TY	
			SCALE	1:500	DATE	0CT. / 9 0	PLATE	FIG. 11

Carbonate reaction

63.6144

			<u></u>		,	
SAMPLE	INTERVAL	AU	Ħg	Cu	РЬ	Zn
NUMBER	METERS	6مم	ppm	pm	ppm	mqq
4427 28	0.6	24 * 54.5	0.8	<u>94</u> 122	146	2380 32/0
29	1.5	Nil	0.1	20	25	183
30	1.6	Nil	0.3	32	21	725
3/	1.5	Nil	2.0	74	78	5090
<u> </u>	1.5	Nil Nil	2.6	49 25	99 17	1350 840
	1.2	Nil	0.1	15	7	421
35	1.5	Nil	0.3	21	43	489
36	0.9	Nil	0.8	39	51	1310
57	1.6	Nil	0.7	101	34	3640
<u>38</u> 39	1.6	Nil Nil	3.3 1.8	382 248	24/ 14/	4790 3060
40	1.6	Nil	0.1	10	9	479
41	1.5	Nil	0.1	8	2	401
42	1.5	Nil	0.5	32	16	784
43	1.6	Nil	1.0	101	91	4750
<u>44</u> 45	1.5	Nil Nil	0.5	62	105	2890 169
46	1.6	Nil	0.4	62 36	2	752
47	15	Nil	0.3	35	5	466
48	1.2	14	1.8	254	57	2960
49	1.2	* 12	0.2	46	3	2250
50	1.4	. 10	0.2	46	2	44
5651	0.8	Nil Nil	0.4	47 48		1010 473
<u> </u>	. 1.2	Nil	0.2	40	30 1 9	+7.3 +2.4
54	1.5	28	2.9	827	78	530
55	1.3	31	10.2	4060	277	871
56	1.6	Nil	2.1	671	100	2070
57	1.5	Nil	5.3	556	194	1250
<u>58</u> 59	<i>1.2</i> 0.3	27 * 60	5.9 4.9	2500 2800	<u> </u>	534 43 000
60	1.5	+ 60 Nil	0.9	208	18	1430
61	1.6	Nil	1.4	197	24	33/
62	0.8	34	4.0	1150	33	633
63	1.6	21	3.8	1870	25	490
<u> </u>	1.7	45 # 778.5	6.6 54.0	1310 2060	94 1180	846
66	1.6	206	34.0	837	593	1800
67	1.5	27	3.9	458	108	556
68	1.5	17	3.3	322	113	793
69	1.6	31	2.2	250	55	702
70	1.5	14	28	254	82	680
71 72	1.5	24	2.5 3.7	258 359	91 134	556
73	1.6	* 29	3.9	422	141	2380
74	1.5	21	3.2	436	542	5520
75	1.6	Nil	2.2	217	154	7580
76	1.6	17	0.7	75	25	454
77 78	1.5	17 14	5.5	326 1330	37 54	606 1480
79	1.6	21	0.8	14		900
80	1.2	17	0.2	9	و	417
81	1.5	10	2.5	385	39	202
82	1.5	10	2.8	575	36	203
83	1.6	* 5 Nil	3.8	873 650	31 37	196
85	1.3	Nil	10.5	2770	46	229
86	1.5	Nil	8.3	1320	66	255
87	1.6	. 17	12.4	2790	110	357
88	1.5	10	3.7	621	73	232
89	1.5	Nil	8.7	1600	89	214
<u> </u>	1.5	Ni l Ni l	2.2	448 331	27 43	98 92
92	1.5	14	1.4	230	19	117
93	1.5	Nil	3.4	674	44	139
94	1.5	Nil	55	1370	<i>9</i> .3	251
95	1.6	Nil	4.1	708	69	253
96 97	1.5	14 Nil	7.3 9.4	1010 1140	<u>88</u> 156	298 370
98	1.5	Nil	7.2	922	121	258
99	1.6	Nil	2.5	294	77	265
5700	1.5	Nil	2.8	334	108	229
01	1.5	* 334	27.8	3030	<i>96</i>	104
02	<i>1.1</i> <i>0.7</i>	27 Nil	. 10.7	1900 1310	225 98	1090
03	1.5	45	5.4	1370	101	1260
05	1.2	Nil	6.2	621	119	552
06	0.9	* 308.5	14.9	220	230	147
07	1.5	Nil	1.5	138	85	245
08	1.5	Nil	2.6	351 264	139 473	<i>416</i> <i>535</i>
10	1.6	Nil	06	78	4/3	663
//	1.5	133.5	6.4	263	1570	7720
12	1.2	Nil	0.8	96	275	42/
13	16	NIL	0.6	88	112	194
14	1.5	Nil	0.6	28 80	524 583	468 827
15	1.6	Nil	22	147	303 793	3320
17	1.5	Nil	3.2	190	2110	1910
18	0.9	10	4.2	245	2850	6280
19	1.6	Nil	1.3	122	649	1060
20	1.5	Nil	3.5	223	1670	5/60
21	1.5	Nil	2.6	239	794	2100
22 23	1.5	Ni1 10	0.3	/52 388	49 121	161
23	1.5	24	1.5	729	100	193
	1.5	Nil	0.6	/12	21	81
25	1.6	21	0.9	30	24	62
26	†	-	0.3	108	5	127
26 27	1.5	Nil	1			+
26 27 28	1.5	Nil	0.4	83	16	119
26 27	· · · · · · · · · · · · · · · · · · ·	+	1			+
26 27 28 29	.5 .5	Nil Nil	0.4	83 182	/6 3/	19 56

		1^
THE THE THE THE THE ADLE NUM	· • 5 ⁴	
AMYGDALOIDAL BASALT	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
CHERTY DACITE	0.3 Zn oz/1	ŕ
AMYGDALOIDAL BASALT	10.9 m . AU 02'	
CHERTY DACITE BRECCIA	0.2 m	
CHERTY DACITE AMYGDALOIDAL BASALT, 40% py- Very strong sericite alt. 5-10% py-	, c _l (
CHERTY DACITE 30% py-	λ	
Brecciated dacite	5° .0	
SERICITIC DACITE, MASSIVE		
White gtz s	Vein-	× 1
	tzone	68
Ma	ssue white gtz	vein
		11 13 10 1
		Increase in sulphide
		Increase in sulphide
SAMPLE GOLD SILVER COPPER	LEAD ZIN	C Fault, sulphide in sparry calcite al as 10.6"
NUMBER PPB PPM PPM	PPM PP,	A AMYGDALOIDAL BASALT
1040 24 1.0 127 41 34 1.8 125	99 30 274 232	
<u>42</u> <u>27</u> <u>22</u> <u>131</u> <u>43</u> <u>154</u> <u>57</u> <u>129</u>	461 200 3490 323	Ø
44 55 3.2 208 45 17 4.3 257	573 482 901 621	
46 285 8.5 284 47 51 4.7 159 48 21 3.5 275	2130 80) 1380 191 1060 127	Chlaritized section
48 21 3.5 275 49 295 4.7 235 50 199 8.5 341	1630 40. 6090 164	¹⁰
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1020 13. 1140 29:	AMYGDALOIDAL BASALT
53 99 25 138 54 168 6.3 107	784 116 3640 411	CHLORITIZED BASALT
55 41 1.1 102 56 Nil 0.9 105	159 33 91 33	CHLORITIC AMYGD BASALT
57 17 1.0 115	81 6 101 14	MASSIVE CHLORITIZED Fine gr. cpy.in
58 24 1.2 187 59 Nil 1.5 181 60 Nil 2.5 291 61 51 2.5 299	85 4 90 14	
62 45 1.7 251	77 10 98 23	BANDED HYALOCLASTITE -
64 34 1.8 185	35 17 89 50	WEAKLY CHL. AMYGD. BASALT
65 38 2.7 67/ 66 24 18 959	167 37 47 24	5 MASSIVE GREY BASALTIC T
67 31 1.3 210 68 58 0.3 40 69 7 0.3 63	82 30 14 14	5
70 7 0.4 73	17 18	3
71 Nil 0.4 62 72 Nil 0.2 54 73 Nil 0.2 74	7 6.	6 97
73 Nil 0.2 74 74 Nil 0.2 67 75 Nil 0.3 95 76 Nil 0.4 71	9 2 18 30	<i>(6</i>
77 Nil 0.4 67	9 8 10 9	7
78 17 0.6 95 79 7 0.3 77	28 3. 11 2.	
<u>80</u> 14 0.3 70 <u>81</u> N/1 1.8 339	10 3. 59 110	#6 00
82 Nil 0.8 200 83 Nil 0.4 78	42 74 38 3:	7
84 10 6.0 1360 85 Nil 1.0 256	540 435 29 2-	7
86 Nil 15 355 87 Nil 1.5 326 88 Nil 1.6 301	52 33 57 53 55 18	4
88 Nil 1.6 301 89 Nil 1.0 284 90 Nil 1.4 329	55 18 25 4 39 13	
9/ 7 2.1 376	37 4 118 13	$\overline{\mathcal{D}}$
92 Nil 8.4 2190 93 Nil 1.8 351 93 Nil 1.8 351 94 10 5.9 1540 95 111.5 4.8 607 96 Nil 1.2 236	77 18 39 24	0
95 111.5 4.8 GOT 96 Nil 12 296	509 114 25 11	
97 Nil 3.0 625 98 Nil 1.9 303	48 /6 33 /8	
99 Nil 3.3 201 1100 Nil 1.2 94	192 28 65 18	6 5
01 Nil 19 135 02 Nil 0.9 78	407 105	
03 10 0.7 46 04 Nil 2.1 293	59 /9 60 32	3 9
05 Nil 2.6 374 06 10 4.2 402	69 20 111 19	
07 Nil 3.6 287 08 Nil 2.5 109	<u>4/ /4</u> 33 /3	
09 10 17.5 2670 10 Nil 8.7 1030	120 22	
12 Nil 27 115	44 5 159 40 1210 20	6
14. Nil 1.6 231	1260 20, 102 9: 1090 27,	5
15 34 27.4 224 16 27 31.0 1780 17 10 8.9 982	1090 2/1 7940 401 279 30	20
17 10 8.3 982 18 14 17.5 1330 19 10 12.5 1770	2/3 30 1010 315 214 56	0

MASSIVE AMYGD. BASALT, GREY		MASSIVE	AMYGD.	BASALT,	FREY
-----------------------------	--	---------	--------	---------	------

	63.6144				
PROV. ONTARIO	MOUNTAIN LAKE RESOURCES INC. JOINT				
TWP. BEN NEVIS	JOUTEL RESOURCES LTD. VENTURE				
NTS 32.05					
REF.	DRILL SECTION				
DWN. BY 🧟	DDH No. CNG-90-1				
REVISIONS DATE BY	CANAGAU PROPERTY				
	- SCALE 1:500 DATE JAN. 190 PLATE F14. 13				

TRATINITIA

BASALT, AMYGDALOIDAL

		Semi m ser cui	ss. banded s 6. asp-10%, , gn5% -
DACI	TE	Sp10%	, gn5%
Massive, ank	eritic, altera	tion Se	rieite alte
	,		Tindr py, sp
	BASALT		Bleby py ;
	DACI.		Silicit
	BA	SALT -	
FOR MORE DET.	AIL	arait D	ACITE DACITE DACITE
OF THIS AREA	7, 2	ASALA	DACITE
SEE LOG.	Or,	ACALT "	DACITE
	Dr	13 <i>11</i> 27 —	

	DACITE
Silve	, ser. , altered

DACITE, MASSIVE

		CNG	-90-4			
SAMPLE	INTERVAL	AU	Ħg	Cu	Pb	Zn
NUMBER	METERS	<i>ط م م</i>	ווזקק	ppm	maq	mag
4162	0.6 m.	17	3.1	43	84	195
4163	1.6	10	1.1	30	53	287
4/64	1-2	10	2.3	21	64	190
4165	0.9	1181 Nil	7.8 0.5	38	263	482 (10
4167	1.5	Nil	0.3		47	88
4168	1.6	* 937.5	11.0	26	345	972
4169	1.0	504	3.2	38	131	279
4170	1.5	14	1.2	14	69	111
4171	1.3	Nil	1.9	56	58	278
4/72	1.5	274	49.0	574	651	1580
4/73	1.5	45	15.0	271	215	488
4/74	0.9	62	23.8	160	213	519
4175	1.6	10	8.1	110	196	776
4176	1.0	/7	28	84	269	<i>#95</i>
4177	0.9	723	102.1	332	635	1740
4178	1.4	75	1.9	<i>99</i>	137	1070
4179 4/80	0.9	* 2124	18.5		1880	2620
4/8/	0.9	394 1306	164	282	830 1890	2120
4/82	0.6	463	7.6	92	603	1090
4/83	1.5	24	0.4	18	14	58
4/84	1.1	Nil	1.5	21	73	112
4185	06	Nil	1.0	18	79	120
4186	0.3	Ni 1	85	158	506	6160
4187	1.6	Nil	7.8	56	303	368
4188	0.3	*76,800.5	362	390	18500	16900
4189 4190	0.9	82 N:/	4.0	27 49	266	<u>337</u> 113
4/91	1.5	NI	2.9	49	+3 19	98
4192	1.5	3/	2.4	19	35	109
4193	1.0	27	56	107	143	1880
4194	1.1	14	3.2	33	66	815
4195	0.5	* 305	78.8	16300	666	802
4196	10	79	16.6	389	54.1	344
4197	1.7	147	6.6	109	309	1410
4/98	1.2	وو	4.2	137	363	1410
4199	1.5	130	5.6	123	118	1120
4200 4201	1.6	79 27	10.2	359 44	205	828
4202	0.6	271	8.2	44 255	230	1210
4203	1.5	99	4.0	78	250	415
4204	1.0	113	8.6	275	153	120
4205	1.3	* 1503.5	11.4	354	545	756
4206	1.5	27	0.8	29	33	107
4207	1.5	17	0.6	17	27	183
4208	1.5	51	1.4	82	70	321
4209	1.6	82	1.0	46	45	379
4210	1.5	58	2.0	34	61	3/4
4211	15	127	7.0	482	147	/330
4212 4213	1.4	51 * 104.5	3.0 3.4		152 155	252 1020
4213	1.5	* 104.3	3.4 0.5	53	25	440
4215	1.5	14	0.5	61	20	470
4216	1.5	10	0.4	53	19	110
	· · ·					ļ

4217

24

0.4

37

20

44

0.9

