

TOWNSHIP: Holloway

REPORT No.: 12

WORK PERFORMED BY: Amax Mineral Exploration

CLAIM No.	HOLE No.	FOOTAGE	DATE	NOTE
L 579664	839-42-3	78.62 m	July/81	(1)
L 596253	839-42-5	96.00 m	Aug/81	(1)
ь 579664	839-42-7	120.00 m	Sept/81	(2)
L 579664	839-42-8	113.60 m	Sept/81	(2)
L 579662	839-42-1	252.0 m	July/81	(3)
L 579667	839-42-2	255.0 m	July/81	(3)
L 596252	839-42-4	1 % (.0 m	Aug/81	(3)
L 579664	839-42-6	1 38.6 m	Aug/81	(3)
L 579664	839-42-10B	1 40. 0 m	Sept/81	(3)
L 579672	839-42-12	147.0 m	Oct/81	(3)
ь 579672	839-42-13	121.5 m	Oct/81	(3)
L 579664	839-42-15	119.0 m	Oct/81	(3)
L 579664	839-42-16	114.0 m	Oct/81	(3)
ь 579663	839-42-17	103.1 m	Oct/81	(3)
L 579663	839-42-18	153.0 m	Oct/81	(3)
L 579663	839-42-19	138.0 m	Nov/81	(3)
ь 579664	839-42-21	123.0 m	Nov/81	(3)
L 579664	839-42-22	1467.0 m	Nov/81	(3)
L 579664	839-42-23	150 . 0 m	Nov/81	(3)
L 579663	839-42-25	135.0 m	Nov/81	(3)
ь 579664	839-42-26	151.7 m	Nov/81	(3)
L 579664	839-42-27	153.0 m	Nov/81	(3)

- NOTES: (1) #496-81
 - (2) #497-81
 - (3) #65-82 (Harker Twp).

Holloway two #496-8/ m356 FRECHEVILLE. TW

(A Division of Amax of Canada Limited)

•			Hole No. 839-42-3							
Hole No. 839-42-3 Sheet Property Holloway Township Holloway Location 1200E 265N Logged By K. Guy Core Location Perry Lake Remarks		Bearing Grid North Completed July 16., 1981 Dip -45 Objective HLEM conductor Core Size BQ Casing Left/Lost in Hole None	Dip: Collar Etch Test	-45 ⁰ Depth .78.62m	Rdg.	True 45 ⁰		Location Sketch E INDEE LISTER 344 43 - 3	North Claim NoL5 Scale: 1:125	
Footage/	/ Metres	DESCRIPTION	Sample	From	То	Length	Au	Ag		\top
From	То		No.			etres)	ppm	ppm		
0	36.0	CASING - OVERBURDEN								
36.0	37.5	ACID LAPILLI TUFF								
37.5	43.0	ACID TUFF BRECCIA								
43.0	52.2	TUFF BRECCIA - ACID FRAGMENTS WITH MAFIC MATRIX								

TUFF BRECCIA - MAFIC FRAGMENTS WITH ACID MATRIX

TALCOSE - CHLORITE SCHIST - SHEARED

CARBONATE BRECCIA

END OF HOLE

52.2

59.0

64.5

59.0

64.5

78.62

78.62

DIAMOND DRILL RECORD

Hole No. 839-42-3 Sheet No.____2_

Footag	e - Metres		Sample				Au	Ag				
From	То	DESCRIPTION	No.	From	To (Length metres	maa	_ ppm				
-0	36.0	CASING - OVERBURDEN			\\	TELLES A	14/11	PPIII				
U	30.0	CASING - OVERBURDEN	-	ļ					 	ļ		
	22.5	AOTO LADTUA TUES			ļ							
36.0	37.5	ACID LAPILLI TUFF										
_												
····		- dacite to rhyodacite composition										
	<u> </u>	- well bedded, medium grained										
		- finely disseminated pyrite throughout										
37.5	43.0	ACID TUFF BRECCIA										
		- rhyodacite to rhyolite compositions										
		- very siliceous fragments to 5cm	 	 					—			
		- siliceous matrix with pyrite in stringers and disseminated throughout	 	1		†======						
		interstial with fragments		<u> </u>					 			
		- occasional pyrite fragments	+	 		-			 	_		
		- some 3cm sections of massive pyrite	 			-						
		- pyrite is fine grained, euhedral		-								
		- slight carbonate	 	ļ					ļ <u> </u>			
		- Silync Carbonace	 		ļ							
		THE COMMAND AND SOLOUTING USTIL MATTER WATER	ļ			-			1			
43.0	52.2	TUFF BRECCIA - ACID FRAGMENTS WITH MAFIC MATRIX				ļ						
			<u> </u>			ļ						
		- chloritic matrix with siliceous fragments										
		- fragments are less frequent than above			<u> </u>							
		 occasional argillaceous sections with subround 										
		- siliceous fragments										
		- much less pyrite than above		l								
		- slight carbonate										
		Schistosity at 44.0 metres is 55° to core acis.										
		<u> </u>						[
52.2	59.0	TUFF BRECCIA - MAFIC FRAGMENTS WITH ACID MATRIX										
-JL. L	- 55.0	IVII DIRECATE THE TA LIBIDIDATE AND LATER LAND AND LATER									1	
		Chloritic fragments with silica matrix	1	 	 						<u> </u>	
		CHIOTICIC TRAGINETICS WICH STITICA MACTIA						 	-	 	 	 -
		THE COOK ON CONTROL OUT OF THE	+	 	 			 	+		 	
59.0	64.5	TALCOSE - CHLORITE SCHIST - SHEARED	+	 		 		 	 	 		
			+	 	 			1	 			
		- possible fault zone			 	 		!			<u> </u>	
		- badly fractured, weathered and broken core	1									
		- bands of talcose - chlorite schist and quartz										
		Schistosity at 60.0 metres is 550 to core axis.										
						T					1	
				- • •								

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Footage - Metres Sample									heet No.		***************************************	
	ge - Metres		Sample	_	_		Au	Ag		ŀ		
From	То	DESCRIPTION	Sample No.	From	To (Length netres	naa	DDM			1	
_64.5	78.62	CARBONATE BRECCIA	1		\\	1	1717111	Ppin	 	 	 	
_04.5	10.02	CARDUNATE BRECCIA							 	 	 	ļ
l ———									ļ		 	<u> </u>
I ———	 	- carbonate fragments in a quartz - carbonate matrix	 									
l		- fragments are medium grained to 10cm										Ļ
	<u> </u>	- occasional green carbonate fragment	<u> </u>							ļ <u> </u>		
	<u> </u>	- fragments are medium grained to 10cm - occasional green carbonate fragment - occasional argillaceous section - occasional well laminated sedimentary section							<u> </u>			
i		 occasional well laminated sedimentary section 	1									
l ———											<u> </u>	
l		69.3 - 70.7 sections of graphitic argillite, slightly conductive							1	İ		
l												
l		Schistosity at 77.0 metres is 55° to core axis.										
I			1									
	78,62	END OF HOLE										
			1									
			 						 		 	+
l			 			 			 	-	 	
l ———			 			 				 	 	
			 		-	<u> </u>			 	ļ	 	
						ļ	ļ		}		ļ	ļ
l			 		ļ		ļ		}	<u> </u>	ļ	
l						<u> </u>			ļ		<u> </u>	
			ļ						ļ		ļ	_
			<u> </u>									
			<u> </u>						1			
			}									
1												
											T	
l ———												
l 										1		1
l			1								 -	
Ⅰ ———								1		†		+
I			+			 	 	 	 	+	-	 -
ا			 			 		 	 	 	+	+
l			 			 	 	 	 	 		
			-					 	 	 		
			 			ļ			ļ	<u> </u>		
						ļ	ļ					
I									1	1		
I												
╽ ─────┼							1				1	1

DIAMOND DRILL RECORD

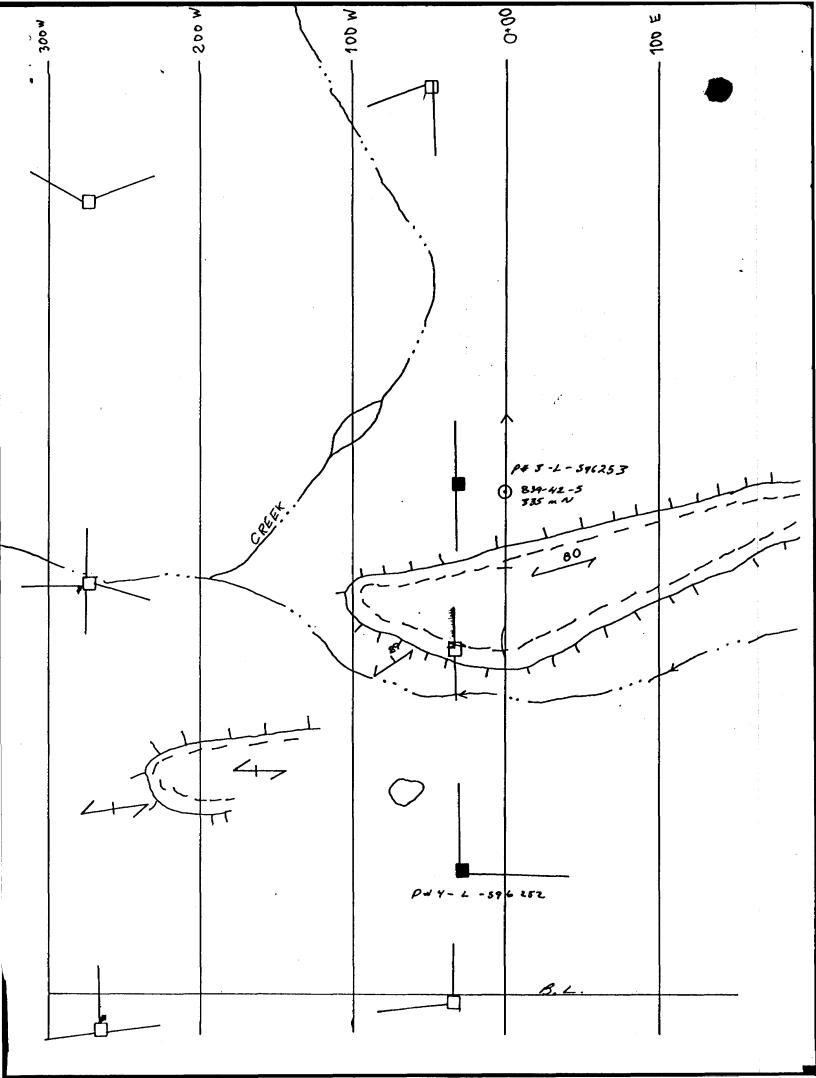
Hole No. 839-42-5

Hole No. 839-42-5 Sheet 1 Property Ghostmount - Holloway-2 Township Holloway Location 335N, 0+02	Length 96.0 metres Bearing North Grid Dip -45 Objective To test HEM conductor	Commenced August 9, 1981 Completed August 10, 1981 Drilling Co. St. Lambert Core Size BQ Casing Left/ Lost in Hole	Dip: Collar -45 ⁰ Etch Test Depth Rdg. True	
Logged By E. Ludwig Core Location Perry Lake Lodge			No Etch test	Claim No. L-596253
Remarks				Scale: 1: 10000

Footage		DESCRIPTION	Sample No.	From	То	Length	Au	Ag				
From	То		No.			metres)роп			ļļ		
0	15.35	OVERBURDEN										
15.35	24.00	MAFIC CHLORITIC TUFF										
24.0	25.8	PYRITIFEROUS CHLORITE - WITH MINOR GRAPHITE BEDS										
25.8	53.0	MAFIC CHLORITIC TUFF										
53.0	54.0	GRAPHITIC ARGILLITE SCHIST										
54.0	56.75	MAFIC CHLORITIC BRECCIATED TUFF		·			_					
56.75	60.75	MAFIC CARBONATE TUFF										
60.75	61.45	GRAPHITIC ARGILLITE SCHIST										
61.45	71.25	CARBONATE TUFF (INTERMEDIATE)										
71.25	73.30	MAFIC CHLORITIC TUFF (ALTERED SEDIMENT?)							som		·	
73.30	86.5	CARBONATE TUFF - ANDESITIC						0				
86.5	88.5	GRAPHITIC ARGILLITE SCHIST				,(3						
88.5	96.0	MAFIC FLOWS - BASALT										
	96.0	END OF HOLE										
	_											

DIAMOND DRILL RECORD

Foota	ge - Metres		Sample	73		Y 43	Au	Ag	1		.	
From	То	DESCRIPTION	No.	From	10 (Length .	ppm	ppm				
_0	15.35	OVERBURDEN						•				
75 05	0.5.00	MACTA OUI ADITIA TUEF										
15.35	24.00	MAFIC CHLORITIC TUFF							-			
				ļ	<u> </u>	 			 			
		- variable green - from light to dark		 								
	 	 extensive quartz - carbonate veining highly altered - very chloritized 	 	 		 			-			
		- highly carbonatized		 					İ			
		- Schistosity 20° to core axis - at 20.0 metres										
		- grains are variable in size: from coarse to fine grained										
		- well laminated										
_24.0	25.8	PYRITIFEROUS CHLORITE - WITH MINOR GRAPHITE BEDS										
		- soft, massive, black chlorite										
		- fine grained with pyrite veinlets cutting	<u> </u>		ļ							
		- pyrite veins at 47° to core axis at 25.2 metres	 	ļ								
		 slightly conductive over lcm quartz - carbonate veins - poorly laminated 	 			ļi			 			ļ
		- up to 30% pyrite		 								
				1	 	-						
25,8	53.0	MAFIC CHLORITIC TUFF										
		- medium to fine grained, dark green to black continuous talcose sections										
		with depth										
		- 1% pyrite within select quartz - carbonate veins				ļ						
		- weakly carbonatized - well laminated	<u> </u>			ļ			<u> </u>			<u> </u>
		<pre>- quartz - carbonate veining (primary + secondary)</pre>						<u> </u>		<u> </u>		
		- shattered talcose core from 41.7 - 42.0	ļ	<u> </u>						<u> </u>		
		- extremely altered, shattered, talcose core from 38.0 - 42.0	<u> </u>	 						ļ		<u> </u>
		 Interbedded tuff breccia sections within unit - up to 10cm wide. Schistosity 47° to core axis at 30.0 metres. 	-	 					 	 -	-	<u> </u>
		- Interbedded lapilli tuff regions.	 	 								
		- argillaceous laminations	 	 					 	-	 	
		#. 3.11.000.00 (MILLION (ALD)								 		
53.0	54.0	GRAPHITIC ARGILLITE SCHIST	 			1		 	 	 		
33.0	J4.0	MIVIL II A LA V. DINULLIA LA DULLA II.								<u> </u>		
l		- 30cm of shattered massive pyrite - with quartz matrix - up to 75% pyrite,									 	1
		highly conductive]				
		- slightly carbonatized										
			I									<u> </u>


DIAMOND DRILL RECORD

Hole No 839-42-5 Sheet No.___3_

Foota	ge - Metres		Sample	12	-	7	Au	Ag		1	,	
From	То	DESCRIPTION	No.	From	10 (1	Length metres	ppm	ppm		<u> </u>		
	1 .	- black - medium_grained					' -	, . ,- <u></u>				ļ _
		- black - medium grained - Schistosity 47° to core axis at 53.4 metres										
54.0	56.75	MAFIC CHLORITIC BRECCIATED TUFF					'	\				
								١				
		 carbonated - medium to fine grained - black 					'	·		L		
		- matrix is variable from silica to chlorite				1	'	·	ļ	<u> </u>		
		 unit becomes increasingly more chloritic and less carbonated - poorly 	-	-		1	'	' 				
		laminated				1	'				 	<u> </u>
	-	 less than 1% disseminated pyrite throughout unit 			<u> </u>	1	<u>'</u>	\ <u></u>	<u> </u>		 	
		<pre>- gradational contact_</pre>					1	'	<u></u>	L	L	L
		MACIA CARRONATE THEE		<u></u>			1	·		L		
56.75	60.75	MAFIC CARBONATE TUFF				+	<u></u>	'			 	
	 	magaine objection from EC 75 F7 FF				-	<u></u>	<u>'</u>	 		 	
	 	- massive chlorite section from 56.75 - 57.55	-			-	'	' 	-			L
	 	- black fine grained chlorite - not carbonatized		 	 		'	' 		 	 	<u> </u>
		- unit grades into a lighter green carbonte tuff	-	<u></u>	 	 		' 	 	<u> </u>		
		 with extreme quartz - carbonate stringers cutting it Schistosity at 29 to core axis at 60.3 metres 			 	1	<u></u>	<u>'</u>	 		 	
		- Schistosity at 29 to core axis at 60.3 metres - well laminated			 	+		<u>'</u>		ļ	├	
		- Well laminated	+	-	 	+		<u>'</u>			 	
60.75	61.45	GRAPHITIC ARGILLITE SCHIST	-	 	 	+			 	 	 	
00.75	01.45	GIVERITITO DINGILLITE SUITSI	+	 	 	+		<u> </u>	-		 	
		- black, fine grained graphite	-	-		+		<u> </u>	 	 	 	
		- pyritiferous - up to 50%		 	 	+		<u> </u>	 	 	 	
		- minor quartz veining			 	1	1			 	 	
		- pyrite stringers parrallel to core axis							1		1	
		- weakly carbonatized				1		, ·			1	
		moderately conductive									1	
								1				<u> </u>
61.45	71.25	CARBONATE TUFF (INTERMEDIATE)						ſ <u></u>				
							<u> </u>	1				
		- unit contains sections of lapilli tuff beds that are interbedded					1	1	1:			
		- minor laminae of graphitic argillite occur					<u></u>					
		 extensive quartz - carbonate veining throughout unit 					11	·	L			
		- shattered core from 64.0 -64.7 (broken up)						Ţ <u></u>				
		- light green, medium to fine grained					1	1		T		
		- Schistosity at 44° to core axis at 67.5 metres	1				1	τ				†
			I				1				1	
 							T		T			1
								<u> </u>		1	1	

DIAMOND DRILL RECORD

Footage - Metres Sample - Au Au Au Au												
		DESCRIPTION	Sample	From	To	Langth	Au	Ag		1	.	
From	To	D D O W I I I O M	No.	FION	10 (Length . netres	mag	ppm	<u> </u>			
_71.25	73.30	MAFIC CHLORITIC TUFF (ALTERED SEDIMENT?)										
	70.00	THE AN OLIVERAL OF THE PARTY OF										
		- dark green to black, fine grained		 		l						
		- core broken up in places talcose (fault gouge?)										
		- highly carbonatized										
	 	- Schistosity - 54° to core axis at 72.9 metres										
	+	- Gradational contact into next unit		 	<u> </u>	-						
		- Gradacional Contact mito next unit						}				
73.30	96 50	CARROMATE THEE AMDECITIO		 	 						·	
73.30	86.50	CARBONATE TUFF - ANDESITIC		ļ								
		- Light green - coarse fine grained										
		Lapilli tuffs - well laminated - from 73.3 - 75.1		ļ	<u> </u>							
		<u>- coarse grained - carbonatized</u>										
		- at 79.8 - sample is powdered to a clay										
		- and cement together again										
		 quartz - carbonate stringers cutting entire unit 			1							
		Carbonate tuffs - well laminated										
		Carbonate tuffs - well laminated - Schistosity 95° at 74.4 metres			1							
		- carbonated										
		- extensive quartz - carbonate veining										
		- increasing argillaceous inter - laminations										
		- Schistosity at 59° at 85.5 metres			 							
				 								
86.5	88.5	GRAPHITIC ARGILLITE SCHIST	 -									
-		many positiforana atringers throughout unit			l							
	-	- many pyritiferous stringers throughout unit	+	 	 			 				
		- moderately conductive		 				 	 			
ļ	-	- black to medium - fine grained		 		 		 -				
		- up to 75% pyrite						 				
		- minor quartz - carbonate stringers				1						
		- folded laminations	 						ļ			
				<u> </u>				ļ	<u> </u>			
88.5	96.0	MAFIC FLOWS - BASALT										
		- massive, medium green, medium - fine grained										
		 unit becomes increasingly finer grained and more andesitic 										
		- slightly carbonatized quartz stringers						I				
		- chloritized in places										
							i	 		<u> </u>	 	
	96.0	END OF HOLE		 							 	
	70.0	LITE VI TIVES		<u> </u>					 		 	
				·	<u> </u>	<u></u>					•	· .

DIAMOND DRILL RECORD

Dip: Collar

Commenced September 1, 1981

Hole No. 839-42-7 Sheet

...120 metres.

Length

Hole No. 839-42-7

North

Location Sketch

		Sheet Length IZU Metres Commenced September 1, 1981	Dip: Collar	-4:	3		Locatio	n Sketch	North
		Bearing Grid North Completed September 3, 1981 Dip -45 Drilling Co. St. Lambert	Etch Test	Depth	Rdg.	True	L 1100 E	L 1200 E	^
		Dip -45 Drilling Co. St. Lambert Drilling Co.		120m	53 ⁰	45 ⁰	1	1	
	230N	ductor Casing Left/Lost in Hole None							
Logged By .B	Benoit.		***************************************		••••••••••		1 1	\uparrow	Claim NoL-57.9664
Core Locatio	n PerryLa	ke			•••••••		834-42-7	32 939 - V2-16	Scale: 1: T0,000
Remarks								335-45-4	,.,.
			•••••				<u> </u>	_1_1	
Footage/	Metres		Sa-nla				Λα Λα		
From	То	DESCRIPTION	Sample No.	From	To Ler (met)	res) A	Au Ag		
		•							
0	36.2	OVERBURDEN							
36.2	40.0	ULTRA MAFICS							
		·	1			1			
40.0	60.2	INERMEDIATE TUFF BRECCIA				-			
60.2	88.0	ULTRA MAFICS							
88.00	120.0	INTERMEDIATE TUFF							
	120.0	END OF HOLE							
		·-							
						1			
				1					
						1		四日	main
			1					PIT	
						-			
				. !				•	· •

DIAMOND DRILL RECORD

Hole :	No	839	9-42	2-7_	
Sheet	No		2_		

\ — 	A Mat										-	
	ge - Metres	DESCRIPTION	Sample No.	From	To ,		Au	Ag	1	1	`	•
From	То		140.	 		metres]	ppm	ppm		'	·——	
10	36.2	OVERBURDEN	<u> </u>		1	1	<u>'</u>	`	1	'		
l————			<u></u>		1		1	\ <u> </u>	1	'		
I————		sand + clay	<u> </u>			<u> </u>	'	·	11	(<u> </u>	`	
<u> </u>			1		<u></u>		'	'		'		
36.2	40.0	ULTRA MAFICS	-				'	'	1	1	'	
	L						'	` 	·	11	'	
	<u></u>	Brecciated, dark green to grey, fine grained, soft, very chloritic,	<u></u>		1		'	'	11	·	'	·
	<u></u>	carbonated, contains quartz veins throughout, these range from 2cm to					,	'	<u> </u>	'	'	\
		2mm wide. The core is very brecciated in some areas, the quartz +	1		<u></u>	1	'	' <u> </u>	'	' <u> </u>	'	·
		chlorite veins are a mass of swirles. Ultra mafic fragments are cemented					'	'	11	\\	'	\
		by a chloritic, serpentine matrix, minor serpentinization is common in		<u> </u>	1		'	`1	11	()	'	۱ <u></u> ا
		areas of strong brecciation. Section is weakly magnetic. Only rare py		11	11			()		()		·
		speck.		11	1		1	1		()	1	
				11	11	1		'1	1	1	'	1
40.0	60.20	INTERMEDIATE TUFF BRECCIA		1	11	1	(1		1		
				1	1			· · · · · · · · · · · · · · · · · · ·	1	1		
		Light grey to lime green in colour, soft, sericitic. Abundant white	1	1	 	1)	+			·
		quartz veins 2cm5cm wide are crenulated and folded. Rock is highly	1	1	 	+		, <u> </u>	+		- 1	
		sheared and carbonated.	 	1	1	+	+	 ,	+			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	 	+	+	+		<u> </u>				
		40.38 - 42.47 Intermediate tuff - light grey to green in colour,	1	+	+	+		<u></u> ,	+			<u> </u>
		soft, contains white quartz veins that range from 1cm	+	+		+		<u></u> 1	+			<u> </u>
		to 2mm wide. The quartz veins are crenulated and cut	 	1		+		 _				
—		the core at all angles. Rock also contains dark, small	 	+ 1		+	+	<u> </u>	+	 ,	1	
		chloritic blades, the core contains a zone of broken	 	+	, , , , , , , , , , , , , , , , , , , 	†		 ,	+	+,	 	
 		rock, from 42.19 to 42.36 metres, the core in this zone	 ,	1	 ,	+		 1	+	 ,	1	
		is weathered and has a rusty brown colour. The core	 	1	1	1		 1	1	 ,	1	1
		contains 1% disseminated and small cubes of pyrite.	 	1	1	1		 '	1 ,	+,		
 		SOLIDATIO IN AISSCHITHAGEA ANA SHAIT CADES OF PYTICE.	1	1	† 	†		 1	1	+,	1	 -
		42.77 - 48.66 Intermediate tuff breccia - light grey to green,	 	+		+		 '	+	 '		1
		very soft, serpentinized and sericitic, fragments are	 	1 		+		 ,	+	 '		1
		cemented together by a chlorite matrix, core contains	 	+		1	+	 '		 '	† 	+
		abundant white quartz veins that range from 10cm to 2mm	 	+		+		 ,			+	+
<u> </u>		wide, the quartz veins are crenulated. The core is very	+				—	<u> </u>			-	
		easily broken, some broken core is present at 48 - 48.10	+		$\overline{}$		\longrightarrow	<u> </u>			-	
		and at 45 - 45.14. Foliation is at 58° to core axis.	+					<u></u>				
		and as to - toliation is at 58° to core axis.	+	1	$\overline{}$		$\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $	<u> </u>	 			
	-	Core contains less than 1% pyrite.	 		<u></u>				L	<u> </u>		
		10.66 50.65		L	<u> </u>	<u></u>	'	<u></u>	L	L	<u></u>	
		48.66 - 50.65 Mafic tuff band - light to dark grey, hard, contains	 	L		L	<u></u>	<u> </u>	<u></u>	<u></u>		
		crenulated quartz veins that range from 2cm to 2mm wide,	-	<u> </u>	1		11	1	<u></u>			
								$\overline{}$				

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Footage - Metres Au Au Au													
			DESCRIPTION	Sample No.	From	To .	Length,	Au	Ag			}	
From	To			No.	ļ	 	petres)	ppm	ppm				
			these quartz veins are interwoven together and cut the										
			core at all angles. Pyrite is present, 2%, pyrite occurs in seams that are 62° to core axis. Pyrite is disseminated	S			<u> </u>						
			in seams that are 62° to core axis. Pyrite is disseminate	<u>t-</u>		<u> </u>							
			ed and is found in spletches, less than 1% cpy.			<u> </u>							
		50.65 - 52.21	Intermediate tuff breccia - light green, soft,										
			serpentinized, chloritic, fragments are cemented by a										
			chloritic matrix, contains a white quartz veins, that								<u> </u>		
			range from 1cm to 1mm wide, these quartz veins are								İ		
		·	broken, cut the core at all angles and are crenulated,							<u> </u>			
			fragments line themselves at 45° to core axis. Less than	n		İ							
			1% pyrite.										
		52.01 - 52.49	Mafic tuff band, same as 48.66 - 50.65										
		52.49 - 56.85	Intermediate tuff breccia - light green to grey,			Ī							
			soft, with harder mafic fragments, core is chloritic,							_			
			and is sericitic, brecciated areas are extremely							 			
			seritized and are easly broken up. The core is										
			slaty in some areas. Quartz veins are present, they										
			are crenulated, inter weave themselves and cut the										
			core at all angles. Some of the quartz veins have a										
			rose colour to them, the veins range from 2cm to 1mm										
			wide. Fuchcite is also present in minor amounts in										
			the core. Pyrite is less than 1% in the core.										
		55.10 - 55.36	Graphitic breccia, Black sooty, soft contains										
			broken quartz carbonate veins, these range from 5mm to								1		-
			lmm wide, weakly conductive with the ohmeter, the										
			core contains 1% disseminated pyrite.								T		
		56.85 - 60.20	Volcanic clastics - light grey to dark grey to										
			green, soft, seritized, fragments are cemented by a										
			chloritic and sericitic matrix, the rock is also			1	1						
 			carbonaceous. Core contains abundant quartz carbonate										
			veins, some veins contain K-spar giving it a rose	1			1						
			colour. These veins range from 5cm to 1mm wide, they				T						
			cut the core at all angles. Core contains some zones of	1			1	 		†	 	 	
			quartz breccia. Core also contains small amounts of	 			†		 	 	 		
			fuchcite. Pyrite is present 1% disseminated. Fragments		 		 			 	<u> </u>	 	
			Tagilettes	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u></u>	

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Foota	ge - Metres		Sample	Γ	T	T	Au	Δα				
From	To	DESCRIPTION	No.	From	To (Length metres)	mag	Ag ppm			Ì	
	·	aligned themselves at 35° to core axis.		1			PPIII	typu				
		arigned themserves at 33 to tore axis.	 	 	 	 						
		58.85 - 59.0 Quartz breccia zone, white quartz, carbonaceous	1									
		with a chloritic and sercite matrix.										
		59.05 - 59.32 Quartz breccia zone same as 58.85 - 59.0										
		59.52 - 60.00 Quartz breccia zone same as 58.85 - 59.0 has pink										
		quartz veins.										
		60.20 - 60.62 Acid tuff, light to dark grey, hard, contains										
		small quartz veins, 5mm to 1mm wide, these are eratic,		 								
		they cut the core at all angles, the fragments are at										
		54° to core axis. Contains less than 1% pyrite.										
			1									
60.20	88.00	ULTRA MAFICS										
						1						
		Brecciated, dark grey green, soft, greasy feel, talcose texture.				<u> </u>		-				
		slightly magnetic, very shattered and broken up in some aréa, core is										
		easily broken, hole contains small intervals of chloritic mud that is										
		very soft and breakable. The broken core is due to a fault zone in										
		the area. Core is highly sheared and fragments are stretched out of										
		shape. Core contains quartz carbonate veins, these are irregular.										
		crenulated and range from 5cm to 1mm wide, the core is sericitized and										
		has a chlorite, serpentine matrix. Pyrite is present less than 1%.										
		Contains one small graphite band, weakly conductive with ohmeter, from										
		85.84 - 85.87. The broken up core or chloritic mud is also weakly										
		conductive by ohmeter. Foliation is at 90° to core axis.]			
88.00	120.0	INTERMEDIATE TUFF										
		Light grey to green, hard, sericitized contains some ultra mafic										
		bands and fragments, contains some chlorite, siliceous, contains many										
		quartz carbonate veins that range from 2cm to 1mm wide. Rock is very										
		carbonaceous. Veins cut the core at 55°. Fragments are also										
		aligned at 55° to the core axis. Pyrite is present 1% or less. The							1			
	 	pyrite is very finely disseminated, it is found near the quartz veins										
		at their contacts.				1			-			
				T							 	
 	120.0	END OF HOLE										
	120-01					1					 	

DIXXAOND DDILL DECODD

				D.		ND DRILL RECC	JKL)					ŀ	łole No	39-42-8	3	
Property Township Location Logged By	Hole No			113.60 Grid North -45 To test H.E.M. con- ductor	Completed Drilling Co. Core Size	September 3, 1981 September 7, 1981 St. Lambert BQ Lost in Hole None	Etch		Depth 3.6m	45 ⁰ Rdg. 54	Tr. 4	5.0		8N-12-8	Claim N	76. L-579 1:10,00	
. Footage	/ Metres			DESCRIPTI	O N			Sample	From	То	Length	Au	Ag				
From	To							No.	110		etres)	ppm	DDM				
0 2.11 8.57	2.11 8.57 46.61	OVERBURDEN ANDESITE ACID FRAGME	ENTAL 8.	.57 TO 36.0 - ACID TUFF	•												:
		1						1			}		1		1	ı	

0	2.11	OVERBURDEN
2.11	8.57	ANDESITE
8.57	46.61	ACID FRAGMENTAL 8.57 TO 36.0 - ACID TUFF
46.61	49.15	INTERMEDIATE SERICITE TUFF
49.15	55.31	ACID TUFF
55.31	65.34	INTERMEDIATE TUFF
65.34	66.95	ACID TUFF
66.95	83.05	INTERMEDIATE TUFF
83.05	86.51	LAPILLI TUFF
86.51	96.20	ACID TUFF
96.20	100.87	INTERMEDIATE TUFF
100.87	113.60	MAFIC TUFF
	113.60	END OF HOLE
]	

DIAMOND DRILL RECORD

Footag	e - Metres	DESCRIPTION	Sample	From	То	Lameth	Au	Ag			
From	То	DESCRIPTION	No.	From		Length netres)	DDm_	_ppm_			
0	2.11	OVERBURDEN			`		. ,				
							,				
		sand + clay						<u></u>	 		
								ļ			
2_11	8.57	ANDESITE							 		
								ļ	 	· · · · · · · · · · · · · · · · · · ·	
		light grey to green, hard, fine grained, weakly magnetic in some areas				 		 	 		
		due to finely disseminated magnetite, core contains small chloritic spots							 		
		and blades. Core is intruded by areas of quartz breccias, the core also							 		
		contains many quartz veins that range from 1cm to 1mm wide. The quartz				 	<u></u>	ļ	 		
		veins and the rock itself is weakly carbonatized. The quartz veins cut									
		the core at all angles. Pyrite is present less than 1%. Found around the				<u> </u>		ļ	 		
		quartz_seams						ļ	 		
								ļ			
		From 6.56 - 6.80 quartz breccia									
		7.13 - 7.25 quartz breccia									
		ACCOUNTS OF A CONTRACT OF A CO							 		
8.57	46.61	ACID FRAGMENTAL 8.57 to 36.0 - ACID TUFF									
		Light grey to dark grey, hard, fine grained, very siliceous. Core							 		
		contains some weathered sections that are a rusty brown colour, some						Ļ			
		other areas are a dim yellow colour due to sericitization. Other						<u> </u>	 		
		areas are darker due to serpentinization and chloritization. Other							 		
		areas have a pinkish colour due to the presents of K-spar. The core								ļ	
		also contains small specks or spots of red jasper. The core contains									
		many quartz veins, these range from 3cm to 1mm wide, they cut the				<u> </u>		 	 		
		core at all angles, they are crenulated and irregular. Some of the veins				ļ		 	 		
		are weathered and contain small vugs in them. The core also contains						 	 		
		areas of quartz brecciation. Foliation is 55° to core axis. Pyrite is						 	 		
<u></u>		present less than 1% to 1%, the pyrite is finely disseminated and is							 		
		generally found at the quartz veins or quartz brecciations seams or				ļi		 			
		contacts. Some specks of cpy is present in the quartz veins.						 	 		
								<u> </u>	 		
		11.00 - 11.20 Weathered section, rusty brown colour, softer.									
		12.26 - 12.40 Quartz breccia, very siliceous.						<u> </u>			
		13.32 - 13.45 Quartz breccia, 2% to 3% pyrite, finely disseminated,							 		
		matrix move chloritic, sericitic, pyrite found at the									
		quartz seams.									
		18.80 - 19.05 Quartz sericite breccia, some chloritic not as pyritefer-									
		ous.							T		
								1	 	 	

DIAMOND DRILL RECORD

Footage	e - Metres			T				i	Λς.	, 	, 	, 	
From	To		DESCRIPTION	Sample No.	From	To ,	Length metres	Au	Ag ppm	1 ,	1	1	,
		10.20 10.40	Quartz sericite breccia, chlorite + sericite matrix,	+	+	 	merries!	4 hhm	(- 141 1	+	+	1	
		19.20 - 19.48	same as 18.80 - 19.05.	+	 ,	+	+			+	+	+	L
		17 74 10 60	Mafic tuff, soft, light grey to dark grey, siliceous,	+		 	++		 '	 	 i	+	
		1/./4 - 18.00	chloritic, sericitic, fine grained, contains some specks	+	 	+	+	<u></u> i	 ,	+	+	+	
			of iasper, contains some quartz veins that are irregular	+	 	+	+		 	+,	+	+	
			and crenulated, they cut the core at all angles. Contains	1	 	+	+ +		 '	+ ,	+	+ +	
			minor pyrite.	+	 	+	+	<u> </u>		+	+	+ + +	
		10 /0 10 06	Quartz sericite breccia: contains more sericite.	+	 	 ,	+		 '	 	+	+	-
		10.49 - 18.80	chlorite + sericite matrix, some jasper, minor pyrite,	1	 	+	+	<u> </u>	 ,	 ,	+,	1	-
			less than 1%	+		+	+			+	+,	+	
		22.05.02.10		+			+			 '	+	+	
		27.40 - 23.10	Quartz sericite breccia, same as 12.26 - 12.40.	+		+	+	<u></u>			 	+	
			Quartz sericite breccia, very siliceous contains some	 			+	<u></u>	—			+	L
			jasper, sericitic, chloritic matrix minor pyrite less	 				<u></u>	<u></u>		 	 	<u> </u>
		20 73 22 72	than 1%.		L		-	' 	L		L	1	
		29.71 - 30.74	Acid tuff, pinkish dolour due to K-spar. Core contains		L	L	<u></u>	<u>, </u>	<u></u>		L		
			some jasper, olivene, the core is also sericitic, contains					'		<u></u>	L		
			some quartz veins these range from 5mm to 1mm wide. The	<u></u>	<u> </u>			<u>'</u>	<u></u>				<u></u>
			quartz veins are crenulated and cut the core at all anlges.			<u> </u>		<u>'</u>	<u> </u>				
			Core contains finely disseminated pyrite 1% to 2%, the		L	L		<u>'</u>			L		<u></u>
			pyrite is found in seams or blades, some of the pyrite	-	L	L		'			L		
			is close to the quartz cantacts.			L		<u>'</u>			L,		L
		32.30 - 32.45	Quartz sericite breccia, same as 19.20 - 18.48 with some		<u></u>	L		<u>'</u>	<u></u>			-	
			jasper specks.		<u> </u>			'	<u></u>	L		-	
				-	<u> </u>	L		<u>'</u>				1	
		36.00 - 39.74	Acid tuff - Mixed colour, white, yellowish green, hard,	<u></u>				<u>'</u>	<u></u>	<u> </u>			
			fine grained, very siliceous, sericitic and chloritic.	<u></u>	<u></u>	L		(<u> </u>	<u></u>	<u> </u>	<u></u>		
			The core is mainly formed from crenulated and folded quartz	*				<u></u>		<u></u>	L		
			veins. The veins range from 2cm to 1mm, they are		<u> </u>	<u> </u>		()	<u></u>				
			a mass of swirls and crenulations that are broken or		<u></u>			<u>'</u>	<u></u>	L	L		
			fractured. The matrix is a sericitic + chlorite mix. The	L				<u> </u>			L		
			core contains some weathered sections, these are a rusty					\					
			brown colour. Pyrite is present less than 1%.					'					
		36.88 - 36.91	Weathered section rusty brown in colour.	L1	\i	\\		\\	\				
		37.43 - 27.46	11 11 11 11 11		1			1					T-
		39.74 - 43.82	Acid tuff; same as 8.56 - 36.9 metres but more		1	Τ,	1	T	1 ,		T .		1
			sericitic. Contains some quartz veins that are weathered	1	, ·			 ,	T .	T .	1		
			and have rugs. These are a pinkish colour. Veins are	1	1 h	Τ .		, , , , , , , , , , , , , , , , , , , 	 		1	—	
			from 1cm to 1mm wide, they cut the core at all angles.		· · · · · · · · · · · · · · · · · · ·	1	1	 '			 	 	
			Some pyrite less than 1%.			1	+	 '	+	 	+	 	
			17.70	1	 '	 ,	+	(+	+	1	
								<u></u>				<u></u>	<u></u>

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

l ——												
	ge - Metres	DESCRIPTION	Sample No.	From	To ,	Length metres	Au	Ag	t ,	1		
From	То		140.	-	4	metres)	- ppm	ppm	L			
		43.82 - 46.61 Quartz sericite tuff - light green to yellow, hard, fine			<u></u> ,				<u> </u>			
		grained, very siliceous. The rock is very sericitized.			\		'	`ı				
		The matrix is a sericite + chlorite mix. Some quartz					' 					
		veins are present, they are crenulated, range from 1cm to			·	1	`	`———	<u></u>			
		veins are present, they are crenulated, range from lcm to lmm side. Some quartz veins cut the core at 70 to core			<u> </u>		` <u> </u>	` <u> </u>	<u> </u>		`	
		axis. The fragments are lined up at 68° to the core axis.			<u> </u>		` <u> </u>	·				
		Pyrite is present 1%, the pyrite is finely disseminated					·		<u> </u>			
		the pyrite is found generally close to the quartz veins										
		or fragments seams.			<u> </u>				·		1	
46.61	49.15	INTERMEDIATE SERICITE TUFF					`					
					·							
		light grey green to yellow, fine grained, soft, contains quartz						'				
		veins that are crenulated, folded and irregular. These quartz veins			1			·			1	
		range from 2cm to 1mm wide. Pyrite is present less than 1%, and found							1			
		at the quartz seams. Fragments are aligned at 83° to the core axis.			<u> </u>		'	· · · · · ·	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
		:		-	1			<u> </u>	1		1	
49.15	55.31	ACID TUFF			<u> </u>			<u> </u>	T			
					Τ			1	1			
		Purplish, pink, grey colour, hard, very fine grained, siliceous. In			Τ			· · · · · · · · · · · · · · · · · · ·	Τ .			
		some areas sericitized. Colour due to presents of feldspars. Core			1		'	·				
		contains a mineral that is orange and is found in spots and in small			1		'	·	Τ			
		veins. 1cm to 1mm wide. Core contains some jasper. Core also has quartz			1		'					1
		veins that are crenulated and that cut the folded. Some small chlorite			1		''	·	T			T
		veins are present. Some quartz veins unit the core at 490 to the core			1			·	1		1	
		axis. The fragments are lined up at 73° to the core axis. Some pyrite			1		·	·				
		is present, less than 1%.									T	
					1			,,	T			
55.31	65.34	INTERMEDIATE TUFF	1	1			·	1				
	33.37			1				, · · · · · ·		1		
		Light grey to green, soft, fine grained, sericitized, chloritic,		1						1	 	
		crenulated, contains some quartz veins, these range from 2cm to 1mm								1	1	
+		wide they are crenulated and most of them cut the core at all angles.							1	1		
		Some of the quartz veins cut the core at 70° to the core axis. The	 			1	'	 '		 	 	
		fragments cut the core at 70° to the core axis.	 	1	 	1			 			
		Tragmento du dire dotte de 10 de dire dotte dire	1	1	 	1			 	+		
CE 24		ACID TUEF	1	1					 	 	T	
65.34	66_95	MULU TUEF	1		 ,	 	-	 	 		 	
		light grow hand silianana cominitio chloritic contains committed	 	1		1			+	+	 	
		Light grey, hard, siliceous, sericitic, chloritic contains crenulated		1		+			 		 	
		quartz and sericite veins. These veins are also folded and irregular.	+	+	<u> </u>	+				+		

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Footage	e - Metres		Gamai		1		A			1	;	
From	To	DESCRIPTION	Sample No.	From	To /	Length netres)	Au	Ag			1	
		Core is sheared inside when split. Quartz veins range from 2cm to 1mm			\ \ \ \	res.	ppm	_ppm_				
		wide. Pyrite is present less than 1%. Found by the quartz seams.	 			 						
		wive. Fyrite is present less than 1%. Found by the quartiz seams.			 i	 						
_66.95	83.05	INTERMEDIATE TUFF		 		 						
					<u> </u>							
		Soft, light grey to green, sericitic, chloritic, slightly carbonatiz-										
		ed. The core contains some quartz veins, these range from 2cm to 1mm			1							
		wide. They are crenulated and folded. They cut the core at all angles.										
		The core is siliceous in some areas. The foliation is at 67° to the core										
		axis. The core also contains areas of weathering rusty brown in colour.										
		Pyrite is found disseminated near quartz vein seams. It is also found on										
		the contact zones, as small cubes.										
		67.91 - 68.27 Weathered core, soft, broken and has a rusty brown colour.										
		72.29 - 72.38 Weathered core, same as 67.91 to 68.27.										
		74.00 - 74.15 Quartz breccia - very siliceous, hard sericite matrix,										
		some pyrite less than 1%.										
		74.62 - 74.89 Quartz breccia - same as 74.0 - 74.15, more sulphides 5%										
		pyrite.										
		77.45 - 77.56 Quartz breccia, same as 74.62 - 74.89, 5% pyrite.										
		79.75 - 79.86 Quartz breccia same as 74° to 74.15 but not as much										
		sulphides. Less than 1%.										
		80.18 - 80.63 Quartz breccia, more sericitic, not as much pyrite less										
		than 1%.		L	L	<u> </u>	L	<u> </u>				
				<u> </u>	I	ļ	L	<u> </u>	<u> </u>			
83.05	86.51	LAPILLI TUFF		L	L	Ļ	Ļi	L				
				<u> </u>	ļ	ļ	 		<u> </u>			
		Light to dark grey + green, hard, very siliceous, fine grained,		<u> </u>		<u> </u>	 		ļ <u>.</u>	ļ	·	
		matrix is a sericitic + chlorite mix, fragments are usually very siliceous.	 			 	 	<u></u>	 			
		Some quartz veins are present these range from 1cm to 1mm wide, they		L			L					
		are irregular, crenulated, and they cut the core at all angles. Some		<u> </u>	Ь——	 	L	<u> </u>	 			
		of the core is broken up and some of it is a mass of pulvenized rock		<u> </u>	<u> </u>	L	<u> </u>		-			
		turned into mud. These suggest a fault. Core contains pyrite 1% to 3%		<u> </u>	<u> </u>	ļ	ļ	L	 			
		the pyrite is very finely disseminated, it is found surrounding the		<u> </u>	L		<u> </u>	<u></u>	<u> </u>			
		fragments, with the matrix.		<u> </u>	L	L	L		ļ			
						 	 		 			
		85.61 - 86.05 Broken core, weathered, rusty brown colour.	L		L	!	<u> </u>		<u> </u>			
	86.28 - 86.38 Compacted mud. Very soft. suggesting a fault.				<u> </u>	L	Ļ	<u> </u>				
			<u> </u>		L	ļ	ļ	<u> </u>				
					L	<u> </u>		<u> </u>				
				<u> </u>		L	<u> </u>	i	ŀ			

DIAMOND DRILL RECORD

Footag From	ge - Metres	DESCRIPTION	Sample No.	From	To /	Length	Au	Ag			
		ACID THEE	1			nerres I	hhiir	- hhm			
86.51_	96.20	ACID TUFF	-								
		Light grey green, hard, fine grained, very siliceous, sericitic,	 								
		chloritic, core is intruded by quartz veins that range from 2cm to 1mm	†								
		wide, they are crenulated and irregular, they cut the core at all angles.				1					
		Core contains broken weathered sections that have a rusty brown colour.									
		Foliation is at 580 to core axis. Some pyrite present less than 1% found									
		near quart seams.									
		'									
		95.60 - 95.90 Weathered core, rusty brown colour, softer.									
96.20	100.87	INTERMEDIATE TUFF									
		Light grey green, soft, fine grained, sericitic + chloritic, contains	<u> </u>								
		quartz veins that range from 3cm to 1mm wide, these are irregular, folded							 		
		and crenulated. They cut the core at all angles. The core also		<u> </u>							
		contains a band of chloritic tuff, 99.77 to 100.55, the angle of the	<u> </u>								
-		contact is 60° to the core axis. Pyrite is present 1%. Found along	ļ								
		quartz veins at their seams. Some pyrite in the chloritic tuff.								ļ	
		00 77 100 FF Chloridia Auss 1:-14 to 1 1	ļ							ļ	
		99.77 - 100.55 Chloritic tuff - light to dark green, soft very	 	 		 			 		
		fine grained, contains chlorite serpentin, some quartz	 								
		veins that range from 1cm to 1mm wide, these are folded and crenulated. Foliation is at 50° to the core axis. Pyrite is present, 1% disseminated	 	 					 		
		found mear quartz veins. Core is slightly carbonatized.									
		round mean quartz verms. core is strightly carbonatized.	ļ								
100.82	113.60	MAFIC TUFF	 	 					 		
100.02	110.00	184 TO 1011							 	· ·	
 		Light to dark grey, hard, fine grained, slightly carbonatized,		<u> </u>							
		sericitic + chloritic. Core contains quartz carbonate veins that	 								
		range from 4cm to 1mm wide, these are irregular and cut the core at	 		_						
		all angles. Core also contains quartz chlorite schist zones. The							 	 	
l		schist is due to the fault in the area, pyrite is present less than 1%									
		disseminated found in spots or splashes throughout the core.	1								
			 								
		Talc chlorite schist Light to dark green, soft, fine grained, chloritic,									
		100.63 - 103.74 slightly carbonatized. Core is slaty and is easily									
		broken. Most of the core is broken up. Some of									
		the quartz veins are present, these range from									
		3cm to 1mm. They are irregular and crenulated.		1							

DIAMOND DRILL RECORD

Footage - Metres												
	ge - Metres	DESCRIPTION	Sample No.	From	To	Length	Au ppm	Ag ppm				
From	То		No.	110111	1 (1	Length netres)	ppm	ppm				
		Talc chlorite schist (continued)										
		Pyrite is present less than 1%.	I									
			<u> </u>				1					
	113.60	END OF HOLE										
				1								
			1									
											·	
			1		1							
			1	1	 							
			1	1		<u> </u>						
			 	 								
			1	 		 						
			1	1								
					 							
					$\overline{}$							
												1
												
			Ī									
												
												
			 			 			 	†	 	
				-						 		
			 	<u> </u>	 			 	 			
				 					 	 	 	
			 	 		 					 	
			-					-	 		 	
			 	-	-	 			 	 		
			 						<u></u>	<u> </u>		<u></u>
<u>. </u>				_			4.0					

DIAMOND DRILL RECORD

Hole No. 839-42-1

									Hole No.	
Property Township Location Logged By .	839-42-1 839-42 Holloway 1500E 120S K. Guy	,	Length Bearing Dip Objective	252.0 metres Grid North -45 Repeat of Hoyle Mining hole to confirm geology - no assays available	Commenced July 9, 1981 Completed July 12, 1981 Drilling Co. St. Lamberts Core Size BQ Casing Left/ Lost in Hole NONe	Dip: Colla Etch Test	-45 ⁰ Depth Rdg. 252.00 39 ⁰	True 31 ⁰	Location Sketch 1388 2 1884 1500 E C 1 8.4. 1205 0 834-42-2	North Claim No. L579662 Scale: 1:12500
	Metres	<u> </u>	······	DESCRIPTIO	O N				<u> </u>	1 7
From	То									
~ 0	24.2	OVERBURDE	N			:				
24.2	38.5	MAFIC FLO	W - ANI	DESITE		:				
20 5	41.0	CAPRONATE	BUCKS	- LIVELY ALTEDED MARIC EL	I OM	i				

From	То		
-0	24.2	OVERBURDEN	
24.2	38.5	MAFIC FLOW - ANDESITE	
38.5	41.0	CARBONATE ROCKS - LIKELY ALTERED MAFIC FLOW	;
41.0	53.0	MAFIC TUFF - ANDESITE	
53.0	105.0	VOLCANOCLASTIC SEDIMENTS - GREYWACKE ARKOSE	
105.0	113.0	MAFIC TUFF - ANDESITE	
113.0	122.0	INTERBANDED MAFIC TUFFS AND VOLCANOCLASTIC SEDIMENTS	
122.0	151.5	MAFIC TUFF - ANDESITE	
151.5	157.5	VOLCANOCLASTIC SEDIMENT	
157.5	170.0	MAFIC TUFF - ANDESITE	: :
170.0	172.4	QUARTZ - CARBONATE - SULPHIDE - BRECCIA) :
172.4	210.3	MAFIC TUFF - ANDESITE	i
210.3	222.2	ULTRAMAFIC TUFF	
•			

DIAMOND DRILL RECORD

Footage - Metres						
From	To	DESCRIPTION				
0	24.2	OVERBURDEN				
24.2	38.5	MAFIC FLOW - ANDESITE				
		- chloritic - fine grained				
		- occasional tuffaceous sections between flows - sericitic 32.0 - 33.3 - many quartz - carbonate veins - often with ankerite				
		- veins often parallel to schistosity ≃50°				
		- many quartz ankerite veins				
		27.5 metres is 45° to core axis.				
		32.0 metres is 50° to core axis.				
		at 38.5 is a lcm quartz - ankerite vein - below here rock contains much				
		carbonate grading to:				
38,5	41.0	CARBONATE ROCKS - LIKELY ALTERED MAFIC FLOW				
		- fine - medium grained, pinkish black				
		- sericitic, ankerite				
		- many quartz rich veins at random attitudes				
41.0	53.0	MAFIC TUFF - ANDESITE				
		- fine grained, chloritic, well foliated				
		- 41.0 - 45.0 much carbonate				
		- thereafter carbonate is confined to quartz - carbonate - ankerite veins				
		44.7 - 45.2 2cm quartz - ankerite vein at 10 ⁰ to core axis.				
•		Schistosity at 44.0 is 45° to core axis.				
		46.9 - 47.4 - quartz carbonate vein at 60° to core axis.				
		47.4 - 51.0 increase carbonate / ankerite 51.5 - 52.2 increase carbonate / ankerite				
		48.0 Schistosity at 75° to core axis.				
53.0	105.0	VOLCANOCLASTIC SEDIMENTS - GREYWACKE ARKOSE				
		- fine to medium grained, foliated and layered				
		- light grey to pinkish in colour				
		•				

DIAMOND DRILL RECORD

Footage - Metres		n r c c p i p m r o w	
From	To	DESCRIPTION	
		<u>- very few mafic minerals</u> epido	ote
		- plagioclase, K-spar, quartz, ankerite anker	
		 many epidote rich sections 	
		 many arkose sections with ankerite up to 2 metres thick anker 	
		66.9 - small shear zone	
		arkose / a	nkeri
		Schistosity at 75.0 metres at 60° to core axis.	
		arkose / a	nkeri
		arkose / a	nker
• • • • • • • • • • • • • • • • • • • •		Schistosity at 97 metres is 65 ⁰ to core axis. arkose / a	nkeri
		quartz carbonate vei	
			1
		arkose / a	nker
05.0	113.0	MAFIC TUFF - ANDESITE	
		- fine - to medium grained, green colour	
		- well foliated	
		- chloritic	
		- much carbonate and / or ankerite	
		 many quartz - carbonate veins parallel to foliation 	
		17.32	
13.0	122.0	INTERBANDED MAFIC TUFFS AND VOLCANOCLASTIC - SEDIMENTS	
		- tuffs as above	
		- sediments as above - greywacke and arkosic greywacke	
		Schistosity at 116.0 is 65 ⁰ to core axis.	
	,		

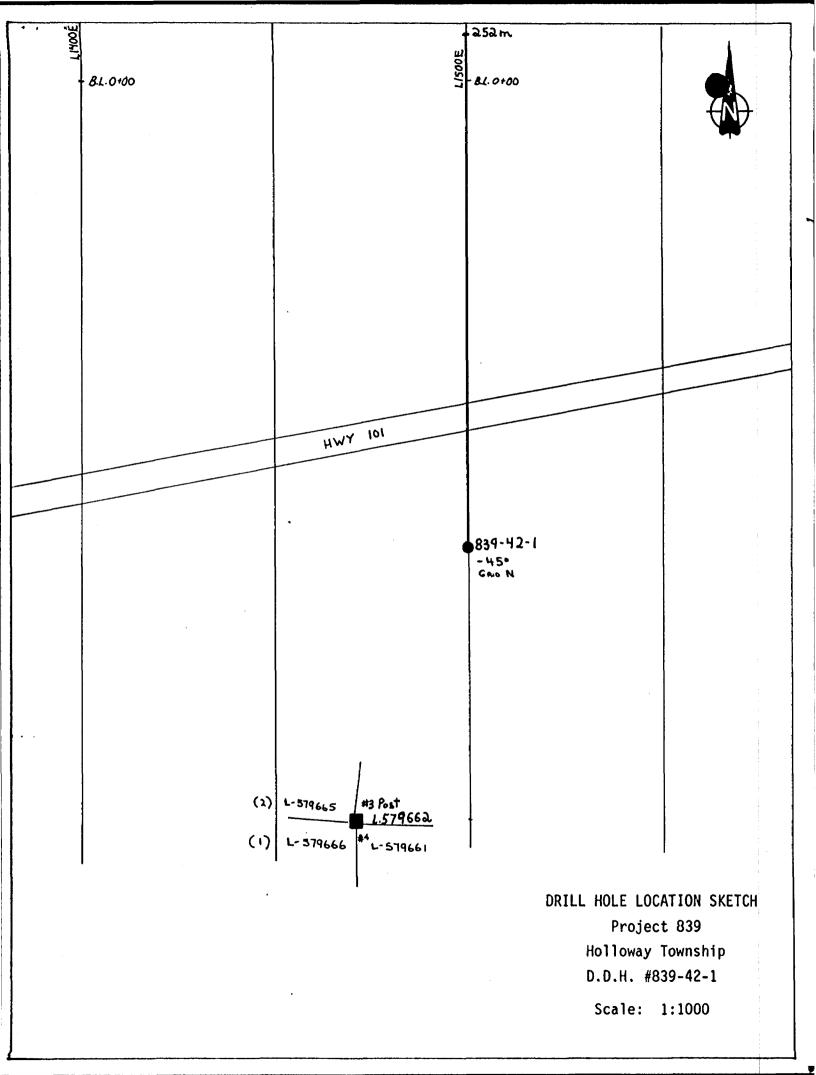
Hole	No. 839-42-1
Sheet	No. 5

DIAMOND DRILL RECORD

Footage - Metres		
From To		DESCRIPTION
122.0	151.5	MAFIC TUFF - ANDESITE
		- fine to medium grained - chloritic, sericitic,ankerite
		- well foliated
		- occasional chert bands to 5cm
_		- occasional conformable quartz - ankerite sections to 20cm.
		- to 129.0 metres medium to coarse grained, in homogenous 129 - 133
		fine grained chloritic tuff
		129 - more sericitic with quartz - ankerite and chloritic sections
		at 133.7 quartz - carbonate vein with 5% py
		occasional lapilli tuff sections with quartz / ankerite fragments to 2cm
		Schistosity at 133 metres is 55° to core axis.
		141.5 - 143.0 very fine grained, sericitic - greywacke
		141.5 - 143.0 very fine grained, sericitic - greywacke 149.8 - 151.5 quartz / ankerite vein at 60° to core axis.
151.5	157.5	VOLCANOCLASTIC SEDIMENT
		- very fine grained, fairly massive, chloritic
		- occasional sections to 1% disseminated
		- occasional sections of quartz, chloritic band with slumping features
		and brecciation
		Schistosity at 152.0 metres is 65° to core axis.
157.5	170.0	MAFIC TUFF - ANDESITE
.,,,,,		
		- medium grained, chloritic, well developed schistosity at 45° to
		core axis.
		- many sections of lapilli and fragmental tuffs with fragments of
		ankerite, silica and chlorite
		- carbonatized
		- increasing carbonate / ankerite down hole.
		- many quartz / ankerite / carbonate sections parallel to schistosity
170.0	172.4	QUARTZ - CARBONATE - SULPHIDE - BRECCIA
		- fine grained py as laminations and fragments to 5cm
		- Quartz and carbonate / ankerite matrix and fragments
		- conformable contacts at top and bottom
		CONTOTINGDIE CONTACTS AT COD AND DOCLON

Sheet No.....

DIAMOND DRILL RECORD


Hole :	No. 839-42-1
Sheet	No8

Footag	ge - Metres	D E C C D I D M I O V	
From To DESCRIPTION			
172.4	210.3	MAFIC TUFF - ANDESITE	
		- as before - very fine grained	
		 slightly carbonatized 	
		 many small quartz / carbonate stringers to lcm parallel to schistosity 	
		at 60° to core axis.	
		 very tuffaceous and well bedded 	
		- occasional argillaceous laminations in py Schistosity at 181.0 is 65° to core axis.	
-		Schistosity at 181.0 is 65° to core axis.	
		189 - 192 - section of tuff with cherty bands	
		191.0 - 191.2 - stringers of py	
		after 196 medium grained and decrease in quartz / carbonate veining,	
		increase in schistosity and a more bedded tuff, in places of lapilli	
		tuff.	
		 in places more of a cherty tuff with argillaceous laminations 	
		- decreasing carbonatization	
		Schistosity at 209 is 70° to core axis.	
210.3	222.2	ULTRAMAFIC TUFF	
		- fine grained, chloritic and talcose	
		- occasional fibrous sections	
		- occasional quartz / carbonate vein to 3cm	
		- no carbonates in rock only veins	
		219.6 - 219.93 very fine grained section, massive and no fibre.	
		2-5% disseminated py + stringers of py	
		2 on a seminated by . Set ingers of by	
222.2	234.2	S HEARED MAFIC TUFF - ANDESITE	
		- Andesite tuff as before except pronounced shearing with irregular	
		quartz - carbonate developed along shear planes and in boudinage	
		structures structures	
		225.4 - 226.9 fault zone - sheared weathered and broken core - ankerite	
		and calcite crystals along fault plane - at small angle to core axis	
		100 - 300.	
		226.9 - 231.8 slightly weathered sections in brecciation and ankerite	
		220.9 - 231.0 Strightly weathered Sections in Diecciation and dikerite	
1	:		

DIAMOND DRILL RECORD

Hole	No 839-42-1 ,
Sheet	No8

Footag	ge - Metres	
From To		DESCRIPTION
234.2	250.3	GREEN CARBONATE LAPILLI TUFF AND TUFF BRECCIA
		- fine to medium grained
		- chloritic and fuchsite
	ļ	- emerald green to pale green colour
		- breccia fragments are chert, green carbonate, quartz - carbonate
		up to 5cm with siliceous matrix
		- tuffaceous bedding is very contorted
		- cut by random oriented quartz veins
_		241 2 242 2 polyopitic and weathered and in the continuous in the
		241.2 - 243.2 ankeritic and weathered section, possible fault 236.1 - 236.25 argillaceous section
		230.1 - 230.25 <u>arylilaceous section</u>
		244.0 - 245.0 argillaceous and carbonate section
		Schistosity is very hard to determine due to extreme contortions of laminations.
		Idilliacions.
240.0	252.0	CARBONATE TUFF - ANDESITE
		- medium grained
		- chlorite, sericite, carbonate / ankerite
		- occasional argillite laminations
		250.6 - 251.4, fault zone - weathered and very siliceous and carbonatiz-
		ed
		Schistosity at 251.0 is 50° to core axis.
		Constitution of the content of the c
	252.0	END OF HOLE
	232.0	CITO VI TIOLE
+		
	·	·
ı		·

DIAMOND DRILL RECORD

Hole No. 839-42-2

Hole No. 839-42-2 Sheet 1 Property 839-42 Township Holloway Location 1200E 6855 Logged By K. Guy Core Location Perry Lake	Length 255.0 metres Bearing South Grid Dip -45 Objective HEI1 conductor + volca- nic / sediment contact	Commenced July 12, 1981 Completed July 15, 1981 Drilling Co. St. Lamberts Core Size BQ Casing Left/Lost in Hole None	Dip: Collar -45° Etch Test Depth Rdg. True 100m 100m 52.0 43° 200m 43.5 35° 250m 40.0 32°		North Claim No. L579667
Remarks				0 685 5	Scale: 1:12500

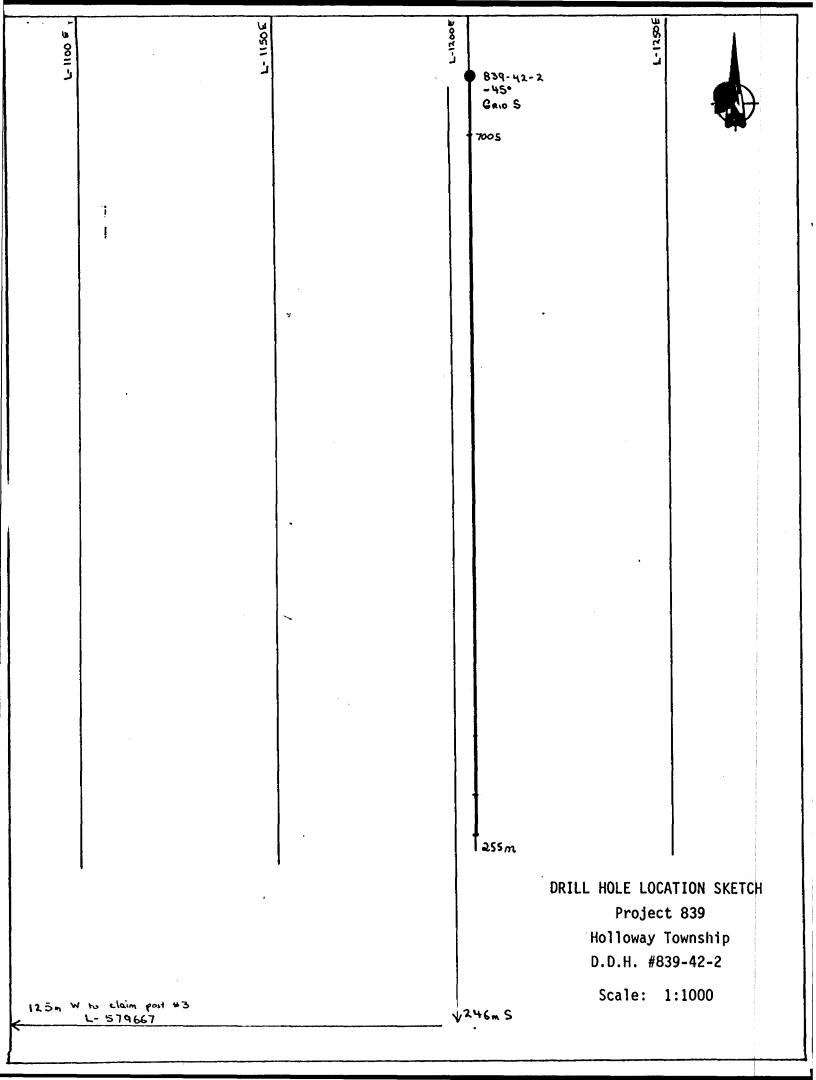
Footage/ Metres		DESCRIPTION
From	То	DESCRIPTION
0	33.7	CASING - OVERBURDEN
33.7	166.6	GREYWACKE
166.6	167.5	GRAPHITIC ARGILLÍTE
167.5	176.5	GREYWACKE AND ARGILLITE
176.5	176.9	GRAPHITIC ARGILLITE
176.9	191.5	CARBONATE ROCK
191.5	195.47	GRAPHITIC ARGILLITE
195.47	203.96	CARBONATE ROCK - GREYWACKE
203.96	210.1	GRAPHITIC ARGILLITE AND GREYWACKE
210.1	225.0	CHLORITIC GREYWACKE
225.0	255.0	MAFIC TUFF - ANDESITE
	255.0	END OF HOLE

DIAMOND DRILL RECORD

Foota	ge - Metres	
From	То	DESCRIPTION
0	33.7_	CASING - OVERBURDEN
33.7	166.6	GREYWACKE
		- fine grained, massive
		- light grey colour
		- siliceous
		- carbonatized
		- many quartz / carbonate veins crosscutting at a high angle 50 - 80°
	 	- occasional argillaceous sections to 2cm thick with pyrite
		Schistosity at 43 metres at 30° to core axis.
		65.2 - 65.4 graphite + pyrite
		67.0 - 67.4 graphite seams
		67.0 - 70.1 possible fault zone - core is broken and sheared
		71.5 - 72.7 argillaceous section with up to 10% pyrite in places -
	ļ	argillaceous beds at very low angle ≃10 - 20° to core axis.
		Schistosity at 74.0 metres is 25° to core axis.
		86.0 - 87.1 Carbonate rock with ankeritic sections
		after 86.0 more argillaceous sections and more carbonatizations
		Schistosity at 109.0 metres is 25 ⁰ to core axis.
		Schistosity at 165.0 metres is 45° to core axis.
		increasingly argillaceous
166.6	167.5	GRAPHITIC ARGILLITE
		- with quartz carbonate and 5% pyrite
		- conductive
167.5	176.5	GREYWACKE AND ARGILLITE
		- greywacke is carbonatized
		170.6 - 171.2 quartz - carbonate veins

Hole	No_8	39-4	2-2	
Sheet	No	4		

DIAMOND DRILL RECORD


_		DIAMOND DRILL RECORD
Footage - Metres		
From	To	DESCRIPTION
176.5	176.9	GRAPHITIC ARGILLITE
		 only slightly conductive - very argillaceous
		- no sulphides
176.9		
	191.5	CARBONATE ROCK
		Since an include the second control of
	 	- very fine grained carbonate
		 siliceous or cherty in places occasional argillaceous sections
	 	- in places medium grained
	1	- most original fabric destroyed during carbonatization
		- likely originated as a sediment - greywacke
	1	THE TO VITATION OF MANY DESCRIPTION OF THE PROPERTY OF THE PRO
		182.4 - 182.6 graphitic argillite with 5% pyrite
		185.3 - 185.6 graphitic argillite
		191.0 - 191.5 5 - 10% disseminated pyrite
191.5	195.47	GRAPHITIC ARGILLITE
		- very fine grained
		- very conductive
		 up to 10% colloidal pyrite laminations of massive pyrite to 1cm thick
		- very well bedded graphitic argillite, pyrite, chert at 194.0 - 195.47
		- bed of carbonate rock from 193.3 - 194.0
		- bedding at 40° to core axis.
195.47	203.96	CARBONATE ROCK - GREYWACKE
		- as before
		- very abrupt contacts at both ends at 45° to core axis.
203.96	210.1	GRAPHITIC ARGILLITE AND GREYWACKE
	<u> </u>	
		- only slightly conductive
		- 2 - 10% pyrite with graphitic argillite
		- argillite and greywacke in bands
		 greywacke is carbonatized much quartz - carbonate as laminations and as veins
		- much quartz - carbonate as raminations and as veins

Sheet No.

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Footage - Metres		DESCRIPTION
From	То	
		Schistosity at 210.0 is 50° to core axis.
210.1	225.0	CHLORITIC GREYWACKE
		- 210.0 - 216.0 contains occasional argillaceous laminations
		- greywacke in fine grained, as chloritic, siliceous
		- grain size and chloritic increasing down hole
		- many quartz - carbonate veins
		- rock is carbonatized
		Schistosity at 223.0 metres is 40° to core axis.
		gradational to mafic tuff
225.0	255.0	MAFIC TUFF - ANDESITE
		- medium grained, chloritic
, —	 	- foliated, carbonatized, quartz - carbonate veins
	-	230 - 235 massive, diabasic section - carbonatized
		235 - 245 very fine grained, chloritic
		237 - 238.2 euhedral, disseminated pyrite - to 5%
	 	245 - 255 tuffaceous
		252.7 - 255 ankeritic
		Schistosity at 254.0 metres is 50° to core axis.
	255.0	END OF HOLE
	•	
	 	

DIAMOND DRILL RECORD

Hole No. ..839-42-4

Hole No. 839-42-4 Sheet 1 Property Ghostmount Holloway-2 Township Holloway Location L100E, OBL Logged By K. Guy + E. Ludwig	Length 186.0m Bearing North Dip -45 Objective To drill the strati- graphy	Commenced August 5, 1981 Completed August 8, 1981 Drilling Co. St. Lambert Core Size BQ Casing Left/ Lost in Hole Nil	Dip: Collar —45 ^O N Etch Test Depth Rdg. True 1 100m 53 ^O 45 ^O	Location Sketch	North Claim No.L.—596252
Core Location Perry Lake Lodge]	839-42-4	Scale: 1:10,000

Remarks

Footage/	Metres	DESCRIPTION	
From	То	DESCRIPTION	
0	17.4	CASING	
17.4	23.1	MAFIC FLOW - ANDESITE - BASALT	
23.1	32.2	MAFIC TUFF - ANDESITE - BASALT	
32.2	49.0	CARBONATE	
49.0	59.9	MAFIC FLOW - BASALT	
59.9	72.8	MAFIC FLOW - BASALT	
72.8	78.0	MAFIC TUFF	
78.0	87.8	MAFIC FLOW - BASALT	
87.8	95.7	MAFIC FLOW	
95.7	105.5	CARBONATIZED MAFIC FLOW - BASALT	
105.5	107.0	SERICITIC MAFIC FLOW - NOT CARBONATIZED	
107.0	108.25	INTERMEDIATE TUFF	
108.25	111.0	MAFIC TO INTERMEDIATE TUFF - ALTERED	

DIAMOND DRILL RECORD

		DIAMOND DRILL RECORD
Footag	ge - Metres	DESCRIPTION
From	То	
_111.0	114.0	HIGHLY ALTERED MAFIC TUFF - FAULT ZONE
	129.0	ALTERED ULTRAMAFICS - SERPENTENITE
	123.0	NETENES CETIVIET TOS SERVERTES
129.0	132.0	HIGHLY ALTERED MAFIC TO INTERMEDIATE TUFF
	139.4	ANDESITE - SILICA RICH
	1.03.4	AILUSTIL = SICTOR RIGHT
_139.4	141.9	ANDESITE BRECCIA
141.0	145 5	ANDECTTE THEE CARRONATED
_141.9	145.5	ANDESITE TUFF - CARBONATED
145.5	147.5	MAFIC CHLORITIC TUFF
147.5	168.8	MAFIC FLOW - BASALT
168.8	173.4	MAFIC TUFF
100.0	173.4	120.20 1011
173.4	180.0	INTERMEDIATE FLOW - ANDESITE
100.0	700.0	ALTERED MACIC FLOW
180.0	186.0	ALTERED MAFIC FLOW
	186.0	END OF HOLE
	•	
1		

Hole No. 839-42-4 Sheet No...

Hole No	839-42-4
Sheet No	3

Foota	ge - Metres	
From	То	DESCRIPTION
0	17.4	CASING
17.4	23.1	MAFIC FLOW - ANDESITE - BASALT
		- very fine grained, massive - chloritic
		- highly carbonatized
		- many quartz/ankerite veins
23.1	32.2	MAFIC TUFF - ANDESITE - BASALT
		- fine grained
		- chloritic
	 	- well laminated
		- siliceous sections
		 many quartz/carbonate veins parallel to schistosity sections of laminated medium grained py
	1	- argillaceous laminations
·		- rock is not carbonatized
		Schistosity at 25m is 55 ⁰ to core axis.
32.2	49.0	CARBONATE TUFF - ANDESITE
		- medium grained, laminated
		- pale green, carbonatized
		- sericite, chlorite
		- increased feldspar from above
	<u> </u>	- decreased quartz/carbonate veining - increasing fragmental
		- occasional argillaceous sections
		- trace py throughout
		Schistosity at 45m is 50° to core axis.
49.0	59.9	MAFIC FLOW - BASALT
	•	- from 49.0 to 50.0 flow top breccia
		- black, massive, fine grained
		- py as blebs and veinlets throughout

DIAMOND DRILL RECORD

1 Ootag	e - Metres	DESCRIPTION
From	То	DESCRIPTION
		- sericitic
		- not carbonatized
		- fault zone 54.0 - 59.5
		badly fractured core at both ends with a shattered rock between
		which has been infilled with silica, trace disseminated py
59.9	72.8	MAFIC FLOW - BASALT -
		highly carbonatized
		 very fine grained, massive, black colour
		 quartz - carbonate stringers throughout unit
		 sericitic - splashy pyrite mineralization within the unit
		 gradational contact into next unit
72.8	78.0	MAFIC TUFF
		interbanded argillite
		- medium fine grained, dark green black - carbonatized
		- increasingly fragmented
		 quartz - carbonate stringers cutting entire unit
		 occasional quartz rich sections - talcose in places
		- 5-10% between some laminations
		- lapilli tuffaceous sections - 4 -> 6cm wide within unit
		- schistosity at 75-65 is 50° to core axis.
		- sericitic
78.0	87.8	MAFIC FLOW - BASALT
		medium - fine grained, dark green, sericitic - carbonated
		- quartz - carbonate stringers throughout unit
		- 7-10% py located in quartz stringers in places throughout unit -
		Gradational contact
87.8	95.7	MAFIC FLOW - NOT CARBONATIZED - BASALT
		 quartz - carbonate stringers cutting unit
		- minor disseminated by cubes throughout unit
1		- sericitic

Hole No. 839-42-4 Sheet No....

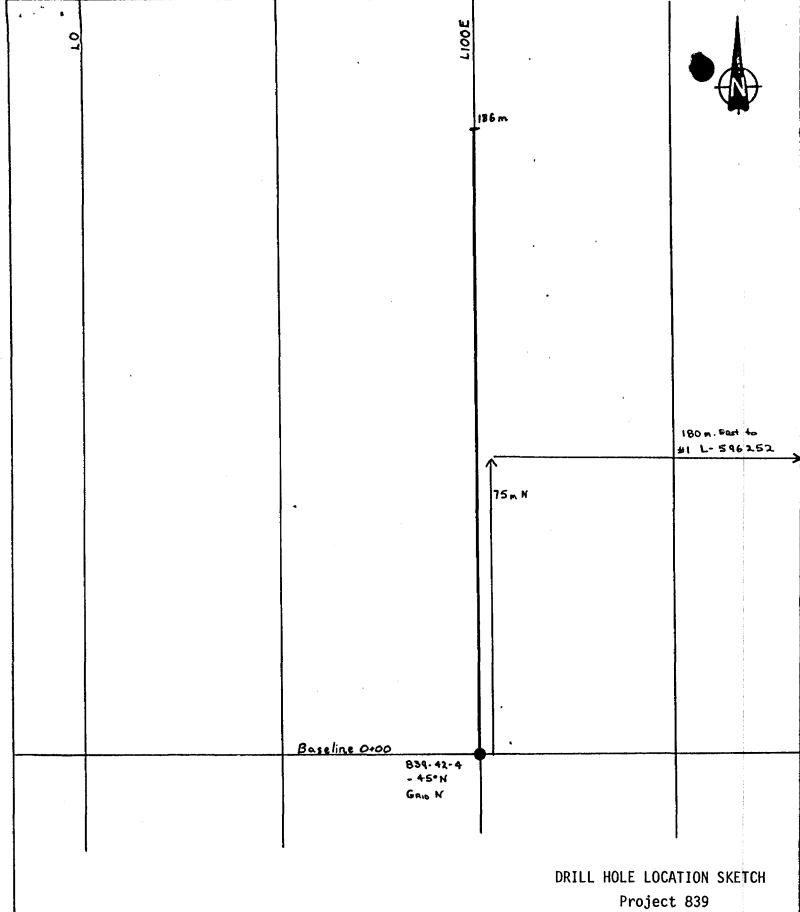
Hole 1	_{N&} 39-42-4
Sheet	No. 5

Footage - Metres		DESCRIPTION	
From	То	DESCRIPTION	
		- Dark green medium - fine grained - massive	
		- Unit becomes more intermediate - with depth gradational contact	
95.7	105.5	CARBONATIZED MAFIC FLOW BASALT	
		- Quartz - carbonate stringers	
		- sericitic	
		- Dark green - medium grained	
		- 99.8 - 100.1 - quartz vein - mafic fragmental contamination	
105.5	107.0	SERICITIC MAFIC FLOW - NOT CARBONATIZED	
		Quanta cambonato etningona thuquebout unit	
		 quartz - carbonate stringers throughout unit medium to coarse grained 	
		- dark green	
		- dark green	
107 0	108.25	INTERMEDIATE TUFF - NOT CARBONATIZED	
107.0	100.23	THIENTEDIATE TOFF - NOT CARDUNATIZED	
		- silica rich - up to 15% py at start of unit	
		- schistosity at 50° to core axis at 108.0 metres	
		- quartz cutting unit at many different angles	
		quality during direct do many difficient diffics	
108.25	111.00	MAFIC TO INTERMEDIATE TUFF - ALTERED	
		- Mafic tuff brecciated from 108.25 - 108.85	
		- Chloritic mafic fragments with a silica matrix - 5-10% py	
		- Shattered core from 108.85 - 109.4	
		- minor laminated argillite - no carbonate	
		 unit becomes more intermediate and talcose with depth 	
		- minor faults at 110.5 and 110.0	
		- coarse grained	
111.00	114.00	HIGHLY ALTERED MAFIC TUFF FAULT ZONE	
		- very chloritic, talcose	
		- not carbonatized - sericitic	
		- many quartz veinlets cutting beds	
	1		

DIAMOND DRILL RECORD

Foota	ge - Metres	
From	To	DESCRIPTION
_114.00	129.00	ALTERED ULTRAMAFICS - SERPENTENITE
		- fiberous stringers throughout section - not carbonatized, dark green to black - coarse grained - soft chloritic - quartz cutting unit in places - gradational contact - grades into intermediate tuff - minor disseminated pyrite with quartz stringers
129.00	132.00	HIGHLY ALTERED MAFIC TO INTERMEDIATE TUFF
		- weakly carbonatized - interbedded argillite - laminated pyrite - dark to light green - medium grained
132.00	139.40	ANDESITE - SILICA RICH
		- massive, medium - fine grained - laminated pyrite seams - extensive quartz veining throughout unit - weakly carbonated - some fragmented section, 135.7 - 136.1 - black, hard amphibole - silica matrix - 1% pyrite with matrix
139.40	141.90	ANDESITE BRECCIA
		- silica matrix - carbonated - graphitic argillite from 139.4 to 139.7 - up to 50% pyrite in places within the graphite - graphite extremely conductive - minor 2cm wide beds of graphitic argillites (pyrite laden) throughout unit
141.90	145.50	ANDESITE TUFF - CARBONATED
	•	- serictic - quartz - carbonate stringers - Foliation at 31° to core axis.
		- light - medium green - fine grained

Hole No. 839-42-4 Sheet No. 6


DIAMOND DRILL RECORD

Footag	e - Metres	
From	То	DESCRIPTION
_145.50	147.50	MAFIC CHLORITIC TUFF
		- 145.50 - 146.00 - 10cm of extreme quartz - carbonate veining
		- dark green - medium + coarse grained
		- highly carbonatized
		- serictic
		- quartz - carbonate veining throughout
		- Schistosity 30° to core axis at 146.6 metres.
147.50	168.80	MAFIC FLOW - BASALT
	·	- carbonatized
		- sericitic
		 Unit grades into a more intermediate type of flow rock
		- frequent quartz - carbonate stringers
		- medium to coarse grained - dark green
		- pyrite seams around quartz - carbonate stringers - up to 15%
		- within unit - white flecks appear - vesicules?
		 crystal tuffs grade in and out constantly throughout unit - slightl
		magnetic in places.
		- shattered core 163.4 to 163.7
168.80	173.40	MAFIC TUFF
		- coarse grained, dark green to black
		 highly carbonated
		- Schistosity 52° to core axis at 171.1 metres.
		- argillaceous laminations from 168.8 to 171.0
		 pyrite seams around edges of some quartz - carbonate veinlets
		- quartz - carbonate veinlets throughout unit
173.40	180.00	INTERMEDIATE FLOW - ANDESITE
		- tuffaceous section from 177.8 to 179.1
		- fine to medium grained, light to medium green
		- pyritic seams - quartz - carbonate veining
		- carbonated
		Flow - Andesite
		- medium green - fine grained - pyrite blebs + seams throughout unit
		- carbonated - quartz-carbonate veinlets

Hole No. 839-42-4 Sheet No....

Hole :	No. 839-42	<u>'-4</u>	, , , , , , , , , , , , , , , , , , ,
	No8		

Footage - Metres		
		DESCRIPTION
From	To	D D S G K I I I I G K
	т —	
_180.00	186.00	ALTERED MAFIC FLOW
i	ŧ	
		- chloritic, talcose flow unit - not carbonatized - speckled appearance - dark green, medium to coarse grained - slightly magnetic
		- Chioritic, talcose flow unit
	1	<u> </u>
		- speckled appearance
		dank appear modium to see a see a see
	 	- uark green, medium to coarse grained
		- slightly magnetic
	1	
	186.00	END OF HOLE
	100.00	END OF HOLE
	<u> </u>	
	 	
l		
ł		
l		
l l		
l 		,
l		
ļ		
1		
l ———		
l		
1		
l 		
【 		
	•	· ·

DRILL HOLE LOCATION SKETO Project 839 Holloway Township D.D.H. #839-42-4

Scale: 1:1000

AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Hole No. 839-42-6

Hole No. 839-42-6 Sheet 1 Property 839-42 Township Holloway Location L12E, 230N	Length 1.30.5 metres Bearing Grid North Dip -45 Objective	Commenced August 11, 1981 Completed August 12, 1981 Drilling Co. St. Lambert Core Size BQ Casing Left/Lost in Hole 15.25 metre	Dip: Collar — 45 ⁰ Etch Test Depth Rdg. True 1 128.0m 48 ⁰ 40 ⁰	Location Sketch Lisspe Lines & Lisspe L 1900E	
Logged By K. Guy		Left in hole for geophysics		0-200 H	Claim No. L-579664 Scale: 1: 10,000
Remarks					Scale: 1: 10,000

Footage	/ Metres	DESCRIPTION	
From	То	DESCRIPTION	
0	15.25	CASING	
15.25	20.50	INTERMEDIATE TUFF	
20.50	24.50	ACID TUFF	
24.50	33.60	SEDIMENTARY ACID TUFF	
33.60	39.50	ACID FRAGMENTED TUFF	
39.50	45.00	ACID TUFF	
45.00	45.63	GRAPHITIC ARGILLITE WITH PYRITE	
45.63	46.00	ACID FRAGMENTAL TUFF	
46.00	53.50	ACID TUFF	!
53.50	57.50	CHERTY TUFF	
57.50	65.50	ACID TUFF	į
65.40	70.50	ACID TUFF BRECCIA	**
70.50	72.00	TUFF BRECCIA	

AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Footage	e - Metres	
From	То	DESCRIPTION
72.00	72.50	ARGILLITE
72.50	73.50	TUFF BRECCIA
73.50	76.50	CARBONATE TUFF
76.50	85.60	CARBONATE BRECCIA
85.60	88.30	FAULT GOUGE
88.30	91.30	CARBONATE BRECCIA
91.30	94.40	MAFIC TUFF
94.40	130.50	CARBONATE TUFF - MAFIC TO INTERMEDIATE
	130.0	END OF HOLE
	•	

Hole No.839-42-6
Sheet No. 2

Foota	ge - Metres	
From	To	DESCRIPTION
0	15.25	CASING
15.25	20.5	INTERMEDIATE TUFF
		- chloritic, sericitic, siliceous
		- medium grained
		- occasional fragmental sections
4		- in places well bedded
		- 19.5 - 20.5 potassic
20.5	24.5	ACID TUFF
		- very fine grained to medium grained
		- well bedded
		- occasional lapilli sections
		- occasional argillaceous bed
		- occasional laminations of py, with trace py throughout
24.5	33.6	SEDIMENTARY ACID TUFF
		- more distal facies of above
		- increased argillaceous beds
		- very fine grained
		 occasional splashes of py associates with more argillaceous sections sections of felsic fragments in argillaceous matrix
		Schistosity at 25m is 60° to core axis.
		32.9 - 33.6 tourmaline rich sections
33.6	39.5	ACID FRAGMENTAL TUFF
		- fine grained siliceous and sericitic matrix argillaceous with
		rhyolite fragments to 3cm.
		- occasional argillaceous beds
		- slight carbonate
	•	

Hole l	. 839 <u> </u>	42-6
Sheet	No. 4:	t

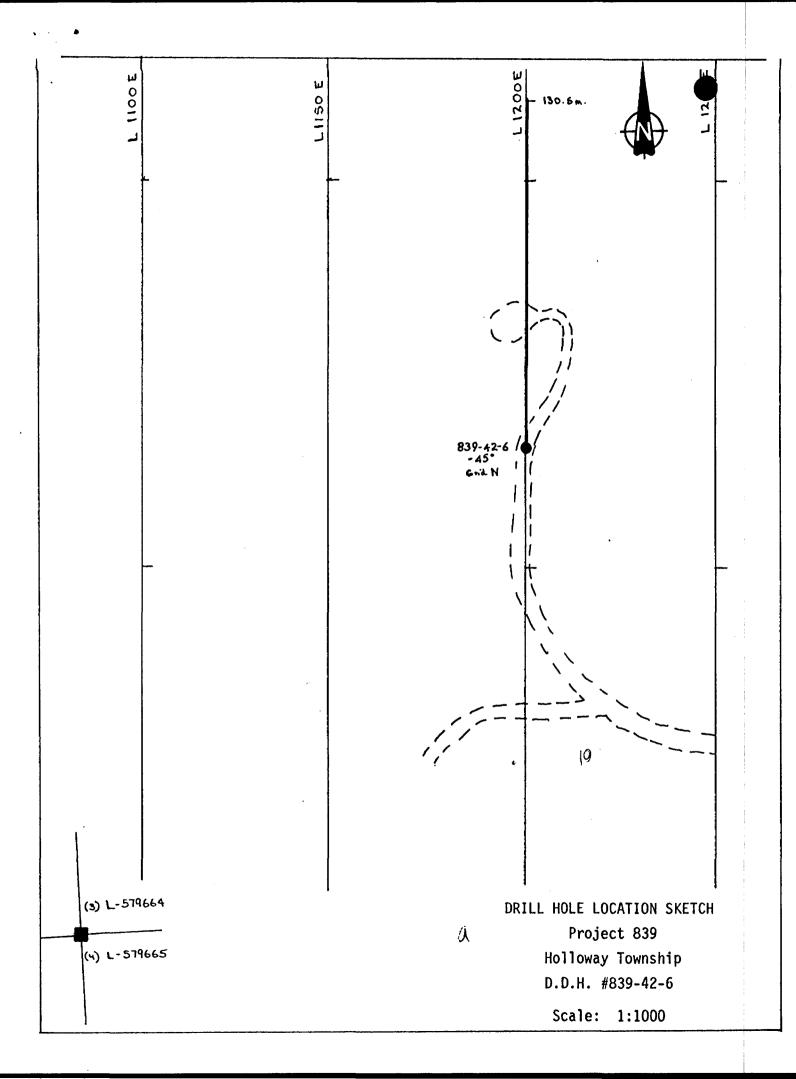
DIAMOND DRILL RECORD

Footage - Metres		
From	To	DESCRIPTION
39.5	45.0	ACID TUFF
		- as before
		- increasing argillaceous down hole seam of py
		Shistosity as 43m is 75 ⁰ to core axis.
45.0	45.63	GRAPHITIC ARGILLITE WITH PYRITE
		- slightly conductive
		- py is fine to coarse grained, laminated and in fragments 15%py
45.63	46.0	ACID FRAGMENTAL TUFF
		- acid fragments with py matrix
		- conductive over length of core
		- py is fine to coarse grained
		<50%py
46.0	53.5	ACID TUFF
		- as before
		- medium grained
		- slightly carbonatized
		from 51.4 pyritiferous in disseminated py, veinlets of py and splashes
		of py
		- 10%py with local 10cm sections of 25%
53.5	57.5	CHERTY TUFF
		- very fine grained, well laminated and bedded
		- laminated Acid Tuff and chert
		- occasional massive chert sections to 10cm 10%py
		- occasional laminations of coarse grained py
		- occasional brecciation and soft sediment deformation features
	•	Schistosity at 57m is 65° to core axis.

Hole No. 839-42-6 Sheet No.____5

DIAMOND DRILL RECORD

Footage - Metres		DESCRIPTION						
From	To	DESCRIPTIUN						
_57.5	65.4	ACID TUFF						
		- as before 10%py						
		 occasional lapilli sections 						
		- occasional fragmented sections						
		- cherty laminations 5-10%py						
		 py as disseminations throughout and coarse grained laminations 						
65.4	70.5	ACID TUFF BRECCIA						
		- Felsic fragments to 5cm in a Felsic matrix 15%py						
		- 50% fragments 25%pv						
		 matrix chloritized - up to 50%py in matrix over 5cm, coarse and fine 						
		grained, conductive over 2cm or through the core in various locations						
70.5	72.0	TUFF BRECCIA						
·								
		- Felsic fragments, intermediate matrix						
		<pre>- very siliceous fragments</pre>						
		- matrix is Intermediate volcanic to argillaceous often carbonatized						
		10%py						
		- much py in matrix to 10% locally						
72.0	72.5	ARGILLITE						
		- massive black, very fine grained						
		- rounded siliceous fragments						
72.5	73.5	TUFF BRECCIA						
		- Felsic fragments. Intermediate matrix as before						
73.5	76.5	CARBONATE TUFF						
		anoon cambonato						
		- green carbonate - siliceous						
		- occasional cherty sections						
	•							
•								


Hole No. 839-42-6 Sheet No...

Footage - Metres								
From	То	DESCRIPTION						
76.5	85.6	CARBONATE BRECCIA						
		- Carbonate fragments to 5cm in a siliceous matrix						
		- fragments originally Intermediate volcanic						
		- occasional argillaceous sections						
	1	- occasional arginaceous sections						
		Schistosity 89m is 50° to core axis.						
85.6	88.3	FAULT GOUGE						
	+							
		- talcose, chloritic						
		- very badly weathered						
-00 2	01.2	CADDONATE DDCCCIA						
_88.3	91.3	CARBONATE BRECCIA						
		- as before						
	 	- tuffaceous sections						
		- argillaceous sections						
	+	- faulted contact at 91.0 - 91.3						
	+	- Taurtea Contact at 5110 - 5115						
91.3	94.4	MAFIC TUFF						
		- chloritic sericitic						
		- well bedded						
		- fine to medium grained						
		 many quartz/carbonate veins parallel to schistosity 						
		 occasional lapilli tuff sections 						
		- gradational contact						
		- tr py in seams						
		Schistosity at 94m is 70° to core axis.						
94.4	130.5	CARBONATE TUFF						
	ļ	Mafia to Intownediate						
		- Mafic to Intermediate - carbonatized, siliceous						
	 	- well bedded						
	-	- many siliceous beds						
	ļ ————————————————————————————————————							
		- occasional lapilli sections						
		- trace py in argillaceous beds						
	1							

Hole No. 839-	42-6
Sheet No7	***************************************

Foota	ige - Metres	
From	То	DESCRIPTION
		Schistosity at 123m is 55° to core axis.
	130.5	END OF HOLE
		·
<u>-</u>		
	<u> </u>	
	<u> </u>	
	<u> </u>	
		
	 	
	ļ	
		
	 	
	 	
	 	
	 	
	 	
	 	
<u> </u>		
	 	
	 	
	 	
	 	
	 	
	•	

Hole No.839	-4	2-6
Sheet No	8	

AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Hole No. 839-42-10B.

Hole No. 839-42-10Bsheet 1 Property Holloway-2 Township Holloway Location Line 1150E	Length Bearing Dip Objective	140.0 metres Grid North -50	Commenced Completed Drilling Co. Core Size	September 11, 1981 September 16, 1981 St. Lambert BO	Dip: Collar Etch Test	-50 Depth 137 - Om	Rdg.	True 40 ⁰	11150	Location Sketch	North
175N Logged By B. Benoit Core Location Perry Lake	Objective			Lost in Hole None							Claim No. L579664
	ocated h inste	25 metres South because of ad of 200 North.	casing o	deflection. Hole					S	175N 191-42-180	Scale: 1:12500

Footage/Metres		DESCRIPTION	
From	То		
0	35.25	OVERBURDEN	
35.25	96.67	ACID TUFF	
96.67	101.64	TUFF BRECCIA	
01.64	102.25	MAFIC TUFF BAND	
02.25	108.00	ACID TUFF	
08.00	124.92	TALC CHLORITE SCHIST	
24.92	140.00	MAFIC BRECCIA	
	140.00	END OF HOLE	
1			

Robert Benaut

DIAMOND DRILL RECORD

Footage - Metres		
From	To	DESCRIPTION
0	35.25	OVERBURDEN
		sand, clay, gravel
35.25	96.67	ACID TUFF
		light grown houd to make the local to the
		light grey, green, hard to medium hard, fine grained, siliceous, chloritic, highly sericitized in some areas, some sections weathered
		and has a rusty brown colour, core contains many quartz veins, these range
		from 1mm to 2cm wide, they cut the core at all angles and are irregular.
		The core contains small Jasper specks. The core also contains some
		areas that contain pink feldspar giving the core a pinkish purple
		colour. The core is also slightly carbonatized, the core is also very
		sericitized in areas, in these areas the core is softer. Some of
		the well sericitized core is very crenulated. Some of the core is a tuff breccia yielding stretched quartz fragments. Pyrite is present,
		1% to 2% locally. The pyrite is finely disseminated and found generally
		near quartz veins or fragments. Foliation of the fragments is at 85° to
		the core axis.
		36.46 - 36.93 Weathered core, rusty brown colour, soft, carbonitized,
		less than 1% pyrite.
		43.63 - 43.84 Weathered core, same as 38.46 - 39.93.
		44.45 - 44.81 Weathered core, rusty brown, soft, carbonatized,
		more sericitic.
		48.43 - 48.63 Weathered core, same as 40.63 - 40.84
		41.71 - 46.47 Quartz sericite tuff, grey to green, soft fine grained.
		41.71 - 46.47 Quartz sericite tuff, grey to green, soft fine grained, slightly carbonatized, chloritic and very sericitic. Core
		is softer due to the sericite alteration. Quartz veins
		are present these range from 2cm to 1mm wide, they are
		irregular also folded and crenulated. They cut the
		core at all angles. Pyrite is present 1% to 2%, it is
		finely disseminated and found generally near quartz veins or fragments.
	•	Or tragilities.
T	1	

Hole No. 839-42-10B Sheet No...

DIAMOND DRILL RECORD

Footage - Metres			
From	То		DESCRIPTION
		46.47 - 47.07	Acid tuff, purplish to pink grey, fine grained, hard,
	_		core, slightly carbonatized and sericitized, colour due
			to feldspars. Contains some quartz veins, these range
			from 5mm to 1mm wide, some of the veins are vuggy. The
	_		veins are irregular and cut the core at all angles. Pyrite
			is present 1%, the pyrite is finely disseminated. It is
	·		found in small splashes or spots in the core. Foliation is at 80° to core axis.
			is at 80 to core axis.
		47.07 - 48.18	Quartz sericite tuff, yellow green, fine grained, medium
			hard, slightly carbonatized and chloritic, very sericitic.
			Contains some quartz veins, these range from 1cm to 2cm
			wide, they cut the core at all angles. This core is not
			as crenulated and folded as 38.71 - 43.47. Pyrite is
			present, 1%, small cubes and finely disseminated with
			the sericite.
		48.18 - 49.33	Acid tuff, same as 43.47 - 44.07, less pyrite, less than
			1%.
	<u> </u>	49.33 - 51.90	Ouartz sericite tuff, same as 47.07 - 48.18, less than
		49.55 - 51.90	1% pyrite.
		51.90 - 53.07	Acid tuff, same as 48.18 - 49.33
		53.07 - 58.50	Acid tuff, hard siliceous, grey to green, fine grained.
			slightly carbonatized, chloritic, and sericitic. Quartz
			veins are present, these range from 2cm to 1mm wide, they
			are irregular and cut the core at all angles. Some of
			the core is crenulated and folded. Foliation is at 86° to
			the core axis. Pyrite is present less than 1%. Pyrite is
			finely disseminated and is found with the sericite near
			quartz veins.
		EO EO OC C7	Acid tuff hand acftan shows assisting to a surrent
		58.50 - 96.67	Acid tuff, hard, softer where sericitization is present.
			light grey to green, very fine grained. The core is chloritic, sericitic, slightly carbonatized. Core contains
			some weathered rock. Some of the core is a quartz breccia
			The core also contains some quartz veins these are crenul-
			ated and irregular. The veins range from 2cm to 1mm wide.
			The state of the s

Hole No. 839-42-10B Sheet No.____

DIAMOND DRILL RECORD

Footage - Metres		DESCRIPTION
From To		DESCRIPTION
		Core also contains crenulated and folded sections. These sections are well sericitized. Pyrite is present 1% to 5% locally. The pyrite is finely disseminated and found near quartz vein seams and in the sericitic matrix. Foltion is at 85° to the core axis.
	63.60 - 63.87	Quartz breccia, very siliceous, hard chlorite + sericite matrix. Some pyrite 1% to 5%, finely dissemina in the matrix.
	63.67 - 64.16	Weathered core, rusty brown colour, softer than the rest of the core. Core is more carbonatized. Some pyrite less than 1%.
	64.23 - 65.39	Quartz sericite breccia, hard, siliceous, contains some fuchsite, chloritic sericite matrix, contains pyrite 1% to 5% locally. The pyrite is found in the matrix, ar close to the quartz seams. Some of the core is very crenulated and folded. 63.23 - 63.42
	66.20 - 69.00	Acid tuff, medium hard, very sericitic, very fine graine Core is very crenulated and folded. Pyrite is present to 2%, pyrite is very finely disseminated and is found is small bands in the core.
	69.00 - 72.24	Acid tuff, grey to green, hard, very fine grained, not as sericitic, contains some quartz veins, lcm to lmm wide they are crenulated and irregular. Some of the core is sericitic, these areas are folded and crenulated. Pyrit is present, 1% to 3%, finely disseminated and found near quartz seams and is also found in the sericite. Foliati at 86° to the core axis.
	72.24 - 75.00	Acid tuff, hard, light grey to green, slightly carbonati sericitized, and is also chloritic. The core is also ve crenulated and folded. Some pyrite is present 1%, finely disseminated and found in the sericitic matrix.
*		

Hole No. 839-42-10B Sheet No...

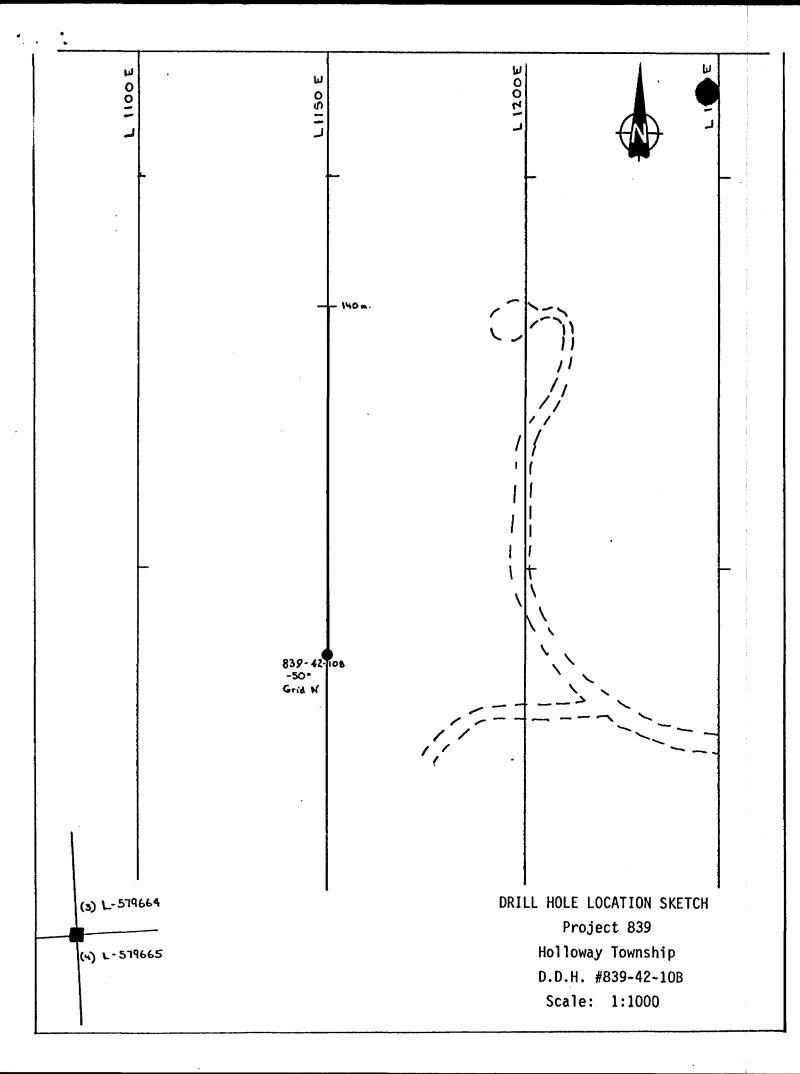
DIAMOND DRILL RECORD

Foota	age - Metres	
From	To	DESCRIPTION
		77.86 - 78.07 Acid tuff, same as 72.24 - 75.00.
		70.00
		78.35 - 78.51 Quartz breccia, same as 63.60 - 63.87
		80.63 - 81.10 Quartz breccia, same as 78.35 - 78.51 but more pyrite
		1% to 2%, pyrite is found near quartz vein or fragment
		seams. The pyrite is finely disseminated and found in
		the matrix. The matrix is a chlorite + sericite mix.
		Some of the pyrite is found in small cubes throughout
<u> </u>		the core.
		82.02 - 82.27 Quartz breccia, same as 63.60 - 63.87.
-		83.04 - 83.10 Quartz breccia, same as 82.02 - 82.27
		00.50 00.00
-		83.52 - 83.92 Quartz breccia, very sericitic, the core is soft where
		sericite occurs. The core has some pyrite 1% to 2%. The
	<u> </u>	pyrite is found near the quartz seams, it is finely
- <u></u>	 	disseminated and in the matrix.
- <u></u>	 	84.41 - 84.50 Quartz breccia, same as 80.04 - 80.10.
	-	84.41 - 84.50 Quartz breccia, same as 80.04 - 80.10.
· · · · · · · · · · · · · · · · · · ·	+	89.84 - 90.00 Quartz breccia, more sericitic, slightly chloritic, less
	 	than 1% pyrite.
		chan in pyrice.
		90.11 - 90.78 Quartz breccia, same as 89.84 - 90.00.
		4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		92.78 - 93.00 Quartz breccia same as 90.11 - 90.78.
6.67	101.64	TUFF BRECCIA
		Light to dark grey, hard, very siliceous, slightly sericitic and
		chloritic, contains small quartz veins, these range from 3mm to 1mm wide.
		The quartz veins are irregular and cut the core at all angles. The
		core also contains some brecciated sections. Pyrite is present from 1%
		to 10%, the pyrite is found either in small spots or cubes or finely
		disseminated near quartz seams or between the fragments. Matrix is
	,	slightly graphitic.
,		

Hole No. 839-24-10B Sheet No.____

Hole No. 839-42-10B	
Sheet No. 7	

Foota	ge - Metres	
From	To	DESCRIPTION
		97.06 - 97.21 Quartz breccia, grey dirty quartz, chlorite + sericite
		matrix, very hard siliceous rock. Pyrite is present 1%
~		to 3%, finely disseminated in the matrix.
		101.08 - 101.23 Quartz breccia, same as 97.06 - 97.21, less pyrite, less
		than 1%.
3		
101.64	102.25	MAFIC TUFF BAND
·		Soft, dark green grey, greasy feel, fine grained. Contains some
	 	quartz carbonate veins, these range from 5mm to 1mm, these are irregular
		and cut the core at all angles. The core is also very chloritic. The
<u> </u>		core is broken up suggesting a small fault. Pyrite is present less
		than 1%.
102.25	108.00	ACID TUFF
102.23	100.00	ACID TOTT
		Medium hard, light grey to olive green, slightly carbon tized,
		sericitic and chloritic, contains some quartz veins, these range from
		lcm to lmm wide, the veins are irregular and cut the core at all angles.
		The core is folded and crenulated in some areas. The foliation is at
		85° to the core axis. Pyrite is present less than 1%. The pyrite is
		finely disseminated and found in the sericitic + chloritic matrix.
108.00	124.92	TALC CHLORITE SCHIST
		Dark grey to green, soft, fine grained, greasy feel, talcy.
		Chloritic, sericitic. Core contains quartz carbonate veins, these
		range from 3cm to 1mm wide. These veins are irregular and cut the core
		at all angles. The core is slaty and broken up. Pyrite is present 1%.
		cubes and finely disseminated. Fault is present in the chlorite schist.
		Fault - 119 /2 110 00 Fault come is a talk shlowith mud Variance
		Fault - 118.43 - 119.00 Fault, core is a talc chlorite mud. Very soft.
		Compressed mud. Green colour.
124.92	140.00	MAFIC BRECCIA
14.92	140.00	PIACLO DICCOLA
	•	Grey to green, hard siliceous, chloritic, carbonatized, slightly
		sericitic. Quartz veins present, these range from 4cm to 1mm, these are
1	i	serverere quarter verms present, these range from 40m to mill, these are


AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Hole No. 839-42-10B

Footage - Metres			
From To	,	DESCRIPTION	
		irregular and cut the core at all angles. Pyrite is present 1%.	
		irregular and cut the core at all angles. Pyrite is present 1%, disseminated pyrite.	
140	2.00	END OF HOLE	
	$\longrightarrow \downarrow$		
			
			
			
			
			
		· · · · · · · · · · · · · · · · · · ·	
		<u>. </u>	
	_		
	_		

DIAMOND DRILL RECORD

Hole No. 839-42-12

Hole No. 839-42-12 Sheet 1	Length 147.0 metres	Commenced October 20, 1981	Dip: Collar50°	Location Sketch North
Property 839-42	Bearing Grid North	Completed October 22, 1981	Etch Test Depth Rdg. True	
Township Holloway	Dip50°	Drilling Co. St. Lambert		
Location L1050E, 100N	Objective	Core Size BQ	1 147.0m 56 ⁰ 49 ⁰	1 8 4 1 1
		Casing Left/ Lost in HoleNone		
Logged By S. Davies	!			834 12-12 Claim No. L-57.9672
Logged By S. Davies Core Location Perry Lake				
				BLO Scale:
Remarks	** * .	ı		1:10,000
- Studiks				
,	<i></i>			
Footage/ Metres				1 files and the part of the pa

Footage/	Metres	DESCRIPTION	
From	То		
0	17.25	OVERBURDEN	
17.25	54.30	ALTERED LAPILLI TUFF	
54.30	63.50	MAFIC FLOW OR TUFF	
63.5	130.75	ALTERED LAPILLI TUFF	
30.75	147.00	TALC CHLORITE SCHIST	
	147.00	END OF HOLE	

DIAMOND DRILL RECORD

Footage - Metres		DESCRIPTION
From	То	
į		Angle of bedding at 10° to the core axis at 36.5 metres.
		Angle of bedding at 40° to the core axis at 51.0 metres.
-		From 35.34 to 35.43
		41.50 to 42.06 rusty alteration associated with
		42.44 to 42.81 shear zones
		51.73 to 52.26
		Quartz veins cut the core at all angles and constitute about 30% o
		the core by volume. Minor disseminated sulphides.
		52.75 - 54.2 fault zone. Core is highly broken rusty and altered to ta
		From 54.0 to 55.0 the amount of quartz veining increases to about 80%.
54.3	63.5	MAFIC FLOW OR TUFF
24.5	03.3	MAPIC PLOW ON TOPP
		Dark grey to black in colour yery fine grained and soft. Most
		Dark grey to black in colour, very fine grained and soft. Most of the rock has been chloritized. The amount of quartz is about 25%
1		which occurs as veins that cut the core at random angles.
		Cubic disseminated sulphides are found throughout the core and
	- 	in the quartz/carbonate veins. Overall the total is about 3-4%. At
		63.0 metres, angle to the core axis is 20°. The lower contact is
		gradational.
60.5	120 75	ALTEDED LADILLY THEE
63.5	130.75	ALTERED LAPILLI TUFF
		as per 17.25 to 54.3
		as per 17.25 to 54.5
		63.5 to 69.9 as per 22.9 to 54.3, the rock is highly brecciated and
		silicacus Silica content ~75%
		siliceous. Silica content ≃75%. At 66.0 metres, angle to the core axis is 20°. Minor disseminated pyr
		There is more sericite in this section than the previous section and it
	1	occurs almost interbedded between silica layers.
		69.9 to 83.28 chert breccia. The tuff is highly brecciated and siliced
		The fragments range in size from 3mm to 3cm. The amount
		of silica is about 60%. Quartz veins cut the core at
	_	
		random angles and some contain fuchsite. Minor dissemina
		pyrite ±1%. Lower contact is sharp at 45° to the core as
		83.28 to 84.68 more mafic unit with some sericite. Dark green to blace and massive. Tiny sericite laminae at 50° to core axis
		and massive. Tiny sericite laminae at 50 to core axis
	•	From 84.0 to 84.68 the unit is brecciated by quartz (smokey) veining.
`		
į	1	

Hole No. 839-42-12 Sheet No. 6

AMAX MINERALS EXPLORATION

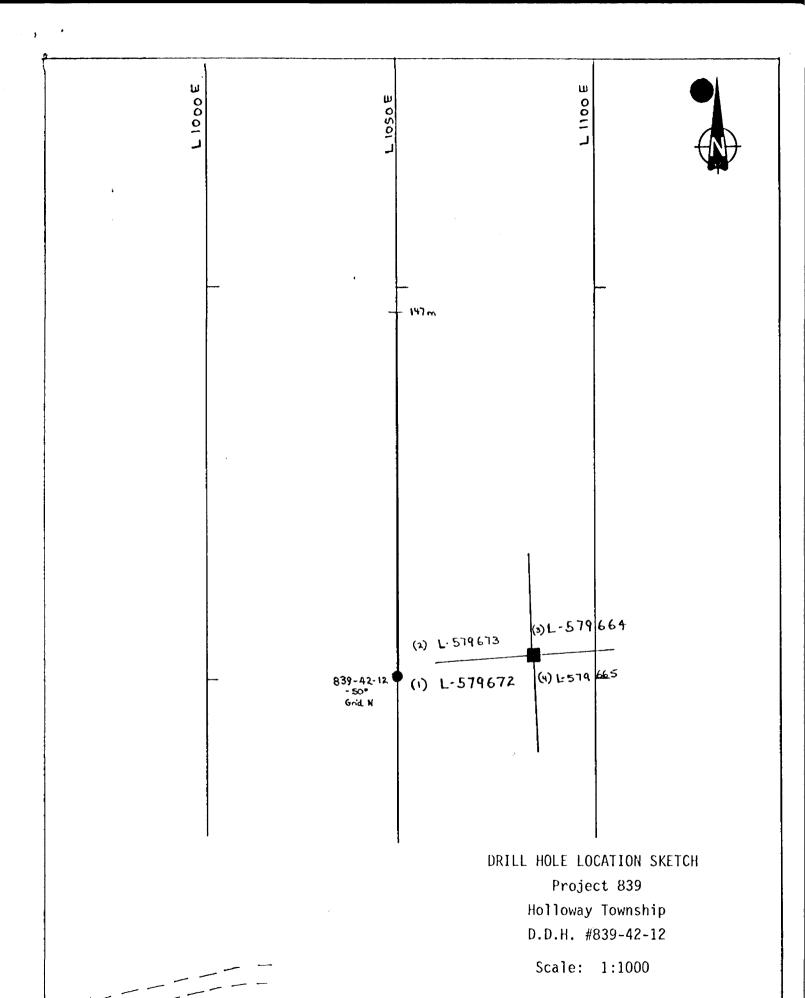
(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

From	To	DESCRIPTION
0	17.25	OVERBURDEN
17.25	54.30	ALTERED LAPILLI TUFF
		
	-	In this unit, the original tuff has been highly altered by the
		presence of silica; both as chert and as quartz.
		Some relict fragments can be noted but these have also been altered.
		The fragments are very siliceous in places, cherty, sericitized and
		chloritized. The size varies from <2mm to over 4cm.
-		In some places the amount of silica exceeds 80% and the core is
		highly brecciated.
1		Many shear zones and faults (with rusty alteration) are found
		throughout. These could be off-shoots or splays from the major fault
		system which is associated with the chloritic carbonate schist at the
		end of the hole.
		The bedding angle changes from ≃50° to 60° to sections where we
1		were drilling down dip. This could be caused by over turned folding
		or by hinge faulting.
		The overall sulphide content is $\pm 1\%$ but is more highly concentrated
		in areas.
		17.25 to 19.7 the tuff is dark grey in colour, fine grained and siliceous.
	!	The fragments are medium grey and up to 4cm in size. The
[amount of silica is about 25%. There is also fuchsite and
		sericite in the veins and around the fragments.
		19.15 to 19.2 a quartz vein cuts the core at 40° to the core axis.
		Associated with this vein is rusty alteration, ankerite and
		fuchsite. Angle of bedding is 45° to the core axis.
		Sulphides - cubes (infrequent) and disseminated $\pm 1\%$.
<u> </u>		19.7 to 22.9 this unit is very siliceous and is characterized by a
		yellowish colour due to the presence of sericite. The
		fragments are up to 2cm in size and have a preferred angle
		of orientation of 40° to the core axis. There is also
	i	evidence of minor folding or soft sediment slumping.
		Amount of silica ≃20%.
		22.9 to 54.3 light grey in colour and cherty. The original rock may have
		22.9 to 54.3 light grey in colour and cherty. The original rock may have been an ash tuff since there are fragments <2mm in size.
		Downhole the rock is highly brecciated due to an increase
		in quartz veining. The total silica content is 80-90%.
		Angle of bedding is 25° to the core axis at 30.0 metres.

Footage - Metres

Hole No. 839-42-12 1


Footage - Metres		D.E.C.C.D.T.D.M.Y.O.Y.				
From	То	DESCRIPTION				
		84.68 to 89.50 Yellowish in colour due to a high percentage of sericite				
		Sericite is well bedded with quartz at 35-40° to the				
		core axis. Minor sulphides.				
		89.50 to 92.3 Agglomerate. Fragments of various compositions up to 8cm				
		in size. They have a preferred angle of orientation of				
		40° to the core axis. Silica content ≃10%. Disseminated sulphides ±1% around some of the fragments.				
		92.3 to 97.1 Graphitic argillite				
···-		Black and very soft. From 92.3 to 94.7 the graphite is				
		brecciated by smokey quartz veining at random angles.				
		From 94.7 to 95.46 massive with <1mm laminae at 20° to the core axis.				
		95.46 to 97.1 brecciated again with a preferred angle of orientation of				
		15° to the core axis.				
		97.1 to 102.1 the tuff has been altered to sericite with the character-				
		istic yellow colour. It is well bedded with silica at 10°				
		to the core axis. Silica content ≃30%. Minor sulphides.				
		97.97 to 98.56 white quartz vein with ankerite and wall rock fragments.				
		102.1 to 114.3 fault zone. The core is highly broken with rusty altera-				
		tion around the fragments. Brecciated zone flanking the				
		fault.				
		106.5 to 109.8 brecciated zone with about 40% silica siliceous.				
		112.62 to 114.2 light green chert which is faulted and has white quartz				
		veining at random angles.				
!		119.5 to 121.6 breccia and shearing with chloritic alteration along the				
		fractures. Also carbonatization.				
		121.6 to 125.24 sericitic tuff yellowish in colour with fragments up to				
		7cm in size.				
		Minor sulphides -1% as disseminated pin head size and				
		about 15% silica.				
		125.24 to 126.0 shear zone with chloritic alteration.				
		126.0 to 130.75 chert				
		Light grey in colour, massive and crystalline. On				
		closer examination the chert has been brecciated. Quart:				
		veining at random angles throughout.				
130.75	147.0	TALC CHLORITE SCHIST				
	•	Dark green and white in colour, and soft. The original rock has				
1		been highly altered to chlorite and carbonate by the presence of a				
		fault.				

Hole I	No. 839-4	2-12
Sheet	No	

DIAMOND DRILL RECORD

Footage - Metres		
From	То	DESCRIPTION
	;	Numerous white quartz veins at all angles cut the core but are
		Numerous white quartz veins at all angles cut the core but are barren of mineralization. Some disseminated sulphides +1%.
	;	Some disseminated sulphides †10
		Some disseminated sulphitaes -1/2.
	147.0	END OF HOLE
	117.0	
	1	
	J	
	i i	
	1	
	<u> </u>	
	 	
	-	
	!	
	1	
	-	
 		
1		

Hole No. 839-42-12 Sheet No. 8

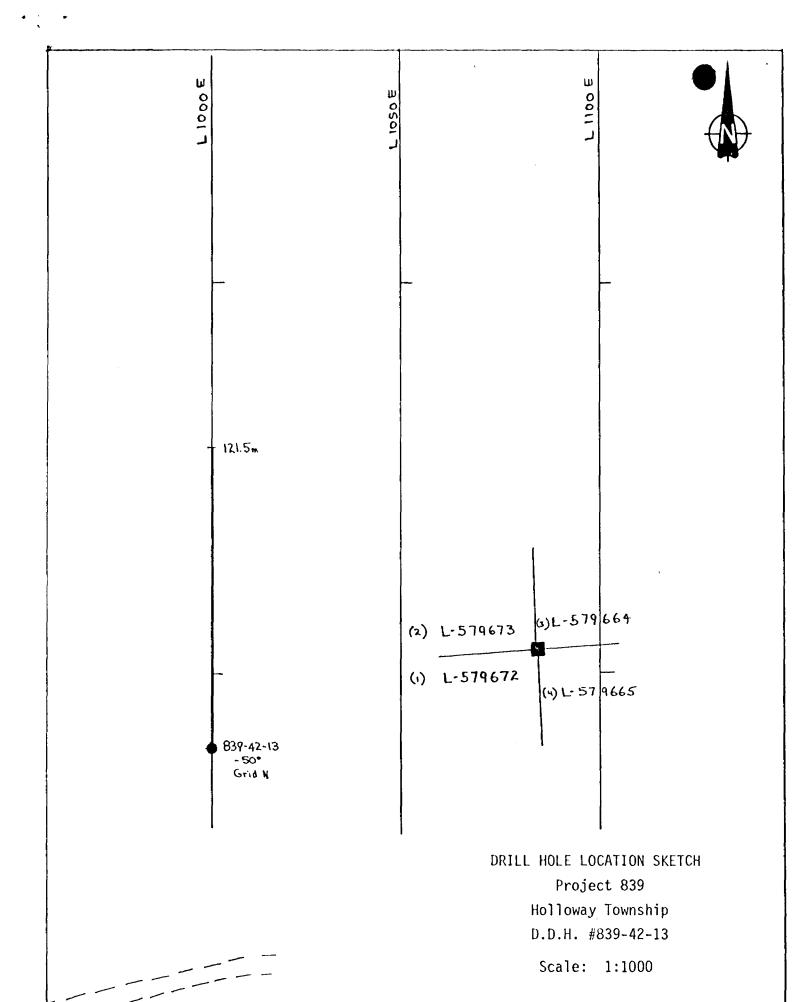
DIAMOND DRILL RECORD

Hole No. 839-42-13

Hole No 839-42-13 Sheet	Length 121.5 metres	Commenced October 20, 1981	Dip: Collar -50°	Location Sketch	North	
Property 839-42 Township Holloway	Bearing Grid North Dip -50	Completed October 23, 1981 Drilling Co. St. Lambert	Etch Test Depth Rdg. True	20 00 30 M	\uparrow	
Location L1000E, 80N	Objective	Core Size BQ Casing Left/Lost in Hole	1 121.5m 54° 47°			
Logged By S. Davies				834-42 Bys	Claim No. L-579672	
Core Location Perry Lake				8.4.0	Scale: 10,000	
Remarks						
				erenan i e e		

Footage Metres		DESCRIPTION	
From	То	DESCRIPTO.	
0	16.5	OVERBURDEN	
16.5	28.26	TUFF BRECCIA	
28.26	121.5	INTERMEDIATE ASH TUFF	
	121.5	END OF HOLE	

DIAMOND DRILL RECORD


Footage - Metres		
From	To	DESCRIPTION
_0	16.5	OVERBURDEN
]6,5	28,26	TUFF BRECCIA
		Fine grained, siliceous, light to dark grey in colour. Overall
		silica content is about 30%. The core is highly brecciated in places
		such as from 16.5 metres to 18.1 metres. The fragments are cherty and
		up to 2cm in size.
		Numerous rusty sections up to 20.0cm wide accompany fractures in
		the rock. Quartz veining totals about 8% and many are highly crenulated.
		±1% sulphides. Massive - the fragments do not have a preferred angle
		of orientation.
		Lower contact is gradational.
28.26	121.15	INTERMEDIATE ASH TUFF
		Very fine grained and in most places the fragments are too small to
		be seen with the naked eye. From 28.26 to 29.7 there are green chloritic
		blebs with a preferred angle of orientation of 45 to 50° to the core axis.
		The overall colour is a greenish-grey and it is fairly massive. $\pm 1\%$
		sulphides but it is concentrated in sulphide beds. Quartz content is
<u> </u>	-	about 5%.
		From 29.49 to 30.5 breccia. Cherty fragments of various sizes up to 3cm
		in a quartz matrix.
		From 31.81 to 31.85 sericitic bands.
		From 40.6 to 46.2 the core is well banded with sericite at 40° to the
		core axis. The bands are from 1mm to 2cm in width.
		There are also bands of silica (quartz) with an overall
	 	content of about 8%.
		From 46.2 to 46.65 shear zone
		From 49.69 to 50.7 beds of sulphides up to 1.5cm wide occur. These beds
		have a content of about 90% and are conformable.
		51.12 to 52.5 quartz veining increases to about 10%. Some cubic pyrite
		associated with the veins. 53.58 to 54.23 quartz veins brecciate the core with associated sericite
		about 5%. Band of sulphides 1cm wide at 53.58 with an
		overall content of about 3%.
		60.64 to 60.77 two lcm wide sulphide beds.
<u>`</u>		At 64.5 angle of bedding is 400 to the core axis.

Hole No. 839-42-13 Sheet No. 4

DIAMOND DRILL RECORD

Footage - Metres		DESCRIPTION
From	To	DESCRIPTION
		From 66.0 to 66.67 breccia zone with ≃3% sulphides.
		From 68.9 to 69.15 ≃30% quartz and sericite.
		From 73.35 to 73.72 white quartz veins with minor sulphides around to rims
		From 75.0 to 76.9 the sericite content increases to about 60% of the core
		by volume. Quartz also increases to about 30%. Banded
····		at 30° to the core axis.
		76.9 to 80.9 the core is brecciated by smokey quartz veins ≃5%. Sulphide
		content is ±2%.
		81.6 to 82.4 ≃40% sericite and 20% crenulated quartz veining.
		91.28 to 91.74 about 30% sulphides associated with a more cherty section.
		At 92.8 a 3mm wide sulphide stringer.
		93.6 to 95.0 breccia with a quartz matrix. Numerous patches of sulphides
		with an overall content of ±2%
		From 95.0 to 97.76 the rock is no longer brecciated but sulphides occur
		in lcm size patches throughout ±2% overall.
		99.3 to 103.0 breccia which is associated with a fault from 101.2 to 101.6
1		Fragments of wallrock in a quartz matrix. Sericite around
		some of the fragments.
1		105.7 to 113.1 the core is faulted and brecciated with about 20% quartz.
:		116.8 to 117.06 brecciated quartz vein.
		108.3 to 109.1 quartz content about 60% with associated sericite.
		118.7 to 121.5 breccia. Fragments of tuff in a quartz matrix. Quartz
		veins are highly crenulated with sulphides along the
		margins. Also some sericite ≃5%.
1		
	121.5	END OF HOLE
	1	
	 †	(
F		

Hole No. 839-42-13 Sheet No.....

AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Hole No. 839-42-15

Hole No. 839-42-15 Sheet Property 839-42 Township Holloway Location L1400, 250N	Length 119.0 metres Bearing Grid North Dip -50 Objective	Commenced October 26, 1981 Completed October 29, 1981 Drilling Co. St. Lambert Core Size BQ	Dip: Collar — 50 ⁰ Etch Test Depth Rdg. True 1 119.0m 51 ⁰ 44 ⁰	Location Sketch	North
Logged By S. Davies Core Location Perry Lake		Casing Left/ Lost in Hole		L 13 E	Claim No. L-579664 Scale: 1: 10,000
Remarks				34.0	
Footage Metres	DESCRIPTI	0 N		<u></u>	

Footage Metres		DESCRIPTION	
From	То	DESCRIPTION	
0	14.70	OVERBURDEN	Į.
14.70	27.88	ANDESITE	
27.88	29.00	GRAPHITE	
29.00	44.74	SERICITIC LAPILLI TUFF	
44.74	45.30	BLACK CHERT	
45.30	88.80	ASH TUFF	
88.80	95.00	CHERT	
95.00	100.50	TUFF BRECCIA	
100.50	119.00	TALC CHLORITE	
	119.00	END OF HOLE	

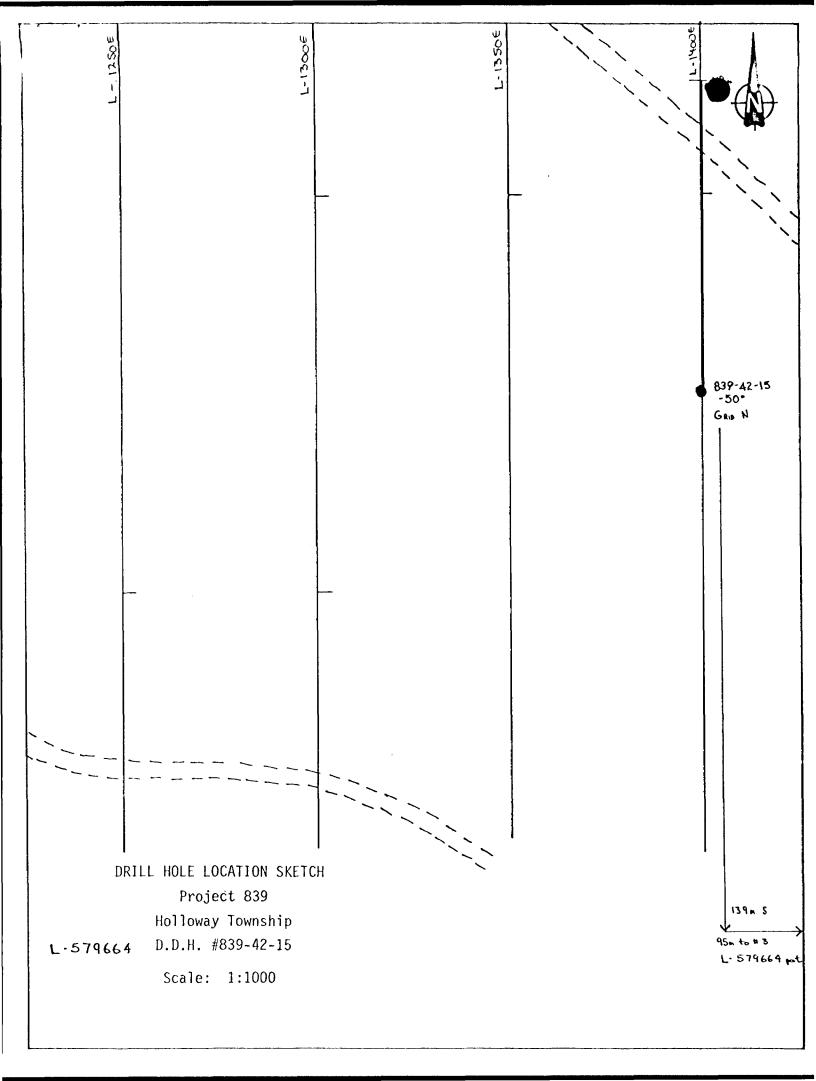
DIAMOND DRILL RECORD

Footage - Metres	
From To	DESCRIPTION
_0 14.7	OVERBURDEN
14.7 27.88	ANDESITE
	Dark green to black in colour, fine grained, relatively soft and
	slightly magnetic. Numerous dark green chlorite blebs at 45° to the core axis. Minor quartz veining at random angles to the core totals
	about 3% by volume.
	Minor sulphides associated with the quartz veins with an overall content of less than 1%.
27.88 29.0	GRAPHITE
	Black, soft and conductive. It is brecciated in places especially
	at the lower contact. Quartz/carbonate stringers cut the core at ran-
	dom angles and constitute about 5% by volume. Sulphides occur through-
	out, finely disseminated and in concentrated patches. Overall content
	is about 70%.
29.0 44.74	SERICITIC LAPILLI TUFF
	Light green in colour due to sericitic alteration of the fragments.
	The fragments are anhedral to subhedral and range in size from <1mm to
	2cm. They have a preferred angle of orientation of 50° to the core
	axis.
	Minor quartz veining at random angles to the core axis constitute
	about 3% by volume. Many of these veins are crenulated. Disseminated sulphides throughout ±1%
	Disseminated sulphides throughout 1%.
	From 38.12 to 38.85 chert breccia. Black chert fragments in a quartz
	matrix. From 42.85 to 43.35 \[fault zones with rusty alteration.
	From 42.85 to 43.35 \ fault zones with rusty alteration. " 44.00 to 44.30 \}
44.74 45.30	BLACK CHERT
	Black, very hard and crystalline. Angular white fragments up to
	lcm in size throughout. Minor sulphides.

Sheet No.

DIAMOND DRILL RECORD

Footage	e - Metres	
From	То	DESCRIPTION
45.30	88.80	ASH TUFF
		Light green in colour due to sericitic alteration of the fragments.
		The fragments are subhedral to euhedral and less than 2mm in size. They
		are of a variety of compositions and have a preferred angle of orienta-
		tion of 45° to the core axis. Minor quartz veining at random angles to the core.
		Disseminated sulphides throughout with an overall content of about
		2%.
		C /0 •
		From 50.0 to 50.93 chert breccia as per 38.12 to 38.85.
		From 51.0 to 52.4 massive sulphides in bands and around fragments with
		a total content of 70%.
		From 64.5 to 72.3 the rock has small (less than 2mm in size) bright
		green fuchsite fragments within the tuff. There is
		also about 5% carbonate.
		From 72.9 to 74.8 the rock is fairly massive and soft.
		From 82.5 to 87.8 fault with breccia along the boarders. The fault
		zone also contains black and white chert which is
		highly broken. Downhole, the quartz veining increases
		to about 5%.
88.8	95.0	CHERT
	33.0	OTIENT
		Upper contact is sharp at 70° to the core axis. The chert is
-		whitish in colour, crystalline and very hard.
		It is finely brecciated but otherwise the rock appears massive.
		The chert is relatively barren of mineralization.
		From 92.3 to 93.5 the chert is greyish and not quite as siliceous as
		the sections.
		94.1 to 95.2 the rock is brecciated and more like quartz rather
		than chert
		The lower contact is faulted and rusty from 94.3 to 95.0.
		THEE PRESENT
95.0	100.5	TUFF BRECCIA
		Large angular tuffaceous fragments in a quartz matrix. The frag-
	3	ments are up to 3cm in size and are yellowish due to sericitic altera-
		ments are up to 3cm in size and are yellowish due to sericitic alteration. Quartz content is about 30%. Also quartz veining at random angle


Hole No	839-42-15
Sheet No	5

AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Foota	ge - Metres	
From	То	DESCRIPTION
		which are crenulated and broken. Preferred angle of orientation is
		which are crenulated and broken. Preferred angle of orientation is 55° to the core axis. Minor sulphides ±1%.
		The lower contact is gradational and fractured.
100.5	119.0	TALC CHLORITE SCHIST
100.5	119.0	TALC CHURITE SCHIST
		Dark green and white, very soft, well bedded at the top of the
		Dark green and white, very soft, well bedded at the top of the section at 50-55° to the core axis. Carbonate content about 10° by volume. About 8% quartz veining and stringers at random angles.
		by volume. About 8% quartz veining and stringers at random angles.
		Chloritic mud along the fractures.
	119.0	END OF HOLE
	1.13.0	
•		
,		
	i	

AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Hole No. 839-42-16

Township Holloway Location L1450, 255N Dip -50 Drilling Co. St. Lambert Core Size BQ Casing Left/Lost in Hole Casing Left/Lost in Hole	Hole No. 839-42-16. Sheet	Length	114.0 metres Grid North	Commenced	October 29, 1981 October 30, 1981	Dip: Collar	 -50°		Location Sketch	North
Logged By S. Davies Core Location Perry Lake Claim No. L-579664	Property 839-42 Township Holloway Location L1450, 255N	- 1	-50°	-	C+ l-mLaut	Etch Test	Ď	True 45 ⁰	\$ £ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
Scale: /:10,000	Logged By S. Davies Core Location Perry Lake			Casing Left/	Lost in Hole				839-42	Claim No. L-579664
Remarks	Remarks						 			Scale: 7:70,000

Footag	Metres	DESCRIPTION	
From	То	D D D C KITTION	
0	18.25	OVERBURDEN	
18.25	33.50	ANDESITE	
33.50	56.50	LAPILLI TUFF	
56.50	76.76	ACID TUFF	
76.76	92.00	GREEN CARBONATE ROCK	
92.00	99.97	ACID TUFF	
99.97	100.66	CHERT	
100.66	114.00	TALC CHLORITE SCHIST	
	114.00	END OF HOLE	

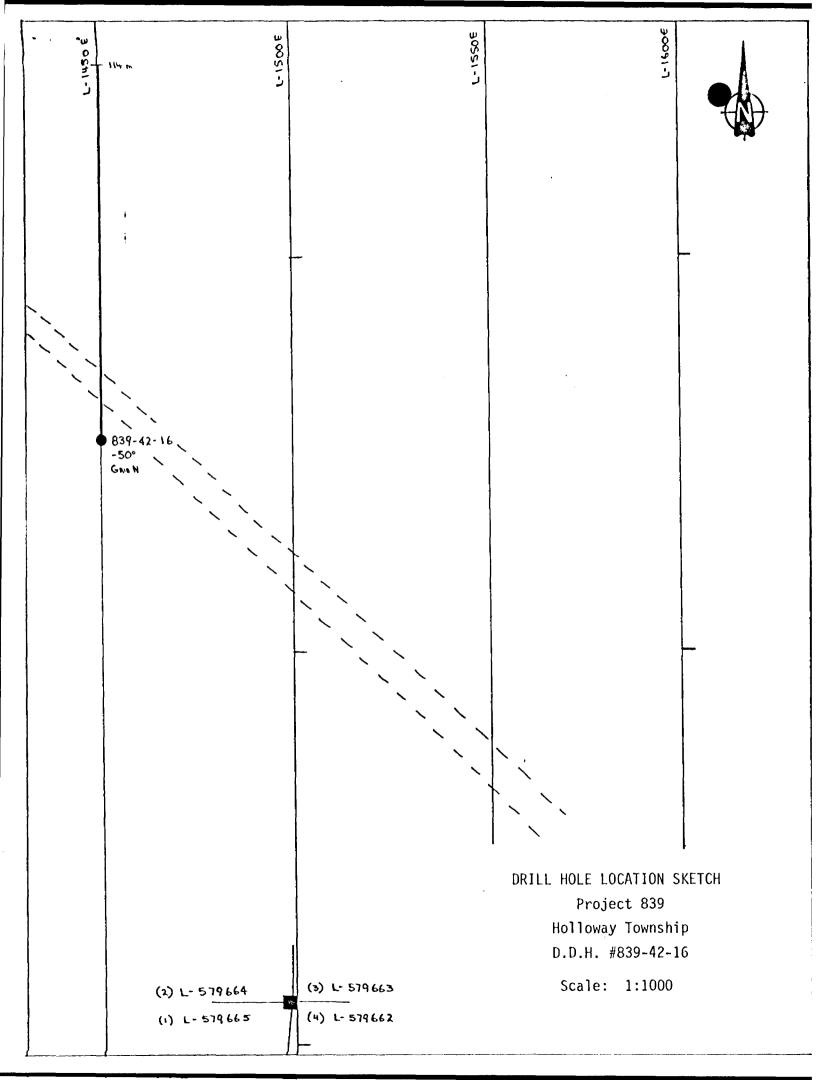
DE Som

DIAMOND DRILL RECORD

Footay	ze - Metres	
From	То	DESCRIPTION
_0	18,25	OVERBURDEN
18.25	33.50	ANDESITE
		Dark green to black in colour, very fine to fine grained. Dark
		green chlorite clots with a preferred angle of orientation of 55° to the core axis. Quartz veins and stringers cut the core at random angles
·		and total about 3% by volume.
		Very minor sulphides in places with less than 1% overall. Lower contact is gradational.
		zone. contact is graductonal.
		From 22.9 to 23.28 missing core.
33.50	56.50	LAPILLI TUFF
		Light green in colour due to sericitic alteration. Fragments are
		subhedral to anhedral and range in size from lmm to lcm. Very minor
		quartz veining at random angles to the core.
		There is a preferred angle of orientation of 50° to the core axis.
		About 2% sulphides throughout but lcm size splotches occur in places.
		From 33.9 to 35.0 metres angular black chert fragments up to 2cm in
		size occur in places.
		From 34.5 to 36.1 up to lcm size sulphide splotches occur giving
		a total content in this section of about 4%.
		From 36.46 to 37.4 large (4cm) tuff fragments in a black chert matrix.
		Quartz veining ~5%. The fragments have a preferred
		orientation of 45° to 50° to the core axis.
		From 41.29 to 42.50 about 40% smokey quartz veins and chert. Dissemina-
		ted sulphides along the margins of the veins.
		From 43.8 to 52.1 the rock is not sericitized and appears to be almost
		like a greywacke. It is massive and about 8% quartz
	•	veining occurs from 49.5 to 50.9 metres. From 52.1 to 53.3 the tuff is sericitic with 1mm in size fuchsite blebs.
		From 56.1 to 56.85 and from 57.27 to 57.62 large angular tuff fragments
		in a black chert matrix.
		62.2 to 62.62 fault with rusty alteration.
		From 53.3 to 56.5 the tuff does not have as much sericite
	•	trum 33.3 to 30.5 the turn does not have as much sericite

Hole No. 839-42-16 Sheet No.....

DIAMOND DRILL RECORD


Foota	ge - Metres	
From	To	DESCRIPTION
56.5	76.76	ACID TUFF
		Silica content is about 50% as a matrix and in veins. The veins
		cut the core at random angles and are crenulated.
		The fragments are angular and have a preferred angle of orienta-
		tion of 45° to the core axis in places.
	 	Carbonate content is about 10% which occurs mostly as ankerite.
		The ankerite is quite rusty in places giving the rock a brownish colour Overall sulphide content ±2%.
		From 69.0 metres to 70.7 ankerite constitutes about 10% of the core.
		73.35 to 74.1 and 75.3 to 75.8 ankerite.
		75.8 to 76.76 red chert
76.76	92.00	GREEN CARBONATE ROCK
		Large green fragments that have been altered to fuchsite in a
		quartz matrix. The fragments are up to 4cm in size and are angular.
		Minor sulphides ±1%.
		Carbonate content about 10% and quartz about 15% by volume.
		In many places, the core has been rusted due to the presence of
		ankerite. The fuchsite content decreases downhole and the lower
		contact is gradational.
		91.35 to 92.0 about 90% quartz veining which has brecciated the parent rock. The vein is white with minor sulphides along the contact.
92.0	99,97	ACID TUFF
		as described from 56.5 to 76.76 metres.
		94.7 to 95.1 ~80% white quartz
		The overall silica content is about 60%.
99.97	100.66	CHERT
		Greyish/white chert which has been brecciated into angular frag-
		ments up to 2cm in size. It is very siliceous and crystalline.

Hole No. 839-42-16 Sheet No. 4

DIAMOND DRILL RECORD

Hole N	<u>. 839-</u> 4	12-16	
Sheet 1	VooV	5	***************************************

Foota	ge - Metres	
From	To	DESCRIPTION
100.66	114.00	TALC CHLORITE SCHIST
		as described in 42-11, 12, 13, 14, and 15.
	174.00	TND OF HOLE
	114.00	END OF HOLE
	ļ	
	1	
	1	
<u> </u>		
,	:	

DIAMOND DRILL RECORD

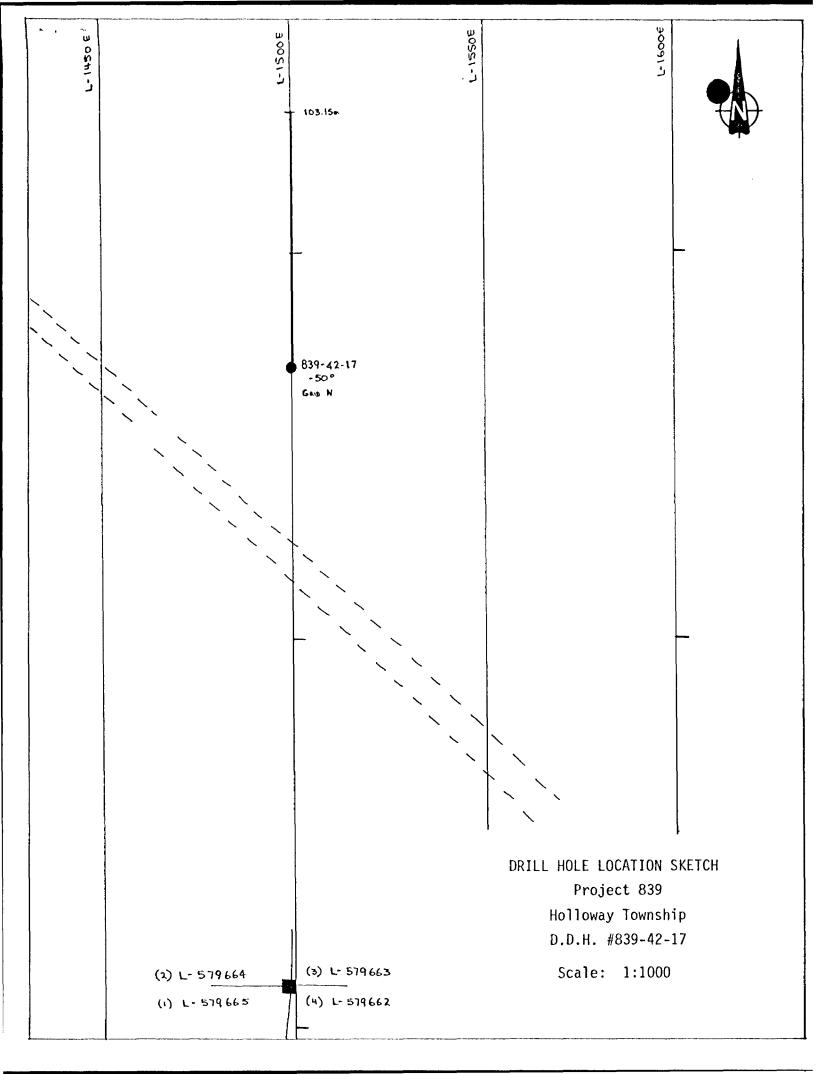
Hole No. 839-42-17 Sheet 1 Property 839-42 Township Holloway Location L1500, 270N Logged By S. Davies Core Location Perry Lake	Length 103.15 metres Bearing Grid North Dip -50 Objective	Commenced October 30, 1981 Completed October 31, 1981 Drilling Co. St. Lambert Core Size BQ Casing Left/Lost in Hole None	Dip: Collar -50° Etch Test Depth Rdg. True 1 103,15m 55° 48°	Location Sketch North	1579663
Remarks				Scale:	1:10,000

Footage Metres		DESCRIPTION
From	То	
0	32.00	OVERBURDEN
32.00	38.10	SERICITIZED TUFF BRECCIA
38.10	39.00	BLACK CHERT
39.00	51.00	SERICITIC TUFF BRECCIA
51.00	73.40	FAULT
73.40	103.15	TALC CHLORITE SCHIST
	103.15	END OF HOLE
	-	
-		

AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD


Footage - Metres					
		DESCRIPTION			
From 1	32.00	OVERBURDEN			
	32.00	OVERBURDEN			
32.00	38.10	SERICITIZED TUFF BRECCIA			
		Yellowish green in colour due to about 40% sericite. Tuff fragment			
		up to 5cm in size have been sericitized. About 20% quartz as crenulated			
		veins and as a matrix for the fragments.			
		Disseminated sulphides throughout with a total content of $\pm 2\%$.			
		37.47 to 37.76 the core is rusty and broken and may be a splay fault			
		from the major fault downhole.			
38.1	39.00	BLACK CHERT			
		Black, crystalline and very hard. Fairly massive. White angular			
		fragments throughout up to 1cm in size.			
		Disseminated sulphides throughout up to 2%. Minor quartz veining			
		at random angles to the core.			
39.0	51.0	SERICITIC TUFF BRECCIA			
		as per 32.0 to 38.]			
		Most of the core has been highly rusted due to the major fault down			
		the hole.			
		From 42.52 to 42.68 white quartz vein which is brecciated.			
51.0	73.4	FAULT			
		Very massive fault with the core highly broken or missing completely			
		The rock has been reduced to rubble and it is very rusty. Some of the			
		pieces are quartz but most are indistinguishable.			
		53.00 to 54.00			
		54.87 to 55.48			
		58.27 to 60.00 missing			
		61.00 to 63.00 core			
		63.43 to 66.00			
	•	66.73 to 70.01			

Hole No. 839-42-17
Sheet No. 2

DIAMOND DRILL RECORD

From To				
		DESCRIPTION		
73.4	103.15	TALC CHLORITE SCHIST		
		Dark green in colour, very soft. Chloritic mud along the fractures. About 10% carbonate. Quartz veins and stringers cut the core at random angles and total about 15%. Minor sulphides ±1%.		
		About 10% carbonate. Quartz veins and stringers cut the core at random		
		angles and total about 10%. Minon sulphides +1%		
		Millor Sulphides 21%:		
	103.15	END OF HOLE		
 				
1				

Hole No. 839-42-17 Sheet No.

DIAMOND DRILL RECORD

Hole No. 839-42-18 Sheet 1. Property 839-42	Length 153.0 metres Bearing Grid North	Commenced October 31, 1981 Completed November 4, 1981	Dip: Collar -50 ⁰	Location Sketch North
Township Holloway Location L1550, 235N	Dip -50°	Drilling Co. St. Lambert Core Size BQ	Etch Test Depth Rdg. True 1 150.0m 54 ⁰ 47 ⁰	14E
Logged By S. Davies Core Location Penny Lake		Casing Left/ Lost in Hole		© 139-13 Claim No. L579663
Core Location Penny Lake				Scale: 1: 10,000
Remarks				

351 359 4 O - 18	Claim No. L579663 Scale: 1: 10,000
------------------------	-------------------------------------

Footage Metres		DESCRIPTION
From	То	DESCRIPTION
0	43.25	OVERBURDEN
43.25	57.84	LAPILLI TUFF
57.84	72.58	PELITIC SEDIMENT
72.58	101.66	LAPILLI TUFF
101.66	106.64	PELITIC SEDIMENT
106.64	114.60	LAPILLI TUFF (ACIDIC ?)
114.60	115.60	PELITIC SEDIMENT
115.60	147.00	ALTERED MAFIC BRECCIA
147.00	153.00	TALC CHLORITE SCHIST
	153.00	END OF HOLE
	1.	

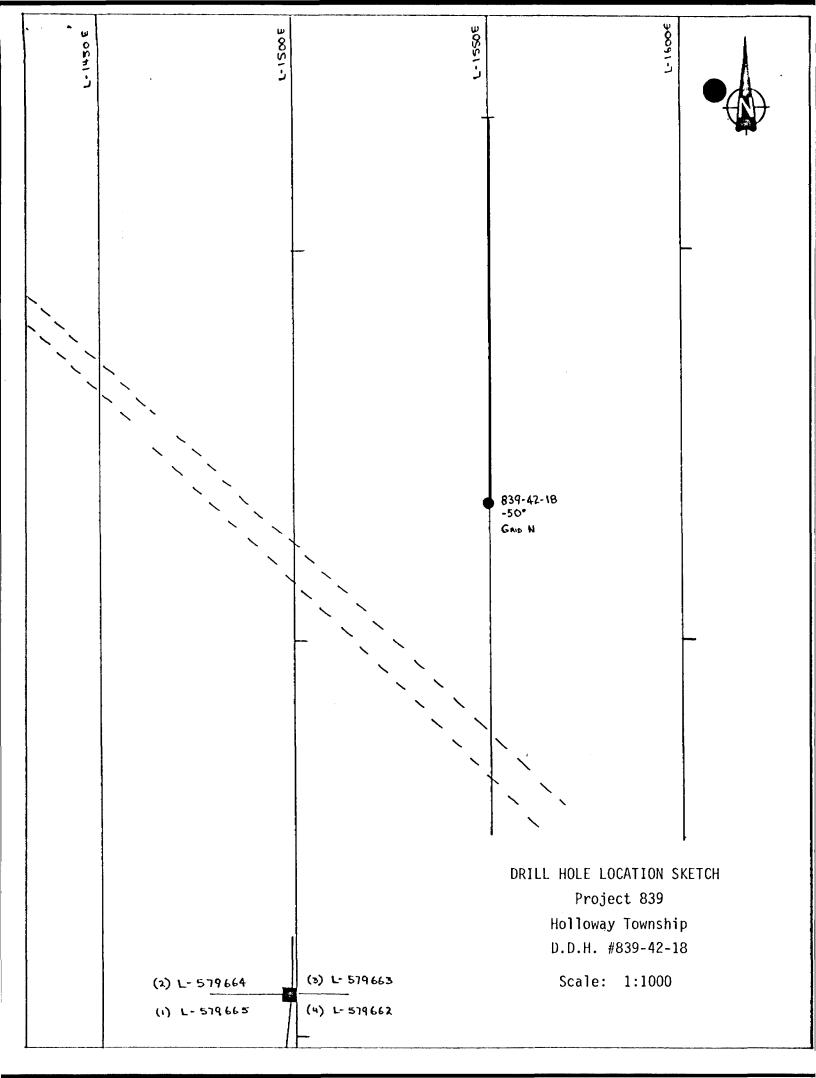
DIAMOND DRILL RECORD

Footage - Metres		DESCRIPTION		
From	То	DESCRIPTION		
0	43.25	OVERBURDEN		
43.25	57.84	LAPILLI TUFF		
		Light yellowish/green in colour due to about 20% sericite minerali.		
		zation. The fragments are yellow in colour, anhedral to subhedral and		
		range in size from 1mm to 3cm. They have a preferred orientation of		
		about 40° to the core axis.		
·		Overall quartz content is about 150 which occurs as veins and		
		stringers that cut the core at random angles. Minor disseminated		
		sulphides ±1%.		
		From 43.25 to 44.75 about 30% quartz		
		From 46.71 to 46.94 brownish ankerite		
		From 48.60 to 51.40 about 20% quartz (smokey) veining. Also some		
		fuchsite mineralization.		
		From 55.50 to 56.58 about 20% smokey quartz. The core is also highly		
		fractured.		
57.04	70.50	PELITIC SEDIMENT		
57.84	72.58	PELITIC SEUTMENT		
		Dark grey to black in colour, very fine to fine grained, and		
		relatively soft.		
		The beds range in size from 1cm to 1 metres and are at 58° to the		
		core axis.		
		About 5% quartz veining at random angles to the core axis. Minor		
		disseminated sulphides ±1%_		
		From 65.13 to 65.50 about 30% quartz.		
		Graded bedding is evident in the hole with fining down the hole.		
		This indicates that tops are north.		
		Lower contact is sharp at 60° to the core axis.		
72.58	101.66	LAPILLI TUFF		
		as per described from 43.25 to 57.84		
		From 73.7 to 74.4 the fragments are smaller <2mm and relatively uniform		
		in size. The silica content is about 20%.		

Hole No. 839-42-18 Sheet No. 4

DIAMOND DRILL RECORD

Footage - Metres		
From	То	DESCRIPTION
		From 74.4 to 76.3 bright green fuchsite fragments from 1mm to 2cm in
		size.
		From 76.3 to 77.85 greyish in colour with a silica content of about 2%.
		From 77.85 to 78.8 the rock is black in colour, soft but not conductive
		May be graphite or chlorite.
		From 80.6 to 81.4 breccia. Black cherty fragments in a quartz matrix.
		At 87.8 preferred angle of orientation is 50° to the core axis.
		From 90.0 to 101.66 the silica content increases to about 30%.
		Minor sulphides throughout +1%.
		Lower contact is sharp at 35° to the core axis.
101.66	106.64	PELITIC SEDIMENT
		· Part Law Visit at Heist
		as described from 57.84 to 72.58 angle of bedding is $30 - 35^{\circ}$ to the
		core axis.
106.64	114.6	LAPILLI TUFF (ACIDIC ?)
		as described from 72.58 to 101.66
		The fragments range in size from 2mm to 3cm in size. Silica
		throughout as a matrix and as smokey quartz veins. Total volume about
		25%. Very minor sulphides
		Lower contact is sharp at 35° to the core axis.
		The state of the s
114.6	115.6	PELITIC SEDIMENT
		as described from 101.66 to 106.64 metres.
115.6	147.0	ALTERED MAFIC BRECCIA
		Yellowish green in colour, medium grained and very soft. The
		fragments are angular, and up to 8cm in size. Each fragment has smalle
		subhedral fragments from 1mm to 3mm in size.
		The matrix is dark green to black and chloritic. Very minor cubes
		of sulphides in the matrix. The fragments do not have a preferred
		orientation. Minor <2% carbonate in the matrix. Downhole the fragments
		decrease in size and the chlorite content increases. The mafic breccia
,		gradually grades into the talc chlorite unit.


Footage - Metres

Hole :	No. 839-42-18	
Sheet	No. 5	

DIAMOND DRILL RECORD

Footage - Metres		D. F. C. C. D. Y. D. M. Y. O. M.		
From	To	DESCRIPTION		
147.0	153.0	TALC CHLORITE SCHIST		
	!	as described in holes 42-11, 42-12, 42-13, 42-14, 42-15, 42-16, 42-17		
	153.0	END OF HOLE		
	<u> </u>			
				
	<u> </u>			
,				

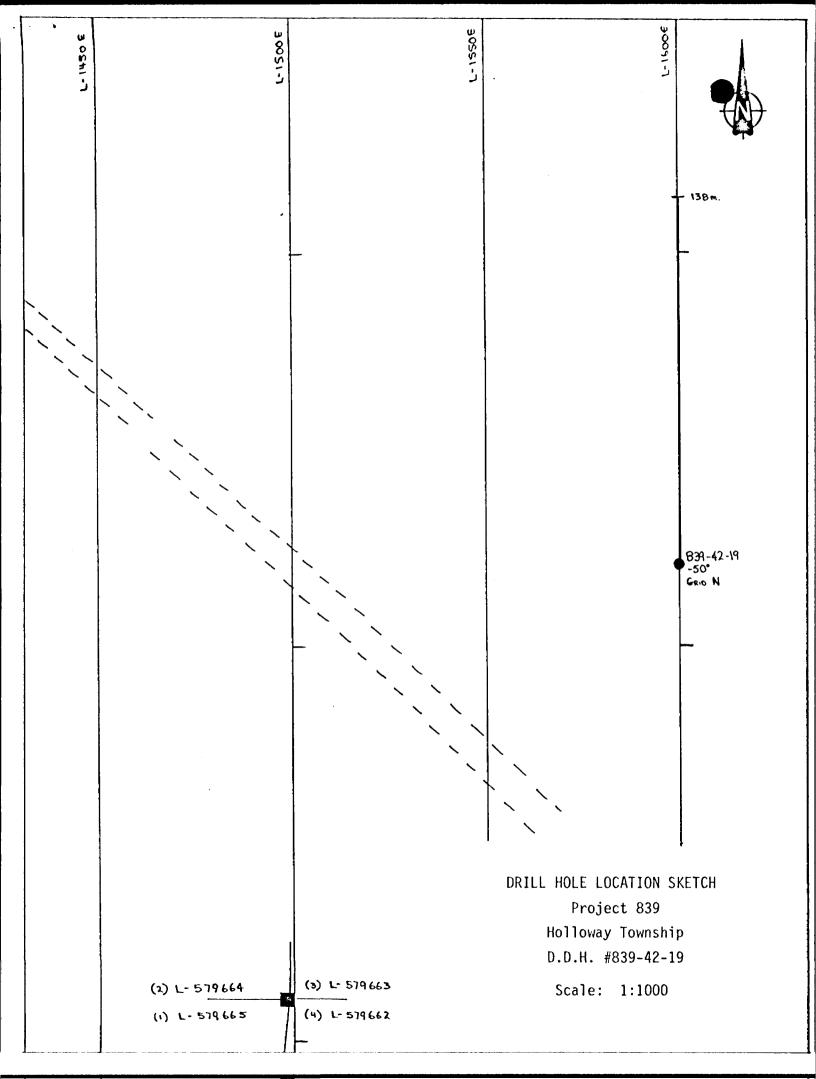
Hole No. 839-42-18 Sheet No. 6

DIAMOND DRILL RECORD

Hole No. 839-42-19 Sheet 1 Property 839-42 Township Holloway	Length 138.0 metres Bearing Grid North Dip -50	Commenced November 4, 1981 Completed November 7, 1981 Drilling Co. St. Lambert	Dip: Collar -50° Etch Test Depth Rdg. True	Location Sketch	North
Location L1600E, 220N Logged By S. Davies Core Location Perry Lake	Objective	Core Size BQ Casing Left/ Lost in Hole NONE	1 130.0m 52 ⁰ 45 ⁰	Ø 939-42-19	Claim No.L579663
Remarks					Scale: /:10,000

Footage Metres		DESCRIPTION	
From	То		
0	33.00	OVERBURDEN	
33.00	56.34	HIGHLY ALTERED ROCK WITH QUARTZ STOCKWORK (V9f)	
56.34	66.95	AGGLOMERATE	
66.95	95.50	PELITIC SEDIMENT	
95.50	134.90	VOLCANICLASTICS (TUFF) INTERCALATED WITH REMNANT ULTRAMAFIC FLOWS	
134.90	138.00	ALTERED ULTRAMAFIC BRECCIA	
	138.00	END OF HOLE	

DIAMOND DRILL RECORD


Footage - Metres				
From	То	DESCRIPTION		
0	33.00	OVERBURDEN		
33.00	56.34	HIGHLY ALTERED ROCK WITH QUARTZ STOCKWORK (V9f)		
		The original rock is highly altered to silica and brecciated. It		
		may have been an ultramafic flow or a pyroclastic.		
		Silica content is about 70% overall and occurs as a matrix and as		
		quartz veining. Sulphide content is about 3% overall and occurs in veins and		
		surrounding the fragments.		
		40.2 to 42.05 the silica content is about 90%.		
		42.2 to 42.65 white quartz vein with sericite, fuchsite and sulphides		
		within the vein and along the boarders.		
		43.2 to 43.44 about 4% sulphides occur in stringers and quartz veins.		
		52.32 to 56.34 large (>7cm) angular fragments. They are yellowish with		
		smaller yellow fragments within. This may indicate fragments of an		
		ultramafic vesicular flow.		
		56.07 to 56.13 spinifex texture.		
56.34	66.95	AGGLOMERATE		
		Subangular to angular fragments of varying compositions range in		
		size from 1cm to >8cm. The matrix is composed of smaller fragments		
		<3mm in size.		
		Some of the fragments have a preferred orientation of 40-45° to the		
		core axis.		
		Sulphide content is about 2% which occurs in the matrix surrounding		
		the fragments.		
		Lower contact is brecciated.		
		Towards the contact, the fragments become more highly packed.		
66.95	95.50	PELITIC SEDIMENT		
		Dark grey to black in colour, medium to fine grained and relatively		
		Soft. Rods range in size from 2cm to 15cm and are well defined at 550 to		
		Beds range in size from 2cm to 15cm and are well defined at 55° to the core axis.		
		They exhibit definite graded bedding fining down hole. Tops are		
		north.		

Hole No. 839_42-19 Sheet No.....

DIAMOND DRILL RECORD

Footag	P E S C R I P T I O N					
From	То	DESCRIPTION				
		Minor quartz veining and sulphides (sulphide cone in places).				
		77.4 to 78.0 quartz veining (about 30%) brecciates the sediment.				
		78.0 to 80.8 agglomerate as described from 56.34 to 66.95				
		80.5 to 80.8 sulphide content is about 25%.				
		90.7 to 91.23 agglomerate as described from 56.34 to 66.95.				
·		93.0 to 95.5 quartz veining (about 20%) brecciates the rock.				
95.5	134.9	VOLCANICLASTICS (TUFF) INTERCALATED WITH REMNANT ULTRAMAFIC FLOWS				
		The parent rock is so highly altered that it's original composition				
		connot be determined. The bulk of the rock appears to be a pyroclastic				
		or tuff which is highly brecciated by quartz veining. The fragments				
		vary in colour from brown/black to light green in colour. They are				
		angular and range in size from 52.0cm to 8cm in diameter.				
		The overall sulphide content is about 20-25% and an overall sulph-				
		ide content of +2%.				
		Intercalcated with the pyroclastics are remnant textures of an				
		ultramafic flow series. Relict olivene needles occur in spinifex				
		texture and is vescular flows (chicken feed).				
		From 105.2 to 112.5 silica content is about 50% with fragments that				
		have been altered to fuchsite.				
		111.73 to 112.0 spinifex				
!		116.4 to 117.56 spinefex with fuchsite and a talc/chlorite matrix.				
		118.66 to 119.5 fuchsite and quartz.				
		123.6 to 125.3 sericitic fragments.				
		125.6 to 126.0 chicken feed texture. Variolitic Flows				
		129.73 to 129.79 " " "				
134.9	138.00	ALTERED ULTRAMAFIC BRECCIA				
		as described in 42-18 from 115.6 to 147.0				
		Large angular mafic fragments in a talc/chlorite matrix.				
	138.00	END OF HOLE				
,						

Hole No. 839-42-19 Shoot No. 5

DIAMOND DRILL RECORD

Hole No. 839-42-21 Sheet 1 Property 839-42 Township Holloway Location L 1200E, 180N	Length 123.0 metres Bearing Grid North Dip -50 Objective	Commenced November 11, 1981 Completed November 13, 1981 Drilling Co. St. Lambert Core Size BQ Casing Left/Lost in Hole None	Dip: Collar -50° Etch Test Depth Rdg. True 1. 123.0m 57° 50°	Location Sketch North
Logged By S. Davies Core Location Perry Lake				Claim No. L-579664 Scale: 1:10,000
Remarks				8.4.0. State. 7.10,000
Footage Metres				

Footage Metres		DESCRIPTION
From	То	DESCRIPTION
0	3.00	OVERBURDEN
3.00	18.80	ANDESITE
18.80	31.10	MAFIC TUFF (BRECCIA)
31.10	109.70	FELSIC TUFF
109.70	111.50	ALTERED ULTRAMAFIC FLOW
111.50	123.00	TALC CHLORITE SCHIST
	123.00	END OF HOLE

AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

ge - Metres						
То	DESCRIPTION					
3.00	OVERBURDEN					
18.80	ANDESITE					
	Dark green in colour, fine grained and relatively soft. Fairly					
	massive with no distinct laminae. Minor quartz veining, <5% at random					
	angles to the core axis.					
	Cubes of sulphides in places with an overall content of less than 1%. Lower contact is gradational.					
	15.9 to 16.6 very siliceous quartz vein which has been brecciated by					
	further veining.					
31.10	MAFIC TUFF (BRECCIA)					
	Dark green, with 1mm to 4mm size fragments which are well bedded					
	within larger brecciated fragments.					
	The rock is brecciated by numerous quartz veins & stringers with					
	a total volume of about 30%.					
	Sulphides throughout but found mainly in the quartz matrix of					
	shattered zones. Overall content +2%.					
	23.6 to 25.3 the rock has been shattered into small angular fragments.					
	The matrix is quartz with about 3% sulphides associated.					
109.70	FELSIC TUFF					
	Light green in colour with subhedral fragments ranging in size					
	from 2mm to 1cm.					
	Quartz occurs as veins and stringers that cut the core at random					
	angles and as a matrix in the brecciated zones. Total content of quartz					
	is about 30% by volume. Disseminated sulphides throughout with an overall content of					
	±2% but concentrated in some areas.					
	Foliation at 34.5 metres of 55° to the core axis.					
	40.5 to 41.8 massive and may be greywacke.					
	3.00 18.80 31.10					

Hole No. 839-42-21 Sheet No. 4

AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)


DIAMOND DRILL RECORD

Footage - Metres		DESCRIPTION
From	To	DESCRIPTION
		43.] to 47.6 tuffaceous sediment. Greyish green in colour, fine to
		medium grained with whitish elongated fragments at 60°
		to the core axis (in places). There is evidence of
		folding or soft sediment slumping.
		47.6 to 51.3 sediment, possibly a greywacke. The majority of grains
		are rounded and equidemensional.
		There are a few grains which are larger and angular and
		a few jasper fragments.
		a rew Jasper iragments.
		57.96 to 59.78 tuff breccia or fragmental. White fragments in a dark
		matrix (or the other way around) with swirls of sulphide
		in the matrix and around the fragments. The sulphides
		are probably pyrite and are very fine grained which
		concentrate in areas. Overall content is about 5%.
		This zone has been termed the "dark fragmental" and
		seems to correspond with the upper zone in other holes
		that has carried gold.
		This could be our target zone.
		The combination that seems to carry gold in most of the
-		other holes is fragments (usually clear quartz) with
		swirls of sulphides around the fragments in the matrix.
		SWITTS OF Surprinces around the magnients in the matrix.
		60.5 to 62.6 shatter breccia. Large angular tuff fragments in a black
		matrix. There is only about 5% matrix. Cubes of pyrite
		occurs in the matrix.
		62.6 to 69.8 the rock is grey in colour and fine grained. It is barren
		of quartz veining.
		Well foliated at 55° to the core axis. Pyrite occurs in
		5cm splotches of fine grains. Overall content is about
		2%.
		69.8 to 70.1 white quartz vein.
		70.1 to 74.93 tuff fragments have been altered to sericite and fuchsite
		Well foliated at 60° to the core axis.
		Finely disseminated pyrite throughout about 2%.
		84.0 ti 92.5 well foliated at 75° to the core axis.
		95.2 to 95.4 white quartz vein with about 3% pyrite along the borders
		and within the vein.
		and within the veill.
•		

DIAMOND DRILL RECORD

Footage - Metres					
From To	DESCRIPTION				
	98.97 to 99.17 BLACK CHERT with angular white fragments and about 1%				
	pyrite.				
	101.9 to 107.4 tuff breccia or fragmental. This section may correspond				
	to the second zone in other holes that have carried gold				
	It is termed "light fragmental" to contrast it with the				
	zone further up in the hole. The quartz content is about 60% which occurs as fragments and in the matrix.				
	Pyrite occurs as pin-head size grains in swirls around				
	the fragments. The total sulphide content is 3-5%.				
	The fragments are mostly white quartz and the matrix is				
	smokey quartz.				
109.7 111.50	ALTERED ULTRAMAFIC FLOW				
103.7	ALTERED ULTRAMAFIC FLUW				
	Yellowish in colour and to a great extent. The fragments are				
	relatively soft and are found in a quartz matrix.				
	Some of the fragments appear to be variolitic.				
111.5 123.0	TALC CHLORITE SCHIST				
123.0	END OF HOLE				
123.0	LND OF FIOLE				
3					

Hole 1	vo839	-42-21	
Sheet	No	6	

DIAMOND DRILL RECORD

Hole No. 839-42-22sheet 1 Property 839-42 Township Holloway Location L1250, 180N Logged By S. Davies Core Location Perry Lake	Length 135.0 metres Bearing Grid North Dip -50 Objective	Commenced November 13, 1981 Completed November 16, 1981 Drilling Co. St. Lambert Core Size BQ Casing Left/Lost in Hole none	Dip: Collar -50° Etch Test Depth Rdg. True 1 123.0m 57° 50°	Location Sketch	North Claim No. L = 579664
Remarks				8.1.0.	Scale: /: 10,000

Footage	Metres	DESCRIPTION	
From	То		
0	10.00	OVERBURDEN	
10.00	13.80	FELSIC TUFF	
13.80	48.20	INTERCALATED MAFIC TUFFS AND FLOWS	
48.20	129.07	FELSIC TUFF	
129.07	132.00	ALTERED ULTRAMAFIC FLOW	
132.00	135.00	TALC CHLORITE SCHIST	
	135.00	END OF HOLE	

DIAMOND DRILL RECORD

Footage - Metres							
From	То	DESCRIPTION					
0	10.00	OVERBURDEN					
10.00	13.80	FELSIC TUFF					
		Light and in all and hard fragments are sub-					
		Light grey in colour, fine grained and hard. Fragments are sub-					
		hedral purple in colour and have a preferred orientation of 45° to the core axis. Minor sulphides occur in small stringers which cut the core					
		at random angles. Relatively barren of quartz veining.					
		ACTACTIVETY BATTER OF Quarter Verning.					
		From 10.0 to 11.4 the tuff is brecciated.					
		Lower contact is gradational.					
13.80	48,20	INTERCALATED MAFIC TUFFS AND FLOWS					
		Dark green in colour, fine grained and relatively soft.					
		The tuff fragments are lighter green in colour, subhedral to					
		euhedral with a preferred angle of orientation of 45° to the core					
		axis.					
		Light green phenocrysts occur in the andesite at random orienta- tions. It is slightly magnetic.					
-		Minor quartz veining and sulphides.					
		The lower contact is brecciated by quartz veins (from 43.5 to 48.2)					
48.20	129.07	FELSIC TUFF					
		Light green to greyish in colour, fine grained and hard. In some place:					
		foliation is well defined but in others the rock is highly altered					
		and brecciated.					
		Sulphides occur as finely disseminated pyrite throughout the					
		rock but is concentrated in places. The overall content is about					
		±2%. Overall silica content is about 60% of which 10% occurs as					
		white quartz veins that cut the core at random angles.					
		51.3 to 51.36 about 5% pyrite occurs in white quartz veins.					
		57.56 concentration of cubic pyrite within the tuff.					
		65.66 to 65.75 white quartz veining with hematitic staining and					
		about 10% pyrite.					

Hole No. 839-42-22 Sheet No. 4

DIAMOND DRILL RECORD

Footage - Metres		DESCRIPTION					
From	То	DESCRIPTION					
		78.9 to 79.3 the rock is brecciated with associated sulphides about 3%					
_		89.38 to 89.68 smokey and white quartz vein with pyrite associated wit					
_		the margins throughout the vein.					
		90.64 to 90.88 quartz vein with sulphides.					
		93.7 to 97.8 pyrite (fine_grained) is found in stringers and throughou					
		the core with a total amount of about 5%. It is					
		concentrated in places up to 10%.					
		From 94.2 to 94.43 approx. 10-15% finely disseminated pyrite.					
		The area's of greatest concentration are in quartz veins and					
		in fragmental areas.					
		All Cragnettes, screen					
		Foliation is good in most places at 70-80° to the core axis. In					
		some places the laminae are at 40-45° to the core axis but this is due					
		to soft sediment slumping or minor folding.					
		to solve seatment stamping of million foreing.					
		107.8 to 113.6 tuff breccia. The matrix is mostly smokey quartz with					
		finely disseminated pyrite (±2%). In some places the					
matrix is chloritic.							
		114.2 to 115.6 quartz veining increases to about 25%.					
		118.6 to 121.35 Black chert with white angular fragments. From					
		118.6 to 119.0 massive fine grained sulphides with a					
		total volume of about 70%. The lower contact is					
		brecciated and graphitic.					
		125.05 to 125.51 variolitic flow. Dark green with lighter green blebs.					
		125.05 to 125.51 variotitic flow. Dark green with righter green blebs.					
		126.1 to 127.82 ≃40% quartz veining with about 3% sulphides.					
00 07	700.00	ALTERED IN TRANSPIC CLOSE					
29.07	132.00	ALTERED ULTRAMAFIC FLOW					
		Vallaciat is called to conjuite alternation. The week is					
		Yellowish in colour due to sericite alteration. The rock is					
		highly brecciated by white quartz veins which contain minor pyrite.					
		The fragments are very soft and fine grained.					
		The lower contact is gradational.					
32.00	135.00	TALC CHLORITE SCHIST					
	135.00	END OF HOLE					

DIAMOND DRILL RECORD

Hole No. 839-42-23. Sheet	Length 150.0 metres	Commenced November 16, 1981	Dip: Collar -50°	Location Sketch North
Property 839-42 Township HOlloway	Bearing Grid North Dip -50	Drilling Co. St. Lambert	Etch Test Depth Rdg. True	
Location L 1300E, 180N	Objective	Core Size BQ Casing Left/ Lost in Hole	1 150.0m 51° 46°	
Logged By S. Davies Core Location Perry Lake				Claim No. L-579664
Core Location Felly Lake				Scale: 1: 10,000
Remarks	(B.L)O.			
Footage: Metres	DESCRIPT	CLON		

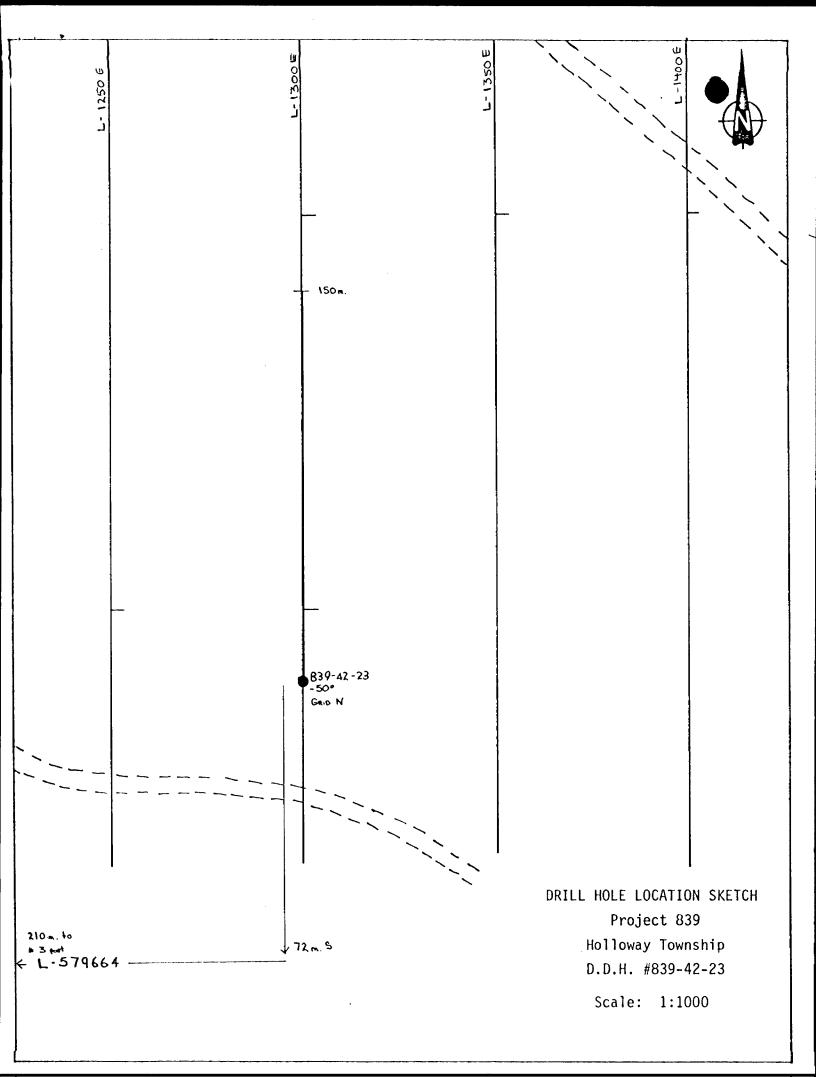
Footage: N	Metres	DESCRIPTION
From	То	
0	9.25	OVERBURDEN
9.25	16.50	FELSIC TUFF
16.50	63.50	INTERCALATED MAFIC TUFF & FLOW
63.50	80.80	INTERMEDIATE TUFF
80.80	129.30	FELSIC TUFF
29.30	150.00	ALTERED ULTRAMAFIC FLOW
	150.00	END OF HOLE

DIAMOND DRILL RECORD

Footage - Metres		
From	To	DESCRIPTION
_0	9,25	OVERBURDEN
9.25	16.50	FELSIC TUFF
		Light grey to green in colour with purple fragments, very siliceous[
		and fine grained. Many of the fragments are highly sericitic and
		carbonatized. This unit looks very similar to the pyroclastic unit
		downhole which suggests that the mafic flow/tuff may be interflow.
		It is also conformable to the lower layers.
		White quartz veins up to 20%, cut the core at random angles [
		and host pyrite along the borders.
		Sulphides occur as fine-grained pyrite in veins, interbedded,
		and as blebs up to lcm in size.
		The total content is ±2%. Numerous patches of rust may
		be ankerite. Fragments have a preferred angle of orientation of 40
	1	to the core axis. The lower contact is gradational.
16.50	63.50	INTERCALATED MAFIC TUFF & FLOW
		as described in 42-22
		Dark green in colour with lighter green fragments and phenocrysts.
		The andesite is slightly magnetic. Minor quartz veins and
		stringers cut the core at random angles.
		Very minor sulphides found as the odd cube. Lower contact
		is bleached and brecciated.
63.50	80.80	INTERMEDIATE TUFF
		Light/medium grey in colour, very fine grained, and siliceous.
		Highly altered and sericitic.
		Relatively massive (i.e. no banding) with minor quartz veins
		and stringers at random angles to the core.
		Very minor sulphides <1%.
		very minor surprines \17%.
		From 69.0 to 80.8 the core is brecciated into large angular fragments
		with a smokey quartz matrix. The fragments are
		highly altered to sericite.

Hole No. 839-42-23 Sheet No

DIAMOND DRILL RECORD


Footage - Metres		
From	То	DESCRIPTION
80.80	129.30	FELSIC TUFF
		Greyish green in colour and very siliceous. Silica content is
		about 60%.
		The fragments are highly altered and contorted. The alteration is mainly sericitic.
		Quartz veins cut the core at random angles and some contain pyrite
		along the borders. The total sulphide content is $\pm 1-2\%$.
		In many places the rock is brecciated with a quartz matrix or
		a fragmental with a quartz matrix.
		Foliation is obvious in places, generally at 70-80° to the core
		axis.
		From 84.5 to 86.3 angular tuff fragments up to 3cm in size in a
		graphitic matrix.
		88.4 to 101.6 the rock is barren of veining and massive. There is
		evidence of soft sediment slumping at the top of the
		section but downhole the fragments have a preferred
	~-	angle of orientation of 80° to the core axis.
		117.0 to 119.58 the rock has a fragmental texture with the fragments
		being angular and approx. lcm in size. The fragments
		are sericitic in a quartz matrix.
		119.58 to 120.4 the rock is bright green in colour and well foliated
		at 85° to the core axis.
		104 2 to 106 2 DIACK CHERT 144
		124.3 to 126.3 BLACK CHERT with angular white fragments. Sulphide content is about 8%. This zone is a marker horizon
		and can be correctated with other holes on the property.
		126.3 to 128.4 greyish white chert which is brecciated and contains
		about 2% pyrite.
129.30	150.00	ALTERED ULTRAMAFIC FLOW
		The flow is highly altered to sericite and by the presence of
		numerous quartz veins. Most of the core is brecciated with a
		smokey quartz matrix. The fragments are yellowish in colour and
		very soft.
		M 7-7

Hole No. 839-42-23 Sheet No.

DIAMOND DRILL RECORD

Footage - Metres		
		DESCRIPTION
From	То	
		In some places remnant flow textures can be seen such as
		Variolitic flows and spinifex
	!	Silica is found mainly in smokey quartz veins which cut the
		core at random angles and as a matrix for the fragment.
		Chlorite is found along slip planes and in the matrix downhole. Minor sulphides occur as the odd cube of pyrite.
		Minor sulphides occur as the odd cube of pyrite.
		146.8 to 150.0 metres chlorite occurs as a matrix for the ultramafic breccia.
	150.00	END OF HOLE
		
	-	
ė,		

Hole	No. 839-42-23
Sheet	No. 6

DIAMOND DRILL RECORD

Hole No. 839-42-25

Hole No. 839-42-25 Sheet 1 Property 839-42 Township Holloway Location L 1500E, 170N	Length Bearing Dip Objective	135.0 metres Grid North -50	Core Size	November 22, 1981 November 25, 1981 St. Lambert BQ	Dip: Colla Etch Test	r — 50 ⁰ Depth Rdg. True 135.0m 53 ⁰ 45 ⁰	13E	Location Ske	15E	North
Logged By B. Benoit Core Location Perry Lake								-	+ -25	Claim No. L=.57.9.663
Remarks								5.4.		Scale: 1:10,000

Footage		DESCRIPTION
From	То	
0	37.00	OVERBURDEN
37.00	53.21	FELSIC TUFF (FAULT ZONE)
53.21	71.40	INTERCALATED MAFIC TUFF AND FLOW
71.40	75.97	INTERMEDIATE ASH TUFF
75.97	78.25	FELSIC TUFF
78.25	81.00	SPINIFEX REMNANT ULTRAMAFICS
81.00	99.56	FELSIC TUFF
99.56	100.42	SPINIFEX
100.42	110.81	MAFIC TUFF
110.81	120.82	SEDIMENTS
120.82	128.62	FELSIC TUFF
128.62	130.80	TUFF BRECCIA
130.80	135.00	INTERMEDIATE TUFF
	.135.00	END OF HOLE
¥		

Checil Benail

DIAMOND DRILL RECORD

Footage	- Metres	
From	То	DESCRIPTION
0 !	37.00	OVERBURDEN
37.00	53.21	FELSIC TUFF (FAULT ZONE)
		light greyish green in colour, fine grained, moderately hard in
		light greyish green in colour, fine grained, moderately hard in some areas, core is very weathered, these weathered sections are rusty
		brown in colour, broken up and rubbled.
		Core is also softer where it is weathered. Core is very carbona-
<u> </u>		tized and is highly reactive to acid. Core contains some quartz
		breccia zones. Sulphide content very low, 1% to 2% pyrite in core.
		Core is also sericitized, and crenulated. fuchsite is present in
-		some areas.
		37.00 to 37.30 Weathered core, rusty brown colour.
		38.75 to 41.35 Weathered core, rusty brown in colour, broken and
		rubbled.
		41.35 to 41.91 Quartz breccia, very sericitic, harder and some of
		the core is weathered.
		41.91 to 50.81 Weathered core, rusty brown in colour, broken and
		rubbled. Core is very carbonatized. Core is soft
		due to weathering. Some of the core is a soft mud.
		45.93 to 46.14 Missing core
		44.75 to 45.00 Missing core
53.21	71.40	INTERCALATED MAFIC TUFFS AND FLOWS
-		
		Light grey to green in colour, fine grained, carbonatized. Core
		contains many quartz veins, these range from 1mm to 2cm wide. These
		quartz veins cut the core at all angles. Core contains many small
		chlorite blebs or spots, these are dark green in colour and rarely exceed 5mm in size. Some of the core is slightly weathered thus
		bearing a rusty brown colour. Sulphide content 1% to 3% pyrite locally.
		pyrite is found around the quartz veins.
71.40	75.97	· INTERMEDIATE ASH TUFF
		Light grey, fine grained, hard siliceous, slightly carbonatized.

Hole No. 839-42-25 Sheet No...

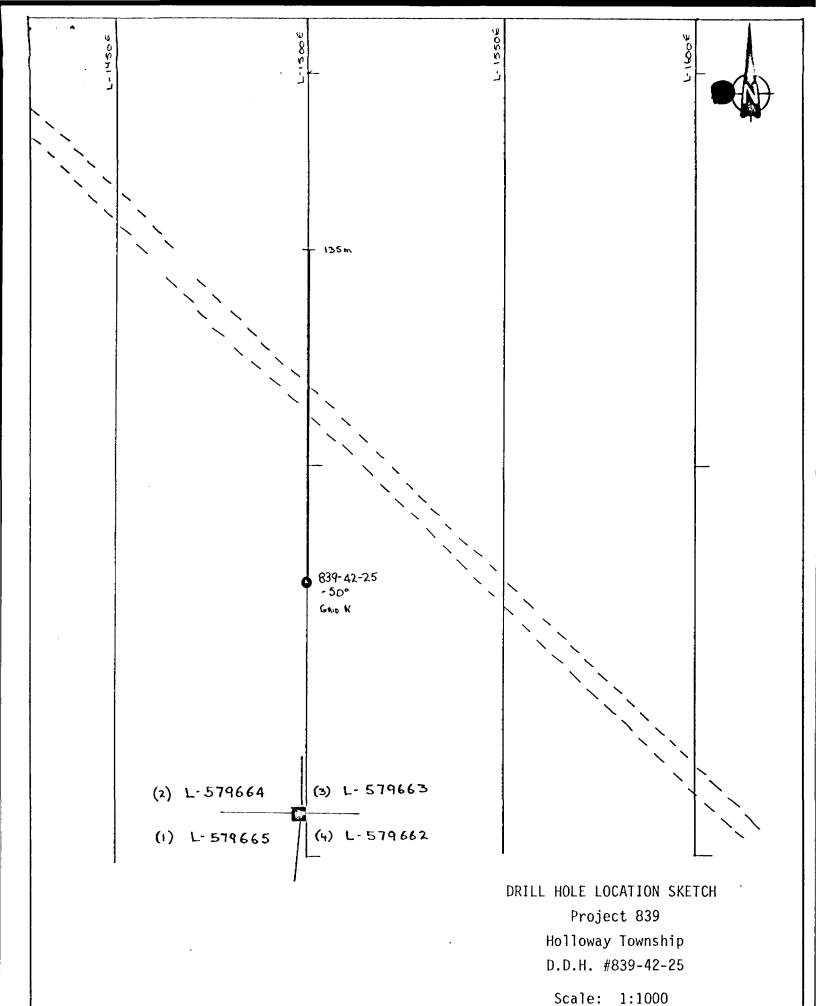
AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Footage -	- Metres	DESCRIPTION
From	То	DESCRIPTION
1		Contains some small quartz veins, these range from 1mm to 1cm
	· · · · · · · · · · · · · · · · · · ·	wide, they cut the core at all angles. Some pyrite present 1% found
}		near quartz vein seams.
		near quartz vern seams.
75.97	78.25	FELSIC TUFF
1.3.31	70.25	
		Grey green, fine grained, moderately hard where core is weathered
		Core contains core at all angles. These veins range from 1mm to 2cm
		wide Come is also somisitio and slightly sombonational Come is
		wide. Core is also sericitic and slightly carbonatized. Core is
		slightly weathered in some areas. The weathered core is rusty brown
 !		in colour. Sulphide content is less than 1% disseminated pyrite.
		76.43 to 76.84 BLACK CHERT Black very hard and very siliceous,
		contains quartz veins that range from 1mm to 5mm
		
		wide, these cut the core at all angles. Pyrite conter
		is less than 1%.
78.25	81.00	SPINIFEX REMNANT ULTRAMAFICS
70.23	81.00	SFINITEX REPRIMANT ULTRAPIACTUS
		Light to olive green, soft, core contains quartz veins that range
		from 1mm to 2cm wide, these veins are irregular and cut the core at
		all angles.
		Core is slightly carbonatized and sericitic. Sulphide content
		is less than 1% pyrite.
01 00	00 56	FELSIC TUFF
81.00	99.56	LEFOIC IOLL
		light grow group fine grained medarately hand any authorize
		Light grey green, fine grained, moderately hard, core contains
		some quartz veins, these range from 1mm to 1cm wide, they cut the
		core at all angles. Core is carbonatized in some areas. Core is
		also sericitic. Core contains fuchsite and is also very weathered
		in some areas. The weathered sections are rusty brown in colour
		and core is also broken up. Core contains some cherty sections,
		these chert sections are very siliceous and hard. Pyrite is present
		in the core 1% finely disseminated.
	•	

Hole No. 839-42-25 Sheet No. 5


Footage	e - Metres	
From	To	DESCRIPTION
		85.58 to 85.70 Weathered core> rusty brown, soft
		86.70 to 87.14 Weathered core ——>rusty brown, soft, broken up with
		1% pyrite.
		87.62 to 90.00 Weathered core \longrightarrow rusty brown, soft, borken up.
		88.83 to 89.08 BLACK CHERT \longrightarrow Black, hard, siliceous. Same as
·		76.43 to 76.84 except chert is also very badly
		weathered in some areas.
·		90.00 to 90.44 BLACK CHERT \longrightarrow Black, hard, siliceous. Same as
		76.43 to 76.84.
		90.44 to 93.98 Felsic tuff
		mass of swirls.
-		93.98 to 95.00 Weathered core, rusty brown colour, soft, carbonaceous.
99.56	100.42	SPINIFEX
		Same as 78.25 to 81.00
100.42	110.81	MAFIC TUFF
		Light grey green, fine grained, moderately hard. Contains many
		quartz veins that range from 1mm to 3cm wide, these veins cut the
		core at all angles, they are irregular and crenulated. Core contains
		some small sections of spinifex and some quartz breccias.
		Core is sericitic and slightly carbonatized. Sulphide content
		1% to 2% locally.
		101.23 to 101.83 Quartz breccia, hard, siliceous, low sulphides, less
		than 1%.
		102.45 to 102.70 Quartz breccia, same as 101.23 to 101.83.
		102.70 to 102.81 Spinifex, smaller same as 78.25 to 81.00.
110.81	120.82	SEDIMENTS - GREYWACKE
110.01	120.02	SEDIFICITS - GRETWACKE
		Light to dark grey, hard siliceous, core contains many quartz
		veins, these range from 1mm to 3cm wide. They cut the core at all
		angles, they are crenulated and a mass of swirls. The sediments
		contain fine and coarser grained beds. Beds cut the core at 60° to
		the core axis. Pyrite is present 1% disseminated and also as small cube
	•	

Hole No. 839-42-25	
Sheet No. 6	

DIAMOND DRILL RECORD

	- Metres	DESCRIPTION
From	To	
		120.71 to 121.00 Quartz breccia less than 1% sulphides.
120.82	128.62	FELSIC TUFF
		Grey to green colour, fine grained, moderately hard. Core
		contains many quartz veins, these range from 1mm to 2cm wide, they
		cut the core at all angles. Core is slightly carbonatized, core is
		also sericitic. Core contains some fuchsite. Core contains some
		weathered sections that are rusty brown in colour. Pyrite is present.
		126.27 to 127.36 Weathered core rusty brown colour, softer than
		rest of core.
128.62	130.80	TUFF BRECCIA
120.02		TOT DIECUTA
		Light grey, hard, siliceous, contains some quartz veins, these
		range from 1mm to 1cm wide, they cut the core at all angles. Core
		contains some weathered sections that are rusty brown in colour.
		Pyrite present less than 1%.
130.80	135.00	INTERMEDIATE TUFF
		Light grey, hard, fine grained and contains some quartz veins.
		These cut the core at all angles, the range from lmm to lcm wide.
		Core contains a chloritic matrix. Pyrite present less than 1%.
	135.00	END OF HOLE
	•	
	1	

Hole No. 839-42-25 Sheet No.____7

DIAMOND DRILL RECORD

Hole No. 839-42-26

Hole No. 839-42-26 Sheet 1 Property Holloway II Township Holloway Location L 1400E, 200N	Length Bearing Dip Objective	151.75 metres Grid North -50	Completed Drilling Co. Core Size	November 26, 1981 November 29, 1981 St. Lambert BQ	Dip: Collar Etch Test	-50 Depth 151.75m	O Rdg.	True	Locat	ion Sketch		North
Logged By B. Benoit Core Location Perry Lake			Casing Left/Lo	ost in Hole NONE						-\$-	11	aim No. L-579664
Remarks										B.L.	Sca	ale: /: <i>10,000</i>

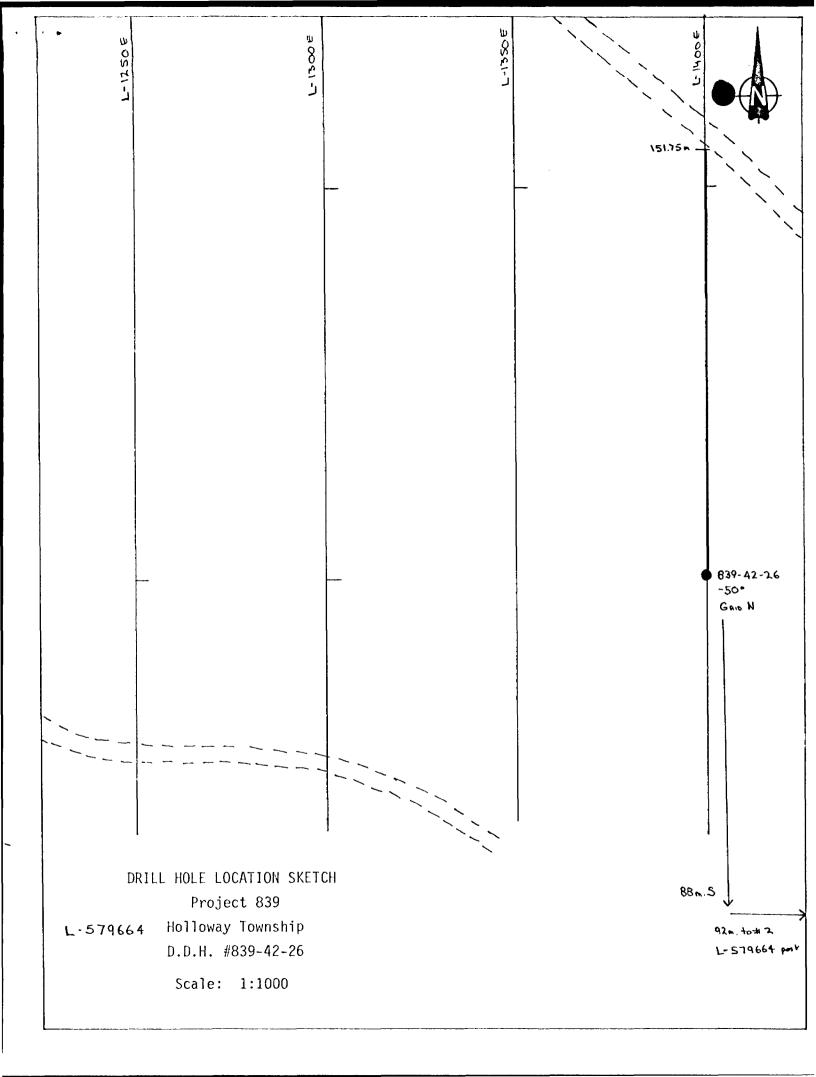
Footage	Metres	DESCRIPTION	
From	То		
0	16.40	OVERBURDEN	
6.40	34.39	TALC CHLORITE SCHIST	
34.39	72.75	MAFIC TUFF	
2.75	79.69	INTERMEDIATE ASH TUFF	
9.69	82.46	BLACK CHERT	
32.46	119.49	FELSIC TUFF	
9.49	120.47	BLACK CHERT	
20.47	143.00	INTERMEDIATE TUFF	
3.00	151.75	MAFIC TUFF BRECCIA	
	151.75	END OF HOLE	

Robert Bonait

DIAMOND DRILL RECORD

Footage	- Metres	DESCRIPTION
From	To	DESCRIPTION
0	16.40	OVERBURDEN
		sand, gravel
16.40	34.39	TALC CHLORITE SCHIST
		Dark green, soft, core is very chloritic, has a greasy feel. Core is carbonatized. Core contains many quartz veins. These veins cut
		the core at all angles, they are irregular and are a mass of swirls. These veins range from lmm to 5cm wide. Some pyrite is present 19
		29.15 to 29.68 Quartz breccia, very hard and very siliceous, less than 1% pyrite.
		1% pyrite.
34.39	72.75	MAFIC TUFF
		Dark green, moderately hard, fine grained and contains some quart
		veins, these range from 1mm to 1cm wide, they cut the core at all
		angles, Pyirte present less than 1%.
ĺ		Pyrite
		38.60 to 39.57 Basalt green, moderately hard, fine grained, contains
		some quartz veins that range from 1mm to 1cm. These
		veins cut the core at all angles. Pyrite less than
		1%.
1		59.22 to 59.76 Weathered core, softer, rusty brown colour.
		66.30 to 66.43 Quartz breccia hard very siliceous, slightly weathered
		69.29 to 69.49 Weathered section, rusty brown colour, softer.
		70.54 to 70.93 Quartz breccia, hard, siliceous.
72.75	79.69	INTERMEDIATE ASH TUFF
		Grey, moderately hard, fine grained. Contains some quartz veins.
		these range from 1mm to 1cm wide, these cut the core at all angles.
		Core is slightly carbonatized. Low sulphide content, 1% or less
		disseminated pyrite present.
	•	

Hole No. 839-42-26 Sheet No. 4


DIAMOND DRILL RECORD

From 79.69	To 82.46	DESCRIPTION BLACK CHERT							
79.69	82.46	RI ACK CHERT							
		DEMON CHENT							
		Black, very hard, very siliceous. Contains many quartz veins,							
		these range from 1mm to 3cm wide, they cut the core at all angles.							
		Pyrite present 1% to 2% disseminated pyrite.							
		80.19 to 80.37 Quartz breccia, very hard, very siliceous, less than							
		1% sulphide. 80.51 to 80.71 Quartz breccia, same as 80.19 to 80.37.							
		81.62 to 81.92 Quartz breccia, slightly weathered, rusty brown colour.							
_		82.67 to 82.86 Quartz breccia, siliceous, hard.							
-00 46	770 40								
82.46	119.49	FELSIC TUFF							
		Light grey green, fine grained, moderately hard. Core is							
		sericitic and carbonatized. Core also contains some chlorite. Core							
		sericitic and carbonatized. Core also contains some chlorite. Core is also siliceous in some areas. Core contains quartz veins that							
		range from 1mm to 3cm wide. These veins are irregular and cut the core							
		at all angles. Core contains some fuchsite. Core also contains some							
		weathered sections. Sulphide content 1% to 7% disseminated and cubic							
		pyrite found locally near quartz vein seams.							
		99.97 to 100.12 Weathered section, rusty brown colour, softer.							
		101.0 to 101.33 Weathered section, rusty brown corour, sorter.							
		101.52 to 101.6 Black chert, black very hard, siliceous, some quartz							
		cut through the core, these range from 1mm to 2mm wide							
		109.74 to 109.91 Weathered section, rusty brown soft							
119.49	120.47	BLACK CHERT							
		Black, very hard, siliceous. Contains quartz veins that range							
		from 1mm to 5mm wide, these are irregular and cut the core at all							
		angles. Sulphide content, less than 1% disseminated pyrite.							
120.47	143.00	INTERMEDIATE TUFF							
		Light grey, green colour, moderately hard, sericitic, carbonatized							

Sheet No.

Foota	ge - Metres	
From	То	DESCRIPTION
	1	Core contains quartz veins that range from 1mm to 2cm wide, these
	,	are irregular and cut the core at all angles. Core also contains some
	!	quartz breccia sections and weathered sections. Sulphide content 1%
		disseminated pyrite.
		125.45 to 125.88 Weathered core —> rusty brown colour, softer.
		121.74 to 121.97 Weathered core \longrightarrow same as 125.45 to 125.88.
		128.90 to 131.94 Quartz breccia, very hard, siliceous, white to
		light grey. Less than 1% pyrite present.
		140.02 to 140.20 Broken core, rubbled rock.
43.00	151.75	MAFIC TUFF BRECCIA
-		Green, moderately hard, very chloritic and slightly carbonatized.
		Matrix is mainly chloritic. Pyrite present less than 1%.
		·
	151.75	END OF HOLE
	1	
	-	
	 	
	 	
	ļ	
		`

Hole 1	vo839.	-42-26	
Sheet	No	6	

AMAX MINERALS EXPLORATION

(A Division of Amax of Canada Limited)

DIAMOND DRILL RECORD

Hole No. 839-42-27

Hole No. 839-42-27 Sheet 1. Property Holloway -2 Township Holloway Location L 1450E, 205N Logged By B. Benoit Core Location Perry Lake	g North	Core Size	November 30, 1981 December 3, 1981 St. Lambert BQ ostin Hole none	Dip: Collar . Etch Test	– 50 Depth 41. Om	0 ⁰ Rdg. True 50 ⁰ 44 ⁰	Lo 1500 nset		North Claim No.L-579664
Remarks								B L	Scale: /: 10,000

DESCRIPTION

From	То	
0	16.75	OVERBURDEN
16.75	26.75	MAFIC LAPILLI TUFF
26.75	30.65	INTERMEDIATE ASH TUFF
30.65	39.91	MAFIC TUFF
39.91	51.10	FELSIC TUFF
51.10	78.00	MAFIC TUFF
78.00	81.46	INTERMEDIATE ASH TUFF
81.46	108.78	FELSIC TUFF
108.78	114.24	GREEN CARBONATE ROCK
114.24	128.00	MAFIC TUFF
128.00	132.38	GREEN CARBONATE ROCK
132.38	151.00	FELSIC TUFF
151.00	153.00	TALC CHLORITE SCHIST
	153.00	END OF HOLE
•		

Footage Metres

Robert Benail

Footage - Metres		
From	To	DESCRIPTION
0	16.75	OVERBURDEN
		sand, gravel
16.75	26.75	MAFIC LAPILLI TUFF
		Light grey, green, moderately hard, slightly sericitic, moderately
		carbonatized. Core contains many quartz veins. These range from 1mm
		to 3cm wide. The veins are irregular and crenulated and cut the core
		at all angles. Core also contains some weathered sections that are
		rusty brown in colour. Sulphide content 1% disseminated pyrite, some
		small pyrite cubes also present.
		16.80 to 16.95 Quartz breccia, very hard siliceous rock and less than
		1% pyrite.
		17.61 to 17.83 Quartz breccia, same as 16.80 to 16.95.
		19.02 to 19.12 Quartz breccia, same as 16.80 to 16.95.
		21.81 to 22.08 Intermediate ash tuff band, grey moderately hard, and
		has some small quartz veins present. These range from
		1mm to 5mm wide. These are irregular crenulated and
		cut the core at all angles. Core is highly carbonatized.
-		Pyrite is present 1% disseminated and also found as
		small cubes.
		22.26 to 22.47 Weathered core, rusty brown.
26.75	30.65	INTERMEDIATE ASH TUFF
		Light grey green, moderately hard, core is slightly sericitic
		and carbonatized. Core contains some quartz veins that range from
		1mm to 1cm wide. These cut the core at all angles. Core also contains
		weathered sections. These are rusty brown in colour. Sulphide content,
		1% to 2% finely disseminated pyrite, found near quartz veins seams
		and in quartz breccia.
		26.16 to 26.30 Quartz breccia, slightly weathered, rusty brown colour.
		Hard, 1% to 2% sulphides, disseminated pyrite.
		26.67 to 26.88 Weathered section, carbonatized, softer, rusty brown
		colour.
	•	

Hole :	No839	7-42-27	·
Sheet	No	4	

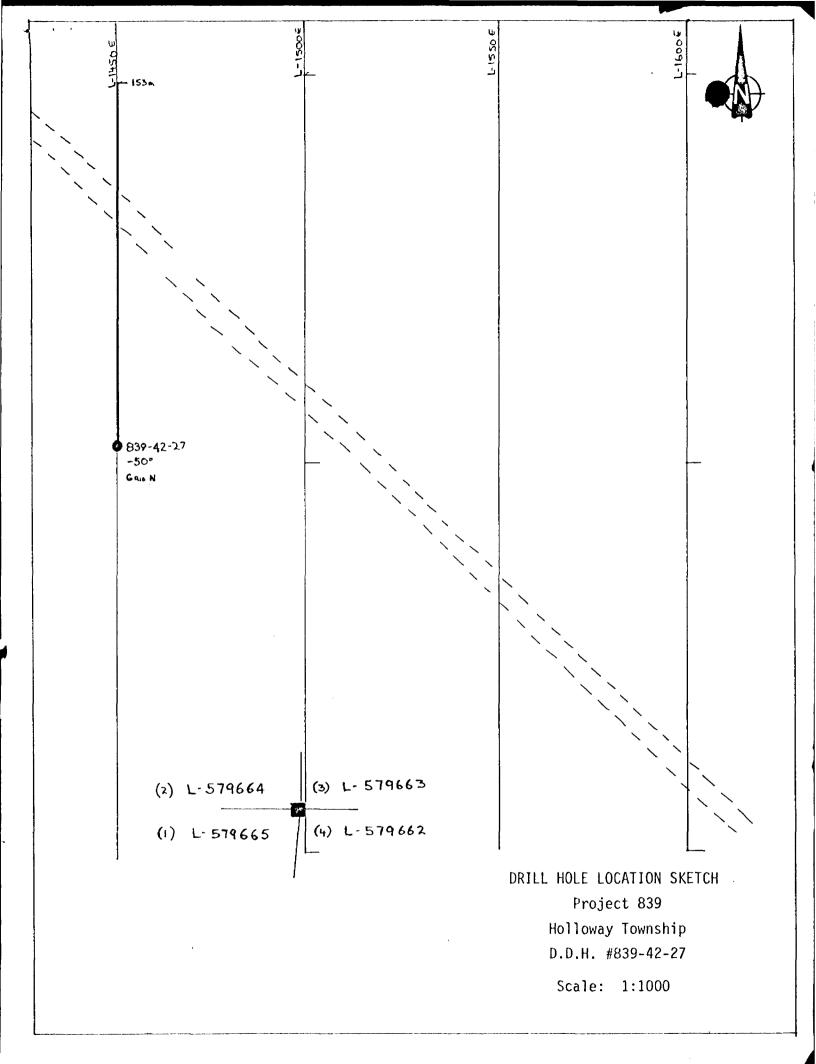
Footage - Metres				
From	To	DESCRIPTION		
		27.00 to 27.20 Quartz breccia, chloritic, carbonatized, hard, 1% to		
		2% sulphides, disseminated pyrite.		
		27.91 to 28.10 Quartz breccia, chloritic, carbonatized, hard, 1%		
		pyrite.		
		30.65 to 30.85 Weathered section, soft, carbonatized, rusty brown		
		colour.		
30.65	39.91	MAFIC TUFF		
	_	Light to dark green, moderately hard, chloritic, carbonatized.		
		Core contains small dark chloritic blebs or spots. Core also contains		
		quartz veins that range from 1mm to 6cm wide. These are irregular and		
		cut the core at all angles. Core also is weathered in some areas.		
		Weathered sections are softer and are rusty brown in colour. Core		
		also contains some sulphides. 1% to 2% finely disseminated pyrite found		
		in spots or splashes.		
		32.00 to 32.38 Weathered section, rusty brown, soft, carbonatized.		
		36.43 to 36.76 Weathered core, same as 32.00 to 32.38.		
39.91	51.10	FELSIC TUFF		
W acc		Light grey, moderately hard. Slightly sericitic and carbonatized.		
		Very siliceous, core contains quartz veins that range from 1mm to 2cm		
		wide. These veins cut the core at all angles, most of the veins are		
		irregualr and crenulated. Core also contains weathered sections that		
		are rusty brown. Pyrite is present 1% to 5% finely disseminated and		
		is found near the crenulated quartz vein seams. Pyrite cubes are		
		present also.		
		45.17 to 45.41 Weathered out graphite band. Core is broken up		
		45.17 to 45.41 Weathered out graphite band. Core is broken up and rubbly.		
		46.17 to 46.56 Weathered core, rusty brown colour, soft, carbonatized 48.25 to 48.45 Weathered core, same as 46.17 to 46.56.		
		40.23 to 40.43 Meathered Core, Same as 40.17 to 40.30.		
 i				
	<u>.</u>			

Hole 1	No81	39-42 <i>-</i>	-27	
Sheet	No	5	***************	

Footage - Metres			
From	То	DESCRIPTION	
_51.10	78.00	MAFIC TUFF	
		Dark green, moderately hard, chloritic, carbonatized, slightly weath-	
		ered sections that are a rusty prown colour. Core is mottled & contains	
		small dark chloritic spots or blebs. Core contains quartz veins that	
	 	range from 1mm to 6cm wide. These are irregular and cut the core at all angles. Some of these quartz veins are pink. Sulphides are	
		present 1% disseminated pyrite.	
		present in disseminate pyrite.	
		53.12 to 53.21 Weathered core rusty brown, soft.	
78.00	81.46	INTERMEDIATE ASH TUFF	
		Light grey, moderately hard. Contains some quartz veins. These	
	ļ	are irregular and cut the core at all angles. Pyrite present, less than 1% disseminated pyrite.	
		than 1% disseminated pyrite.	
81.46	108.78	FELSIC TUFF	
		Light grey green, hard, siliceous. Core chloritic, sericitic	
]		and slightly carbonatized. Core contains many quartz veins that	
		range from 1mm to 5cm wide. These are irregular and cut the	
		core at all angles. Many quartz veins are swirled and crenulated.	
		Core also contains some quartz breccia sections and black chert	
		bands. Sulphide content is not very high 1% to 2% finely disseminated pyrite.	
		Dyrice.	
		81.71 to 82.84 Black chert, black, very hard, very siliceous, contains	
		some quartz veins that are broken up and irregular.	
		They cut the core at all angles. Slightly sericitic.	
		Pyrite is present less than 1% disseminated pyrite.	
		88.11 to 88.34 Quartz breccia, white, very hard, siliceous, has some	
		chlorite and sericite present less than 1% pyrite.	
		01 50 1 04 17 07 1	
		91.59 to 94.17 Black chert, same as 81.41 to 82.84.	
		95.09 to 95.78 Black chert, same as 81.71 to 82.84. 96.03 to 96.19 Black chert, same as 81.71 to 82.84.	
		96.03 to 96.19 Black Chert, Same as 81.71 to 82.84.	
	7		

Hole l	vo. 839-42-2	7 .
Sheet	No. 6	

DIAMOND DRILL RECORD


Footage - Metres			
From	To	DESCRIPTION	
		106.86 to 107.22 Black chert, black, very hard, siliceous. Chert	
		is also weathered thus having a rusty brown colour	
		and is softer.	
		97.54 to 98.12 Quartz breccia, white, very hard, contains chlorite	
		and sericite, has less than 1% disseminated pyrite.	
		98.85 to 99.10 Quartz breccia same as 97.50 to 98.12.	
		99.16 to 99.55 Weathered sections, broken up core, soft.	
		rusty brown colour.	
		100.30 to 100.92 Weathered core, rusty brown colour, soft.	
		108.00 to 108.78 Quartz breccia, white very hard, siliceous,	
		weathered sericite is present. Slightly sericitic	
		and chloritic.	
108.78	114.21	GREEN CARBONATE ROCK	
		Green, hard, siliceous, slightly carbonatized and sericitic.	
		Contains fuchsite and epidote. Core contains many quartz fragments	
		and quartz veins. These range from 1mm to 5cm wide hese are very	
		irregular and crenulated. Core is also slightly chloritic. Core	
		also contains less than 1% sulphides, disseminated pyrite, rock is	
		very altered.	
114.21	128.00	MAFIC TUFF	
117.21	120.00	PACIO TOTA	
		Light grey green, hard, slightly sericitic, chloritic, and	
		carbonatized. Tuff is very altered with zone of precciation and	
		green carbonate rock. Fuchsite and epidote is present. Core	
		contains many quartz veins that range from 1mm to 3cm wide. These	
		veins are irregular, crenulated and cut the core at all angles.	
		Pyrite is present 1% disseminated pyrite found near broken quartz	
		vein seams.	
		119.29 to 120.80 Quartz breccia, very hard siliceous, contains	
		fuchsite, epidote and sericite. Less than 1% pyrite.	

Hole No. 839-42-27 Sheet No.....7

DIAMOND DRILL RECORD

Footage - Metres		
From	То	DESCRIPTION
128.00 132.38		GREEN CARBONATE ROCK
		Light green, moderately hard, contains fuchsite, epidote and
		chlorite. Core also contains many quartz veins. These range from
		lmm to 3cm wide. These veins are irregular and cut the core at all
		angles. Core contains small quartz breccia sections. These are
		small and do not contain a very high input of sulphides. Sulphide
		content less than 1% disseminated pyrite.
		128.42 to 128.51 Quartz breccia zone, very siliceous, very hard, less
		than 1% disseminated pyrite.
		128.65 to 128.81 Quartz breccia, same as 128.42 to 128.51.
132.38	151.00	FELSIC TUFF
		Light to dark grey, very hard, very siliceous, slightly sericitic
		and chloritic. Core contains many quartz veins that range from 1mm
		to 5cm wide. These are irregular and cut the core at all angles.
		Core contains some weathered sections, rusty brown colour. Sulphide
		content 1% to 2% disseminated pyrite.
		132.38 to 133.90 Mafic tuff breccia band, light to olive green,
		moderately hard chloritic and sericitic matrix.
		Less than 1% sulphides. Contains some small
		irregular quartz veins.
		134.85 to 135.10 Weathered quartz breccia, rusty brown soft.
		138.14 to 138.66 Quartz breccia, light grey, very hard, very siliceous
		less than 1% sulphides.
151.00	153.00	TALC CHLORITE SCHIST
		Dark green, soft, greasy feel, chloritic, carbonatized and
		contains some quartz seams 1mm to 4cm wide. These are irregular and
		cuts the core at all angles. Less than 1% sulphides.
	153.00	END OF HOLE
	<u> </u>	

Hole No. 839-42-27 Sheet No.___8_

