

010

REPORT ON THE

1997 DIAMOND DRILLING

OF THE

OSSIAN GOLD MINE PROPERTY 2.19182

OSSIAN TOWNSHIP

LARDER LAKE MINING DIVISION

NORTHEASTERN ONTARIO

PREPARED FOR

SILVER CENTURY EXPLORATIONS LIMITED

BY

W.A. HUBACHECK CONSULTANTS LTD. 365 Bay Street Suite 807 Toronto, Ontario M5H 2V1

NTS 32-D-4/5 PN: 53 June 30, 1997 File: drill53.wpd

J KEVIN MONTGOMERY M.Sc. (App.)

W.A. HUBACHECK CONSULTANTS LTD.

SUMMARY

The Ossian Gold Mine Property is comprised of 23 patented mining claims (451.5 hectares) and is located in Ossian Township, 36 Km northeast of Kirkland Lake, Ontario. The property is under option to Silver Century Explorations Ltd.

The 1996 channel sampling conducted on the surface trenches of the former Ossian Gold Mine returned significant gold sections of 8.18 gpt. Au/4.2 m, 4.32 gpt. Au/2.7 m and 3.0 gpt. Au/3.9 m. These gold results revealed the potential for a quartz lode gold deposit.

Geological mapping and whole rock geochemistry in 1996 outlined a 2.4 km long and 300 to 900 m wide felsic (rhyolite to dacite) belt on the property. Strong potassic and silica hydrothermal alteration, pyritization and shearing were observed in the belt. Two strong and extensive (1.6 km long) high chargeability anomalies were detected by the 1996 induced polarization survey within the central felsic belt. These high chargeability anomalies along with the favourable geological conditions indicated good potential for pyritic gold mineralization.

A short reconnaissance diamond drilling program of six holes totalling 1,390 m was carried out in early 1997. Four holes totalling 1,094 m tested targets within the high chargeability anomalies and the other two holes (296 m) tested the auriferous quartz zones at the Ossian Gold Mine Showing area. The best gold results were 4.59 gpt. Au over 2.72 m and 1.12 gpt. Au over 6.15 m from the quartz zone at the Ossian Gold Mine Showing area. These intercepts are encouraging, however they show limited potential economically. Diamond drilling did intersect a major pyrite horizon which extends for 2.2 Km on the property, however no significant gold mineralization was encountered. Therefore, little potential for pyritic gold mineralization exists on the Ossian Gold Mine Property. Further gold exploration on the property is not recommended at this time.

The major pyrite horizon, consisting of 3 to 15 % very fine-grained brownish pyrite disseminations and stringers, is hosted by rhyolitic volcanics near the contact of andesitic volcanic flows. This pyrite horizon setting is analogous to the setting of the base metal deposits in the Noranda Camp. Further exploration on the Ossian Gold Mine Property should thus be focused towards base metal exploration. Preliminary work should include base metal, multi-element geochemical, whole rock and petrographic analysis of drill core in the felsic belt.

32D05SE2010

2.19182

OSSIAN

010C

TABLE OF CONTENTS

INTRODUCTION	F	PAGE NO 1
LOCATION AND A	CCESS	1
PHYSIOGRAPHY		3
PROPERTY DESC	RIPTION	3
LOGISTICS		3
REGIONAL GEOL	OGY	5
PROPERTY GEOL	.OGY	7
DISCUSSION OF	1997 DIAMOND DRILLING	8
RECOMMENDATION	ONS	14
BIBLIOGRAPHY		16
CERTIFICATE OF	QUALIFICATIONS	17
APPENDIX A APPENDIX B	DIAMOND DRILL HOLE LOGS GOLD ANALYSIS CERTIFICATES	
	FIGURES	
FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4	LOCATION MAP CLAIM MAP LARDER LAKE AREA GEOLOGY MAP DIAMOND DRILL HOLE LOCATION MAP MAPS AND DRILL HOLE SECTIONS	2 4 6 10
MAP 1 SECTIONS 1-5 (in back pockets)	1997 DIAMOND DRILL HOLE LOCATION AND GEOLG 1997 DIAMOND DRILL HOLE SECTIONS	OGY

W.A. HUBACHECK CONSULTANTS LTD.

INTRODUCTION

The Ossian Gold Mine Property is part of a large project area held by Silver Century Explorations Ltd. and Sudbury Contact Mines Ltd. in Ossian Township, Larder Lake Mining Division, Ontario. The property was optioned from Crow Geological Services on February 1, 1996. It is comprised of 23 patented mining claims, 451.5 hectares.

In early 1996, a winter reverse circulation drilling program of 12 holes was carried out on the Ossian Gold Mine Property. This program was managed by W.A. Hubacheck Consultants on behalf of Silver Century Explorations Ltd. This drilling returned no significant gold anomalies in the glacial till on the property. Slightly higher total gold grain counts per kilogram where returned from the holes along the southern portion of the property (Toth and Christie, 1996).

Geophysical and geological field work was conducted on the Ossian Gold Mine Property during the summer of 1996. JVX Ltd. conducted the following ground geophysical work: line cutting, a Time Domain Spectral Induced Polarization/Resistivity survey, a Total Field Magnetic survey and a VLF survey (Mihelcic and Webster, 1996). Geological mapping, rock sampling, trench rock channel sampling and a whole rock geochemical survey (Montgomery, 1997) were carried out by W. A. Hubacheck Consultants Limited in conjunction with the geophysical work.

This report describes the results of the 1997 winter diamond drilling program on the Ossian Gold Mine Property. The coordination and implementation of the various technical tasks were conducted by W.A. Hubacheck Consultants Ltd. under the supervision of D. Christie and K. Montgomery.

LOCATION AND ACCESS

The property is located in central Ossian Township, Larder Lake Mining Division, northeastern Ontario. It is approximately 12 Km north of the town of Virginiatown and 36 Km northeast of Kirkland Lake (Figure 1).

Access to the property is best via an all terrain vehicle trail which extends from just north of Virginiatown to as far as Mist Lake in northwestern Ossian Township. This gravel trail is a former logging road that presently can be accessed by truck from the Labyrinth Lake road. On the Labyrinth Lake road just north of the ONR railroad, a forest road leads westward to the gravel ATV trail.

Alternatively, during the winter, the Ossian Gold Mine Property can be best accessed by snowmobile off the Labyrinth Lake road. This gravel forest road extends

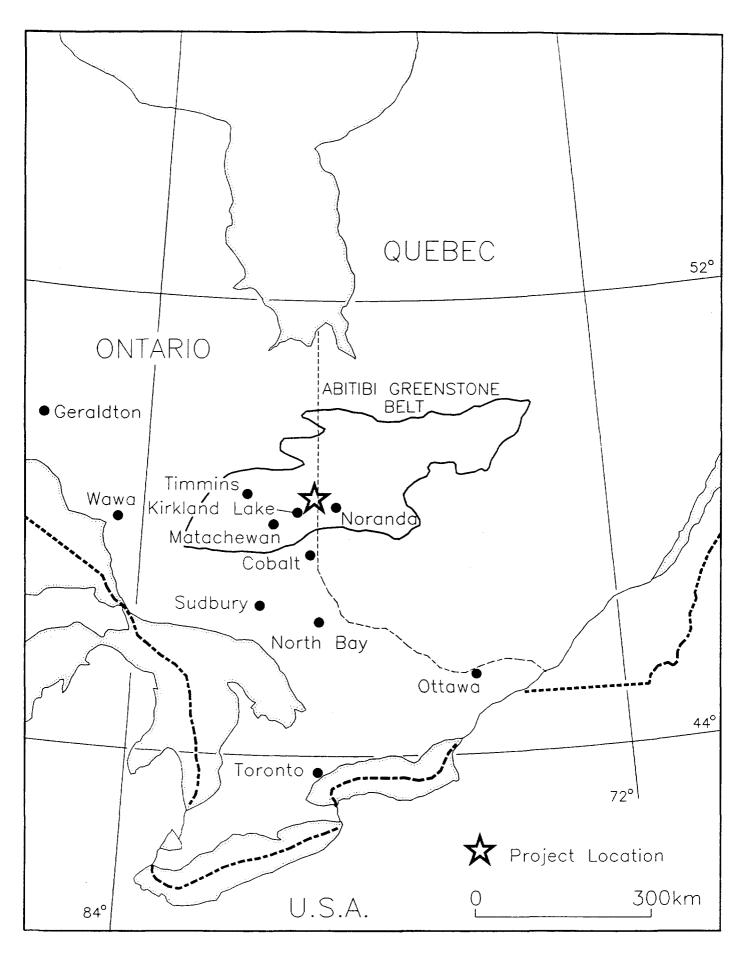


Figure 1: Location Map

north from Kearns on Highway 66. At approximately 14 Km north of Kearns, a swampy "skidder road" branches westward off the Labyrinth Lake road towards the Ossian Gold Mine Property. A small trail at the end of this skidder road has been cut to the Ossian Gold Mine Property. The property is 3 Km west of the Labyrinth Lake road.

PHYSIOGRAPHY

The Ossian Gold Mine Property is covered by glaciolacustrine sediments through which extensive bedrock is exposed. Outcrops form east-west trending ridges and knolls that are separated by flat swampy terrain. Relief on the property ranges from 304 to 364 m above sea level.

Drainage on the property is to the southeast. Intermittent streams emanating from Cover Lake and Jump Lake flow towards Mist Creek which is located on the southern boundary of the property. Mist Creek flows east into Labyrinth Lake. Vegetation is a mixed forest type consisting of spruce, jackpine, poplar, birch and alders.

PROPERTY DESCRIPTION

The Ossian Gold Mine Property is part of the Ossian Project which consists of 19 unpatented mining claims and 23 patented mining claims totalling 2,398 hectares in Ossian Township. The Ossian Project is held by Silver Century Explorations Ltd. and Sudbury Contact Mines Limited.

The Ossian Gold Mine Property is comprised of the following 23 patented mining claims: 11131-11133, 11180-11188, 11344, 11413, 11999-12000, 12020, 12021, 12716, 12717, 12577, 12578 and 15891(Figure 2). It is approximately 451.5 hectares in size and was optioned by Silver Century Explorations Ltd. from Crow Geological Services on February 1, 1996.

LOGISTICS

Analytical Lab:

Chimitec Ltee.

1322 rue Harricana Val d'Or, Quebec.

J9P 3X6

Diamond Drilling Contractor:

Bradley Bros. Limited

P.O. Box 2367

Rouyn-Noranda, Quebec.

J9X 5A9

Technical Consultants: W. A. Hu

W. A. Hubacheck Consultants Ltd.

Suite 1401

141 Adelaide St. West

Toronto, Ontario.

M5H 3L5

Project Geologist:

David Christie, B.Sc. 104 Douglas Avenue Toronto, Ontario.

M5M 1G6

Contract Geologist:

J. Kevin Montgomery, M.Sc. (App.)

1190 Lozanne Cr. Timmins, Ontario.

P4P 1E8

Geological Technician:

Robert Peever

Kirkland Lake, Ontario.

Technician:

Joe Whitall

Larder Lake, Ontario.

REGIONAL GEOLOGY

The property lies within the southwestern part of the Abitibi Greenstone Belt, in the Superior Province. The volcanic rocks of the region form part of the large east-plunging Blake River Synclinorium that lies between the Abitibi and Round Lake batholiths. The Destor-Porcupine and Larder-Cadillac shear zones cut the north and south limbs of the synclinorium, respectively. The property is underlain by the Blake River Archean Upper Super group.

The Blake River Group calc-alkalic volcanics range from basalts to rhyolites, with basalts and andesites being dominant. Dacite and rhyolite are abundant in the centre of the group. Units of the Blake River Group are shallow to moderately dipping. Along the margins of the group, units face towards the centre of the group suggesting a synclinorium. The centre of the group is occupied by an anticlinal structure cored by felsic intrusions. This may represent an original volcanic centre. The Blake River Group has a flat aeromagnetic signature and a sharp contact with the convoluted aeromagnetic pattern of the Kinojevis South Group, to the south.

The property covers the central portion of a felsic volcanic sequence (anticline) that stretches from Mist Lake to the east side of Labyrinth Lake (Figure 3).

Ossian Gold Mine Property

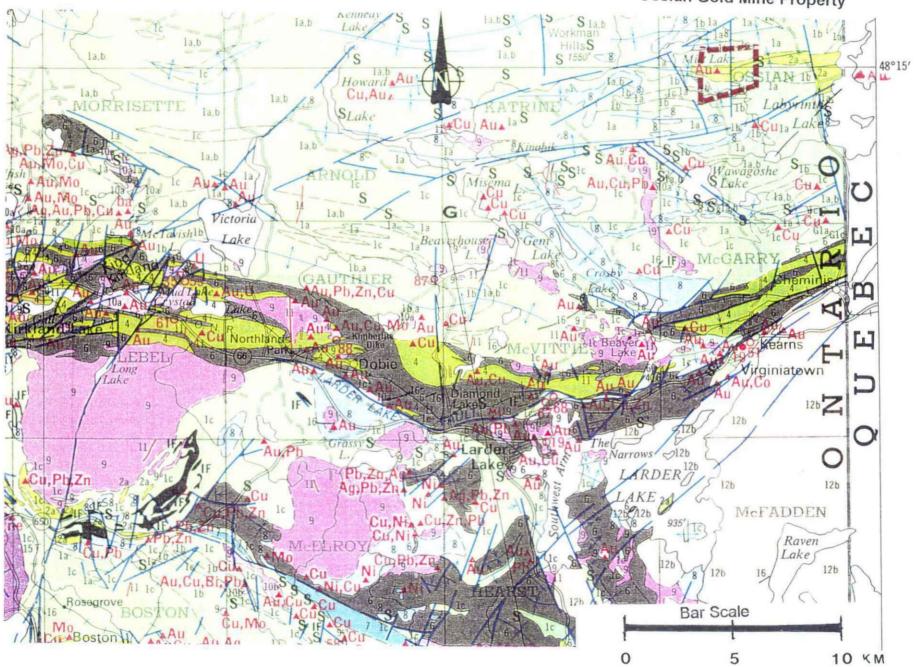


FIGURE 3

PROPERTY GEOLOGY

The Ossian Gold Mine Property contains approximately 30 percent bedrock exposure that occurs as knolls and ridges. Between these east-west trending knolls and ridges, bedrock is covered by glaciolacustrine silt and clay deposits, varying in thickness from 0 to 26 m (Toth and Christie, 1996).

The volcanics on the Ossian Gold Mine Property are calc-alkaline in affinity and range from rhyolite to basaltic in composition(Montgomery, 1997). The volcanic stratigraphy trends east-west with a slight flexure to northwest at the extreme west end of the property. The central portion of the property is underlain by rhyolitic to dacitic volcanics. This 2.4 Km long belt is approximately 900 m wide and appears to thin to the east to a 300 m horizontal surface width. Strong potassic, iron carbonate and silica hydrothermal alteration; pyritization; and shearing is present in the belt. All three varieties of the felsic volcanics contain very fine-grained disseminated pyrite mineralization; the siliceous grey ash to crystal tuff contains 5 to 15 % pyrite, the carbonatized ash tuff contains 2 to 3 % pyrite and the pale green tuff contains trace to 1/2 % pyrite.

During the 1996 geological survey on the property, the felsic belt was mapped as felsic ash to crystal tuffs due to the lack of distinguishable flow structures. The 1997 diamond drilling indicates the felsic belt is composed of both flows and tuffs. The flows consist of massive, porphyritic and brecciated units. The flows appear concentrated in the centre of the belt around the Ossian Gold Mine shaft with the tuffs located on the eastern and western flanks of the belt on the property.

North of the felsic belt occur basaltic pillowed flows, while andesitic pillowed flows are located in the south and central portions of the property. Andesitic crystal to lapilli tuffs occur as a unit between the felsic tuffs and the mafic flows in the north. The pillow facing direction in the north is northward and in the south it is southward. This indicates that the stratigraphy on the property is an anticlinal sequence. Foliation within the felsic belt is steep 75 to 85 degrees north or south and strikes anywhere from 85 to 110 degrees. Quartz zones are emplaced in the hinge area of the anticline at the Ossian Gold Mine shaft.

The volcanic stratigraphy is cut by a possible north-south cross fault in the east near L8 E. This is indicated by a linear magnetic low on the 1996 ground magnetic survey (Mihelcic and Webster, 1996) and the 1993 GSC regional airborne magnetic survey. Other minor cross faults appear to occur in the Ossian Gold Mine shaft area.

The Ossian Gold Mine quartz zones have been traced on surface for 165 m by cross trenching. On the west side of the shaft, the main quartz zone strikes east-west for 90 m. It pinches and swells in width from 3 to 10 m. Old mine level plans show the main quartz zone to dip 50 to 65 degrees north. East of the shaft, the main quartz zone is much

narrower 1.6 to 0.3 m wide and has been traced on surface for 75 m. It trends 070 degrees for the most part but flexes north-south at BL, 30 E.

The quartz zones are milk white coloured, very fine-grained quartz with iron oxide stained fractures. Locally, 2-3 % chlorite filled microfractures are present. Fracturing is moderately intense with two dominant directions 110 and 350 degrees. Sulphide mineralization in the quartz zones consists of 0.5 to 3 % fine-grained disseminanted cubic brassy pyrite. The quartz zones are hosted by pyritic rhyolite ash tuffs. In proximity to the quartz zones they contain 2 to 10 % fine-grained to medium-grained disseminated cubic pyrite. The tuffs are often highly gossan weathered. They are typically cream to very pale green, very fine-grained, siliceous ash tuffs with occasional 2 to 5 % chlorite specks or stringers and 5 to 20 % quartz stringers/ veinlets.

West of the shaft, the main quartz zone returned composite gold sections of 4.32 gpt. Au/2.7 m and 3.00 gpt. Au/3.9 m. Along the contacts of the quartz zones with the host pyritic felsic ash tuffs, composite gold sections included 2.80 gpt. Au /2.0 m, and 2.60 gpt. Au/1.7 m. The far west end of the trenching returned the following sub-economic gold sections; 2.25 gpt. Au/2 m and 1.38 gpt. Au/3.25 m from both quartz zones and felsic ash tuffs.

East of the shaft, channel cuts of 20.49 gpt. Au/1.6 m, 11.19 gpt. Au/1.0 m and 8.60 gpt. Au/0.7 m were obtained from the east quartz zone. Composite gold sections of 8.18 gpt. Au/4.2 m and 2.89 gpt. Au/ 1.95 m where also obtained from a mixture of the east quartz zone and host pyritic felsic tuff.

Geological mapping in the shaft area also discovered a pyrite zone 10 to 15 m wide between L1 E and L2 E at 30 S. It was traced for 100 m and appears to correspond with IP target TH-2 (Mihelcic and Webster, 1996). The zone consists of 8 to 10 % very fine grained finely disseminated pyrite in light grey, silicified felsic crystal tuff. Surface rock sampling from this zone returned gold values of less than five ppb. Au.

DISCUSSION OF 1997 DIAMOND DRILLING

The 1996 geophysical work outlined two strong and extensive (1.6 km long) high chargeability anomalies known as IP-1 and IP-2 in the central felsic tuff belt (Mihelcic and Webster, 1996). These high chargeability anomalies along with the favourable hydrothermal alteration and pyritization suggested the felsic tuff could host a pyritic gold deposit. The economically significant surface gold sections of 8.18 gpt. Au/4.2 m, 4.32 gpt. Au/2.7 m and 3.0 gpt. Au/3.9 m from the Ossian Gold Mine Showing suggested the showing area would be a good site for a quartz lode gold deposit.

Therefore, a short reconnaissance diamond drilling program of six holes totalling 1,390 m to test these possibilities was carried out from February 12 to March 6, 1997.

Four holes (1,094 m) tested targets in the high chargeability anomalies which had MIP values over 400 MV/V and short spectral tau values(Mihelcic and Webster, 1996). These chargeability characteristics are indicative of fine-grained sulphide mineralization. The other two holes (296 m) tested the auriferous quartz zones at the Ossian Gold Mine Showing area.

Summaries of the individual holes are listed below:

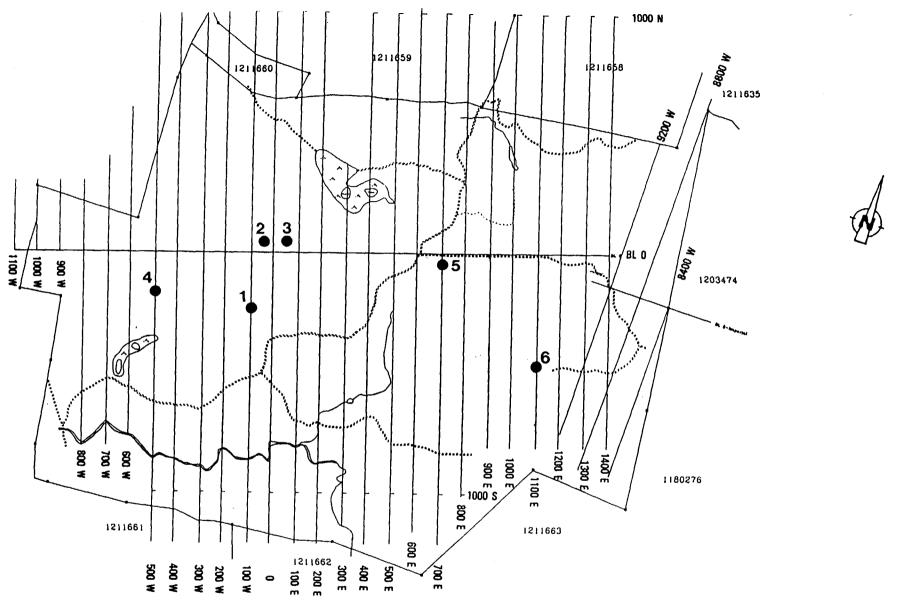
Hole OGM97-1

Location:

Ossian Gold Mine Property

Claim: 11132

L100W, 225S (Metric field grid) Azimuth: 340 Dip: -50


Length: 314 m

Target: Test the High chargeability (IP1) conductor from 225S to 50S and the VLF-EM conductor at 150S on L100W.

Summary: The hole intersected the following stratigraphy:

0-4.4 m	Overburden.
4.4-10.8	Mafic Amygdaloidal Flow.
10.8-46.2	Felsic Flow.
46.2-158.08	Felsic Porphyritic Flow, pervasive Carbonatization, Pyrite 5-7%.
158.08-196.75	Felsic-Intermediate Massive Flow or Ash Tuff, local Pyrite 7-12%.
196.75-205.05	Felsic Breccia, Pyrite 4-5%.
205.05-227	Intermediate to Felsic Flow, moderate Potassic alteration.
227-256	Altered Intermediate to Felsic Flow, pervasive Potassic alteration.
256-275	Intermediate Flow.
275-285.3	Altered Intermediate Flow, pervasive Potassic alteration.
285.3-304.98	Intermediate Porphyritic Intrusion.
304.98-314	Felsic to Intermediate Flow.
314	End of the Hole.

Results: The Induced Polarization anomaly (IP-1) is due to 3-20% disseminated and stringer pyrite mineralization in felsic porphyritic flows from 47.7 to 158.08 m downhole. The VLF-EM conductor is a result of a shear zone at 101-104 m or 131-135 m. Gold analytical results from sampling were poor with the best assay being 18 ppb. Au.

500 m

Figure 4 Diamond Drill Hole Location Map OSSIAN GOLD MINE PROPERTY SILVER CENTURY EXPLORATIONS LTD. Ossian Twp, Larder Lake Area, Ontario NTS 32 D/4 & 32 D/5

Hole OGM97-2

Location:

Ossian Gold Mine Property

Claim: 11131

28W, 81N (Metric field grid) Dip: -56.5 Azimuth: 184

Length: 173 m

Target: Test the Ossian Gold Mine Showing west quartz zone.

Summary: The hole intersected the following stratigraphy:

0-3 m Overburden. 3-46.4 Felsic Massive Flows, pervasive Potassic alteration. 46.4-62 Altered Felsic Flows and Quartz Veins, pervasive bleaching (sericitization), 1.5-4% Pyrite in veined sections. 62-136 Felsic Massive Flows, pervasive Potassic alteration. Felsic Massive Flows. 136-173

End of the Hole. 173

Results: The Ossian Gold Mine west quartz zone was intersected from 46.4 to 62 m. A gold zone of 1.12 gpt. Au over 6.15 m was intersected between 48.5 to 54.65 m downhole. Included in this composite gold zone is an intercept of 1.65 gpt. Au over 1.95 m. This zone is at a vertical depth of 43 m. The gold zone is comprised of 30% quartz veins(3 to 70 cm wide) to stringers in bleached felsic flow. The bleaching is sericite hydrothermal alteration about the quartz veining. The quartz veining is oriented on average 55 degrees to core axis. Pyrite mineralization content averages 3 % and is comprised of brassy finegrained cubic disseminations in both quartz and felsic flow material.

No other quartz zones were intersected in the hole parallel to the Ossian Gold Mine west quartz zone. In addition the host felsic flows are unmineralized and lack any shearing structure.

Hole OGM97-3

Location:

Ossian Gold Mine Property

Claim: 11131

32E, 26N (Metric field grid) Azimuth: 184 Dip: -50.5

Length: 123 m

Target: Test the Ossian Gold Mine Showing east quartz zone.

Summary: The hole intersected the following stratigraphy:

0-3.55 m	Overburden.
3.55-14.25	Felsic Massive Flows, pervasive Potassic alteration.
14.25-34.2	Altered Felsic Flows and Quartz Veins, pervasive bleaching (sericitization), 1-5% Pyrite in veined sections.
34.2-54.5	Felsic Massive Flows, pervasive Potassic alteration.
54.5-123	Felsic to Intermediate Flow.
123	End of the Hole.

Results: The Ossian Gold Mine east quartz zone was intersected from 14.25 to 34.2 m downhole. In this zone a composite gold section of 4.59 gpt. Au over 2.72 m was cut from 16.3 to 19.02 m downhole which includes an assay of 10.94 gpt. Au over 1.02 m. The gold zone consists of a narrow(8 cm wide) quartz vein and a 1.02 m core length quartz vein within bleached felsic flows. The bleaching is sericite hydrothermal alteration about the quartz veining. The quartz veining is variably oriented 0 to 65 degrees to core axis. The section contains 2-5% fine to medium grained cubic disseminated pyrite.

As in Hole OGM97-2 no other quartz zones were intersected and the host felsic flows are unmineralized and massive.

Hole OGM97-4

Location:

Ossian Gold Mine Property

Claim: 11131

L500W, 175S (Metric field grid) Azimuth: 339 Dip: -49.5

Length: 152 m

Target: Test the High chargeability (TH-1) conductor target at 125S to 100S on L500W.

Summary: The hole intersected the following stratigraphy:

0-4.4 m	Overburden.
4.4-83.14	Mafic to Intermediate Massive to Amygdaloidal Flows.
83.14-95.4	Felsic Ash Tuffs, Pyrite 1-5%.
95.4-134.14	Felsic breccia, Pyrite 10-12%.
134.14-152	Mafic Massive Flow.
152	End of the Hole.

Results: The hole intersected a pyrite zone from 85.5 to 134.14 m downhole which corresponds to the high chargeability target TH-1. The pyrite zone is comprised of brassy

very fine-grained pyrite disseminations and stringers in massive felsic flows and felsic breccia. The pyrite content averages 3 to 5 % pyrite, commonly with local sections up to 10-15%.

Gold results from the hole were very low with the best assay being 19 ppb. Au.

Hole OGM97-5

Location:

Ossian Gold Mine Property

Claim: 11133

L700E, 50S (Metric field grid) Azimuth: 340 Dip: -50

Length: 293 m

Target: Test the high chargeability (TH-3) conductor target at 0 to 25N and the high chargeability (TM-3) conductor target at 100 to 125N on Line 700E.

Summary: The hole intersected the following stratigraphy:

0-19.4	Overburden.
19.4-30.75	Sericitized Intermediate Amygdaloidal Flows/Carbonatized Felsic
	Flows.
30.75-41.5	Carbonatized Felsic Crystal Tuffs, Pyrite 6 %.
41.5-88.35	Carbonatized and Sericitized Felsic Ash to Crystal Tuffs, Pyrite 2-3%.
88.35-110.5	Intermediate Crystal Tuff.
110.5-227.1	Carbonatized and Sericitized Felsic Ash to Crystal Tuffs, Pyrite 3%.
227.1-242	Intermediate to Felsic Crystal Tuff, moderate to weak carbonatization
0.40.050.00	and sericitization.
242-253.23	Sericitized Intermediate Crystal Tuff.
253.23-277.3	Intermediate Agglomerate.
277.3-293	Intermediate to Mafic Ash Tuff.
293	End of the Hole.

Results: The hole intersected the high chargeability target TH-3 from 30.75 to 63 m downhole. This target was a pyritic section(Pyrite 3-6%) in a carbonatized and sericitized felsic unit. The pyrite section is composed of brownish very fine-grained pyrite stringers and local disseminations. The second target (TM-3) is also a pyritic section(Pyrite 3%) in a carbonatized and sericitized felsic unit from 171.25 to 206 m downhole. This pyrite is brassy and brownish coloured, very fine-grained and occurs as specks to disseminations as well as local stringers.

No significant gold results were returned from the hole with the highest assay being 65 ppb. Au.

Hole OGM97-6

Location:

Ossian Gold Mine Property

Claim: 11184

L1100E, 450S (Metric field grid)
Azimuth: 340 Dip: -49

Length: 335 m.

Target: Test the core of the induced polarization high chargeability anomaly (IP-2) from 325S to 250S on Line 1100E(Target TL-2).

Summary: The hole intersected the following stratigraphy:

0-11	Overburden.
11-114.4	Mafic Massive to Porphyritic Flows, Pyrite 5-7% from 91.9 to 114.4m.
114.4-128.3	Intermediate to Mafic Crystal-Lapilli Tuff, Pyrite 8-10%.
128.3-164	Intermediate Ash to Crystal Tuff, Pyrite 2-3% from 133-164 m, moderate pervasive Carbonatization.
164-207.5	Sericitized Felsic Crystal-Lapilli and Breccia Tuff, Pyrite 4%.
207.5-272.6	Felsic Ash Tuff, Iron Carbonatization, Pyrite 2%.
272.6-335	Intermediate Crystal Lapilli Tuff, Pyrite 0.5-1%.
335	End of the Hole.

Results: The hole intersected 2-4% pyrite mineralization throughout the Felsic tuff stratigraphy from 164 to 272.6 m downhole. This lies directly below the core of the induced polarization high chargeability anomaly IP-2. The pyrite mineralization consisted of primarily wispy lenses to blebs parallel to foliation. Gold values from this hole were some what elevated (15-190 ppb. Au) but not significant.

RECOMMENDATIONS

The best gold results from the diamond drilling program were from the quartz zone at the Ossian Gold Mine showing. Hole OGM97-3 returned 4.59 gpt. Au over 2.72 m and Hole OGM97-2 returned 1.12 gpt. Au over 6.15 m. These intercepts are encouraging in that they confirm the presence of gold mineralization below surface in the Ossian Gold Mine quartz zone. This is important as there was some discrepancy in assay results from underground sampling and diamond drilling at the Ossian Gold Mine in the 1920's.

However, the 1997 drilling at the Ossian Gold Mine showing is not encouraging enough for the presence of a small gold deposit containing half a million ounces of gold. This is concluded from the following factors: the gold intercepts are uneconomic, only one quartz /alteration zone was intersected by both holes in the showing area, and there is a lack of shearing and anomalous gold values in the altered felsic volcanics of the

quartz/alteration zone. There are no indications from the 1997 drilling or the 1996 surface geological mapping that geological conditions would improve at depth or along strike to contain significant gold mineralization. Further work in the Ossian Gold Mine showing area is not recommended at this time.

The four holes drilled to test high chargeability targets all intersected pyritic sections. These sections are part of a major pyrite horizon (IP 1,2) which extends for 2.2 Km (Holes OGM97-1,4,6) on the property. No significant gold mineralization was associated with any pyritic section intersected. The majority of gold values were less than 5 ppb. Au with the highest assay being 190 ppb. Au. The lack of anomalous gold values within the felsic volcanics intersected by diamond drilling suggest a very limited potential on the Ossian Gold Mine Property for a pyritic gold deposit. Further gold exploration on the property is not recommended at this time.

The major pyrite horizon, consisting of 3 to 15 % very fine-grained brownish pyrite disseminations and stringers, is hosted by felsic rhyolitic volcanics near the contact of andesitic volcanic flows. This pyrite horizon setting is analogous to the setting of the base metal deposits in the Noranda Camp. In fact the Ansil deposit in the Noranda Camp is located along the contact between the Northwest Rhyolite formation (footwall) and the Rusty Ridge Andesite formation (hangingwall). The Ansil deposit is characterized by a zone of sulphide rich alteration that not only extends disconformably for 300 m into the andesite overlying the deposit, but also conformably along the rhyolite-andesite contact for 2200 m to surface.

Further work on the Ossian Gold Mine Property should thus be focused towards base metal exploration. Base metal exploration work has been recommended previously, along the southern boundary of the felsic belt (Derry, 1973).

It is recommended that base metal (Cu,Zn,Pb and Ag), whole rock, and multielement geochemical analysis as well as petrographic analysis of drill core be carried out concentrating on Holes OGM 97-1,4,6 which intersected the pyrite horizon as well as Hole OGM 97-5. Also copper mineralization (chalcopyrite and bornite) was reported to occur within mineralized rhyolite in a trench a quarter mile southwest of the shaft (Longley, 1949). A field investigation to locate this trench is recommended.

BIBLIOGRAPHY

Derry, D.R.

1973: Report on Minedel Mines Property in Ossian Township, Ontario. Prepared by Derry, Michener and Booth.

Geological Survey of Canada;

- 1951b: Larder Lake, District of Timiskaming, Ontario: Geol. Survey of Canada, Aeromagnetic Series, Map 47G.
- 1993a: Aeromagnetic Total Field Map, Blake River Syncline, Ontario; parts of NTS 32D/4, 32D/5. Map 20378G, Scale 1:20 000.
- 1993b: Map of Conductors and Apparent Conductivity Of Overburden, Blake River Syncline, Ontario; parts of NTS 32D/4, 32D/5. Map 25060G, Scale 1:20 000.
- 1993c: Map of Apparent Conductance of Bedrock Conductors, Blake River Syncline, Ontario; parts of NTS 32D/4, 32D/5. Map C 25050G.
- 1993d: Map of Apparent Conductivity of Overburden, Blake River Syncline, Ontario; parts of NTS 32D/4, 32D/5. Map C 25052G, Scale 1:50 000.

Longley, C.S.;

1949: Report on Minedel Mines Limited. Prepared for Paymaster Consolidated Mines Limited, South Porcupine, Ontario.

Mihelcic, J. and Webster, B.;

1996: A logistical and interpretive report on Spectral IP, Restivity, VLF-EM and Magnetometer surveys conducted on the Ossian Gold Mine Property. Project 53, Ossian Twp., Larder Lake area, Ontario by JVX Limited.

Montgomery, J. K.;

1997: Report on the Geology of the Ossian Gold Mine Property, Ossian Township, Larder Lake Mining Division, Ontario. Prepared for Silver Century Explorations Ltd. by W.A. Hubacheck Consultants Ltd.

Toth, P. and Christie, D.W.;

1996: Report on the 1996 Reverse circulation drilling Program on the Ossian Property. Larder Lake Mining Division, Ontario. Prepared for Silver Century Explorations Ltd. by W.A. Hubacheck Consultants Ltd.

<u>CERTIFICATE</u>

- I, J. Kevin Montgomery, of the City of Timmins, Province of Ontario, do hereby certify that:
- (1) I am a professional Consulting Geologist, residing at 1190 Lozanne Crescent, Timmins Ontario, P4P 1E8 and presently contracted to W. A. Hubacheck Consultants Ltd., 141Adelaide St. W., Suite 1401, Toronto, Ontario.
- (2) I hold a B.Sc. Honours degree in Geological Sciences(1984) from Queen's University of Kingston, Ontario and a M.Sc.(App.) in Mineral Exploration(1987) from McGill University at Montreal, Quebec.
- (3) I am a member of the Canadian Institute of Mining and Metallurgy, the Prospectors and Developers Association of Canada, the Porcupine Prospectors and Developers Association, and the Quebec Prospectors Association.
- (4) This report is based on my personal examination of the property in 1996 and 1997.
- (5) I have no personal interest in the property covered by this report.
- (6) Permission is granted for the use of this report, in whole or in part, for assessment and qualification requirements but not for advertising purposes.

Dated at Timmins, Ontario this 30 th day of June 1997.

J. Kevin Montgomery, M.Sc. (App..)

APPENDIX A DIAMOND DRILL HOLE LOGS

W.A. HUBACHECK CONSULTANTS LTD.

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANAD

COMPANY	Silver Centruy Explorations	NTS	32 D 4/5	CORE SIZE	NQ
PROPERTY	Ossian Gold Mines (PN53)	DISTRICT	Larder Lake	CONTRACTOR	Bradley Bros.
COMMENCED	Feb. 15, 1997	TWP/LAT.LONG.	Ossian	DATE LOGGED	Feb. 16-19/97
COMPLETED	Feb. 18, 1997	CLAIM	11132	LOGGED BY	Kevin Montgomery
OBJECTIVE TO	est IP1 turret & VLF conductor	CO-ORD.	100W, 225S	DDH COM	Casing left in hole

SURVEY DEPTH	DIP	AZIMUTH
8m	49	342
59m	49	-
109m	49.5	346
158m	49	

HOLE NO. OGM97-1	PAGE	1/13
COLLAR AZIMUTH		340
COLLAR DIP		50*
ELEVATION		
LENGTH		314m

	RVAL Ft 🗆	5	x	LITHOTYPE	DESCRIPTION Mandyamy		S	AMPLE				ASSA	rs	
FROM	то	RISC	RQD	Diriio ii E	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc.)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb			
0.00	4.4			Overburden	OVB.									
4.4	10.8	100	G	Mafic	2A, a green, Fg, massive, amygdaloidal mafic flow. Flow contains 3-5% white VFg									
				Flow	carbonate amygdules (2-4mm diameter), 5-7% dark green chlorite flecks and specks,									
					local chlorite filled microfractures (<1mm wide). Local brown iron oxidation about									
					fracturing, due to surface oxidation.									
					Lower contact 55 to CA.									
10.8	46.2	100	М	Felsic	4A, pale green, VFg, fractured felsic flow (rhyolite).									
				Flow	STRUCTURE: Distinctive pale yellowish green sericite filled fracturing. Fracturing									
					moderately intense (15-20 per m). Width of fracturing 5mm to 1.5cm. Fractures									
					tend to be 50-65 to CA. Fracturing causes local mm right hand displacement of									
					calcite-quartz veinlets. The calcite-quartz veinlets (0.5-1cm wide) are typically 50 to									
					CA and roughly perpendicular to the fracturing.							 		
					MINERALIZATION: Trace VFg to Fg disseminated pyrite with local higher sections.									
					ALTERATION: Minor pale yellow green sericite which infills fracturing.									
					Local silicification units (rhyolites?).									
					27.1-28.8 Fractured section - poor RQD due to iron oxidized/talcose fractures, trace									
					pyrite.									

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANAD

PAGE 2/13

COMPANY	тт	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1
PROPERTY	DISTRICT	CONTRACTOR	209	49.5	345	COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED	309	49.5	349	COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	INTERVAL M Ft		5	LITHOTYPE	DESCRIPTION		S	AMPLE				4	ASSAY	rs	
PROM	то	REC	RQD	Latinotti	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	As pyth	Cu ppm	Za ppm	h ppm	Ag ppm
					35.6-37 Shear zone - chlorite (50%)-sericite (25%) schistose zone with 25% white	2251	34.0	35.6	1.6	0	<5	17	24	7	<0.5
					calcite-quartz veining. Random schistosity orientation.	2252	35.6	37.0	1.4	0.5	<5				
					37-39 MINERALIZATION: Light grey, VFg, silicified section with 6% VFg pyrite	2253	37.0	38.0	1.0	6	10				
					stringer mineralization. Possibly rhyolite section.	2254	38.0	39.0	1.0	6	<5]
					39-40.5 MINERALIZATION: 3% pyrite stringer mineralization.	2255	39.0	40.5	1.5	3	<5				
					41.95-44.2 ALTERATION: Silicification or rhyolite unit.										
					44.6-45.8 Tectonic breccia- 35-40% sub-angular intermediate (dacite) fragments 1cm	2256	44.6	46.2	1.6	0	<5				
					1cm to 5cm wide bands in a VFg pale green sericitic matrix. Long axis of fragments,										
					40 to CA.										
					46.2 Sericitic gouge and calcite-quartz veining at lower contact.										
46.2	158.08	15	G	Felsic	4A, o, light grey, VFg, hard,foliated, felsic (rhyolite?) flows with porphyritic	2257	46.2	47.7	1.5	_1	<5				
				Flows	and brecciated sections. Flow contains 25% white feldspar phenocrysts	2258	47.7	49.15	1.45	5	<5]
					(1-3mm diameter) and 5% VFg quartz eyes.	2259	49.15	50.70	1.55	3	<5				
					ALTERATION: Pervasive carbonatization. Local moderate intense sections and	2260	50.70	52.2	1.5	_3	<5				
					sericite filled fracture slips,	2261	52.2	53.7	1.5	3	<5				
					MINERALIZATION: Strongly pyritic unit averaging 5-7% pyrite with content	2262	53.7	55.2	1.5	5	<5				
					ranging from 3 to 20%. Brown to brassy VFg disseminated pyrite and pyrite	2263	55.2	56.7	1.5	5	<5				

W.A. HUBACHECK CONSULTANTS LTD TORONTO, ONTARIO, CANAD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1 PAG	E 3/13
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	

	RVAL Ft 🗆	3	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE					ASSA	rs	
PROM	то	REC	itQb		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb	Cu ppm	Za ppea	Ph ppm	Ag ppm
					stringers often in fracturing,	2264	56.7	58.25	1.55	5	<5	28	125	7	<0.1
					STRUCTURE: Moderately well foliated (S ₁) and local (S ₂) kink foliation.	2265	58.25	59.7	1.45	5	<5				
					49.9 50 to CA(S ₁) 74.35 50 to CA(S ₁) 60 to CA(S ₂) 101.2 55 to CA(S ₁) 135 55 to CA(S ₁)	2266	59.7	61.2	1.50	5	<5				
					53.6 50 to CA(S ₁) 77.2 55 to CA(S ₁) 107.4 45 to CA(S ₁) 139.2 50 to CA(S ₁)	2267	61.2	62.83	1.63	5	<5				
					57.35 50 to CA(S ₁) 80 60 to CA(S ₁) 113.2 50 to CA(S ₁) 141.6 50 to CA(S ₁)	2268	62.83	63.26	0.43	2	<5				
					61.8 60 ω CA(S ₁) 83.1 50 ω CA(S ₁) 119 50 ω CA(S ₂)	2269	63.26	64.5	1.24	10	<5				
					65.8 35 to CA(S ₁) 87.6 50 to CA(S ₁) 122.2 50 to CA(S ₁)	2270	64.5	66.0	1.5	7	<5	13	117	8	<0.5
					67.9 50 to CA(S ₁) 92 50 to CA(S ₁) 126.5 45 to CA(S ₂)	2271	66.0	67.5	1.5	7	<5				
					70.2 45 to CA(S ₁), 70 to CA(S ₂) 95.9 50 to CA(S ₁) 131 45 to CA(S ₁)	2272	67.5	69.0	1.5	7	<5				
					47.9 Vca (3cm), 70 to CA. Mustard yellow sericite slips.	2273	69.0	70.5	1.5	10	<5				
					47.7-49.15 MINERALIZATION: 5% VFg brownish pyrite as very fine disseminations	2274	70.5	72.0	1.5	7	<5				
					and stringers.	2275	72.0	73.5	1.5	7_	<5				L
					48.8-49.15 Pale green, VFg, foliated, soft, sericite shear zone containing 10% grey	2276	73.5	75.0	1.5	7	<5				
<u></u>					quartz shards and 5% white quartz amygdules. Contacts 35 to CA. Could be a	2277	75.0	76.5	1.5	7	<5				
					sediment or flow selvage.	2278	76.5	78.0	1.5	18	<5	59	59	9	0.1
					49.15-53.7 MINERALIZATION: 3%, same as 47.7m-49.15m.	2279	78.0	79.5	1.5	15	<5				
				·	51.8-52.07 Same as 48.8-49.15m, foliation 60 to CA as well as contacts.	2280	79.5	81.0	1.5	14	<5	77	550	15	0.5
					53.7-62.83 MINERALIZATION: 5% pyrite as VFg disseminations and brassy stringers.	2281	81.0	82.5	1.5	12	<5				

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANADA

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1 PAGE 4/13
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	x	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE					ASSAY	YS	
FROM	10	RBC	RQO		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	то	LENGTH	% SUL	Au ppb	Cu ppea	Za ppm	Ph ppm	Ag ppen
					57,5-57,7 Same as 48.8m-49,15m, contacts 55 to CA.	2282	82.5	84.0	1.5	12	<5	208	33	18	0.8
ļ					58.35-58.75 Same as 48.8m-49.15m, upper contact 60 to CA, lower contact 45 to CA.	2283	84.0	85.5	1.5	12	<5				
					62.83-63.26 White quartz-calcite vein with local sericite fracture slips to CA.	2284	85.5	87.0	1.5	12	<5				
					2% Fg disseminated pyrite. Upper contact 65 to CA and lower contact 75 to CA.	2285	87.0	88.5	1.5	10	<5				
					63.26-76.5 MINERALIZATION: 7-10% mostly VFg very finely disseminated pyrite	2286	88.5	90.0	1.5	10	7				
					and local Fg pyrite stringers.	2287	90.0	91.5	1.5	10	<5				
<u> </u>					64.3-64.36 Vqca (5cm), 45 to CA.	2288	91.5	93.0	1.5	10	<5				
					65 - 67.9 Breccia tuff section - 70% VFg light grey angular to sub-angular rhyolite	2289	93.0	94.5	1.5	12	<5				
					fragments in a darker grey matrix. Tectonic breccia.	2290	94.5	95.5	1.0	15	14	322	70	31	1.0
					76.5-76.7 Sericite-calcite zone composed of 40% white calcite veining in VFg sericite	2291	95.5	96.6	1.1	18	9				
					matrix.	2292	96.6	97.5	0.9	2	<5				
					76.7-78 MINERALIZATION: 18-20% VFg brassy pyrite stringers and disseminations	2293	97.5	98.6	1.1	8	<5				
					in a tectonic breccia section. Pyrite interstial to angular fragments ie stringer type	2294	98.6	99.6	1.0	8	<5	114	21	12	0.2
					mineralization.	2295	99.6	100.95	1.35	15	<5				
					78-78.9 MINERALIZATION: 12%, same as above.	2296	100.95	102.5	1.55	5	<5				
					79.2-96.7 DEFORMATION ZONE - moderately to intense foliation and moderate	2297	102.5	104.0	1.50	3	<5				
					sericite (15-20% of section) inflooding along shear foliation. Sericite foliation and very	2298	104.0	105.0	1.0	7	<5				
					fine felsic ash matrix hosting elliptical to sub-angular felsic fragments to blocks.	2299	105.0	106.0	1.0	7	<5	16	40	<5	<0.5

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANAD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1 PAGE 5/13
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	s.	% RQD	LITHOTYPE	DESCRIPTION		s	AMPLE					ASSA	YS	
FROM	то	RBC	RQD	Diff. Of the	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb	Cu ppm	Za ppm	Pb ppes	Ag pp=
					MINERALIZATION: 10-15% VFg brownish pyrite stringers to bands within matrix.	2300	10.60	107.45	1.45	5	<5				
ļ					95.5-96.6 MINERALIZATION: 18% VFg brownish pyrite stringers to laminations	2301	107.45	109.0	1.55	6	9				
					parallel to foliation.	2302	109.0	110.5	1.5	6	<5	36	5	10	<0.1
					96.6-96.9 Blocky core and gouge, fault.	2303	110.5	112.0	1.5	6	<5				
					97.4-99.6 Breccia - Rhyolite tectonic breccia comprised of angular felsic flow and	2304	112.0	113.2	1.2	6	<5				
					porphyritic blocks formed by microfracturing.	2305	113.2	114.85	1.65	10	<5				
					MINERALIZATION: 8% VFg-Fg disseminated pyrite in microfracturing.	2306	114.85	116.0	1.15	15	<5	44	30	7	0.2
					99.6-100.95 MINERALIZATION: 15% VFg brownish pyrite laminations (up to cm	2307	116.0	117.11	1.1	10	6				
					wide) and disseminations in 4B t with 15% white carbonate flooding and local	2308	117.1	118.6	1.5	8	<5				
					mustard yellow sericite slips.	2309	118.6	119.84	1.24	10	<5	41	66	9	<0.1
					100.95-104 Sericite shear zone composed of highly foliated mustard yellow sericite,	2310	19.84	121.67	1.83	3	<5				
					quartz and felsic ash. MINERALIZATION: 5% VFG very finely disseminated	2311	121.67	123.65	1.98	3	<5				
					Blocky core RQD - 0% from 102.5m to 104m.	2312	123.65	125.0	1.35	8	<5				
					104.4-104.52 Grey Vcq, 45 to CA.	2313	125.0	126.5	1.5	8	<5				
					104.52-104.77 White Vqca with 10% yellow sericite.	2314	126.5	128.0	1.5	8	<5				
					104-106 MINERALIZATION: 7% pyrite stringers and disseminations within micro-	2315	128.0	129.5	1.5	8	<5	28	<1	<5	<0.5
					fracturing in 4A.	2316	129.5	131.0	1.5	8	<5				
					106-107.45 Same as 100.95-104m.	2316	129.5	131.0	1.5	8	<5				
					107.45-113.2 Tectonic breccia - grey felsic flow breccia as a result of fracturing.	2317	131.0	134.0	3	5	<5		I		

W.A. HUBACHECK CONSULTANTS LTI

TORONTO, ONTARIO, CANAL

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1 PAGE 6/13
PROPERTY	DISTRICT	CONTRACTOR			·	COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	×	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE				,	ASSAY	'S	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	As ppb	Cu ppm	Za ppm	Pp.	Ag Ag
					Dark grey elliptical sub-angular fragments separated by light grey altered ash between	2318	134.0	135.25	1.25	20	<5	48	23	10	<0.1
					fragments. (Fracture controlled alteration).	2319	135.25	136.75	1.5	3	<5				
					MINERALIZATION: 6% VFg disseminated pyrite.	2320	136.75	138.13	1.38	3	<5				
					113.2-114.85 Sericitized (moderate) and chloritized felsic ash tuff or an intermediate ash	2321	138.13	139.6	1.47	2	<5				
					ash tuff (dacite-andesite?).	2322	139.6	141.0	1.40	7	<5				
					MINERALIZATION: 10% VFg very finely disseminated pyrite. Sharp contacts 50 to CA.	2323	141.0	142.0	1.0	7	<5				
L					114.85-116 MINERALIZATION: 15% pyrite stringers and disseminations in fractures.	2324	142.0	143.36	1,36	7	<5				
					4A, b.	2325	143.36	145.0	1.64	9	<5_	16	21	7	< 0.1
					116-117.10 Same as 113.2-114.85m. Upper contact 35 to CA, lower contact 45 to CA.	2326	145.0	146.5	1.5	9_	<5				
					117.1-118.60 MINERALIZATION: 8% prysic in 4B, t.	2327	146.5	148.0	1.5	9	7				
					118.6-119.04 Same as 113.2-114.85m, 50 to CA contacts.	2328	148.0	149.5	1.5	9	<5				
					119.04-119.84 Same as 107.45 to 113.2m.	2329	149.5	151.0	1.5	9	<5				
					119.84-123.65 Intermediate ash tuff, with 4B, b from 121.67 to 122.7m.	2330	151.0	152.5	1.5	9	<5	321	19	8	< 0.1
					Contacts 50 to CA. Several calcite veins (1 to 2.5cm), 45-75 to CA perpendicular to	2331	152.5	154.0	1.5	9	5				
					foliation 50 to CA. 3% disseminated pyrite.	2332	154.0	155.5	1.5	9	<5				
					123.65-131 Breccia same as 107.45 to 113.2, 8 VFg finely disseminated pyrite shearing	2333	155.5	157.0	1.5	9	9				
					becomes moderately intense below 126.5m.	2334	157.0	158.08	1.08	9	18				
					131-134.16 Talcose shear zone with very poor RQD and blocky core. 1.2m of core lost.]			

W.A. HUBACHECK CONSULTANTS LTI

TORONTO, ONTARIO, CANAD

COMPANY	тз	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1 PAGE 7/13
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	% RSC	S ROD	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA`	rs 	
PROM	70		, QU		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb			
					5% disseminated VFg pyrite.									
					134.71-135.25 ALTERATION: Sericite zone, intense yellow sericite.									
					MINERALIZATION: 20% VFg-Fg disseminated pyrite.									
				. :	135.25-139.6 3B, t, same as 119.84-123.65m.									
ļ				į	MINERALIZATION: 3% VFg disseminated pyrite.			ļ						
					138.13-138.5 Vqca, upper contact diffuse, lower contact 75 to CA.									
L					139.6-143.36 MINERALIZATION: 7% VFg disseminated pyrite within micro-									
<u> </u>					fractures in a strongly foliated, carbonatized felsic flow and local sericite wisps.									
					143.36-158.08 Felsic (rhyolite) breccia - VFg light grey massive rhyolite flow that has									
		 			been tectonically crackled producing a breccia with very fine microfractures. These									ļ
					microfractures contain 8-10% VFg disseminated to blebs of pyrite and are infilled							 		
					with calcite and quartz.									
158.08	196.75			Felsic-	4B, t, or 4A, m, green, VFg-Pg, massive felsic-intermediate (dacite) ash tuff or									
				Intermediate	massive flows. Non-foliated and weak fracturing. Minor calcite stringers/randomly									
				Ash Tuff or	oriented and local veins. Below 177.5m moderately intense quartz-carbonate filled									
J				Massive Flow	fractures and stringers.							 		
					MINERALIZATION: Local 2% pyrite.							 		
					ALTERATION: Local light-green bleaching above 169m.						لـــــا	 		

W.A. HUBACHECK CONSULTANTS LTD TORONTO, ONTARIO, CANADA

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1 PAGE 8/1
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	x	*	LITHOTYPE	DESCRIPTION		s	AMPLE					ASSA'	YS	
FROM	то	REC	RQO	Dirition 11 L	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	As ppb	Cu ppen	Za ppm	Pb ppm	Ag ppm
					Below 169m, grey silicification zones and fracture controlled silicification.	2747	165.8	166.5	0,7	0	WR	95	16	<5	<0.5
					159.65-159.85 Vqca, contacts 65 to CA.	.									
					163.2-163.38 Quartz-calcite veining zone with 15% 3B, t material. A 15cm upper	L				<u> </u>					
					contact bleached wall rock and 5cm lower contact bleached wall rock alteration.	2335	179.0	180.3	1.3	2_	12				
					Contacts 70 to CA.	2336	180.3	181.7	1,4	1	7				
					169-179 ALTERATION: Grey silicification of varying intensity producing mottled	2337	181.7	183.1	1.4	2	7				
					sections (fracture controlled) and pervasive sections. Trace pyrite.	2338	183.1	184.5	1.4	4	8	69	34	8	<0.1
					179-184.5 MINERALIZATION: 2% VFg finely disseminated fracture controlled										
					pyrite. Moderately intense quartz-carbonate filled fractures/stringers in a silicification	2339	187.88	189.6	1.72	2	9				
					zone. 3B, t, selvage from 180.3m to 180.7m with contacts 45 to CA.							,			
					187.88-189.60 Same as above.	2340	194.65	195.75	1.1	3	6				
					194.65-195.75 Same as above, lower contact 55 to CA.	2341	195.75	196.75	1	0.5	13				
					Lower contact 55 to CA.										
	,														
196.75	205.05	100	G	Felsic	4A, b, cream to light grey, VFg, fractured felsic tectonic breccia. Breccia consists of a	2342	196.75	198.25	1.5	5	<5				
				Breccia	a crackled microfracturing with grey alteration halos (0.5-1cm) producing a breccia	2343	198.25	199.75	1.5	2	<5				
					appearance. Local chlorite infilling fractures and very minor calcite.	2344	199.75	201.25	1.5	2	<5	27	88	<5	<0.5
					ALTERATION: Grey silica or carbonate alteration halos about fractures, moderate to	2345	201.25	202.75	1.5	7	<5	8	21	8	0.9
					minor chloritization between 199.05 to 199.5m and intense sericite zone between	2346	202.75	204.0	1.25	4	<5				

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANADA

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	ÞIÞ	AZIMUTH	HOLE NO. OGM97-1 PAGE 9/13
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	5	1	LITHOTYPE	DESCRIPTION GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		S	AMPLE					ASSA'	YS	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb	Çu Jipan	Za ppm	Po ppen	Ag ppm
					199.91m to 200.2m.	2347	204.0	205,05	1.05	5	<5_				
L					MINERALIZATION: Overall 4-5% pyrite with sections up to 7% pyrite. Brassy,										
					VFg, disseminated pyrite typically within microfractures.										
					Lower contact 55 to CA.										
	<u></u> _														
205.05	227.0			Intermediate	3-4A, green, VFg, massive, non-foliated intermediate-felsic flow (dacite).										
				to Felsic	Minor calcite filled fractures. Trace muscovite.]
,				Flow	ALTERATION: Pinkish red k-spar or possibly hematite alteration halos about micro-	2348	208.15	209.0	0.85	0	<5	<10	55	<5	<0.5
	<u> </u>				fractures or chlorite filled fractures. Intensity of alteration varies from minor about										
					fractures to moderate where fracturing is more intense.										
					MINERALIZATION: None.										
					Lower contact gradational resulting from alteration change.										
227.0	256.0			Altered	3-4A, k, pink to red, VFg, massive, non-foliated altered intermediate to felsic flow										
				Intermediate	(dacite). Minor to moderately intense chlorite filled microfractures. Tuff contains										
	Ĺ			to Felsic	sections with 20% chlorite specks at 228.3m-231.6m & 243m-249.5m.										
				Flow	MINERALIZATION: Local Fg cubic disseminated pyrite 238m-238.5m.										
					ALTERATION: Intense pervasive k-spar or hematite producing the red colouration										

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANAD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1 PAGE 10/13
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆			LITHOTYPE	DESCRIPTION GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		S.	AMPLE		ASSAYS					
FROM	то	REC	RQO		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb				
					to the unit.	2349	228.3	229.8	1.5	0	<5				
					229.8-230.1 Vqca with 15% VFg chlorite infilling fractures and as patches. Trace	2350	229.8	230.1	0.3	1.5	<5				
<u> </u>					brick red hematite.	2351	230.1	231.6	1.5	0	<5				Ĺ
	<u> </u>				MINERALIZATION: 1% chalcopyrite splashes and 0.5% disseminated pyrite.										L
1		·			Upper contact 85 to CA and lower contact 40 to CA.	2352	237.0	238.5	1.5	0.5	<5				
<u></u>					243-244.5 Several calcite+quartz veinlets (up to 2cm wide) and oriented 30-55 to CA.										
L			<u> </u>		Local brassy Fg disseminated pyrite along veinlet contacts.	2353	243.0	244.5	1.5	0.5	<5				
					244.5-244.8 Section of 75% white calcite-quartz veining with 5% chlorite and trace	2354	244.5	244.8	0.3	1.0	<5				
					hematite.	2355	244.8	246.3	1.5	0.5	<5				L
					MINERALIZATION: 1% VFg disseminated pyrite.										
					Lower contact gradational (alteration contact).										
															L
256.0	275.0	100	E	Intermediate	3A, green to dark green, VFg, massive, non-foliated, intermediate flow (andesite?).										
				Flow	Rare calcite stringers.										
					ALTERATION: None.										
					MINERALIZATION: Local trace to 1% VFg disseminated pyrite.										
					256-260 Breccia-tectonic breccia due to chlorite filled microfractures producing a										
					brecciated ash tuff.										
					Lower contact gradational (alteration contact).										

W.A. HUBACHECK CONSULTANTS LTI

TORONTO, ONTARIO, CANAI

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1 PAGE 11/13
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	REC ROD LITHOTYPE		DESCRIPTION GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		s	AMPLE		,	ASSAYS						
PROM	70	REC	kQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb					
275.0	285.3	100	Е	Altered Intermediate	3A, k, pink to cream coloured, VFg, altered intermediate flow; that is moderately microfractured (1-3mm). These microfractures are infilled with chlorite.											
				Flow	Local calcite veinlets (3-7mm wide) present which are occasionally displaced(?) mm's by microfracturing. Calcite veinlets have chlorite contacts. MINERALIZATION: Trace disseminated pyrite.											
					ALTERATION: Intense pervasive k-spar or hematite alteration producing pink colouration to unit and silicification. This is a result of the moderately intense microfracturing, as evident by classic fracture associated alteration at 282m.											
					276.5-279.5 MINERALIZATION: 1% brassy VFg disseminated pyrite in chlorite filled fractures or along calcite veinlet margins.	2356 2357	276.5 278.0	278.0 279.5	1.5	1	<5 8					
					283.94-285.3 Tectonic breccia-angular grey 3A, o fragments (1x2cm) caused by fracturing. 15% silica flooding in fractures. Lower contact sharp, 70 to CA.											
285.3	304.98	100	Е	Intermediate Porphyritic Intrusion	7, o, greyish green, Fg-Mg, porphyritic massive intermediate intrusive dike. Intrusive texture a result of 20% white plagioclase phenocrysts (5mm-7mm diameter), 5% wispy chlorite flecks (3-5mm) and 5% leucoxene specks (1-3mm) within an											
					intermediate ash matrix. Just below the upper contact, selvages of 3B, xt, k.											

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANADA

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1 PAGE 12/	/13
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	

	RVAL Ft 🗆	x	% ROD	LITHOTYPE	DESCRIPTION		s	AMPLE			ASSAYS					
FROM	то	BBC	1 QD	Limorne	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb					
					Rare brick red hematite specks. Very minor calcite veinlets.											
					ALTERATION: Bleaching near upper and lower contacts 285.3m to 285.8m and			<u></u>					<u> </u>			
					302.6m to 304.98m.						L					
					STRUCTURE: Massive but faint flow selvages evident.											
					MINERALIZATION: None.											
					304.86-304.98 Vqch, 70 to CA.											
					Lower contact 70 to CA.											
304.98	314.0	100	В	Pelsic-	4-3A, o (dacite) greenish grey, VPg, non-foliated, felsic-intermediate flow.											
				Intermediate	contains 20-25% white fine (1-2mm) pseudomorphs. Very minor calcite veinlets/											
				Flow	fractures that are displaced mm's by cross-cutting microfractures.											
					304.98-308 MINERALIZATION: 0.5-1% VFg-Pg disseminated pyrite.	2358	304.98	306.5	1.52	1.0	<5					
	-				304.98-306 ALTERATION: Light pink to cream, pervasive (90% of section)	2359	306.5	308.0	1.5	0.5	11					
					carbonate or k-spar that is fracture controlled.		•									
					306-309.95 ALTERATION: Dark red intense pervasive k-spar or hematite alteration.											
	314.0			Е.О.Н.	End of Hole											

W.A. HUBACHECK CONSULTANTS LT)

TORONTO, ONTARIO, CANAI

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-1 PAGE 13/13
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED			·	COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORDINATES	DDH COMMENTS				LENGTH

	RVAL Ft 🗆	x	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE				,	ASSA?	rs	
FROM	70	REC	INQE		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		FROM	то	LENGTH	NGTH \$					
					ROD Rating; E - >90% (Excellent)										
					G - 70%-90% (Good)										
ļ					M - 50%-70% (Moderate)										
					P - <50% (Poor)										
					COMMENTS: The IP-1 anomaly is a result of 3-20% disseminated and stringer pyrite]
<u></u>					mineralization in felsic crystal tuff from 47.7m to 158.08m downhole. The VLF										
					conductor at 100W 150S on surface is a result of a shear zone at 101m-104m or										
					131m-135m. Drill core stored in Larder Lake.										
<u> </u>															
				·											

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANADa

COMPANY	Silver Century Explorations	NTS	32 D4/5	CORE SIZE	NQ
PROPERTY	Ossian Gold Mine (PN53)	DISTRICT	Larder Lake	CONTRACTOR	Bradley Bros.
COMMENCED	Feb. 18, 1997	TWP/LAT.LONG.	Ossian	DATE LOGGED	Feb. 19-22/97
COMPLETED	Feb. 22, 1997	CLAIM	11131	LOGGED BY	Kevin Montgomery
OBJECTIVE	Test Ossian Gold Mine west quartz shaft zone	CO-ORD.	28W, 81N	DDH COM	Casing left in hole

SURVEY DEPTH	DIP	AZIMUTH
8	56.5	184
58	56	
108	56	184
158	55	-

HOLE NO. OGM97-2	PAGE 1/5
COLLAR AZIMUTH	184
COLLAR DIP	56.5*
ELEVATION	
LENGTH	173m

	INTERVAL M ■ Ft □						*		DESCRIPTION Markan	SAMPLE		DESCRIPTION SAMPLE ASSA					ASSAY	YS	
FROM	то	RBC	RQD	LITHOTYPE	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		FROM	то	LENGTH	S SUL	Au ppb	Au g/t	Ppen Ag	ppm Cu	Za ppm				
0	3			Overburden	OVB.														
	<u> </u>								<u> </u>		<u> </u>								
3	46.4	100	E	Felsic Flow	4A, m, k, reddish green, VFg, non-foliated, hard felsic (dacite) flows. The flows					İ.,					ļ				
					are homogenous and massive. It contains 3% white muscovite specks, 5-7% green						L				 				
					chlorite specks to filled microfractures, and 3-5% faint white alteration psuedomorphs.		L				<u> </u>								
					ALTERATION: Moderate to intense pervasive reddish k-spar or hematite alteration	J													
					and minor calcite.														
					MINERALIZATION: None.						<u> </u>								
					STRUCTURE: Moderately fractured (chlorite & calcite filled).		<u> </u>												
					3-4.65 HQ size core.														
					5.1-6.15 Vuggy open fractures, blocky core, very poor RQD.														
					21.05-21.72 Brecciated section consisting of 15-20% white VFg calcite filled					<u> </u>									
					fractures that have crackle brecciated the 4A.														
					Lower contact gradational, alteration front.	2360	45.0	46.4	1.4	0	<5								
46.4	62.0	80	M	Altered Felsic	4A, Sc/QV, light cream, VFg, soft, altered felsic flow with white VFg quartz veining	2361	46.4	47.4	1.0	0	<5								
				Flows/Quartz	(20-30% of section).	2362	47.4	48.5	1.1	0	<5								
				Vein	ALTERATION: Intense pervasive bleached flooding alteration (possibly	2363	48.5	49.4	0.9	1.5	2691	2.32	1.4	46	13				

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANADA

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-2 PAGE 2/5
PROPERTY	DISTRICT	CONTRACTOR	173	55	185	COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
ОВЈЕСТІVВ	CO-ORD.	DDH COM				LENGTH

INTERVAL M 🗆 Ft 🗆		s	S ROD	LITHOTYPE	DESCRIPTION		S	AMPLE				A	SSAYS		
FROM	то	RBC	RQO	LINOTTE	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	то	LENGTH	% SUL	Ass popels	Au g/t	Ag ppm	Cu ppm	Za ppm
					sericitization). Wide alteration flooding halo about the quartz vein flooding.	2364	49,4	50.75	1.35	3	354	0.35	0.2	94	16
					Not carbonatization as powder does not react with HCL.	2365	50.75	51.75	1.0	3	389	0.36	0.2	7	14
					46.4-48.5 4A with 20-25% disseminated chlorite specks. Rare calcite filled fractures.	2366	51.75	52.70	0.95	2	900	0.80	0.4	20	14
ļ					48.5-48.7 MINERALIZATION: 2% brassy Fg cubic disseminated pyrite in 4A	2367	52.7	53.7	1.0	1	2174	1.55	1.2	36	27
					(halo to QV).	2368	53.7	54.65	0.95	4	1726	1.76	1.6	31	34
					48.5-50 Core recovery 80%, 0.3m of lost core and poor RQD.	2369	54.65	56.0	1.35	0	10				<u> </u>
					48.7-49.4 Fractured white quartz vein with 1.5% VFg brownish pyrite locally	2370	56.0	57.5	1.5	0	<5				
					concentrated in fractures. Fractures are iron oxidixed and locally chlorite line.		57.5	59.0	1.50	0	<5				
					Upper contact of vein destroyed, lower contact 55 to CA.	2372	59.0	60.6	1.60	0	<5		<0.5	12	38
					49.4-52.7 MINERALIZATION: 3% brassy Fg cubic to bexagonal disseminated	2373	60.6	61.4	0.80	4	195				
					pyrite with chlorite rims. Chalcopyrite splashes in quartz veinlets at 49.5m. Calcite		61.4	62.0	0.60	0	<5				
					inclusions in the pyrite crystals. Section is 4A with microfracturing and 30% quartz										
					veining. The quartz veining consists of stringers (0.5-1cm) to veins (up to 15cm wide)										
					orientation is random but general orientation is fracturing 60 to CA at 49.7m, 55 to										
					CA at 50.33m and 40 to CA at 51.7m.										
					50-53 Core recovery 97%, blocky core.										
					50.38-50.41 Vq (3cm), upper contact 60 & lower contact 55 to CA.										
					50.5-50.6 Vq, upper contact 60 & lower contact 70 to CA.										
					50.8-51.03 Vq (3cm).										

W.A. HUBACHECK CONSULTANTS LTI

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-2 PAGE 3/5
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM	L			LENGTH

	RVAL Ft 🗆	×	×	LITHOTYPE	DESCRIPTION		SAMPLE				ASSA	YS		
FROM	то	REC	RQO		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb			
					51.15-51.3 Vg, upper contact 80 and lower contact 35 to CA.									
					51.4-51.57 Vq, upper contact 30 & lower contact 20 to CA.			_			<u></u>			
<u></u>					51.95-52.07 Vq, 10 to CA.									
	·				52.22-52.45 Vq, core loss?									
	<u> </u>				52.7-54.55 Vq trending down core axis. Dark green chlorite along vein margins.									
					Half of section is Vq and other half 4B, t, C.									
					MINERALIZATION: 1-4% Fg brassy cubic pyrite disseminations concentrated in									
					both host rock and Vq along vein margins.									
					54.55-60.6 Greenish cream 4A, with 15% dark green chlorite specks, calcite &									
					chlorite filled microfractures.									
					60.6-61.4 MINERALIZATION: 4% pyrite, same as 52.7 to 54.55m.									
					60.6-61.4 4A, m with 20% quartz veining, 20 to CA.									
					61.4-62.0 Same as 54.55-60.6m.									
					Lower contact gradational.									
62.0	136.0			Altered Felsic	4A, k, same as 3-46.4m.	2375	62.0	63.5	1.5	0.5	<5			
				Flow	ALTERATION: Moderate pervasive to fracture controlled reddish k-spar or	2376	63.5	65.0	1.5	0.5	<5			
					hematite. Minor calcite associated with local feldspar crystals.	.2377	65.0	66.5	1.5	0.5	<5			
					STRUCTURE: Minor fracturing filled with clacite + chlorite. Cream bleaching									

W.A. HUBACHECK CONSULTANTS LTD. TORONTO, ONTARIO, CANADA

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-2 PAGE 4/5
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Pt 🗆	5	5	LITHOTYPE	DESCRIPTION		S	AMPLE			ASSAYS						
FROM	то	RBC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	то	LENGTH	% SUL	Au P rob	Cu ppm	Za ppm) jo	4		
					halos (1-5mm) about fractures,												
					MINERALIZATION: Trace pyrite.												
					62-64.84 Intense fracturing, chlorite and calcite filled, crackle pattern. Section												
	<u> </u>	·			has a greenish hue.												
	<u></u>				MINERALIZATION: 0.5% disseminated Fg pyrite.												
	<u> </u>				65-68.8 ALTERATION: Pink pervasive carbonatization.												
	<u> </u>				88-95 Minor (4-5 per m) quartz-calcite veinlets (0.5 to 1cm wide) typically 40												
<u> </u>					to CA.												
					99.25-101 Quartz-calcite veinlet (0.5 to 1cm wide) with 5-7% dark green chlorite												
					patches, 0-5 to CA.			j									
					101.3-102 Same as above, may be same veinlet.												
					102.95-103.75 Zone of quartz vein flooding. Zone contains 50% white-greywhite	2378	102.95	103.75	0.8	0.5	<5						
				·	quartz + calcite vein material (randomly oriented veining), 20% dark green chlorite					-							
L					patches and 30% red k-spar altered flow. Contacts 25 to CA.												
					118.75-120.7 Green VFg 4A (dacite), no k-spar or hematite alteration, contacts												
					gradational (alteration fronts).												
					125.2-128.45 Same as above.												
					120.1-128 Minor (2-3 per m) quartz-calcite veinlets (1cm wide) oriented 40 to CA.	2379	120.7	121.5	0.8	0	<5	10	22	9	<0.5		
					Lower contact gradational, k-spar alteration intensity decreases.												

W.A. HUBACHECK CONSULTANTS LTD TORONTO, ONTARIO, CANAD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-2 PAGE 5/5
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED .	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆		% RQD	LITHOTYPE	DESCRIPTION			ASSAYS							
FROM	то	RISC	RQD	Diriioi i i	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	70	LENGTH	% SUL	Au ppb	Cu ppea	Za ppm	Pb ppen	Ag Pr
136.0	173.0			Felsic Flow	4A (dacite) green, VFg, hard, non-foliated felsic flow with sections of 5-10% white										
					alteration psuedomorphs. Minor (2-3 per m) calcite veinlets and filled fractures			<u></u>							
	<u> </u>			<u> </u>	mostly 60 to 70 to CA.		<u></u>								
					MINERALIZATION: None.		<u> </u>								
					ALTERATION: Local faint reddish k-spar or hematite alteration about fractures										
	<u> </u>				and some weak pervasive sections.										
					142.75-142.92 Quartz-chlorite-calcite vein, contacts 60 to CA.										
					154.5-156 Blocky core as a result of calcite + quartz filled fractures parallel to	2380	149.7	150.5	0.8	0	<5	<10	35	8	<0.5
			:		core axis.										
												-			
	173.0			Е.О.Н.	End of Hole.										
					COMMENTS: Quartz zone target intersected from 46.4 to 62m. Drill core stored in										\longrightarrow
	ļ				Larder Lake.										
											<u> </u>	i	l		

east quartz zone.

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANAD.

COMPANY Silver Century Explorations

PROPERTY Ossian Gold Mine (PN53)

COMMENCED Feb. 22, 1997

COMPLETED Feb. 24, 1997

OBJECTIVE Test Ossian Gold Mine

NTS	32 D4/5
DISTRICT	Larder Lake
TWP/LAT.LONG.	Ossian
CLAIM	11132
CO-ORD.	32B, 26N

CORE SIZE	иQ
CONTRACTOR	Bradley Bros.
DATE LOGGED	Feb. 23-24/97
LOGGED BY	Kevin Montgomery
DDH COM	Casing left in hole

SURVEY DEPTH	DIP	AZIMUTH
8	50.5	184
58	50	-
108	49	185
123	49	185

HOLE NO. OGM97-3	PAGE 1/5
COLLAR AZIMUTH	184
COLLAR DIP	50.5
ELEVATION	
LENGTH	123m

	RVAL Ft 🗆	\$	s	LITHOTYPE	DESCRIPTION Mantgany		S	AMPLE				Α	SSAYS		
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	As ppb	Au g/t	Ag ppm	(Cir.	Za ppm
0	3,55			OVB	Overburden.										
<u> </u>	<u> </u>							<u> </u>			L				
3.55	14.25	100	E	Felsic Flow	4A, k, reddish grey, VFg, non-foliated, hard, homogenous, massive felsic (dacite)				<u></u>						
					flow containing 3-5% chlorite flecks (1-2mm size) and 7-8% white pseudomorphs			·							<u></u>
					about the chlorite flecks. Rare calcite veinlets.										
					ALTERATION: Moderate to intense pervasive red k-spar or hematite.]									
					STRUCTURE: Minor microfracturing.				İ						
<u></u>	ļ				10.8-14.2 Local iron oxidized fractures, blocky core from 13.35m to 14.2m.										
					Lower contact is a gradational alteration front.								<u> </u>		
14.25	34.2		М	Altered Felsic	4A, Se/QV, light cream, VFg, homogenous, massive, soft, altered felsic flow with VFg	2381	14.25	15.4	1.15	0	<5				
				Flow/Quartz	quartz veining (_% of section). Flows contain 10% distinctive green chlorite flecks	2382	15.4	16.3	0.90	0.5	<5				
				Veins	(1-2mm), 7-10% white pseudomorphs, and chlorite ± calcite filled microfractures.	2383	16.3	17.0	0.70	2	1947	1.86	1.2	2.2	37
					ALTERATION: Intense pervasive bleached alteration (possibly sericitization) halo	2384	17.0	18.0	1.0	3	41	0.03	<0.1	-11	40
<u></u>					about quartz veins.	2385	18.0	19.02	1.02	5	9985	10.94	3.7	10	16
					MINERALIZATION: Overall altered section contains 2% pyrite from 15.4m to	2386	19.02	20.5	1.48	3	109		0.1	9	29
					29.25m. This pyrite is Fg cubic disseminations within veins and the wall rock to	2387	20.5	22.0	1.5	0.5	<5				
	<u> </u>				veins.	2388	22.0	23.5	1.5	0.5	<5				L

W.A. HUBACHECK CONSULTANTS LTD.

TORONTO,	ONTARIO,	CANADA

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-3 PAGE 2/5
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY	•			ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL	*	\$	LITHOTYPE	DESCRIPTION		s	AMPLE				ASSA?	rs	
FROM	70	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	g SUL	Au ppb			
					14.8-15.4 Several fractures with rust brown iron oxide halos (cm), blocky core.	2389	23.5	25.0	1.5	1	140			
<u></u>	<u> </u>				15.4-16.3 MINERALIZATION: 0.5% VFg pyrite in chlorite microfractures.	2390	25.0	26.45	1.45	1	5			
<u> </u>	<u> </u>				16.3-17 Core loss 0.3m.	2391	26.45	27.25	0.8	2	8			
<u></u>	<u> </u>				16.75-16.85 Vq (8cm), 60 to CA, 4% brassy Fg cubic disseminated pyrite	2392	27.25	28.5	0.75	2	153			
L					preferrentially concentrated along chlorite stringers/fractures parallel to vein	2393	28.5	29.25	0.75	0.5	16			
					contacts.	2394	29.25	30.75	1.50	0	<5			
<u></u>	<u> </u>				17.7-18 MINERALIZATION: 3% Mg cubic disseminated pyrite with chlorite rims,	2395	30.75	32.2	1.45	0	<5			
					wall rock to Vq.	2396	32.2	33.2	1.0	0	<5			
	<u>L</u>				18-19.02 Vq, weakly fractured (chlorite & iron oxide), minor albite patches, upper	2397	33.2	34.2	1.0	0	<5			
<u>L</u>					contact 65 to CA.									
L					18.3-18.4 MINERALIZATION: 20% brownish to brassy Fg semi-massive pyrite.									
					19.02-19.6 Same as 17.7-18, 5% pyrite.									
					19.6-23.5 Same as 15.4-16.3, 0.5% pyrite.									
					22.7 Quartz-albite vein (3cm), 70 to CA.									
					23.5-26.45 MINERALIZATION: 1% Fg cubic disseminated pyrite locally									
					concentrated in fractures.									
					24.8-24.9 Vq with albite and Fg disseminated cubic pyrite along vein margins,									
					50 to CA.									

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-3 PAGE 3/5
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	S RBC	g RQD	LITHOTYPE	DESCRIPTION		s	AMPLE					ASSA'	YS	
FROM	то	RBC	EQU		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	то	LENGTH	% SUL	Au ppb				
					25.63-25.66 Vg (3cm), 50 to CA.										
					27.42-27.54 Vq, upper contact 90 to CA, lower contact 60 to CA.						<u> </u>	<u> </u>			
					26.45-28.5 Same as 23.5-26.45, 2% pyrite.								<u></u>		
					28.5-29.25 Vq, blocky, weak fracturing (chlorite and iron oxide filled), upper										
					contact 55 to CA and lower contact 40 to CA.										
					29.25-34.2 ALTERATION: Weak k-spar alteration producing pink colouration,										
					increases downhole.										
					Lower contact is a gradational alteration front.										
34,2	54.5			Felsic Flow	4A, k, same as 3.55-14.25m, 5-6% chlorite specks to stringers. Minor micro-										
					fracturing.										
					45.9-50.5 Local calcite ± quartz veinlets (1cm wide) oriented 35-50 to CA.										L)
					Lower contact is a gradational alteration front.										-
54.5	123.0			Felsic to	4-3A, green, VFg, non-foliated, soft, felsic to intermediate flow (dacite or andesite)										
				Intermediate	with local sections of 25-30% white pseudomorph phenocrysts. Calcite + quartz	~									
				Flow	veinlets (0.5-1.5 cm) throughout unit, local concentrated sections.										
					54.5-59.7 Minor calcite-quartz veinlets (3-5 per m), 45 to CA.	2398	59.7	60.45	0.75	0	<5				

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-3	PAGE 4/5
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	

	RVAL Ft 🗆		% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA	YS	
FROM	то	RSC	IIQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc.)	SAMPLE NO.	PROM	10	LENOTH	% SUL	₹ 1 2			
[60,45-63.25 Same as above, 35 to CA.									
					63.10-63.23 Intermediate dike with sharp irregular contacts. Dike trends 30 to CA.			ļ				 		
.		<u> </u>			It is VFg pale green, soft, calcite altered intermediate dike.							 		
					63.23-68.3 Intense calcite stringers to microfractures in non-dike sections. Weak							 		
					reddish k-spar alteration.									
<u> </u>					63.78-65.5 Intermediate dike, same as 63.1-63.23m. Upper contact 30 to CA and									
L					lower contact 25 to CA. Fracture slips 15-25 to CA.									
					64.8 Fracture slip at 25 to CA displacing a 4 cm wide calcite-quartz vein oriented									
					10 to CA.									
					68.3-69.6 Blocky core, a result of moderately intense fracturing and brecciated									
					sections. Weak pervasive k-spar alteration.				İ					
					76.8-81 Minor calcite-quartz veinlets (2-3 per m), 35-55 to CA.									
					88.4-88.6 Flow selvage VFg chlorite rich, weakly foliated, contacts upper 20 to CA									
					and lower 50 to CA.			!						
				_	88.27-90.05 Calcite-quartz vein with k-spar altered felsic flow fragments, contacts									
					25 to CA.									
					88.6-89.57 Tectonic breccia, 95°. Angular blocks of k-spar altered felsic flows									
					held together by calcite filled fractures.									
					89.57-89.8 Same as 88.4-88.6m, contacts upper 40 to CA and lower 10 to CA.]	

W.A. HUBACHECK CONSULTANTS LTI TORONTO, ONTARIO, CANAD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-3 PAGE 5/5
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Pt 🗆	% RBC	s RQD	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA'	YS	
FROM	70	REC	RQU		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	70	LENGTH	% SUL	Au ppb			
					92.3-92.7 Tectonic breccia - 40% angular blocks to fragments of 4A, k in a quartz- chlorite-calcite matrix.									
					109.9-113.30 ALTERATION: Pinkish red k-spar fracture alteration (mm halos about fractures) producing a pseudo breccia.									
					110.5-113 Section with 5-7% white calcite rimming quartz specks. 119.33-119.53 Quartz-calcite-chlorite fracture, 0.5-2cm wide, 10 to CA.									
					120.5-123m ALTERATION: Weak pervasive k-spar alteration.				-					
	123.0			Е.О.Н.	End of Hole.									
					The hole intersected the east shaft quartz zone from 14.25 to 34.20m downhole. Drill core stored in Larder Lake.									
L			1]				

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	Silver Century Explorations
PROPERTY	Ossian Gold Mine (PN53)
COMMENCED	Feb. 24, 1997
COMPLETED	Feb. 27, 1997
OBJECTIVE	Test IP-1 anomaly
	target TH1.

ктѕ	32 D4/5
DISTRICT	Larder Lake
TWP/LAT.LONG.	Ossian
CLAIM	11131
CO-ORD.	550W, 175S

NQ
Bradley Bros.
Feb.25-28/97
Kevin Montgomery
Casing left in hole

SURVEY DEPTH	DIP	AZIMUTH
8	49.5	339
58	49	
108	48	342
152	48	342

HOLE NO. OGM97-4	PAGE I
COLLAR AZIMUTH	33
COLLAR DIP	49.
ELEVATION	-
LENGTH	152

	RVAL Ft 🗆	% REC	% ROD	LITHOTYPE	DESCRIPTION GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		S	AMPLE				ASSA	rs.	
FROM	70	R.S.C.	RQD.		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	A U ppb			
0	4.4			Overburden	OVB.									
4.4	83.14	90	G	Mafic to	2-3A, m, green, VFg, massive to amygdaloidal (andesite) mafic to intermediate									
L				Intermediate	flows. Amygdaloidal sections consist of 10% white calcite-quartz filled amygdules									
				Flows	and 2-3% dark green chlorite amygdules. Local tectonic breccia sections comprised									
L					of 80-90% angular block size flow fragments within VFg pale green matrix									
				•	(fracturing).									
					MINERALIZATION: None.									
					ALTERATION: Weak calcite.									
					STRUCTURE: Massive flows with distinct flow contacts. Flow contact orientations:									
					11.2 50 to CA 29.2 35 to CA 55.67 25 to CA									
					17.2 45 to CA 36.3 60 to CA 58.42 30 to CA									
					19.8 43 to CA 49.9 50 to CA 64.25 45 to CA									
					4.4-6.3 Blocky, iron oxidized fractures, surface weathering poor RQD.									
					6.3-10.25 Tectonic breccia, lower contact 40 to CA.									
					10.25-17.2 Alternating amygdaloidal, massive and tectonic breccia sections.									
					17.2-18.8 Amygdaloidal section.									
					30.05-30.2 Breccia-chlorite rich fragments cemented by calcite.									

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-4	PAGE 2/6
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	·
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	

	RVAL Ft 🗆	*	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE				A	ASSA'	YS	
PROM	то	REC	RQD	LIMOTIFE	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	то	LENGTH	% SUL	Au ppb				
					30.2-30.4 Vq, upper contact 55 to CA and lower contact 25 to CA.										
					34-38.8 Tectonic breccia with local amygdaloidal mafic flow fragments.				<u> </u>						
					38.95-39.6 Vuggy rusty open fracture section, blocky core, poor RQD.										<u> </u>
	<u></u>				41.4-42.6 Amygdaloidal section.									L	
					43.6-44.2 Same as 38.95-39.6m, 0.1m core loss.										
					52.1-52.5 ALTERATION: Pale green, bleached section (moderate pervasive										
					epidote). Upper contact 15 to CA and lower contact 45 to CA. Possible flow										
					scivage.										
					55.67-58.42 Same as above, contacts 30 to CA.										
					72.35-74.2 MINERALIZATION: 10% VFg pyrite disseminations concentrated within										
					calcite filled fractures in a weakly brecciated section.	2399	73.4	74.25	0.85	10	<5				
					83-83.14 70% quartz veinlets to stringers, 90 to CA.	2400	82.05	83.14	1.09	0	<5				
					Sharp lower contact but marked by quartz vein.					,					
83.14	95.4			Felsic	4B, t, light grey, VFg, hard (siliceous), fractured felsic tuffs with pale green										
				Ash Tuff	VFg intermediate mafic feeder dikes. Composition similar to above mafic to										
					intermediate flows. These are non-fractured, non-mineralized and softer than the										
					felsic tuffs. Sharp contacts between the felsic and mafic to intermediate dikes.										

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-4 PAGE 3/6
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	g.	S RQD	LITHOTYPE	DESCRIPTION		S	AMPLE					ASSA'		
FROM	то	RBC	ggo		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	το	LENGTH	\$ SUL	Au ppb	Co ppen	Za ppm	Pb.	A4 ppm
					Moderately intense calcite + quartz veinlets/fractures (1-5mm wide) randomly										
					oriented. The veinlets are displaced by moderately intense microfractures with pale										
L					bleached alteration halos (mm) sericite?	,									
					STRUCTURE: Dike contacts, S ₁ and S ₂ foliation:										
					88.9 55 to CA (dike contact), 89.6 60 to CA (dike contact), 92.3 35 to CA(S ₁)										
					85 to CA(S ₂) and 93.9 40 to CA(S ₁).										
					MINERALIZATION: Felsic tuffs contain 1-5% brassy VFg pyrite stringers to										
					dissemination with a higher concentration of 10% from 85.5-88.88m.										
					83.14-83.55 4A, 1% disseminated VFg pyrite.										
					83.55-85.5 Intermediate to mafic dike.										
					85.5-87 4A, MINERALIZATION: 10% brassy VFg pyrite stringers and										
					disseminations.										
					87-87.8 Same as above, 5% pyrite.	2401	83.14	84.2	1.06	0.5	<5				
					87.8-88.88 Same as above, 15% pyrite.	2402	84.2	85.50	1.30	0	<5				
					88.88-89.63 Mafic to intermediate dike.	2403	85.50	86.5	1.0	10	<5				
					89.63-92.8 4A, MINERALIZATION: 5% VFg disseminated pyrite.	2404	86.5	87.8	1.3	7	<5				
					92.2-95.9 Moderately foliated section S ₁ and S ₂ . Local thin (1-2mm) sericite rich	2405	87.8	88.88	1.08	15	<5	35	6	7	<0.1
					S ₁ foliation and chlorite rich S ₁ bands (>5mm wide).	2406	88.88	89.63	0.75	0	<5				

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-4 PAGE 4/6
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	8	S ROD	LITHOTYPE	DESCRIPTION		S	AMPLE					ASSA	rs	
FROM	10	RBC	aQD	EIMOTTE	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	10	LENGTH	% SUL	Au ppb	Cu ppes	Za ppm	Ph pps	Ag ppm
					MINERALIZATION: 0.5-1% VFg disseminated pyrite.	2407	89.63	91.10	1.47	5	<5				
					94.7-95.2 Quartz-chlorite vein with trace calcite. 10% chlorite stringers/fractures.	2408	91.10	92.6	1.5	4	<5	<10	<1	<5	<0.5
					Upper contact 70 to CA and lower contact 40 to CA.	2409	92.6	94.1	1.5	1	<5				
					Lower contact gradational.	2410	94.1	95.4	1.30	0.5	7				
95.40	134.14			Felsic	4B, b, light grey, VFg, hard, felsic breccia composed of 70% block-size angular VFg	2411	95.4	97.0	1.6	10	5				
				Breccia	grey felsic fragments within a VFg cream felsic matrix 30% of unit. Fragments have	2412	97.0	98.5	1.5	10	14	<10	<1	<5	<0.5
					a dark grey alteration halos (5mm). The matrix is later silicification which has	2413	98.5	100.0	1.5	10	13				
					caused zonation of fragments. Below 103m, 50% of fragments are feldspar porphyritic.	2414	100.0	101.5	1.5	10	6				
					Rare quartz-chlorite veinlets. Below 111.5m mafic to intermediate flow/feeder dikes.	2415	101.5	103.0	1.5	10	<5	10	3	4	<0.1
					MINERALIZATION: 10-12% pyrite occuring as VFg brassy disseminations	2416	103.0	104.5	1.5	12	6				
					concentrated mostly in matrix. Local Fg disseminations to stringers in matrix.	2417	104.5	106.0	1.5	15	8				
					95.4-103 MINERALIZATION: 10% pyrite, mostly VFg.	2418	106.0	107.5	1.5	15	9	11	4	4	0.2
					103-104.5 MINERALIZATION: 12% pyrite with local Fg disseminations.	2419	107.5	109.0	1.5	12	10				
					104.5-107.5 MINERALIZATION: 15% pyrite mostly Fg disseminations and	2420	109.0	110.5	1.5	10	<5				
					stringers.	2421	110.5	111.5	1.0	10	<5	10	5	4	<0.1
					107.5-109 Same as 103-104.5m.	2422	111.5	113.0	1.5	7	<5				
					109-111.65 Same as 95.4 to 103m.	2423	113.0	114.5	1.5	7	<5				

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-4 PAGE 5/6
PROPERTY .	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
ORJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	*	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE					ASSAY	's	
FROM	то	RBC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	то	LENGTH	% SUL	Au ppb	Cu ppm	Za ppm	P6 ppm	Aş Pêrm
					111.65-111.80 Amygdaloidal mafic to intermediate flow (feeder dike) with irregular	2424	114.5	116,0	1.5	8	<5	<10	<10	<5	<0.5
					contacts 25-30 to CA. Flow contains 15% white calcite round amygdules	2425	116.0	117.5	1.5	8	<5				
					(undeformed) typically 1-5mm in diameter. 5% VFg pyrite disseminations in	2426	117.5	119.0	1.5	8	<5	7	4	3	<0.1
					fractures.	2427	119.0	120.5	1.5	5	<5				
					111.85-113 MINERALIZATION: 8% VFg pyrite disseminations.	2428	120.5	121.8	1.3	5	<5				
L					112.5-112.8 Mafic to moderate flow, rare amygdules and 5% VFg pyrite	2429	121.8	123.5	1.7	8	<5				
<u> </u>					disseminations in fractures.	2430	123.5	125,15	1.65	8	<5	9	4	4	< 0.1
L					113-119 MINERALIZATION: 8% pyrite both VFg disseminations and Fg stringers.	2431	125.15	126.35	1.2	3	<5				
					119-121.8 2-3A, a, same as 111.65-111.80m. Upper contact 40 to CA and lower	2432	126.35	127.5	1.15	3	<5				
					contact 15 to CA (feeder dike). Weakly foliated 25-45 to CA.	2433	127.5	129.0	1.5	8	<5				
					121.8-125.15 MINERALIZATION: 8% VFg disseminated pyrite.	2434	129.0	130.5	1.5	8	<5				
					125.15-127.5 2-3A, feldspar porphyritic (5% white feldspar phenocrysts) mafic to	2435	130.5	132.0	1.5	8	<5				
				,	intermediate flow with 3% VFg disseminated pyrite.	2436	132.0	133.0	1.0	8_	<5				
					127.5-134.14 Same as 121.8-125.15m, pyrite 5-8%.	2437	133.0	134.14	1.14	8	8	7	7	4	<0.1
					132.33-133.42 Vq, irregular with flow selvages 65 to CA.										
					133.3 Vq (2cm), 70 to CA.										
				·	Lower contact gradational.										
<u> </u>															

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-4 PAGE 6/6
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
ОВЈЕСТІУВ	CO-ORD.	DDH COM				LENGTH

n · · -	RVAL Ft 🗆	2	5	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA`	YS	
FROM	то	RBC	RQD	211101112	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb			
134.14	152.0			Mafic Flows	2A. m. green to dark green, VFg, homogenous, massive flows (basalt or andesite)	2438	134.14	135.6	1.46	0	<5			
					with local scattered calcite amygdules. The upper portion (134.14-138.1) has VFg	2439	135.6	137.0	1.40	0	<5			
					pale bleached green diffuse alteration about microfracturing and fractures.	2440	137.0	138.1	1.1	0	<5	 		
					146.15-148 Brecciated feldspar porphyry (feeder dike) composed of 15-18% white					:		 		
					feldspar crystals (1-2mm) in a VFg grey felsic matrix. Porphyry is brecciated by	2441	146.15	148.0	1.85	7	19	<u> </u>		
					microfractures. Upper contact faint 80 to CA and lower contact sharp and wavy,	2442	148.0	149.75	1.75	1	<5	 		
					10 to CA.	2443	149.75	150.45	0.65	7	<5	 		
					MINERALIZATION: 7% VFg disseminated pyrite in fracturing.	L								
					149.75-150.45 Same as above, contacts 35 to CA.							 		
	152.0			Е.О.Н.	End of Hole.							 		
					The hole intersected IP1 target TH1 from 85.5m to 134.14m downhole.									
					Drill core stored in Larder Lake.									
							i							
]	
]										1]

W.A. HUBACHECK CONSULTANTS LTD

COMPANY	Silver Century Explorations
PROPERTY	Ossian Gold Mine (PN53)
COMMENCED	Feb. 28/97
COMPLETED	March 2/97
OBJECTIVE	Test IP targets TH-3& TM-3

NTS	32 D4/5
DISTRICT	Larder Lake
TWP/LAT.LONG.	Ossian
CLAIM .	11133
CO-ORD	700F 50S

CORE SIZE	NQ
CONTRACTOR	Bradley Bros.
DATE LOGGED	March 1-3/97
LOGGED BY	Kevin Montgomery
DDH COM	Casing pulled

SURVEY DEPTH	DIP	AZIMUTH
26	49	346
76	50	_
126	49.5	343
176	50	-

HOLE NO. OGM97-5	PAGE	1/10
COLLAR AZIMUTH		340
COLLAR DIP		50
ELEVATION		
LENGTH		293m

	RVAL Ft 🗆	5	% RQD	LITHOTYPE	DESCRIPTION GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		s	AMPLE					ASSA'	YS .	
FROM	10	REC	RQD	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		FROM	то	LENOTH	% SUL	Am pph	Acus pysom	Za ppes	Ph.	Ag ppm
0	19.4			Overburden	OVB,										
19.4	30.75	95	M	Sericitized	3A, a, mixed unit consisting of (1) VFg yellowish green to mustard yellow,										
				Intermediate	amygdaloidal (calcite or quartz) sericitized intermediate flows:								<u> </u>		
				Amygdaloidal	19.4-21m, 22.25m-24.5m, 25.6m-25.87m, 28.8m-30.05m, 30.2m-30.75m.				<u></u>						
				Flows/	(2) dark grey, VFg, carbonatized, massive and fractured felsic flows:							!			
				Carbonatized	21m-22.25m, 24.5m-25.6m, 30.05m-30.2m, flows contain 35-40% white very fine										
				Felsic Flows	pseudomorphs (feldspars). (3) green, VFg, weakly foliated, intermediate tuff										
					section 25.87m-28.8m.										
					MINERALIZATION: None.										
					STRUCTURE: Weakly foliated (S2); 20.5 60 to CA, 26 60 to CA, 28.8 50 to CA.	Ĺ									
					Lower contact marked by disappearnace of amygdaloidal sections.										
													L		
30.75	41.5			Carbonatized	4B, xt, c, light grey, VFg, soft, carbonatized, massive and fractured felsic (rhyolite)	2444	30.75	32.25	1.50	12	<5				
				Felsic	crystal tuffs. They contain 5% distinctive black chlorite filled fractures (1mm), and	2445	32.25	33.75	1.5	10	<5	10	22	6	<0.5
				Crystal Tuff	mustard yellow sericite rich sections at 37m-37.27m, 38m-38.25m and 40.1m-40.7m.	2446	33.75	35.25	1.5	8	<5				
					Last sericite section has local fine (1mm) calcite filled amygdules.	2447	35.25	36.75	1.5	2	<5				
					Flows contain 20% very fine white pseudomorphs.	2448	36.75	38.25	1.5	3	<5	64	53	- 11	0.5

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-5	PAGE 2/10
PROPERTY	DISTRICT	CONTRACTOR	227	49	346	COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED	276	49	-	COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY	293	49	347	ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	

	RVAL Ft 🗆	z	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE					ASSA?	YS	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size,	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc) SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb	Cu ppes	Za ppm	Ph ppen	Ag ppm
					ALTERATION: Moderate to intense pervasive carbonatization and local intense	2449	38,25	40.1	1.85	2	<5				
	<u> </u>				sericite sections. Dark grey alteration halos about fractures producing a mottled	2450	40.1	41.5	1.4	0	<5		<u> </u>		
					appearance to unit.								L		
					STRUCTURE: Sericite section flow? contacts; 34.7 55 to CA, 37.3 60 to CA,										
					38.5 55 to CA.								Ī		
					MINERALIZATION: Upper portion 30.75m to 35.25m contains 8-12% VFg finely										
					disseminated pyrite and local brown pyrite stringers. Lower portion 2% pyrite as										
					above.										
					34.6 Sericite fault gouge.										
					Lower contact marked by last sericite section.										
41.5	88.35			Carbonatized	4B, t-xt, C, Se, cream, VFg, soft, altered, massive felsic ash to crystal tuffs that	2451	41.5	43.0	1.5	2	<5				
				& Sericitized	are cut by distinctive randomly oriented black chlorite fractures to stringers down to	2452	43.0	44.25	1.25	2	<5				
				Felsic Ash-	66.5m. White VFg albite patches. Homogenous texture.	2453	44.25	45.5	1.25	2	<5	19	62	8	<0.5
				Crystal Tuffs	STRUCTURE: Weak local foliation, moderately fractured.	2454	45.5	47.0	1.50	0.5	<5				
				,	Foliation: 53.6 40 to CA, 60.7 55 to CA, 76.2 40 to CA.	2455	47.0	48.35	1.35	0.5	<5				
`					ALTERATION: Moderate pervasive pinkish carbonatization and pale yellow wispy	2456	48.35	49.65	1.30	1	8				
					sericite slips to bands.	2457	49.65	51.0	1.35	0.5	<5				

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-5 PAGE 3/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft □	5	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE					ASSA`	YS	
FROM	то	RISC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		FROM	то	LENGTH	≸ SUL	Au ppb	Cis pp==	Za ppa	Po ppm	A# ppm
					MINERALIZATION: 2-3% VFg brownish pyrite stringers/fractures and VFg	2458	51.0	52,5	1.5	2	<5				
					disseminations in fractures down to 64.5m.	2459	52.5	54.0	1.5	2	<5				
					Lower contact marked by vein.	2460	54.0	55.5	1.5	4	<5	18	55	10	<0.1
					41.5-45.5 MINERALIZATION: 2% pyrite, as above.	2461	55.5	57.0	1.5	3	<5				
					45.5-48.35 MINERALIZATION: 0.5% pyrite, as above.	2462	57.0	58.5	1.5	3	<5			<u> </u>	
	<u> </u>				48.35-49 MINERALIZATION: 2% pyrite, as above.	2463	58.5	60.0	1.5	3	<5				
					49-51 MINERALIZATION: 0.5% pyrite, as above.	2464	60.0	61.5	1.5	3	<5	21	59	11_	<0.1
					51-54 MINERALIZATION: 2% pyrite, as above.	2465	61.5	63.0	1.5	3	<5				
					54-63 MINERALIZATION: 3-4% VFg brownish pyrite stringers to disseminations	2466	63.0	64.5	1.5	1	<5				
					in fractures.										
					63-64.5 MINERALIZATION: 1% pyrite, as above.	2467	87.55	88.35	0.8	0	<5				
					83.72 Vc (2cm wide), 55 to CA.										
					87.55-88.35 White VFg quartz (65%)-carbonate (20%)-chlorite (15%) vein. The										
					black chlorite occurs as stringers in the vein. Upper contact 65 to CA and lower										
					45 to CA.										
	i														
88.35	110.5			Intermediate	3B, xt, greenish grey, VFg, foliated, intermediate (dacite-andesite) crystal tuff with										
				Crystal Tuff	local lithic tuff sections. The crystal tuff layers consist of 15% white carbonate										

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-5 PAGE 4/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	ERVAL	8	*	LITHOTYPE	DESCRIPTION		s	AMPLE		·		"	ASSA?	YS	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb	Cu ppm	Za ppan) to	Ag ppm
					sub-rounded phenocrysts (2-5mm) that were likely original feldspar crystals. Locally light grey VFg lithic tuff layers which consists of 10% pale green VFg soft talcose shards and dark green chlorite wisps in a VFg matrix. Local white quartz ± calcite veins. ALTERATION: Local sections of intense pervasive mustard yellow sericitization 95.09m-95.31m, 104.75m-105.25m, and 100.25m-110.5m. STRUCTURE: Moderately foliated (S ₁).										
					93.1 50 to CA 106.8 45 to CA 99.0 50 to CA 110.3 35 to CA 105.3 50 to CA 98.5-101.5 MINERALIZATION: 1% VFg brownish pyrite disseminations locally	2468	98.5	100.0	1.5	1	<5				
					along foliation. 99.59-99.62 Cream VFg albite-quartz vein (3cm), 60 to CA. 99.91-100 Vqca. 101.5-104.5 MINERALIZATION: 3% VFg brownish pyrite specks, disseminations and local stringers. Lower contact marked by sericite layer.	2469 2470 2471 2472	100.0 101.5 103.0 104.5	101.5 103.0 104.5 105.8	1.5 1.5 1.5 1.3	3 3 0.5	<5 <5 <5 <5	172	101	6	<0.5

W.A. HUBACHECK CONSULTANTS LTD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-5 PAGE 5/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Pt 🗆	5	s	LITHOTYPE	DESCRIPTION .		s	AMPLE					ASSA?	rs	
FROM	10	RBC	16QD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE FROM NO.		от	LENGTH	% SUL	As ppb	Cu ppm	Za ppm	Po PP=	Ag ppm
110.5	227.1			Carbonatized	4B, t-xt, C, Se, greenish grey, VFg, altered, soft, felsic ash tuff to crystal tuffs,	2473	110.5	112.0	1.5	2	<5				
				& Sericitized	The upper portion to 137.5m is cream coloured strongly sericitized and carbonatized.	2474	112.0	113.75	1.75	1	<5				
					ALTERATION: Moderate pervasive carbonatization and moderate pale yellow			<u> </u>							
<u></u>				Pelsic Ash to	sericite wisps to bands. Local sections of intense mustard yellow sericite layers	2475	115.75	117.25	1.50	3	<5				
				Crystal Tuffs	at 117.35m-118.9m, 136.2m-136.3m, 221.95m-222.15m.	2476	117.25	119.0	1.75	3	<5				
	<u> </u>				MINERALIZATION: Overall 3% VFg brownish pyrite disseminations to specks with	2477	119.0	120.65	1.65	3 _	<5	29	44	5	<0.5
<u></u>					local stringers.	2478	120.65	122.25	1.60	3	<5				
					STRUCTURE: Weakly foliated (S ₁).	2479	122.25	124.0	1.75	2	<5				
					110.9 40 to CA 139.0 50 to CA 179.3 55 to CA 199.7 55 to CA 218 45 to CA	2480	124.0	125.5	1.5	2	<5				
					113.8 40 to CA 150.5 55 to CA 183.8 55 to CA 203.2 55 to CA 224.2 45 to CA	2481	125.5	127.0	1.5	2	<5				
					117.35 40 to CA 154.8 55 to CA 189.5 45 to CA 207.5 50 to CA	2482	127.0	128.5	1.5	3	<5	36	111	10	<0.1
					136 50 to CA 160.5 50 to CA 193.3 50 to CA 212.9 50 to CA	2483	128.5	130.0	1.5	1	<5				
					112-113.75 MINERALIAZTION: 1-2% VFg brownish pyrite disseminations to	2484	130.0	131.5	1.5	1	<5				
					specks in felsic ash tuff section with 5-7% chlorite specks to chlorite filled micro-	2485	131.5	133.0	1.5	2	<5				
					fractures and grey blotchy alteration patches.	2486	133.0	134.5	1.5	2	6	28	158	11	<0.1
					115.75-122.75 MINERALIZATION: 3% pyrite, same as above, local stringers.	2487	134.5	135.8	1.3	0.5	<5				
					124-137.5 MINERALIZATION: 1-2% VFg brownish pyrite disseminations to wispy	2488	135.8	137.5	1.7	3	23				
					stringers.										
					146-147 MINERALIAZTION: 1% VFg brownish to brassy pyrite disseminations										

W.A. HUBACHECK CONSULTANTS LTD.

		TOKONTO	ON LAKIO,	CANADA
IMUTH	***** W 310	0.01.40# #	D. 05	£110

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-5 PAGE 6/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	g RBC	% ROD	LITHOTYPE	DESCRIPTION		S	AMPLE			ASSAYS				
FROM	το	, ac	-		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	10	LENGTH	% SUL	Au ppb	Cu ppm	Za ppes	P) P)	Ag ppm
					infilling fractures.	2489	171.25	173.0	1.75	3	41				
			<u> </u>		147-147.7 Ochre VFg weakly foliated sericitic muddy ash layer which contains	2490	173.0	174.5	1.5	3	65	58	160	6	0.8
			<u> </u>		calcite and quartz filled amygdules (1-2mm diameter) at base of layer.	2491	174.5	176.0	1.5	3	9				
					Contacts 55 to CA.	2492	176.0	177.5	1.5	3	<5				
					152.92-153.85 Same as above, 7-10% amygdules which are more concentrated near	2493	177.5	179.0	1.5	3	6				
					lower contact, 60 to CA. Trace to 0.5% pyrite in amygdules.	2494	179.0	180.5	1.5	3	<5	27	271	6	<0.1
L					163.55-164.6 Same as 147-147.7, 4% light green soft talc wispy specks that may	2495	180.5	182.0	1.50	3	<5				
					have been original amygdules. Lower contact 50 to CA.	2496	182.0	183.75	1.75	3	<5				
					165.87-168 Same as 147-147.7, upper contact 50 to CA and lower contact 40 to CA.										
					171.25-183.75 MINERALIZATION: 3% brassy to brown pyrite specks to	2497	188.8	190.3	1.5	3	<5				
					disseminations and local stringers. Section contains moderate to minor chlorite	2498	190.3	192.0	1.7	3	<5	34	139	6	0.6
					microfractures.	2499	192.0	193.75	1.75	3	<5				
					ALTERATION: Weak pervasive chloritization.	2500	193.75	195.5	1.75	3	6				
					188.8-200 MINERALIZATION: 3% pyrite, same as above.	2501	195.5	197.0	1.5	3	<5				
					200-230 MINERALIZATION: 1-2% VFg brownish pyrite specks.	2502	197.0	198.5	1.5	3	9	99	176	8	0.8
<u></u>					192-227.1 STRUCTURE: Moderately foliated.	2503	198.5	200.0	1.5	3	<5				
<u></u>					ALTERATION: Cream to light grey carbonatized and sericitized felsic ash tuff.										
					Sericite along foliation slips.	2504	204.55	206.0	1.45	2	<5				
	Ll				Lower contact gradational.										

W.A. HUBACHECK CONSULTANTS LTD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-5 PAGE 7/	/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY				ELEVATION	
ОВЈЕСТІVВ	CO-ORD.	DDH COM				LENGTH	

	RVAL Ft 🗆	5	×	LITHOTYPE	DESCRIPTION		S	AMPLE				_	ASSA	rs	
FROM	70	RBC	жQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	10	LENGTH	\$ SUL	Au ppb	Cu ppus	Za pp=	bben je	Ag pp=s
						2505	215.0	216.5	1.5	4	<5				
						2506	224.0	225.5	1.5	0	<5				
						2507	225.5	227.0	1.5	0_	16				
<u> </u>															
227.1	242.0			Intermediate	3-4B, xt, C, pale greyish green, VFg, non-foliated, homogenous textured,	2508	227.0	228.5	1.5	2	17				
				-Felsic	intermediate-felsic crystal tuff. Tuff contains 40% white very fine (<1mm diameter)	2509	228.5	230.0	1.5	2	6				
				Crystal Tuff	feldspar phenocrysts.										
					ALTERATION: Weak to moderate pervasive carbonatization and sericite.	2510	233.0	234.5	1.5	3	6	28	173	12	0.5
 					MINERALIZATION: Local sections of 2-3% VFg brownish pyrite wispy lenses										
					to patches.										
					STRUCTURE: Very weak foliation 234.5 45 to CA and 240.5 40 to CA.										
					227-230 MINERALIZATION: 2% pyrite, as above.										
					233-234.5 MINERALIZATION: 3% VFg brownish pyrite occuring as scattered										
					patches.										
					237.5-242 MINERALIZATION: 1% pyrite wispy lenses to patches.										
					241.2 Vq (3cm), 50 to CA.]					
					Lower contact gradational.	·									

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-5 PAGE 8/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	5	s ROD	LITHOTYPE	DESCRIPTION SAMPLE					ASSA	YS				
PROM	то	RBC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE PROM TO LENGTH \$ SUL		\$ SUL	Au ppb	Cu ppm	Za Premi	Pb ppm	^s PP==		
242.0	253.23			Sericitized	3B, xt, Se, green, Fg, sericitized intermediate crystal tuff (andesite). Tuff has										
<u></u>				Intermediate	distinct yellowish green sericite wispy band (0.3-1cm). These bands are irregular		<u></u>	<u> </u>							
				Crystal Tuff	and wavy, typically 40-60 to CA. Crystal tuff comprised of 30% white fine (2-4mm		<u> </u>	<u> </u>							
					diameter) feldspar phenocrysts. Minor chlorite wisps and chlorite filled fractures.										
					STRUCTURE: Weak foliation (S _i).										
					243.15 50 to CA 251.4 45 to CA										
L					245.65 50 ω CA										
<u> </u>					248.6 50 to CA.										
<u></u>					ALTERATION: Moderately intense sericite occuring as bands.										
					MINERALIZATION: Trace disseminated pyrite.										
					245.18-245.23 Vca, upper contact 50 to CA, lower contact 80 to CA.										
					252.93-253.23 Sericite zone - VFg yellowish green weakly foliated sericite with	2511	252.0	252.95	0.95	0.5	<5	25	58	5	0.6
					7% white VFg quartz± albite veinlets to patches. This marks lower contact.										
253.23	277.3			Intermediate	3B, agg, green to dark green, Fg, intermediate agglomerate composed of 40-45%										
				Agglomerate	VFg pale green siliceous felsic? angular & microfractured fragments. Microfractures										
					are chlorite filled. The fragments range from 1cm to 15cm in diameter and are										
L					matrix supported. Fragment margins are very irregular. Matrix has an anastomosing										

W.A. HUBACHECK CONSULTANTS LTI

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-5 PAGE 9/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	INTERVAL M Ft \$ 5 LITHOTYPE		LITHOTYPE	DESCRIPTION		s	AMPLE			ASSAYS						
FROM	70	RBC	ngo		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	то	LENGTH	% SUL	Au ppb					
					foliation which envelopes fragments. Pale yellow sericite rich intermediate ash											
					matrix to 262.45m. Below 262.45m, chlorite rich ash matrix with minor sericite. STRUCTURE: Weakly foliated (S ₁); 260 50 to CA and 267.5 55 to CA.											
					270.17-270.9 Ash tuff with 5% white carbonate speck, 3% talc specks and 2% quartz											
					eyes. Very minor calcite stringers. Contacts 60 to CA. 272.95-273.8 Same as above. Upper contact 40 to CA and lower contact 55 to CA.			<u> </u>								
					272-272.95 MINERALIZATION: 1% VFg brownish pyrite.											
					274.55-277.3 Ash tuff with 10% dark green chlorite specks. Massive homogenous											
					texture. Minor quartz + calcite veining. Vqca 0 to CA from 276.55m to 277.2m. Lower contact 60 to CA.											
277.3	293.0			Intermediate	3-2 B, t, dark green, VFg-Fg, massive, non-foliated intermediate to mafic ash tuff						 					
		\vdash		to Mafic Ash Tuff	with local intermediate agglomerate sections (as above).											
				lun	From 283.5 to 285.35 and 292.3-293.0 ALTERATION: Moderate pervasive calcite below 285.35m.											
					MINERALIZATION: Trace disseminated pyrite.											
					STRUCTURE: Weak local foliation (S ₁), 285.4 55 to CA and 292.3 45 to CA.											
		لــلـــــــا			284.51-284.57 Vca, 45 to CA.	I		<u></u>			L1					

W.A. HUBACHECK CONSULTANTS LTD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-5 PAGE 10/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	INTERVAL M Ft		S RQO	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSAYS			
FROM	10	REC	#QD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		FROM	то	LENGTH	% SUL	Au ppè				
					286.85 Vca (lcm), 55 to CA.										
					291.28 Vca (lcm), 60 to CA.						<u></u>				
					291.8 Vca (1cm), 55 to CA.			<u> </u>							
					292.13 Vca (1cm), 50 to CA.										
	293.0			Е.О.Н.	End of Hole.										
					The hole intersected IP-1, TH-3 target from 30.75 to 63m and IP-3, TM-3 target										
					from 171.25m to 206m. Drill core stored in Larder Lake.										
	-														
						,									
		T													
		\neg													

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	Silver Century Explorations
PROPERTY	Ossian Gold Mines (PN53)
COMMENCED	March 3, 1997
COMPLETED	March 6, 1997

NTS	32 D-4/5
DISTRICT	Larder Lake
TWP/LAT.LONG.	Ossian
CLAIM	11184
COORD	11100E 4506

CORE SIZE	NQ
CONTRACTOR	Bradley Bros.
DATE LOGGED	March 4-6/97
LOGGED BY	J. Kevin Montgomery
DDH COM	Casing removed

SURVEY DEPTH	DIP	AZIMUTH
17	48.5	340
67	49	•
117	48	340
167	48	

HOLE NO. OGM97-6	PAGE	1/10
COLLAR AZIMUTH		340
COLLAR DIP		49*
ELEVATION		
LENGTH		335m

	INTERVAL M ■ Ft □		% RQD	LITHOTYPE	DESCRIPTION Montgame		S	AMPLE					ASSA	YS	
FROM	70	REC	IIQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc.)		FROM	то	LENGTH	% SUL	Au ppb				
0	11			Overburden	QVB.										
		<u> </u>]	<u> </u>				<u> </u>		<u> </u>		
11	114.4			Mafic Flows	2A, m, o, greyish green, VFg-Fg, massive to weakly foliated, mafic flows.										
					Porphyritic sections consisting of 15 to 40% white feldspar-quartz elliptical to	<u></u>									
					angular specks. Local amygdaloidal sections comprised of 3-5% white calcite or	<u> </u>			<u></u>						
					quartz amygdules.										
					Local quartz-carbonate veints.								<u></u>		
					MINERALIZATION: Local sections of 0.5-3% pyrite. The pyrite is commonly										
					scattered VFg brownish pyrite lenses.										
					STRUCTURE: Massive becoming foliated downhole below 60m.										
					58.5 55 to CA (flow contact), 69.4 35 to CA(S ₁), 87.5 35 to CA(S ₂), 94.3 35 to CA										
					61.2 25 to CA(S ₁), 72.5 35 to CA(S ₁), 71.9 50 to CA (flow contact)										
					100.2 55 to CA (flow contact)										
					65.1 25 to CA(S ₁), 77.6 35 to CA(S ₁), 84.4 35 to CA(S ₁) 111.3 40 to CA(S ₁)										
					14-17 Several iron oxidized fractures.										
					19.13-20 Blocky core.										
					20-20.65 0.2m of core loss.	2512	20.65	21.9	1.25_	6	32				
					20.65-21.9 MINERALIZATION: Overall 6% pyrite occurring as scattered large (up	2513	21.9	23.0	1.10	2	13				

W.A. HUBACHECK CONSULTANTS LTD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-6 PAGE 2/10
PROPERTY	DISTRICT	CONTRACTOR	217	47.5	342	COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED	267	47	•	COLLAR DIP
COMPLETED	CLAIM	LOGGED BY	317	47.5	343	ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	INTERVAL M Ft s		# RQD	LITHOTYPE	DESCRIPTION		s	AMPLE			ASSAYS					
FROM	то	RBC	IRQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		FROM	то	LENGTH	\$ \$UL	Au ppb					
11	114.4			Cont'd	to 3 x 6 cm) lenses of VPg-Fg brownish pyrite specks held together by VFg quartz.	2514	23.0	24.2	1,20	0	36					
					21.9-23.0 Vuggy iron oxidized quartz-carbonate veining, 40% of section. Section											
					contains 1% Fg chalcopyrite splashes in veins.											
				·	23.27-24.2 Same as above, 30% veining.				<u> </u>				<u> </u>			
					24.2-24.8 MINERALIZATION: 3-4% Fg brassy pyrite speck with chlorite rims.											
					24.8-40.25 Porphyritic sections.				L				<u> </u>			
					36-51 MINERALIZATION: Overall 0.5% pyrite, very scattered small lenses	2515	47.25	48.5	1.25	2	<5					
					(1x5cm) of VFg brownish pyrite.]	
					58.5-59.5 MINERALIZATION: 3% VFg brassy pyrite disseminations to wispy	2516	58.5	59.5	1.0	3	63					
					lenses.	2517	59.5	60.35	0.85	2	<5					
					59.18 Vqcse (2.5cm), 35 to CA.											
					59.5-60.35 Amygdaloidal section - 3% white calcite + quartz filled amygdules											
					(1-2mm) diameter and 7% pale green tale shards (1-5mm).											
					MINERALIZATION: 2% VPg brownish pyrite wisps.											
					60.35-60.43 Vose with quartz hairline fractures perpendicular to vein contacts,											
					45 ω CA.	2518	65.0	66.5	1.5	1	10					
				·	65-75 MINERALIZATION: 0.5% pyrite, same as 36-51 m.											
					70.56-70.6 Vcq, 70 to CA.	·2519	70.5	72.0	1.5	0.5	6					

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-6 PAGE 3/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	INTERVAL M Ft s		% EQD	LITHOTYPE	DESCRIPTION		S	AMPLE			ASSAYS					
PROM	10	REC	roto.		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		PROM	то	LENGTH	S SUL	Au ppb	Cu	Za pr	Ph.	Ag ppm	
11	114.4			Cont'd	70.79-70.7 Vchqc, 55 to CA,											
<u> </u>					71.63-71.74 Vchqc, 55 to CA.											
				·	91.9-114.4 MINERALIZATION: 5-7% VFg brassy pyrite stringers, wispy fractures,	2520	91.9	93.5	1.6	4	71					
					specks and blebs. Blackish green VFg chlorite rich flow selvages.	2521	93.5	95.0	1.5	4	123	67	151	7	<0.1	
					98.36 Vqc (1.5cm), 80 to CA.	2522	95.0	96.5	1.5	3	35					
					101.48 Vcq, (1.5cm), 35 to CA.	2523	96.5	98.0	1.5	5	15					
					101.56 Vgc (1.5cm), 35 to CA.	2524	98.0	99.5	1.5	6	6					
<u> </u>					Lower contact sharp, 55 to CA.	2525	99.5	101.0	1.5	7	12_					
						2526	101.0	102.5	1.5	6	8					
						2527	102.5	104.0	1.5	5	7_					
						2528	104.0	105.5	1.5	5	17					
						2529	105.5	107.0	1.5	5	12					
						2530	107.0	108.5	1.5	5	8					
						2531	108.5	110.0	1.5	5	13_					
						2532	110.0	111.5	1.5	5	15					
						2533	111.5	113.0	1.5	5	24]	
						2534	113.0	114.4	1.4	7	25					
]]]]	

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-6 PAGE 4/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
ORJECTIVE	CO-ORD.	DDH COM				LENGTH

	INTERVAL M Ft S S LITHOTYPE		LITHOTYPE	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		S	AMPLE			ASSAYS					
FROM	то	RISC	udo		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	10	LENGTH	% SUL	Au ppb	Cu pp=	Za ppm	Pb ppm	^4 pp==
114.4	128.3			Intermediate to	3-2B, xlt, dark green, Fg, weakly foliated, intermediate crystal-lapilli tuff comprised	2535	114.4	116.0	1.6	8	20				
				Mafic Crystal to	of 15% black chlorite (mafic) lapilli size angular to wisp fragments and 5% white	2536	116.0	117.5	1.5	8	12				
				Lapilli Tuff	feldspar phenocrysts. Tuff likely andesitic to basaltic in composition.	2537	117.5	119.0	1.5	10	15				
					ALTERATION: Weak pervasive carbonatization.	2538	119.0	120.4	1.4	10	10	18	205	<5	<0.5
					MINERALIZATION: 8-10% VFg brown and brassy pyrite occuring as wispy	2539	120.4	122.0	1.6	10	13				
					fragments to blebs and minor dissemination. Some local fracture fillings.	2540 122.0 123.5 1.5		10	30	423	212	6	0.1		
					ocal chlorite alteration about fragments. 2541 123.5 125.0 1.5 10		10	20							
	,				STRUCTURE: Weakly foliated 115.9 40 to CA, 122.2 to to CA, 126.7 40 to CA.	2 to to CA, 126.7 40 to CA. 2542 125.0 126.5 1.5 8		8	13						
					120.52-120.62 Vqc (8cm), 50 to CA. Vein has grey carbonate alteration halo 15cm 2543 126.5 128.3 1.8 8		14								
					into wall rock.	2343 120.3 128.3 1.8 8									
					123.15-123.3 Calcite flooded zone with 10% pyrite and 1% chalcopyrite splashes.										
					Lower contact sharp, 40 to CA.										
128.3	164.0			Intermediate	3B, t-xt, light grey, VFg-Fg, weakly foliated, carbonatized intermediate (dacite) ash										
				Ash to	to crystal tuff. The tuff is composed of 10-15% white feldspar crystal to lapilli										
				Crystal Tuff	sections and fine ash sections. Below 146m, tuffs contain 10-12% green chlorite										
					specks. Minor white carbonate-quartz veinlets (0.5cm).										
					ALTERATION: Moderate pervasive carbonatization possibly causing grey										
					colouration.										

W.A. HUBACHECK CONSULTANTS LTD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-6	PAGE 5/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	

	RVAL Pt 🗆	5	S ROD	LITHOTYPE	DESCRIPTION		S	AMPLE	-				ASSAY	rs	
FROM	70	ABC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	то	LENGTH	% SUL	As ppb	Cu pp==	Za ppm	Pb ppm	Ag ppm
128.3	164			Cont'd	MINERALIZATION: Below 133m, 1-3% VFg brownish pyrite disseminations to blebs. Local sections up to 8% pyrite.										
				·	blebs. Local sections up to 8% pyrite.										
				. :	STRUCTURE: Weak foliation (S ₁).										
					128.9 50 to CA 153.4 40 to CA										
					145.9 40 to CA 160.9 40 to CA										
<u></u>					133.13-133.27 Pyritic shear zone composed of 30-40% white carbonate-quartz	2544	133.0	133.5	0.5	4	19				
					veining, 10% Fg brassy pyrite blebs and 50-60% strongly foliated ash zone contacts	2545	134.9	136.5	1.54	5	14				
					52 to CA. 2546 136.5 138.0 1.55		5	8	98	110	<5	<0.5			
					134.96-135.2 White carbonate-quartz vein with dark green chlorite foliation slips	2547	138.0	139.5	1.5	5	9				
					and 2-3% VFg disseminated pyrite along foliation slips. Zone contacts 50 to CA.	2548	139.5	141.0	1.5	7	16	313	130	6	<0.1
L					135.2-139.5 MINERALIZATION: 5% VFg brownish pyrite in filling wispy hairline	2549	141.0	143.55	1.75	7	13				
<u></u>					fractures and scattered blebs.										
					139.5-142.75 MINERALIZATION: 7% VFg brownish pyrite and Fg brassy pyrite in	2550	152.0	153.5	1.5	8	13				
					fracture gashes.	2551	153.5	155.0	1.5	8	18				
					142.75-152.0 Same as 135.2 - 139.5m, 3% pyrite.										
					152-155 MINERALIZATION: 8% VPg brassy pyrite disseminations to blebs.										
					155-164 Same as 135.2-139.5m, 1-2% pyrite.										
					161.7-161.83 Dark green VFg chlorite rich band possible flow selvage.										
					Fault gouge at lower contact. Contact however appears gradational due to increased										

W.A. HUBACHECK CONSULTANTS LTD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-6 PAGE 6/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED .	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	×	×	LITHOTYPE	DESCRIPTION		S	AMPLE				,	ASSA`	YS	
FROM	то	REC	kQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		% SUL	Au ppb	Cus ppms	Za ppm	Pb ppm	Ag ppm			
					sericite alteration,										
	ļ					<u></u>		<u> </u>							
164.0	207.5			Sericitized	4B, Se, pale greenish grey, mottled, VFg, sheared and altered felsic crystal lapilli	2552	164.1	165.5	1.5	4	53	630	68	6	0.5
				Pelsic Crystal	tuff. This tuff consists of 40% VPg cream wispy felsic crystals to lapilli size			<u> </u>							
				Lapilli and	fragments and 5-7% VFg green chlorite wisps in a VFg grey soft sericite matrix.	2553	168.5	170.0	1.5	4	38				
				Breccia Tuff	The tuff is cut by wavy olive green sericite shear wisps to foliation. Breccia tuff										
	<u> </u>				from 188 to 208m due to intense shearing.	2554	173.0	174.5	1.5	4	15	300	40	6	<0.1
	<u></u>				STRUCTURE: Moderately sheared (\$1).										
					167.2 35 to CA 187.9 45 to CA	2555 177.5 179.0 1.5		4	<5						
					173.2 45 to CA 191.5 40 to CA										
					177.5 40 to CA 197.1 45 to CA	2556	182.0	183.55	1.55	3	<5	254	78	9	<0.1
, 					182.0 35 to CA 203.2 45 to CA	2557	183.55	184.55	0.9	5	6				
					ALTERATION: Intense pervasive sericite alteration matrix and distinct wavy										
					foliation.	2558	191.0	192.5	1.5	5	19				
					MINERALIZATION: 3-5% pyrite throughout, VFg brownish and Fg brassy pyrite	2559	192.5	194.0	1.5	5	47	148	52	5	<0.5
					occuring as wispy lenses, blebs and fracture gashes.	2560	194.0	195.5	1.5	4	13				
					183.55-184.95 Green, VFg, intermediate to mafic, finely foliated ash tuff. Lower	2561	195.5	197.0	1.5	3	11				
					contact 45 to CA.	2562	197.0	198.5	1.5	1	12				
					MINERALIZATION: 5% VFg pyrite disseminated along foliation.	2563	198.5	200.0	1.5	1	8	l	l		

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-6 PAGE	7/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				Length	

	RVAL Ft 🗆	s	*	LITHOTYPE	DESCRIPTION		S	AMPLE					ASSA	rs .	
FROM	то	REC	ndo		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	As ppb	Cu pp=	Za ppm	Pb ppm	Aş ppm
164.0	207.5			Cont'd	186.9-187.6 Same as above.	2564	200.0	201.5	1.5	2	10				
<u></u>					Lower contact gradational, sequence finer ash.	2565	201.5	203.0	1.5	3	11				
<u> </u>	<u> </u>					2566	203.0	204.5	1.5	1	36				
<u> </u>						2567	204.5	206.0	1.5	2	95	283	63	8	<0.1
<u> </u>						2568	206.0	207.5	1.5	1	22				
<u> </u>															
207.5	272.6			Felsic Ash	4B, t, grey, VFg, foliated felsic ash tuff with local felsic crystal tuff section. 2569 207.5 209.0 1.5 2 Ash tuff is homogenous with 5-7% sericite foliation. Crystal tuff sections composed 2570 209.0 210.5 1.5 3		90								
				Tuff	Ash tuff is homogenous with 5-7% sericite foliation. Crystal tuff sections composed	2570	209.0	210.5	1.5	3	190	286	111	7	0.1
					of very fine (1mm diameter) cream felsic crystals in ash matrix. Local quartz-		210.5	212.0	1.5	3	22				
<u> </u>					carbonate veining.	2572	212.0	213.5	1.5	2.5	1				
					ALTERATION: Intense pervasive iron carbonatization and weak sericite along	2573	213.5	215.0	1.5	1	15				
					foliation.	2574	215.0	216.5	1.5	5	60	321	129	9	0.1
					MINERALIZATION: 2% VFg brownish pyrite as wispy lenses to blebs parallel to	2575	216.5	218.0	1.5	5	36				
					foliation throughout the unit.	2576	218.0	219.5	1.5	4	11				
<u> </u>					STRUCTURE: Moderately foliated (S _i).	2577	219.5	221.0	1.5	3	8	138	109	<5	<0.5
					208.5 35 to CA 233.2 45 to CA 266 45 to CA	2578 221.0 222.5 1.5 1.5		1.5	5						
				· · · · · · · · · · · · · · · · · · ·	212.7 45 to CA 238.9 40 to CA 271.8 50 to CA	2579	222.5	224.0	1.5	3	9				
<u> </u>					217.9 45 to CA 248.1 45 to CA	-									
					221.4 50 to CA 254.1 45 to CA	2580	228.5	230.0	1.5	4	<5				

W.A. HUBACHECK CONSULTANTS LTD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-6 PAGE 8/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	*	*	LITHOTYPE	DESCRIPTION		S	AMPLE				4	ASSA	'S	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc.) SAMPLE NO. PROM TO LENGTH 231.4 50 to CA 254.4 45 to CA				% SUL	Ass ppb	Cu ppen	Za ppm	Ph-	Ag ppea	
207.5	272.6			Cont'd	221.4 50 to CA 254.1 45 to CA	2581	233.0	234.5	1.5	3	<5				
					227.1 40 to CA 259.5 50 to CA										
<u> </u>					246.75-249 ALTERATION: Moderately intense olive green VFg sericite along	2582	237.5	239.0	1.5	4	<5	108	438	8	<0.1
					foliation 60 to CA.										
					248.63-248.9 Zone of 80% quartz-carbonate-talc veining. Veining contains 10%	2583	245.0	246.75	1.75	2	<5				
					pale green, VFg, glassy soft talc patches. Remainder of zone 20% mustard yellow	2584	246.75	248.0	1.25	1	<5				
					ricite and ash tuff. Zone contacts 60 to CA. 2585 248.0 249.0 1.0 1		5								
					256.2 Vqc (2.5cm), 35 to CA.										
					257.04-257.60 Zone of 35% white quartz-carbonate veins and 3-5% black chlorite	2586	252.0	253.5	1.5	3	<5				
					shear slips in felsic ash-crystal tuff. Shear slips are 65 to CA. Lower 10cm fault										
					gouge. 3% Fg disseminated pyrite.	2587	255.5	257.04	1.54	3	8				
			_		257.6-259.35 Same as 246.75-249m.	2588	257.04	257.7	0.66	3	<5				
					259.8-259.85 Vqc (4cm), 60 to CA.										
					272-272.6 White VFg quartz-carbonate vein with 5% black rhyolite stringers.	2589	261.5	263.0	1.5	4	<5				
					MINERALIZATION: 3% VFg pyrite along stringers.										
			i		Lower contact marked by vein.	2590	266.0	267.5	1.5	2	<5	76	263	<5	<0.5
						2591	270.5	272.0	1.5	2	<5				
						2592	272.0	272.6	0.6	1	<5				

W.A. HUBACHECK CONSULTANTS LTD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-6 PAGE 9/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	*	×	LITHOTYPE	DESCRIPTION		s	AMPLE				A	SSAY:	3	
FROM	то	REC	RQD	Limorne	GEOLOGY: (colour, grain aize, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb	Cu ppm	Za ppea	Pb ppsa	Ag ppm
272.6	335.0			Intermediate	3B, xlt, greenish grey, Fg, weakly foliated intermediate (dacite) crystal-lapilli tuff.	2593	272.6	274.0	1.4		8				
		<u> </u>		Crystal-	Tuff is comprised of 10% white feldspar phenocrysts (1-3mm in size). The upper										
				Lapilli Tuff	portion above 290m has ash tuff sections. The whole unit contains 20-25% chlorite	2746	295.2	296.0	0.8	0	WR	74	238	5	< 0.5
<u> </u>	·				material in the form of chlorite wispy specks and blocks of chloritized crystal tuff.										
					These blocks have ragged contacts (selective chloritization) and are darker than the	2594	308.5	310.0	1.5	1.5	<5				
					surrounding rock.										
					ALTERATION: Weak pervasive carbonatization.	2595 321.5 323.0 1.5		2	<5						
					STRUCTURE: Weakly foliated and moderate fine microfracturing.	2595 321.5 325.0 1.5 2									
					280.8 40 to CA 299.45 40 to CA 311 50 to CA 322.8 50 to CA	2596	329.0	330.6	1.6	3	14	36	413	<5	<0.5
<u> </u>					292.7 55 to CA 304.1 45 to CA 316.9 50 to CA 334.7 45 to CA	2597	330.6	331.5	0.9	3_	10				
					MINERALIZATION: 0.5-1% VFg-Fg brassy pyrite disseminations often	2598	331.5	333.25	1.75	3	13				
					concentrated along fracturing. Higher concentrations locally.	2599	333.25	335.0	1.75	3	14				
					309.3 Pyritic quartz-calcite stringer veinlets (1cm).										
					321.5-323.0 MINERALIZATION: 2% VFg brassy pyrite within local grey VFg										
					quartz filled fractures (3mm wide).										
					329-335 MINERALIZATION: 3% VFg brassy pyrite finely disseminated to stringers										
<u></u>					along fractures.										
					330.9-331.2 Vqc, upper contact irregular and lower contact 40 to CA. Local										

W.A. HUBACHECK CONSULTANTS LTD

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. OGM97-6	PAGE 10/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	

INTERVAL M 🗆 Ft 🗅		% REC	S RQD	LITHOTYPE	DESCRIPTION	SAMPLE					ASSAYS				
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb				
272.6	335.0			Cont'd	chalcopyrite splashes.										
		-			331.38-331.44 Vqc, 45 to CA. Local chalcopyrite splashes.										
	335.0			Е.О.Н.	End of Hole.										
					The hole intersected 2-4% pyrite from 164 to 272.6m downhole, this is likely the										
					TL-2 IP target. Drill core is stored in Larder Lake.										1
												*			
				·											

APPENDIX B GOLD ANALYSIS CERTIFICATES

W.A. HUBACHECK CONSULTANTS LTD.

∢5

2438

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53 REPORT: C97-60417.0 (COMPLETE) DATE PRINTED: 10-MAR-97 PAGE 1 SAMPLE ELEMENT ELEMENT Au30 NUMBER UNITS NUMBER UNITS PPB 2399 <5 2439 <5 2400 ۲5 2440 ∢5 2401 ₹5 2441 19 2402 <5 2442 ∢5 2403 <5 2443 ∢5 2404 ۲5 2405 <5 2406 ۲5 2407 ₹5 ₹5 2409 <5 2410 7 2411 5 2412 14 2413 13 6 <5 2415 2416 6 8 2417 2418 9 2419 10 2420 <5 2421 <5 2422 ⟨5 2423 ⟨5 2424 <5 2425 <5 2426 <5 2427 ⟨5 ⟨5 2428 2429 <5 2430 ⟨5 2431 <5 2432 <5 2433 ⟨5 2434 ⟨5 2435 ⟨5 2436 ₹5 2437 8

⟨5

2398

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53 REPORT: C97-60383.0 (COMPLETE) DATE PRINTED: 6-MAR-97 PAGE 1 SAMPLE ELEMENT Au30 Au NUMBER G/T UNITS PPB 2360 <5 2361 ₹5 2362 <5 2363 2691 2.32 2364 354 0.35 2365 389 0.36 2366 900 0.80 2367 1.55 2368 1726 1.76 2369 10 ₹5 2371 <5 2372 <5 2373 195 ⟨5 2375 <5 2376 ⟨5 2377 <5 2378 ⟨5 2379 <5 2380 ⟨5 2381 <5 2382 <5 1947 1.86 2383 0.03 2384 41 10.94 2385 2386 109 <5 2387 <5 2388 2389 140 5 2390 8 2392 153 16 2393 2394 <5 <5 2395 2396 ₹5 2397 ₹5

re Bey

1322 rue Harricana val d'Or, Québec J9P 3x6 Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

	CLIENT: W.A. H	UBACHECK C	ONSULTANT	S LTD.				PROJEC	T: 53					
L	REPORT: C97-60	383.0 (CON	(PLETE)					DATE P	RINTED:	6-MAR-97	F	AGE	3	
	SAMPLE	ELEMENT	Au 30	Au		_								
	NUMBER	UNITS	PPB	G/T									_	
	2363		2691	2.32										
	Duplicate		2414	2.32										
	2376		<5											
	Prep Duplicate	-	₹5		·									
	2385		9985	10.94										
	Duplicate		11393											
į														
		-												
									_					
		~~= 4												
						_								

1322-B rue Harricana Val d'Or, Québec J9P 3X6 Tél: (819) 825-0178 Fax: (819) 825-0256

⟨5

₹5

<5

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53 REPORT: C97-60485.0 (COMPLETE) DATE PRINTED: 19-MAR-97 PAGE 1 SAMPLE ELEMENT Au30 SAMPLE ELEMENT Au30 NUMBER UNITS PPB NUMBER UNITS PPB <5 ∢5 ∢5 ∢5 <5 ₹5

ne Berge

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53 REPORT: C97-60485.0 (COMPLETE) DATE PRINTED: 19-MAR-97 PAGE 3 SAMPLE ELEMENT Au30 SAMPLE ELEMENT Au30 NUMBER UNITS PPB NUMBER UNITS PPB 2549 Duplicate 10 2557 6 Prep Duplicate 6 2571 22 21 Duplicate 2592 ∢5 Duplicate 8

1322 rue Harricana val d'or, Québec J9P 3x Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53

REPORT: C97-60469.0 (COMPLETE) DATE PRINTED: 18-MAR-97 PAGE 1

REPORT: C97-	-60469.0 (COMPLETE)	DATE PRINTED: 18-MAR-97 PAGE 1
SAMPLE	ELEMENT AU30	SAMPLE ELEMENT Au30
Number	UNITS PPB	
NOTIBER	UNITO PPB	NUMBER UNITS PPB
2444	< 5	2484 <5
2445	< 5	2485 <5
2446	<5	2486 6
2447	<5	2487 <5
2448	< 5	2488 23
	77	
2449	<5	
2450	<5	
2451	<5	
2452	< 5	
2453	< 5	
2454	<5	
2455	< 5	
2456	8	
2457	< 5	
2458	< 5	
2430		
2459	<5	
2460	<5	
2461	∢ 5	
2462	<5	
2463	<5	
2464	<5	
2465	<5	
2466	<5	
2467	<5	
2468	<5	
2469	<5	
2470	<5	
2471	<5	
2472	<5	
2473	<5	
2474	<5	
2475	<5	
2476	<5	
2477	<5	
2478	<5	
0470	< 5	
2479		
2480	<5 .5	
2481	<5 .5	
2482	<5 .5	
2483	<5	

me Begin

1322 rue Harricana Val d'Or, Québec J9P 3X6 Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53 REPORT: C97-60469.0 (COMPLETE) DATE PRINTED: 18-MAR-97 PAGE 3 ELEMENT SAMPLE SAMPLE Au 30 ELEMENT Au 30 NUMBER UNITS NUMBER PPB UNITS PPB 2453 Duplicate <5 2471 ₹5 Prep Duplicate ₹5 2475 ∢5 <5 Duplicate

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

D'ANALYSE

Mesenge

1322 rue Harricana val d'or, Québec J9P 3x6 Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53

REPORT: C97-60484.0 (COMPLETE) DATE PRINTED: 18-MAR-97 PAGE 3

RE	PORT: C97-604	84.0 (COME	LETE)	 	 	DATE I	PRINTED:	18-MAR-97	PAGE	3	
			30	 							
	MPLE	ELEMENT	Au30		SAMPLE	E	LEMENT	Au30			
Nu	MBER	UNITS	PPB	 	 NUMBER		UNITS	PPB			
24!	93	***	6	 	 						
	plicate		< 5								
]	pricate		\3								
25	04		<5								
	ep Duplicate		₹5								
25	15		<5								
	plicate		11								
25	36		12								
Duj	plicate		16								
į											
i											
				 	 					······	
L				 	 ·						

1322 rue Harricana Val d'Or, Québec J9P 3X6 — Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53

REPORT: C97-60324.0 (COMPLETE) DATE PRINTED: 25-FEB-97 PAGE 1

REPORT: C97-60	JOSEPH CONTROLL /	DATE PRINTED: 25-FEB-97 PAGE 1	
SAMPLE	ELEMENT Au30	SAMPLE ELEMENT AU30	
NUMBER	UNITS PPB	NUMBER UNITS PPB	
NGILLA.	UNIIS FFB	NUMBER UNITS FFB	
2281	<5	2321 <5	
2282	< 5	2322 <5	
2283	< 5	2323 <5	
2284	< 5	2324 <5	
2285	∢5	2325 <5	
2286	7	2326 <5	
2287	< 5	2327 7	
2288	₹5	2328 <5	
2289	₹5	2329 <5	
2290	14	2330 <5	
2291	9	2331 5	
2292	y ∢ 5	2332 <5	
2292	< 5	2333 9	
2294		2334 18	
2295	<5 45	2335 12	
2293	<5	2335	
2296	(5	2336 7	
2297	<5	2337 7	
2298	< 5	2338 5	
2299	< 5	2339 9	
2300	< 5	2340 6	
2301	9	2341 13	
2302	₹5	2342 <5	
2303	<5	2343 <5	
2304	< 5	2344 <5	
2305	<5	2345 <5	
2306	<5		
2307	6		
2308	° ₹ 5		
2309	< 5		
2310	< 5		
2310			
2311	< 5		
2312	<5		
2313	<5		
2314	<5	•	
2315	<5		
2316	< 5		
2317	<5		
2318	<5	•	
2319	<5		
2320	<5		

MM

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53 REPORT: C97-60324.0 (COMPLETE) DATE PRINTED: 25-FEB-97 PAGE 3 ELEMENT SAMPLE Au 30 SAMPLE ELEMENT Au30 NUMBER UNITS PPB NUMBER UNITS PPB 2285 ₹5 Duplicate 5 2306 <5 Prep Duplicate <5 2307 6 7 Duplicate 2328 ⟨5 Duplicate 8 ∢5 ₹5 Prep Duplicate

1322 rue Harricana val d'Or, Québec J9p 3x6 Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

		W.A. HUBACHECK CO).			MECT: 53			
REI	PORT:	C97-60341.0 (CON	PLETE)		 	DA1	TE PRINTED:	26-FEB-97	PAGE	1
SAI	MPLE	ELEMENT	Au 30		 					
	MBER	UNITS	PPB							
	-									
	2346		<5							
	2347		∢5							
	2348		<5							
	2349		< 5							
	2350		₹5		 					
				·	 					 _
	2351		< 5							
	2352		< 5							
	2353		45							
	2354		<5 <5							
	2355				 					
	2356		<5				,			
	2357		8							
	2358		∢5							
	2359		11							
					 ,					
			-		 					
l										
i										
L					 					
					 					

1322 rue Harricana Val d'Or, Québec J9P 3X6 Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

	CLIENT: W.A. H	UBACHECK COL	NSULTANTS LTD.			PROJECT: 53			
	REPORT: C97-60					DATE PRINTED: 2	6-FEB-97	PAGE	3
				 ·					
	Sample	ELEMENT	Au 30						
L	NUMBER	UNITS	PPB	 					
	2347		< 5						
	Duplicate		<5						
				 	······································				
			-		*	и		···	
		• • • • • • • • • • • • • • • • • • • •							
1									
	<u> </u>			 					
								· · · · · · · · · · · · · · · · · · ·	
]									
				 				~	
				<u> </u>					
L					38.4.				

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53

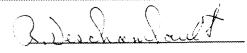
REPORT: C97	-60314.0 (COMPLETE)	DATE PRINTED: 24-FEB-97	PAGE 1
SAMPLE	ELEMENT Au 30		
NUMBER	UNITS PPB		:
2251	<5		
2252	<5		
2253	10		
2254	<5		
2255	<5		
2256	<5		
2256 2257	(5		
2258	(5		
2259	(5		
2260	(5		
2261	<5		
2262	<5		
2263	<5		
2264	<5		
2265	<5		
2266	<5		
2267	<5		
2268	<5		
2269	<5		
2270	<5		
2271	<5		
2272	< 5		
2272	< 5		
2274	< 5		
2275	(5		
2276	<5		
2277	<5		
2278	<5		
2279	<5		
2280	<5		

1322 rue Harricana Val d'Or, Québec J9F 3X6 Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

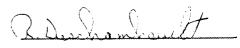
CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 53 REPORT: C97-60314.0 (COMPLETE) DATE PRINTED: 24-FEB-97 PAGE 3 SAMPLE ELEMENT NUMBER UNITS PPB 2255 ۲5 Duplicate ⟨5 2277 ⟨5 Duplicate ∢5

1322-B rue Harricana val d'or, Québec J9P 3x6 Tél: (819) 825-0178 Fax: (819) 825-0256



Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

	CLIENT: W.A.	HUBACHECK CO	NSULTANTS LT	D.		PROJECT: 53			
		60485.1 (COM				DATE PRINTED:	26-MAR-97	PAGE	1
	SAMPLE	ELEMENT	Au 30						
	NUMBER	UNITS	PPB						
	2599		14						
	·								
L					 				
L					 				
<u> </u>					 				
Ĺ					 				
L					 				
Į.									
1									
ļ									


PORT: C97	- HUBACHECK CO -60324.1 (COM		LID.				PROJECT: 53 DATE PRINTED): 6-MAY-97	PAGE 1	
MPLE MBER	ELEMENT UNITS	Ag PPM	Cu PPN	Pb PPM	Zn PPM					
2284		0.8	208	18	33					
2290		1.0	322	31	70					
2295		0.2	114	12	21					
2302		<0.1	36	10	5					
2306		0.2	44	7	30	•••••				
2309		<0.1	41	9	66				***************************************	
2318		<0.1	48	10	23					
2325		<0.1	16	7	21					
2330 2338		<0.1 <0.1	321 59	8 8	19 34					
2336		SU. I			34					
2345		0.9	8	8	21					***************************************
					***************************************				***************************************	
									••••••	
	····				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************		?*************************************		,
							•			

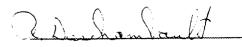
	HUBACHECK COM		LTD.			PROJECT: 53 DATE PRINTED: 6-MAY-97 PAGE 3
SAMPLE Number	ELEMENT Units	Ag PPM	Cu PPM	Pb PPM	Zn PPM	
2306 Duplicate		0.2 0.2	44 44	7 11	30 29	

EPORT: C97-	. HUBACHECK CO -60485.2 (COM	MPLETE)	; LTD.				PROJECT: 53 DATE PRINTED:	6-MAY-97	PAGE 1	1
AMPLE	ELEMENT		Cu	Pb	Zn		••••••			
JMBER	UNITS	PPM	PPM	PPM	PPM					
2548		<0.1	313	6	130				***************************************	
2554		<0.1	300	6	40					
2556		<0.1	254	9	78 (7					
2567 2570		<0.1 0.1	283 286	8 7	63 111					
2370					111					
2574		0.1	321	9	129					
2582		<0.1	108	8	438					
•••••		***************************************		***************************************						
						,			******************	***********
• • • • • • • • • • • • • • • • • • • •		***************************************	***************************************				***************************************		***************************************	
	***************************************		***************************************	***************************************				***************************************	•••••	
•••••										
		,			***************************************					
	•••••		•••••							

	HUBACHECK CO 50485.2 (COM		LTD.			PROJECT Date PR	6-MAY-97	PAGE	3
MPLE MBER	ELEMENT Units	Ag PPM	Cu PPM	Pb PPM	Zn PPM				
74 plicate		0.1 <0.1	321 329	9 8	129 130				
		•••••					 		

ITS - Chimitec B rue Harricana, Val d'Or, Québec, J9P 3

1322-B rue Harricana, Val d'Or, Québec, J9P 3X6 Tél: (819) 825-0178, Fax: (819) 825-0256



	. HUBACHECK CO		LTD.			PROJECT: 53						
EPORT: C97	-60469.1 (COM	PLETE)				DATE PRINTED: 6-MAY-97	PAGE 1					
SAMPLE	ELEMENT	Ag	Cu	Pb	Zn							
IUMBER	UNITS	PPM	PPM	PPM	PPM							
		•••••										
2448		0.5	64	11	53							
2460		<0.1	18	10	55							
2464		<0.1	21	11	59							
2482 2486		<0.1 <0.1	36 28	10 11	111 158							
2400			20		130							
	***************************************			***************************************								
	·····	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·									
		•••••										

	***************************************	·•····································	•••••									
	•••••											

LIENT: W.A.	HUBACHECK CO	WSULTANTS						PROJECT: 53	4 MAY 07	B=	•
	60417.1 (COP							DATE PRINTED:	6-MAY-97	PAGE	1
AMPLE	ELEMENT	Ag	Cu	Pb	Zn						
UMBER	UNITS	PPM	PPM	PPM	PPM						
2405		<0.1	35	7	6					•••••••	
2415		<0.1	10	4	3						
2418		0.2	11	4	4						
2421		<0.1	10	4	5						
2426		<0.1	7	3	4						
2430	***************************************	<0.1	9	4	4		***************************************			••••••••	
2437		<0.1	7	4	7						
										•••••	
		•••••	•••••••	• • • • • • • • • • • • • • • • • • • •							
••••••••••											
•••••••••••											
			••••	• • • • • • • • • • • • • • • • • • • •	***************************************	***************************************				***************************************	
							٠				
	••••••				••••••						·····
	-										
									•••••		

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. REPORT: C97-60484.1 (COMPLETE)							PROJECT: 53			
EPORT: C97-	60484.1 (COM	PLETE)				*************************	DATE PRINTED:	6-MAY-97	PAGE 1	
AMPLE	ELEMENT	Aa	Cu	Dh						
UMBER	UNITS	Ag PPM	PPM	Pb PPM	Zn PPM					
					FFF					
2494		<0.1	27	6	271					
2498		0.6	34	6	139					
2521		<0.1	67	7	151 212					
2540		0.1	423	6	212					
***************************************		*******			•••••					
	•••••									

	······································	•••••••	••••••	••••••						
• • • • • • • • • • • • • • • • • • • •										

•••••		•••••							•••••	
***************************************		***************************************	***************************************	••••••						
••••••				••••••						
••••••	•••••••	••••••••••••••••••••••••••••••••••••••	······	·····						

ITS Intertek Testing Services Chimitec Bondar Clegg

	. HUBACHECK CO -60314.1 (COM		LTD.					: 6-MAY-97	
MPLE MBER	ELEMENT UNITS	Ag PPM	Cu PPM	Pb PPM	Zn PPM			 	
2264	••••••••••	<0.1	28		125		************************	 	
2278		0.1	59	9	59				
2280		0.5	77	15	550				
		•••••••••••						 	
		••••••						 	
		•••••						 	
		••••••						 	
					••••••	••••••••••		 	

ITS - Chimitec 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6

Tél: (819) 825-0178, Fax: (819) 825-0256

2 Dischambant

ITS Intertek Testing Services Chimitec Bondar Clegg

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. REPORT: C97-60383.1 (COMPLETE)						PROJECT: 53 DATE PRINTED: 6-MAY-97 PAGE 1						
AMPLE	ELEMENT	Cu	Ag	РЬ	Zn							
UMBER	UNITS	PPM	PPM	PPM	PPM							
2363	•••••••••••	46	1.4	5	13							
2364		94	0.2	6	16							
2365		7	0.2	5	14							
2366		20	0.4	6	14							
2367		36	1.2	5	27							
2368	•••••••••••••••	31	1.6	6	34							
2383		22	1.2	6	37							
2384		11	<0.1	4	40							
2385		10	3.7	7	16							
2386		9	0.1	4	29							
		••••••		•••••	•••••••••••••••••••••••••••••••••••••••							
· · · · · · · · · · · · · · · · · · ·					••••••							
			••••••	•••••								
		•••••		••••••								

FTS - Chimitec 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6

Tél: (819) 825-0178, Fax: (819) 825-0256

Q Deschantacet

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. REPORT: C97-60383.1 (COMPLETE) SAMPLE ELEMENT Cu Ag Pb Zn					 PROJECT: 53 DATE PRINTED:	6-MAY-97	PAGE 3		
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Ag PPM	Pb PPM	Zn PPM	 			
2366		20	0.4	6	14	 		••••••	
Duplicate		20	0.3	6	13				
				•••••••••••		 			

				••••••		 			

	. HUBACHECK CO -61275.0 (COM		LTD.				PROJECT: 53 DATE PRINTED:	4-JUN-97	PAGE 1
SAMPLE NUMBER	ELEMENT Units	Au30 PPB	Cu PPM	Pb PPN	Zn PPM	Ag PPM			
6783 6784 6785		<5 <5 <5	7 8 10	7 10 8	7	<0.1 0.2 <0.1			
6786		<5	6	6	7	0.3			
				••••••••••					
				••••••					

ACTIVATION LABORATORIES LTD

Invoice No.:

12925

Work Order:

13075

Invoice Date: Date Submitted: 28-APR-97

12-MAY-97

Your Reference: 53 -9 with 77

Account Number:

W.A HUBACHECK CONSULTANTS LTD 141 ADELAIDE ST WEST, SUITE 1401 TORONTO, ONT M5H 3L5

ATT: DAVE CHRISTIE

CERTIFICATE OF ANALYSIS

2 DRILL CORES

were submitted for analysis.

The following analytical packages were requested. Please see our current fee schedule for elements and detection limits.

PKG 4B-MAJOR ELEMENTS FUSION ICP REPORT 12925

REPORT 12925 RPT.XLS PKG 4B2ST-TRACE ELEMENTS FUSION ICP/MS

This report may only be reproduced in its entirety without the express consent of ACTIVATION LABS. If no instructions were received or will be received within 90 days from the date of this report, excess material will be discarded. Our liability is limited solely to the analytical cost of these analyses.

Activation Laboratories Ltd. Work Order No. 13075 Report No. 12925

SAMPLE	SiO2	A1203	Fe2O3	MnO	MgO	CaO	Na20	K20	TiO2	P205	LOI	TOTAL	Ba	Sr	Υ	Sc	Zr	Be	V	
	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
2746	63.03	12.61	7.93	0.19	1.86	3.23	0.84	1.53	0.50	0.14	7.19	99.05	353	71	49	14	189	-1	18	
2747	69.70	12.52	3.70	0.14	0.48	3.57	3.65	1.05	0.19	0.05	3.79	98.85	4082	136	54	6	146	-1	-5	

ICP Technical Manager

12925RPT.XLS

Lithogeochem (Standard Package) Job #: 130	75 Repo	rt#:	129	25	Custo	omer:	W.A	. Hub	ache	eck Con	sultants		Contact:	: J. I	K. Ma	ntgom	ery		
Trace Element Values Are in Parts Per Million.	Negative Values Equal 1	Not [)etec	ted at	That	Lowe	r Lim	it.											
Sample ID:	V	Cr	Co	Ni	Cu	Zn	Ga	Ge	As	Rb	Sr	Υ	Zr	Nb	Мо	Ag	ln	Sn	Sb
2746	20	11	7.7	-10	74	238	17	1	-5	35.1	71.0	49	180.2	9	1.4	-0.5	-0.2	3	0.4
2747	7	13	1.6	-10	-10	95	16	1	-5	22.1	136.1	54	146.7	5	0.7	-0.5	-0.2	2	0.4

Certified By:

D. D'Anna, Dipl. T.

ICPMS Technical Manager, Actlabs Ltd.

Date: 20 MAY 97

This report shall not be reproduced except in full without the written approval of the laboratory.

Unless otherwise instructed, samples will be disposed of 90 days from the date of this report.

12925RPT.XLS

Lithogeochem (Standard Package) Job #: 13075															
Trace Element Values Are in Parts Per Million. Negative Values	Ε														
Sample ID:	Cs	Ba	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
2746	1.8	352	17.5	40.1	4.98	23.8	6.3	1.51	6.8	1.3	8.2	1.7	5.3	0.79	5.5
2747	0.9	4,009	17.8	40.1	4.88	22.6	6.2	1.37	6.8	1.3	8.4	1.9	6.0	0.92	6.8

12925RPT.XLS

Lithogeochem	(Standard	Package)	Job #:	13075
--------------	-----------	----------	--------	-------

Trace Element Values Are in Parts Per Million.	Negative Values E									
Sample ID:		Lu	Hf	Ta	W	TI	Pb	Bi	Th	U
2746	(0.86	4.2	0.70	0.7	0.2	5	0.5	2.3	0.6
2747	•	1.10	3.5	0.69	-0.5	0.1	-5	-0.2	2.5	0.6

32003552010

2.19182

OSSIAN

020

REPORT ON THE

1997 DIAMOND DRILLING

OF THE

BOUDREAULT-LABBE PROPERTY

2.19182

OSSIAN TOWNSHIP

LARDER LAKE MINING DIVISION

NORTHEASTERN ONTARIO

PREPARED FOR

SILVER CENTURY EXPLORATIONS LTD.

BY

W.A. HUBACHECK CONSULTANTS LTD.
365 Bay Street
Suite 807
Toronto, Ontario
M5H 2V1

NTS 32-D-4/5 PN: 54 June 30, 1997

File: Drill 54.wpd

J. KEVIN MONTGOMERY M.Sc. (App.)

W.A. HUBACHECK CONSULTANTS LTD.

SUMMARY

The Boudreault-Labbe Property consisting, of five unpatented mining claims (550.4 hectares) is located in Ossian Township, 37 km northeast of Kirkland Lake, Ontario. The property is under option to Silver Century Explorations Ltd.

In 1996, geological mapping and whole rock geochemistry confirmed the presence of a 4 km long and 500 m wide felsic volcanic belt on the property. Strong potassic and silica hydrothermal alteration, pyritization and shearing were observed in the felsic belt. Geophysical surveys in 1996 also outlined five high chargeability induced polarization anomalies within or proximal to the felsic belt.

A short reconnaissance diamond drilling program consisting of four holes totalling 691 metres was conducted on the Boudreault-Labbe Property in early 1997. The drilling tested three of the high chargeability anomalies for auriferous pyrite mineralization.

Results where discouraging with no significant gold mineralization being encountered in the diamond drilling. Further gold exploration on the property is not recommended at this time.

Hole BL97-2 did intersected two encouraging pyritic sections within hydrothermally altered felsic stratigraphy. The stringer network style of the pyrite mineralization and its host lithology are good indicators for base metal mineralization. Recommended work on the Boudreault-Labbe Property should thus be focussed towards base metal exploration.

W.A. HUBACHECK CONSULTANTS LTD.

32D05SE2010

2.19182

OSSIAN

020C

TABLE OF CONTENTS

INTRODUCTION		PAGE NO 1
LOCATION AND ACCESS		1
PHYSIOGRAPHY		3
PROPERTY DESCRIPTION		3
LOGISTICS		3
REGIONAL GEOLOGY		5
PROPERTY GEOLOGY		7
DISCUSSION OF 1997 DIAMOND DRILLING		8
RECOMMENDATIONS		12
CERTIFICATE OF QUALIFICATIONS		13
BIBLIOGRAPHY		14
APPENDIX A	DIAMOND DRILL LOGS	
APPENDIX B	GOLD ANALYSIS CERTIFICATES	
FIGURES		
		2 4 6 9
MAP1 SECTIONS 1-3 (in back pocket)	GEOLOGY AND DRILL HOLE LOCATION MAP 1997 DRILL HOLE SECTIONS (L72+00W, L4+00E & L4+00W)	

W.A. HUBACHECK CONSULTANTS LTD.

INTRODUCTION

The Boudreault-Labbe Property is part of a large project area held by Silver Century Explorations Limited and Sudbury Contact Mines Limited in Ossian Township, Larder Lake Mining Division, Ontario. The property was optioned from Mr. Bernard Boudreault and Mr. Pascal Labbe, on February 23, 1996 and comprises five unpatented mining claims (34 units) totalling approximately 550.4 hectares.

In early 1996, a winter reverse circulation drilling program of 17 holes was carried out on the Boudreault-Labbe Property. This program was managed by W.A. Hubacheck Consultants Ltd. on behalf of Silver Century Explorations Ltd. The drilling discovered elevated gold grain counts in two holes on the property (Toth and Christie, 1996).

Geophysical and geological field work was conducted on the Boudreault-Labbe Property during the summer of 1996. JVX Ltd. conducted the following ground geophysical work: Line cutting, a Time Domain Spectral Induced Polarization/Resistivity survey, a Total Field Magnetic survey and a VLF survey (Mihelcic and Webster, 1996). Geological mapping, rock sampling, localized till sampling and a whole rock geochemical survey (Montgomery, 1996) were carried out by W. A. Hubacheck Consultants Ltd. in conjunction with the geophysical work.

This report describes the 1997 winter diamond drilling program on the Boudreault-Labbe Property which was carried out from March 17 to March 27. The coordination and implementation of the various technical tasks were conducted by W.A. Hubacheck Consultants Ltd. under the supervision of D. Christie and K. Montgomery.

LOCATION AND ACCESS

The property is situated in the central eastern portion of Ossian Township, Larder Lake Mining Division, Northeastern Ontario. It is approximately 14 km north of the town of Kearns and 37 km northeast of Kirkland Lake(Figure 1). The eastern boundary of the property is the Ontario-Quebec provincial boundary.

The property may be accessed north from Kearns (Highway 66) via the Labyrinth Lake gravel road. Several skidder roads branch off the Labyrinth Lake road on the Boudreault-Labbe Property. These skidder roads are passable by snowmobile in the winter and provide access to most of the property.

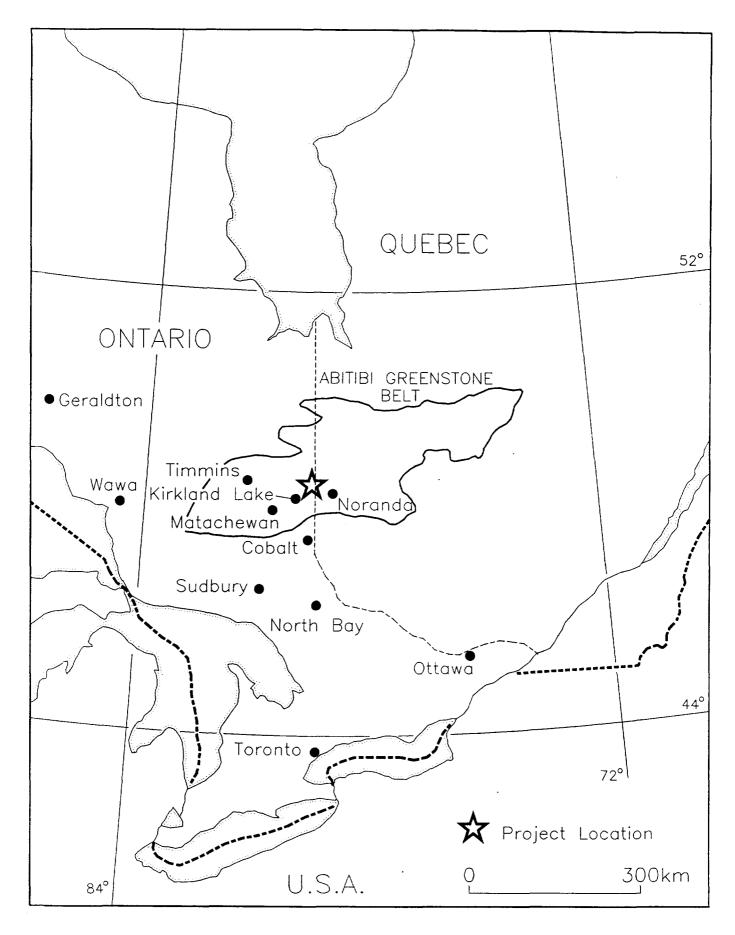


Figure 1: Location Map

PHYSIOGRAPHY

The property relief is generally flat ranging from 306 to 341 m above sea level. The largest landform is the Boundary Esker (35-40 m relief) that is comprised of glaciofluvial sand and gravel. The esker trends south-southeast and cuts the property in half. The Labyrinth Lake road is located on the crest of the esker.

Away from the Boundary Esker, the property is covered by glaciolacustrine clay and silt ranging from 5 to 40 m thickness (1996 RC drilling). Bedrock exposure is very scarce on the Boudreault-Labbe Property and is limited to isolated knolls and ridges.

Between these bedrock ridges, the terrain is flat and wet. Drainage is poor as only minor intermittent streams exist. Vegetation cover consists of alders and isolated birch over half of the property as in recent years logging has occurred. The remainder of the property is covered by spruce, balsam, poplar, birch, alders and swamp.

PROPERTY DESCRIPTION

The Boudreault-Labbe Property is part of the Ossian Project which consists of 19 unpatented mining claims and 23 patented mining claims totalling 2,398 hectares in Ossian Township. The Ossian Project is held by Silver Century Explorations Limited and Sudbury Contact Mines Limited.

The Boudreault-Labbe Property is comprised of the following five unpatented mining claims: 1180276 (3 units), 1180277 (4 units), 1203474 (9 units), 1203476 (12 units), 1203477 (6 units)(Figure 2). It is approximately 550.4 hectares in size and was optioned by Silver Century Explorations Limited from Mr. Bernard Boudreault and Mr. Pascal Labbe on February 23, 1996.

LOGISTICS

Analytical Lab:

Chimitec Ltee.

1322 rue Harricana Val d'Or, Quebec.

J9P 3X6

Diamond Drilling

Contractor:

Bradley Bros. Limited

P.O. Box 2367

Rouyn-Noranda, Quebec.

J9P 5A9

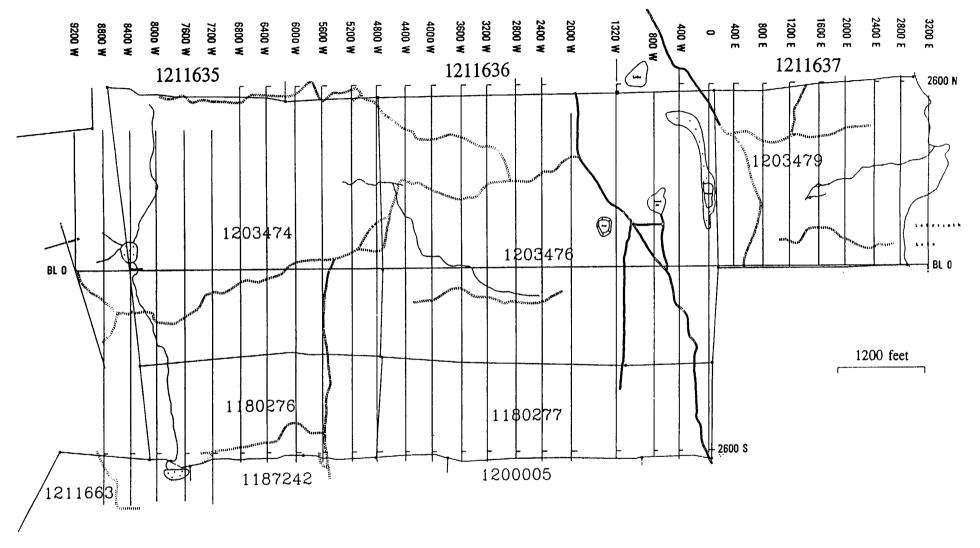


Figure 2 Claim/Grid Map

LABBE-BOUDREAULT PROPERTY

SILVER CENTURY EXPLORATIONS LTD.

Ossian Twp, Larder Lake Area, Ontario

NTS 32 D/4 & 32 D/5

Technical Consultants: W. A. Hubacheck Consultants Ltd.

Suite 1401

141 Adelaide St. West

Toronto, Ontario.

M5H 3L5

Project Geologist: David Christie, B.Sc.

104 Douglas Avenue Toronto, Ontario.

M5M 1G6

Contract Geologist: J. Kevin Montgomery, M.Sc. (App.)

1190 Lozanne Cr. Timmins, Ontario.

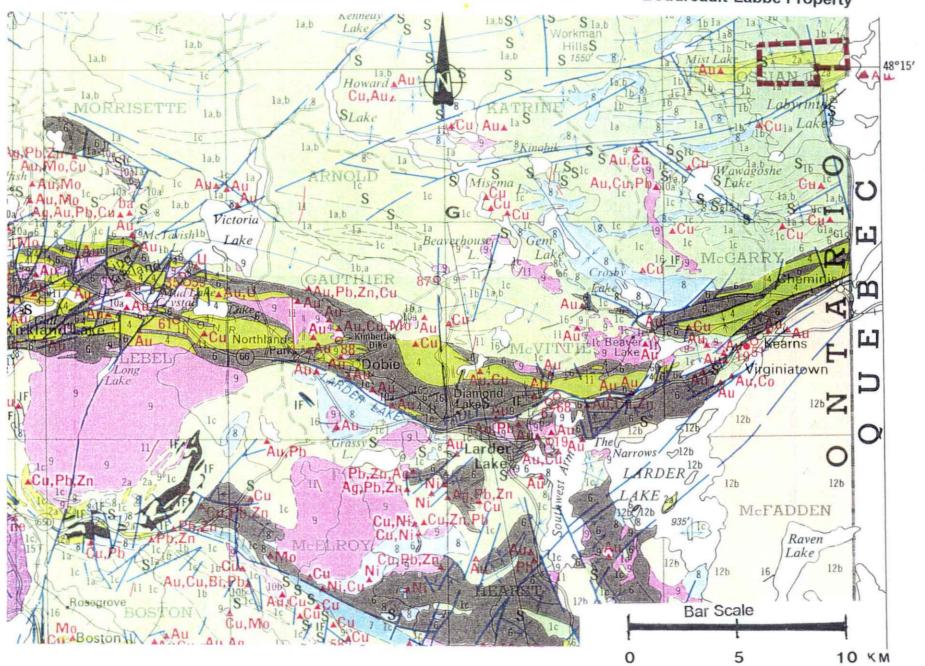
P4P 1E8

Geological Technician: Robert Peever

Kirkland Lake, Ontario.

Technician: Joe Whitall

Larder Lake, Ontario.


REGIONAL GEOLOGY

The property lies within the southwestern part of the Abitibi Greenstone Belt, in the Superior Province. The volcanic rocks of the region form part of the large east-plunging Blake River Synclinorium that lies between the Abitibi and Round Lake batholiths. The Destor-Porcupine and Larder-Cadillac shear zones cut the north and south limbs of the synclinorium, respectively. The property is underlain by the Blake River Archean Upper Super group.

The Blake River Group calc-alkalic volcanics range from basalts to rhyolites, with basalts and andesites being dominant. Dacite and rhyolite are abundant in the centre of the group. Units of the Blake River Group are shallow to moderately dipping. Along the margins of the group, units face towards the centre of the group suggesting a synclinorium. The centre of the group is occupied by an anticlinal structure cored by felsic intrusions. This may represent an original volcanic centre. The Blake River Group has a flat aeromagnetic signature and a sharp contact with the convoluted aeromagnetic pattern of the Kinojevis South Group, to the south.

The property covers the central portion of a felsic volcanic sequence (anticline) that stretches from Mist Lake to the east side of Labyrinth Lake (Figure 3). In this felsic sequence gold occurs in quartz zones and pyritic rhyolite tuffs on the Ossian Gold Mine

Boudreault-Labbe Property

Property adjoining the Boudreault-Labbe Property to the west. No gold production has been recorded from the Ossian Gold Mine Property. East of the property in Quebec, approximately 2,125 oz of gold was produced from the Russian Kid Gold Mine from 1981 to 1982. This former producer is located one kilometre southeast of the Boudreault-Labbe Property. It contains a mineral resource estimate of 1.18 million tonnes grading 7.77 gpt. Au. The gold mineralization at the former Russian Kid is found in quartz zones and their pyritic wallrock contacts within a quartz diorite intrusion.

PROPERTY GEOLOGY

The Boudreault-Labbe Property is blanketed by glaciolacustrine clay and silt overburden. Bedrock exposure is limited to a few isolated knolls and ridges above the overburden. A large esker (Boundary Esker) trending south-southeast occurs in the centre of the property.

Geological stratigraphy on the property is based on geological mapping conducted by the author in the summer of 1996, as well as the 1997 diamond drilling program. Stratigraphy trends generally east-west and is steep to vertical dipping. All stratigraphic units are calc-alkaline in chemical affinity (Montgomery, 1996) and belong to the Blake River Supergroup.

Mafic flows are situated in the northeast corner, northwest and southwest portions of the property. They consist of pillowed flows and pillow breccia flows that are basaltic in composition. Pillow tops in the southwest are southward while in the northeast they are northward.

In the north and south-central areas of the property, andesitic lapilli to bomb tuffs occur. These tuffs and the mafic flows form the north and south limbs of an east-west trending anticlinal structure on the property. In the northwestern portion of the property the andesitic lapilli to bomb tuffs are intercalated with massive andesitic flows.

The central core of the property is underlain by an east-west trending belt (approximately 300-500 m wide) of felsic to intermediate ash-crystal tuffs. They form the hinge of the anticlinal structure. The tuffs are chemically rhyolite to dacite in composition and are strongly carbonatized, sericitized and/or silicified. Surface geological mapping discovered sulphide mineralization associated with distinct shears in the tuffs. The sulphide mineralization consisted of 5 to 15% very fine-grained disseminated pyrite (Montgomery, 1996).

During the 1996 geological survey, the central felsic belt was mapped as ash and crystal tuffs due to the lack of any distinguishable flow structures. It however appears from Hole BL97-2 that the belt may be massive felsic flows containing minor feldspar porphyritic sections instead.

The stratigraphy on the Boudreault-Labbe Property is magnetically flat with a low range of magnetic variation from 57549 to 57627 nT(Mihelcic and Webster, 1996). This low flat magnetic pattern makes discerning the geological stratigraphy in overburden areas difficult. However, the mafic flow stratigraphy is slightly higher magnetically than the central felsic to intermediate tuff belt. Three north-south fault structures are postulated to cross-cut the stratigraphy on the property (Montgomery, 1996). Magnetic surveys also suggest the possibility of a mafic intrusive dike underneath the Boundary Esker.

DISCUSSION OF 1997 DIAMOND DRILLING

A short reconnaissance diamond drilling program consisting of four holes totalling 691 metres was conducted on the Boudreault-Labbe Property from March 17 to March 27, 1997. The focus of this program was to test three strong induced polarization conductors outlined by JVX Limited in 1995 and 1996 (Mihelcic and Webster, 1996). These conductors contained high MIP values and represented potential sites for auriferous sulphide mineralization (Montgomery, 1996).

Hole BL97-1

Location:

Boudreault-Labbe Property

Claim: 1203474

L72+00W, 2+75N (Imperial field grid)

Azimuth: 360 Dip: -50

Length: 167 m

Target: Test the high chargeability(TH-3) conductor at 5+00N on L72+00W.

Summary: The hole intersected the following stratigraphy:

0-7 m	Overburden.
7-22	Amygdaloidal Mafic Flows, pervasive carbonatization.
22-81.1	Massive Mafic Flows, variable silica-carbonate alteration.
81.1-83.9	Carbonatized Shear Zone, 0.5 % pyrite.
83.9-111.35	Intermediate Ash Tuff.
111.35-120.3	Mafic Flow Breccia, moderate pervasive calcite.
120.3-145.7	Massive Mafic Flows.
145.7-167	Massive Mafic (intrusive texture) Flow or Mafic Intrusive.
167	End of Hole.

Results and Discussion: The high chargeability(TH-3) target is likely the carbonatized shear zone from 81.1 to 83.9 m downhole, as no significant sulfides were intersected in the hole. The hole intersected mafic to intermediate flows instead of the expected felsic

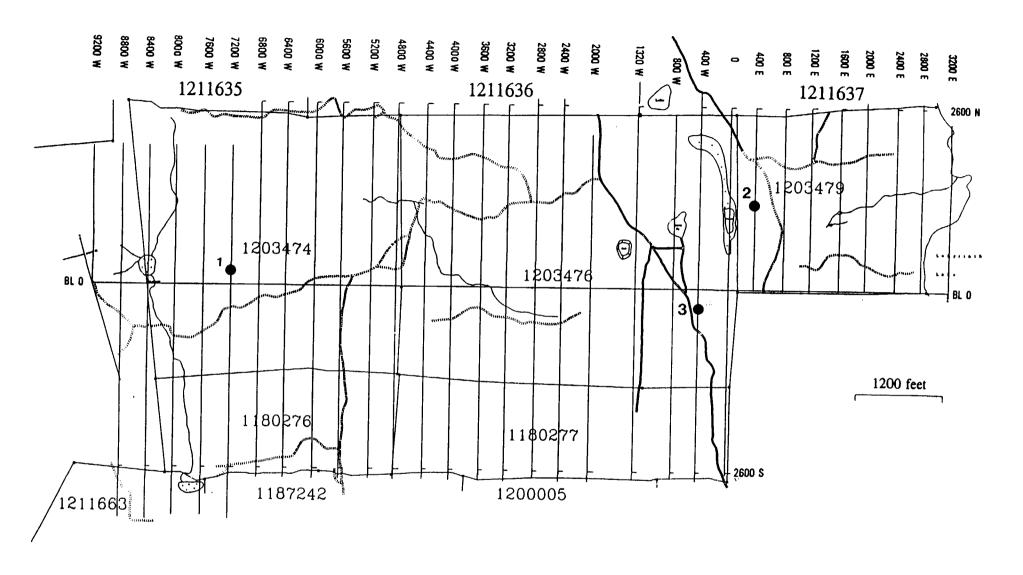


Figure 4 Diamond Drill Hole Location Map **LABBE-BOUDREAULT PROPERTY**SILVER CENTURY EXPLORATIONS LTD.

Ossian Twp, Larder Lake Area, Ontario

NTS 32 D/4 & 32 D/5 to intermediate tuff stratigraphy mapped on the surface to the east (Montgomery, 1996). No significant gold results were returned from the hole with the highest assay being 14 ppb. Au.

Hole BL97-2

Location:

Boudreault-Labbe Property

Claim: 1203477

L4+00E, 12+00N (Imperial field grid)

Azimuth: 360 Dip: -50

Length: 215 m

Target: Test the high chargeability(TH-2) conductor at 14+00N on L4+00E.

Summary: The hole intersected the following stratigraphy:

0-10.2 m
10.2-122.45
122.45-156.7
156.7-192.10
192.10-215
Overburden.
Altered Felsic Flows, Chloritization and sericitization, Pyrite 2%.
Felsic-Intermediate Flows, Pyrite 1%.
Sericitized Felsic Flows, Pyrite 3%.
Felsic-Intermediate Lapilli Tuff, Pyrite 1%.
End of Hole.

Results and Discussion: The high chargeability(TH-2) target is likely a result of the uniform pyrite mineralization intersected from 101.8 to 122.45 metres downhole. This sulphide mineralization consisted of 1 to 2 % very fine-grained brassy pyrite disseminations and lenses to stringers. Another significant pyritic section was cut from 159.5 to 174.5 m downhole. This pyrite mineralization is comprised of a very fine-grained brownish pyrite stringer network and pyrite content averaged 3 per cent. The hole intersected the postulated north contact of the central felsic belt at 192.10 m downhole (see Montgomery, 1996). No significant gold results were returned from the hole with the highest assay being 99 ppb. Au.

Hole BL97-3A

Location:

Boudreault-Labbe Property

Claim: 1203476

L4+00W, 3+00S (Imperial field grid)

Azimuth: 360 Dip: -50

Length: 31.2 m

Target: Test the high chargeability(TH-1) conductor at the BL and a resistivity low at 1+00 N on line 4+00W.

Summary: The hole intersected overburden to 28.6 m downhole and then intersected massive intermediate flows before the hole was terminated at 31.2 m when the drill rods got stuck. The target was not intersected.

Hole BL97-3

Location:

Boudreault-Labbe Property

Claim: 1203476

L4+00W, 2+90S (Imperial field grid)

Azimuth: 360

Dip: -50

Length: 278 m

Target: Test the high chargeability(TH-1) conductor at the baseline and a resistivity low between the baseline and 1+00 N on line 4+00W.

Summary: The hole intersected the following stratigraphy:

0-29.4	Overburden.
29.4-101.82	Massive to Pillowed Intermediate Flows.
101.82-115.78	Carbonatized Massive Intermediate Flows, local graphite horizons.
115.78-120.16	Graphite-Quartz Zone, Pyrite 2%.
120.16-138.3	Sericitized Intermediate-Mafic Flows, Pyrite 1%.
138.3-153	Carbonatized Massive Intermediate Flows.
153-179	Massive Porphyritic Intermediate Flows.
179-199.6	Carbonatized Massive Intermediate Flows, local graphite horizons.
199.6-215.74	Graphitic Argillite or Intermediate Flows, Pyrite 2 %.
215.74-278	Carbonatized and Graphitic Massive Intermediate Flows.
278	End of the Hole.

Results and Discussion: The high chargeability(TH-1) target is the graphite-quartz zone containing 2 % pyrite from 115.78 to 120.16 m downhole. The resistivity low between the BL and 100S on line 4+00 W may be the fault zone intersected between 136.7 to 137 m downhole. A relatively sharp high/low magnetic contact occurs at 50S on line 4+00 W this was thought to be the southern contact of the felsic belt. However the hole is entirely within intermediate flow stratigraphy. The magnetic low is likely a result of the alteration of the intermediate flows. The southern contact of the felsic belt must be north of Hole BL97-3 as Hole BL97-2 to the northeast is within the felsic belt (see Map 1). No significant gold results were returned from the hole with the highest assay being 76 ppb. Au.

RECOMMENDATIONS

No significant gold mineralization was encountered in the 1997 diamond drilling on the Boudreault-Labbe Property. The majority of gold values were less than 5 ppb. Au with the highest assay being 99 ppb. Au. A follow-up Reverse Circulation drilling program (Knowles, 1997) on the property failed to indicate elevated gold grain counts adjacent to and north of the anomalous hole OS96-24 (Toth and Christie, 1996). The negative gold results from these two drilling programs suggest limited potential for a pyritic gold deposit. Further gold exploration on the property is not recommended at this time.

Diamond drill hole BL97-2 did intersect two encouraging pyritic sections within hydrothermally altered felsic volcanic stratigraphy. The stringer network style of the pyrite mineralization and its host lithology are good indicators for base metal mineralization. Further work on the Boudreault-Labbe Property should thus be focussed towards base metal exploration.

It is recommended that preliminary geochemical and petrographic analytical work be carried out on the felsic volcanics in hole BL97-2. The geochemical analytical work should include base metal (Cu, Zn, Pb & Ag), whole rock, multi-element and rare-earth element analysis. The petrographic analytical work recommended is select thin sections of the felsic units in the hole and polished sections of pyrite mineralization. In addition, the altered intermediate flows that contain graphitic horizons in hole BL97-3 are also recommended for geochemical analysis.

If this geochemical and petrographic analytical work indicates the potential for base metal mineralization on the Boudreault-Labbe Property then detailed geological mapping and deep penetrating geophysical surveys are suggested.

CERTIFICATE

- I, J. Kevin Montgomery, of the City of Timmins, Province of Ontario, do hereby certify that:
- (1) I am a professional Consulting Geologist, residing at 1190 Lozanne Crescent, Timmins Ontario, P4P 1E8 and presently contracted to W. A. Hubacheck Consultants Ltd., 141 Adelaide St. W., Suite 1401, Toronto, Ontario.
- (2) I hold a B.Sc. Honours degree in Geological Sciences(1984) from Queen's University of Kingston, Ontario and a M.Sc.(App.) in Mineral Exploration(1987) from McGill University at Montreal, Quebec.
- (3) I am a member of the Canadian Institute of Mining and Metallurgy, the Prospectors and Developers Association of Canada, the Porcupine Prospectors and Developers Association, and the Quebec Prospectors Association.
- (4) This report is based on my personal examination of the property in 1996 and 1997.
- (5) I have no personal interest in the property covered by this report.
- (6) Permission is granted for the use of this report, in whole or in part, for assessment and qualification requirements but not for advertising purposes.

Dated at Timmins, Ontario this 30th day of June 1997

Lein Martzoner J. Kevin Montgomery, M. Sc. (App..)

BIBLIOGRAPHY

Knowles, R.;

1997: Report on the 1997 Reverse Circulation Drilling Program on the Ossian Property Larder Lake Mining Division, Ontario. Prepared for Silver Century Explorations Limited by W.A. Hubacheck Consultants Ltd. (report in progress).

Mihelcic, J. and Webster, B.;

1996: A logistical and interpretive report on Spectral IP, Resistivity, VLF-EM and Magnetometer Surveys conducted on the Labbe/Boudreault Option Project 54 Ossian Twp., Larder Lake Area, Ontario for Silver Century Explorations Ltd. by JVX Ltd.

Montgomery, J. K.;

1996: Report on the Geology of the Boudreault -Labbe Property, Ossian Township, Larder Lake Mining Division, Northeastern Ontario. Prepared for Silver Century Explorations Ltd. by W. A. Hubacheck Consultants Ltd.

Toth, P. and Christie, D.W.;

1996: Report on the 1996 Reverse Circulation Drilling Program on the Ossian Property Larder Lake Mining Division, Ontario. Prepared for Silver Century Explorations Limited by W.A. Hubacheck Consultants Ltd.

APPENDIX A DIAMOND DRILL HOLE LOGS

W.A. HUBACHECK CONSULTANTS LTD.

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	Silver Century Explorations
PROPERTY	Boudreault-Labbe (PN54)
COMMENCED	March 17/97
COMPLETED	March 19/97
ORIECTIVE	Test IP target TH-3

NTS	32 D/4-5
DISTRICT	Larder Lake
TWP/LAT.LONG.	Ossian
CLAIM	1203474
CO-ORD.	L72W, 2+75N
	(Imperial grid)

CORE SIZE	NQ
CONTRACTOR	Bradley Bros.
DATE LOGGED	March 18-20/97
LOGGED BY	J. Kevin Montgomery
DDH COM	Casing pulled
^	

SURVEY DEPTH	DIP	AZIMUTH
11	49.5	001
62	50	<u>.</u>
111	49.5	002
167	49	-

HOLE NO. BL97-1	PAGE 1/6
COLLAR AZIMUTH	360
COLLAR DIP	50
ELEVATION	
LENGTH	167m

INTERVAL M ■ Ft □		5	\$	LITHOTYPE	DESCRIPTION DESCRIPTION		S	AMPLE				ASSA	YS	
FROM	то	REC	RQD		GEOLOGY: (colour, gram size, texture, minerals, alteration, etc)		FROM	то	LENGTH	% SUL	Ata popila			
0	7			Overburden	OVB.									
<u> </u>	<u> </u>										<u> </u>			
7	22			Amygdaloidal	2A, a, light grey, VFg, amygdaloidal, homogenous mafic flows. Flows contain					<u></u>				
				Mafic Flows	7-10% sub-rounded to sub-angular amygdules mostly quartz ± carbonate filled			·						
					(2-4mm size) and lesser chlorite (1mm size) filings. Rare white carbonate-quartz									
					veining.									
					STRUCTURE: Massive, non-foliated.									
<u> </u>					ALTERATION: Bleaching or grey colouration of unit due to pervasive							 		
					carbonatization. Local iron oxidation along open fractures (surface weathering).									
					MINERALIZATION: Local sections of 2-5% pyrite (see description below).									
					Lower contact is masked by intense iron oxidation (20,18-23,5m).								Ĺ	
					8.4-10.3 MINERALIZATION: 2-3% brassy Fg sub-angular pyrite disseminations									
					that are rimmed by chlorite.									
					12.3-13.8 MINERALIZATION: 5% VFg brown pyrite that is concentrated in									
					fracturing.									<u> </u>
22	81.10			Mafic Flows	2A, m, green to dark green, mottled, VFg mafic flows. The mottled appearance of							 		
					the unit (22-43.5m) is a result of variable alteration intensity. This consists of							 		

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS		CORE SIZE	 SURVEY DEPTH	DIP	AZIMUTH	HOLE NO.	BL97-1	PAGE 2/6
PROPERTY	DISTRICT		CONTRACTOR				COLLAR AZ	MUTH	
COMMENCED	TWP/LAT.LON	G.	DATE LOGGED				COLLAR DIP	,	
COMPLETED	CLĂIM		LOGGED BY				ELEVATION		
OBJECTIVE	CO-ORD.	<u></u>	DDH COM				LENGTH		

	INTERVAL M □ Ft □		5	LITHOTYPE	DESCRIPTION		s	AMPLE					ASSA	YS	
FROM	то	REC	RQD	Difficing	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc.)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb				
					cream VFg silica + carbonate patches 10-15cm in core length. Minor white VFg										
<u></u>					quartz-carbonate veins (0.5 to 1cm wide). Very local iron oxide stained fractures						<u> </u>				
					to 47m downhole. Local white calcite veins (1cm) below 49m.			ļ ·							
					STRUCTURE: Weakly foliated, S, foliation, 27.8m 40 to CA, 39.4m 50 to CA.										
					20.18-23.5 Intense iron oxidation in a vuggy and blocky core section. Core recovery										
					from 20 to 23m was 70%, 0.9m of core lost. Drillers indicated an open fracture at										
					22.8m.										
					28.6-28.73 Vqc.										
					37.4-37.55 Blocky core.										
		,			44.45-46.40 Flow breccia - breccia consists of 20-25% grey sub-rounded 2A, a										
					fragments (up to 5 x 10cm in size) in a green chloritic mafic matrix.		_								
					46.40-46.73 Quartz vein flooding (45% of section).										
					50-52 Black chlorite flow selvages, weak pillows.										
					54.5-55.65 Flow breccia - 15% grey to dark grey sub-angular to angular mafic										
					fragments (1x2cm in size) in a grey matrix. Breecia moderately foliated, 40 to CA.										
					58.1 Pilow selvage with 2% VFg brassy pyrite.	2601	73.0	74.6	1.6	1	7				
					73.5-76 MINERALIZATION: 1% VFg brownish pyrite disseminations and micro-	2602	74.6	75.6	1.0	ı	14				
					fracturing. Chalcopyrite wisps and splashes (1-3mm) between 74.8 to 75m.										
					Lower contact sharp, 50 to CA.	2603	79.5	81.10	1.60	0	<5				

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	 SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-1	PAGE 3/6
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG	DATE LOGGED				COLLAR DIP	
COMPLETED	CLXIM	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	

	INTERVAL M □ Ft □ *		% RQD	LITHOTYPE	DESCRIPTION		S.	AMPLE				ASSAY	'S	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		FROM	70	LENGTH	% SUL	Au ppb			
81.10	83.9			Carbonatized	Light grey, VFg, soft, foliated, carbonatized mafic flow or intermediate tuff,	2604	81,10	82,70	1,6	0.5	6			
				Zone	Intense pervasive carbonatization imparting grey colouration to unit. Trace to 0.5%	2605	82.70	83.9	1.2	0.5	<5			
					disseminated pyrite. Unit contains 10% white calcite stringers/fractures.									
					STRUCTURE: Moderately foliated (S ₁); 81.6 40 to CA.									
					83.6 40 ω CA.									
					81.10-82.70 Blocky core, 0.2m core loss.									
					82.40-82.60 Pinkish white quartz-calcite vein with irregular contacts.									
					83.44-83.53 Fault gouge section.									
					Lower contact gradational.								_	
83.9	111.35			Intermediate	3B, greyish green, VFg, intermediate (andesite) tuff. Tuff is mostly ash with crystal	2606	83.9	85.5	1.6	0.5	<5			
				Tuff	nuff sections that are composed of 15% white feldspar phenocrysts (1-2mm).	2607	85.5	87.0	1.5	0.5	<5			
					Moderately intense calcite veinlets (0.5-1cm wide) and local quartz+ calcite veins									
					to veinlets.	2608	92.4	94.0	1.6	1.5	6			
					MINERALIZATION: Local 1-2% VFg pyrite sections.									
					STRUCTURE: Weakly foliated (S ₁).									
					84.6 50 to CA 103.6 40 to CA									
					96.2 50 to CA 107.8 55 to CA								I	

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-1	PAGE 4/6
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLÁIM [†]	LOGGED BY				ELEVATION	
ORJECTIVE	CO-ORD.	DDH COM				LENGTH	

	RVAL Ft 🗆	% RSC	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE			ASSAYS							
FROM	то	REC	RQID		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	το	LENGTH	% SUL	Au ppb							
	,				91-92 Breccia - angular grey siliceous fragments (up to 3x5cm size) in a chloritic mafic material. Fragments are amygdaloidal/chlorite filled).													
					92.4-94 MINERALIZATION: 1.5% VFg brownish pyrite disseminations and fracture fillings.													
					100.85-100.93 VFg, grey, quartz-calcite vein, 60 to CA. 105.9-106.60 Section of 35% white quartz-calcite vein material flooding. 103.37-103.47 White quartz-calcite vein, 55 to CA.													
					109.3-109.8 Vqca with 20% VFg green chlorite patches. Upper contact 75 to CA and lower contact 65 to CA.	2609	109.3	110.50	1.2	0	<5							
		,			110.23-110.40 Vqc, 65 to CA. Lower contact gradational.													
111.35	120.3			Maric Flow Breccia	2A, b, green, VFg, mafic flow breccia composed of 70-80% elliptical sub-rounded light green mafic blocks (up to 7cm width) in a dark green chlorite rich matrix.													
					The long axis of the blocks are aligned 50 degrees to the CA. ALTERATION: Moderate pervasive calcite alteration of the blocks.													
					Lower contact gradational.													

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-1 PAGE 5/6
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLAIM ³	LOGGED BY				ELEVATION
ОВЈЕСТІУВ	CO-ORD.	DDH COM				LENGTH

	RVAL Ft □	75	S ROD	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA`	rs	
FROM	10	RBC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	₹ \$			
120.3	145.7			Massive Mafic	2A. m. dark green. VFg. massive mafic flows that are cut by thick (1-3mm) calcite									
				Flows	filled fractures. Below 134m, intense calcite filled fracturing and quartz-calcite									
					veins to veinlets.							 <u> </u>		
<u></u>					135.23 Chalcopyrite splash in calcite veinlet (1cm), 55 to CA.									
: 					136.15-137 MINERALIZATION: 10% VFg brassy brown disseminated pyrite.	2610	136.15	137.0	0.85	10	<5			
					138.2-143.3 Porphyritic section - 15-20% light green feldspar laths.									
					Weak pervasive calcite.									
					143.36-143.6 Section with 50% quartz-calcite veining.									
					Lower contact gradational.									
145.7	167.0			Mafic Intrusive	2A, m/7 pinkish green, Fg. massive, homogenous, intrusive textured mafic flow or									
				Flow or	mafic intrusion. The unit is composed of fine (1mm) interlocking chlorite (25%),									
				Intrusion	quartz (30%), pink feldspar (35%) and yellow green eplidote (10%) phenocrysts. It is									
					strongly veined calcite filled fractures to veinlets and quartz-calcite veins. Rare									
					specular hematite was observed in fractures at 148.1-148.2m. Larger quartz-calcite									
					veins (listed below):									
					152.08-152.18 80 to CA 158.06-158.17 75 to CA									
					152.74-152.83 80 to CA 158.76-158.81 40 to CA									

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	 SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-1	PAGE 6/6
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG	DATE LOGGED	 			COLLAR DIP	
COMPLETED	CLAIM ¹	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	

	RVAL Ft 🗆	2	ĸ	LITHOTYPE	DESCRIPTION		S	AMPLE			ASSAYS						
PROM	то	REC	RQD	D 111101112	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	SUL.	An pps						
					154,50-154.59 80 to CA 159.18-156.50 60 to CA 155.43-155.57 60 to CA 155.94-156.03 60 to CA												
					164.36-164.43 Irregular quartz-calcite vein with epidote alteration halo in wall rock.												
	167.0			Е.О.Н.	End of Hole.												
					IP target TH-3 is likely a result of the carbonatized shear zone at 81.10-83.9m downhole. No significant sulphide zones were intersected in the hole.												
·					Drill core is stored in Larder Lake.												
								- 1,-									

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	Silver Century Explorations
PROPERTY	Boudreault-Labbe (PN54)
COMMENCED	March 19/97
COMPLETED	March 22/97
OBJECTIVE	Test IP pareet TH-2

NTS	32 D4/5
DISTRICT	Larder Lake
TWP/LAT.LONG	3. Ossian
CLAIM:	1203477
CO-ORD.	4+00E, 12+00N

CORE SIZE	NQ
CONTRACTOR	Bradley Bros.
DATE LOGGED	March 20-23/97
LOGGED BY	J. Kevin Montgomery
DDH COM	Casing left in hole

SURVEY DEPTH	DIP	AZIMUTH
14	50.5	358
65	49	-
113	48.5	359
164	48	_

HOLE NO. BL97-2	PAGE 1/8
COLLAR AZIMUTH	360
COLLAR DIP	50
ELEVATION	
LENGTH	215m

	RVAL Ft 🗆	5	4	LITHOTYPE	DESCRIPTION GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		s	AMPLE					ASSA	YS	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	10	LENGTH	% SUL	Au ppb				
0	10.2			OVB	Overburden.										
							<u></u>		L			<u> </u>	<u></u>		
10.2	122.45			Altered	4A, xt, Ch, Se, greenish cream, VFg, hard, well-fractured, chloritized felsic flow								<u> </u>		
				Felsic	(rhyolite). Flow contains 5-7% very fine (<1mm diameter) white feldspar									<u> </u>	
				Flow	phenocrysts in a cream siliceous VFg matrix. Below 41m, flow contains 2-3% clear									<u></u>	
					quartz eyes (1-2mm).					<u> </u>					
					ALTERATION: Moderate to strong dark green chloritization varying in form from										
					specks, patches to intense sections. This gives the unit a blotchy green to cream			Ĺ					<u> </u>		
					colouration. This chlorite alteration occurs from 10.2 to 50m. Chlorite infills										
					microfractures throughout section. Pale yellow sericite alteration halos (2-3mm to								<u> </u>	<u> </u>	
					1cm) radiate outward from microfracturing. Below 50m this sericite is moderately										
					intense and the sericite microfracturing has a network pattern. Below 91m, pink										
					potassic alteration increasing in intensity downhole from fracture balos to			<u> </u>							
					moderately pervasive.										
					STRUCTURE: Weak S ₁ foliation and strong fracturing.										
					12.5 40 to CA 34.9 50 to CA 83.7 45 to CA 110.7 40 to CA	2611	14.5	16.0	1.5	0	<5				
					19.5 45 to CA 62.1 50 to CA 86.6 40 to CA 116.2 40 to CA	2612	16.0	17.0	1.0	5	99				
					24.4 50 to CA 67 50 to CA 90.5 40 to CA	2613	17.0	18.5	1.5	0	13				
					26.2 50 to CA 74.5 45 to CA 94.4 45 to CA	2614	18,5	20.0	1.5	0.5	<5				

W.A. HUBACHECK CONSULTANTS LTD.

TORONTO, ONTARIO, CANADA

PAGE 2/8

		1000		SURVEY	T T			
OMPANY	тз	<u></u>	CORE SIZE	DEPTH	DIP	AZIMUTH	HOLE NO. BL97-2	
ROPERTY	DISTRICT		CONTRACTOR	215	46.5	358	COLLAR AZIMUTH	
OMMENCED	TWP/LAT.LO	₹G.	DATE LOGGED				COLLAR DIP	
OMPLETED	CLAÎM!		LOGGED BY				ELEVATION	
BJECTIVE	CO-ORD.		DDH COM				LENGTH	

	RVAL Ft □	, x	*	LITHOTYPE	DESCRIPTION		S	AMPLE				A	SSAY	'S	
FROM	70	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb				
					30.6 50 to CA 81.5 55 to CA 105.2 40 to CA	2615	20.0	21.5	1.5	0.5	<5				
					MINERALIZATION: Typically local sections of 1-5% pyrite until 101.8m below	2616	21.5	23.0	1.5	0	<5				
					which uniform pyrite content of 1-2%. Pyrite in the form of VFg brownish	2617	23.0	24.5	1.5	0	6				
					pseudofragments consisting of very finely disseminated pyrite.	2618	24.5	26.0	1.5	0	<5				
					16.3-16.8 MINERALIZATION: 5% pyrite occuring as scattered VFg brownish	2619	26.0	27.5	1.5	0	<5				
					pyrite lenses.	2620	27.5	29.0	1.5	0	<5				
	1				19.3 Same as above, two pyrite lenses.	2621	29.0	30.0	1.0	0	9				
		Ī i			21.0 MINERALIZATION: VFg brownish pyrite veinlets (2mm) left hand displaced	2622	30.0	31.2	1.2	0.5	<5				
					(mm) by calcite coated microfracture 0 ot CA.	2623	31.2	32.9	1.7	5	<5				
					30.65-30.78 Yellowish green, VFg, soft, sericitized intermediate ash tuff layer.	2624	32.9	34.6	1.7	5	<5				
					31.2-34.64 MINERALIZATION: 5% VFg brownish pyrite. Scattered sub-rounded	2625	34.6	35.6	1.0	1	<5				
					pseudo fragments of VPg disseminated pyrite. These fragments up to 1x5cm in size.										
					34.64-34.94 Same as 30.65-30.78m.	2626	42.5	44.0	1.5	2.5	<5				
					34.94-35.6 MINERALIZATION: 1%, same as 31.2-34.64m.										
					42.5-44 MINERALIZATION: 2.5%, same as 31.2-34.64m.	2627	57.0	58.5	1.5	1.0	8				
					46-47.3 Green, VFg, soft, calcite altered, intermediate amygdaloidal flow or tuff	2628	58.5	60.0	1.5	0.5	<5				
					layer. Layer contains 15% black chlorite specks (1-2mm) and chlorite rimmed	2629	60.0	61.65	1.65	2	<5				
					round calcite amygdules? Upper contact 25 to CA, lower contact 50 to CA.	2630	61.65	62.8	1.15	0	<5				

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-2	PAGE 3/8
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM!	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	 DDH COM			•	LENGTH	

	RVAL Ft 🗆	×	% ROD	LITHOTYPE	DESCRIPTION		S	AMPLE				 ASSA'	rs	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUIL	A# ppb			
					48.83-48.95 Vq. 50 to CA.	2631	62.8	64,0	1.20	0	<5			
					57-58.5 MINERALIZATION: 1%, same as 31.2-34.64m.	2632	64.0	65.0	1	1	<5			
					60-61.65 MINERALIZATION: 2%, same as 31.2-34.64m.	2633	65.0	66.1	1.1	1	<5			
					64 - 66.1 MINERALIZATION: 1%, same as 31.2-34.64m.	2634	66.1	67.55	1.45	0	<5			
					72.6-74.8 MINERALIZATION: 2%.									
					78.15-79.6 Local rusty iron oxidation about fractures.	2635	72.6	74.0	1.4	2	<5			
					83.8-88.0 ALTERATION: Orange carbonate alteration locally about fractures/	2636	74.0	75.0	1	2	5			
					foliation.									
					86.8-89.74 ALTERATION: Weak to moderate chloritization both pervasive and	2637	90.0	91.5	1.5	1	<5			
					concentrated along microfractures.									
					90-91.5 MINERALIZATION: 1% pyrite, scattered brown VFg pyrite lenses.	2638	101.8	103.0	1.2	4	<5			
					98.65-99.9 Blocky core section due to several fractures, 25 to CA.	2639	103.0	104.5	1.5	1	<5			
					101.8-103 MINERALIZATION: 4%, same as 31.2-34.64m.	2640	104.5	106.0	1.5	1	<5			
					104.5-112.6 MINERALIZATION: 1%, same as 90-91.5m.	2641	106.0	107.5	1.5	1	<5]
					112.6-113.9 Yellowish green, VFg, strongly foliated, intermediate tuff/flow.	2642	107.5	109.0	1.5	1	<5			
					Foliation 25 to CA(S ₁), quartz-carbonate veinlets (1-2mm thick) parallel to foliation,	2643	109.0	110.8	1.8	1	<5			
					10%.	2644	110.8	112.6	1.8	1	<5			
					MINERALIZATION: 1% VFg brassy disseminated pyrite.	2645	112.6	113.9	1.3	1	6	 		

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-2	PAGE 4/8
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM:	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	 DDH COM				LENGTH	

INTE M 🗆	RVAL Ft □	x	7	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA.	YS	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb			
					113.9-117 MINERALIZATION: 1%, same as 90-91.5m,	2646	113.9	115.5	1,6	ı	<5			
					117-119.1 MINERALIZATION: 2% VFg brassy pyrite finely disseminated and local	2647	115.5	117.0	1.5	1	<5	<u> </u>		
					VFg brownish pyrite stringers to lenses.	2648	117.0	118.0	1.0	2	<5			
					119.1-120.9 MINERALIZATION: 12% VFg brassy finely disseminated pyrite and	2649	118.0	119.1	1.1	2_	<5			
					local VFg brownish pyrite stringers. Section is intensely fractured and flooded with	2650	119.1	120.9	1.8	12	<5			
	_				calcite.	2651	120.9	122.45	1.55	1	<5			
					Lower contact of altered felsic flow (rhyolite) sharp, 35 to CA.		<u> </u>							
122.45	156.7			Felsic-	4-3A, grey, VFg, weakly foliated, felsic to intermediate flow (rhyodacite or	2652	122.45	124.0	1.55	1	<5			
				Intermediate	dacite). The flow is hard, however it is softer than the above altered felsic flow.	2653	124.0	125.75	1.75	1	<5	 		
				Flow	Flow contains 3% white feldspar laths/phenocrysts (1-2mm) and 1-2% clear quartz	2654	125.75	127.45	1.70	1	<5			
					eyes (1-2mm) in a VFg siliceous-calcite matrix.	2655	127.45	128.20	0.75	3	<5			
					ALTERATION: Weak to moderately intense calcite imparting a mottled appearance									
					to the flow matrix. Local patches to wisps of cream VFg iron carbonate alteration.	2656	140.32	140.91	1.59	0.5	<5			
					MINERALIZATION: Local sections of 1-3% pyrite. Overall these sections consist of	2657	140.91	143.41	1.5	1	<5			
					scattered and locally concentrated VPg brownish pyrite stringers, filled fractures	2658	143.41	144.65	1.24	20	<5			
					(1-3mm) and wispy lenses. Stringer type mineralization.	2659	144.65	146.15	1.50	0.5	<5			
					STRUCTURE: Very weakly foliated (S ₁).	2660	146.15	147.5	1.35	0.5	<5	 		
					143.41 35 to CA, 148.8 40 to CA, 154.1 50 to CA.	2661	147.5	149.25	1.75	0.5	<5			

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-2	PAGE 5/8
PROPERTY	DISTRICT	 CONTRACTOR				COLLAR AZIMUTH	_
COMMENCED	TWP/LAT.LONG.	 DATE LOGGED				COLLAR DIP	
COMPLETED	CLAÎM'!	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD,	DDH COM				LENGTH	

	RVAL Ft 🗆	*	% ROD	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSAY	rs	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	10	LENGTH	SUL.	An pph			
					122,45-127,45 MINERALIZATION: Overall 1% pyrite. Pyrite consists of scattered	2662	149,25	151.0	1.75	1	<5			
			<u>.</u>		VFg brownish wispy lenses and local stringers (1-2mm) infilling fractures.	2663	151.0	152.5	1.5	1	<5			
					127.45-128.2 MINERALIZATION: 3% VFg brownish pyrite occuring as stringers.									
					133.7 and 134.2 Possible black chlorite flow selvages.									
					138.33-140.32 Green, VFg, soft, calcite altered intermediate amygdaloidal									
					flow layer. It contains 3-5% green chlorite specks and calcite or quartz filled									
					amygdules. Upper contact 55 to CA with 5cm sericite alteration halo below it.									
					Lower contact 45 to CA with moderate pervasive sericitization from 140-140.32m.									
					138.64-138.72 Vcaq, 40 to CA.									
					140.32-143.41 MINERALIZATION: 0.5-1% VPg brownish pyrite concentrated									
					locally as stringers/fractures.									
					143.41-144.65 MINERALIZATION: 20% pyrite. A semi-massive anastomosing]		
					pyrite stringer network. The pyrite is VFg brownish pyrite stringers to patches.									
					144.65-156.7 ALTERATION: Yellowish green, VPg, sericite halos (up to 1cm wide									
					but generally 3-5mm) about fractures.									
					144.65-153 Same as 140.32-143.41 5% concentrations at 147 and 151.2-151.5m.									
					Lower contact gradational,									

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	итѕ		CORE SIZE	 SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL37-2	PAGE 6/8
PROPERTY	DISTRICT		CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LON	IG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM		LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.		DDH COM				LENGTH	

	RVAL Ft 🗆	5	5	LITHOTYPE	DESCRIPTION		S	AMPLE		1		ASSA'	YS	
PROM	10	RBC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	PROM	10	LENGTH	% SUL	An ppt			
156.7	192.10			Sericitized	4A, Se, cream to light grey, VFg, hard, fractured and weakly foliated, sericitized	C								
				Felsic	felsic flow (rhyolite). Flow composed of 5-7% white feldspar laths/phenocrysts		<u> </u>							
				Flow	(2-3mm size) and rare - 1% clear quartz eyes (1mm) in a siliceous matrix.									
					No veining present in unit.		·					 <u> </u>		
				-	ALTERATION: Sericitization same as 50-122.45m. An intense pervasive sericite									
					altered section from 184 to 192m.									
					MINERALIZATION: Overall 3% sulphides, VFg pyrite as brownish stringers to									
					fracture fillings and local brownish pseudo fragments.									
					STRUCTURE: Weakly foliated (S ₁) and moderately fractured.									
					Practuring is typically 30-50 to CA.									
					166.7 60 to CA 168.2 50 to CA 179.0 55 to CA									
					181.3 50 to CA						Ш			
	-				159.5-163.45 MINERALIZATION: 3% VFg pyrite mostly brownish pyrite with	2664	159.5	160.6	1.1	3	<5			
					lesser brassy pyrite as stringers to fracture fillings. Anastomosing stringer network	2665	160.6	161.7	1.1	3	<5			
					pattern. Local brown pseudo fragments of 50% VPg finely disseminated pyrite	2666	161.7	163.45	1.75	3	<5			
					(2xScm in size).	2667	163.45	164.0	1.55	15	<5			
					163.45-164 MINERALIZATION: 15% VFg brownish pyrite semi-massive stringer	2668	164.0	165.5	1.5	2	<5			
					network.	2669	165.5	166.7	1.20	2	<5			

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-2	PAGE 7/8
PROPERTY	DISTRICT	CONTRACTOR			· .	COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	

	RVAL Ft 🗆	×	*	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA	YS	
FROM	то	REC	RQD	LIIHOITE	GEOLOGY: (colour, grain size, texture, minerals, alteration, esc)	SAMPLE NO.	FROM	το	LENGTH	\$ \$UL	Au ppb			
					164-169.55 MINERALIZATION; 2% VFg brownish pyrite as scattered pseudo	2670	166.7	167,7	1.0	2	<5			
					fragments (see above description).	2671	167.7	169.65	0.95	2	<5	 <u> </u>		<u> </u>
					169.55-170 MINERALIZATION: 8%, same as 163.45-164m.	2672	169.65	170.0	0.35	8	<5			1
					170-172.55 MINERALIZATION: 2%, same as 159.95-163.45m.	2673	170.0	171.25	1.25	2	<5			
					172.25-177.24 Dark grey, VFg, carbonatized and chloritized felsic or carbonatized	2674	171.25	172.25	1.0	2	<5			I
					intermediate flow (rhyodacite or dacite?). Blotchy white carbonate alteration between	2675	172.25	173.0	0.75	0	<5			I
					172.25 to 173.3m. Lower contact 45 to CA, upper contact gradational.	2676	173.0	174.5	1.5	2	<5			1
					173-174.5 MINERALIZATION: Overall 2% pyrite, local VFg brownish pyrite									
					stringers (3-5mm wide) with cm wide pervasive sericite alteration halos in wall rock.	2677	181.6	183.0	1.4	1	<5			
					181.1-184.35 MINERALIZATION: 1% local VFg brownish pyrite stringers.	2678	183.0	184.35	1.35	1	7			
					184.35-192.10 ALTERATION: Cream bleached intense pervasive alteration	2679	184.35	185.9	1.55	4	7			
					(sericite?).	2680	185.9	187.65	1.75	3	<5			
					184.35-185 MINERALIZATION: 5% pyrite, anastomosing network of narrow	2681	187.65	189.23	1.58	3	<5			
					(1-2mm) pyrite stringers. Pyrite mostly VFg brown with minor brassy pyrite.	2682	189.23	190.84	1.61	0.5	<5			
					185-189.23 MINERALIZATION: 2-4% pyrite, same as 164-169.65m.	2683	190.84	192.10	1.26	7	<5			
					189.23-190.84 MINERALIZATION: 0.5% overall pyrite, locally concentrated as									
					narrow (1-2mm) stringers.									
					190.84-191.32 Intense white quartz-calcite vein and veinlet flooding section. 5%									

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS be	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-2	PAGE 8/8
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM	LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.	DDH COM				LENGTH	
	•						

	RVAL Ft 🗆	5	\$	LITHOTYPE	DESCRIPTION		S	AMPLE		-		ASSA'	YS	
PROM	то	REC .	RQD	<u></u>	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb			
					disseminated brassy pyrite. Irregular contacts of zone.									
					191.32-192.10 MINERALIZATION: 7-8% VFg brownish pyrite wispy lenses along	<u></u>								
		1			fractures.			<u> </u>						
 		-			Lower contact gradational.							<u> </u>		
192.10	215.0			Felsic-	4-3B, lt, light grey, VFg, weakly foliated felsic-intermediate (rhyodacite or dacite)	2684	192.1	193.48	1.38	0.5	<5	 -		
172.10	215.0			Intermediate	lapilli tuff. Tuff contains 10-15% white feldspar lapilli size phenocrysts and 5%	2685	193.48	195.25	1.77	0.5	<5			
				Lapilli Tuff	angular cream carbonate fragments in a grey siliceous matrix.	2686	195.25	197.0	1.75	1	<5			
					ALTERATION: Weak pervasive calcite alteration.	2687	197.0	198.5	1.5	2	<5			
					MINERALIZATION: 0.5 to 2% pyrite throughout, some higher sections locally.	2688	198.5	200.0	1.5	1	<5			
					Pyrite is VFg brown disseminations & diffuse specks.	2689	200.0	201.6	1.6	0.5	<5			
					STRUCTURE: Weak foliation due to alignment of fragments.	2690	201.6	203.0	1.4	1	<5			
					194.5 35 to CA 204.5 40 to CA 211.0 50 to CA	2691	203.0	204.6	1.6	5	<5			
					197.3 35 to CA 208.1 40 to CA 214.9 50 to CA	2692	204.6	206.0	1.4	111	<5			l
					203-204.6 MINERALIZATION: 5% pyrite, as above.	2693	206.0	207.5	1.5		<5			
		\Box			214.61-214.66 Vcaq, 60 to CA.	2694	207.5	209.0	1.5	0.5	<5			
	215			Е.О.Н.	End of Hole. The hole intersected the TH-2 chargeability target between 101.8-122.45m		<u> </u>					 		
	215.0			Е.О.Н.	downhole. It was 2% pyrite mineralization. Drill core is stored in Larder Lake.		· · ·							ل ــــــــــــــــــــــــــــــــــــ

W.A. HUBACHECK CONSULTANTS LTD.

			P-4.V						
COMPANY	Silver Century Explorations	NTS	32 D4/5	CORE SIZE NQ	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-3A	PAGE 1/I
PROPERTY	Boudreault-Labbe (PN54)	DISTRICT	Larder Lake	CONTRACTOR Bradley Bros.				COLLAR AZIMUTH	360
COMMENCED	march 22/97	TWP/LAT.LONG.	Ossian	DATE LOGGED March 24/97				COLLAR DIP	50*
COMPLETED	March 23/97	CLAIM	1203476	LOGGED BY J. Kevin Montgomery				ELEVATION	
OBJECTIVE	Tested IP target	CO-ORD.	L400W, 3+00S	DDH COM				LENGTH	31.2m
	TH-1 and Resitivity I	Low.	(Imperial Grid)	Manty O.	nery			Ľ	

	RVAL Ft 🗆	*	% ROD	LITHOTYPE	DESCRIPTION		S	AMPLE					ASSA'	rs .	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc.)	SAMPLE NO.	FROM	70	LENGTH	% SUL	Au ppb	•			
0	28.6			Overburden	OVB.										
															
28.6	31.2			Intermediate	3A, m, green, VPg-Fg, massive, intermediate intrusion or intermediate intrusive										
				Intrusive	textured flow. The unit is composed of a VFg interlocking feldspar-quartz-chlorite	ļ									
				Flow	matrix containing 3-5% clear quartz phenocrysts (1-3mm) often with dark green	ļ									
<u></u>					chlorite rims. Magnetic susceptibility low 0.23 SI units.							ŀ			
					ALTERATION: None.		<u> </u>								
L					MINERALIZATION: Trace VFg brownish pyrite disseminations.										
												-			
	31.2			End of	Drill hole was abandoned as a result of drill rods, core and casing being stuck in										
				Hole	the hole. This was caused by loss of water return at 30.3m due to an open fracture in										
					bedrock.										
L															
<u></u>					· · · · · · · · · · · · · · · · · · ·										
									<u></u>						

W.A. HUBACHECK CONSULTANTS LTD.

Boudreault-Labbe (PN54)
March 23/97
March 26/97

NTS	₩62 D-4/5
DISTRICT	LarderLake
TWP/LAT.LONG.	Ossian
CLAİM	1203476
CO-ORD.	L400W, 290S

CORE SIZE	NQ
CONTRACTOR	Bradley Bros.
DATE LOGGED	March 24-28/97
LOGGED BY	J. Kevin Montgomery
DDH COM	Casing left in hole

SURVEY DEPTH	DIP	AZIMUTH
50	50.5	356
150	51	359
200	51	_

HOLE NO. BL97-3	PAGE	1/10
COLLAR AZIMUTH		360
COLLAR DIP		50
ELEVATION		
LENGTH		278m

	RVAL Ft □	% RBC	% ROD	LITHOTYPE	DESCRIPTION Many any		S	AMPLE				ASSA	YS	
FROM	to	REC	KQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	X SUL	Au ppb			
0	29.4			Overburden	OVB.									
								ļ				 		
29.4	101.82			Massive	3A, m, p green, VFg, hard, intrusive textured, massive intermediate (andesite)							 <u> </u>		
				to Pillowed	flows with local pillow selvages or flow selvages at 41.6-52.2m, 88.5 & 103.8m.	L							L	
<u> </u>				Intermediate	Local sections of 5% white feldspar phenocrysts. Very minor calcite veinlets/	<u></u>		<u> </u>	<u> </u>					
				Flows	fractures.			<u> </u>						
<u> </u>					STRUCTURE: Local flow contacts: 89.05 75 to CA, 90.7 50 to CA, 93 60 to CA.			<u> </u>				 		
					50.08-50.87 Hyaloclastite flow selvage sections. Grey VFg carbonate matrix.	2748	68.0	69.0	1.0	0	WR			
					Brecciate texture.									
					95-101.82 ALTERATION: Grey moderate pervasive calcite flows.							 		
					91.55-96 Feldspar poprhyritic section: 7% white gobular shaped feldspar phenocrysts,									
					2-3mm size.									
					97.1-99.9 Same as above.					į				
					Lower contact gradational.									
101.82	115.78			Carbonatized	3A, m, beige, VFg, soft, carbonatized, massive intermediate (andesite) flows with									
				Massive Inter-	distinct flow selvages. Local black graphite horizons. Below 111m, local white									
				mediate Flows	quartz-calcite veins to veinlets.								l	

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	Name .	CORE SIZE		SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-3	PAGE 2/10
PROPERTY	DISTRICT		CONTRACTOR	·	251	51	358	COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LON	10.	DATE LOGGED					COLLAR DIP	
COMPLETED	CLAİM		LOGGED BY					ELEVATION	
OBJECTIVE	CO-ORD.		DDH COM					LENGTH	

	RVAL Ft 🗆	×	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE				 ASSA'	YS	
FROM	το	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au ppb			
					STRUCTURE: Non-foliated, flow contacts/selvages: 103.85 45 to CA, 106.9 70 to CA, 107.9 45 to CA, 109.6 60 to CA. ALTERATION: Moderate pervasive carbonatization imparting the beige colouration to the unit. 110.35 Black VFg graphite patch. 110.72-111.75 Black VFg graphite horizon (98% graphite) with minor calcite and moderate pervasive calcite throughout.									
					MINERALIZATION: 1% VFg brassy pyrite as local laminated (1-2mm thick) and scattered elliptical lenses (3x5mm).	2695	109.20	110.72	1.52	0.5	<5			
					Contacts 45 to CA. 111.90-111.96 Vqca, 90 to CA. 113.39-113.40 Grey to black graphite band.	2696 2697 2698	110.72 111.75 113.15	111.75 113.15 114.50	1.03 1.40 1.35	0.5 0	19 81 <5			
					114.5-115.78 ALTERATION: Grey moderate pervasive calcite alteration of flows same as 95-101.82m. This section contains white calcite amygdules? 115.08-115.22 Same as 110.77-111.75, 0.5% brassy disseminated VFg pyrite, contacts 75 to CA. Lower contact fault gouge.	2699	114.5	115.78	1.28	0	<5			

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	Ü	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-3	PAGE 3/10
PROPERTY	DISTRICT		CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LON	1G.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAİM		LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.		DDH COM				LENGTH	

	RVAL Ft □	5	\$	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA'	YS	
FROM	70	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO,	FROM	то	LENGTH	S. SUL	Au ppb			
115,78	120.16			Graphite-	GO, black VFg graphite-quartz zone comprised of 70% graphite and 30% white	2700	115.78	117.30	1,52	2	9			
				Quartz	quartz-calcite veins/veinlets which vary from 0.5 to 15cm widths. Veining randomly	2701	117.30	118.85	1.55	2	20			
				Zone	oriented. Blocky core with poor RQD.	2702	118.85	120.16	1.31	3	16			
					MINERALIZATION: Overall 2% VFg brassy disseminated pyrite.									
					115.78-115.85 Fault gouge upper 13cm grey calcite altered mafic flow material and									
					lower 10cm graphite-quartz zone material.									
					116.13-116.28 Vgca.									
					116.4-116.53 Vqca, upper contact 60 to CA.									
					116.93-117 Vqca, 80 to CA.									
					118.46-118.56 Vqca.									
					118.74-118.85 Graphite fault gouge.									
					118.85-120.16 MINERALIZATION: 3% VFg, very finely disseminated pyrite.									
					Lower contact, 55 to CA.									
120.16	138.3			Sericitized	3A, Se, mustard yellow to greyish beige, foliated, VFg, intensely quartz-calcite	2703	120.16	121.7	1.54	1	<5			
				Intermediate	veined and sericitized intermediate-matic flows. Quartz-calcite veining consists of	2704	121.7	123.2	1.50	1	<5			
				-Mafic Flows	veins (up to 5cm) with irregular contacts to irregular stringers (≤5mm). Veining is	2705	123.2	124.7	1.50	1	<5			
					somewhat subparallel to foliation.	2706	124.7	126.2	1.50	1	<5			

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	0	CORE SIZE	 SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-3	PAGE 4/10
PROPERTY	DISTRICT		CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LO	NG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM		LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.		DDH COM				LENGTH	

	RVAL Ft 🗆	x	*	LITHOTYPE	DESCRIPTION		S	AMPLE	10 10 10 10			ASSAY	rs	
FROM	то	REC	RQO	Limorne	GEOLOGY: (colour, grain size, texture, minerals, afteration, esc)	SAMPL8 NO.	FROM	סד	LENOTH	% SUL	Au ppb			
					ALTERATION: Intense mustard yellow sericitization consisting of irregular wispy	2707	126.2	127,7	1,50	_1_	<5			
	·		L		foliation to patches moderate pervaisve beige to grey carbonatization.	2708	127.7	129.2	1.50	1	<5			L
					STRUCTURE: Moderately well foliated (S ₁) possible shear zone.	2709	129.2	130.7	1.50	1	<5			
					121.75 40 to CA 132.4 50 to CA	2710	130.7	132.2	1.50	1	<5			
		•			126.05 35 to CA 135.2 40 to CA	2711	132.2	133.7	1.50	1	<5			
					129.20 30 to CA 138.0 30 to CA	2712	133.7	135.2	1.50	1	<5			
					MINERALIZATION: 1% VFg brassy pyrite disseminations to local stringers	2713	135.23	136.7	1.50	1	<5			
					diroughout.									
					120.16-126 Several irregular quartz-calcite veins comprising 35% of the section.	2714	137.0	138.3	1.30	1	30			
					136.7-137 Core loss, possible fault gouge zone.									
					Lower contact gradational as foliation, sericitization and quartz-calcite veining									
					disappears.									
138.3	153.0			Carbonatized	3A, m, C, same as 101.82-115.78m.									
				Intermediate	STRUCTURE: Non-foliated, distinct flow contacts.									
				Massive Flows	145.4 20 to CA, 147.7 25 to CA, 150.7 30 to CA.									
					139.1-140.3 MINERALIZATION: 1% VFg brassy pyrite disseminations locally									
					concentrated.									
					142.5-144 MINERALIZATION: 1.5% VFg-Fg brassy pyrite as scattered blebs to	2715	142.5	144.0	1.5	1	17			

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	CORE SIZE	SURVEY DEPTH DI	AZIMUTH	HOLE NO. BL97-3 PAGE	5/10
PROPERTY	DISTRICT	CONTRACTOR			COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	DATE LOGGED			COLLAR DIP	
COMPLETED	CLÀIM	LOGGED BY			ELEVATION	
ORJECTIVE	CO-ORD.	DDH COM			LENGTH	

	RVAL Ft 🗆	s.	x	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA	YS	
FROM	то	REC	RQO		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc.)	\$AMPLE NO.	FROM	το	LENOTH	S SUL	As pps			
					disseminations,	2716	144.0	145.0	1.0	0	11			
<u> </u>	<u> </u>				146.77-147.07 Grey calcite-quartz vein, upper contact 10 to CA and lower contact 20				<u> </u>					
					to CA.	2717	147.7	149.2	1.5	1	6			
1					145.7-145.75 Vcaq, 30 to CA.									
					147.7-149.2 MINERALIZATION: 1% Fg brassy disseminated pyrite. Section of 7%									
					pale green chlorite flecks (1-2mm).		<u> </u>							
Ĺ					Lower contact gradational as the beige carbonatization disappears.									
153.0	179.0			Massive	3A, o, m, dark grey to grey, VFg, non-foliated, soft, massive intermediate flow									
				porphyritic	(andesite). Flow has a porphyritic texture as a result of 5-15% white to light grey									
				Intermediate	carbonate phenocrysts. Flow has local quartz-calcite veins (0.5 to 6cm wide) between									
				Flows	161 to 172.13m, typically 80 to CA. Below 172.3m quartz-calcite veinlets/	2718	167.8	168.7	0.9	0	<5			
					stringers moderately to weakly intense randomly oriented.									
					MINERALIZATION: Trace VFg very finely disseminated pyrite.									
					ALTERATION: Moderate pervasive carbonatization and weak pervasive									
					calcite alteration.									
				-	Lower contact gradational as beige carbonatization alteration increases.									

W.A. HUBACHECK CONSULTANTS LTD.

COMPANY	NTS	المينا ا	CORE SIZE	SURVE DEPTH	DIP	AZIMUTH	HOLE NO. BL97-3	PAGE 6/10
PROPERTY	DISTRICT		CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LO	NO.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM		LOGGED BY				ELEVATION	
ORJECTIVE	CO-ORD.		DDH COM				LENGTH	

	RVAL Ft □	5	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA	YS	
PROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	Au yys			
179.0	199.6			Carbonatized	3A, m, same as 101,92-115,78m, Below 189,5m, 7% very fine (1mm) calcite filled									
				Massive	amygdules. Below 188.65m, graphite stringers present. Local graphite horizons as					<u></u>		<u> </u>		
				Intermediate	described below.									
				Flows	181.88-181.92 Vq, 90 ю СА.									
					182.35 Vq (2cm), 15 to CA.									
					184.05-185 40% white randomly oriented Vq's.	2719	184.0	185.0	1.0	0	6			
					185.94-186.07 Vg, 70 to CA.									
					188.5-188.59 Vq, 50 to CA.	2720	189.45	190.7	1.25	0.5	<5			
					189.78-189.85 Vq, 90 to CA.	2721	190.7	191.5	0.80	5	24			
					190.7-192.40 Graphite Horizon: VFg black graphite argillite layer with 85% white	2722	191.5	192.4	0.90	3	_13			
					quartz-calcite veinlets from 190.98-191.5 and fault gouge from 191.5-191.6m.	2723	192.4	193.6	1.20	0.5	<5			
					MINERALIZATION: 10% VPg finely disseminated and laminated brassy pyrite from	2724	193.6	194.83	1.23	1	<5			
					190.7 to 190.85m; 3% VFg brassy pyrite disseminations to scattered blebs from	2725	194.83	196.1	1.27	2	6			
					190.85 to 192.40m. Upper graphite zone contact 85 to CA, lower contact 75 to CA.	2726	196.1	197.3	1.20	2.5	9			
					192.98-193.27 Graphite-calcite zone consisting of a white VFg calcite band to	2727	197.3	198.45	1.10	0.5	<5			
					193.08m and VFg black graphite to 193.27m. Contacts 85 to CA.	2728	198.45	199.6	1.15	1	9			
					194.83-197.3 Graphite horizon: VFg black graphite argillite with 20-25% white									
					calcite-quartz veins to veinlets, 70-80 to CA. Layering 70 to CA.									

W.A. HUBACHECK CONSULTANTS LTD.

СОМРАНУ	итѕ	المستأ	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-3	PAGE 7/10
PROPERTY	DIȘTRICT		CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.		DATE LOGGED				COLLAR DIP	
COMPLETED	CLÀIM		LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.		DDH COM				LENGTH	

	RVAL Ft 🗆	×	2	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA	YS	
FROM	tο	REC	RQD	2	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	% SUL	As ppb			
					MINERALIZATION: 2.5% VFg brassy disseminated pyrite. 199.05-199.15 MINERALIZATION: 5% VFg brassy disseminated pyrite in an									
	<u> </u>				irregular calcite vein. Lower contact 75 to CA.									
					Edward Collect 75 to Cri.									
199.6	215.74			Graphitic Argillite	3A, m G, black, VFg, weakly laminated, graphitic argillite or massive intermediate flows. Calcite filled amygdules (2-3mm diameter) at 202.3, 208-209m, & 210.3-212m.	2729 2730	199.6 201.0	201.0	1.4	3	11 <5	 		
				& Intermediate	ALTERATION: Moderate pervasive calcite alteration.	2731	202.3	203.9	1.6	2	8			
		_		Flows	MINERALIZATION: 2% VFg brownish to brassy pyrite from disseminations to blebs, blebs, 199.6-203.9m.	2732 2733	203.9	205.5	1.6	0.5	<5 <5	 		
					STRUCTURE: Weak laminations (S ₁).	2734	207.0	208.7	1.7	11	6			
					202.8 70 to CA 204.7 70 to CA 209.1 50 to CA 204 60 to CA 207.9 40 to CA 210.9 60 to CA	2735 2736	208.7	210.1	1.4	5	7 <5			
				!	199.6-200 ALTERATION: Moderate pervasive light grey silicification at upper contact.	2737	211.5	213.0	1.5	ò	<5			
<u> </u>					202.3-203.05 Moderately intense (15-20%) calcite stringers.	2738	213.0	214.5	1.5	0	<5			
					209.5-210.1 MINERALIZATION: 8-10% very finely disseminated VFg brassy pyrite in a section with 5% calcite veinlets (0.5cm).	2739	214.5	215.74	1.24	1	<5			
					212.38-215.6 ALTERATION: Intense pervasive calcite, below 214.1m mottled, white							\Box		

W.A. HUBACHECK CONSULTANTS LTD.

DIAMOND DK	ILL LOG	•				W.A. H	UBACHECK CONS	
	•	∱ €					TORONTO	, ONTARIO, CANA
COMPANY	NTS	أمسا	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-3	PAGE 8/10
PROPERTY	DISTRICT		CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LONG.	<u> </u>	DATE LOGGED		<u> </u>		COLLAR DIP	
COMPLETED	CLAIM		LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.		DDH COM		<u> </u>		LENGTH	·····

	RVAL Ft 🗆	4	×	LITHOTYPE	DESCRIPTION		S	AMPLE				ASSA.	YS	
FROM	то	REC	RQĐ	LittleTitE	GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)	SAMPLE NO.	FROM	то	LENGTH	\$ SVL	Au ppb			
					speckled calcite alteration pattern.									
					215.6-215.74 Graphite zone, finely laminated graphite with 2% VFg disseminated		l					 <u> </u>		
<u> </u>					pyrite along laminations.									
					Lower contact of zone and unit, 55 to CA.									
215.74	278.0			Carbonatized	3A, m, C, G, beige, VFg soft, carbonatized massive, intermediate (andesite or dacite)									
				& Graphitic	flows with 15% black VPg graphite filled fractures and flow selvage areas. Local								_	
				Massive	calcite amygdaloidal flow tops. Flows contain grey quartz-calcite zones, white									
				Intermediate	quartz-calcite veins and graphite zones.									
	L			Flows	ALTERATION: Moderately intense pervasive beige iron carbonatization and weak									
					pervasive calcite. Beige iron carbonatization fades out below 266.15m. Intense									
					pervasive calcite in the black graphite filled fractures/flow selvages.									
					MINERALIZATION: Local sections of 1 to 3% pyrite. The pyrite is typically VFg									
				-	brassy or brown pyrite fragments to lenses within graphite fractures/flow selvages									
					and quartz-calcite zones.									
					STRUCTURE: Massive and non-foliated flows. Flow contacts; 242.5 25 to CA, 248									
					60 to CA, 259.35 50 to CA, 263.45 55 to CA and 273.4 50 to CA.									
					227.5-222.74 Grey, vuggy, VFg calcite+quartz zone with 8% VFg very finely									

DIAMOND DRILL LOG,

W.A. HUBACHECK CONSULTANTS LTD.

TORONTO, ONTARIO, CANADA

COMPANY	NTS	تعيثا	CORE SIZE	 SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-3	PAGE 9/10
PROPERTY	DISTRICT		CONTRACTOR				COLLAR AZIMUTH	
COMMENCED	TWP/LAT.LON	IG.	DATE LOGGED				COLLAR DIP	
COMPLETED	CLAIM.		LOGGED BY				ELEVATION	
OBJECTIVE	CO-ORD.		DDH COM				LENGTH	

H	RVAL Ft 🗆	7.	% RQD	LITHOTYPE	DESCRIPTION		S	AMPLE				 ASSAY	rs	
FROM	το	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		FROM	10	LENGTH	% SUL	Au ppb			
	·				disseminated pyrite. Upper contact 45 to CA and lower conact 90 to CA. 228,38-228,54 Same as above, contacts 55 to CA.	2740	215.74	217.25	1.51	0.5	5			
					232.15-238.2 Vqca, 65 to CA.	2741	227.5	228.6	1.10	2	7			
					238.38-238.43 Vqca, 55 to CA. 251 Vq (1cm), 10 to CA.	2742	257.3	258.25	0.95	2	9			
					251.55-251.66 Vqca (6cm), 30 to CA.	2743	266.0	266.8	0.80	7	76			
					251.66-252.75 Amygdaloidal 5-7% fine (1-3mm diameter) clear quartz round amygdules.	2/43	200.0	200.8	0.80		/6			
					257.3-257.73 White, VFg, calcite-quartz zone with 2-3% yellow sericite slips. Upper contact 40 to CA and lower contact 50 to CA.	2744	270.5	271.25	0.75	2	20			
					257.90-258.25 MINERALIZATION: 2% very fine (< 1mm) disseminated pyrite in a	2745	273.5	275.0	1.50	1	<5			
					black graphite zone composed of 80% VFg black graphite-calcite matrix hosting angular irregular flow blocks to fragments.									
					266.15-266.80 Calcite-quartz flooding (55%) in a breccia. Breccia composed of angular flow fragments (15%) in a graphite (25%) matrix.							 		
					MINERALIZATION: Overall 7% VFg brown to brassy pyrite as semi-massive									
				·	concentration at lower 30cm of section, and disseminations throughout. 267.02-267.37 VFg black graphite argillite horizon, moderate-weak pervasive calcite									

DIAMOND DRILL LOG

W.A. HUBACHECK CONSULTANTS LTD

TORONTO, ONTARIO, CANAD/

COMPANY	NTS	CORE SIZE	SURVEY DEPTH	DIP	AZIMUTH	HOLE NO. BL97-3 PAGE 10/10
PROPERTY	DISTRICT	CONTRACTOR				COLLAR AZIMUTH
COMMENCED	TWP/LAT.LONG.	DATE LOGGED				COLLAR DIP
COMPLETED	CLÁIM	LOGGED BY				ELEVATION
OBJECTIVE	CO-ORD.	DDH COM				LENGTH

	RVAL Ft 🗆	я	*	LITHOTYPE	DESCRIPTION	DESCRIPTION		AMPLE				•	ASSA'	YS	
FROM	то	REC	RQD		GEOLOGY: (colour, grain size, texture, minerals, alteration, etc)		FROM	то	LENGTH	SUL.	Au ppb				
					35 to CA. 2% brassy pyrite blebs to lenses,										
					267.86-267.96 Calcite (40%) - graphite (30%) zone with 30% brassy VFg angular									<u> </u>	
<u></u>					fragments (1x1cm) in a calcite matrix. Zone 45 to CA.										
L					270.25-270.9 White VFg, weakly foliated, quartz-calcite zone with black VFg								<u> </u>		
					graphite wispy lenses. Zone contact: 30 to CA.				<u> </u>						
_					MINERALIZATION: 2-3% VFg brassy pyrite disseminations to angular fragments.										
					271.15 Graphite-calcite zone (3cm), same as above, 35 to CA.										
					273.5-275 MINERALIZATION: 1% pyrite in section. Local VFg brassy pyrite										
					stringers/veinlets.										<u> </u>
			-												
	278.0			Е.О.Н.	End of Hole.										
					IP target TH-1 is the graphite zone intersected from 115.78 to 120.16m downhole.		-					<u> </u>			
					The resistivity low between the BL and 1+00S may be the fault zone between 136.7										
					and 137m. Drill core is stored in Larder Lake.										
 															

APPENDIX B GOLD ANALYSIS CERTIFICATES

W.A. HUBACHECK CONSULTANTS LTD.

1322-B rue Harricana Val d'Or, Québec J9P 3X6 Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 54 REPORT: C97-60629.0 (COMPLETE) DATE PRINTED: 27-MAR-97 PAGE 1 SAMPLE ELEMENT Au 30 NUMBER UNITS PPB 2611 <5 2612 99 2613 13 2614 ₹5 2615 ⟨5 2616 ⟨5 2617 6 2618 ۲5 2619 ۲5 2620 <5 2621 9 <5 2622 2623 <5 2624 ₹5 2625

re Berger

1322-B rue Harricana val d'Or, Québec J9P 3x6 Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A.	HUBACHECK CO	NSULTANTS LTD.		 PROJECT: 54		
	-60629.0 (COM			DATE PRINTED: 27-MAR-97	PAGE 3	
SAMPLE	ELEMENT	Au30				
NUMBER	UNITS	PPB		 		
2620		< 5		 		
Duplicate		< 5				
	,			 		
				 ±		
			_	 		
						

1322-B rue Harricana Val d'or, Québec J9P 3X6 Tél: (819) 825-0178 Par: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 54

REPORT: C97-60686.0 (COMPLETE) DATE PRINTED: 4-APR-97 PAGE 1

REPORT: C97	-60686.0 (COMPLETE)		DATE PRINTED:	4-APR-97	PAGE 1
SAMPLE	ELEMENT Au 30	SAMPLE	ELEMENT	Au30	
NUMBER	UNITS PPB	NUMBER	UNITS	PPB	
2601	7	2656		<5	
2602	14	2657		< 5	
2603	<5	2658		< 5	
2604	6	2659		<5	
2605	< 5	2660		< 5	
2606	<5	2661		< 5	
2607	<5	2662		< 5	
2608	6	2663		< 5	
2609	<5 -	2664		<5	
2610	< 5	2665		<5	•
2626	<5	2666		<5	
2627	8	2667		<5	
2628	<5	2668		<5	
2629	<5	2669		<5	
2630	< 5	2670		<5	
2631	<5	2671		<5	- 1
2632	<5	2672		<5	
2632	<5	2673		< 5	
2634	< 5	2674		< 5	
	<5	2675			
2635	(3	2075		< 5	
2636	5	•			
2637	< 5				
2638	<5				
2639	<5				
2640	<5				
2641	<5				
2642	< 5				
2643	₹5				
2644	< 5				
2645	6				
					· · · · · · · · · · · · · · · · · · ·
2646	< 5				
2647	<5				
2648	< 5				
2649	< 5				
2650	<5				
2651	< 5				
2652	<5				
2653	< 5				
2654	< 5				
2655	< 5				
	· -				

Mr Berg

1322-B rue Harricana val d'Or, Québec J9P 3X6 Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

CLIENT: W.A.	HUBACHECK CONSULTANTS LTT) .		PROJECT: 54		
	50686.0 (COMPLETE)			DATE PRINTED:	4-APR-97	PAGE 3
sample Number	ELEMENT ALI30 UNITS PPB		SAMPLE	ELEMENT	Au30	
NONDER	UNIIS PPD	··· · · · · · · · · · · · · · · · · ·	NUMBER	UNITS	PPB	
2607	<5					
Duplicate	<5					
Prep Duplica	te <5					
2644					***************************************	
2544 Duplicate	∢ 5 ∢ 5					
Dupiicace	\3					
2665	<5					
Duplicate	< 5					

2669	<5					
Prep Duplica	t e <5					
,				_		
-						
· · · · · · · · · · · · · · · · · · ·						
-						
				_		

2715

Inchcape Testing Services CERTIFICAT D'ANALYSE Chimitec Ltée

SAMPLE NUMBER 2676 2677 2678	ELEMENT Au30 UNITS PPB	SAMPLE			
NUMBER 2676 2677		SAMPLE			
2676 2677	UNITS PPB		ELEMENT	Au30	
2677		NUMBER	UNITS	PPB	
	<5	2716		11	
2670	<5	2717		6	
20/0	7	2718		<5	
2679	7	2719		6	
2680	<5				
2681	< 5				
2682	₹ 5				
2683	<5				
2684	<5				
2685	<5				
2686	< 5				
2687	∢5				
2688	<5				
2689	<5				
2690	<5				
2691	< 5				
2692	<5				
2693	< 5				
2694	< 5				
2695	<5				
2696	19				
2697	81				
2698	< 5				
2699	< 5				
2700	9				
0701	20				
2701 2702	20 16				
	16 <5				
2703 2704	<5				
2704	< 5				
2706	< 5				
2707	< 5				
2708	<5 <5				
2709 2710	<5 <5				
2711	<5				
2712 2713	<5 <5				

1322-B rue Harricana Val d'Or, Québec J9P 3X6 Tél: (819) 825-0178 Fax: (819) 825-0256

Inchcape Testing Services Chimitec Ltée

CERTIFICAT D'ANALYSE

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 54 REPORT: C97-60687.0 (COMPLETE) DATE PRINTED: 4-APR-97 SAMPLE ELEMENT Au 30 SAMPLE ELEMENT Au30 NUMBER UNITS PPB NUMBER UNITS PPB 2683 <5 Duplicate <5 2703 <5 Prep Duplicate 7 2705 ₹5 ∢5 Duplicate

Certificat D'Analyse

CLIENT: W.A	LIENT: W.A. HUBACHECK CONSULTANTS LTD. EPORT: C97-60687.1 (COMPLETE)							PROJECT: 54 DATE PRINTED	: 6-MAY-97	PAGE	1
SAMPLE Number	ELEMENT UNITS	Ag PPM	Cu PPM		Zn PPM					***************************************	
2679 2683		<0.1 0.2	17 20	9 7	61 70					•••••••••••	
2691		<0.1	9	6	68						
					•••••					•	
									•••••••••••••••••••••••••••••••••••••••		
		······································							•••••••••••		

ITS - Chimitec 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6 Tél: (819) 825-0178, Fax: (819) 825-0256

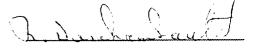
PORT: C97-6	HUBACHECK CO	PLETE)				
AMPLE JMBER	ELEMENT UNITS	Ag PPM	Cu PPM	Pb PPM	Zn PPM	······································
					FFM	
2638		<0.1	12	5	22	
2650		0.2	14	10	108	
2658		0.6	48	33	64	
2662		<0.1	8	8	57	
2664		<0.1	10	7	21	
2667		0.3	26	17	20	
2672		0.2	15	13	23	
		••••••				
		•••••				
		•••••••••		•••••••		
						•
		·····				
				•••••		
		•••••••				

ITS - Chimitec 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6 Tél: (819) 825-0178, Fax: (819) 825-0256 2 De Jane must

Certificat D'Analyse

	HUBACHECK COM		LTD.			PROJECT: 54 DATE PRINTED: 6-MAY-97 PAGE 3
SAMPLE NUMBER	ELEMENT Units	Ag PPM	Cu PPM	Pb PPM	Zn PPM	
2672 Duplicate		0.2	15 15	13 12	23 24	

ITS - Chimitec 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6


Tél: (819) 825-0178, Fax: (819) 825-0256

Certificat D'Analyse

	. HUBACHECK CO -60629.1 (COM		LTD.		PROJECT: 54 DATE PRINTED: 6-MAY-97	PAGE 1	
SAMPLE NUMBER	ELEMENT Units	Ag PPM	Cu PPM	Pb PPM	Zn PPM		
2624		<0.1	10	6	25		
		•	•••••				
		•••••					
		••••					
						·	

ITS - Chimitec 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6 Tél: (819) 825-0178, Fax: (819) 825-0256

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. PROJECT: 54 REPORT: C97-60958.0 (COMPLETE) DATE PRINTED: 29-APR-97 SAMPLE ELEMENT Au30 Zn Ag NUMBER PPM os-97-03 <0.1 OS-97-03-A <5 37 <0.1

ITS - Chimitec

1322-B rue Harricana, Val d'Or, Québec, J9P 3X6 Tél: (819) 825-0178, Fax: (819) 825-0256

Certificat D'Analyse

	HUBACHECK CO 60809.1 (COM		LTD.			PROJECT: 54 DATE PRINTED: 6-MAY-97 PAGE 1
SAMPLE NUMBER	ELEMENT Units	Ag PPM	Cu PPM	Pb PPM	Zn PPM	
2735		0.1	64	8	123	
		•••••••••••				
				•••••••••••••••••••••••••••••••••••••••		

ITS - Chimitec 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6 Tél: (819) 825-0178, Fax: (819) 825-0256 Q Doschambout

CLIENT: W.A. HUBACHECK CONSULTANTS LTD. REPORT: C97-60809.0 (COMPLETE)			PROJECT: 54 DATE PRINTED:	: 5-MAY-97 I	PAGE 1
SAMPLE NUMBER		.u30			
NUMBEK	UNITS	PPB			
2720		<5		***************************************	••••••
2721		24			
2722		13			
2723		<5			
2724		<5			
2725		6			
2726		9			
2727		<5			
2728		9			
2729		11			
2730	••••••	<5		••••••	······································
2731		8			
2732		<5			
2733		<5			
2734		6			
2735	••••	7			
2736		<5			
2737		<5			
2738		<5			
2739		<5			
2740		E			
2740 2741		7	•		
2742		0			
2743		76			
2744		20			
2745		<5			

ITS - Chimitec 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6

Tél: (819) 825-0178, Fax: (819) 825-0256

MBorge

	CLIENT: W.A. H			•		PROJECT: 54			
	REPORT: C97-60	809.0 (COM	PLETE)			 DATE PRINTED:	5-MAY-97	PAGE	3
	SAMPLE NUMBER	ELEMENT UNITS	Au30 PPB			 			
	0.700			••••••••••••	······	 	•••••••		······
	2729 Duplicate		11 10						
	Dapticate		10						

						 ***************************************	•••••	•••••	
······	••••••	••••••				 			
·····	•••••		.,			 ••••••	***************************************		
		••••••	••••••			 			
	••••••					 			
		••••••••				 			
••••••			••••••			 ••••••	••••••		
		•••••				 			

ITS - Chimitec 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6 Tél: (819) 825-0178, Fax: (819) 825-0256

Declaration of Assessment Work Performed on Mining Land

Transaction Number (office use)

!) and 66(3), R.S.O. 1990

W9880,008/3
Assessment Files Research Imaging

900

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240.

authority of subsections 65(2) and 66(3) of the Mining Act. Undel This information will be used to review the assessment work and tion should be directed to a Provincial Mining Recorder, Ministry Sudbury, Ontario, P3E 6B5.

- Please type or p	rint in ink.	•	0 10 0
1. Recorded holder(s) (Attach a l	ist if necessary)		2.19182
Name			Client Number
Silver Century Explorations Ltd. Address	· · · · · · · · · · · · · · · · · · ·		301001 Telephone Number: 416-364-2895
c/o W.A. Hubacheck Consultants Ltd.,			Fax Number: 416-364-5384
#807-365 Bay St., Toronto, Ontario, I	M5H 2V1		Pax Number: 410-304-3304
Name			Client Number
Address			Telephone Number:
			Fax Number:
2. Type of work performed: Chec	k (✓) and report on only ONE	of the following g	roups for this declaration.
Geotechnical: prospecting, su assays and work under section		ical: drilling str ching and associat	
Work Type			Office Use
- diamond drilling			Commodity
			Total \$ Value of Work Claimed 139, 430
Dates Work From 15 02 Performed Day Month	1997 To 06 Year Day M	03 1997 onth Year	NTS Reference:
Global Positioning System Data (if available)	Township/Area Ossian Twp.		Mining Division farder hake
	M or G-Plan Number:		Resident Geologist, District Kirkland Lake
- provide pro - complete an - provide a m - include two	rk permit from the Ministry of per notice to surface rights h d attach a Statement of Costs, ap showing contiguous mining l copies of your technical repo	olders before star form 0212; ands that are link rt.	eting work;
3. Person or companies who prepare	d the technical report (Attac	h à list if necess	ary)
Name J. Kevin Montgomery W.A. Hubacheck Consultants Ltd.,			Telephone Number 416-364-2895
Address			Fax Number
#807-365 Bay Street, Toronto, Ontari	o, M5H 2V1		416-364-5384
reasie			Telephone Number
Address			Fax Number
Name			Telephone Number
Address			Fax Number
4. Certification by Recorded Holde I,David W. Christie (Frint Name) , completion and, to the best of my kn	do hereby certify that I have	personal knowledge	e of the facts set forth in
Signature of Recorded Holder of Agen	1		Date 04 22/98
Agent's Address c/o W.A. Hubacheck Consultants Ltd., St., Toronto, Ontario, M5H 2V1	#807-365 Bay	Telephone Number	Fax Number 416-364-5384
0241 (06/97)			1 111 221 272

Deemed Harch 31/1999

+ AMENDMENT

W9880,00813

work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining Land Where it was performed, at the time work was performed. A map showing the contiguous Link must accompany this form.

Local Local	or claim memor. Or if work done on other eligible wining , show in this column the tion number indicated on the h mab.	manbor of Claim galve. For Other mining land, 1145 hoctapes.	Value of work performed on this claim or other mining land.	value of bork applied to this slaim.	Volue of work essigned to other mining claims.	Mank. Vilun of work to be discributed at a future date
				~	1 5 1 8	2
_SE						
eq						
1	PONOS 11131	1	47,905	0	0	47,904
2	B000100 11132	1	30,738	0		30,738
3	B000104 11135	1	28,514		0 '	28,514
6	8000H 11124	11	32,273	0	-	32,273
5						
6						
7						
8						
10_		•				
11						
12						
13.						
74_						
13		_				
	Column Totals		139,450	٥	0	139,430

supposed u. Christie , do hereby sertify that the above work credits are eligible under supposed in T (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was doing? Signature of endfalls FORE ANTENDESIANO IN AFTERNS Date

)in

Instructions for cutting back credits that are not approved.

- X 1. Credits are to be out book from the Bank Tirst, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be dut back starting with the claims listed last, working packwards; or
- 3. Credite are to be out book equally over all claims listed in this declaration; or
- □ 4. Creditx are to be cut back as prioritized on the attached appendix or as follows (describe):

mee: If you have not indicated how your credits are to be deleted, aredits will be out back from the Benk first, followed by Option number 2 if necessary.

For Office use Only		
Reserved Stamp Decome	ed Approved Pate	Date Notification Sent
<u></u>		
PAT\$	Approved	TOTAL Value of Credit Approved
Appro	eved for Recording by N	Ining Recorder (Signature)
		The state of the s
RECEIVED		

0241 (06/97)

* TOTAL PAGE.03 **

JAN 05 '99 10:44

For Office Use Only

4163645384

PAGE.03

Received Stamp

Deemed Approved Date	Date Notification Sent
Date Approved	Total Value of Credit Approved
Approved for Recording by	/ Mining Recorder (Signature)

DEC 3 1 1333 10:4563 GEOSCIENCE ASSESSMENT

0241 (06/97)

Statement of Costs for Assessment Credit

Transaction Number (office use) W98 80. 00813

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

Work Type	Units of work Depending on the type of work, list the number of hours/days worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
Geologists' Wages			\$ 14,372.22
Technicians' Wages			\$ 4,143.43
Orill Contractor			\$ 92,345.17
Consulting Fee			\$ 14,512.57
Trail Preparation			\$ 4,792.35
Assays		<u>·</u>	\$ 3,869.15
Associated Costs (e.g. su	upplies, mobilization and demobilization).		
Snow Rei	noval		\$ 100.00
Core Sha	ack		\$ 257.12
Mobiliza	ation	<u></u>	\$ 160.84
Penant (Preparation		\$ 85.60
керогс			
	ransportation Costs		
Tr	ransportation Costs and Snowmobile Rental		\$ 2,913.47
Tr			\$ 2,913.47 \$ 107.48
Truck Gas			
Truck Gas	and Snowmobile Rental		\$ 107.48

Calcui	lations	of	Filing	Discounts:
--------	---------	----	--------	------------

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.

2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK Note:

x 0.50 =

Total \$ value of worked claimed.

-Work older than 5 years is not eligible for credit.

-A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

I, <u>David W. Christie</u>, do hereby certify, that the amounts shown are as accurate as may reasonably (please print full name)

be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as _ __ Agent__ I am authorized to make this certification. (recorded holder, agent, or state company position with signing authority)

DEC 3 1 1993 10:456/3 GEOSCIENCE ASSESSMENT

October

0212 (06/97)

Declaration of Assessment Work Performed on Mining Land

Transaction Number (office use)
W9880. CC814.
Assessment Files Research Imaging

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Personal information collected on this form is obtained under the authority of subsections 65(2) and 66(3) of the Mining Act. Undel section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240. Please type or print in ink. Recorded holder(s) (Attach a list if necessary) Client Number Name Silver Century Explorations Ltd. 301001 Telephone Number: 416-364-2895 Address c/o W.A. Hubacheck Consultants Ltd., Fax Number: 416-364-5384 #807-365 Bay St., Toronto, Ontario, M5H 2V1 Client Number Address Telephone Number: Fax Number: Type of work performed: Check (✓) and report on only ONE of the following groups for this declaration Geotechnical: prospecting, surveys, assays and work under section 18 (regs) Physical: drilling stripping, Rehabilitation X trenching and associated assays Office Use Work Type - diamond drilling Commodity Total \$ Value of 86,385 Work Claimed 03 1997 03 1997 NTS Reference: Work From To Dates Day Performed Month Year Day Month Year Global Positioning System Data Township/Area Mining Division Larder Lake (if available) Ossian Twp. M or G-Plan Number: Resident Geologist District

P	lease	remembe	er	to:

- obtain a work permit from the Ministry of Natural Resources as required;
- provide proper notice to surface rights holders before starting work;
- complete and attach a Statement of Costs, form 0212;
 provide a map showing contiguous mining lands that are linked for assigning work;
 include two copies of your technical report.
- Person or companies who prepared the technical report (Attach a list if necessary)

Name J. Kevin Montgomery	Telephone Number
W.A. Hubacheck Consultants Ltd.,	416-364-2895
Address	Fax Number
#807-365 Bay Street, Toronto, Ontario, M5H 2V1	416-364-5384
Name	Telephone Number
Address	Fax Number
Name	Telephone Number
Address	Fax Number

Certification by Recorded Holder or Agent

___David W. Christie_____, do hereby certify that I have personal knowledge of the facts set forth in completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent		Date la 23/98
Agent's Address	Telephone Number	Fax Number
c/o W.A. Hubacheck Consultants Ltd., #807-365 Bay St., Toronto, Ontario, M5H 2V1	416-364-2895	416-364-5384
22(1 (04/97)		

RECEIVED

DEC 3 1 1003 10:45 613

Deemed March 31/1999

4163645384

T-452 P.02/03 F-227

W9 8 80,00 814. 4 AMENDMENT Hark to be recorded and distributed. Work can only be essigned to claims that are contiguous (adjoining) to the mining land where was performed, A map showing the contiguous link must accompany this form.

LAND/	er chain sumber. Or if work done on other eligible wining, show in this column the tion number indicated on the	Part of Claim Thies. For other mining land, less hectires.	Value of work perferhed on this eloim or sther mining land.	Volum of work applied to this claim.	value or work essigned to other mining sleins.	Seak, Yalue of the court of the
8			<u> </u>	6)		
89				↓	191	2 2
80				1	1	0~
1	1203474	11	21,717			21,717
2	1303476	1	37,250			37,250
3	120347 7 10/2.	1	27,418	0	0	27,418
4						
,						
6						
7						
						
9			 			
				 		
10			† 			
12			 	 		1
13			 	 		1
74			 	-	 	
19			 	 		
	Column Totals		86,389		٥	86,385

id U. Christie ove work credits are eligible under

Instructions for cutting back credits that are not approved.

Some of the predita claimed in this declaration may be out book. Please check (/) in the boxes below to show how you wish to prioritize the deletion of credits:

- X 1. Credits are to be out back from the Bank first, followed by option 2 or 5 or 4 as indicated.
- ## 2. Credits are to be out book starting with the claims listed last, working backwards; or
- □ 3. Gredits are to be sut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut book on prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated now your credits are to be deleted, credits will be out back from the Bank first, followed by option number 2 if necessary.

for Office Use Only		
Reserved Steep	Deaned Approved Date	Date Notification Sent
	Date Approved	Total Value of Gredit Approved
RECEIVED	Approved for Recording by	y Mining Recorder (Signature)
777 7 4 4 4 4		

0241 (06/9T)

JAN 05 '99 10:44

FOR Office Use Only Received Stamp

Deemed Approved Date Date Notification Sent Date Approved Total Value of Credit Approved

4163645384

GEOSCIENCE ASSESSMENT OFFICE

241 (06/97)

的能 的

Approved for Recording by Mining Recorder (Signature)

Statement of Costs for Assessment Credit

Transaction Number (office use)

2.19182

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

Work Type	Units of work Depending on the type of work, list the number of hours/days worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
Geologists' Wages			\$ 11,978.90
Technicians' Wages			\$ 1,645.09
Drill Contractor			\$ 51,428.14
Consulting Fee			\$ 10,300.75
Trail Preparation			\$ 4,012.20
Assays			\$ 1,491.40
Associated Costs (e.g. su	applies, mobilization and demobilization).		
Snow Ren	noval		\$ 150.00
Core Sha	ack		\$ 942.31
Mobiliza	ation		\$ 160.84
Report	Preparation		\$ 652.50
Ti	ransportation Costs		
	and Snowmobile Rental		\$ 1,438.95
Truck			\$ 338.16
Truck Gas			\$ 338.16
Gas	od and Lodging Costs	_	\$ 1,845.78
Gas	od and Lodging Costs		

Calculations o	of Filing	Discounts:
----------------	-----------	------------

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.

2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK x 0.50 = Total \$ value of worked claimed.

Note:

-Work older than 5 years is not eligible for credit.

-A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

> DEC 3 1 1000 GEOSCIENCE ASSESSMENT OFFICE

Date October 5, 1998

CCC 23/48

Ministry of **Northern Development** and Mines

401 BAY STREET, SUITE 2302

Subject: Transaction Number(s):

SILVER CENTURY EXPLORATIONS LTD.

Ministère du Développement du Nord et des Mines

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846 (877) 670-1555

Visit our website at:

www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

TORONTO, ONTARIO

June 16, 1999

P.O. BOX 102

M5H-2Y4

Submission Number: 2.19182

Status

W9880.00813 Approval After Notice

W9880.00814 Approval After Notice

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Lucille Jerome by e-mail at lucille.jerome@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

ORIGINAL SIGNED BY

Blair Kite

Supervisor, Geoscience Assessment Office

Mining Lands Section

Work Report Assessment Results

Submission Number:

2.19182

Date Correspondence Sent: June 16, 1999

Assessor: Lucille Jerome

Transaction Number **First Claim**

Number

Township(s) / Area(s)

Status

Approval Date

W9880.00813

11131 (G8000105) OSSIAN

Approval After Notice

May 18, 1999

Section:

16 Drilling PDRILL

The 45 days outlined in the Notice dated March 31, 1999 have passed. Assessment work credit has been approved as outlined on the attached Distribution of Assessment Work Credit sheet.

The assessment credit is being reduced by \$14,513.00. The TOTAL VALUE of assessment credit that will be allowed, based on the information provided in this submission, is \$124,197.00.

Transaction Number

First Claim

Number

Township(s) / Area(s)

Status

Approval Date

W9880.00814

1203474

OSSIAN

Approval After Notice

May 18, 1999

Section:

16 Drilling PDRILL

The 45 days outlined in the Notice dated March 31, 1999 have passed. Assessment work credit has been approved as outlined on the attached Distribution of Assessment Work Credit sheet.

The assessment credit is being reduced by \$10,301.00. The TOTAL VALUE of assessment credit that will be allowed, based on the information provided in this submission, is \$76,084.00.

Work Report Assessment Results

Submission Number:

2.19182

Correspondence to:

Resident Geologist

Kirkland Lake, ON

Assessment Files Library

Sudbury, ON

Recorded Holder(s) and/or Agent(s):

David W. Christie

TORONTO, ONTARIO, CANADA

SILVER CENTURY EXPLORATIONS LTD.

TORONTO, ONTARIO

PASCAL JOSEPH LABBE LARDER LAKE, Ontario

BERNARD REMOND BOUDREAULT

LARDER LAKE, Ontario

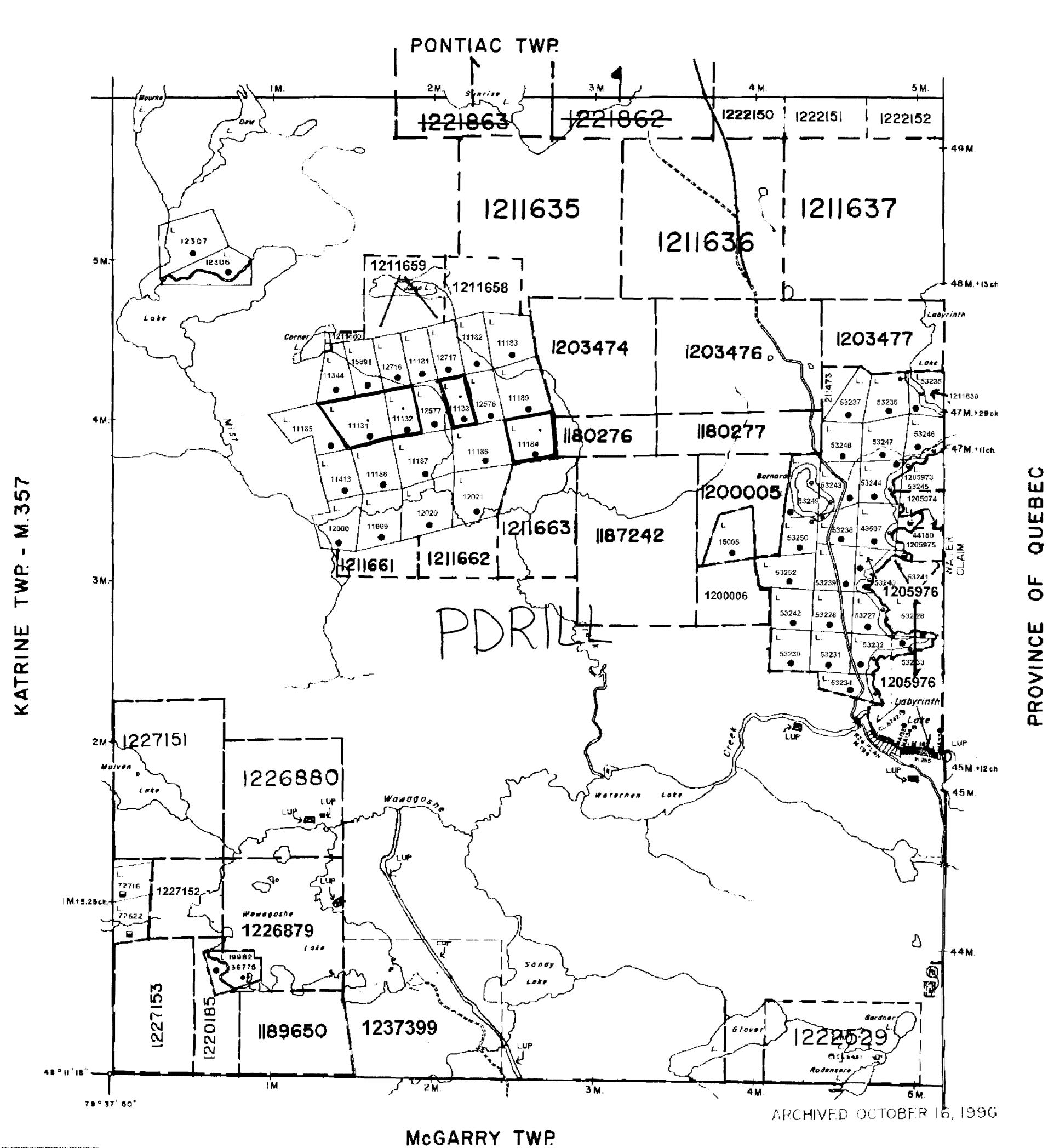
SUDBURY CONTACT MINES LIMITED

TORONTO, Ontario

Distribution of Assessment Work Credit

The following credit distribution reflects the value of assessment work performed on the mining land(s).

Date: June 16, 1999


Submission Number: 2.19182

Transaction Number: W9880.00813

Claim Number	Value Of Work Performed
11131	42,867.00
11132	27,500.00
11133	25,500.00
11184	29,050.00
Total:	124,917.00

Transaction Number: W9880.00814

Claim Number	Val	ue Of Work Performed
1203474		19,130.00
1203476		32,804.00
1203479		24,150.00
	Total: \$	76,084.00

THE TOWNSHIP 0F

OSSIAN

DISTRICT OF TIMISKAMING

LARDER LAKE MINING DIVISION

SCALE: 1-INCH = 40 CHAINS

DISPOSITION OF CROWN LANDS
PATENT, SURFACE AND MINING RIGHTS
" , SURFACE RIGHTS ONLY
. MINING RIGHTS ONLY 👄
LEASE, SURFACE AND MINING RIGHTS
" , SURFACE RIGHTS ONLY 🚍
" , MINING RIGHTS ONLY ==
LICENCE OF OCCUPATION V
ROADS IMPROVED ROADS KING'S HIGHWAYS RAILWAYS POWER LINES MARSH OR MUSKEG MINES

NOTES

400' surface rights reservation along the shores of all lakes and rivers.

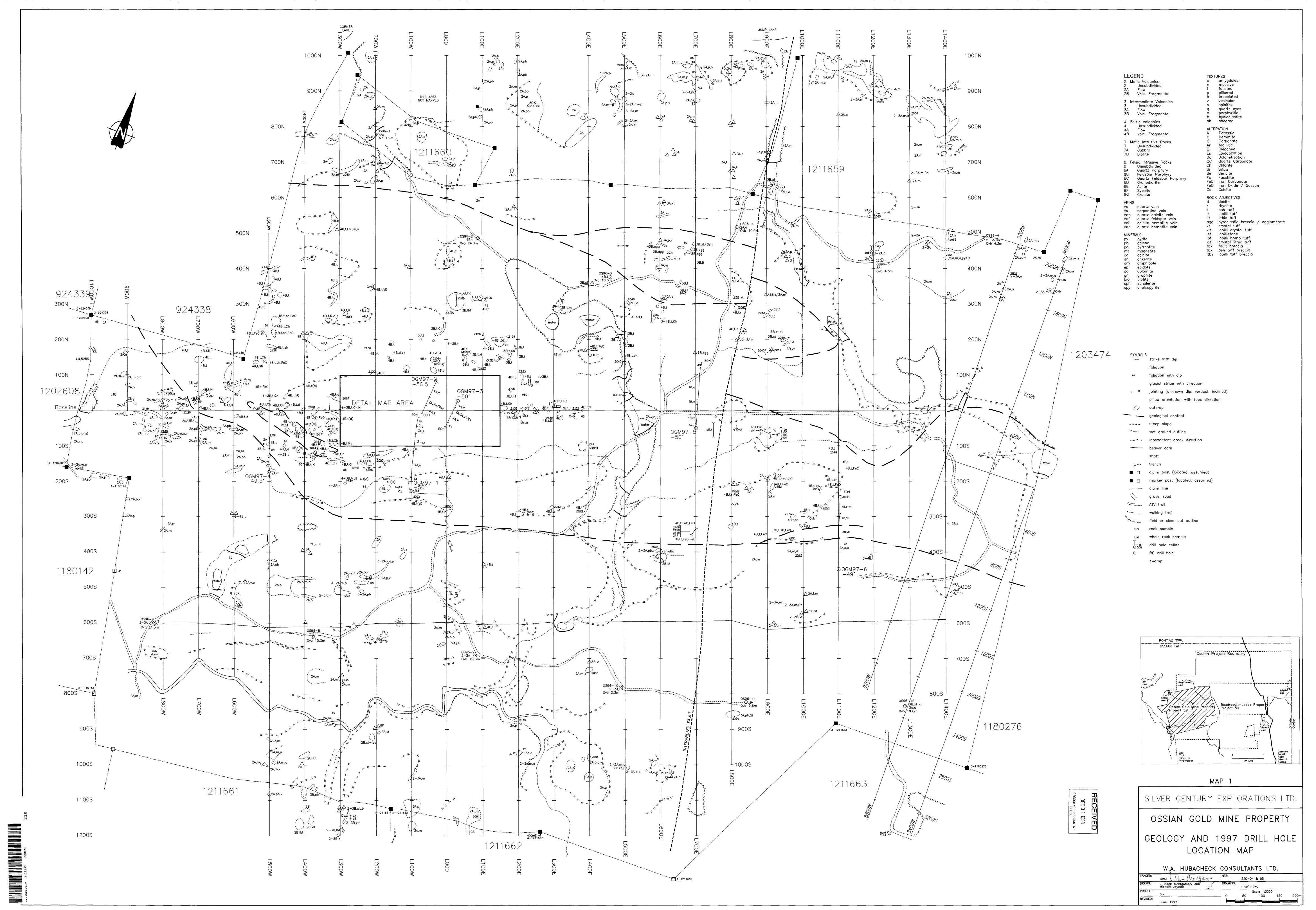
Areas withdrawn from staking under Section 43 of the Mining Act (R.S.O. 1970). Greer No. File

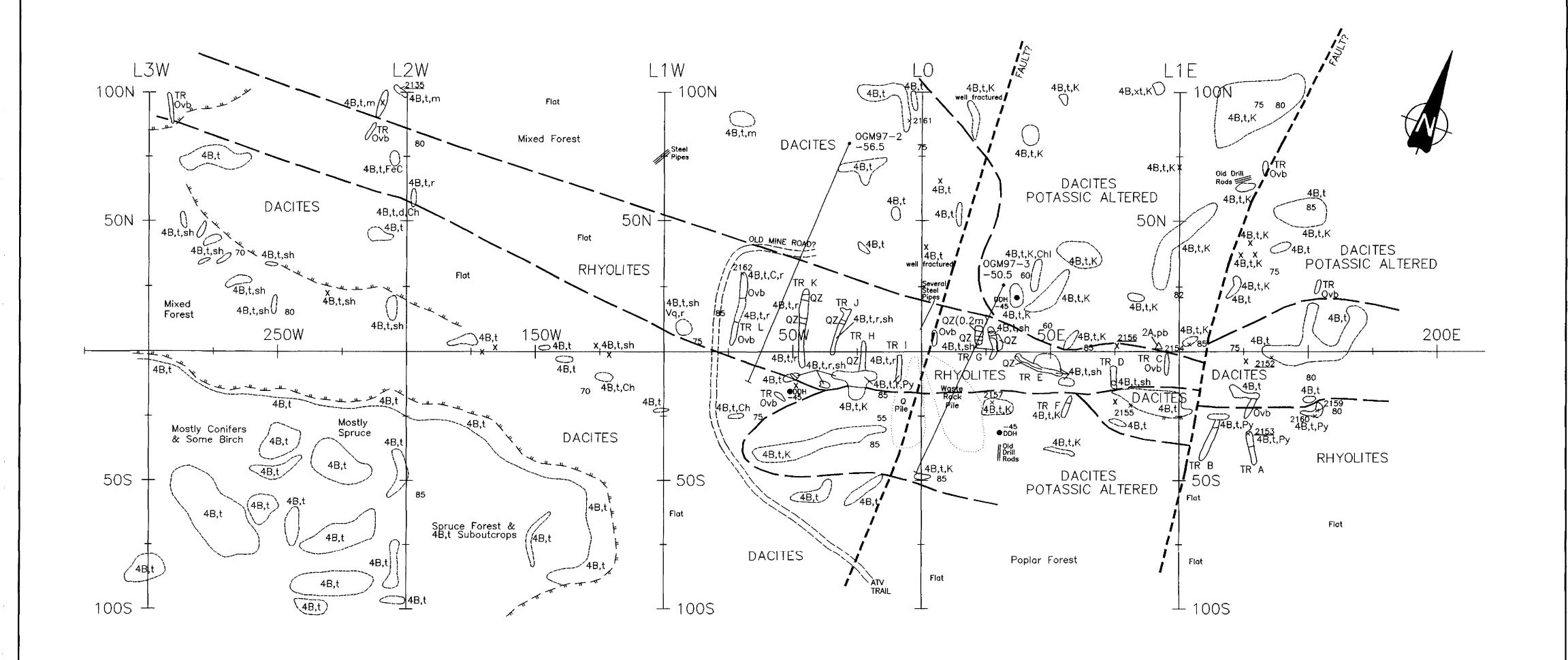
CANCELLED

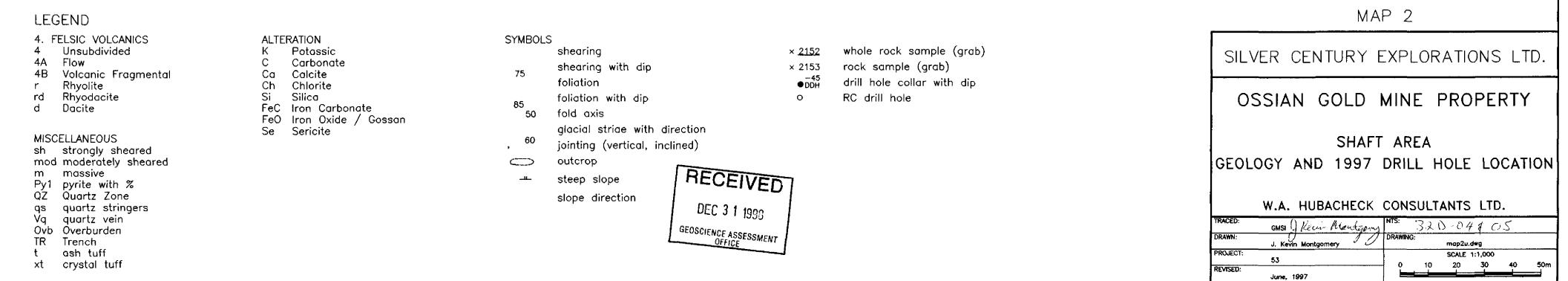
Disposition

Ċ.

S,R,O. 4/12/74 ® W.64/74 96371

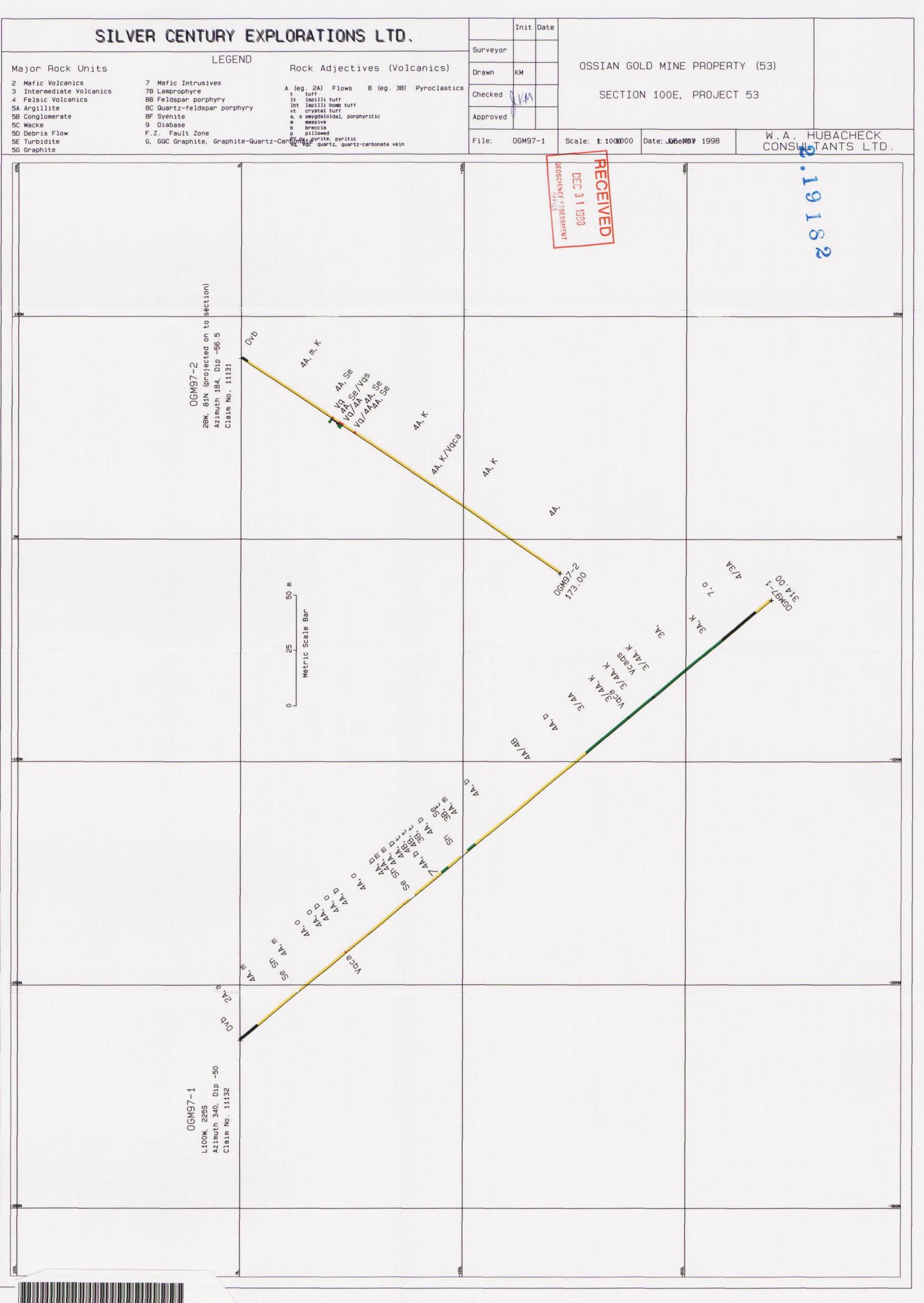

CIRCULATED MAY 9, 1995 CM


PLAN NO.

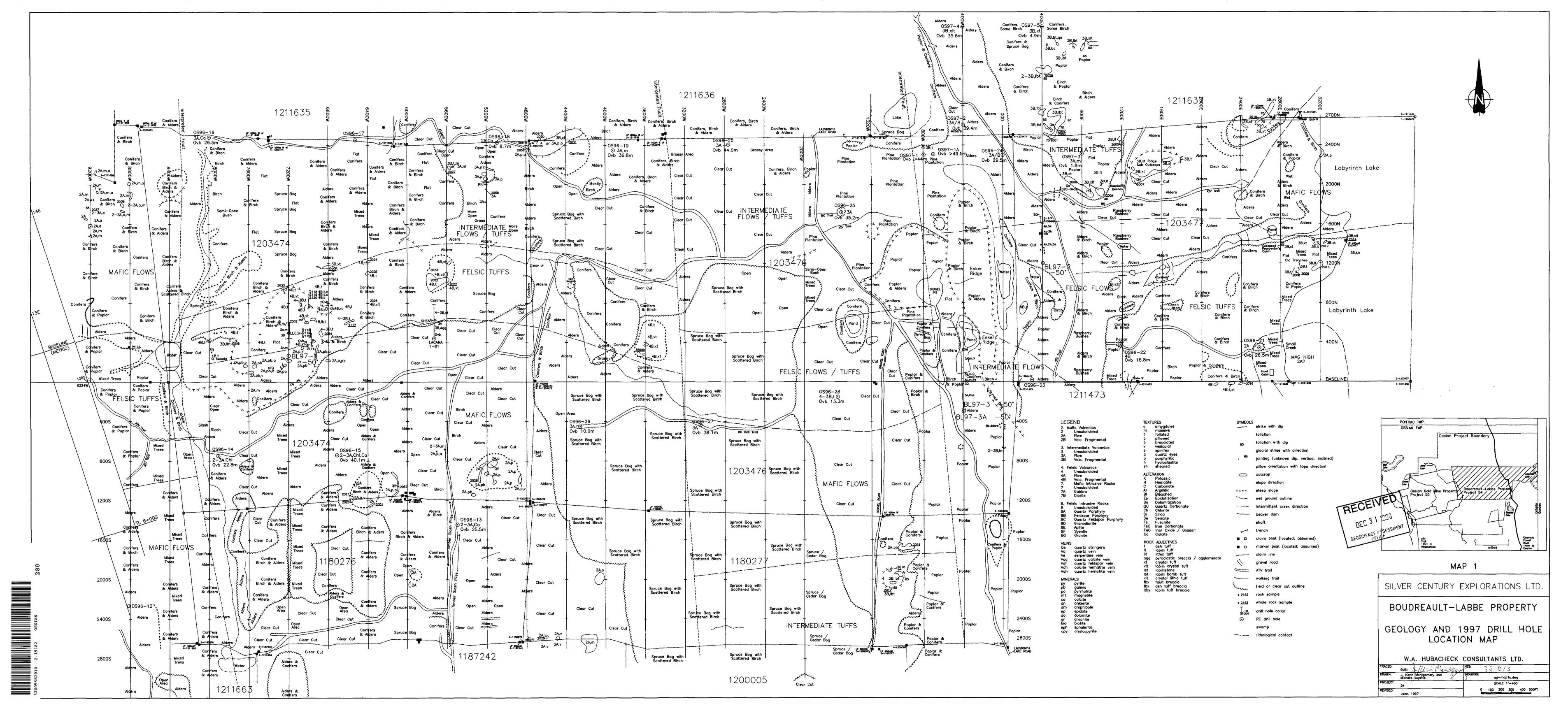

ONTARIO

MINISTRY OF NATURAL RESOURCES

SURVEYS AND MAPPING BRANCH



220


Init Date SILVER CENTURY EXPLORATIONS LTD. Gold Histograms Ossian Gold Mine Property (53) Surveyor 0-1 gAu/tonne blue LEGEND 1-3 gAu/tonne green Section 1100E Project 53 Major Rock Units Rock Adjectives (Volcanics) 3-5 gAu/tonne red Drawn >5 gAu/tonne purple 2 Mafic Volcanics 7 Mafic Intrusives A (eg. 2A) Flows B (eg. 3B) Pyroclastics
t tuff
lt lapilli tuff
lbt lapilli bomb tuff
xt crystal tuff
a. o amygdaloidal, porphyritic
m massive
b breccia
p pillowed
PY.Dy pyrite, pyritic 3 Intermediate Volcanics 7B Lamprophyre Checked 4 Felsic Volcanics 8B Feldspar porphyry 1cm of histogram bar 5A Argillite 8C Quartz-feldspar porphyry 5B Conglomerate 8F Syenite Approved length = 1gAu/tonne 9 Diabase 5C Wacke 5D Debris Flow Sh Shear Zone W.A. HUBACHECK PY, py pyrite, pyritic Vq. Vqc quartz, quartz-carbonate vein OGM97-6 File: Scale: 1: 1000 Date: 19 Jun 1997 GQC Graphite-Quartz-Carbonate 5E Turbidite CONSULTANTS LTD. 5G Graphite CS -100L 300F -200L 0 GEOSCIENCE ASSESSMENT RECEIVE DEC 3 1 1998 0 00 3 -100N -100N -200N -200N de -300N -300N or in Y de Sirt in S T ×+, × & ×1+ 0/2 07 -400N 400N の此社 L1100E, 450S Azimuth 340, Dip -49 Claim No. 11184 -500N -500N -300L -200L -100L OL

SILVER CENTU	RY EXPLORATIONS LTD		Init Date		Gold Histograms
Major Rock Units	EGEND Rock Adjectives (Vo	Surveyor Drawn		n 700E. Project 53	0-1 gAu/tonne blue 1-3 gAu/tonne green 3-5 gAu/tonne red
2 Mafic Volcanics 7 Mafic Intrusive 3 Intermediate Volcanics 7B Lamprophyre 4 Felsic Volcanics 8B Feldspar porphy 5A Argillite 8C Quartz-feldspar	A (eg. 2A) Flows B (eg. 3b t tuff ry lt lapilli tuff	B) Pyroclastics Checked	JIM		>5 gAu/tonne purple 1cm of histogram bar
5B Conglomerate 8F Syenite 5C Wacke 9 Diabase 5D Debris Flow Sh Shear Zone 5E Turbidite GQC Graphite-Quart	a, o amygdaloidal, porphyritic m massive b breccia p pillowed	Approved	OGM97-5 Scale: 1 : 1000	Date: 19 Jun 1997 W.A.	length = 1gAu/tonne HUBACHECK
5G Graphite	Vq. Vqc quartz, quartz-carbonate veri	100L		LONSC	JLTANTS LTD.
10		-10	To D	2 -200	
			DEC 3	0	
300N			DEC 31 33	CO Hand	300N
30011			4	73	30011
200N					200N
				> _	
				On No.	
			σ.	Ode the March	
			Six de de de de de de de de de de de de de		
100N					100N
			E		
		×+, × · · · · · · · · · · · · · · · · · ·	e Bar		
			Sca		
			25 Metric		
	450 by				
	×+ × ·				
ON					ON
	O X+ de				
\$	30				
	OGM97-5 L700E, 50S Azimuth 340, Dip 50 Claim No. 11133				
	0GM9 L700E, uth 340,				
	Azimu				
-100N					-100N
100L	70	.100L		-200L	
		11			

SIL	VER CENTURY EXP	LORATIONS LTD.	Init Date	Ossian Gold Mine Propert	y (53)	Gold Histograms 0-1 gAu/tonne blue
Major Rock Units 2 Mafic Volcanics 3 Intermediate Volcanics	LEGEND 7 Mafic Intrusives 78 Lamprophyre	Rock Adjectives (Volcanics) A (eg. 2A) Flows B (eg. 3B) Pyroclastics	Drawn KM	Section 32E. Project	53	1-3 gAu/tonne green 3-5 gAu/tonne red >5 gAu/tonne purple
4 Felsic Volcanics 5A Argillite 5B Conglomerate 5C Wacke	8B Feldspar porphyry 8C Quartz-feldspar porphyry 8F Syenite 9 Diabase	A (eg. 2A) Flows B (eg. 3B) Pyroclastics t tuff lt lapilli tuff lbt lapilli bomb tuff xt crystal tuff a. o amygdaloidal, porphyritic m massive b breccia	Approved Approved			1cm of histogram bar length = 1gAu/tonne
5D Debris Flow 5E Turbidite 5G Graphite	Sh Shear Zone GGC Graphite-Guartz-Carbonate	p pillowed PY,py pyrite, pyritic Vq, Vqc quartz, quartz-carbonate vein	File: OGM97-3	Scale: 1: 1000 Date: 19 Jun 1997	W.A. H CONSUL	UBACHECK TANTS LTD.
200L	100L			RECEIVED DEC 3 1 1998 GEOSCIENCE ASSESSMENT OFFICE	19182	
200N						200N
100N		11132		Scale Bar		100N
ON		97-3 26N uth 18	AN AND ANGEL AND CONTRACTOR OF STATE OF	Metric		ON
-100N				06M97-3 +		-100N
200F	100L	0-1		-100F		

SILVER CENTURY EXPLORATIONS LTD.			Init Date Surveyor	Ossian Gold Mine Property (53)	Gold Histograms
Major Rock Units	LEGEND	Rock Adjectives (Volcanics)	Drawn KM	Section 500W Project 53	1-3 gAu/tonne green 3-5 gAu/tonne red
2 Mafic Volcanics 3 Intermediate Volcanics 4 Felsic Volcanics 5A Argillite 5B Conglomerate 5C Wacke 5D Debris Flow 5E Turbidite	7 Mafic Intrusives 7B Lamprophyre 8B Feldspar porphyry 8C Quartz-feldspar porphyry 8F Syenite 9 Diabase Sh Shear Zone GQC Graphite-Quartz-Carbonate	A (eg. 2A) Flows B (eg. 3B) Pyroclastic t tuff lt lapilli tuff lbt lapilli bomb tuff xt crystal tuff a, o amygdaloidal, porphyritic m massive b breccia p pillowed PY, py pyrite, pyritic Vq, Vqc quartz, quartz-carbonate vein		Scale: 1: 1000 Date: 19 Jun 1997 W.A.	>5 gAu/tonne purple 1cm of histogram bar length = 1gAu/tonne HUBACHECK ULTANTS LTD.
5G Graphite		vq, vqc quartz, quartz-carbonate vein			ULTANIS LID.
100L				RECEIVED DEC 3 1 1998 DEC 3 1 1998	50 50 50
100N					100N
ON					ON
-100N		>	De de de de de de de de de de de de de de	A CO. WEST CO. By Co	-100N
2001		OGM97-4 L500W, 175S Azimuth 339 Dip -49.5 Claim No. 11131		Metric Scale Bar	2000
-300N					-200N
100L		70	1001	-200L	

SIL	VER CENTURY EXP	LORATIONS	LTD.	Supreme	Init	Date	Boudreault-Labbe Property	(54)	
Major Rock Units	LEGEND	Rock Adjectiv	es (Volcanics)	Surveyor	КМ		Boudreault-Labbe Property	(54)	
2 Mafic Volcanics 3 Intermediate Volcanics 4 Felsic Volcanics 5A Argillite 5B Conglomerate	7 Mafic Intrusives 7B Lamprophyre 8B Feldspar porphyry 8C Quartz-feldspar porphyry 8F Syenite	A (eg. 2A) Flows t tuff lt lapilli tuff lbt lapilli bomb tuff xt crystal tuff a. o amygdaloidal, porphyr m massiye	B (eg. 3B) Pyroclastics	Checked	ALM		Section 4+00E		
5C Wacke 5D Debris Flow 5E Turbidite 5G Graphite	9 Diabase F.Z. Fault Zone G, GQC Graphite, Graphite-Quartz	b breccia		File:	BL97-2	2	Scale: 1 :100100000 Date: June 1997	W.A. F	L HUBACHECK TANTS LTD.
600N		70				200	RECEIVED DEC 3 1 1338 GEOSCIENCE ASSESSMENT OFFICE	-500L	600N
							×x 00		
500N							**************************************		500N
			Ł.			ACIA	St. In		
400N		BL97-2 L4+00E, 12+00N Azimuth 360, Dip -50	C181M NO. 1203477				Metric Bar Scale		400N
200N									200N
100L		0				-100		-200L	

32D05SE2010 2.19182

ossian 290

SILVER CENTURY EXPLORATIONS LTD.			Init Date	Boudreault-Labbe Property (54)	
Major Rock Units	LEGEND	Rock Adjectives (Volcanics)	Drawn KM	Boudreault-Labbe Property (54)	
2 Mafic Volcanics3 Intermediate Volcanics4 Felsic Volcanics	7 Mafic Intrusives 7B Lamprophyre 8B Feldspar porphyry	A (eg. 2A) Flows B (eg. 3B) Pyroclastics t tuff lt lapilli tuff lbt lapilli bomb tuff		Section 72+00W	
5A Argillite 5B Conglomerate 5C Wacke 5D Debris Flow	8C Quartz-feldspar porphyry 8F Syenite 9 Diabase F.Z. Fault Zone	a, o amygdaloidal, porphyritic m massive b breccia p pillowed	Approved	W A	HUBACHECK
5E Turbidite 5G Graphite	G, GQC Graphite, Graphite-Quartz-	-Carby Pyrite, pyritic -Carby Pyrite, quartz-carbonate vein	File: BL97-1	CONSU	ILTANTS LTD.
000		5	00	SECENED SESSMENT GEOSCIENCE ASSESSMENT GEOSCIENCE ASSESSMENT	
			6	ENGE ASSE	
			0	PECEI DEC 31 DEC 31	
300N			CS		300N
200N			4.	-4 20.	200N
			4. K.		
			Vig.		
			*		
		× i			
100N					100N
		070			
		97-1 2+75 N 1, 0ip -		ළ ගි	
		BL97-1 L72+00W, 2+75 N Azimuth 360, Dip -50 Claim No. 1203474		ale Bar	
		Azim Ole		25 rric Scalo	
				Me tri	
ON					ON
-100N					-100N
		10 0		-100	

Init Date SILVER CENTURY EXPLORATIONS LTD. Boudreault-Labbe Property (54) Surveyor LEGEND Boudreault-Labbe Property (54) Rock Adjectives (Volcanics) Major Rock Units Drawn 2 Mafic Volcanics 7 Mafic Intrusives
78 Lamprophyre
88 Feldspar porphyry
80 Quartz-feldspar porphyry
81 Inapilli tuff
85 Syenite
9 Diabase
86 GQC Graphite, Graphite-Quartz-Carpyrote pyrite, pyritic
9 Quartz-feldspar porphyry
86 Syenite
9 Diabase
9 Diabase
10 Diabase
11 Lapilli tuff
12 Lapilli bomb tuff
13 A crystal tuff
14 A crystal tuff
15 A crystal tuff
16 A crystal tuff
17 A crystal tuff
18 A ceg. 2A)
19 Flows
10 Diabase
10 Diabase
10 Diabase
11 Diabase
12 Diabase
13 Diabase
14 Ceg. 2A)
15 Diabase
15 Lapilli tuff
16 A crystal tuff
17 A crystal tuff
18 A ceg. 2A)
18 Diabase
19 Diabase
10 Diabase
10 Diabase
10 Diabase
10 Diabase
10 Diabase
10 Diabase
10 Diabase
11 Diabase
12 Diabase
13 Diabase
14 Ceg. 2A)
16 Diabase
16 Diabase
17 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Diabase
18 Dia 7 Mafic Intrusives 3 Intermediate Volcanics Section 4+00W Checked 4 Felsic Volcanics 5A Argillite 5B Conglomerate Approved 5C Wacke W.A. HUBACHECK 5D Debris Flow File: BL97-3 Scale: 1: 10010000 Date: Jude ⊿97 1997 5E Turbidite CONSULTANTS LTD. 5G Graphite CJ 100N 85 45 NOO 4. 600 Metric Bar Scale BL97-3 L4+00W, 2+90S Azimuth 360, Dip -50 07 L4+00W, 2+90S Azimuth 360, Dip Claim No. 1203476 BL97-3A