

32D12SE0693 2.7793 HOLLOWA

010

PROGRESS REPORT ON THE HOLLOWAY TOWNSHIP GOLD PROPERTY OF ARGENTEX RESOURCE EXPLORATION CORP.

FOR

THE PERIOD OF JANUARY 1st. TO DECEMBER 31st. 1984.

RECEIVED FEB 0 8 1985 MINING LANDS SECTION

Glenn C. Kasner Mining Technologist.

Kirkland Lake, Ontario. January 1985.

NTS 32D/12 Project A-004 <u>LIST (</u>

Ø10C

. . .

SECTION A:		Page
List of Conter	nts sident and Directors	2,2A 2B
Geological and	d Geophysical Report:	
Summary Summary Cont'd Introduction, Land Tenure ar Surface Topogr Background His Previous Work Regional Geolo Present Work V.L.F. and Hor Magnetometer S Geological Sur (i) (ii (ii (iv Conclusions an Bibliography	Property Location, Access and Fac ad Ownership caphy, Overburden and Foliation story Done Ogy rizontal Loop Surveys Survey Mg-Rich Tholeiitic Basalts Mg-Rich Tholeiitic Basalts) Fe-Rich Tholeiitic Basalts 1) Structural Geology A Recommendations	5 illities 6
	Listing of Figures:	
Figure 1. Lo Figure 2. Ke Figure 3. Cl		6 7 8
Listing of Map	s contained in Folders:	Scale:
Drawing No. 2. Drawing No. 3.	Surface Geology with Drill Hole V.L.F. EM. Survey Magnetometer Survey Max Min II Survey, 1,777Hz.	Locations 1cm. to 50 meters 1cm. to 50 meters 1cm. to 50 meters 1cm. to 12.5 meters
SECTION B:		Page
Assaying Diamond Drill Diamond Drill Diamond Drill Diamond Drill Diamond Drill	ng Summary Hole Ar84-1 Log Hole Ar84-1A Log Hole Ar84-2 Log Hole Ar84-3 Log Hole Ar84-4 Log Hole Ar84-4A Log	24 25 26 to 33 34 to 42 43 to 45 46

LIST OF CONTENTS CONT'D

SECTION B CONT'D:

Page:

			Ar84-5 Log			52
			Ar84-6 Log			
			Ar84-7 Log			
			Ar84-7A Log			
Diamond	Drill	Hole	Ar84-8_Log	60	t0 6	1

SECTION C:

Diamond Drill and Reverse Circulation Hole Sections 62

Listing of Figures:	Scale:
Figure 4. Drill Hole Section Ar84-1,3	1cm. to 10 meters
Lobonar 2A,2B	
Figure 5. Drill Hole Section Ar84-2	1cm. to:10 meters
Figure 6. Drill Hole Section Ar84-4,4A	1cm. to 10 meters
Reverse Circulation Holes ARG-ob-	
08,09,10 and 11	
Figure 7. Drill Hole Section Ar84-5	1cm. to 10 meters
Reverse Circulation Hole ARG-ob-07	
Figure 8. Drill Hole Section Ar84-6,8	icm. to 10 meters
Reverse Circulation Holes ARG-ob-16,	
20,21A and 22	
Figure 9. Drill Hole Section Ar84-7,7A	1cm. to 10 meters
Reverse Circulation Holes ARG-ob-17	

SECTION D:

Interpretation of Diamond Drill Results:	Page:
Drill Hole Ar84-1	. 63to 65
Drill Hole Ar84-1A	. 66to 67
Drill Hole Ar84-2	. 68to 70
Drill Hole Ar84-3	. 71to 72
Drill Hole Ar84-4	• 73
Drill Hole Ar84-4A	. 74to 75
Drill Hole Ar84-5	. 76to 77
Drill Hole Ar84-6	. 78to 79
Drill Hole Ar84-7	. 80
Drill Hole Ar84-7A	. 81to 82
Drill Hole Ar84-8	. 83
Summary Conclusions and Recommendations	
Discussion of Results	. 87to 94
References	• 95
Certificate of Qualifications	• 95A

LIST OF CONTENTS CONTINUED:

SECTION E:

Page:

Interpretation of Heavy Mineral Gold Anomalies In Till Samples From Reverse Circulation Drill Holes

SECTION F:

Listing of Tables:

Following Page:

Listing of Figures:

Scale

Figure 1.	Stripping	and Trenching	Location Plan	1cm. t	to 50 meters
Figure 2.	Stripping	and Trenching	Location Plan	1cm. t	to 50 meters
Figure 3.	Stripping	and Trenching	Location Plan	icm. t	to 50 meters

Geophysical, geological and geochemical technical data statement

•••2B

January 1985

To the President and Directors Argentex Resource Exploration Corp. 1816 - 44 Victoria Street Toronto, Ontario M5C 1Y2

Gentlemen:

Re: Holloway Township Gold Property Progress report for period January 1st. to December 31,1984.

During 1984, Argentex Resource Exploration Corp., carried out various exploration programs on its Holloway Township Gold property. These programs consisted of line cutting, geological mapping, geophysical surveying, reverse circulation drilling, biogeochemical surveying, surface stripping and diamond drilling. Please find enclosed results of these programs contained in the following text.

Yours truly, antaon)

Glenn Kasner

Summary

The Argentex Resource Exploration Corporation, Inco Option, claim claim group comprising 50 unpatented, unsurveyed contiguous mining claims located in Holloway Township, District of Cochrane was on by the author and assistants from July to October 1984. The work consisted of ground V.L.F., magnetometer and geological mapping at a scale of 1:5,000 metric. A horizontal loop survey was conducted over a small section of the property to verify a V.L.F. conductor and 26 reverse circulation holes were drilled to test the Pleistocene basal till horizon in addition to ten backhoe basal till samples.

The property is underlain by a stacked sequence of magnesium rich and iron rich tholeiitic volcanic flows of the Kenojevis Group, Archean in age. The volcanics trend east-northeast, dip steeply south and consist of pillowed, diabasic and flow brecciated basalts with minor agglomeratic and tuffaceaus horizons. Interflow sediments conductive to gold mineralization are postulated to occure at the contact boundry between magnesium rich and iron rich flows. No sediments were found on surface due to the topography which is probably a reflection of the geological structure of the property. Intrusives are absent on the property with the exception of a small discontinuous diabase dike.

The magnetometer survey indicates a continous low magnetic horizon which traverses the entire property at 070[‡] true along the 12+00S baseline. This horizon is postulated to containe a sedimentary horizon which may contain economic concentrations of gold and should be the target of future diamond drilling. A V.L.F. conductor supported by a horizontal loop conductor indicates the presence of a graphitic horizon or horizons to the northeast which has been the site of two previous drilling programs. one in 1949 by Lobonar Gold Mines and one in 1960 by the Revere Mining Corp.

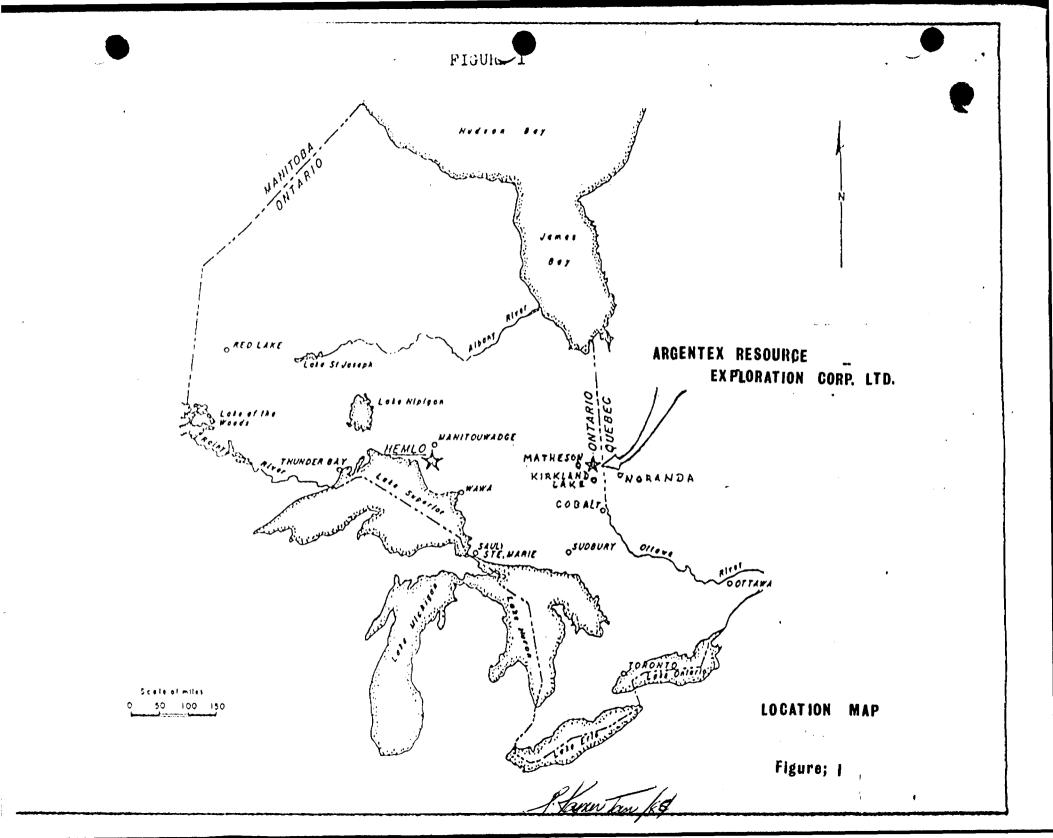
Summary Cont'd

Anomalous gold intersections were encountered. These holes were drilled down dip making interpretation difficult. Examination of the logs indicates that for the most part only the graphitic zones were sampled and possible interflow sediments may have been overlooked

A second narrower magnetic low was located approximately at 18+00 South which may represent a smaller parallel sedimentary horizon.

<u>A Report On The</u> <u>Inco Option, Holloway Township Property</u> <u>of</u> Argentex Resource Exploration Corp.

2. Introduction


The Argentex Resource Exploration Corp./Inco option group located in central Holloway Township, District of Cochrane was worked on by the author and assistants from July, 1984 to October, 1984. The work completed on the property includes ground V.L.F., magnetometer, horizontal loop, geological surveys, a reverse circulation program consisting of 26 holes and 10 back hoe basal till samples. The geophysical and geological surveys were carried out at a scale of 1:5,000 metric on grid lines spaced at either 100 or 200 meters picketed every 25 meters.

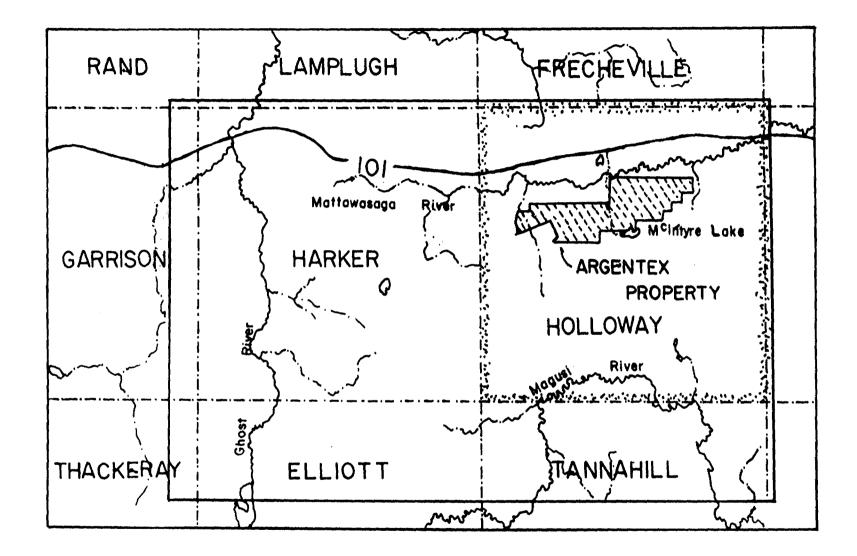
The property consists of 52 unpatented, unsurveyed, contiguous mining claims in central Holloway Township, District of Cochrane, Larder Lake Mining Division with a total area of approximately 1,800 acres.

The purpose of this report is to summarize exploration work done to date and provide recommendations for further work to be done on the property.

3. Property Location, Access and Facilities

The Argentex Resource Exploration Corp./Inco option claim block is located in central Holloway Township, District of Cochrane, (National Topographic System reference 32D/12) approximately 60 km east of the town of Matheson and 1 km south of Highway 101. The base camp for exploration was located on McIntyre Lake on the south border of the property. A bush road suitable for 4-wheel drive vehicles traverses a north-south trending esker from Holloway Lake to McIntyre Lake. A drill road runs east-west across the property and is suitable for all-terrain cycles. The property comprises 52 contiguous mining claims

with a total area of approximately 1,800 acres. The Mattawasaga River passes through the northeast border of the property and numerous beaver dams and creeks are available to supply water for drilling operations on the north half of the property. The south half of the property is relatively dry and a water supply for drilling may be a problem. A large esker crosses the central portion of the property providing an ample supply of gravel for further road building.


There are no facilities suitable for support of a mining operation on or near the property at this time, however, milling facilities are present at the town of Timmins, 135 km to the west.

4. Land Tenure and Ownership

The Argentex Resource Exploration Corp./Inco option property comprises 52 contiguous unsurveyed, unpatented mining claims with an area of approximately 1,800 acres. The claims are recorded in the Larder Lake Mining Division and prefixed with the letter "L". The claim numbers include:

L -	588052		057	inclusive	6	claims
L -	588147	-	152	inclusive	6	claims
L~	588154	, -	158	inclusive	5	claims
L -	588161	-	164	inclusive	4	claims
L -	588168				1	claim
L -	599026	.	053	inclusive	28	claims
L -	799696	-	97		_2	claims
					52	

The claims were staked in early 1981 and recorded on February 16, 1981. A total of 61.2 days of work have been performed on the group prior to 1984 and a further 38.8 days work is required to be completed by December 14, 1984. This year's geological, geophysical and drilling programs will maintain land tenure through the 1984 claim year as the work is under extension from February 16, 1984.

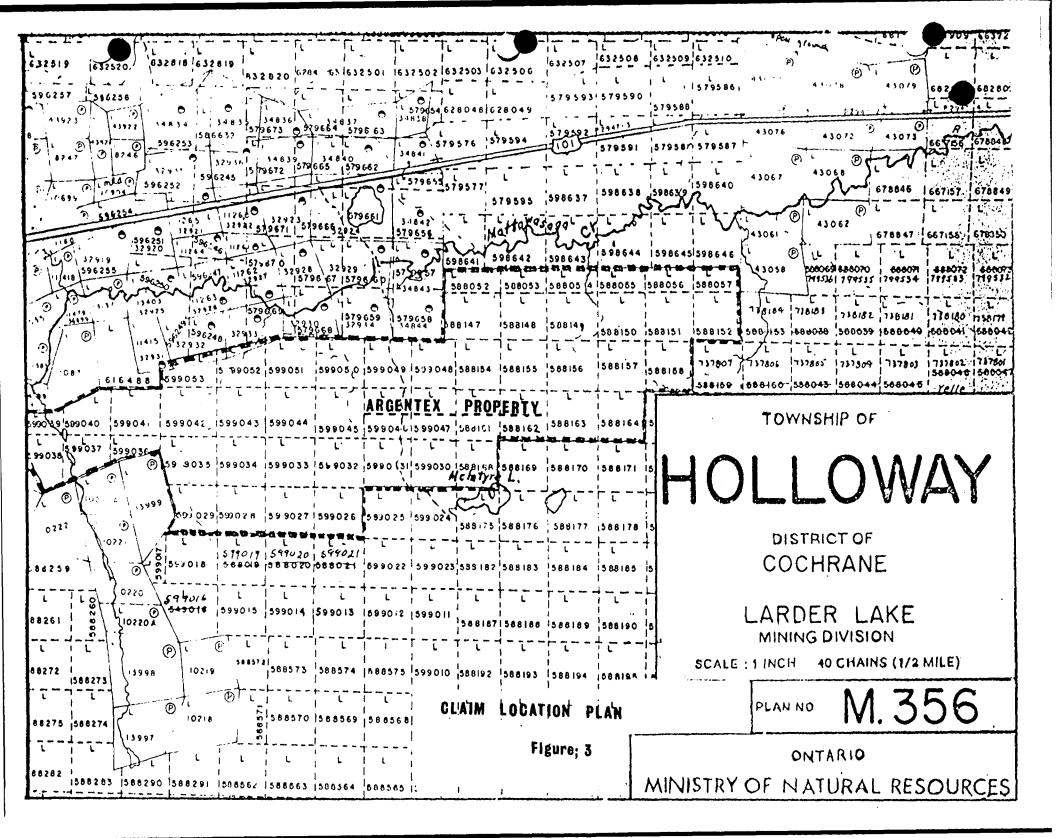
KEY MAP scale: linch = 2 miles

P. Janw Jan / 5#

Figure; 2

5.

Surface Topography, Overburden and Foliation


The property may generally be divided into three main topographic features. Steep north-facing cliffs with gentle dipping backs are prominent to the northeast and southwest. The terrain north of the cliffs is generally flat and covered with tag alder swamps and marshes. The overburden is generally sand to sandy-clay and may reach a depth of up to 130 feet with an average depth of 90 feet as indicated by the reverse circulation drill program. Rock exposure north of the cliff faces may be up to 60%, particularly to the southwest. The amount and type of exposure is due in part to both glaciation and structural geology.

A large esker which may be up to 150 feet thick crosses the central part of the property north-south and is covered with mature stands of jack pine. No rock exposure was found on the esker, however, limited bedrock exposure was found on the flanks of the esker which are generally covered with a mixed forest type vegetation on sandy Pleistocene deposits.

The property on the whole does not appear to have been logged with the exception of a small area between the Mattawasaga River and the large outcrop to the northeast. Much of the property has been burned over in the past.

6. Background History

Prospecting for silver in the Lightning River area is reported to have occurred as early as 1907 and 1908 with some of the prospectors including Russell Cryderman, William Cooper and William Woodney. It was not until August of 1917, when Messrs. Howey, Cochenour and Willans worked northeastward from Kirkland Lake, that gold was first discovered in Holloway Township. A goldbearing quartz vein which ran from a basalt into a rhyolite flow was located in the southwest corner of Holloway Township and was subsequently trenched and an inclined shaft was sunk to a depth of 73 feet. This claim group is held by Coin Lake Gold Mines Ltd. of Toronto. In 1922, further gold mineralization was

discovered in quartz veins by W. S. Seagers which became the Teddy Bear Valley Mines Ltd. property and a two compartment shaft was sunk to a depth of 300 feet. However, no production figures are recorded.

Gold values were also found on the Mining Corporation of Canada and McDermott properties in 1922. The McDermott property had a shaft sunk to a depth of 14 feet and one diamond drill hole to a depth of 402 feet. The property was then optioned to Sylvanite Gold Mines Ltd. in 1949 and a further 3,035 feet of diamond drilling was completed. The McDermott claim group is now the site of a diamond drilling program conducted by Barrick Resources, formerly Camflo Mines Ltd.

The Meridian occurance is located in south-west Holloway Township and consists of a narrow quartz vein in pyritized basalt. The vein was explored by a shaft to a depth of 45 feet in 1919 and is now held by Coin Lake Gold Mines Ltd.

In 1952, the Ontario Department of Mines, led by J. Satterly and assistants mapped the northern half of Holloway Township at a scale of 1:12,000 and Larry Jenson mapped part of the township in 1973 at a scale of 1:15,840. Jenson's mapping also provided geochemical subdivision of the volcanics. A government-flown magnetometer and E.M. survey was flown in 1983 and the results published in June of 1984 completing the government surveys in the township.

7. Previous Work Done On The Inco Option

The Inco option of Argentex Resource Explorations Corp. has been the site of limited exploration in the past. This may be due to the scarcity of outcrop exposure and the lack of a major discovery in the area. The earliest recorded work done on the property was that of Lobonar Gold Mines Ltd. which held a group of 42 unpatented claims and completed 5,129 feet of diamond drilling in 1949, 1,847 feet (of which two holes were drilled on the Argentex property), (present claim L-588056). Collars for Lobonar drill holes "2A" and "2B" were located on surface at present grid coordinates 64+19E, 11+87N. Lobonar hole No "2A" has

been referred to in later reports as a discovery hole. Hole "2B" was drilled below "2A" and intersected a zone 22 feet wide (true width approximately 10 feet) which consisted of "fragmental but becomes yellowish in colour, hard and dense due to a type of cherty alteration and baked appearance - Basic Sill-cherty, silicified, massive and dense with small round, chloritic spots in a yellow to yellow-green matrix." The yellow alteration may be due to sericite, a common accessory mineral associated with gold occurrances throughout the area. The Lobonar logs show that a sample was taken over this interval but no assay value was given. This zone was not noted in the upper hole indicating that the zone may pinch out towards the surface but may also become thicker at depth. It should also be noted that the holes were drilled down-dip, as were subsequent holes drilled by the Revere Mining Corp. on the property in 1960.

The Revere Mining Corp. Ltd. held a claim group consisting of 40 claims, most of which were held by Lobonar Mining in 1949. A magnetometer and an electrical resistivity survey was completed and a number of conductors were located and subsequently drilled and logged as graphitic shear zones. Only the graphitic zones were assayed and returned low gold values. A horizontal loop survey completed by the author has shown that the Revere drill holes were spotted on the graphitic conductors and drilled down dip, making geological interpretation from the logs difficult. None of the Revere drill logs indicate that a zone of yellow chert and silicification was intersected as was on the Lobonar drilling. However, the Revere drill holes were at 45° (the geology dips at 80°) and may have missed the mineralized zone intersected by the Lobonar drilling.

In 1948, McIntyre Porcupine Mines Ltd. held a block of 77 unsurveyed mining claims, south from the Lobonar group. Geological mapping and 10 diamond drill holes totalling 5,488 feet were completed in an area west of McIntyre Lake and intersected volcanic flows and minor quartz veins. No significant mineralization was found, however, a 10 foot wide sample of pyritic quartz vein material sampled by the author returned an assay of 0.10 oz. of gold per ton (biased sample from split core). The McIntyre drill core has been moved to the core storage facilities in Swastika, Ontario and further sampling by the author of possible interflow sediments returned no gold values. This particular area of the Argentex Resource Exploration Corp. claim group is of low priority at this time, however, a closer examination of this area is recommended in the future because of the anomalous gold value in the core.

In 1981, the Canadian Nickel Company Ltd. (Canico) staked 245 claims covering an area of approximately two-thirds of Holloway Township. That same year, Canico completed an airborne magnetic and E.M. survey followed up by reconnaissance geological mapping and sampling. The airborne survey located a number of conductors and it was recommended that further work be conducted on the northeast and southwest section of the property. In 1984, Argentex Resource Exploration Corp. acquired portion of the original Canico claim block and proceeded to evaluate the property in detail.

8. <u>Regional Geology</u>

The Argentex Resource Exploration Corp. property in Holloway Township is underlain by Archean rocks of the Superior Province, Abitibi Subprovince and is located on the north limb of the eastwest trending Abitibi greenstone belt. The rock types on the property belong to the Kenojevis Group of tholeiitic volcanics and is underlain by the Stoughton Roquemare komatiitic volcanics and overlain by Calc-alkaline volcanics of the Blake River Group.

Rock types of the Kenojevis Group consist for the most part of alternating stacked flows of magnesium-rich basalts and iron-rich basalts with lesser amounts of rhyloitic volcanics and interflow sediments ranging from argillites and greywackes to graphitic sediments, carbonates, chert and rare iron formation. Syenitic and lesser amounts of gabbroic sills, dikes and plugs are not uncommon in the Kenejevis Group. The Destor Porcupine Fault zone is postulated to transect the north boundary of Holloway Township and has been the loci of gold exploration since the early 1900's. Numerous hinge and thrust faults parallel to and oblique to the Destor Porcupine occur throughout Holloway Township and many showings in the township are localized along these structural breaks. The volcanic stratigraphy of the township is generally east-northeast dipping steeply south. However, the stratigraphy may flatten at depth.

Considering the location of Holloway Township and its close proximity to the Destor Porcupine Fault zone, the township has received relatively little exploration until the early 1980's. This may be due to the lack of rich quartz vein deposits as are located to the west in Timmins or the high degree of overburden which has masked the geological structure of the township.

Present Work

As stated previously, Argentex optioned part of the Canico group in 1984 because of the possibility of repeated sequences of gold-bearing sedimentary units which may occur throughout the township. The author and assistants spent July to October of 1984

completing detailed ground V.L.F., magnetometer, horizontal loop and geological surveys on the property. Additional basal till sampling and a reverse circulation drilling program consisting of 26 holes was also completed during this time. However, this report will deal solely with the geophysical and geological work. Each of the surveys will be dealt with individually in this report.

V.L.F. and Horizontal Loop Surveys

A ground V.L.F. survey was completed on the property utilizing cut grid lines spaced between 100 to 200 meters with 25 meter station intervals. In areas where cut grid lines are at 200 meter intervals, in between lines were chained and flagged. A Phoenix V.L.F.-2 instrument was used and calibrated at a base station prior to each daily survey. The Cutler Maine transmitting station with a frequency of 24.0 KHz was used for the survey. Although the orientation of the transmitting station is not ideally suited to the strike of the regional geology, general trends and conductors were located on the property. Conductors located to the northeast were verified using a Max Min II instrument utilizing a 100 meter cable separation and two frequencies, 444 Hz and 1,777 Hz. Only the results from the 1,777 Hz frequency are included in this report as this frequency tends to accentuate the profile of the conductors.

The results of the V.L.F. survey indicate two zones of interest. The first zone is to the northeast extending from line 62+00E to line 69+00E and shows a series of conductors striking roughly 070° to 090° . A corresponding high relative field strength associated with the cross

overs would indicate the presence of a bedrock conductor and not an overburden response. The lack of well developed shoulders up-dip from the conductors may be due, in part, to the orientation of the transmitter. Although three individual conductors are noted, there are, in all probability, only two parallel conductors.

This area was also surveyed using the Max Min II horizontal loop instrument and indicated one major out of phase conductor continuous from line 58+00E to line 69+00E, 75 meters south of the baseline. The conductor strikes roughly 070° and appears to be gently folded to 090° as one moves further east. The conductor appears to be only a few meters thick, dipping steeply south and is probably caused by a graphitic horizon noted in the Revere drill logs. A second smaller out-of-phase conductor extending from line 60+00E to line 62+00E south of the above described conductors was located and probably represents a parallel graphitic horizon.

A smaller V.L.F. conductor was located between lines 54+00E and 56+00E at 16+00S, however, a corresponding weak field strength would indicate that the conductor may be an overburden response. A third conductor was located to the southwest between lines 22+00E and 24+00E and may represent another graphitic horizon or shear zone as there is another relatively high field strength associated with the crossover. This area should be looked at in greater detail in the future with a horizontal loop survey to determine the nature of the conductor.

Magnetometer Survey

The Magnetometer survey was completed on the property utilizing a Geometrics G-826 precision proton magnetometer. The instrument was carried on a staff to give an accuracy of \pm 1 gamma. A base station (McIntyre Lake base camp) was read before and after each daily survey and diurnal fluctuations were corrected accordingly. The diurnal fluctuation never exceeded \pm 100 gammas during the course of the entire survey. Due to the high degree of overburden, the magnetometer survey has proven to be the most useful of the surveys in determining the nature of the underlying bedrock.

In general, three different bedrock lithologies are represented by the magnetometer results. These include iron-rich tholeiitic volcanics, magnesium tholeiitic volcanics and sediments, the latter of which are not exposed on surface. The iron-rich tholeiites generally exhibit a magnetic character greater than 59,000 gammas and local zones enriched in iron may exceed 62,000 gammas. Similarly, local zones depleted in iron may give readings as low as 58,300 gammas. The magnetic depletion may be due in part to fractional differentiation of iron within the flows, narrow tuffaceous horizons or localized faulting in which the iron has been driven out of the flow. Often these localized lows are flanked by extreme magnetic high values (i.e. - line 26+00E, 17+50S) indicating that the iron has been locally remobilized.

The magnesium-rich tholeiites generally show a magnetic character between 58,000 gammas to 59,000 gammas and show a gradational contact into the more iron-rich volcanics as one moves to the north (i.e. line 40+00E, north from B.L. 12+00S). As one moves south, the contact with the iron-rich volcanics is very sharp and abrupt and may be caused by renewed volcanism and/or high angle thrust faulting of the iron tholeiites over the low magnetic magnesium tholeiites. Often this contact is denoted by a fault zone on surface.

Two magnetic low horizons traverse the property at roughly 070°. The first zone occurs along the baseline at 12+00S and it continues from line 69+00E to 11+00E. The width of this zone may exceed 500 meters although local iron-rich volcanics do occur within this zone. The second zone traversed the property at approximately 18+00S and is up to 100 meters wide. A second narrower magnetic low was located approximately at 18+00S may represent a smaller parallel sedimentary horizon which may warrant further examination in the future.

These magnetic lows may represent both magnesium-rich volcanics and possible interflow sediments conducive to gold mineralization. The extreme magnetic lows may represent the sedimentary horizon itself. However, the contact between the sediments and magnesium-rich volcanics is gradational and interpretation of the postulated sedimentary horizon is difficult. Historically, these zones have been the targets of previous drilling, the northern zone by both Lobonar and Revere Mining Corp. and the southern zone by McIntyre Porcupine Mines Ltd.

Within the magnetic low horizons, interflow sediment consisting of argillites, grey wackes, carbonates and graphite may occur. It would appear that the interflow sediments (denoted by extreme magnetic lows) occur at the sharp contact between the iron tholeiites and magnesium tholeiites and which was previously stated as being a faulted contact. It is possible that the postulated sedimentary horizon may have acted as a plane of weakness between the iron tholeiites and magnesium tholeiites resulting in faulting between the two. It should be noted that the Revere Mining Corp. drill logs show intersections of "graphitic shear zones" on the northeastern section of the property.

Local south trending dips in the general magnetic plan view (i.e. - line 57+00E, south of B.L. 12+00S) may be due to either block faulting of the sediments or local channels of sediments. However, the only way to explain these zones would be by diamond drilling.

Geological Survey

Geological mapping was carried out at a scale of 1:5,000 metric with grid lines spaced at 100 or 200 meter intervals. The 200 meter line separation did not permit extremely detailed work. Outcrops occur for the most part to the northeast and southwest portion of the property.

In general, the property exhibits a sequence of stacked iron tholeiites and magnesium tholeiites of the Kenojevis Group with the iron tholeiites often outcropping as prominent north facing cliffs and the magnesium tholeiites outcropping as small isolated ridges. Interflow sediments are postulated to occur within the hanging wall contact of the iron tholeiites and footwall magnesium tholeiites. However, no interflow sediments were found to outcrop on the property. The two different volcanic types will be dealt with separately.

(i) <u>Mg-Rich Tholeiitic Basalts</u>

These rocks may be found on the northeast section of the property and may be identified by their light green to grey, almost cherty, appearance. They occur, for the most part, as fine-grained pillowed flows, often spherulitic with minor agglomeratic horizons. The pillow structures are well developed and trend between 080° to 070°. Tops are to the south and the flows dip at 80° to the south. Spherulites are common indicating that the flows were extruded in shallow water under low pressure conditions. However, amygdules were not noted indicating that the flows did not have a high volatile content. The fine-grained upper member of the flows are often fractured and contain calcite stringers. Sulfides are a minor accessory within the flows. An agglomeratic bed within the Mg-rich volcanics was found to strike roughly 070° between lines 47+00E and 50+00E and reaches a maximum thickness of 5 meters. It appears to thicken to the west and may be useful as a marker horizon. A small outcrop of carbonatized (ankeritic) spherulitic magnesium tholeiites was located on line 57+00E, south of the Mattawasaga River. The carbonatization does not appear to have been caused structurally and may represent a carbonate-enriched phase of the flow due to the incorporation of sedimentary carbonate.

(ii) <u>Fe-Rich Tholeiitic Basalts</u>

This rock forms the majority of the outcrops on the property and consist, for the most part, of massive flows up to three or four hundred meters thick. Pillow structures are poorly developed, however, amygdules are common with cavities often filled with calcite. The amygdules would indicate the presence of a volatile phase within the flow and extrusion was probably at a moderate depth.

The flows are characterized by their dark green to black colour, often diabasic texture and magnetism and are easily differentiated from the magnesium flows which are much lighter in colour. The Fe-rich flows often exhibit hyaloclastite, flow breccia and tuffaceous horizons. Pillow structure within individual flows are not common, however, they may have been obliterated by overlying flows. When the flows have been sheared they are commonly fractured and filled with quartz/carbonate stringers and epidote alteration. In previous mapping, the flows were often called sills, however, it has been the author's experience in the area that the "sills" are actually thick individual flows with a diabisic interior and a basal prophyritic phase caused by variable cooling rates due to a finer-grained chilled flow top which acts much like a thermal blanket.

(iii) Structural Geology

The limited surface exposure on the property does not allow a detailed structural interpretation, particularly towards cross faulting which the author has observed in both Holloway and Harker Townships.

A major fault appears to transect the property in the vicinity of the 12+00S baseline and outcrops on surface at line 45+00E, 12+00S. It is marked by a zone of chloride schist and silicification. The silicification extends only a few feet into the hanging wall volcanics. This zone may be a continuation of the zone located on surface between lines 62+00E and 69+00E, south of the 12+00S baseline where it is marked

...19

GLENN C. KASNER EXPLORATION SERVICES LTD.

by a zone of schist, calcite stringers and epidote. This fault appears to be a high angle thrust fault and may be folded from an orientation of 070° to 090° as one moves from west to east. Smaller strike faults occur on the southern portion of the property and are located proximal to the second magnetic low and may represent a structure similar to the above-described fault.

(iv) Economic Geology

No areas of significant mineralization were encountered on the property although a possible gold-bearing sedimentary horizon is postulated to occur within the magnetic low area along the 12+00S baseline. It would appear that the graphitic zone is limited to the northeast where it was located by both V.L.F. and horizontal loop surveys. The graphitic horizon provides an excellent marker horizon within the sedimentary horizon and although this unit has been drilled and sampled in the past, it is the opinion of the author that many of the rock types logged as volcanics may be sediments and were not sampled. Gold mineralization in the area has been found in dark green rocks which contain only 2 - 3% pyrite and appear similar to fine-grained volcanics or shear zones.

Conclusions and Recommendations

A sedimentary horizon which may be conducive to gold minerilization is postulated to transect the Argentex Resource Exploration Corp. property along the 12+00S baseline. A section of this horizon to the northeast, known to contain graphite, was drilled in 1949 and 1960. The horizon is marked by a thrust fault and a sharp increase in magnetics. Drilling done in 1949 by Lobonar Gold Mines indicated a zone of silicification and yellow alteration, however, no assay values were given.

At the time of writing this report, Argentex Resource Exploration Corp. is awaiting the results of 26 reverse circulation drill holes which will aid in determining drill targets. However, it is the opinion of the author that at least one drill hole should be used to explore the zone encountered by Lobonar drill hole "2B".

Respectfully submitted,

October 1984.

Glenn C. Kasner

....22

BIBLIOGRAPHY

Ferguson, S. A., Groen, H. A. and Haynes, R. 1971: Circular No. 13, Ontario Department of Mines: Gold Deposits of Ontario, Part 1, pp.131. Jensen, L. S. 1982: Precambrian Geology of the Lightning Mountain Area, Lightning River Area, Cochrane District, Ontario Geological Survey, Map P2432, Geological Series -Preliminary Map, Scale 1:15,840 or 1 inch to 1/4 mile. Geology 1973. Knight, C. W. 1924: Lightning River Gold Area, Ontario Department of Mines, Vol. XXXIII, Part 3, pp 41 - 46. MERQ -OGS 1983: Lithostratigraphic map of the Abitibi Subprovince, Ontario Geological Survey/Ministere de L'Energie et des Resources Quebec; 1:500,000, catalogued as "Map 2484" in Ontario and "O.V. 83-16" in Quebec. OGS 1984: Airborne Electromagnetic and Total Intensity Magnetic Survey, Matheson-Black River Area, Holloway Township, District of Cochrane, by Questor Surveys Limited for the Ontario Geological Survey, Map 80600, Geophysical/ Geochemical Series, Scale - 1:20,000, Survey and Compilation March to July, 1983. Ploeger, F., Campbell, A., and Grabowski, G. 1979: Holloway Township, District of Cochrane, Ontario Geological Survey Preliminary Map P.797 (Rev.), Kirkland Lake Data Series, Scale - 1:15,840 or 1 inch to 1/4 mile. Data compiled 1979. Satterly, J., 1953: Geology of Harker Township, Ontario Department of Mines, Volume LX, Part VII. Satterly, J., 1953: Geology of the North Half of Holloway Township, Ontario Department of Mines, Volume LXII, Part VII. Other published and private geological information, maps and report, Ontario Ministry of "atural Resources assessment files.

CERTIFICATE OF QUALIFICATIONS

I, Glenn C. Kasner of the Town of Kirkland Lake, in the District of Timiskaming, Province of Ontario, do hereby certify that:

- 1. I am an exploration contractor, principal of Glenn C. Kasner Exploration Services Ltd., with an office located at 11 Younge Street Kirkland Lake.
- 2. I an a graduate of Haileybury School of Mines, Haileybury, Ontario, having received the degree of Mining Technologist in 1976. I have since practised in the field of mineral exploration and development.
- 3. I have knowledge of, and experiance in the area in which the Argentex Resource Exploration Corp. Ltd., Holloway Township property is located.
- 4. In addition to my personal knowledge of the area, I have made use of the records available from the Ministry of Natural Resources of Ontario, certain private reports
 and data from the records of Argentex Resource Exploration Corp. Ltd.
- 5. I have a indirect interest, in the property on which this report is written.

Dated this _ 28 TH day of JANUARY 1985.

Glenn C. Kasner Mining Technologist

Eleven holes totalling 4337.0 feet (1321.9m) of BQ core (diameter 1.44 inches or 37mm) were drilled on the property of Argentex Resource Explorations Corporation during November and December, 1984. Three of the holes (AR84-1, AR84-4, and AR84-7) with a total footage of 373.0 feet (113.7m) were abandoned in overburden. Core from the remaining holes was stored in racks at the Argentex campsite at Holloway Lake, in Holloway Township. Contractor for the job was Heath and Sherwood Limited, Kirkland Lake, Ontario

The following table summarizes the drilling completed in 1984.

HOLE	LOCATION	DEPTH	DIP	AZIMUTH
AR84-1 AR84-1A AR84-2 AR84-3 AR84-4 AR84-4 AR84-4 AR84-5	L64+35E - 12+25S L64+35E - 12+25S L64+00E - 13+51S L64+18E - 11+65S L56+00E - 13+00S L56+00E - 13+00S L56+00E - 13+00S	77.0ft (23.5m) 677.0ft (206.4m) 553.0ft (168.6m) 320.0ft (97.6m) 190.0ft (57.9m) 541.0ft (164.9m) 515.0ft (157.0m)	-45 -60 -45 -45 -45 -60 -45	140 140 337 140 340 340 340
AR84-5 AR84-6 AR84-7 AR84-7A AR84-8	L30+00E - 12+25S L30+00E - 12+25S L26+00E - 12+00S L26+00E - 12+00S L30+00E - 10+50S	366.0ft (111.6m) 106.0ft (32.3m) 506.0ft (154.3m) 486.0ft (148.1m)	-45 -45 -60 -55	340 340 340 160

4337.0ft(1321.9m)

1 1 1 4 5

ASSAYING

Assaying was performed by Swastika Laboratories Limited. Following core logging, selected core intervals were split, one half being retained in core boxes for reference, and one half sent for assay. A total of 171 samples were analyzed for gold; detection limit was 0.002 oz/ton (0.07 g/tonne).

DIAMOND DRILL LOG

COMPANY: Argentex Resource Exploration Corp. HOLE NO: Ar84-1 LOCATION: Holloway Tp. DATE STARTED: Nov. 3,1984. PAGE NO: 1 Not DeterminedATE COMPLETED: Nov. 5,1984. LEVEL: INCLINATION: -45° LOGGED BY: J.R. Foster SIGNED: TOTAL DEBTH: 77.0' CORE SAVED OR DISCARDED: Saved LOCATION OF COLLAR: L64+35E 12+25SCASING PULLED (X) or LEFT () DRILLED BY: Heath and Sherwood PROJECT: A-004 ACID TESTS: L. 588056 CLAIM: AT: None Taken AT: BEARING: 140' FOOTAGE GEOLOGICAL AND PHYSICAL DESCRIPTION SAMPLE NO. AU FROM - TO oz/ton FROM - TO

0.0 77.0 Casing broke at bedrock overburden interface hole abandoned.

DIAMOND DRILL LOG

ł	DIAMOND DRILL LOG
·	COMPANY: Argentex Resource Exploration Corp.HOLE NO: Ar84-1ALOCATION: Holloway Tp.DATE STARTED: Nov. 5, 1984.PAGE NO: 1LEVEL: Not DeterminedDATE COMPLETED: Nov. 8, 1984.CORE SIZE: BQINCLINATION: -60'LOGGED_BY: J.R. FosterSIGNED:
	CLAIM: L 588056 -56' AT: 200' BEARING: 140' -57' AT: 400' -52' At: 600'
	FOOTAGEGEOLOGICAL AND PHYSICAL DESCRIPTIONSAMPLE NO.AUFROM - TOFROM - TOoz/ton
0.0	
50.0	Overburden contact at 42.0 feet 64.6 Mafic variolitic flow(s) fine grained, light green grey, possibly pillowed 56301 54.7-59.7 Nil pale green varioles up to 1 cm. common, often 56302 59.7-63.3 Nil coalesced; also 1-2 mm dark grey quartz amygdules present minor silicification, at least one vuggy carbonate vienlet appears at 59.9 feet. overall sulphide content, less than 1% 54.7 - 63.3 several zones of hayloclastic material 64.6 contact marked by bleaching, 50' to CA 106.6 Mafic Flow(s)
	<pre>similar to above, with massive fine-grained 56303 72.3-75.1 NIL flow centre grading downhole into variolitic, 56304 84.0-89.0 01002 amygdaloidal and hyaloclastic sections hardness suggests weak pervasive silicification overall sulphide content much less than 1% 72.3-75.1 ft - carbonate-quartz epidote veinlets up to 2 cm present; no mineralization apparent 84.0-89.0 ft - silicification becomes more intense, hairline veinlets of quartz are present; some epidote accompanies veinlets; overall pyrite content still much less than 1% 89.0-96.2 ft - pale red to purple alteration 56305 89.0049300 0.002 (hematization) present in 56306 93.0-96.2 NIL variolitic and hyaloclastitic 56307 96.2-101.0 NIL section; free hemalite present 56308 101.0-106.6 0.002 in hyaloclastite; sulphides consist of less than 1% chalcopyrite [±] pyrite as disseminations and in hairline quartz-carbonate veinlets; possibly pillowed interval:</pre>

....

GLENN C. KASNER EXPLORATION SERVICES LTD.

Ť

			Hole No: Ar8 Page No: 2	4-1A
FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL D	ESCRIPTION	SAMPLE NO. FROM - TO	AU oz/ton
	pyrite appe	se calcite vein n disappears, ion remains stror ars as extremely inations, up to	۱ ۲ ۲	
	106.6 ft - gradational by silicifi	contact marked cation, quartz- pidote veinlets		
106.6-128.3	113.0-118.0 ft-grain size i decreases do intensity of epidoter qua increases; h matrix and a up to 2-3% p present; car strong	medium green, ceable downhole; no obvious chalcopyrite ets are present ad with description 0.0 ft in Lobanor approaches 1%, most matrix, and veinlets massive section; pyrite overall increases then whhole; carbonate rtz veining ematite present is s hairline veinle yrite - chalcopyr bonatization is	stly 56310 113.0 11 56311 118.0 12 56312 123.0 12 in ets:	8.0 NIL 3.0 NIL
	apparent; ov is less then	ion; no hematizat erall pyrite cont 1%	ion ent	
	giving core a colour; sulpl increases to fine dissemin 128.3 ft -contact marke intense silic be gradations	onsists of on and hematizati a purplish-grey hide content 1-2% extremely	ay	

. . .

· · · · · · · · · · · · · · ·

.....

te data destructiones en en en esta de la servición de la servición de la servición de la servición de la servi

		Hole No: Ar Page No: 3	84-1A
FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION	SAMPLE NO. FROM - TO	AU oz/to
FROM - 10 128:3-167:9	 -similar to above mafic-intermediate flows, but with more conspicuous development of coalescing varioles and with large well developed pillows -pale green grey and siliceous, locally with purplish tinge, indicating intense silicification and some local hematization within pillows -carbonate is present in amygdules, and in carbonate-chlorite-quartz-graphite(?) veins and breccia zones between pillows -hyaloclastitic sections are present, usually 10 cm wide or less, defining pillow margins -sulphide content is variable, overall less than 1% but with some concentrations over short core lengths; only pyrite recognized. 129.5-130.1 ft-carbonate-graphite(?) breccial zone (not a flow breccial; black fragments are probably mixture of graphite, chlorite and quartz; pyrite is present in an irregular patch of semi massive mineralization 154.2-154.9 ft-interpillow breccia as above; 	a 56313 128.3 56314 133.0 56315 138.0 56316 143.0 56316 143.0 56317 148.0 56319 158.0 56319 158.0	133.0 NI 138.0 NI 143.0 NI 143.0 NI 153.0 NI 158.0 NI 163.0 NI
167.9-260.7	possible graphitic fragments common 158.8-159.3 ft-interpillow breccia as above 167.9 ft -contact marked by epidotized hyaloclastite and vuggy calci veinlet 1 cm wide; contact se at 60° to C.A. MASSIVE MAFIC FLOW	te	
	-fine-grained, medium green, massive -carbonate-epidote-quartz veinlets are presen locally become relatively abundant (up to 3) of unit) -alteration consists mostly of weak carbonatization, but locally silicification becomes intense, and hematite appears on fracture faces -overall sulphide content is much less than 1%, only pyrite recognized 182.9-185.6 ft-1 cm angular patches of carbon present, possibly altered feldspar phenocrysts	8	

٠	3	U

		Hole Noi Page No:		-1A
FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION SA	AMPLE NO. FROM -	TO	AU oz/to:
	MASSIVE MAFIC FLOW (cont) 195.6-200.3 ft-several fractures with hemat are present; some pervasive silicification accompanies this section; pyrite content rises to about 1% overall	56322 56323 56324	200.3 217.0 230.0	206.5 222.0 235.0
	200.3-206.5 ft-silicified section, hematite disappears; pyrite content decreases to much less than 1% overall	56326	248.9	241.0 254.3
	206.5-217.0 ft-essentially unaltered barren mafic volcanic			
	217.0-225.0 ft-numerous carbonate-epidote veinlets are common, ranging from 1-5 mm and preferential oriented at 35° to C.A.; othe veinlets are crosscutting: sulphide content still much less than 1%	Ly er !		
	225.0-252.3 ft-fine-grained mafic flow, locally silicified, carbonatized and sericitized to pale buff brown colour; alteration is weak but best developed at 230.0-241.0 ft and 248.9-252.3 ft; pyrite content is much less than 1%			
	252:3-254.3 ft-hyaloclastite zone some hematite present 254.3-260.7 ft-mostly fine-grained massive mafic with narrow hyaloclasti	+ o		
	260.7 ft -contact at 35° to C.A.	66		
260.7-297.1	PORPHYRITIC MAFIC FLOW -unit features pale green 1-20 mm euhedral to subhedral feldspar phenocrysts in a dark green fine-grained matrix; excellent marker horizon	56327 2 56328 2 56329 2 56329 2	85.0 2 88.6 2	288.60 294.0 N
	-coarsest phenocrysts occur in flow centre at 261.0-287.06 -some carbonate-epidote veins are present -overall sulphide content is less than 1%, but locally may be concentrated in altered	2.2.2.2.4	, L	- / [• 2 11
	zones -alteration is confined mostly to weak carbonatization, although some albitization (?) and silicification is locally present			
	and hematite appears on some fractures -this unit corresponds with a gabbro dyke or coarse flow in Lobanor ddh 2A and 2B			

a.			Hole No Page No		34-1A
-	FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION	SAMPLE NO FROM	- TO	AU oz/t
		PORPHYRITIC MAFIC FLOW (cont)			
		 285.0-288.6 ft-alteration intensity increases downhole, consisting of carbonatization, silicifics albitization (?) and epidotization; pyrite content increases to 2-3% as very fine disseminations; hematite occurs on some fractures and in some minor epidote-carbonate veinlets 288.6-294.3 ft-alteration abruptly cut off size of feldspar phenocryst decreases; sulphide content decreases to much less than 1% overall 294.3-297.1 ft-zone of coarse calcite [±] epidote veins up to 10 cm wide; rare pyrite grains present; hematite appears in tension gashes in host m. 297.1 ft -gradational contact with adjacent unit set at 50° to 	ation, ent s afic		
297	.1-414.5	MASSIVE MAFIC FLOW -variable grain size from fine to medium- grained, medium to dark green; no obvious flow textures (may be intrusive) -minor carbonate-epidote veinlets are present, not abundant -no significant alteration is apparent, although some hematite is present in tension gashes near uphole contact -overall sulphide content is much less than 1% pyrite - chalcopyrite 297.1-302.0 ft-hematite present; up to 1% p and chalcopyrite 318.8 ft -3 cm carbonate-epidote vein 338.4-345.5 ft-weak alteration zone, carbonatized and weakly hematized; carbonate-quartz- epidote veins become common; pyrite content is 1% overall 367.0-389.0 ft-up to 5% anhedral black amphi (after pyrozene?) phenocryste 1-2 mm in diameter; no altera apparent, sulphide content le	56331 56332 56333 56334 56335 56336 56337 byrite	317.0 338.4 359.0 373.0 389.0	302.0 322.0 345.5 364.0 378.0 378.0 414.5

.

•

+

		Hole Page		Ar84 6	-1A
FOOTACE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION SA	MPLE N			AU oz/
	MASSIVE MAFIC FLOW (cont) 389.0-391.7 ft-zone of weak to intense epidotization and silicificat amphibole phenocrysts become much less abundant; no significant pyrite content 391.7-414.5 ft-massive, unaltered except at silicified downhole contact; sulphide content much less than 1% overall 414.5 ft -very irregular but distinct contact at about 35° to C.A.; next unit may be flow top breccia facies of massive mafic flow				
414.5-433.3	MAFIC FLOW BRECCIA -features aphanitic silicified fragments (probably from top of adjucent uphole flow) in a dark chloritic hyaloclastite matrix; some fragments are purplish, indicating probable hematization -overall sulphide content is less than 1% pyrite and chalcopyrite, generally confined to hyaloclastite matrix; matrix epidotized near downhole contact -no significant veining is present 433.3 ft-sharp contact at 20° to C.A.	56339 56340	9 420) 426	4.5 42 5.0 42 5.0 42 5.0 42	26.0
433.3-441.9	PORPHYRITIC MAFIC INTRUSIVE -dark grey, features pale green 1-2 mm feldspar phenocrysts; probably corresponds with basic dyke at 421.0-426.0 ft in Lobanor ddh 2A -no significant alteration apparent, but some hematite is present on occasional fracture faces -overall up to 1% pyrite [±] chalcopyrite 441.9 ft -sharp contact at 20° to C.A.	56364 56342	433 437	.3 43 .0 44	7.0 1.9
441.9-556.7	MAFIC FLOW BRECCIA -similar to flow breccia at 414.5-433.3 ft but fragments are more silicified and hematized; one fragment lithology exhibits flow banding and spherules (may be debris from an intermediate - felsic flow) -overall sulphide content is less than 1%, but can be up to 2-3% pyrite - chalopyrite over short core lengths	56343 56344	441. 447.	.0 44 0 45	7.0 3.0

				Hole Page		Ar84-1A 7
FOOTAGE FROM - TO	GEOLOGICAL /	AND PHYSICAL DESCRI	PTION SAM	PLE NO FROM	- то	AU oz/
	MAFIC FLOW 1 441.9-453.0	BRECCIA (cont) ft-flow breccia as above, locally aquamarine ting or pumpellyite?	with a pale e (chlorite			
	453.0-458.4	ft-relatively mass ciated interval Oflow or very 1 patchy silicifi sulphide conten	ive unbrec- , possibly thir arge fragment; cation present;	1 56346 56347 56348	458 461 464	9464.2 2469.0
		ft-flow breccia in sulphide conten ft-dark green mass no significant	terval; t negligible ive flow;	56350 56351 56352	473. 479. 483.	0 473.4 4 479.0 0 483.0 0 488.0
	464.2-473.4	or sulphide min ft-interval comprise massive unalter silicified frage cut by carbonate sulphide conten 1% pyrite; some	eralization sed of ed and mental material e veinlets; t increases to carbonate-	\$6354 56355 56356	493. 497.	0 493.0 0 497.5 5 503.0 0 524.2
	473.4-479.0	quartz-epidote ft-flow breccia with fragments	th silicified			ŀ
	479.0-497.5	fragments ft-flow breccia ind by dark green/bl (variolitic) fra crystals, matrix no significant s corresponds with flow material de 1055.0 ft in Lob	ack varioles, gments or mafie highly epidot sulphide content fragmental scribed at 1042	c Lzed;		
	497.5-524.2	ft-flow breccia wit buff brown fragm in chloritic (lo matrix; up to 1% disseminated pyr minor carbonate	h silicified ents (hematized cally epidotize very fine ite present;	ed)		
	524.2-556.7 <u>f</u>	<pre>St-flow breccia uni by silicified fr light green hyale matrix; locally t fine pyrite genes to matrix</pre>	t dominated agments in oclastite up to 1% very	56357 56358	531.0 536.0	536.0 541.0
	556.7 ft	-sharp irregular (about 60° to C.A.	contact at			

•

1____

		Hole No: A Page No: 8	r84-1A
FOOTAGE FROM - TO	CEOLOGICAL AND PHYSICAL DESCRIPTION	SAMPLE NO. FROM - TO	AU oz/ton
556.7-677.0	MASSIVE MAFIC FLOW -fine to medium-grained with chilled amygdaloidal uphole contact -some carbonatization is present as 3-5 mm patches and occasional veinlets -core exhibits weak magnetism (high iron tholeiite?) -overall sulphide content is less than 1% pyrite [±] pyrrhotite(?) 585.0-590.0 ft-weak silicification and minor quartz veining; no increase apparent in sulphide content 596.5 ft -4 cm zone of epidotization; rare chalcopyrite present 602.8-603.1 ft-zone of epidotization; (47.0-677.0 ft-quartz-carbonate patches (amygdules?) become common; sulphide contact less than 1%		581.0 NIL 590.0 NIL 597.0 0.002 607.0 NIL 621.0 NIL 653.0 NIL 670.0 NIL
677.0	END OF HOLE		

Estimated 99% + core recovery

GLENN C. KASNER EXPLORATION SERVICES LTD.

COMPANY: A	rgentex Resource Exploration Corp.	HOLE NO	2: Ar81	1-2	
LOCATION:	Holloway Tp. <u>DATE STARTED</u> : Nov. 10,1984.	PAGE NO	2; 1		
LEVEL: No	t Determined DATE COMPLETED, Nov. 13,1984.	CORE SI	ZE: BG	2	
INCLINATIO	N: -45' LOGGED BY: J.R. Foster	SIGNED: '	51	2Fo	zt
TOTAL DEBI	"H: 553.0' CORE SAVED OR DISCARD	ED: Save	d		
	OF COLLAR: L61+00E 13+51 StASING PULLED (X) or LE		()		
	: Heath and Sherwood PROJECT: A-004			ID TES	rç.
CLAIM: L.			AT: 20		<u>to</u> .
BEARING: 3		-31	AT: 50	10'	
<u>, , , , , , , , , , , , , , , , , , , </u>			-		
FOOTAGE	GEOLOGICAL AND PHYSICAL DESCRIPTION	SAMPLE NO).	AU	
FROM - TO		FROM	- TO	02/	/ton
*****				/	
42.0	CASING				
0 - 74.8	MASSIVE MAFIC FLOW-High Fe Tholeiitic				
	-fine-grained, dark green, highly magnetic	56369	46.0	51.0	NIL
	(high iron tholeiite)		61.0		
	-characterized by wispy black chloritic patches	56371	66.0	71.0	NIL
	-unit is weakly carbonatized	56372	71.0	74.8	0.002
	-overall sulphide content is up to 1%		,		
	pyrite as disseminated euhedral and anhedral grains				
	67.5 ft- foliation developed at 50° to C.A. 74.8 ft-coontact at 45° to C.A.				
74.8-88.4					
	-fine-grained, dark green, consists of	56373	274.8	77800	NIL
	silicified and possibly hematized	56374	78.0		
	fragments of mafic flow similar to above flow; fragments are often variolitic,				
	may display wispy black chloritic patches	56375	83.0	85.6	NIL
	and are usually strongly magnetic	56376		88.4	
	-matrix material is generally chloritic; hyaloclastic material is present locally				
	-alteration consists of development of				
	white carbonate patches; breccia fragments				
	are silicified and possibly hematized; matrix is locally moderately to strongly				
	epidotized over short core intervals				
	-overall sulphide content is 1-2% pyrite				
	85.6-88.4 ft-matrix is moderately to				
	strongly epidotized with 1-2% fine disseminated pyrite	t			
	88.4 ft -contact with downhole unit				
	appears gradational (poorly defined)				

na artaria nina sugar glas bases substantis substantis

41.44

GLENN C. KASNER EXPLORATION SERVICES LTD.

.

٠	ر	_

		11 b	
		Hole N6: Ar8 Page No: 2	14-2
FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION	SAMPLE NO. FROM - TO	AU oz/ton
88.4-120.0	MASSIVE MAFIC FLOW-High Fe Tholeiitic -similar to above massive flow unit -magnetism present, but becomes weaker downhole	56377 88.4 56378 94.0	94.0NIL 99.0NIL
	-some carbonatization and locally silicification and epidotization are	56379 99.0	104.0 NI
	present -overall 1-2% pyrite present 109.0-114.0 ft-more intense alteration present consisting of carbonatization and minor silicification; up to 3% pyrite present	56380 104.0 56381 109.0 56382 114.0	114.0 0.1
120-125.6	120.0 ft -contact at 50 ⁰ to C.A. DIORITE -fine-grained with speckled appearance due to pale green feldspars in dark mafic matrix	56383 120.0	125.6 NII
125.6-305.7	<pre>contacts -no significant alteration or sulphide content MAFIC METASEDIMENTS/METAVOLCANICS-High Fe -fine-grained, medium to dark green, locally poorly to well foliated; may in part be intercaboted sequence of sediments and volcanics -angular fragments and subrounded clasts derived from mafic flow breccias are present over short core intervals; -black chloritic wisps and patches are</pre>	Tholeiitic 56384 125.6 56385 131.0	
	present -metasediments are non-magnetic, massive to poorly bedded; metavolcanic intervals are moderately to strongly magnetic -alteration is variable, consisting of fracture-controlled and patchy carbonatization, locally some silicificat and rare epidotization -overall sulphide content is 1-2% pyrite at 1-5mm crystal aggregates and single grain 125.6-136.0 ft-interval consists of large a fragments of mafic flow brea and diorite; breccia fragment	s angular ccia nts	
	are silicified; overall 1-29 pyrite; non-magnetic interva 136.0-141.0 ft-relatively massive section, with mafic conglomerate at 140.0-140.8 ft; bedding is	6 al 56386 136.0 1 56387 141.0 1	41.0 NIL 46.0 NIL
	at 50° to C.A.; overall pyri content is 3-4%	te 56388 146.0 1 56389 151.0 1	51.0 NIL

			HOLE N PAGE N		r84-2	
FOOTAGE FROM - TO	GEOLOGICAL AND	PHYSICAL DESCRIPTION SAM	MPLE NO FROM	- то	AU oz	/ton
	Mafic Metasedim	ents (cont)				
	141.0-161.0 ft-	possibly weakly silicified,	56390	156.	0 161.	O NI
		suggested by paler green			0 166.	
		colour; appears brecciated	56392	166.	0 170.	O NI
		or containing breccia			0 173.	
		fragments outlined by wispy			9 179.	
		chloritic patches; intensity	1.5			
		of pervasive carbonatization				
		increases; overall sulphide				
	161 0 102 0 01	content is 1-2% pyrite				
	101.0-173.9 It-	darker, chlorite porphyritic	56395	179.	0 184.	O NI
		(?) interval, may be mafic	56396	184.	0 189.	O NI
		dyke but sharp intrusive			0 195.	
	1	contacts are not apparent;	563 9 8	195.	0 201.	O NII
	•	interval is well carbonatized with 1% pyrite overall				
	173.9-201.0 f+-	interval similar to that at	rkann	204	0.007	A
		141.0-161.0 ft, but	50377	204	206.	
		Carbonatization decreases;	50400	210	210.	
	1	ninor epidotization is locally	, KKIND	541 A	214.	
	ז	present over very short core	50402	£14.(, 210.	Y NII
	3	lengths; overall less than 1%				
	ĩ	pyrite present; moderate to				
	E	strong magnetism begins at 184.0 ft				
		possible bedding at 50° to	56403	218.7	221.	3 NTT
	C	A.	56404	221.	227.	O NTL
	201.0 218.7 ft-f	ine-grained dark green	56405	227.0	232.	O NII
	i	nternal featuring numerous	56406			
	P	ale green (chloritic?)	56407	237.0	242.0	O NIL
	h	airline fractures; little	56408	242.0	247.0	O NIL
		r no carbonatization is	56409	247.0	251.0) NIL
	8:1 ~	pparent; epidotization of	56410	251.0	256.0	D NIL
		hort core intervals	56411	256.0	261.0) NIL
	ų R	ecomes common; overall ulphide content is less	56412	261.0	265.1	1 NIL
	t	han 1% pyrite; core remains agnetic				
	202.0=203.3 ft-z	one of epidotization; sulphid ontent negligible	e			
	218.7-221.3 ft-z c	one of epidotization; sulphid ontent negligible	9			
	221.3-265.4 ft-1	nterval similar to that at 10.0-218.7 ft; wispy black				
-	C	hlorite patches become common ntensity of carbonatization	;			
	1 1	creases slightly; up to 1% yrite overall; core remains				
	m	agnetic				

		HOLE NO		34-2
FOOTAGE FROM - TO		MPLE NO. FROM -		AU oz/to
	Mafic Metasediments (cont)			
	265.4-272.8 ft-intensity of carbonatization decreases; core is weakly to strongly magnetic; overall sulphide content is less then 1% number	56414 56415	269.0 272.8	269.0 272.8 276.3 281.8
	less than 1% pyrite 272.8-276.3 ft-carbonatization increases; core remains magnetic; foliation developed at 50° to C.A.	56417 56418 56419	287.0	287.01 293.0(298.11
	276.3-281.8 ft-coarser-grained speckled interval similar to diorite at 120.0-125.6 ft; non- magnetic, no significant sulphide content	56420 2 56421 :	298.1 302.0	302.01 305.71
	281.8-298.1 ft-possibly a flow breccia or a coarse sediment derived from a breccia; weak to moderate cleavage (cataclastic developed at 55° to C.A.; frag- ments are silicified with micro-fracturing developed at about 90° to main cleavage; part of this interval is not fragmental and is locally weakly magnetic; less than 1% pyrite ± chalcopyrite	5-		
	298.1-305.7 ft-fine-grained relatively massive interval; non- magnetic throughout but may be flow; characterized by intense micro-fracturing at 302.0-305.7 ft; less than 1% pyrite overall			
	305.7 ft -contact marked by disappearance of micro-fracturing; set at 50° to C.A.	•		
305.7-325.2	-medium green fine to medium-grained, displays moderate to good cleavage, probably bedding -unit becomes coarser, definitely clastic towards downhole contact; no magnetism detected	s 56422 30 56423 31 56424 31 56425 32	11.0 3 16.0 3	316.0 NJ 322.0 NJ
	-no significant alteration present, although carbonate does appear in coarser wacke interva -overall sulphide content is less than 1% pyri- as grain aggregates up to 4mm in diameter 305.7-322.0 ft-chloritic mudstone interval; foliation/bedding is at 55° to C.A. at 319.0 ft	al te		

		HOLE NO: AR8	4-2
		PAGE NO: 5	
FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION	SAMPLE NO. FROM - TO	AU 02/
	Chloritic Mudstone/Wacke (cont) 322.0-325.4 ft-wacke interval, derived from mafic volcanics 325.4 ft -contact set at first		
	appearance of graphitic beds and chert; contact at 45 ⁰ to C.A.		
325.2-335.1	CHERT/SERICITIC SCHIST MUDSTONE -aphanitic to fine-grained; light grey in cherty interval, becoming pale green in sericitic schist; sediment becomes coars grained and more clastic downhole; some narrow (less than 1 cm) beds of graphitic	er-	27.5
	material are present -carbonate appears in micro-fractures in a also in veins and in individual beds in a -sulphide content variable, mostly concentrated in chert	chert, schist	
	325.2-327.5 ft-microbrecciated chert inter up to 5% disseminated pyrid slight purple tinge suggest possible hematization: contact with downhole graph bed is at 60° to C.A.	te; ts hitic	
	327.5-332.0 ft-fine grained sericitic schi with minor graphitic and ch interbeds; less than 1% pyr grain size increases downho bedding is at 65° to C.A.; probably some intense foldi	erty56427 332.0 3 ite; le;	32.0 35.1
	332.0-335.1 ft-sulphide content increases 5% pyrite and chalcopyrite; interval appears to be silicified	ng to	
	335.1 ft -contact is at 65° to C.A.		
335,1-348.0	GRAPHITE/SERICITE SCHIST MUDSTONE -black aphanitic graphitic bands alternate with pale green fine-grained sericite ± chert bands -contorted banding/bedding indicates strong	56429 340.0 34	4.0
	folding -overall sulphide content is 5% pyrite as disseminations, along fractures and in a few 1-2 mm vugs	-	
	340.0 ft -foliation/bedding is at 60° to C.A. 342.0-348.0 ft-percentage of sericitic beds	2	
	348.0 ft-sharp (chilled?) contact at	,	

		HOLE PAGE		-	R84-2	
FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION	SAMPILE N FRO		TO	AU oz/	ton
348.0-363.7	MAFIC INTRUSIVE -dark grey to black, fine to medium- grained; massive to weakly foliated; non-magnetic -considerable carbonate present, mostly	5643	1 3	48.0	353.0	0.
	in matrix but also as minor veinlets -overall 1% pyrite present, but can be concentrated up to 3% in medium-grained interval 348.0-353.0 ft-3% disseminated pyrite in medium-grained massive interval					
	353.0-363.7 ft-fine-grained, weakly foliat at 40° to C.A.; pyrite conte drops to less than 1% 363.7 ft -contact is at 60° to C.A.	ted 5643	2 35	8.0	363.7	N
363.7-385.4	GRAPHITE-SERICITE SCHIST -similar to interval at 335.1-348.0 ft, bu				368.0	N
	with much less sericitic bands 363.7-372.8 ft-strongly graphitic interva with minor pale green	1			372.8	N
	sericitic bands and rare cherty bands; carbonate content increases downhole overall 7-8% pyrite presen downhole contact is at 60° to C.A.	56430 56437 ti	5 37	8.0	378.0 382.7 385.4	N 0 8
	372.8-378.0 ft-light grey sericitic arkos wacke; less than 1% pyrite present; downhole contact					
	at 50° to C.A. 378.0-382.7 ft-strongly graphitic interval brecciated with quartz-carl onate filling fractures; overall pyrite content is 10%; minor red hematite appears at 378.5-379.4 ft; downhole contact is at 80°	L: D-				
	to C.A. 379.1-379.4 ft-rubbly core zone, probably	a				
	fault 380.0-380.4 ft-barren white quartz vein at 70° to C.A.					
	381.8-381.3 ft-white quartz vein with incl of graphitic schist					
	382.7-385.4 ft-transition zone of mafic br fragments in a graphitic/ch matrix; overall 2% pyrite p contact is well brecciated	loritic resent; and				
	385.4 ft -contact is oriented at 80°					

· · ·

ŧ

· ·

.

					• • •	• * 1
		HOLE PAGE			84-2	
FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION SAM	PLE NO FROM		ro	AU oz/	ton
385.4-394.1	MAFIC FLOW BRECCIA -similar to flow breccias in AR84-1A; pale green to purple siliceous fragments occur in a chloritic hyaloclastitic matrix -purple fragment colour may be indicative of hematization; matrix and margins of fragments are also carbonatized -overall sulphide content is 2-3% pyrite, generally confined to matrix 385.4-392.1 ft-strongly hematized fragments; 3-4% pyrite present 392.1-394.1 ft-hematization drops off; sulphide content decreases to 1% 394.1 ft -irregular contact at about 50° to C.A.	5643 5643	8 38 9 39	95.4	390.0 394.1) NIL 0.0(
394.1-461.5	MASSIVE MAFIC FLOW -fine-grained, dark green with numerous white carbonate-filled amygdules near uphole contact -carbonate is also present as veinlets and throughout the matrix -overall sulphide content is less than 1% 403.6-405.5 ft-flow breccia interval 418.3-418.5 ft-carbonate vein zone, at least 0.55ft of core missing 431.0-441.0 ft-zone of quartz-epidote veinin at low angle to C.A.; no significant sulphide content 461.5 ft -fragments from underlying flow breccia are incorporated into chilled base of massive flow, indicating tops are uphole (to the south); contact is at 60° to C.A.	56441 56442 8	. 43	1.0	415.0 436.0 452.0	NIL
461.5-513.0	MAFIC FLOW BRECCIA -similar to breccia at 385.4-394.1 ft, but sulphide content is only 1-2% overall -fragments are well silicified; carbonate veinlets locally become common over short core intervals 468.0-473.0 ft-up to 3% pyrite present 485.0-490.0 ft-carbonate content increases; sulphide content is 1-2% pyrit 503.0-513.0 ft-carbonatization and some oit silicification becomes stronge toward lower contact 512.7-513.0 ft-quartz-carbonate vein marks contact, which may be a fault; vein is at 50° to C.A.	56445 56446 56447 56447	485 503	.0	473.0 490.0 508.0 513.0	NIL NIL

****			4.00	42	
		HOLE NO		4-2	
FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION SAM	PLE NO. FROM -	то	AU oz/tor	2
513.0-543.6	MASSIVE TO GLOMEROPORPHYRITIC MAFIC FLOW -dark green, medium-grained, with an interval of coarse porphyritic flow at 260.7-297.1 ft in AR84-1A -very little to no alteration apparent; some carbonate-quartz veins appear in massive section -overall sulphide content is less than 1% pyrite, with rare chalcopyrite in some veins 513.0-531.5 ft-massive flow interval 523.0-533.0 ft-only 8.5% core recovery, appears to be due to grinding of core rather than open fractures 531.5-541.0 ft-feldspar porphyritic interval 543.6 ft -contact is at 35° to C.A.	ţ	513.0	518.0	- NIJ
543.6-553.0	MASSIVE MAFIC FLOW -medium green, fine-grained; uphole contact marked by narrow interval of flow breccia -no significant sulphide content 547.0-550.9 ft-dark grey feldspar porphyriti mafic dyke	ic			
553.0	END OF HOLE Estimated 99% core recovery				

··· · ·

.

. .

والمستعدية والمستعدية والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستع

• • • • •

COMPANY	I: Argentex Re	source Explorations Corp.	HOLE NO: AR84-3
LOCATIO	<u>ON</u> :Holloway Tw	p. DATE STARTED: Nov.14,1984	PAGE NO: 1
LEVEL:N	Not Determined	DATE COMPLETED Nov. 15, 1984	CORE SIZE: BQ
INCLINA	ATION: -45'	LOGGED BY: J.R. Foster	SIGNED: JRFort
TOTAL D)EBTH: 320.0ft.	CORE SAVED OR DISCAR	DED: SAVED
LOCATIC	ON OF COLLAR: 7		LEFT ()
DRILLED	<u>NOF COLLAR:</u> 7 030 from L64 <u>BY</u> : Heath and	E - 11+75S A Sherwood PROJECT: A004	
	L588056		-45' AT:150ft.
BEARING			-41' AT: 310ft.
	140		
FOOTAGE	GEOLOGIC	AL AND PHYSICAL DESCRIPTION	SAMPLE NO. AU
FROM -	ТО		FROM - TO oz/ton
22.0	CASING	********	
159.4	PILLOWED MAN	TC FIAN	
~J/**	Fine-grained	l, consists of numerous silicified	1 56449 64.0 69.0 Nil
	variolitic p	illows; pillows are dark purple	56450 82.0 82.0 N11
	with medium	green varioles, often with black	56451 87.0 92.0 NIT
	(COLIOTITIC:)	amygdules up to 1mm. Hyaloclast present between pillows; white	
	Carbonate is	often found with hyaloclastite.	
	Overall sulp	whide content is less then 1%	56453 110.0 115.0N11 56454 121.0 126.00.002
	pyrite and c	chalcopyrite.	56455 126.0 131.0Nil
	82.0 - 83.5	interval includes two sections	56456 131.0 135.0N11
		of hyaloclastite with 5% pyrite	56457 135.0 139.0N11
		in a selectively epidotized	56458 139.0 145.0 N11
	0	matrix	
	87.0 - 89.0	blocky broken core with hematite	
		on fracture faces; possible faul	t or
	97.6 - 99.8	deep open fracture zone fault zone; at least 1.2 ft. of	come to stantas
	116.1 - 119.7	zone of broken core and rubble,	core is missing
		fault; at least 2.0 ft, of core	missing
	119.7 - 145.0	pillows are increasingly silicif	ied. often featuring a
		polygonal pattern of coalesced v	arioles;overall
	139.0 - 145.0	sulphide content is less than 1%	pyrite
	19910 - 14910	very blocky and ground- up core of core missing; possible fault	interval, at least 3.0 ft.
	145.0 - 159.4	up to 45% hyaloclastitic breccia	56459 145.0 150.0 Nil
		in variolitic and amygdaloidal	56460 150.0 155.0 Nil
		mafic flow breccia or pillow	56461 155.0 159.4 N11
		breccia interval; white carbonat	
		and epidote are present in hyalo increases to 1-2% overall	clastice; pyrite content
	159.4 ft.	contact is in hyaloclastitic bre	ccia zone at 40° to C.A.
		•••••••••••••••••	
			. 1

.

. ..

-

					• • • ⁴	14
				Hole No: Page No.		
FOOT. FROM	AGE - TO	GEOLOGICAL A	AND PHYSICAL DESCRIPTION	SAMPLE NO. FROM -	AU TO oz/	ton
159.4 23	38.4 1	MASSIVE MAFIC	FLOW(S)	<u>`</u>		
			light green with purple to br		159.4 165	
			ly well silicified. This ind		173.0 178	.0 N1
			sist of a number of thin maf daloidal or variolitic, sepa		181.0 186	
,			s of hyaloclastite. Alterati		195.0 200	
			confined to pervasive silicit			
			yaloclastitie zones are usual			
			. Overall sulphide content i	is less		
		than 1% pyrite		. .		
			hyaloclastite zone at 40° to			
			hyaloclastite zone at 80° to irregular hyaloclastite zone			
			irregular hyaloclastitie zon		7. A.	
			hyaloclastite zone			
		208.0 - 209.4	•	zed and with w	white	
			carbonate present; up to 2%			te
		212.3 - 213.0	•		.A.	
	, i	213.0 - 219.0	• -			
			interval; sulphide content i		12 0 210 0	Ni
		219.0 - 220.7	to 1-2% pyrite and chalcopy hyaloclastite with considers		13.0 219.0	Ni
	•		white carbonate in matrix;		28.0 232.0	Ni
			to 2% pyrite and chalcopyrit		32.0 238.4	Ni
			present		-	
		223.7 - 224.4	•			
	2	228.7 - 231.0	hyaloclastite with considera	able		
			epidote and 2-3% pyrite and chalcopyrite			
	:	236.6 - 238.4	hyaloclastite; only minor ep	oidote		
	•		and carbonate present and or			
			1% pyrite	,		
	ć	238.4 ft.	contact is at 40° to C.A.			
238.4 27	78.0	VARIOLITIC MAF	IC (FLOW(S)			
	-		our, grain size and intensity	y of 56471 23	38.4 244.0	Ni
			to above massive flows, but		4.0 249.0	
			olygonal texture of coalesced		49.0 252.7	
		•	oles are up to 1cm and often ing internal structure.		52.7 255.0 55.0 260.0	
			ic or graphtic?) amygdules up		50.0 265.0	
		•	near downhole contacts with	•		
	1	hyaloclastite	zones. Hyaloclastite zones a	are		
			se seen in above massive flow			
			epidote. Overall sulphide co	ontent is less	s than	
		1% pyrite and		1		
			hyaloclastite zone at 55' to hyaloclastite zone at 40' to			
			hyaloclastite zone at 40 f	D C.A.		
			zone of white quartz-carbons	ate veining. w	with less t	than
	•		1% pyrite in hyaloclastite			
	2	255.0 - 265.0	varioles and intensity of st		are not as	3
		-	well developed in this inter	tranya fevr	for a wort	511t
			hyaloclastite at 259.5 - 261	LVAL ENCEPT	IOI a vali	

.

			Hole No: Ar84-3 Page No: 3
•	FOOTAGI FROM -		AND PHYSICAL DESCRIPTION SAMPLE NO. AU FROM - TO oz/ton
Vario	olitic r	nafic flow (CON'	T)
		265.0 - 268.0	unusual breccia zone consisting of 56477 265.0 268.0 N subangular fragments of silicified 56478 268.0 271.0 N mafic flow with quartz, carbonate 56479 271.0 274.0 N and chlorite or graphite in matrix; 56480 274.0 278.0 N up to 2% pyrite present
		268.0 - 271.0	hyaloclastite and variolitic flow interval
		271.0 - 274.0	brecciated interval similar to that at 265.0-268.0 ft. with 2% pyrite and chalcopyrite; brecciation much less intense
		274.0 - 275.7	amygdaloidal flow top for above brecciated flow interval; 1% pyrite present in amygdules
		275.7 - 278.0	hyaloclastite; well epidotized and with considerable quartz-carbonate replacement of matrix; 2% pyrite presen
		278.0 ft.	contact is at 45' to C.A.
		Generally well weakly carbona green tinge su	to aphanitic, light green-grey. 56481 278.0 283.0 Na silicified, but locally becomes 56482 283.0 288.7 Na stized and less silicified; bright 56483 288.7 294.0 Na ggests presence of fuchsite. 56484 294.0 300.6 0.4 de content is less than 1% pyrite
		278.0 - 288.7 288.7 - 294.0	well silicified interval well silicified with bright green tinge possibly
		294.0 - 300.5	due to fuchsite; up to 1% pyrite and chalcopyrite prese well silicified but lacks green tinge, becomes variolitic and amygdaloidal downhole
		297.1 - 297.4 279.0 ft.	hyaloclastitic breccia zone 3cm porphyritic mafic dykelet at 20' to C.A., containin 5% isseminated pyrite
		300.5 ft.	intrusive contact at 20' to C.A.
	2111 6	PORPHYRITIC DI	
300.5	14.0	Dark grey to b occasional lar sulphide conte	lack with pale green skeletal feldspar laths and ger equant phenocrysts (olivine?). No significant nt is present. rusive contact at 15-20' to C.A.; very irregular
		Dark grey to b occasional lar sulphide conte 314.6 ft. int MASSIVE TO VAR Similar to sil Locally variols (probably pille	ger equant phenocrysts (olivine?). No significant nt is present. rusive contact at 15-20' to C.A.; very irregular IOLITIC MAFIC FLOW icified flow at 278.0-300.5 ft., but lacking green tinge itic and amygdaloidal with some hyaloclastite

•

.

.

. 5. - **. .** . .

COMPANY: Argentex Resource Exploration Corp. HOLE NO: Ar84-4 LOCATION: Holloway Tp. DATE STARTED: PAGE NO: 1 Nov. 16,1984. LEVEL: Not Determined DATE COMPLETED: Nov. 18,1984. CORE SIZE: BQ SIGNED: 🤕 INCLINATION: -45' LOGGED BY: J.R. Foster TOTAL DEBTH: 190.0' CORE SAVED OR DISCARDED: Saved LOCATION OF COLLAR: L56+00E 13+00CASING PULLED(X) or LEFT () DRILLED BY: Heath and Sherwood PROJECT: A-004 ACID TESTS: L. 588149 CLAIM: AT: None AT : Taken BEARING: 340' FOOTAGE GEOLOGICAL AND PHYSICAL DESCRIPTION SAMPLE NO. AU

FROM - TO oz/ton

0.0 190.0 Casing

FROM - TO

190.0 Casing broke, hole abandoned

			DIAMOND DRILL L	<u></u>		
II TH TY	DCATION EVEL Not	:Holloway Twp Determined ION:-60'	DATE STARTED: No DATE COMPLETED: LOGGED BY: J.R.	ov. 18, 1984 Nov. 23,1984. Foster	HOLE NO: Ar & <u>PAGE NO:</u> 1 <u>CORE SIZE:</u> BQ SIGNED:	
,		BTH: 541. ft.		SAVED OR DISCAR		
		OF COLLAR: L5 BY: Heath and S		G PULLED(X) or PROJECTA004		TD MIRCHOL.
CI	AIM: L	 588149		<u>1100001</u> 4004	-50° AT: 20 -45° AT: 53	<u>ID TESTS</u> : Oft. Oft.
FO	OTAGE	GEOLOGICAL	AND PHYSICAL DE	SCRIPTION	SAMPLE NO.	AU
FR	:OM - TC)			FROM - TO	oz/ton
0.0	166.0		begins at 160.0) ft.		
160.0	233.3	Fine-grained, magnetism is extent noted AR84-2. Cons are present; are also pres observed in A than 1%. 233.3 ft. co	- High Fe Tholei massive, darkig locally present, in the magnetic iderable hairlin few carbonaceous ent but again no R84-2. Sulphide entact is very ir approximately 5	reen-grey. Weak but not to the mafic flows in the epidote fract wisps and fract to the extent content is muc regular; orient	e 56486 228.0 2 l cures otures ch less	21.0 Nil 33.3 Nil
233.3	274.3	Fine-grained, laminated on may be presen cleavage. Un appears simil at 325.2-385. bands and ext sulphide cont up to 5% in v	RICITE - GRAPHIT pale green, ver 1-10mm scale. Pr t but is overpri it is moderately ar to cherty and 4 ft. in Ar84-2, ensive graphitic ent is 1-2% pyri icinity of carbo ft. mudstone is best develo	y well banded a imary bedding nted by seconda to well carbon graphitic schi but lacking ch beds/bands. O te, generally c naceous (graphi	and 56487 233.3 56488 238.0 ary 56489 243.0 atized, sts 56490 248.0 ert overall oncentrated tic?) bands. rbonaceous bands	238.0 Nil 243.0 Nil 248.0 Nil 253.0 Nil
		247.0 ft. 250.5 - 258.0 258.0 - 264.0	intensely micro featuring netwo pale green (epic this interval ma deformed mafic l overall pyrite	rks of hairline dotized?) fract ay represent a hyaloclastite; content is less interval invad arbonaceous vei	rval56491 253.0 56492 258.0 ures; well56493 264.0 56494 269.0 than 1% ed by nlets and	264.0 Nil 269.0 Nil 274.3 Nil
					C. KASNER EXPLORATIO	N SERVICES ITO

.

المتهيم إلفادها الدادم لولا ادر مصطودتاته ها

on to An P

٠

GLENN C. KASNER EXPLORATION BERVICES LTD.

• • •

			Hole No: Ar84-4A Page No: 2
	FOOTAGE FROM - 1	GEOLOGICAL AND PHYSICAL DESCRIPTION	ON SAMPLE NO. AU FROM - TO oz/ton
Chlor	ite-ser:	cite-graphite mudstone/mafic metavolc	canic (CON'T)
		interval may be a deformed mafic hya overall pyrite content is 1%.	loclastite;
		content is 1%. 265.0 ft. cleavage is at 60 to	c.A.
274.3	336.8	MASSIVE MAFIC FLOW(S) - High Fe thol Similar to flow at 164.0-233.3ft. Mo to intensely micro-fractured with ep and carbonate filled fractures and m carbonaceous(graphitic or chloritic? hematite is locally present in some 291.0 - 296.0 hematite is present on 329.1 - 332.0 brecciated interval; 332.0 - 336.8 possible mafic tufface and sediments; set at	derately 56495 274.3 280.0 Nil idote 56496 291.0 296.0 Nil inor 56497 332.0 336.8 Nil) wisps; fractures n fracture surfaces possible flow top eous interval etween foliated mafic
336.8	340.9		DNE at 335.1-348.0 ft well banded 56498 336.0 340.9Nil of deformation to rite content is
340.9	373.0	MAFIC INTRUSIVE (GABBRO) Fine to medium grained, locallu felds equigranular gabbro 9may be coarse fl significant alteration or mineralizat 349.7 - 352.0 broken core with at le missing; probable faul 370.4 - 373.0 at least 1.3 feet of co fault zone	Spar porphyritic to low facies?). No tion present. east 1.0 foot of core t or deep fracture
373.0	432.9	MAFIC FLOW - High Fe tholeiitic (?) Fine grained, dark green-grey, locall filled amygdules. Grain size is vari texture and weak to moderate magnetis 413.0 - 425.0 ft. magnetism becomes m due to disseminated 432.9 ft. chilled irregular intrusiv	y with abundant carbonate able; flow locally exhibits diaba m. oderate to strong, probably magnetite
132.9		MAFIC FLOW BRECCIA - High Mg Tholeiit Similat to silicified flow breccias in alteration or sulphide mineralization 432.9 - 447.4 flow breccia 447.4 - 462.0 relatively massive unbu- 462.0 - 481.0 flow breccia/hyaloclast 481.0 ft. extremely irregular con	ic n Ar84-1A. No significant is present.

:

...40

 				•••••
			Hole No: Ar84-4A Page No: 3	
-	OOTAGE ROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION	SAMPLE NO. FROM - TO	AU oz/ton
481.0	541.0	MASSIVE MAFIC FLOW - High Mg Tholeiitic Fine-grained, light grey; locally with m chlorite-filled amygdules. No significat or sulphide mineralization. 536.0 - 541.0 coarsely feldspar porphyris similar to porphyritic flu 260.7 - 297.1 ft. in Ar84 531.5 - 541.0 ft. in Ar84	nt alteration itic interval ow at -1A and	
541.0		END OF HOLE Estimated 99% core recovery		

• .

ations Corp.HOLE NO:AR84-5XED:Nov. 23,1984.PAGE NO:1AR84-5CORE SIZE:BQ
J.R. Foster SIGNED: <u>SR fort</u> CORE SAVED OR DISCARDED: Saved CASINGPULLED (*) or LEFT () <u>PROJECT</u> : A004 <u>ACID TESTS</u> : AT:
-40° AT: 500 ft
AL DESCRIPTION SAMPLE NO. AU
FROM - TO oz/ton
Igh Fe Tholeiitic ; characterized by wispy res and high magnetism. No r sulphide mineralization. Ized fractures are present variable, grain size increasing flow breccia contact 3cm wide, by carbonate; contact is at 70° to C.A. ained mafic flow or gabbroic intrusive; magnetic; no significant alteration le content en white quartz vein at 45° to C.A. a quartz-carbonate veins at en carbonate-quartz veins at ault contact marked by ground brupt grain size decrease dium grained massive 201 312.9 313.8 0.002 significant alteration or 202 366.5 370.2 Nil tion bonate vein with mafic and minor purite.
and minor pyrite; t 70' to C.A. contact zone, moderately dth pale green tuffaceous(?) 0' to C.A. weakly foliated, may in part be accous; narrow 1-2cm intervals of laminae are probably small tuff horizons esponse to deformation ted tuff or mafic derived metasediment; moderately magnetic; no significant sulphide tion; foliation is at 55' to C.A. at 40' to C.A.

· ·

.

. . .

و و و د . . و د د مارد موجد

, •

· •

.

				Hole Page		Ar84-5 2	
	FOOTAGE FROM - 2		AL AND PHYSICAL DESCRIPTION	SAMPL		- TO	AU oz/to:
370 . 2	383.1	Silicified v flow top fac Non-magnetic (primary deu alteration).	BRECCIA - High Mg Tholeiitic variolotic mafic flow breccia, pr cies of downhole massive mafic fl c; fragments are well silicified uteric alteration rather than sec . Minor carbonate-quartz veinlet o significant sulphide content.	ow.	204	374.0	374.0 N1 379.0 N1 383.1 N1
383.1		383.1 Ft. MASSIVE MAFJ Uniformly fir and chloritic mafic flows. in abundance mineralizatic	variolitic contact at 40°to C.A. IC FLOW(S)- High Mg Tholeiitic ne-grained throughout; massive, 1 c tension fractures characteristi Carbonate filled amygdules are downhole. No significant altera on is present; only rare pyrite w broken cone zone, possilby due t contact arbitrarily set at 430.5	acks ma c of hi present tion of as obse o deep	igh H , de : sul erved	re thole creasin phide	ng
430.5	481.0	Very fine-gr to pale gree brecciated o is related t lets and fra red hematiza is up to 1% arsenopyrtie 430.5-461.4	TERED MAFIC FLOW rained to medium-grained; dark gr en where silicified. Massive to w over short core lengths; silicifi to brecciation. Carbonate-filled actures are present but not exten- ation appears. Overall sulphide co pyrite, pyrrhotite, and arsenopy occurs in silicified intervals. variably silicified as described above; up to 1% <u>arsenopyrite(?)</u> pyrite silicification is replaced by en	ell cation vein- sive; ontent rite(?) d and	207 208 209 210 211 212 213 214 215 216	435.0 440.0 445.0 455.0 455.0 461.4 463.1 468.0 422.0	463.1 N 468.0 N 472.0 N 476.0 N
		476.0-481.0 481.0	silicification is replaced by ep zation of brecclated intervals; 1% pyrrhotite ±pyrite present very well hematized breccia inter than 1% pyrrhotite ± pyrtie irregular contact; not measurab	erval;1	ess	.,	
481.0	484.0	Medium green deformed maf consists of pervasive ca epidotizatio	C TUFF/TUFFACEOUS METASEDIMENT , fine-grained:may be part of ic flow top facies. Alteration silicification, some hematization rbonatization and probably some n and chloritization altered mafic as described above 2-3% pyrite	Ω,	219	482.2	482 .2 N: 483 .0 N: 484 .6 N:
			coarse white calcite vein with a mineralization consisting of mag <u>hematite</u> (or molybdenite?), <u>chal</u> and red hematite comprising 35%	<u>snetite</u> copyri of vei	, <u>sp</u> te, j n	<u>ecular</u> pyrite	
		483.0-484.6	altered mafic as described above pyrrhotite and pyrite	e with :	2-3%		
		484.6	gradational contact with underly	ring un	<u>-1+-</u>	red mof	to flow

ι.

.

....52

								e No: e No:	Ar84-5 3		
	FOOTA FROM		GEOLOGI	CAL AND I	PHYSICAL	DESCRIPT	ION	SAMP	LE NO. FROM -	- то	AU oz/to:
484.6	515.0 MASSIVE MAFIC FLOW - High Fe Tholeiitic Fine-grained, massive with some chloritic tension fractures; locally exhibits weak magnetism. No significant alteration or sulphide content; some epidotized fractures occur down to 495.0 ft.		tic ak r	221 484.6 490.0 222 490.0 495.0							
515.0		Estim)F HOLE nated 99% pre remain				0 - 484	.0 ft			
										• •	

COMPANY: Argentex Resource Exploration Corp. HOLE NO: AR84-6 LOCATION: Holloway Twp. DATE STARTED November 28,1984 PAGE NO: 1 DATE COMPLETED: December 1, 1984 CORE SIZE: BQ LEVEL: Not determined INCLINATION: -45 LOGGED BY: J.R. Foster SIGNED: c TOTAL DEBTH 366.0 ft. CORE SAVED OR DISCARDED; Saved LOCATION OF COLLAR: L30+00E -12+255 CASING PULLED(X) or LEFT . () DRILLED BY: Heath and Sherwood PROJECT: A-004 ACID TESTS: CLAIM: L599051 AT: None AT: Taken BEARING: 340' FOOTAGE GEOLOGICAL AND PHYSICAL DESCRIPTION SAMPLE NO. AU FROM - TO oz/ton FROM - TO 170.0 CASING 0 170.0 284.9 MASSIVE MAFIC FLOW(S)- High Fe Tholeiitic Fine-grained, locally medium-grained in flow centre or intrusive phase; massive throughout. No significant alteration or sulphide mineralization is present. 223 264.0 269.0 Nil Core is moderately to strongly magnetic. 224 280.0 284.9 Nil 181.0 - 204.5medium-grained mafic; probably intrusive; core is badly fractured 204.5 - 244.0 epidotite-filled micro-fractures become common; core remains magnetic 244.0 - 284.9 similar to preceding interval but with much less microfracturing 284.9 ft. contact brecciated, very irregular 284.9 352.0 MAFIC METAVOLCANIC Very well fractured with numerous dark chloritic 225 284.9 290.0 Nil tension gashes and epidotized micro-fractures. 226 290.0 295.0 Nil Unit is probably a deformed flow and/or flow 227 295.0 300.0 0.002 breccia, but may have some mafic tuffaceous 228 300.0 305.0 Nil 229 305.0 310.0 Nil component. Alteration appears to be confined to silicification and epidotization accompanying 230 310.0 315.0 Nil pale green micro-fracturing. Overall sulphide 231 315.0 320.0 Nil 232 320.0 325.0 Nil content is 2-3% pyrite and rare pyrrhotite, core is non-magnetic; sulphide content drops to 1% 233 325.0 330.0 Nil 234 330.0 335.0 Nil 235 335.0 340.0 0.002 236 340.0 345.0 Nil overall further downhole. 284.9 - 325.0 overall_sulphide content is 2-3% pyrite - pyrrhotite 237 345.0 352.0 Nil 325.0 - 352.0 intensity of chloritic and epidotized fracturing decreases; sulphide content drops to 1% pyrite 352.0 366.0 RUBBLE ZONE Considerable broken debris, oxidized, numerous quartz-rich (granitoid?) pebbles; very poor core-recovery (less than 10%) 366.0 END OF HOLE Estimated 97% core recovery Hole abandoned due to extremely poor ground conditioning

COMPANY: Argentex Reso	ource Exploration Corp.	HOLE NO: Ar84-7
LOCATION: Holloway Tp.	DATE STARTED: Dec. 2,1984.	PAGE NO: 1
LEVEL: Not Determined	DATE COMPLETED: Dec. 5,1984.	CORE SIZE: BQ
INCLINATION: -45'	LOGGED BY: J.R. Foster	SIGNED: JK FOZE
TOTAL DEBTH: 106.0'	CORE SAVED OR DISCAR	DED: Saved
LOCATION OF COLLAR: L26	+00E CASING PULLED(X) or	left ()
DRILLED BY: Heath and	12+00S PROJECT: A-00	4 <u>ACID TESTS</u> :
CLAIM: L. 599044		AT: None
BEARING: 340'		AT: Taken
FOOTAGE GEOLOGICAL	AND PHYSICAL DESCRIPTION	SAMPLE NO. AU
FROM - TO		FROM - TO oz/to
**********		۵. ««« « « « « « « « « « « « « « « « « «
0.0 103.0 Casing		

103.0 106.0 Dark green mafic volcanic, boulder? casind broke. hole abandoned.

4. 14. 18.

		DIAMOND DAILD ING	
			•
		ntex Resource Exploration Corp. Ltd.	<u>HOLE NO</u> . ARG. 84 - 7
LOCATI	<u>ON</u> :Holl	oway Tp. <u>DATE STARTED</u> : Dec. 6,1984.	PAGE NO. 1
LEVEL:	Not De	termined <u>DATE COMPLETED</u> ; Dec. 11,1984.	CORE SIZE: BQ
BEARIN	<u>G</u> : 340	Degrees <u>LOGGED BY</u> : J.R. Foster S	SIGNED AKTO
INCLIN	ATION:	- 60 Degrees CORE <u>SAVED</u> or DISCARDE	D
TOTAL	DEBTH:	506.0' CASING PULLED(X) or LE	EFT () <u>ACID TESTS</u> :
LOCATI	ON OF C	OLLAR: 126+00E - 12+00S PROJECT: A -004	-51'AT: 500'
DRILLE	D BY: H	eath and Sherwood, Kirkland Lake, Ont.	AT:
CLAIM:	L. 599	044	AT:
FOOTAG	E GE	OLOGICAL AND PHYSICAL DESCRIPTION	SAMPLE NO. AU
FROM -	TO		FROM - $TO - oz/$
		~ .	
0.0	134.0	Casing Bedrock begins at 130.0'	
130.0	148.8	Massive mafic flow, high Fe Tholeiitic, d	
		green to black with pale green epidotized and considerable epitotized micro-fractur	
		giving flows a brecciated appearance.	
		Weakly to strongly magnetic Barren	238 146.0 148.8 Nil
		147.6 - 147.8 possible mafic tuff bed	230 140.0 140.0 Mil
		148.8 contact is at 60' to $C.A$.	
148.8	150.0	CHERT	otired
		Light to medium grey with pale green epide patches and fractures. Well brecciated;	bedding
		and fine laminae are recognizable in frag	
		apparently at 45' to C.A. Less than 1% p	
			239 148.8 150.0 Nil
		and chalcopyrite present. 150.0 contact is at 30 to C.A.	239 148.8 150.0 Nil
150.0	154.3	and chalcopyrite present. 150.0 contact is at 30 to C.A. MAFIC FLOW	239 148.8 150.0 Nil
150.0	154.3	and chalcopyrite present. 150.0 contact is at 30'to C.A. MAFIC FLOW Fine-grained, massive, dark green. Less	239 148.8 150.0 N11
150.0	154.3	and chalcopyrite present. 150.0 contact is at 30'to C.A. MAFIC FLOW Fine-grained, massive, dark green. Less than 1% chalcopyrite is present 150.7 - 151.0 chert interbed at 30' to C.	239 148.8 150.0 N11 240 150.0 154.3 N11
-		and chalcopyrite present. 150.0 contact is at 30'to C.A. MAFIC FLOW Fine-grained, massive, dark green. Less than 1% chalcopyrite is present 150.7 - 151.0 chert interbed at 30' to C. 154.3 contact is at 40' to C.A.	239 148.8 150.0 N11 240 150.0 154.3 N11
-	154.3 162.3	and chalcopyrite present. 150.0 contact is at 30'to C.A. MAFIC FLOW Fine-grained, massive, dark green. Less than 1% chalcopyrite is present 150.7 - 151.0 chert interbed at 30' to C. 154.3 contact is at 40' to C.A. CHERT	239 148.8 150.0 N11 240 150.0 154.3 N11 A.
150.0 154.3		and chalcopyrite present. 150.0 contact is at 30'to C.A. MAFIC FLOW Fine-grained, massive, dark green. Less than 1% chalcopyrite is present 150.7 - 151.0 chert interbed at 30' to C. 154.3 contact is at 40' to C.A.	239 148.8 150.0 N11 240 150.0 154.3 N11 A. Less 241 154.3 158.2 N11
-		and chalcopyrite present. 150.0 contact is at 30'to C.A. MAFIC FLOW Fine-grained, massive, dark green. Less than 1% chalcopyrite is present 150.7 - 151.0 chert interbed at 30' to C. 154.3 contact is at 40' to C.A. CHERT Similar to above chert at 148.8 - 150.0. than 1% sulphides are present.	239 148.8 150.0 N11 240 150.0 154.3 N11 A. Less 241 154.3 158.2 N11 242 158.2 159.5 0.0
-		and chalcopyrite present. 150.0 contact is at 30'to C.A. MAFIC FLOW Fine-grained, massive, dark green. Less than 1% chalcopyrite is present 150.7 - 151.0 chert interbed at 30' to C. 154.3 contact is at 40' to C.A. CHERT Similar to above chert at 148.8 - 150.0.	239 148.8 150.0 N11 240 150.0 154.3 N11 A. Less 241 154.3 158.2 N11

رر...

		Hole No: Ar84-7A Page No: 2
FOOTAGE FROM - 1	GEOLOGICAL AND PHYSICAL DESCRIPTI	ION SAMPLE NO. AU FROM - TO oz/ton
162.3 18	0.0 MAFIC VOLCANIC - High Fe Tholeii Considerable epidotized micro-fr present, decreasing in abundance unit may be a flow with some tuf core is weakly magnetic in place pyrite content is 2%	actures downhole;
	178.0 - 182.0 considerable broke contact, at least 2.0ft of cor arbitrarily set at 180.0 ft.	
180.0 18	9.6 CHERT Similar to above chert units, bu Laminue are apparent, brecciation to intense. Unit may be a well tuff or sediment. Sulphide cont pyrite - chalcopyrite.	n is moderate
	189.8 - 189.2 quart-carbonate ver with some orange feldspars; py are present. 189.6 irregular contact a	rite and chalcopyrite
189.6 21 [,]	7.3 MAFIC FLOWS Variably textured from fine-grain weakly foliated; appears to be a interflow hyaloclastitic breccias may be tuffaceous. No significan is apparent. Overall sulphide co than 1% pyrite but is concentrate uphole contact.	t least two 249 189.6 193.0 Nil s; interval nt alteration ontent is less
	<pre>189.6 - 193.0 3% pyrite 194.0 - 201.2 probably interflow with some hyaloclastite; folia 201.2 - 217.3 feldspar porphyrit: are up to 1mm; sulphide conten 217.3 contact is at 45</pre>	tion is at 40°to C.A. ic interval, phenocrysts t less than 1%.
217.3 23:	.0 MAFIC TUFF / CHLORITIC MUDSTONE' Pale to dark green. moderately for brecciation of pale green (silic present. Alteration consists of sericitization, some carbonatization discrete carbonate veinlets, and epidotization over very narrow ba fractures. Overall sulphide con- locally concentrated up to 3%.	ified?)bands is 251 219.8 225.2 Ni chloritization ±252 225.2 231.0 Ni tion mostly as rare silicification and ands, and rare hematization of
	minor hematization of fracture foliation is at 45° to C.A. 225.2 - 231.0 well foliated inte decreases; sulphide content da	rval, silicified and epidotized wit es; overall 3% pyrite, erval; alteration intensity rops to 1% pyrite.
		rops to 1% pyrite. d by decrease of dark chloritic ba:

GLENN C. KASNER EXPLORATION SERVICES LTD.

بار . . .

		i	، ر
.		Hole No: Ar84-7. Page No; 3	A
FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION	SAMPLE NO. FROM - TO	AU oz/ton
231.0 233.9	CHLORITE - SERICITE MUDSTONE Very well laminated/foliated, bending of laminations indicates some folding. Alter consists of carbonatization and sericitiza Overall pyrite content is 3-4%	ration	3.9 N11
	233.9 ft. contact is at 50' to C.A.		
233.9 243.8	CARBONATIZED SILTSTONE Dark grey, fine-grained, with some sericit interbeds. Siltstone is relatively massiv becoming well foliated and deformed toward lower contact. Alteration consists of per carbonatization of matrix and appearance o carbonate veins and fracture fillings. Ov sulphide content is less than 1% pyrite.	re, 254 233,9 239 255 239.0 243 vasive f	0.0 Nil .8 Nil
	239.0 - 243.8intensity of carbonate vein siltstone becomes strongly242.0open fracture, at least 0.5243.5 - 243.8contact marked by quartz-car to C.A. with chalcopyrite at	deformed ft. of core missi rbonate vein at 60	ng •
243.8 277.0	ALTERED MAFIC PILLOWED FLOWS(S) Fine-grained, pale buff brown colour with carbonaceous fractures and/or interpillow sediments. Appearance of some variolitic(pillow margins suggest entire interval is a pillowed mafic flow or series of flows. Al consists of pervasive silicification, carbo and seriation. Overall pyrite content appe be 45% as very fine disseminations and occa fracture fillings.	black256 243.8 248 257 248.0 253 ?) 258 253.0 258 a 259 258.0 263 lteration phatization ears to asional 260 263.0 268.	.0 Nil .0 Nil .0 Nil
	 243.8 - 248.0 well brecciated interval with cementing fragments and considerable card material, pyrite content is 10% or greated 248.0 - 277.0 altered pillow flow, carbona common, pyrite content is at least 4-5% at 277.0 ft. irregular contact by broken core 	ponaceous (graphiti pr. uceous selvedges ar und locally up to 1	0 Nil .c)
277.0 305.1	MASSIVE MAFIC FLOW - High Mg Tholeiitic Medium to dark green, pale green to buff br where altered near uphole contact. Overall pyrite content is 1-2%, but appears ti be 2 in altered zone.	264 278.5 283. -3% 265 283.0 288. 266 288.0 293.	0 Nil 0 0.002 0 Nil
	 277.0 - 278.5 uphole contact marked by che intersediment with mafic flo fragments, up to 5% pyrite present 278.5 - 283.0 altered interval similar to flow at 243.8-277.0 ft.; over present; alteration intensit; 	267 293.0 298. rt 268 298.0 302. W 269 302.0 305. altered pillowed rall 2-3% pyrite	0 Nil 0 Nil 1 Nil

					Hole No: Ar84-7A Page No: 4
		AGE I - TO	GEOLOGICAL AND	PHYSICAL DESCRIPTION	SAMPLE NO. AU FROM - TO oz/tor
Mass	ive	Mafic	Flow (CON'T) 283.0 - 305.1	dark green mafic flow; al confined to pervasive car weak silicification; over is 1-2%	bonatization and
,			305.1 ft. con	tact is at 45' to C.A.	
305.	1	340.7	Very well brec fragments in a to flow brecci is confined to weak pervasive	CCIA - High Mg Tholeiitic ciated with fine-grained s chloritic hyaloclastitic as in ARG84-1A and ARG84-3 primary silicification of carbonatization of matrix is less than 1%.	matrix; similar • Alteration` fragments and
			340.7 ft. cont	act is very irregular, not	measurable.
340.7 404.9	404.9	Dark green, fin Alteration is	FLOW - High Mg Tholeiitic ne-grained, amygdaloidal n confined to minor carbonat is less than 1% but incre	e veining. Overall asing downhole to 1-2%.	
			387.3 - 393.0 401.7 - 404.9 404.9 ft. com	flow takes on characteris of differentiated sill as by abrupt grain size and changes, pyrite can be up intervals and overall is gabbroic interval with 5% aphanitic silicified inter tact with hyaloclastitic fi to C.A.	shown compositional to 5% in coarser-grained 1-2% pyrite rval adjacent to contact
404.9 506.0		506.0	Medium green, a to medium-grain amygdules are pyrite - filled	D MASSIVE MAFIC FLOW - High grain size variable from a ned, carbonate and epidotic very common, some chlorite d amygdules are also present is less than 1%	phanitic zed 271 407.8 410.7 Ni and
			407.8 - 410.7	hyaloclastitic flow top be silicified aphanitic inter amygdaloidal interval as of than 1% pyrite overall; ca 426.6-426.8 ft. has 5% pyr	rval with 2-3 % pyrite described above; less arbonate vein at
			430.6 - 453.6	dark mafic intrusive amygdaloidal interval, flo coarser-grained (gabbroic	ow becomes darker and) downhole
			453.6 - 460.0 460.0 - 466.0	several quartz-carbonate- hematile appears on fractor present	epidote veins are present, ures; less than 1% pyrite
			466.0 - 473.0	massive fine-grained inter	rval, coarsening downhole
			486.5 - 487.5	medium-grained gabbroic in than 1% quartz-carbonate vein at	

GLENN C. KASNER EXPLORATION SERVICES LTD.

L			Hole No: Ar84-7A Page No: 5		
	FOOTAGE FROM - TO	GEOLOGICAL AND PHYSICAL DESCRIPTION	SAMPLE NO. FROM - TO	AU oz/ton	
506.0	D ft.	END OF HOLE Estimated 99% + core recovery			
			1		
		_			
			ч .		

-		
	COMPA	NY: Aregentex Resource Explorations Corp. HOLE NO: Ar84-8
	LOCAT	ION:Holloway Twp. DATE STARTED:Dec. 12,1984 PAGE NO: 1
		Not Determined DATE COMPLETED: Dec. 14,1984
		NATION: -55' LOGGED BY: J.R. Foster SIGNED: JR Fost
		196 0 01
•		
		$\frac{10N \text{ OF COLLAR:}}{L30+00E - 10+50S}$ CASING PULLED(X) or LEFT ()
	DRILL	ED BY: Heath and Sherwood PROJECT: A-004 ACID TESTS:
	CLAIM	L599051 AT:None
	BEARIN	NG: 160 AT: Taken
	FOOTAC	GE GEOLOGICAL AND PHYSICAL DESCRIPTION SAMPLE NO. AU
	FROM -	- TO FROM - TO oz/ton
0	79.0	CASING
76.0	226.0	Bedrock begins at 76.0 MEDIUM TO FINE-GRAINED MAFIC FLOW -High Mg Tholeiitic
70.0	22010	medium green-grey, medium-grained with a diabasic
		texture becoming fine-grained downhole. No significant
		alteration or sulphide content present. Core is
		non-magnetic. - 150.0 ft. medium-grained diabasic interval, grades
		downhole into finer massive flow.
		150.0 - 205.0 fine-grained to aphanitic interval;
		strongly silicified and epidotized by deuteric .
		alteration; chloritic amygdules up to 2mm become common downhole; no significant
		sulphide content.
		205.0 - 222.5 numerous chloritic, quartz, carbonate and
		rare sulphide amygdules are present in well silicified flow interval.
		222.5 - 226.0 very well broken core zone adjacent to
		fault zone; core is amygdaloidal mafic flow.
		226.0 ft. contact arbitrarily set in broken core interval.
226.0	236.0	FAULT ZONE
		At least %.% ft. of core missing. Most of the 272 226.0 236.0 Nil debris is a well silicified and bleached mafic
		amygdaloidal flow; some green mica (fuchsite?)
		appears in well bleached core.
236.0	277.0	AMYGDALOIDAL MAFIC FLOW-High Mg Tholeiitic Very fine-grained, pale green-grey; characterized 273 257.0 262.0 Nil
		very fine-grained, pale green-grey; characterized 273 257.0 262.0 Nil by numerous 1-4mm chlorite + carbonate-filled
		amygdules. Alteration consists of minor fracture-
		controlled hematization and some oxidization of
		carbonate in amygdules. Overall pyrite content is less than 1%.
		257.0 - 262.0 zone of most intense alteration; pyrite is
		less than 1%
		264.0 - 265.0 broken core zone
		272.0 - 277.0 broken core zone 277.0 ft. contact arbitrarily set at 277.0ft. in broken core zone.
		GLENN C. KASNER EXPLORATION SERVICES LTD.

.

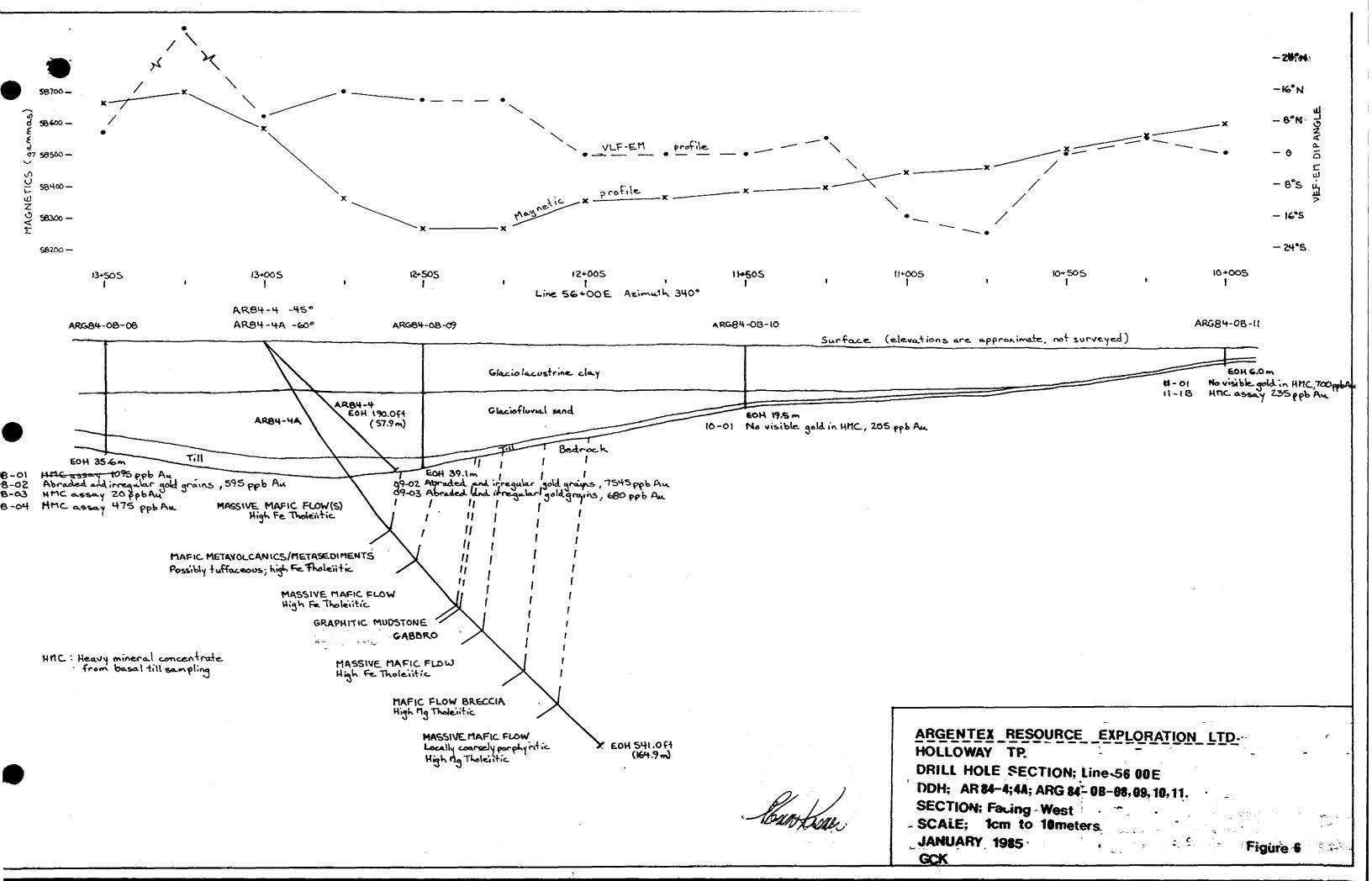
an menter, e. Sine of a second end end the transformed developments of a second

. . .

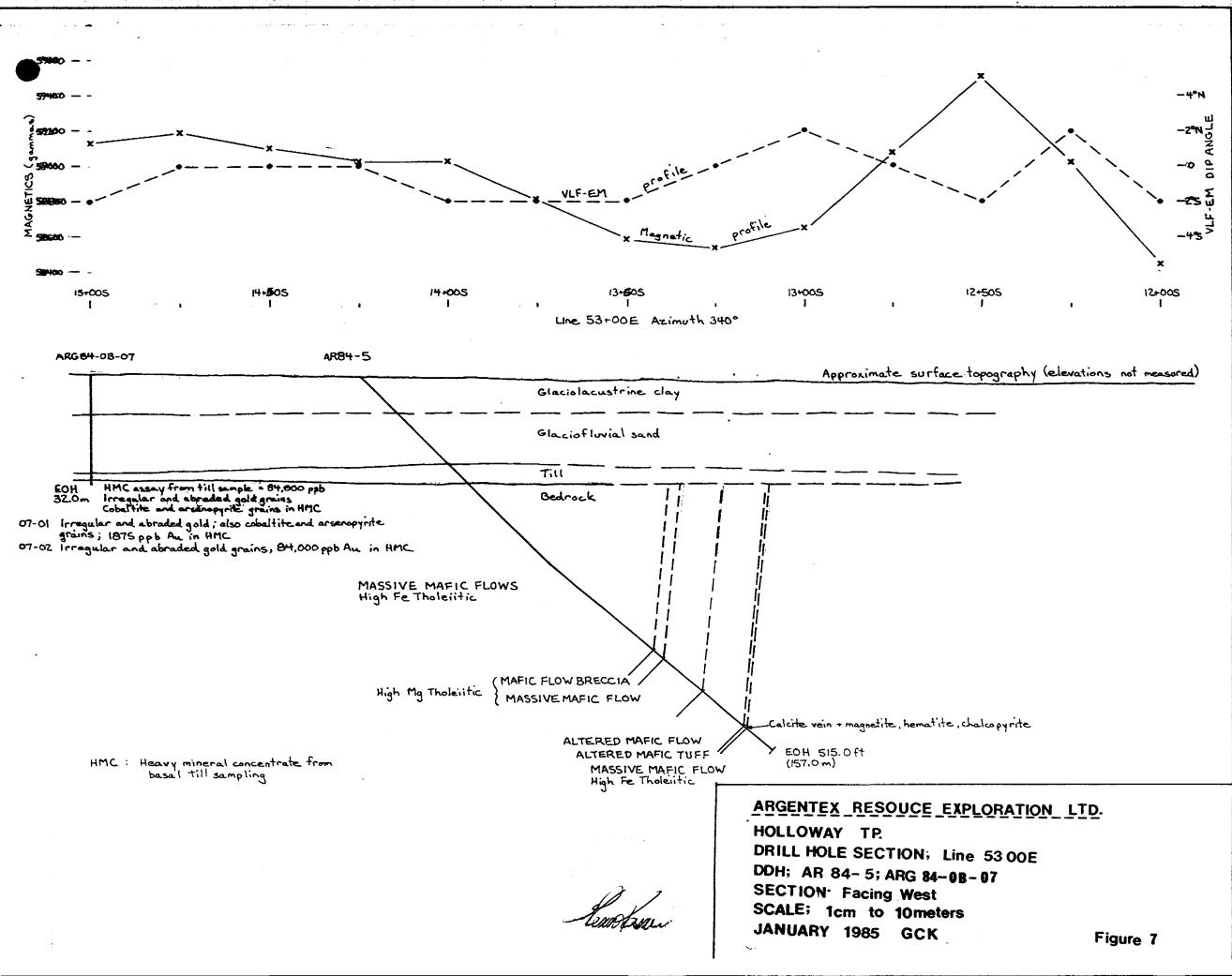
GLENN C. KASNER EXPLORATION SERVICES LTD.

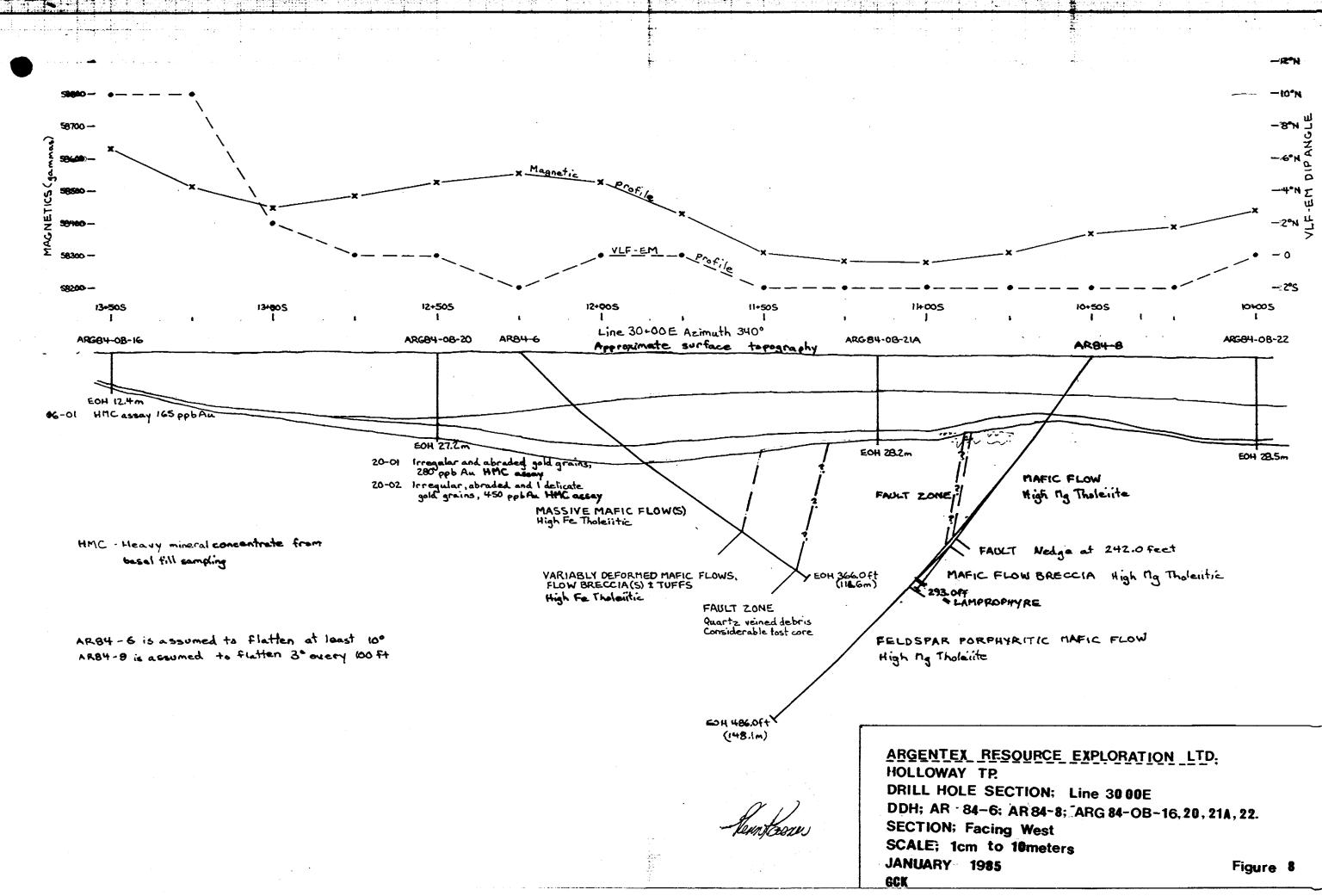
....

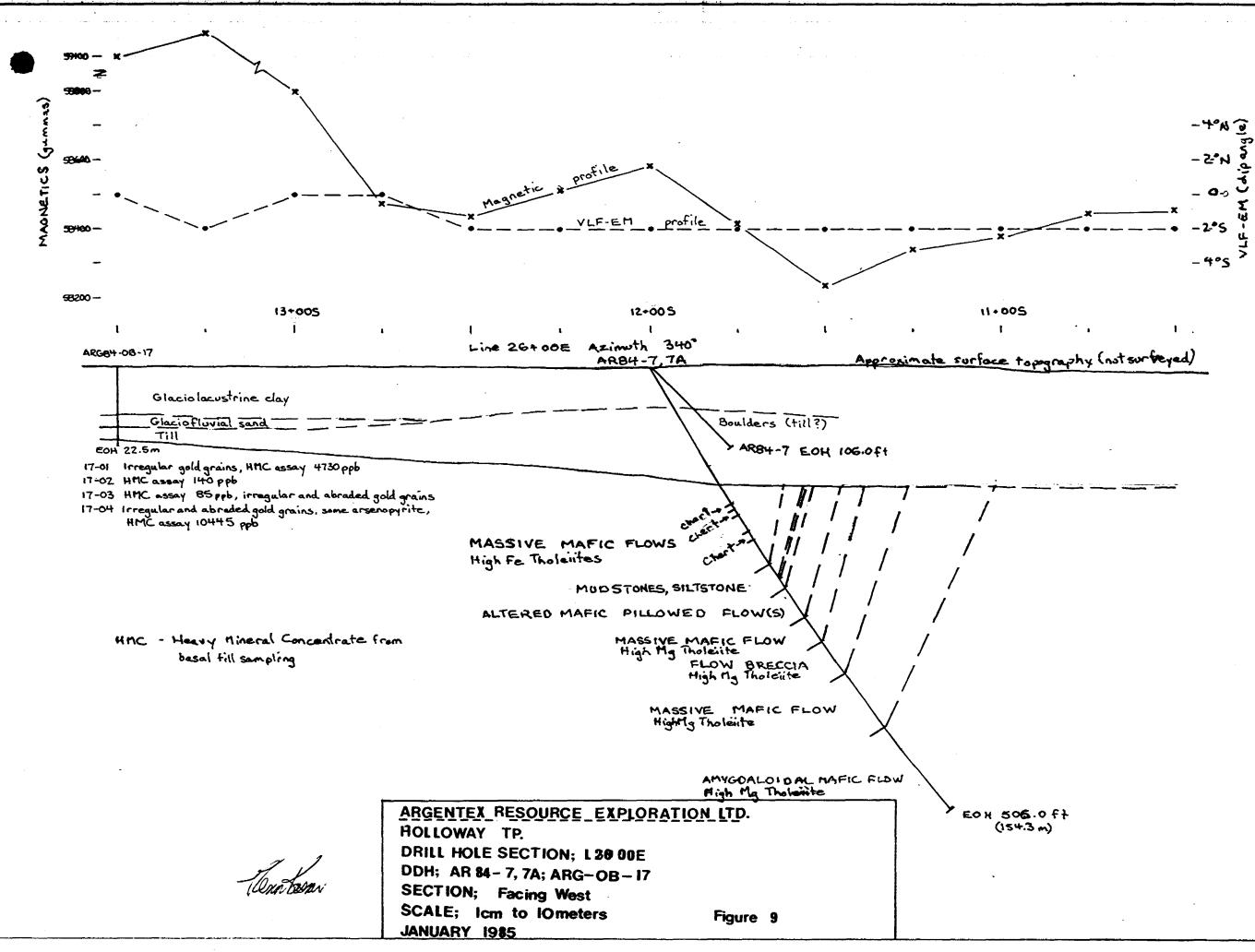
·				Hole No: Ari Page No: 2	84-8
	DOTAGE ROM - T		AND PHYSICAL DESCRIPTION	SAMPLE NO. FROM - TO	AU oz/tor
277.0 ⁻ 290.0		Very well brec amygdaloidal f content. 290.0 ft. con MAFIC LAMPROPH Contains numer crystals and s	cous acicular amphibole or some olivine phenocrysts. N	ation or sulphide biotite	
292.0		alteration or MAFIC FLOW BRE Similar to abo	sulphide content. CCCIA		
293.0		FAULT ZONE Hole cemented,	redrilled starting at 242 se mud fragments appear in a	o ft. Some	
242.0	275.0	AMYGDALOIDAL M. Same as interv 275.0 ft. con a zone of brok	AFIC FLOW - HIGH THOLEIITIC al at 236.0-277.0 ft. tact set arbitrarily at 27 en and missing core; at lea g from 273.0-286.0ft.	c 5.0ft. in	
275.0 2		Same as interva is flow top fac feldspar phenoc 289.7 - 291.8 :	CCIA - High Mg Tholeiitic al at 277.0-293.0 ft. Flow cies of downhole glomeropop crysts in breccia fragments ft. mafic lamprophyre dyke ontact is at 45 to C.A.	phyritic	
294.7		FELDSPAR PORPHY Very similar to AR84-2 and AR84 pale green epid green mafic mat sulphide conter 296.0 - 328.5 328.5 - 339.7 339.7 - 416.0	YRITIC MAFIC FLOW - High Mg o glomeroporphyritic flow i 4-4A. Consists of clumps o dotized feldspar phenocryst trix. No significant altera nt. coarsely glomeroporphyriti feldspar phenocrysts decre and frequency downhole massive medium-grained int	n AR84-1A, of 2-10mm s in a dark tion or c interval ase in size erval val, becoming	
486.0	E	END OF HOLE Estimated 98% c 24 core boxes		- 	

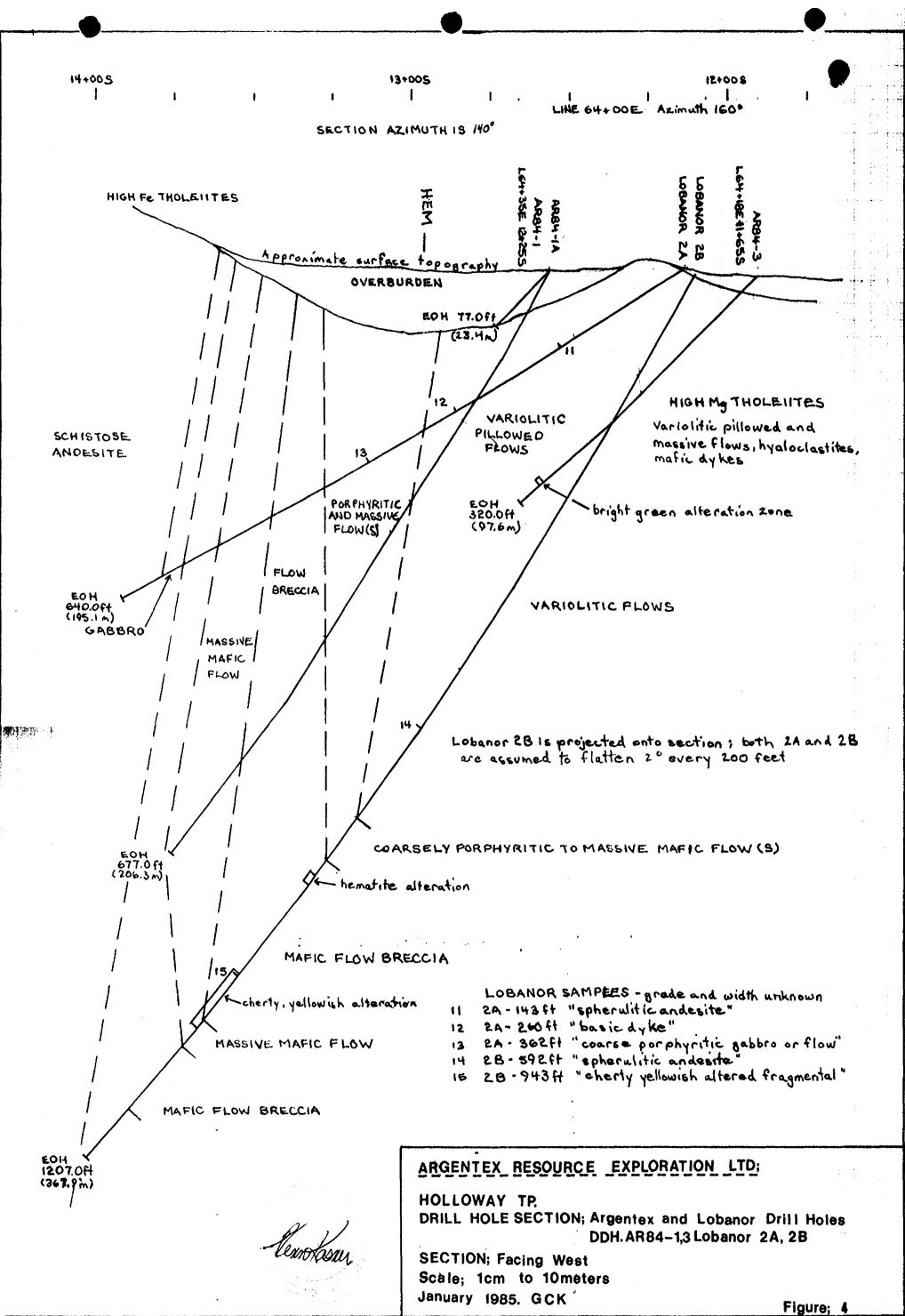

۰.

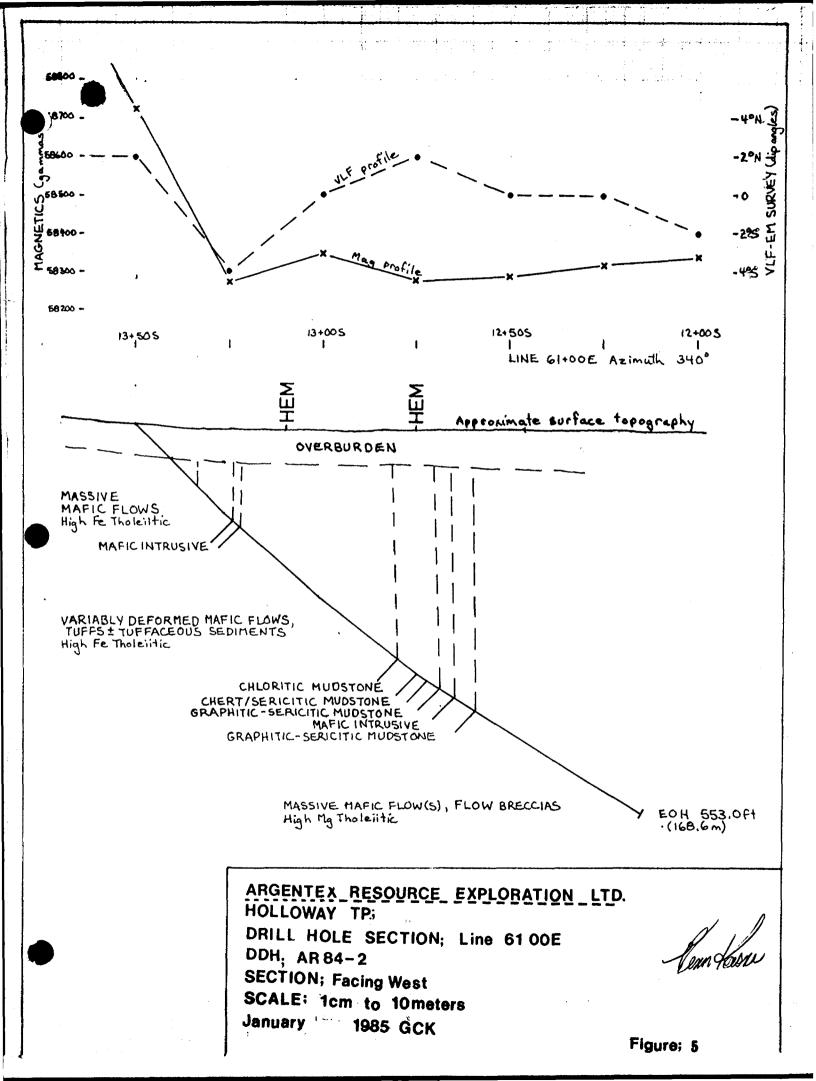
.


DIAMOND DRILL AND REVERSE CIRCULATION SECTIONS


• ..


• • • •





INTERPRETATION OF DIAMOND DRILL RESULTS

.

ره...

HOLE: AR84-1 LOCATION: L64+35E - 12+25S AZIMUTH: 140 DIP: -45 DEPTH: 77.0 feet (23.5m) TARGET: Lobanor Mines "Discovery" gold mineralization

AR84-1 was a speculative hole, designed to duplicate the results attributed in an assessment work report (Szetu, 1960) to a "discovery" hole drilled by Lobanor Gold Mines Ltd. in 1947. The Lobanor hole (DDH 2A) was assumed to have intersected gold mineralization grading at least 0.2-0.3 ounce/ton Au (7-10 g/tonne); considering the \$US35.00/ounce price of gold in 1960, a lower grade than this would be unlikely to be referred to as a "discovery". Logs for Lobanor's 2A and 2B holes (the latter apparently drilled to provide a deeper intersection of the 2A mineralization) do not give width or assay values of the sample intervals. However, DDH 2B did cut a 67.0-foot (20.4m) alteration zone where the volcanic host rocks are baked, hematized, silicified and possibly sericitized. This style of alteration is present in the gold orebody currently being drilled by Barrick Resources Ltd. northwest of the Argentex property (Steven Riddel, Geologist, Barrick Resources Ltd., personal communication, 1984). Although the Lobanor logs for the two holes make no mention of faulting, Szetu's report for the Revere Mining Corporation Ltd. described the discovery hole as intersecting a major shear "...in the order of 8 feet ... located about 3000 to 3500 feet south and parallel to the largely assumed location of the Destor-Porcupine fault zone ... ". Drilling by Revere in 1960 designed to test this fault zone intersected a zone of graphitic schists and breccias with very low to nil gold assays. However, despite their relatively recent age, no trace of the

Revere drill holes or roads could be located in the field, and their data is considered to be unreliable.

Also of interest are the results from overburden drilling carried out for Argentex by Overburden Drilling Management Ltd. (Averill and MacNeill, 1984). Holes ARG84-OB-08 and ARG84-OB-09, drilled on L56+00E at 13+50S and 12+50S respectively (approximately 800m southwest of Lobanor's holes), encountered numerous irregular and abraded gold particles in basal till samples. Hole ARG84-OB-07, at L53+00E - 15+00S, returned an assay of 84000ppb Au, best of the entire basal till programme. Overburden thicknesses from these and other holes in the immediate vicinity indicate the holes with the better gold results were drilled into a depression or trough in the bedrock paleosurface, which may be trending northeast toward the area of the discovery hole. As abundant irregular gold grains are thought to indicate transport distances of 100-1000m (Averill and Zimmerman, 1984), it is possible the mineralization reported for Lobanor DDH 2A was the source of anomalous gold in the overburden holes.

Casing left in the ground for Lobanor's 2A hole indicate it was drilled at a dip of -32 on an azimuth of 140, not 170 (S10 E) as reported in the log. Thus, AR84-1 was also drilled on this bearing, but at -45. Collar of the hole was 130 feet (39.6m) at Azimuth 140 from the 2A casing. This collar location was chosen to intersect the cause of the HEM anomaly at a vertical depth of approximately 200+-25 feet (60+-5m), as the conductor was assumed to be related to Lobanor's discovery mineralization.

GLENN C. KASNER EXPLORATION SERVICES LTD.

Unfortunately, AR84-1 had to be abandoned at 77.0 feet (23.5m), as the casing was skipping down along the bedrock/overburden interface. The hole was steepened to -60 and redrilled as AR84-1A (see following discussion of AR84-1A). رت...

.....

HOLE: AR84-1A LOCATION: L64+35E - 12+25S AZIMUTH: 140 DIP: -60 DEPTH: 677.0 feet (206.4m) TARGET: Lobanor "Discovery" gold mineralization, HEM conductor

AR84-1A was drilled from the same setup as AR84-1, but at -60; the steeper angle was necessary to allow the casing to penetrate bedrock (see discussion for AR84-1).

This hole, drilled downdip across stratigraphy, encountered a series of variolitic and porphyritic mafic flows and pillowed flows, silicified mafic flow breccias, and at least two mafic intrusive dykes or sills. The flow breccias are probably derived from underlying variolitic pillowed flows. Stratigraphic tops are to the south, as indicated by amygdaloidal flow tops and position of flow top breccias relative to the unbrecciated flow centres. Alteration consists of moderate to very intense silicification, minor carbonatization, and some epidotization. In general, this alteration is confined to aphanitic mafic fragments in the flow breccias or at margins of individual pillows and massive flows, suggesting it is deuteric alteration related to primary cooling and degassing during or following flow deposition rather than being a secondary phenomenon prior to or accompanying mineralization. The mafic rocks afftected are pale green to pale purple, very dense and cherty, and often variolitic. Unsilicified units are generally darker green to medium purple. The purple colour is probably due to primary hematite content. Secondary red hematite is sometimes present on fracture surfaces. No significant sericitization was observed in the core.

Most of the units in AR84-1A could easily be correlated with the lithologies described in Lobanor's 2A and 2B holes. One such unit, a coarsely glomeroporphyritic feldspar flow or intrusive provides an excellent marker horizon. No graphitic zones or other possible explanation for the HEM conductor were encountered.

Very little sulphide mineralization accompanies any of the rocks in AR84-1A. Only pyrite and rare grains of chalcopyrite were recognized, mostly as very fine disseminations not usually exceding 1% of the host rock. Best mineralization occurs at:

FOOTACE WIDTH LITHOLOGY MINERALIZATION 96.2-106.2 10.0ft Variolitic mafic flow 2-3% pyrite 285.0-288.6 3.6ft Porphyritic mafic flow 2-3% pyrite 8.6ft Porphyritic mafic intrusive 433.3-441.9 1% pyrite 464.2-473.4 9.2ft Mafic flow breccia 1% pyrite

No significant sulphide concentrations were reported in the Lobanor logs.

Samples in Lobanor 2A were taken in a "spherulitic" (variolitic) pillow lava, a mafic dyke (possibly a massive flow), and the glomeroporphyritic feldspar flow. In DDH 2B, another "spherulitic" flow and a "basic sill" desbribed as being silicified with a yellow to yellow-green (sericitic?) matrix were sampled. All these units were intersected by AR84-1A and thoroughly sampled, with the possible exception of the first sample in Lobanor 2A. None of the sampled rocks appeared to be favourable for gold mineralization.

Assay results indicate no significant gold mineralization, as all values are 0.002 oz/ton Au (0.06 g/tonne Au) or nil. Thus, AR84-1A did not intersect either the Lobanor gold mineralization, or any explanation for the HEM conductor. ...0/

HOLE: AR84-2 LOCATION: L64+00E - 13+51S AZIMUTH: 337 DIP: -45 DEPTH: 553.0 feet (168.6m) TARGET: Magnetic low, HEM conductors

AR84-2 was used to test a zone of low magnetics interpreted to be associated with mafic-derived sediments between the strongly magnetic high iron tholeiitic volcanics to the south and the non-magnetic high megnesium tholeiitic volcanics to the north. Sedimentary rocks with low magnetic susceptibility and hosting gold mineralization are currently being drilled by Barrick Resources Ltd. and Canamaz Ltd. on properties adjoining the Argentex property. AR84-2 was also planned to test two HEM conductors within the magnetic low.

The casing was set into a strongly magnetic high iron tholeiitic mafic flow, which, as shown on the drill hole section for AR84-2, is coincident with one of the strongest portions of the magnetic profile on L64+00E. The hole then encountered additional strongly magnetic mafic flow(s) and flow breccia(s), followed by a moderately to well deformed sequence of mafic metavolcanics. These are dominantly flows but may have some mafic tuffaceous horizons. Width of these metavolcanics/ metasediments is 180.1 feet (54.9m). The deformation is characterized by subparallel epidotized fracture networks. The metavolcanics are weakly to strongly magnetic down to 298.1 feet (90.0m) and are also interpreted to have a high iron tholeiitic affinity. The magnetic low is associated with a sedimentary sequence comprised of chloritic mudstone with minor chert, and two intervals of graphitic-sericitic mudstone (schist) separated by a mafic intrusive.

The graphitic rocks account for the northern HEM conductor, but there is no other obvious cause for the other HEM conductor within the high iron tholeiitic volcanics. Total width of undoubted sedimentary rocks is 79.7 feet (24.3m) including a narrow mafic dyke). Stratigraphically underlying the graphitic sedimentary rocks are deuterically altered (silicified) high magnesium tholeiitic mafic flows and flow breccias, including the glomeroporphyritic feldspar unit previously described in AR84-1A and Lobanor's DDH 2A and 2B.

Although the high iron tholeiites (including the deformed metavolcanic section) contain up to 2% pyrite and pyrrhotite, the best mineralized intervals in AR84-2 occur in the sedimentary units at 305.7-385.4 feet (93.2-117.5m) and the upper portion of the high magnesium tholeiitic mafics:

FOOTAGE	WIDTH	LITHOLOGY	MINERALIZATION
325.4-335.1	9.7ft	Chert/sericite mudstone	3% ру+-сру
335.1-348.0	12.9ft	Graphite-sericite mudstone	5% py
363.7-385.4	21.7ft	Graphite-sericite mudstone	5-6% py
385.4-392.1	6.7ft	Mafic flow breccia	2-3% py

Although the hole did encounter sedimentary units, these are not as strongly deformed, altered or mineralized as the rocks hosting gold mineralization on Barrick Resources' property (A. Workman, Geologist, Barrick Resources Ltd., personal communication, 1984).

Best assay for AR84-2 was yielded by a graphite-sericite mudstone with 10% pyrite at 378.0-382.7 feet (115.3-116.7m), averaging 0.055 oz/ton Au over 4.7 feet (1.6 g/tonne Au over 1.4m). The only other assay of

interest occurred in a carbonatized mafic flow breccia with 3% pyrite at 508.0-513.0 feet (154.9-156.4m). This returned 0.005 oz/ton Au over 5.0 feet (0.16 g/tonne Au over 1.5m).

Despite the lack of high gold assays, AR84-2 is considered to be a successful hole. It established the presence of sedimentary rocks within the magnetic trough which traverses the northern part of Argentex's property, and did return one significant gold assay from these sediments. HOLE: AR84-3 LOCATION: 70 feet (21m) at Azimuth 030 from L64+00E - 11+75S AZIMUTH: 140 DIP: -45 DEPTH: 320.0 feet (97.6m) TARGET: Lobanor "Discovery" gold mineralization

Because AR84-1A did not explain the gold mineralization attributed to Lobanor's DDH 2A, AR84-3 was collared 70 feet (21m) at Azimuth 320 behind the casing of 2A, to test the volcanic stratigraphy not drilled by the first hole.

AR84-3 cored deuterically altered high magnesium tholeiitic mafic pillowed flows and flow breccias similar to those seen in AR84-1A. The narrow hyaloclastic interflow and interpillow breccias in AR84-3 usually have a much higher carbonate content. Also of interest is a narrow (5.3 feet or 1.6m) altered zone within a massive flow at 278.0-300.5 feet (84.8-91.6m). This zone has a bright emerald green colour, possibly due to the presence of very fine green mica (fuchsite or roscoellite?) with some quartz-epidote veining and 1% pyrite and chalcopyrite.

Very little significant mineralization occurs in the core of AR84-3. Pyrite accompanied by some chalcopyrite is ubiquitous throughout the hole and can be concentrated up to several percent over short intervals:

FOOTAGE	WIDTH	LITHOLOGY	MINERALIZATION
82.0-83.5	1.5ft	Variolitic pillowed flow	5% py
145.0-159.4	14.4ft	Variolitic pillowed flow	2% py
208.0-209.4	1.4ft	Hyaloclastite	2% py
213.0-231.0	18.0ft	Massive mafic flow	2% ру+сру
265.0-268.0	3.0ft	Variolitic flow	2% py
271.0-274.0	3.0ft	Variolitic flow	2% py

• • • 7 1

No visible gold accompanied the above mineralization or the green alteration zone.

No significant assays came from any of the sample taken in AR84-3. All of the stratigraphy intersected by Lobanor DDH 2A was tested by AR84-1A and AR84-3, and no comparable "discovery" mineralization was found.

HOLE: AR84-4 LOCATION: L56+00E - 12+00S AZIMUTH: 340 DIP: -45 DEPTH: 190.0 feet (57.9m) TARGET: Magnetic low, bedrock source for anomalous gold from overburden drilling

The purpose of AR84-4 was two-fold: 1) to test the continuation of the magnetic low and related sedimentary units encountered in AR84-2, and 2) to locate a bedrock source for the anomalous gold concentrations found in overburden drill holes AR84-OB-07, -8 and -9 (see discussion for AR84-1).

This hole had to be abandoned at 190.0 feet (57.9m) while still in overburden, as it encountered a water seam which could not be cemented. Head angle was steepened to -60, and redrilled as AR84-4A.

HOLE: AR84-4A LOCATION: L56+00E - 13+00S AZIMUTH: 340 DIP: -60 DEPTH: 541.0 feet (164.9m) TARGET: Magnetic low, bedrock source for anomalous gold from overburden drilling

Following the failure of AR84-4 to reach bedrock, AR84-4A was steepened to -60 and drilled from the same setup.

The hole intersected high iron tholeiitic mafic flows, chloritic mudstones and/or mafic metavolcanics (mafic tuffs?), graphitic mudstones, gabbros, and high magnesium flows and flow breccias. A chloritic mudstore marie metavolcanic at 233.3-274.3 feet (71.1-83.6m) correlates with the deformed high iron tholeiitic mafic metavolcanics/ metasediments at 125.6-305.7 feet (38.3-93.2m) in AR84-2. In addition, a narrow chlorite-graphite-sericite mudstone at 336.8-340.9 feet (102.7-103.9m) in AR84-4A can be related to the graphitic-sericitic mudstones (schists) at 305.7-385.4 feet (93.2-117.5m) in AR84-2. Total width of these mudstones is only 4.1 feet (1.2m), compared to 79.7 feet (24.3m) for similar sediments in AR84-2 (this dramatic thinning of the sedimentary units to the west may be a function of bedrock topography during deposition, or more likely is due to intrusion of a mafic dyke cutting across stratigraphy and occupying the position of the sediments in this hole). The glomeroporphyritic feldspar flow seen in AR84-1A and AR84-2 also is present at the bottom of AR84-4A.

.../4

Alteration is not extensively developed in this hole. Epidotization is common in the high iron tholeiitic rocks, in particular in the moderately deformed chloritic mudstones/mafic tuffaceous metavolcanics. Weak to moderate carbonatization also accompanies these rocks. The high magnesium tholeiitic mafics exhibit strong deuteric alteration typical of these flows and breccias in this area.

Very little sulphide mineralization appears in AR84-4A. The best intersection is 3-4% pyrite over 4.1 feet (1.3m) in the chloridegraphite-sericite mudstone at 336.8-340.9 feet (102.7-103.9m).

None of the sampled lithologies (including the graphitic mudstone) in AR84-4A yielded assays above 0.002 oz/ton Au (0.07 g/tonne Au). However, this hole did show that the sedimentary units do continue to the west, and are still associated with the major magnetic trough.()

HOLE: AR84-5 LOCATION: L53+00E - 14+25S AZIMUTH: 340 DIP: -45 DEPTH: 515.0 feet (157.0m) TARGET: Magnetic low, bedrock source for gold in overburden hole AR84-0B-7

This hole was planned to locate a source for the high gold assay of 84000ppb yielded by a basal till sample from ARG84-OB-7. Also of interest was a magnetic low separated from the main low magnetic trough on the Argentex property by a strong magnetic high (see magnetic profile on drill hole section for AR84-5).

Most of the hole was cored through massive high iron tholeiitic flows and mafic flow breccia. The magnetic low appears to result from an interval of non-magnetic flow breccia, a massive flow, and a variably altered mafic flow; this interval occurs at 370.2-481.0 feet (112.9-146.6m) and probably represents a sequence of high magnesium tholeiitic volcanics. Alteration consists of patchy silicification, moderate carbonatization and strong hematization. The last is related to 0.8-foot (0.24m) coarse white calcite vein with massive magnetite, specular hematite, chalcopyrite and pyrite mineralization in a well altered mafic tuff or tuffaceous metasediment at 481.0-484.6 feet (146.6-147.7m). This mineralization appears to be the cause of the isolated magnetic high noted on the magnetic profile for L53+COE south of the baseline.

Mineralization is sparse in the core; the only significant intersections occur in the altered mafic volcanics and in the calcite vein;

...((

FOOTAGE	WIDTH	LITHOLOGY	MINERALIZATION
430.5-481.0	50 .5 ft	Altered mafic flow	1% py,po,aspy(?)
481.0-482.2	2.2ft	Altered mafic tuff	3% ру
482.2-483.0	0.8ft	Calcite vein	30% mag, hem, cpy, py
483.0-484.6	1.6ft	Altered mafic tuff	3% po,py

A pale white sulphide in the altered mafic flow was tentatively identified as arsenopyrite, however, it occurs as stubby euhedral hexagonal crystals rather than as acicular crystals, and may actually be a pale coloured marcasite.

None of the above mineralized intervals nor any other assay sampled taken for AR84-5 had any gold. Thus, the source of the high gold assay in the overburden sampling does not appear to be in the immediate vicinity of this hole, indicating the gold has been glacially transported an unknown distance.

...70

HOLE: AR84-6 LOCATION: L30+OOE - 12+25S AZIMUTH: 340 DIP: -45 DEPTH: 366.0 feet (111.6m) TARGET: Magnetic low, bedrock source of anomalous gold from overburden drilling

AR-84-6 was located on L30+00E to find a bedrock source for anomalous gold concentrations in basal till sampling from overburden drilling. The source was interpreted to be a low grade stratigraphically controlled zone approximately 330 feet (100m) north of AR84-0B-20 (Averill and MacNeill, 1984). This interpretation places the bedrock gold source within the most depressed portion of the major magnetic low which traverses the northern portion of the Argentex property.

The hole encountered massive high iron tholeiitic flows and an altered and well-fractured non-magnetic mafic metavolcanic. The latter is probably a deformed flow or flow breccia, but locally may have some mafic tuffaceous interbeds. Alteration in this unit is mostly silicification and epidotization along hairline fractures. It is similar to the deformed high iron tholeiitic mafic metavolcanics seen in AR84-2 and AR84-4A.

Significant mineralization is found in the fractured mafic metavolcanic. Here, overall sulphide content is 2-3% pyrite and rare pyrrhotite over 40.1 feet (12.2m) at 284.9-325.0 feet (86.8-99.1m). Sulphide content decreases to 1% pyrite where alteration intensity lessens downhole. Unfortunately, the hole entered a very intensely fractured and broken zone of rubble from 352.0 to 366.0 feet (107.3-111.6m) and could not be continued. This zone is interpreted to be a fault. Most of the debris consists of the fractured mafic metavolcanic, but some fragments have considerable free quartz, suggesting some veining may be present within the fault zone. When projected vertically to surface, the fault lies within the most depressed part of the magnetic profile for L30+00E (see drill hole section for AR84-6).

No gold assays were obtained for any of the samples taken from the core of this hole.

HOLE: AR84-7 LOCATION: L26+00E - 12+00S AZIMUTH: 340 DIP: -45 DEPTH: 106.0 feet (32.3m) TARGET: Magnetic low, strike extension of bedrock gold zone interpreted from overburden drilling

AR84-7 was located on L26+OOE to test the western strike extension of the bedrock gold zone interpreted from the overburden drill holes on L30+OOE (Averill and MacNeill, 1984).

The hole had to be abandoned, due to problems in penetrating the extensive overburden. The casing encountered boulders at 58 feet (18m), or a true vertical depth of 41 feet (12m), indicating a thickening of the till horizon in this area (see drill hole section for AR84-7, 7A). AR84-7A was redrilled at -60 from the same set-up.

1...01

HOLE: AR84-7A LOCATION: L26+00E - 12+00S AZIMUTH: 340 DIP: -60 DEPTH: 506.0 feet (154.3m) TARGET: Magnetic low, strike extension of interpreted bedrock gold zone

AR84-7A was steepened to -60 after the failure of the initial attempt to penetrate overburden. The sequence drilled by this hole is similar to that seen in AR84-2 and AR84-4A, beginning with massive high iron tholeiitic mafic flows with interflow chert horizons. Underlying these are mafic tuffs and/or chloritic mudstones, and chlorite-sericite mudstones, and carbonatized siltstone; no graphite was observed in these sedimentary units. An altered mafic pillow flow with graphitic selvages and up to 10% pyrite occurs at 243.8-277.0 feet (74.3-84.4m), betweeen the sediments and a series of high magnesium mafic flows and flow breccias. As shown on the accompanying drill hole section for AR84-7 and 7A, the altered flow, along with the sediments and high magnesium flow and flow breccias, is the bedrock cause of the magnetic low on 126+00E north of the baseline.

The strongest alteration seen during this phase of drilling occurs in the altered mafic pillow flow. This has been pervasively silicified, carbonatized and sericitized, resulting in a uniform fine-grained pale buff brown rock. Some brecciation is also present, with narrow to hairline quartz veinlets outlining the breccia fragments. Overall sulphide percentage is 4-5% pyrite, but can be as high as 10% over short core lengths. Similar alteration (but no brecciation) occurs at the upper contact of the underlying massive high magnesium tholeiitic mafic flow. Elsewhere in the core, the sedimentary units above the altered mafic pillow flow have been variably chloritized, sericitized and carbonatized; intensity of carbonatization increases downhole toward the contact with the altered flow.

Best mineralization is found in the altered mafic pillow flow and in the chert interflow units:

FOOTAGE	WIDTH	LITHOLOGY	MINERALIZATION
158.2-159.5	1.3ft	Chert	3% ру
162.3-180.0	17.7ft	Mafic volcanic	2% py
180.0-189.6	9.6ft	Chert	2-3% ру+-сру
189.6-193.0	3.4ft	Mafic flow	3% py
219.8-225.2	5.4ft	Tuff/mudstone	3% py
231.0-233.9	2 .9f t	Mudstone	3-4% py
243.8-277.0	33.2ft	Altered mafic pillow flow	4-5% py
277.0-283.0	6.0ft	Mafic flow	3% py
387.3-393.0	5.7ft	Mafic flow/gabbro	5% Py
407.8-410.7	2 .9 ft	Amygdaloidal flow	3% py

In terms of alteration and sulphide mineralization, AR84-7A was the most significant hole of the drill programme. Unfortunately, this was not supported by the assay sample results, which were very low to nil in gold. The only high assay was 0.01 oz/ton Au over 4.2 (0.34 g/tonne Au over 1.3m) in the brecciated interval of the altered mafic pillow flow.

•••83

HOLE: AR84-8 LOCATION: L30+OOE - 10+50S AZIMUTH: 160 DIP: -55 DEPTH: 486.0 feet (148.1m) TARGET: Magnetic low, bedrock source of anomalous gold from overburden drilling

Because AR84-6 had to be abandoned in a fault zone, AR84-8 was located at 10+50S and drilled at Azimuth 160 (downdip) to core the stratigraphy north of the fault.

The hole was cemented at 293.0 feet (89.3m) due to caving material from uphole broken core zones, and redrilled from 242.0 to 486.0 feet (73.8-148.1m). From north to south, AR84-8 intersected high magnesium mafic flows and flow breccias, two broken core zones thought to represent part of the fault seen in AR84-6, and a narrow mafic lamprophyre dyke. No sedimentary rocks or altered mafic flows similar to those observed in the core of AR84-7A were encountered. No significant alteration or mineralization was seen in the mafic flows; however, some of the debris in a fault zone at 226.0-236.0 feet (68.9-71.9m) has been silicified and bleached, and appears to have some fuchsite present. No other possible source for the basal till anomalous gold samples was apparent.

No anomalous gold was assayed in the samples taken in AR84-8. Thus, the hole was not successful in explaining the presence of the gold grains in the basal till samples of the overburden holes drilled on L30+00E, because of the faulting in this area which has apparently displaced the eastern strike extension of the sediments and altered mafics seen in AR84-7A. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A diamond drilling programme consisting of eleven holes totalling 4337.0 feet (1321.9m) was undertaken by Argentex Resource Exploration Corporation on its Inco Option Property in Holloway Township, Ontario. Three holes with a combined footage of 373.0 feet (113.7m) were abandoned in overburden, and one hole (AR84-6) had to be abandoned in a fault zone before testing the entirety of its designated target. Four holes (AR84-2, AR84-4A, AR84-5 and AR84-7A) all intersected sedimentary and/or volcanic rocks associated with a major magnetic trough on the property. AR84-8 failed to find similar sediments, due to removal of these rocks by faulting. AR84-1A and AR84-3 did not encounter gold mineralization attributed to drilling previously done by Lobanor Gold Mines Ltd. in 1947.

The best assay of the programme was 0.055 oz/ton Au over 4.7 feet (1.6 g/tonne Au over 1.4 m) from a graphite-sericite mudstone in AR84-2. However, the strongest alteration and sulphide mineralization came from a 33.2-foot (10.1 m) intersection of a weakly auriferous altered mafic pillow flow in AR84-7A.

The drilling showed the major magnetic low was associated with clastic sedimentary rocks and non-magnetic high magnesium tholeiitic volcanics, similar to the sediments hosting the auriferous orebodies currently being drilled by Barrick Resources Corporation and Canamax Resources Incorporated immediately north and west of the Inco Option. ...04

Sediments drilled on the Argentex claims are not as strongly altered, deformed or mineralized.

Because of the weakly auriferous alteration seen in AR84-7A, the western half of the magnetic trough on the property is deemed to have the best potential for gold mineralization.

Continued exploration on the Inco Option should encompass the following recommendations:

1). Additional drilling of the magnetic trough on the western half of the property on a minimum spacing of 200m from L28+00E to L20+00E. The holes should be collared at 58500 gamma magnetic contour interval, and drilled grid north. This will also test for bedrock gold which may cause the basal till anomalies on L22+00E;

2). At least one hole should be drilled on a magnetic low occuring between 18+00S and 20+00S on L22+00E to L38+00E. Recommended hole location which has already been spotted is L24+00E - 19+25S;
3). Overburden drilling is recommended on L21+00E north of the baseline as the most rapid and cost effective method to test for additional bedrock gold concentrations not associated with magnetic lows. Holes should be drilled on 100m centres north to the property boundary;
4). Additional work should be considered to trace the gold mineralization along strike from AR84-2. Overburden drilling (where topography permits), humus sampling, and based on these results, additional diamond drilling, should be adequate to test this area;
5). Before any follow up diamond drilling is undertaken, Argentex should await further results from drilling on Canamax's property, to see if that mineralization will continue downdip to the Inco Option.

د ۲۰۰۰ ک

Should this be the case, at least one deep hole (in conjunction with Canamax and/or Barrick) would be required to locate the gold zone at debth.

DISCUSSION OF RESULTS

This diamond drill programme was designed to test targets outlined be previous magnetometer and VLF-EM surveys (Carmichael, 1984), and basal till gold anomalies from overburden drilling on the property (Averill and MacNeill, 1984). The main target of the drilling was a major trough of low magnetics (less than 58500 gammas) which trends parallel to stratigraphy across the northern half of the property. All strong basal till gold anomalies occurred south of this trough, which was interpreted to be caused by a horizon of sedimentary rocks within a sequence of mafic volcanics. This model was based on results of drilling done by Barrick Resources Corp. and Canamax Resources Inc. on their properties adjacent to the norther boundary of the Argentex claim group.

This section will summarize the geological relationships indicated by brief study of core from Barrick's drilling and conversations on the geology of the Barrick and Canamax orebodies with the respective project geologists. The geology of the Argentex property (as indicated by drill results) will then be discussed, and then compared to the geology of the above-mentioned orebodies.

A. Summary of the Barrick and Canamax Orebodies

Barrick has drilled in excess of 100 holes on its claim group in Holloway Township, and several holes on the adjoining property to the west in Harker Township optioned from Lenora Explorations Ltd. ,

(A. Workman, Geologist, Barrick Resources Corp., personal communication, 1984). This work indicates a broad zone of stratabound mineralization grading 0.1-0.2 oz/ton Au (3.4-6.9 g/tonne Au) within a sequence of clastic metasediments (chloritic mudstones and siltstones). Low grade gold values are found throughout the metasediments, and within this weak gold envelope are three higher grade zones plunging steeply to the southwest. Collectively, these zones are referred to as the Footwall mineralization by Barrick. A second major mineralized horizon, known as the Hangingwall zone, was discovered south of the Footwall zone, and separated from it by non-auriferous rocks. At the boundary between Barrick's and Canamax's properties, both zones are thought to join into a single zone (the Mattawasaga zone) continuing to the east. To the west, the Footwall mineralization can be traced onto Lenora's claims (R. Kasner, President, Lenora Explorations Ltd., personal communication, 1984). This entire strike length of sediments is associated with another major magnetic low, although at least one of Barrick's orebodies (the McDermott Zone) in the Footwall sediments is strongly magnetic.

Examination of core from the McDermott Zone shows gold is found in highly altered and deformed chloritic metasediments with 2-10% pyrite. Alteration seems to have been multi-phase, beginning with pervasive chloritization of original mafics. This reaction liberated carbonate, which now appears as extensive subparallel veins and bands in the chloritized metasediments. Next phase was probably hematization of portions of the sedimentary sequence; the affected rocks are a deep purple colour and are auriferous. Overlying and in contact with the hematized rocks is a zone of strong pervasive silicification, sericitization, and carbonatization, accompanied (or preceded?) by intense brecciation. This has resulted in a very siliceous yellowish to buff brown rock. Pyrite (the only sulphide present in significant concentrations) is ubiquitous in all altered rocks, but postdates carbonatization, as it can be seen replacing carbonate bands (this banding is called bedding by Barrick's geologists, but it does not seem likely that these primary structures would have survived the intense alteration and deformation these rocks have undergone). The entire alteration package is asymmetric (ie. strong hematization stratigraphically underlies the silicified zone, but is almost nonexistant above it). Best gold intersections are yielded by the silicified rocks, although ore-grade assays can be found in the other alteration assemblages. The mineralization is thought to be syngenetic, resulting from fumarolic (hot springs) activity during or immediately following deposition.

Because less drilling has been done on Canamax's ground, details of the tonnage, grade and spatial dimensions were not available. However, width and intensity of alteration in the south-dipping Mattawasaga zone is said to be greater than that seen in Barrick's orebodies, and visible gold, which is lacking in Barrick's core, has been observed in Canamax's core (A. Workman, personal communication, 1984). According to G. Holt (Geologist, Canamax Resources Inc., personal communication, 1984), at least part of the altered rocks in the Mattawasaga zone are mafic amygdaloidal and pillow flows. This suggests at least two possibilities: 1) alteration and gold mineralization are stratabound, with a facies change from volcanic to sedimentary regimes from east to west. This situation

would be similar to the geological setting of the Campbell Red Lake and Dickenson orebodies at Red Lake, Ontario, where gold mineralization is concentrated at a facies boundary between mafic volcanics and sediments derived from the mafic pile (MacGeehan and Hodgson, 1981); and 2) auriferous mineralization is structurally controlled, crosscutting stratigraphic boundaries and related to the nearby Destor-Porcupine Fault. In this model, the sedimentary zone has acted as a zone of weakness, which continued into the mafic volcanic pile, allowing the circulation of mineralizing solutions.

Altogether, gold mineralization in the Barrick and Canamax properties defines a horizon with a strike length of over eight kilometres, and a width of up to 200 metres (Northern Miner, December 27, 1984, p.6).

B. Geology of the Argentex Property

The dominant lithologies on the property are Archean mafic volcanics belonging to the Kenojevis Group

These can be divided into two types, based on physical appearance, separated by a narrow sedimentary assemblage.

The first type of mafic volcanics consists of light to dark green, fine to medium-grained mafic flows, pillowed flows, coarsely porphyritic flow(s), and flow breccias. These generally show strong deuteric alteration (especially in flow breccia fragments, variolitic flows, and variolitic pillow margins) which has transformed the mafic volcanics into dense, very siliceous pale green to purplish grey rocks which could easily be misidentified as andesites or dacites. All original textures (ie. selvages, hyaloclastitic breccias, amygdules and varioles) have been well preserved. In one hyaloclastite in AR84-1A, an aquamarine mineral seen in the matrix is probably pumpellyite, indicating a very low metamorphic grade for this area. These mafic volcanics fit the description of high magnesium tholeiitic mafic rocks immediately east of Holloway Township in Stoughton and Mariott Townships (Jensen, 1978).

The high magnesium tholeiites outcrop mainly in the northeast part of the property. These rocks trend 070 to 080, dip steeply south and top to the south (Carmichael, 1984). AR84-1A and AR84-3 were drilled entirely within these volcanics, while AR84-2, AR84-4A, AR84-6, and AR84-7A encountered them on the footwall (northern) side of the sedimentary rocks. Mineralization in the magnesium tholeiites is comprised mostly of disseminated pyrite and much lesser amounts of pyrrhotite and chalcopyrite, generally concentrated up to several percent in pillow selvages and hyaloclastitic flow breccias. With the exception of the bright green altered mafic in AR84-3, significant secondary (not deuteric) alteration was not encountered on the eastern part of the property. However, to the west in AR84-7A, the strongly altered and well mineralized mafic pillow flow is probably a magnesium tholeiite. There is additional potential for this alteration (and possibly gold mineralization) on the western half of Argentex's claim group.

The second type of mafic volcanics corresponds with high iron tholeiitic rocks (Jensen, 1978). These are massive to weakly foliated, dark green, fine to medium-grained and sometimes gabbroic flows and flow breccias. A distinctive texture is the presence of numerous discontinuous

chlorite-filled cooling fractures in the massive flows. This, coupled with the strong magnetism of these rocks (due to the presence of finely disseminated magnetite), serves to easily distinguish the high iron tholeiites from the deuterically altered magnesium tholeiites. The weak foliation exhibited by the iron tholeiites may indicate they were more susceptible to metamorphic effects than the more competent magnesium tholeiites.

The iron tholeiites form the southern boundary of the major magnetic trough, close to where the magnetic profile on each survey line rises above 58500 gammas. These mafics are well exposed by numerous large outcrops of considerable relief of 100 feet (30m) or more. In AR84-2 and AR84-4A, these volcanics become more foliated toward their footwall contact with the sedimentary rocks, rendering positive identification difficult. Some of the more highly deformed and foliated iron tholeiites may be mafic tuffs or mafic-derived sediments intercalated with narrow, more massive flows. Secondary alteration (mostly epidotization, carbonatization, and chloritization) has affected these deformed metavolcanics/metasediments. (The prefix "meta-" is used in this report only where alteration and deformation has so obscured primary textures that the original rock type cannot be reliably identified.) Sulphides (mostly pyrite) can be weakly concentrated up to several percent over short core lengths where foliation and alteration are more intensely developed.

The most depressed portion of the major magnetic trough on the property is related to a heterogenous sedimentary package separating the magnesium and iron tholeiitic volcanics. The sediments are mostly chlorite-graphite-sericite mudstones (metamorphosed to schists), siltstones, and cherts, with a moderate to strong planar fabric. Graphitic units are better developed on the eastern half of the property as in AR84-2, where they cause strong VLF-EM anomalies. Because the sediments are more deformed than the surrounding competent mafic volcanics, this horizon was probably the focus of faulting and/or rock flowage. However, strong alteration has not affected these rocks to the same extent as seen on Barrick's property. This is possibly because Barrick's (and Canamax's) sedimentary horizon lies closer to the Destor-Porcupine Fault than the sediments on Argentex's claims, or perhaps fumarolic activity had died down while these clastic units were being deposited. Within the graphitic and sericitic mudstones, pyrite content may be as high as 10%, but will decrease to several percent or less in the chlorite-rich mudstones and siltstones.

Sedimentary rocks were not encountered in AR84-6 and AR84-8, both of which were drilled on L30+00E. A major NNW-SSE fault has crosscut the sequence almost parallel to the aximuths of these holes, and appears to have displaced the sediments from their expected position. However, the sediments are known to continue to the west, where they were intersected by AR84-7A. The position of the fault can also be deduced from the magnetometer map for the property (scale 1 centimetre to 50 metres), as magnetic trends roughly parallel to the baseline are abruptly truncated between L32+00E and L30+00E. A small stream also occupies the topographic depression related to the fault.

GLENN C. KASNER EXPLORATION SERVICES LTD.

11175

C. Comparison of the Argentex and Barrick Sedimentary Horizons

The magnetic trough drilled on the Argentex property is stratigraphically higher within the Kenojevis Group then the zones being tested by Barrick or Canamax. The chloritic sediments are somewhat similar to those in the McDermott Zone, however the latter is far more strongly chloritized, carbonatized, and pyritized, and generally lacks significant graphite content (A. Workman, personal communication, 1984). Deformation, brecciation and alteration have combined to give Barrick's Footwall sediments their distinctive well banded (bedded?) appearance, whereas the Argentex sediments are far less disturbed. The best alteration seen in the Argentex drill holes occurs in a mafic pillow flow in AR84-7A; although the assays for this unit were low, the geological setting is comparable to that reported for Canamax's Mattawasaga zone, pointing out the potential for additional alteration (andpossibly gold mineralization) within the volcanics and the adjacent sediments on the western half of the property.

James R Fost

January 10,1985.

REFERENCES

Averill, S. A. and MacNeill, K.

1984: Interpretation of Heavy Mineral Gold Anomalies in Till Samples from Reverse Circulation Drill Holes; unpublished report prepared for Argentex Resources Exploration Corp.

Averill, S. A. and Zimmerman, J. R.

1984: The Riddle Solved: The Discovery of the Partridge Gold Zone Using Sonic Drilling in Glacial Overburden at Waddy Lake, Saskatchewan; unpublised report presented at the CIM A.G.M., Ottawa, April 18, 1984.

Kasner, G. C,

1984: A Report on the Inco Option, Holloway Township Property of Argentex Resource Exploration Corp.; unpublished report prepared for Argentex Res. Expl. Corp.

Jensen, L. S.

1978: Geology of Stoughton and Mariott Townships, District of Cochrane; Ontario Geological Survey Report 173, 72p.

MacGeehan, P. J. and Hodgson, C.J.

1981: The Relationship of Gold Mineralization to Volcanic and Alteration Features in the Area of the Campbell Red Lake and Dickenson Mines, Red Lake Area, Northwestern Ontario; p94-110 in Genesis of Archean, Volcanic-Hosted Gold Deposits, Symposium Held at the University of Waterloo, March 7, 1980, Ontario Geological Survey, MP 97, 175p.

Northern Miner, The

1984: Hunt for Hemlo-Type Gold Focuses on Matheson Area; Vol. 70, No. 42, December 27, 1984, pi, 6.

Szetu, S. S.

1960: Report on Electrical Resistivity Survey and Magnetic Survey on Part of Property of Revere Mining Corporation Ltd., Holloway Township, Ontario; unpublished report prepared for Revere Mg. Corp.

JAMES R. FOSTER - STATEMENT OF QUALIFICATIONS

I, James R. Foster, certify the following:

1). That I am a consulting geologist, residing at 203-41 Old Garden River Road, Sault Ste. Marie, Ontario, Canada;

2). That I have been practising my profession for 10 years, and have been an independent consultant for one year;

3). That I was contracted to Argentex Resource Exploration Corporation from October to December, 1984, overseeing a diamond drilling programme on Argentex's Inco Option Property in Holloway Township, Larder Lake Mining Division, District of Cochrane;

4). That I was actively involved with the gathering and interpretation of the information as given in the diamond drill section of this report.

James R Fort

James R. Foster January JO, 1985

REPORT ON HUMUS SAMPLING

A limited humus geochemical survey was completed on the Argentex property. It consisted of collecting organic material in the area between lines 22+00E to 38+00E and 18+00S to 20+00S which covers part or parts of claims L. 599031, 599032, 599033, 599027, 599028 and 599029.

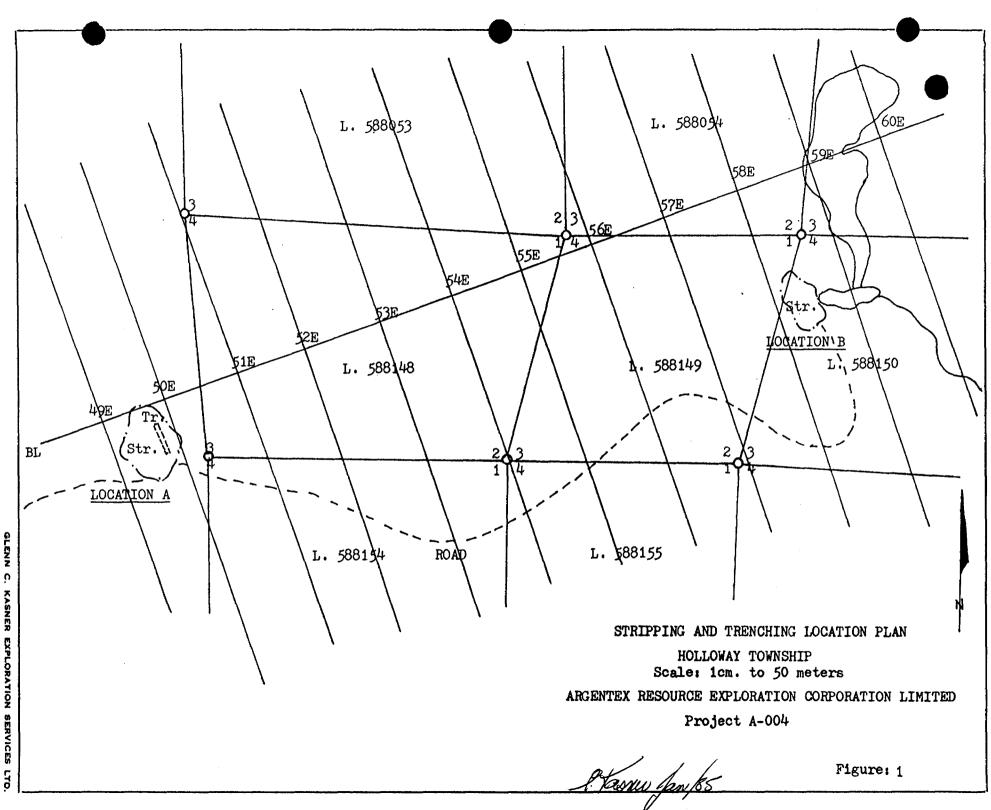
This area is characterized by a low magnetic signature indicating a possible sedimentary environment (see drawing No. 3 in back of report). A V.L.F. conductor was also located on lines 22+00E and 24+00E at approximately 19+00S (see drawing No. 2 in back of report).

As the gold bearing structures of the area are sedimentary in nature, it was thought that geochemical surveying may help in delineating an auriferous target as the area is completely covered by overburden. A total of 72 samples were collected, analyzed for gold by X-Ray Laboratories Toronto, Ontario using the Briqutte Neautron Activation Method. The results are shown in parts per billion on drawing No. 1 in back of this report.

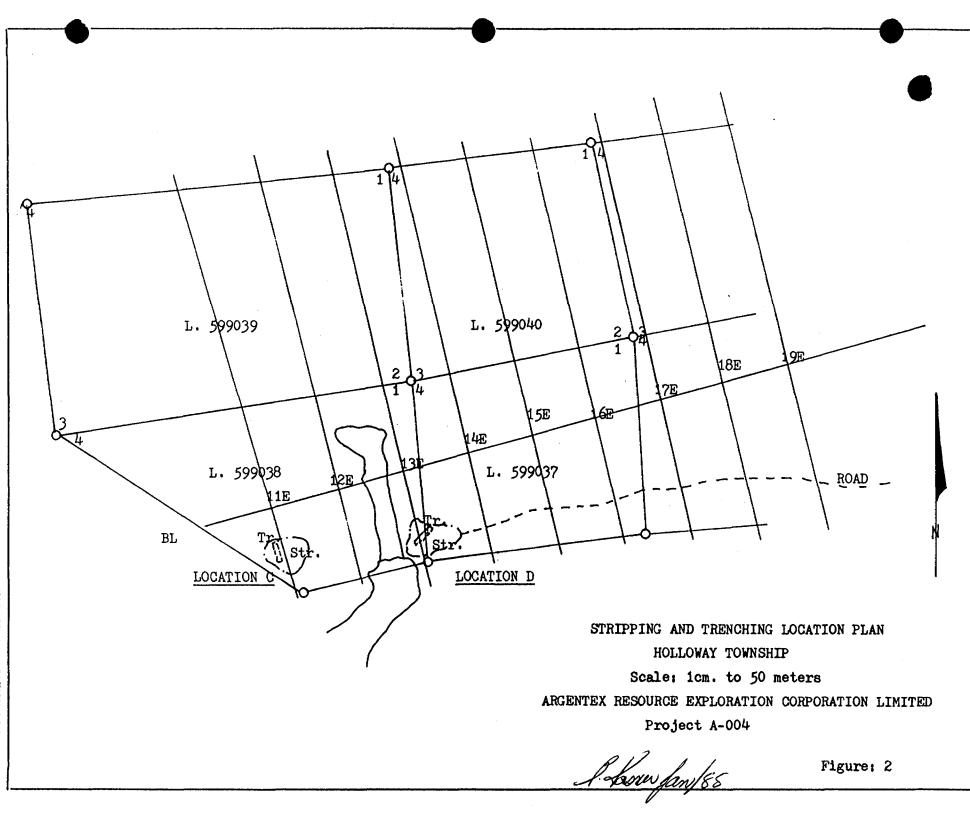
It was seen that background readings in the area of the postulated sedimentary horizon was between 1 and 3 PPB.,Au, with a definate increase in Au as sampling to the north and south approached outcrop areas. Readings of 3 to 6 PPB., Au, were found in these areas where presumeably till and clay thickness is less. Although readings of 7 PPB., on line 28+00E 18+50S, 8 PPB., on line 32+00E 18+50S, and 6 PPB., on line 38+00E 19+00S may represent an auriferous sedimentary structure it is thought that the till and clay thickness is thicker than anticipated and that this method is not suitable under these conditions.

um Cenu

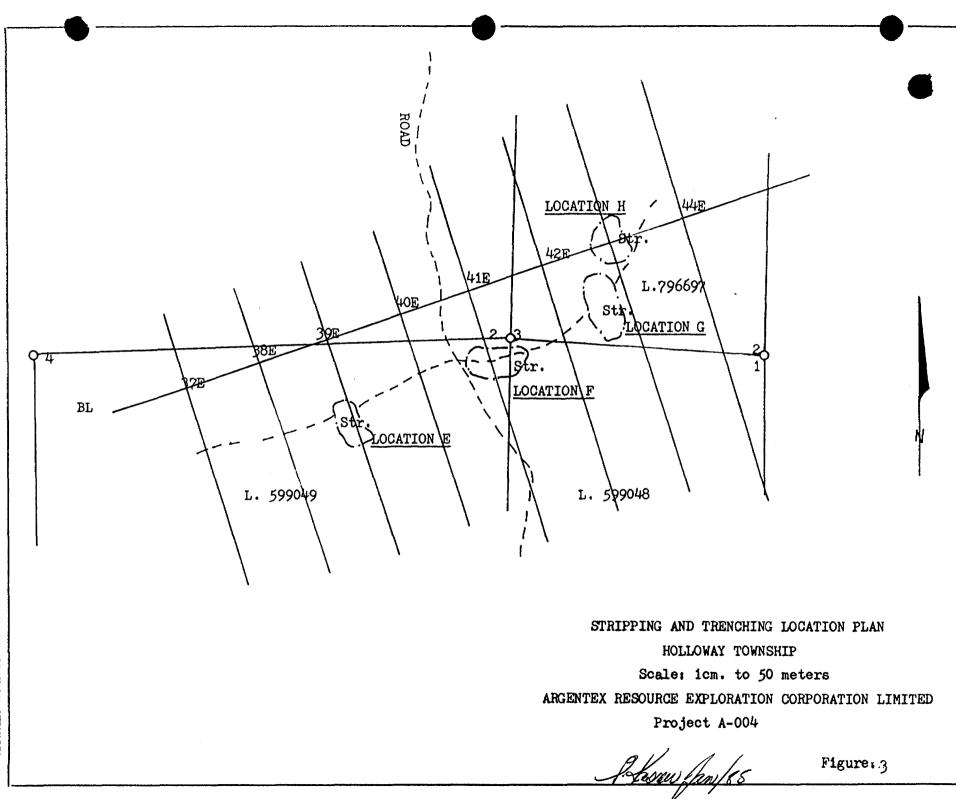
SUMMARY OF SURFACE WORK


GROUP	LOCATION	TRENCHING	LENGTH	WIDTH	DEBTH	CUBIC YARDS	STRIPPING	LENG TH	WIDTH	SQUARE FEET
				•						
Argentex	A		120'	4'	5'	71		250'	200'	50000
Argentex	В							200'	200'	40000
Argentex	C		?5 '	6'	6'	100		150'	200	30000
Argentex	D		80*	10'	6'	178		150'	150'	22500
Argentex	Е							150'	200'	30000
Argentex	F							150'	300'	60000
Argentex	G							250'	300'	75000
Argentex	Н							200'	200'	40000

In addition to the above approximately 2.6 kilometers of raod suitable for four wheel drive vehicles and approximately 3.0 kilometers of road suitable for all terrain vehicles was built.


Table:

<u>ب</u>م


GLENN C. KASNER EXPLORATION SERVICES LTD.

KAGNER

GLENN C. KASNER EXPLORATION SERVICES LTD.

GLENN C. KASNER EXPLORATION SERVICES LTD.

GEOPHYSICAL TECHNICAL DATA

	GEOPHYSICAL TECHNICA	L DATA
G	GROUN URVEYS - If more than one survey, specify data for each	ch type of survey
	Number of Stations 2198Num	her of Readings 2198
	Station interval 25 meters Line	•
	Profile scale <u>1cm. = 20 degrees</u>	•
	Contour interval 100 gammas	
•		· ·
	Instrument Geometrics G-826 precision pro	ton magnetometer
MAGNETIC	Accuracy – Scale constant – 1 gamma	
GNE	Diurnal correction method	
MA	Base Station check-in interval (hours)_Begining and end of e	ach field_shift_8hr
ŗ	Base Station location and value <u>Base Camp 59360</u>	
	Instrument Phoenix V.L.F2	
TIC	Coil configuration	
NE	Coil configuration	
ELECTROMAGNETIC	Accuracy ⁺ 1 degree	
ROI	Method: I Fixed transmitter Shoot ba	
S	Frequency	
EL	(specify V.L.F. stati Orientation and magnitude of th	on) e majour and minor axis of the ellipse
	Parameters measuredOrientation and magnitude of th of polarization'	
	Instrument	
	Scale constant	
ΤΥ	Corrections made	
GRAVITY		
GR	Base station value and location	
	Elevation accuracy	
	Instrument	
]	Method] Frequency Domain
	Parameters – On time	Frequency
ГY	– Off time	Range
TIVIT	– Delay time	-
	- Integration time	- ·
RE	Power	
	Electrode array	
	Electrode spacing	
	Type of electrode	

'

٩.	
	•

SELF POTENTIAL	
Instrument	Range
Survey Method	
Corrections made	
RADIOMETRIC	
Instrument	
Values measured	
Energy windows (levels)	
Height of instrument	Background Count
Size of detector	
Overburden	
(type	e, depth — include outcrop map)
CENERS (SEISMIC, DRILL WELL LOGGING	
Type of survey	
Instrument	
Accuracy	
Parameters measured	
Additional information (for understanding resu	lts)
·	
AIRBORNE SURVEYS	·
Type of survey(s)	
Instrument(s)	
Accuracy	ify for each type of survey)
(spec	ify for each type of survey)
Aircraft used	
Sensor altitude	
Navigation and flight path recovery method	
Aircraft altitude	Line Spacing
Miles flown over total area	Over claims only

Numbers of claims from which samples taken L. 599031, 599032, 599033, 599027, 599028, 599029

Total Number of Samples 72	- ANALYTICAL METHODS					
Type of SampleHumus (Nature of Material) Average Sample Weight Method of Collection	Values expressed in: per cent p. p. m. p. p. b. 🛛					
Method of Collection	Cu, Pb, Zn, Ni, Co, Ag, Mo, As, (circle)					
Soil Horizon Sampled	Others. Au					
Horizon Development A Sample Depth	Field Analysis (tests) Extraction Method					
Tcrrain	Analytical Method Reagents Used					
Drainage Development	Field Laboratory Analysis					
Estimated Range of Overburden Thickness, 50' feet	No. (tests) Extraction Method Analytical Method Reagents Used					
SAMPLE PREPARATION (Includes drying, screening, crushing, ashing) Mesh size of fraction used for analysis	Commercial Laboratory (tests) Name of LaboratoryXRay_Lab_Toronto,_Ont. Extraction MethodAnalytical Method Reagents Used					
General Samples dried before shipping	General					

Ministry of Natural Resources

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN PORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Geophysical, Geological, Geochemical	(Humus, Reverse Circulation)			
Township or Area Holloway Township	MINING CLAIMS TRAVERSED			
Claim Holder(s) Inco Metals Company	+ List numerically			
Coppercliff, Ontario.				
Survey Company Argentex Resource Exploration Corp. Ltd.	L588052 L. 599026 599048 (prefix) (number)			
Author of Report Glenn Kasner	(prefix) (number) 588053 599027 599049			
Address of Author P.O. Box 1053 Kirkland Lake, Ont.	588054 599028 599050			
Covering Dates of Survey 18 06 84 to 18 09 84 (linecutting to office)	588055 599029 599051			
Total Miles of Line Cut 50.3 miles	******			
	<u>588056</u> <u>599030</u> <u>599052</u>			
SPECIAL PROVISIONS DAYS CREDITS REQUESTED Geophysical Per claim	588057 599031 599053			
Geophysical	588147 599032			
ENTER 40 days (includes	588148 599033			
line cutting) for firstMagnetometer surveyRadiometric	588149 599034			
ENTER 20 days for eachOther	588150 599035			
additional survey using Geological 40				
Geochemical	588151 599036			
AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)	588152 599037			
MagnetometerElectromagneticRadiometric	588154 599038			
DATE: February 4, 1984 SIGNATURE: Man Room	588155 599039			
Author of Report or Agent	588156 599040			
22071	588157 599041			
Res. Geol. Qualifications 2.2071	588158 599042			
Previous SurveysFile No.TypeDateClaim Holder	588161 599043			
	588162 599044			
	588163 599045			
	588164 599046			
	588168 599047			
	TOTAL CLAIMS50			
	La contra de la co			

If space insufficient, attach list

320125E0693 2.7793 HOLLOWAY

020

ARGENTEX RESOURCE EXPLORATION CORPORATION HOLLOWAY TOWNSHIP, ONTARIO

.

INTERPRETATION OF HEAVY MINERAL GOLD ANOMALIES IN TILL SAMPLES FROM REVERSE CIRCULATION DRILL HOLES

ΒY

S.A. AVERILL AND K. MACNEIL OVERBURDEN DRILLING MANAGEMENT LIMITED NOVEMBER 02, 1984

320125E0693 2.7793 HOLLOWAY

0200

CONTENTS

	Page
Summary	1
Introduction	1
	2
The Principles of Overburden Exploration in Glaciated Areas	2
Quarternary Stratigraphy	6
Properties of a Significant Gold Dispersion Train	6
Argentex Heavy Mineral Geochemistry	7
Argentex Dispersion Trains	19
Conclusions and Recommendations	21
References	22

i

FIGURES

Figure 1 -	Drill Hole Location Map	(in pocket)
Figure 2 -	Sample Processing Flow Sheet	3
Figure 3 -	Effects of Glacial Transport on Gold Particle Size and Shape	4
Figure 4 -	Reverse Circulation and Sonic Drilling Discoveries and Orientation Programs with Participation by ODM	. 8
	TABLES	
Table 1 -	Comparison of Shaking Table Visible Gold Counts, Calculated Gold Assays and Measured Gold Assays	9
Table 2 -	Visible Gold in Panned 1/4 Concentrates of Samples with Poor or No Correlation of Table V.G. and Measured Gold	16
	APPENDICES	

Appendix A -	Sample Processing Logs and Sample Weights
Appendix B -	Overburden and Bedrock Gold Analyses
Appendix C -	Reverse Circulation Drill Hole Logs

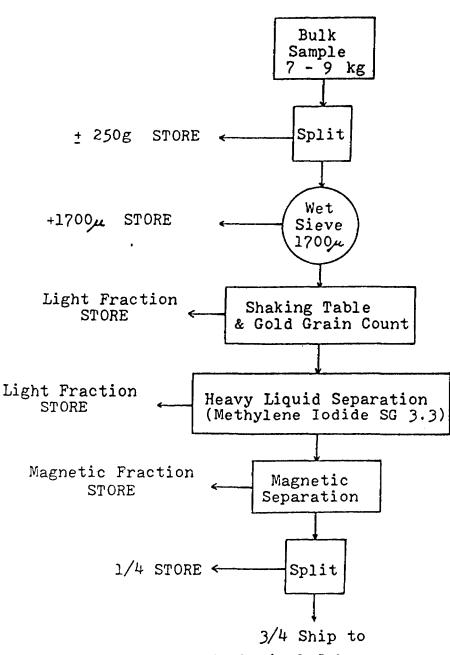
Summary

The report is an interpretation of heavy mineral gold anomalies in till samples from twenty-six reverse circulation holes drilled by Argentex Resource Exploration Corporation in Holloway Township, Ontario.

All of the geochemical anomalies are caused by free gold grains. In most cases only a few coarse background grains are present. Higher concentrations of fine gold suggestive of dispersion from a discrete source are present in adjacent Holes 17 and 20. Follow-up drilling is recommended.

No dispersion from the known Canamax and Barrick zones was encountered. The low grade, discontinuous subcrops of the zones probably produced short, patchy dispersion trains.

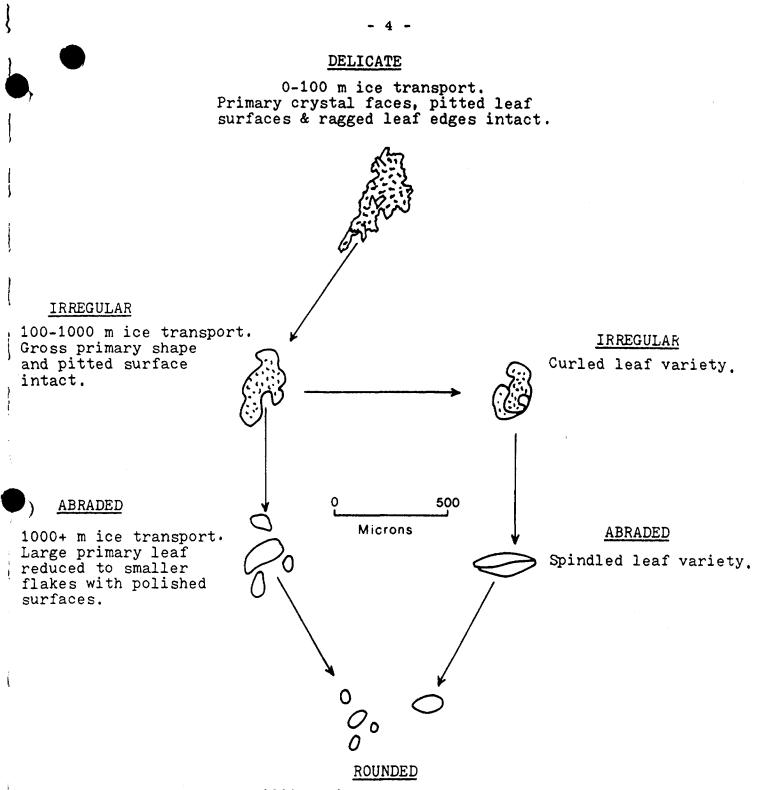
Introduction


In August of 1984, Argentex Resource Exploration conducted a 26-hole reverse circulation overburden drilling program in Holloway Township, 50 km east of Matheson, Ontario. Hole locations are shown in Fig. 1 (in pocket). The northern boundary of the property is less than 1 km from two low-grade gold zones that are currently being investigated by Barrick Resources Corporation and Canamax Resources Incorporated.

Overburden Drilling Management Limited (ODM) of Ottawa provided a geologist to supervise the program and to log the Quaternary sediments. Samples collected from the drill holes and from nine backhoe trenches were forwarded to the ODM processing lab. Heavy mineral concentrates (Appendix A) were prepared from till, gravel and sand samples using shaking table preconcentration followed by heavy liquid refining as outlined in the Flow sheet of Fig. 2. Any gold particles that separated from the other heavy minerals on the table were measured and classified to determine their approximate distance of glacial transport (Fig. 3). Where two or more particles were seen on the table, a special pan refining process was used to isolate "all" of the gold present.

Visible gold (Appendix A) and/or high gold assays (Appendix B) were reported for a number of samples. Argentex requested that ODM interpret and appraise the anomalies. The present report describes ODM's findings with emphasis on the drill samples. The backhoe samples contain consistent traces of visible gold but are not anomalous and are only briefly referred to in the report.

The Principles of Overburden Exploration in Glaciated Areas


During the Pleistocene epoch of the Quaternary period, the crowns of all ore bodies that subcropped beneath the continental ice sheets of North America were eroded and were dispersed down-ice in the glacial debris. The dispersion mechanisms were systematic (Averill, 1978) and the resulting ore "trains" in the overburden are generally long, thin and narrow and most importantly are several hundred times larger than the parent ore bodies. These large trains can be used very effectively to locate the remaining roots of the ore bodies.

Analytical Laboratory

Fig. 2 - Sample Processing Flow Sheet

3_

1000+ m ice + stream transport. Polished equidimensional grains.

Fig. 3 - Effects of glacial transport on gold particle size and shape. (Developed by Overburden Drilling Management Ltd.) Because the dispersion trains originated at the base of the ice, they are either partly or entirely buried by younger, nonanomalous glacial debris. Many trains are confined to the bottom layer of glacial debris--the basal till. In fact, the sampling of glacial overburden for exploration purposes is commonly referred to as "basal till sampling". It is important to note, however, that in areas affected by multiple glaciations the bottom layer of debris in the overburden section may be only the lowermost of several stacked basal tills, and that a dispersion train may occur at any level within any one of the basal till horizons. Consequently, the term "basal till sampling" is not synonymous with the collection of samples from the base of the overburden section. Moreover, the term is not strictly correct because significant glacial dispersion trains can occur in formations other than basal till.

From the foregoing statements, it can be seen that glacial dispersion and glacial stratigraphy are interdependent. Consequently, the effectiveness of overburden sampling as an exploration method is related to the ability of the sampling equipment to deliver stratigraphic information from the unconsolidated glacial deposits. In areas of deep overburden, drills must be used. Most drills have been designed to sample bedrock and are unsuitable for overburden exploration, but in the last decade rotasonic coring rigs and reverse circulation rotary rigs have been developed to sample the overburden as well as the bedrock. Both drills provide accurate stratigraphic information throughout the hole and deliver large samples that compensate for the natural inhomogeneity of glacial debris. In overburden exploration programs, both the overburden and bedrock are sampled. The bedrock samples are used to determine overburden provenance (and, hence, the precise directions of glacial transport) and the inter-related bedrock and overburden data provide exceptionally comprehensive exploration coverage.

Most of the glacial overburden in Canada is fresh, and metals in the overburden occur in primary, mechancially dispersed minerals rather than in secondary chemical concentrations. While ore mineral dispersion trains are very large, they are also weak due to dilution by glacial transport and are difficult to identify from a normal "soil" analysis of the fine fraction of the samples. Consequently, heavy mineral concentrates are prepared to amplify the primary

- 5 -

anomalies, and analysis of the fines is normally reserved for areas where significant post-glacial oxidation is evident. The heavy mineral concentrates are very sensitive, and special care must be taken to avoid the introduction of contaminants into the samples.

Quaternary Stratigraphy

A relatively simple Quaternary succession from one glaciation is represented within the drill area. Glacial till, glaciofluvial sand and gravel, and glaciolacustrine sand, silt and clay are present.

Glacial till rests upon bedrock in a majority of the reverse circulation drill holes (Appendix C). This unit is correlative with the Matheson Till of Baker (1982). Glacial striae indicate ice movement along an azimith of approximately 165 -175.

The Boundary Esker bisects the Argentex claim group. Esker sediments include sands and gravels deposited in an in-ice conduit within the same ice-sheet responsible for deposition of the Matheson Till. The downcutting effect of the glacial stream has resulted in the absence of till at the base of holes 01, 02 and 13.

Overlying till and glaciofluvial material are lacustrine sediments deposited in pro-glacial Lake Ojibway. These sediments include clay, silt, and sand approximating a fining upwards sequence. The common presence of sand at the base of the lacustrine section is attributable to reworking and redistribution of glaciofluvial (esker) sediments by the encroaching lake waters.

Properties of a Significant Gold Dispersion Train

ODM normally collects till samples weighing 8 kg and has found that 10 to 15 percent of such samples from the Abitibi greenstone belt region contain 1 or 2 gold particles measuring 200 to 1000 microns. These particles reflect the widespread distribution of gold in Abitibi belt rocks and produce false heavy mineral geochemical anomalies ranging from 1000 ppb to more than 100,000 ppb. True anomalies from significant glacial dispersion trains are much rarer and generally have the following properties:

- 6 -

- 1. The gold particles are of a common size.
- 2. A minimum of 4 to 5 gold particles coarser than 200 microns or 10 particles finer than 200 microns are present.
- 3. All of the particles have suffered the same degree of glacial abrasion, indicating a common distance of transport (Fig. 3)

In a few gold deposits, all of the gold is contained in pyrite and gold particle counts cannot be used to evaluate the dispersion trains. Other deposits are mineralogically complex and specific heavy minerals such as pyrite, arsenopyrite, galena, sphalerite, molybdenite or siderite may accompany the free gold particles in the dispersion trains.

Most gold deposits in the Abitibi belt strike subparallel to the bedrock stratigraphy which is in turn conveniently sub-perpendicular to the direction of Wisconsinan ice advance. Thus, assuming that a significant gold deposit has a strike length of 100 metres or more, a gold dispersion train should be at least 100 metres wide to be of interest. Dispersion trains are characteristically stratabound at the base of a specific till unit near source, and at the top of the same unit further down-ice. Thus, a significant overburden gold anomaly should repeat at the same stratigraphic level in adjacent drill holes across a minimum width of 100 metres. Several gold dispersion trains tested by ODM (Fig. 4) have been traceable for about 1 km down-ice.

Argentex Heavy Mineral Geochemistry

A total of 92 Argentex till, sand and gravel samples were processed and analyzed. Visible gold was seen in twenty-eight (30 percent) of the samples. Analyses in excess of 1000 ppb, normally reflecting the presence of one or more free gold particles coarser than 200 microns, were obtained from fifteen (16 percent) samples, including 12 of the samples in which visible gold was sighted (Table 1).

ł	Name	Deposit Type	Continuous km of H.M. Dispersion Train
2	Collins Bay "B"	Massive pitchblende/nickel arsenide	20+
エイレコ	Black Forest	0 N N	2+
CETTENNISTA	Gillander Lake	Narrow pitchblende veins	0.5
STU	Currie	Disseminated chalcopyrite	1+
NEW	Aquarius	Gold vein	1+
5	Watabeag	U Constanting of the second	< <u>1</u>
	Waddy Lake, Partridge 2	Cone Gold in shear zone	2+
	Raven	Disseminated chalcocite (0.1% Cu)	0.5
۲. د	Rabbit Lake	Medium grade pitchblende	6+
ISO	Rabbit Lake Collins Bay "A" Dome	Massive pitchblende/nickel arsenide	2
DEP	Dome	Gold vein	1 +
	Mattagami Lake Selbaie	Massive sulphide Cu/Zn	5+
ž	Selbaie	0 D	2+
	Casa-Berardi	Gold/arsenic in sediments	1+

Fig. 4 - Reverse Circulation and Sonic Drilling Discoveries and Orientation Programs with ODM Participation 00 I

1

Hole No.	Sample No.	Panned	Visible Gold No./Size/Shape	Average Diam.	<u>Grains</u> (3/4 11)	Correcti Weight	on Factor Thickness	Calc.	b Au Meas.(Repeat)	Degree of Correlation Assay = V.G.
RG-84- 01	12	No	250 x 150 Λ	200	13.7	0.9	•	845	1,110	Good
02	06	No	-	-	9.9	-	-	-	1,360	Missed V.G.
03	01	No	250 x 100 A	200	13.1	0.9	-	845	1,795	Good
04	05	No	550 x 350 A	500	7.7	0.5	-	20,000	23,000	Good
05	03	No	150 x 150 A	150	7.7	0.5	-	660	1,205	Good
07	01	Yes	350 x 200 A 250 x 150 A 2 (c 100 x 100 A 2 (c 50 x 50 A 100 x 100 Ir	300 200 100 50 100	19.6	1.3	-	2,680	1,875	Good
	02	Yes	350 x 350 lr 300 x 250 A 250 x 150 A 150 x 100 A	350 300 200 150	15.7	1.1	-	7,260	84,000	High Assay
08	01	No	-	-	14.4	-	-	-	1,095	Missed V.G.
	02	Yes	300 x 300 A 150 x 150 A 150 x 100 A 100 x 100 Ir 100 x 100 x 100 Ir	300 1 50 1 50 1 00 (200)	17.5	1.2	-	3,270	595	Low Assay
	04	No	550 x 350 A	500	19.5	1.3	-	7,690	475	Low Assay
09	02	No	550 x 500 A	500	14.2	0.95	-	10,530	7,545	Good
	03	Yes	500 x 300 lr 300 x 200 lr 150 x 100 Λ	400 300 150	35.6	2.4	-	3,390	680	Low Assay

Table 1 - Comparison of Shaking Table Visible Gold Counts, Calculated Gold Assays and Measured Gold Assays

~	

Hole No.	Sample No.	Panned	Visible Gold No./Size/Shape	Average Diam.	<u>Grams</u> (374 H)	Correcti Weight	on Factor Thickness	Calc.	Meas.(Repeat)	Degree of Correlation Assay = V.G.
G-84- 13	01	No	150 x 100 A	1 50	10.5	0.7		470	360	Good
14	02	No	250 x 250 A	250	13.5	0.9	-	1,670	70	Low Assay
	04	No	-	-	-		-		3,345	Missed V.G.
17	01	Yes	200 x 150 lr 150 x 50 lr 100 x 100 lr 2 (G 50 x 50 lr	200 100 100 50	7.9	0.5	-	1,960	4,730	High Assay
	02	No	150 x 100 lr	150	19.0	1.3	-	250	140	Good
	03	Yes	150 x 100 Λ 50 x 50 Λ 150 x 50 Ir	150 50 100	18.8	1.3	-	340	85	Low Assay
	04	Yes	200 x 200 lr 250 x 150 lr 250 x 100 lr 100 x 100 lr 150 x 50 lr 200 x 50 lr 100 x 100 A	200 200 200 100 100 100	13.9	0.9	-	3,090	10,445	High Assay
20	01	Yes	$\begin{array}{c} 250 \times 150 \text{ Ir} \\ 100 \times 100 \text{ Ir} \\ 150 \times 50 \text{ Ir} \\ 100 \times 100 \text{ Ir} \\ 100 \times 100 \text{ Ir} \\ 100 \times 50 \text{ Ir} \\ 2 \text{ (c) } 50 \times 50 \text{ Ir} \\ 50 \times 50 \text{ Ir} \\ 250 \times 150 \text{ A} \\ 2 \text{ (c) } 100 \times 100 \text{ A} \\ 3 \text{ (c) } 100 \times 50 \text{ A} \\ 2 \text{ (c) } 50 \times 50 \text{ A} \\ 3 \text{ (c) } 50 \text{ (c) } 10 $	200 100 100 100 50 50 200 100 100 50 50	31.4	2.1	-	i,19 0	280 (145)	Low Assay

Table 1 - Comparison of Shaking Table Visible Gold Counts, Calculated Gold Assays and Measured Gold Assays (Continued)

Hole No.	Sample No.	Panned	Visible Gold No./Size/Shape	Average Diam.	<u>Grams</u> (374-11)	Correcti Weight	on Factor Thickness	P Calc.	b Au Meas.(Repeat)	Degree of Correlation Assay = V.G.
NO.	NU.		No.7517675hape		(3/4 (1)					//////////////////////////////////////
G-84- 20	02	Yes	100 x 50 A 50 x 50 A 100 x 50 Ir 100 x 100 D	100 50 100 100	15.1	1		310	450	Good
21 \Lambda	03	No	300 X 150 Ir	200	17.2	1.2	-	630	1,515 (760)	Good
24	01	Yes	100 x 50 lr 50 x 50 lr	100 50	15.5	1.0	-	110	175	Good
	02	Yes	650 x 500 x 100 A 500 x 400 A 150 x 100 Ir 75 x 50 Ir	600 500 1 50 50	24.2	1.6		16,590	12,700 (230)	Good
	03	Yes	250 x 150 lr 50 x 50 D	200 50	23.1	1.5	•	510	205 (930)	Good
	05	Yes	300 x 150 lr 100 x 50 lr	300 100	21.8	1.5	-	1,670	600 (640)	Low Assay
25	01	Yes	400 x 400 A 100 x 50 A 100 x 50 Ir 100 x 100 Ir 50 x 50 Ir	400 100 100 100 50	22.2	1.5		3,800	195 (165)	Low Assay
	02	Yes	75 x 50 A 50 x 50 A 350 x 250 Ir 100 x 50 D	50 50 300 100	19.7	1.3	-	1,940	310	Low Assay
	03	No	100 x 100 A	100	27.4	1.8	•	60	185 (7,190)	Good
26	01	Yes	100 x 100 A 150 x 100 Ir	100 150	20.9	1.4	-	310	1,230	High Assay
	04	No	150 x 100 A	150	16.4	1.1	-	300	875	Good

Table 1 - Comparison of Shaking Table Visible Gold Counts, Calculated Gold Assays and Measured Gold Assays (Continued)

The proportion of samples with high gold assays is consistent with the normal 10 to 15 percent background range for this part of the Abitibi belt. Most of the anomalous samples are erratically scattered through the drill holes, contain only 1 or 2 well-travelled (abraded) gold particles and clearly do not define systematic dispersion trains from discrete sources. However, a few gold concentrations suggestive of dispersion trains are present. To confirm these trains and also to ensure that other free gold trains were not missed and that "invisible gold" (in pyrite) trains are not present, it is necessary to compare the visible gold concentrations to the analytical gold concentrations. This can be done by calculating the geochemical contribution that each gold particle should make to its concentrate. The quantity of gold in a given particle is related to the diameter and thickness of that particle. Only the diameter is measured in our laboratory as it is very difficult to position a microscopic particle on edge to measure its thickness. However, we have found from years of observation that the thickness of abraded gold flakes -- the type of gold particle most commonly encountered in tills -- is approximately 20 percent of the diameter (0.2d) for 100 micron flakes, decreasing systematically by about 0.01d for each 100 micron increase in diameter, and finally levelling off at 0.1d for flakes coarser than 1000 microns.

It is known (Clifton et. al, 1967) that a gold flake 100 microns in diameter and 20 microns thick will contribute about 1500 ppb gold to a 1 gram sample. The same flake would contribute one-fifteenth as much gold, or 100 ppb to the average 15-gram 3/4 split of a concentrate that we submit for analysis. Using the 100micron diameter, 20-micron thick, 100 ppb flake as a standard, it is possible to calculate the geochemical contribution of flakes of other sizes to a 15-gram concentrate as follows:

Flake Diameter (microns)	_ppb_Au
50	10
100	100
150	330
200	760
300	2,400
400	5,400
500	10,000
600	16,200
700	24,000
800	33,300
900	43,700
1,000	55,000

- 12 -

Our experience over several years has been that the calculated values are accurate to ± 50 percent provided that several gold particles of similar size are present to offset variations in particle thickness and the effects of sample splitting. Where only one or two gold particles of varying size are present, as in many of the Argentex samples, the calculated values show considerably less correlation with the analytical values. There are three reasons for this:

- There is a 25 percent probability that either the only gold particle present or the coarsest particle that contains most of the gold will remain in the retained 1/4 split and will be missed in the analysis of the 3/4 split.
- 2. Some gold particles are not visible on the table. An estimated 60 to 70 percent of naturally occuring particles are thin abraded flakes. If these flakes are over 125 microns in diameter, they separate cleanly from all other heavy minerals high on the table deck and are easily seen. Other types of gold particles travel at a lower level on the deck due to size and shape effects. Generally 10 to 20 percent of such particles are visible, with the remainder being hidden by magnetite and other heavy minerals. The "invisible" particle types are:
 - (a) Particles finer than 125 microns, irrespective of shape.
 - (b) Delicate particles, irrespective of size.
 - (c) Abraded particles coarser than 125 microns and several times thicker than normal flake gold. Due to their thickness, these particles make a major contribution to the gold analysis. Most unexplained high analyses are caused by a single gold particle of this type.
- 3. The pronounced malleability of gold precludes its thorough homogenization with the sample through mechanical pulping. Ideally the 3/4 concentrate split should be pulped to -200 mesh (74 microns) prior to analysis but in practice a short pulping period must be used to avoid a temperature buildup that would cause streaking of gold on the

interior of the shatter box. As a result, a significant proportion of the pulp is coarser than 150 mesh (105 microns). Gold particles in particular tend to remain coarse, and in fact will often <u>increase</u> in diameter due to flattening, elongation and aggregation with one another. Thus the gold is not evenly distributed through the pulp. The problem can be overcome by assaying the +150 mesh "metallics" and the -150 mesh pulp separately and calculating a combined "pulp and metallics" assay. This procedure is expensive, and in routine geochemical work such as that performed for Argentex, a simple 10-gram subsample is taken from the unscreened pulp. Thus, if the pulp weighs more than 10 grams and contains metallics, analytical reproducability is poor.

Visible gold counts, calculated gold assays and measured gold assays are compared in Table 1. The correlation between calculated assays and measured assays is considered to be "good" if the measured assays are not more than about 50 percent lower than or twice as high as (allowing for limited variations in flake thickness) the calculated assays.

Of the twenty-eight samples with visible gold, fifteen (54 percent) gave "good" correlation of calculated and measured assays, nine (32 percent) gave low measured assays and four (14 percent) gave high measured assays.

Low measured assays normally indicate one of the following:

- (a) the largest gold particle or the only particle present remained in the unanalyzed 1/4 concentrate
- (b) the concentration of gold metallics in the analyzed subsample of the pulp was lower than in the remainder of the pulp.

The concentrate splitting factor should produce low measured assays in twenty-five percent of the samples. The fact that thirty-two percent (nine) of the samples yielded low assays indicates that pulping was also a factor. It is possible to pan the retained 1/4 splits of the concentrates to ascertain whether the missing gold was "lost" in concentrate splitting or in pulp subsampling, and this was done for the nine Argentex samples. The coarse missing gold was found in 5 samples (Table 2). Thus the concentrate splitting factor produced low measured assays in only 17 percent (5/28) of the samples with visible gold, compared to the expected 25 percent.

The missing gold in the other four samples with low measured assays -- No. 08-02, 20-01, 24-05 and 25-02 -- should be in the unanalyzed portion of the pulp. During tabling each of these samples produced a 200 to 300 micron gold particle that would make a major geochemical contribution to a heavy mineral concentrate plus one or more fine particles that would make only minor geochemical contributions. The 3/4 concentrates weighed 18 to 31 grams, leading to a 44 to 68 percent probability that coarse gold metallics in the pulp would <u>not</u> enter a 10 gram analytical subsample. Larger, 20-gram subsamples were analyzed for samples 24-05 and 25-02, suggesting that the metallics problem should not be severe, but good examples of the problem are evident in two other samples from Holes 24 and 25 for which 20 gram subsamples were initially analyzed and check analyses of 2 to 12 grams of the same pulp were later made. Sample 24-02 gave values of 12,700 and 230 ppb while Sample 25-03 yielded 185 and 7190 ppb.

High measured assays normally indicate one of the following:

- (a) Some visible gold was missed during tabling.
- (b) The concentration of gold metallics in the analyzed subsample of the pulp was higher than in the remainder of the pulp.

Two or more gold particles were seen during tabling of each of the four samples that produced high measured assays. In three of the samples -- No. 17-01, 17-04 and 26-01 -- panning of the retained 1/4 concentrate produced zero or negligible gold and the measured assays are only 3-4 times higher than the calculated assays. This suggests that the coarsest gold particle in the 3/4 analytical concentrate was simply 3-4 times thicker than normal. Actually, in Hole 17 all of the gold particles are 3-4 times thicker than normal. In the fourth sample -- No. 07-02 -- the coarsest particle is still in the 1/4 concentrate and the measured assay at 84,000 ppb is much higher than the 7260 ppb calculated assay.

Hole No.	Sample <u>No.</u>	Total Conc. Panned?	V.G. In Total Conc. (<u>Table +</u> Pan) No./Size/Shape	Panned V.G. in 1/4 Conc No./Size/Shape
		Class: Table gold	present, low measured assa	у
ARG-84-08	02	Yes	1 @ 300 x 300 A 1 @ 150 x 150 A 1 @ 150 x 100 A 1 @ 100 x 100 Ir 1 @ 100x100x100 Ir	1 @ 100x100x100 A/IR 1 @ less than 50x50 Ir
08	04	No	1 @ 550x350 A	1 @ 550 x 350 (500 fine gr. as py)
09	03	Yes	1 @ 500 x 300 Ir 1 @ 300 x 200 Ir 1 @ 150 x 100 A	1 @ 300 x 200 A
14	02	No	1 @ 250 x 250 A	1 @ 300 x 250 A
17	03	Yes	1 @ 150 x 100 A 1 @ 150 x 50 Ir 1 @ 50 x 50 A	i @ 150 x 100 A
20	01	Yes	1 @ 250 x 150 Ir 2 @ 100 x 100 Ir 1 @ 150 x 50 Ir 1 @ 100 x 50 Ir 3 @ 50 x 50 Ir 1 @ 250 x 150 A 2 @ 100 x 100 A 3 @ 100 x 50 A 2 @ 50 x 50 A 3 @ Less than 50 x 50 A	1 @ 100x100x50 A 1 @ 150 x 50 Ir
24	05	Yes	1 @ 300 x 150 Ir 1 @ 100 x 50 Ir	
25	01	Yes	1 @ 400 x 400 A 1 @ 100 x 50 A 1 @ 100 x 50 Ir 1 @ 100 x 100 Ir 1 @ 50 x 50 Ir	1 @ 400 x 400 A
25	02	Yes	1 @ 350 x 250 Ir 1 @ 100 x 50 D 1 @ 75 x 50 A 1 @ 50 x 50 A	

Table 2: Visible Gold in Panned 1/4 Concentrates of Samples with Poor or No Correlation of Table V.G. and Measured Gold

- 16 -

}

)

Hole No.	Sample <u>No.</u>	Total Conc. Panned?	V.G. In Total Conc. (Table <u>+</u> Pan) No./Size/Shape	Panned V.G. in 1/4 Conc No./Size/Shape
	CI	ass: Table gold	present, high measured assa	чу
ARG-84-1	07 02	Yes	1 @ 350 x 350 Ir 1 @ 300 x 250 A 1 @ 250 x 150 A 1 @ 150 x 100 A	1 @ 350x300x50 Ir (200 fine gr. as py)
	17 01	Yes	1 @ 200 x 150 lr 1 @ 150 x 50 lr 1 @ 100 x 100 lr 2 @ 50 x 50 lr	
	17 04	Yes	1 @ 200 x 200 Ir 1 @ 250 x 150 Ir 1 @ 250 x 100 Ir 1 @ 100 x 100 Ir 1 @ 150 x 50 Ir 2 @ 100 x 50 Ir 1 @ 100 x 100 A	1 @ 150 x 50 Ir
	26 01	Yes	l @ 150 x 100 Ir l @ 100 x 100 A	
		Class: No ta	ble gold, high measured ass	ay
ARG-84-	02 06	No	Nil	
	08 01	Νο	Nil	2 @ 100 x 50 Ir 1 @ 150 x 100 A (50 gr as py)
	14 04	No	Nil	1 @ 50 x 50 A

Table 2: Visible Gold in Panned 1/4 Concentrates of Samples with Poor or No Correlation of Table V.G. and Measured Gold (Continued)

- 17 -

The 1/4 concentrate contains only the one gold particle, and the pyrite content is low precluding the presence of significant invisible gold. It is reasoned that one coarse, thick gold particle was missed during tabling and entered the 3/4 analytical concentrate.

Gold assays from significant dispersion trains invariably exceed 1000 ppb and are generally greater than 3000 ppb. Twenty-three Argentex samples either produced or should have produced assays in excess of 1000 ppb. Sufficient visible gold to generate the measured assays was seen in sixteen of these samples (Good Correlation and Low Assay) and part of the gold was seen in four samples (High Assay). Thus visible gold was seen in twenty or 87 percent of the samples that contain anomalous levels of gold. This is in excess of the average 60-70 percent visual detection rate of +125 micron gold in our laboratory - probably due to the relatively coarse abraded nature of much of the gold.

The three anomalous samples in which all of the visible gold appears to have been missed are:

	Weight in Grams								
Hole No.	Sample No.	3/4 Conc.	Pulp Subsample	ppb Au					
ARG-84-02	06	9.9	9.10	1360					
08	01	14.4	10.00	1095					
14	04	10.2	9.88	3345					

High assays with no supporting sighted gold are generally due to single coarse gold particles that are so thick that they do not separate cleanly from magnetite on the shaking table. Panning of the retained 1/4-heavy mineral splits of the three samples revealed the presence of a single, fine (less than 50 x 50 microns) abraded gold grain in ARG-84-14-04, and three fine (2 @ 100x50, 1@ 150x100) irregularly shaped gold grains in 08-01. Sample 02-06 contained no V.G. in the 1/4 split.

The panning results from 02-O6 and 14-04 are consistent with single unsighted grains of 200-300 microns diameter having entered the 3/4 analytical split. In Sample 08-01, however, the three fine grains in the 1/4 split suggest that an additional 8-10 grains entered the 3/4 split. Ten such grains would produce an assay of 1000 ppb, consistent with the reported value of 1095 ppb.

Argentex Dispersion Trains

The foregoing comparison of calculated visible gold assays and measured total gold assays has shown that all of the Argentex geochemical anomalies are caused by free gold particles rather than by invisible gold in pyrite. In most anomalous samples only one or two gold particles are present -- well below the 5-10 particle minimum for a dispersion train. These "background" particles tend to be abraded, indicating glacial transport of more than 1 km. They also tend to be coarse due to selective destruction of fine grains during long transport, and thus create impressive heavy mineral goechemical anomalies ranging to 84,000 ppb.

The 5-10 gold particle per sample dispersion train threshold is met in some but not all samples in adjacent hole-pairs 07 and 08, 17 and 20, 24 and 25.

In Holes 07 and 08, four of six samples produced 5-12 gold particles each (includes the inferred coarse gold particle that created an assay of 84,000 ppb in 07-02 and the inferred 8-10 fine particles that created an assay of 1095 ppb in 08-01). The concentration of gold particles is marginal for a dispersion train, and the particles are varisized suggesting several sources and are also abraded indicating transport of more than 1 km. Holes 09 and 10 were drilled 100 and 200 km up-ice from Hole 08 and did not intersect similar anomalies, effectively precluding the existence of a traceable dispersion train in the area. It is therefore reasoned that the Hole 07-08 gold concentrations are erratic high background occurrences. Such occurrences are common in the Matheson Till over this part of the Abitibi belt and are due in part to recycling of gold from old interglacial gravels.

In Holes 24 and 25, seven of eight samples yielded visible gold but only Sample 25-01 yielded the minimum 5 particles for a dispersion train and only four of the samples gave measured or calculated assays greater than the 1000 ppb anomaly threshold. The gold particles are varisized and are of both irregular and abraded populations, suggesting derivation from various minor sources both within and north of the Argentex property. Holes 23 and 18 were drilled 100 to 200 metres down-ice from Hole 24 and are non-anomalous. Thus the Hole 24 and 25 gold concentrations, like those in Holes 07 and 08, are considered to be high background occurrences.

The gold concentrations in Holes 17 and 20 are of more interest. The lower of three till samples in Hole 17 yielded eight gold particles of a common size (50-200 microns) and shape (irregular) suggesting derivation from a common source 100-500 metres to the north. The upper till samples and an overlying sand sample contain lower concentrations of gold particles of a similar size and shape. A third factor suggesting a single source is the abnormal thickness of the grains which, it will be remembered, produced a measured assay of 10,445 ppb compared to a calculated flake gold assay of 3090 ppb. Panning of the concentrate revealed several hundred sharply angular grains of an arsenopyrite-like mineral (a check analysis yielded only 42 ppm As) that may be associated with the gold.

Hole 20 was drilled 400 m east along the geological strike from Hole 17 and yielded gold particles of the same size. The concentration of gold particles decreases downward from 19 in Sample 20-01 to four in 20-02 and zero in 20-03. Half of the grains are irregular in shape and half are abraded. This suggests a source 500-1000 m distant but a distant source is problematic because Hole 21 was drilled only 100 m up-ice from Hole 20 and is non-anomalous. It is noted that the bottom sample is from a short, 0.7 m interval and that the abraded grains have diameters of less than 100 microns and would therefore be difficult to classify. A source within 100 m is considered possible if the gold at source occurs as single crystals (these could be misclassified as abraded whereas normal leaf gold within 100 m of source would almost certainly be classified as delicate). However, the source must be of low grade as the grade of our concentrates is normally equal to the grade of the source and the best concentrate grade is about 2500 ppb (Sample 20-01, calculated assay upgraded from 1190 ppb because concentrate oversized; measured assays unexpectedly low despite little gold in retained 1/4 concentrate, suggesting some gold grains inadvertently lost in laboratory). Also a nonanomalous hole -- No. 16 -- was drilled 200 m down-ice indicating that only a short dispersion train is present.

Conclusions and Recommendations

Numerous heavy mineral gold anomalies were obtained from the Argentex samples. All of the anomalies are caused by free gold grains. In most instances, one or two coarse background grains are responsible for the anomalies but in Holes 07/08, 17/20 and 24/25 higher gold grain concentrations suggestive of glacial dispersion trains are present.

The Hole 07/08 and 24/25 concentrations are considered to be erratic high background occurrences. The Hole 17/20 concentrations are suggestive of a nearby, low grade, stratigraphically controlled source. This source should lie 100-500 m north of Hole 17 and less than 100 m north of Hole 20. Indicated strike length is 400+ metres but grade may be sub-economic. It is recommended that sectional diamond drilling preferably guided by fill-in reverse circulation drilling be undertaken to locate the source.

A number of holes were drilled down-ice from the Barrick-Canamax gold zones but no dispersion of the mineralization was detected. ODM's case histories show that gold dispersion trains from ore-grade deposits are generally traceable for about 1 km down-ice. However, the Barrick-Canamax zones are said to be of low grade and to have discontinuous subcrops and would therefore be expected to have short, patchy dispersion trains. This may explain the absence of Barrick-Canamax gold from the Argentex samples as most of the down-ice holes are 600 m or more $\frac{1}{24} \frac{1}{2000} \frac{1}{2000} \frac{1}{2000}$ from the mineralization and align with the ends rather than centres. However, Hole 26 was drilled only 100 m down-ice from the centre of the Canamax zone and is also non-anomalous. It is suspected that this portion of the Canamax zone does not subcrop.

Haml

References

Averill, S.A.Overburden Exploration and the New Glacial History of Northern1978:Canada; Canadian Mining Journal, Vol. 99, No. 4, p. 58-64.

Baker, C.L., Quaternary Geology of the Magusi River Area, Cochrane and Steele, K.G. & Timiskaming Districts; Ont. Geol. Sur., Map P2783. Seaman, A.A. 1982:

Clifton, H.E. Marine Sediment Sample Preparation for Analysis for Low Hubert, A., & Concentrations of Fine Detrital Gold; U.S. Dept. Interior, Geol. Surv. Circ. 545. 1967: APPENDIX A

SAMPLE PROCESSING LOGS AND SAMPLE WEIGHTS

OVERBURDEN DRILLING NAGEMENT LIMITED

LABORATORY SAMPLE LOG

	Weight (kg, wet)			Weight (grams dry)				Grains	Desci	iption	
Saprole Number	Table Split	+ 10 Rock Chips	- 10 Table Feed	Table Conc	M.I. Lights	Non-mag	Mag	V. G.	+ 10	Matrix	Classification
						1			Pebs 709.012	sorted beige	
ARG-84-01-01	6.6	2.2	4.4	154.4	143.5	8.3	2.6		30%GY.		GRAVEL
-02	7.9	2.]	5.B	210.9	190.5	16.0	4:4	•	Pebs 60% NIS	(1	17
-03	6.6	1.3	5.3	223.6	2055	12.3	5.8		Pebs 70 %VIS 30% (11.	unsorted grey beine with silt	TILL
-04.	8.4	3.0	5.4	166.3	144.7	17.D	4.6		11	11	<u>II </u>
-05	8.3	3.3	5.0	148.8	133.6	11.8	3.4		ji ji	sorted gray beige Ecarse	GRAVEL
-06	8.7	2.1	6.6	194.4	1819	9.2	3.3		Pelos 609013 70% Gr.	1	11
-07	8.2	24	5.8	175.4	163.3	8.5	3.6		Febs 70% VIS 30% GK	1/	1(
- 08	7.4	2.1	5.3	196.1	187.1	6.2	2.8		(1	[1	1/
-09	7.4	1.0	6.4	170.1	152.9	12.0	5.2		ĸ	31	11
-10	7.7	0.6	7.1	233.1	214.5	13.0	5.6		Petes 60% VIS 70% Gr.	[1	11
- 11	7.4	.0.2	7.2	218.9	191.3	21.2	6.4		11	carse.	SAND
-/2	8.4	3.4	5.D	199.7	1679	18.3	16.5	A150 X 260	Tebs 70% VIS 30% (71.	sor tod greybuige coare	GRAVEL.
02-01	5.7	1.2	4.2	120.6	99.4	15.6	5.6		11	Earted beige coarse	11
-02	7.0	0.6	6.4	116.1	94.1	15.6	6.4		Pelos 60%,VIS 40% 61	unsorted greent	TILL
-03	7.4	2.2	5.2	115.1	100.0	10.9	4.2		Pebs 70%/15 30%64.	sorted grey beige coarse	GRAVEL
-04	7.5	3.1	4.4	203.1	187.1	11.2	48		Л	11	4
-05		3.7	4.D	120.0	101. D	12.2		-	l	Sorted gray green. Coarse	ly .
-06	4.2	1.8	2.4	103.6	84.9	13.2	5.5	1	Pebs EU % VIS 2040 Gr.	sorted grey buge course.	11
67	6.4	3.D	3.4	112.6	1	54.3	12.6		20% Gr. Bedrock chips 95% V/S, 5%61	South allen.	BELFOCK and GRAVEL
									1		

OVERBURDEN DRILLING ANAGEMENT LIMITED .

LABORATORY SAMPLE LOG

Sample	Weight (kg, wet)			Weight (grams dry)				Grains	Descr		
Number	Table Split	+ 10 Rock Chips	- 10 Table Feed	Table Conc	M.I. Lights	Non∙mag	Mag	V. G.	+ 10	Matrix	Classification
									0 / 7 50/ 1/8	torested provi	
ARG-84.03.0	1 8.1	1.8	6.3	147.9	<u> 23· </u>	17.4	7.4	A 100 X 250	Pebs 75% VIS 25% GV.	Unsorted gray beige with silt.	TILL
- 02	4.0	1.5	2.5	110.1	95.9	9.8	4.4	·······	ll	<u>'</u> K	<u> </u>
-03	7.1	1.2	5.9	158.9	33.0	107.5	18.4		Cobs 7090VIS 30% GV.	11	<u> </u>
-04.01	44	1.5	2.9	138.1	28.3	68	3.0		Pebs 70% VIS		11
-02	2.9	0.9	2.0	70.3	62.7	4.7	2.9		h	corted greybeige	GRAVEL
.03	6.4	3.0	3.4	114.9	103.5	7.4	4.0	-	11	11	17
-04	4.6	1.9	2.7	94.4	EA:0	7.5	2.9		H	unscrited grey bege with slit	TILL
-05	5.0	2.1	2.9	110.3	95.7	10.2		IR 350 X 55 0	K	sorted grey Days	GRAVEL
.06	8.1	3.8	4.3	115.6	95.6	13.2	6.8		11	1	11
-07	7.7	2.5	5.2	200.9	185.B	10.U	5.1		11	11	17
-08	6.6	2.0	4.6	157.2	128.5	18.7	10.0		11	unsorted gray beige with silt	TILL
-05-0/		0.3	3.3	105.4	83.9	16.8	5.7		Cobs 98% VIS)	Ł
-03	6.5	2.0	4.5	152.8	135.2	10.3	7.3	A 150 X 150	Perus GOGLINIS	11	Л
-06-01	8.2	2.8	5.4	101.B	81.6	14.5	5.7		Pebs 70°64/5 30°/091	unsorted grey beige with clay	1/
-07-01	74	1.0	6.4	180.2	143.7		10.4	.*	FEBS ED'INIS	unsor-ka grey beige with silt-	1/
-02	6.5	1.3	5.2	1	136.7	20.9	9.9	*		h	11
-08.01	8.5	1.5	7.0		173.7		10.5)	11	j(
-02	7.0	0.8	6.2	200.1	166.5		10.3		Cobs 70 lovis		1(
-03	8.2	1	7.4	197.8	163.9	21.8			Cobs 70-10-113 30-90 6-11. Cobs 80% VIS 20% 6-11.	11	11
		- 0	- <u>''</u>						<u>62070 CTV .</u>		

OVERBURDEN DRITTING CNAGEMENT LIMITED

LABORATORY SAMPLE LOG

Sample -	We	ight (kg.)	wet)	\ 	Neight (gri	ams dry)		Grains	Descr	iption	
Number	Table Split	+ 10 Rock Chips	- 10 Table Feed	Table Conc	M.I. Lights	Non-mag	Mag	V. G.	+ 10	Matrix	Classification
ARG - 84-08-04	B. O	1.2	6.8	206.7	167.0	26.0	13.7	A 350 X 550	Pebs 80% V/s 20% Gr.	unsorted grey beige with silt	TILL
- 09-01	5.6	1.2	4.4	113.0	B5.0	19.3	8.7		Cobs 80% V/s 20% Gr.	11	11
-02	6.9	1.1	5.8	121.3	87.5	18.9	14.9	A 500 X 550	Cobs 60% V/s 40% Gr.	11	11
- 03	7.3	0.6	6.7	243.5	163.0	47.3	33.2	*	Pebs 759. V/s 259. Gr.	unsorted grey with clay	11
- 10-01	1.3	< 0.1	1.3	48.3	43.5	3.7	1.1		Few Cobs	unsorted grey with clay and rock chips	TILL & BEDROCK
- 11-01	1.2	0.2	1.0	74.6	66.6	6.3	1.7		Cobs 60% VIS 40% Gr.	Unsorted gray with clay	TILL
-1B	5.1	0.3	4.8	122.0	108.4	10.6	3.0		п	Unsorted grey with clay and rock chips	TILL & BEDROCK
-12-01	5.6	<0.1	5.6	146.1	116.8	20.4	8.9		Few Pebs	sorted beige medium	SAND
-02	4.9	<0.1	4.9	79.0	51.7	21.3	6.0	-	Fi Fi	11	11
-13-01	5.2	0.6	4.6	139.4	119.0	14.0	6.4	A 100 X 150	Peps 75% VIS 25% Gr.	unsorted grey beige with silt	TILL
-02	6.4	0.1	6.3	135.3	106.8	19.9	8.6		Pebs & Grans 707. v/s 307. Gr.	11	И
-03	6.9	0.7	6.2	198.2	182.8	10.8	4.6		Pebs 60%, V/s 40% Gr.	11	11
-04	5.9	1.4	4.5	162.B	150.9	B.4	3.5	-	11	sorted greybeige coarse	GRAVEL
-05	7.8	1.8	6.0	278.7	247.2	21.0	10.5	-	Pebs 70% V/s 30% Gr.	n	11
- 06	6.6	0.6	6.0	122.7	90.8	23.2	8.7		Pebs 60% V/s 40% Gr.	11	11
-14-01	7.2	1.4	5.8	114.3	67.7	26.7	19.9		Pebs 85% v/s 15% Gr.	unsorted grey beige with silt	TILL
- 02	4.8	0.3	4.5	96.3	69.6	18.0	8.7	A 250 × 250	Pebs 70% v/s 30% Gr.	n	//
- 03	5.8	0.4	5.4	130.5	103.41	18.2	8.9		Cobs 85% v/s 15% Gr.	Unisorted grey beige with clay	
-04	4.5	0.4	4.1	111.0	89.7	13.6	7.7		15 % GT. Pebs 85% v/s 15 % Gr.	unsorted grey with grey beige clay	11

OVERBURDEN DRILLING NAGEMENT LIMITED

Sample	We	ight (kg.v	vet)		Weight (gr	ams dry)		Grains	Desci	ription	
Sample Number	Table Split	+ 10 Rock Chips	- 10 Table Feed	Table Conc	M.I. Lights	Non-mag	Mag	V. G.	+ 10	Matrix	Classification
ARG-B4-15-01	0.9	< 0.1	0.9	43.3	37.5	4.1	1.7		Few Pebs	unsorted grey green with day and rock chips	TILL P BEDROCK
-16-01	2.4	0.2	2.2	89.8	80.1	7.5	2.2	-	Cobs 90% V/s 10% Gr. Tr L.S.	unsorted grey with clay	TILL
-17-01	3.5	< 0.1	3.5	140.4	125.6	10.5	4.3	*	Few Pebs	unsorted grey beige with clay	11
-02	6.B	0.8	6.0	236.8	202.2	25.3	9.3	lr 150 x 100	Pebs 80 1/2 V/S 2010 Gr. Tr.LS.	11	ii ii
- 03	7.0	1.9	5.1	174.3	140.3	25.1	8.9	*	Pebs 85%, V/s 15%, Gr.	11	11
- 04	6.0	2.1	3.9	139.3	112.5	18.5	8.3	*	Cobs 85%. V/S 15%. Gr.	Unsorted grey with grey beige	h
-18-01	1.8	<0.1	1.8	51.9	45.1	5.4	1.4		Few Pebs	unsorted grey beige with clay	11
- 02	7.0	1.0	6.0	180.0	143.7	27.1	9.2	-	Pebs 80% V/s 20% Gr.	unsorted grey beige with clay	TILL
-03	2.8	0.5	2.3	97.7	79.5	14.2	4.0		Cobs 80°%, v/s 20%, Gr.	11	н
-19-01	7.1	1.0	6.1	178.6	140.0	36.7	1.9		Pebs 757. V/s 257. Gr.	"	11
-20-01	7.1	0.7	6.4	210.2	156.5	41.9	11.8	*	Pebs 80% v/s 20% Gr.	11	u .
- 02	6.0	0.9	5.1	194.9	167.3	20.1	7.5	*	Pebs 90% V/s 10%. Gr.	Unsorted grey with silt	11
- 03	7.3	1.4	5.9	90.9	68.3	15.7	6.9		11	unsorted grey with silt	11
-21-01	6.8	0.6	6.2	171.3	147.6	19.6	4.1		Pebs 807. V/s 207. Gr.	unsorted grey beige with clay	11
-21A-02	7.6	0.9	6.7	202.2	168.5	23.3	10.4		11	11	41
- 03	8.2	0.5	7.7		209.8	22.9	9.3	Ir 150 X 300	11	unsorted beige with clay	11
-04	8.6	1.4	7.2	1	122.1	35.8	10.8		Cobs 80% v/s 20% Gr.	"	"
-22-01	6.7	0,5	6.2	127.6	92.1	27.6	7.9		Pebs 70% v/s 30% Gr.	11	"
- 02	6.2	1.0	5.2	110.9	89.1	16.2	5.6	-	Pebs 80% V/s 20% Gr.	unsorted areen beige with beige clay	11

OV____JUR___J D____INL___NIEN----IMI----

Sample	We	ight (kg.)	wet)		Weight (gri	ams dry)		Grains		Desc	rlption	
Number	Table Split	+ 10 Rock Chips	- 10 Table Feed	Table Conc	M.I. Lights	Non-mag	Mag	V. G.		+ 10	Matrix	Classificat
ARG-84-23-01	2.0	0.4	1.6	133.0	125.3	5.7	2.0		Pebs	70% v/s 30% Gr. 80% v/s 20% Gr. 60% v/s 40% Gr.	unsorted grey with clay	TILL
-02	7.9	1.2	6.7	234.3	205.8	20.9	7.6		Pebs	807. V/S 207. Gr.	unsorted grey with silt	H
-03	5.5	0.4	5.1	224.2	198.3	19.4	6.5		Pebs	607. V/S 407. Gr.	11	11
						,						
								+				-
									-			
	·······			<u> </u>								
	·····									``````````````````````````````````````		
							<u> </u>			<u></u>		
		<u> </u>							ļ			
		ļ						,				
						1						

OV----JURDEN DHILLING NAGEMENT TIMITED

Sample	Wei	ght (kg, v	wet)	1	Veight (gra	ams dry)		Grains	Descr	iption	•
Number	Table Split	+ 10 Rock Chips	- 10 Table Feed	Table Conc	M.I. Lights	Non-mag	Mag	V. G.	+ 10	Matrix	Classification
.4-84-											
24 - 01	63	1.0	5.3	172.7	144.4	20.6	7.7	*	7285 50% 4/5 20% Gr.	UNSORTED LREY - Reige & CLAY.	TILL
-02	6.8	0.4	6.9-	209.8	168.1	32.2	9.5	*	PEBS 70% VS 30% Gr.	4 ₁	۰,
- 03	68	0.3	6.5	234.9	194.4	30.9	9.7	*	COBS 85% 1/5 15% 61.	11	5.
-04	6.0	0.2	5.8	160.7	122.8	29.4	8.5	-	PEBS 70%. 1/1 30%. Ur.	ч	۰.
.05	6.9	0.1	6.8	(88.0	149.1	29.1	9.8	*	84	"	11
25 - 01	6.7	6.3	6.4	194.2	155.0	29.6	9.6	*	41	4.	۰,
-02	6.6	0.2	6.4	176.6	141.2	26.2	9.2	*	11	1.	84
-03 -	77.8	0.2	7.6	245.9	199.6	36.5	8.9	A 1002 100	81		٠,
26.01	6.6	0.9	5.7	141.2	104.4	27.9	<u> </u> ୫.୨	*	COBS 704. 1/3 30% 1/3	v	۰,
-02 (5.8	0.6	5.2	185.3	154.3	23.9	7.1	-	COBS 30 %, 113 20% Gr.	۰,	*,
· 03	6.4	0.9	5.5	179.1	140.6	25.3	13.2	-	COBS 90% */s	*	· •
.04	6.7	1.4	5.3	142.3	102.5	21.9	17.9	AISONIDO	COBS (BOUDER CHIPS) 95% 1/8 5% Gr.	UNSORTED BRUY - BEIGE & SILT.	
OB-BI	6.7	1.6	5.1	130.7	110.8	15.5	4.4	-	PGAS 504, 4/5	UNSORTEN BRIGE	•,
- B2	6.4	14	5.0	98.7	90.2	73	1.2	AIDUXIOD	PERS 604. 116 404. 61.	4.	70
· B3	5.8	1.0	4.8	100.8	80.5	15.9	4.4	A 100 x 100	PUBS 50% V/L 50% Gr.	UNSORTED BEILE	•1
-B4 '	7.4	1.5	59	138.3	116.2	19.4	2.7	*	TENS 60% 1's 40% 61.	•	++
- B5	6.0	0.9	6.1	150.7	130.6	1	4.4	*	+1		•
	6.4	2.0	4.4	115.1	94.2	16.7	4.2	*	4	UNSORTED YELLOW RELLE	•6
	6.6	1.4	56	131.2		14.7	3.4	A 100 x 50	ALAS 407. 1/2 204. 61. 204. 0x101866.	UNSORTED BEIGE	30
-87	6.6	1.4-	5.6	131.2	113.1	14.7	3.4	A 100 x 40			

* SEE ALLUMPANYING SHEET FOR GULD COUNT.

OVERBURDEN DRILLING SNAGEMENT LIMITED

LABORATORY SAMPLE LOG

Sample	We	ight (kg.	wet)		Weight (gr	ams dry)		Grains	Des	cription	
Number	Table Split	+ 10 Rock Chips	- 10 Table Feed	Table Conc	M.I. Lighis	Non-mag	Mag	V.G.	+ 10	Matrix	Classification
ARG . 84 -											
08-88	6.6	3.2	3.4	92.5	82.4	8.3	1.8	-	PEBS 60%, 1/s 40% 61.	NNSORTOD RUST-BUGE	TILL
- B9	7.7	3.3	4.4	190. 9 .	154.9	26.2	9.3	-	Cobs 75 4. 41 25% 61.	UNSORTED BEIGE	"
									•		
								+			
<u></u>											
	-										
											•
		<u> </u>		-				-			
										· · · · · · · · · · · · · · · · · · ·	
		<u> </u>	ļ								
	Ì										

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

AMPLE	SIZE O A	F GOLD E	Y SHAPE	Remarks	SAMPLE NUMBER	SIZE A	OF 	GOLD IR	BY 	SHAPE D	Remarks
-07.01	50×50(x2 100×100(x2 150×250 200×250			≃50grains iccbaltite favgrains arsarcpyrik ≃5%sulfide				999 - 110 - 90 - 90 - 90 - 90 - 90 - 90			
	100 x 150 150 x 250 250 x 300	350x350									
-08-02	100 x 150 150 x 15 0 300 x 340			≃300 qrains arsenopyrik							
-09.03		200 x 300 300 x 500		≈10% sulfides							
-17-0		<50x50(XZ) 100 x 100 50 x 150 150 x 200		Trace sulfides							
17-03	50 X 50 100 X 150	50X150		= 01% = 11910es							
17-04		50x 100(X2 50 x 150 100 x 100 100 x 250 150 x 250 200 x 200		few fine grains arsenopyvie Trace sulfides							
	<50x 50(X3) 50x 50 (x2) 50x 100 (X3) 100x 100(x7) 150x 250	50×100		Trace galena							
20.02	50K50 50 x 10 C	50 X 10 D	100 × 100	~20 grains arser:opy(ite							
)											

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

3

	1					GTOD		DV CUAD	
MBER	SIZE OI A	F GOLD B	Y SHAPE D	★ Remarks	SAMPLE NUMBER	A	IR	BY SHAP: D	Remarks
ARG - 84-									
29-01		100x 50 50 x 50		Surfides 4-1%					
24-02	650×500×100 500 x 400	75 x 50		Sulfides <1%					
24-03		250 × 150	250 x 50	SULFIDES 21%					
24.05		100 x 50 300 x 150		Sulfides 61%					
25.01	400×400 100×50	100x 50 100x 100 50 x 50	•	Sulfidës L1%					
25.02	75250 50250	\$20x 520	1001 50	Sulfides < 1%; 1 GRAIN Arseno(203)				. ·	
26.01	100 x 100	120 × 100		SULFIDES LI%					
03-84	200x 150 (2v) 100x 100 250 x 50	100 2 100		Sufices cc 1%					
03-85	100750 50 x 50 100 x 100	<50 x 50		50171005 46196					
08-36	250 X100 50 X FO 50 X 50 6 50 X 50			SULFIDES ec 197,					
			•						
` <u> </u>		l				L	 <u></u>		

APPENDIX B

والافتان بسار معهما موتا الأسلاء

date and

البابية المدلوة وارتطورو وال

OVERBURDEN AND BEDROCK GOLD ANALYSES

pany Lid. NO₂ Ca * 764 Belfa Ottawa, Onano Canada K1G 025 Phone: (613) 237-3110 Telex: 053-4455

S.L.M

and the second service services - 12 Bendareel

Geochemical Lab Report

Т

ATLA 5

11.13.4.14

ŕ	REFORT: 014-2762	
ţ	FROM: ARGENTEX RESOURCE EXPLORATION Date: 24-oct-84 project:	SUBNITTED BY: OVERBURDEN DRILLING
	LOWER ORDER ELEMENT DETECTION LIMIT EXTRACTION	NETHOD SIZE FRACTION SAMPLE TYPE SAMPLE PREPARATIONS
	01 Au 5 PPB ABUA REGIA 02 wt/Au .01 ga	Fire Assay AA -200 [REAVY SINERAL CO] FOLVERIZE -200
	REPORT COPIES TO: P.O. BOX 993 1816-44 VICTORIA STREET OVERBURDEN DRILLING MGMT	INVOICE TO: P.D. BOX 993
	REMARKS: < MEANS LESS THAN THE FOLLOWING SAMPLES HAVE APPROXIMATE GOLD CONCENTRATIONS OF: ARC 04-5 23.000 PPB	DETECTION LIMITS FOR GOLD 10 GRAM SAMPLE: 5 PPB. 5 GRAM SAMPLE: 10 PPB. 1 SRAM SAMPLE: 50 PPR.
1	AR6-07-2 84,000 PP8.	SAMPLE NT. 10 G. UNLESS OTHERWISE STATED.
		NOTE: CHECK CONCENTRATION/SAMPLE VEIGHT RATIG
ľ		
		\mathcal{Q}

& Company Ltd. М 30 764 Belfa Ottawa, Ottawo Canada K1G 025 Phone: (613) 237-3110)Telex: 053-4455

2. 1 **2 P** -

idea a a a ta

BONDAREEL

Geochemical Lab Report

REFORT: 014-2762		~~~~~~~~~~~]			[PROJECT:		PARE 1
SANPLE ELEMENT NUMBER UNITS	Au PP8	ut/Au ga			NDTE	SAMPLE NUABER	ELEKE		vt/Au gn	KOTE
ARG-01-01 ARG-01-02 ARG-01-03	<10 <5 60	5.46 8.56			****	AR6-09-2 AR6-09-3 AR6-10-0	1	7545 680 205	1.74	
AR6-01-04 AR6-01-05	59 160	8.03				AR5-11-0 AR6-11-1		709 235	3.60 7.05	
A76-01-06 A66-01-07 A76-01-08	69 20 85	6.20 5.66 3.90	÷			ARG-12-1 ARG-12-2 AR5-13-1		315 155 369	7.40	
ARG-01-09 ARG-01-10	95 920	8.40 9.05				AKG-13-2 ARG-13-3		30 30	7.30	
ARB-01-14 ARB-01-12 ARB-02-1	10 1110 - 120	•••				AR6-13-4 Ar6-13-5 Ar6-13-6		125 10 10	5.26	
ARG-02-2 ARG-02-3	120	7.38				ARG-14-1 ARG-14-2		20 70		
AB6-02-4 AR6-02-5 AR0-02-5 AR0-02-6	<10 35 1360	7.75 8.25 9.10			•	AR6-14-3 AR6-14-4 AR6-15-0		180 3345 140	9.83 2.16	
AR6-02-7 Arg-03-1	210 1795					AR6-16-0 Ar6-17-1		165 4730	4.18	
4RG-03-2 Ard-03-3 Ard-04-1	25 <5 270	6.47 4.55			•	ARG-17-2 ARG-17-3 ARG-17-4		14) 35 10445		
ARG-04-2 ARG-04-3	160 10	2.83 4.91				AR6-18-1 AR6-18-2		75 150	2.30	
ARG-04-4 ARG-04-5 ARG-04-5	E0 15000 105	5.10 7.06 7.42				ARG-18-3 ARG-19-0 ARG-20-1	1	120 220 280	7.08	
488-04-7 486-04-8	<10 75	6.83				AR6-20-2 AR6-20-3		450 270		
ARG-05-01 ARG-05-03 ARG-06-01	75 1205 315	7.41				ARG-21-0 ARG-21A- ARG-21A-	2	110 180 1515		an an an air air an
ARG-07-1	1875 15000					ARG-21A- ARG-21A- ARG-22-1	Á	.010 245 105		
488-08-1 486-08-2 485-08-3	1095 595 20					ARG-22-2 ARG-23-1 ARG-23-2		120 185 220	3.27	
AR6-08-4 4R6-09-1	475 385					AR6-23-3		260 275		

a Company Ltd. ÷O: 764 Beit Cond Ottawa, Winno Canada K1G 025 Phone: (613) 237-3110 Telex: 053-4455

ł

Bondar-Becc

Geochemical Lab Report

REPORT: 014-2888		PROJECT:	PR6E 1
SANPLE ELEMENT AU WI/AU NUMBER UNITE PPB gm	NOTES		
ARG-84-24-01 175 15.32			
ARG-84-24-02 12700 16.01			
ARG-34-24-03 205 16.93 ARG-34-24-04 95 20.00			
ARG-84-24-05 660 20.00			
476-84-25-01 195 20.00 ARG-84-25-02 310 20.00			
ARE-84-25-03 185 15.49			
ARB-84-26-01 1230 20.00			
ARG-84-26-02 115 17.67			
ARG-84-26-03 475 18.82 ARG-84-26-04 875 16.25			
AR6-64-08-81 1190 11.24			
ARG-84-08-82 245 12.78			
4RG-84-08-63 185 11.50			
ARG-84-08-84 1465 14.15 ARG-84-08-85 265 11.41			
AR6-84-08-85 265 11.41 AR6-84-08-86 170 12.20			
AR5-84-08-87 280 10.73			
ARG-84-08-88 150 5.76			
ARS-84-03-89 170 19.57			
	-		
,			

Bendar-Crim & Company Ltd. 764 Belfa Ottawa, Crim to Canada K1G 025 Phone: (613) 237-3110 Telex: 053-4455						Geochemical Lab Report
REFORT: 214-2762 Sample Element Number Units	Au ut/Au PPB ga		NOTES	FROJECT		PAGE 1
ARG-84-20-01 ARG-84-20-02 ARG-84-20-03	145 11.32 760 4.23 55 1.09	Check	analyses	on Pulp	ÜVENSTE	-e
	-					
			•			

Booler-Creet & Company Let. 764 Bols Creet in Canada K1G 025 Phone: (613) 237-3110 Telex: 053-4455

-

ECL

a we the second state of a second second second second

EONDA

C

Geochemical Lab Report

! }	REPORT: 114-2888					[PRO	UECT:	PAGE	1
	SAMPLE ELEMENT NUMBER UNITS	Au PPB	vt/Au ga		NOTES			*******		
	ARB-84-24-02 ARB-84-24-03 ARB-84-24-04 ARB-84-24-05 ARB-84-25-01	230 930 210 840 165	12.21 6.77 2.02 1.89 1.96	Check	Analyses	on P	rilp	Uversite		
1	AB6-84-25-03	7190	6.01							
						4 1994 - 1995 er en				
								•		
ſ										
F			, 							
										1 - - -
-										

764 Set Ottawa, Owerk Canada K1G 02 Phone: (613) 23 Telex: 053-4455	Company Lid. 1 3 7-3110			DNDA	REECC	Geochemical
REPORT: 11	4-2752]		FROJECTI	FAGE 1
SAMFLE E HUMBER	LENENT UNITS	As PPN		NOTES		
1794		42	Ausen:c	-		
))				,		

Dender-Can & Company Ltd. 764 Bell Control Canada K1G 02.5 Phone: (613) 227-3110 Telex: 053-4455	BENDARE DECES Geochemics Lab Repor
(EFDRT: 014-2797	
FROM: ARGENTEX RESOURCE EXPLORATION DATE: 24-OCT-84 PROJECT:	SUBMITTED BY: OVEREURDEN
LOWER DRDER ELEMENT DETECTION LINIT EXTRACTION	NETHDD SIZE FRACTION SAMPLE TYPE SAMPLE PREPARATI
01 Au 5 PPB AQUA REGIA 02 ut/au .01 gm	Fire Assay AA -200 BED ROCK PULVERIZE -000 -200
REPORT COPIES TO: P.O. BOX 993 1816-44 VICTORIA STREET OVERBURDEN DRILLING MGAT	INVOICE TO: P.O. BOX 993
REMARKS: < MEANS LESS THAN	DETECTION LIMITS FOR GOLD 10 GRAM SAMPLE: 5 PP8. 5 GRAM SAMPLE: 10 PP8. 1 CPAM SAMPLE: 50 PP8.
	SANPLE WT. 10 G. UNLESS OTHERWISE STATED.
	NOTE: CHECK CONCENTRATION/SAMPLE WEIGHT RATIO
)	

Bandra Chand Cam	neny 1.td.
764 Bull	
Ottawn, Claurio	
Canada K10 025	
Phone: (613) 237-3110 Teles: 053-4455	0

2

المورية والمالية المراجعة ومناديته سية ويراجعه بتواجع فاسترجع المراجع والراجع ويتوجع والمراجع و

Geochemical Lab Report

بعنيا جاريته والاحاصلية كالمتحطمة والمتدامين المراري والمالية المحاصا فكالمحا

REPORT: 014-2797		PROJECT:	Page 1
SAAPLE ELEMENT NUNDEB UNITS	Au ut/Au PPB gu		
ARG-84-01-13-B ARG-84-01-14-B ARG-84-02-08-8 ARG-84-03-05-8 ARG-84-05-05-8	<5 <5 <5 5 <5		
ARG-84-07-03-8 ARG-84-08-06-8 - ARG840905(06)8 ARG-84-10-05-8 ARG-84-11-03-8	10 (5 (5) (5) (5) (5) (5) (5) (5) (5) (5)	ver	
ARG-B4-12-04-8 ARG-B4-13-08-8 ARG-B4-14-06-8 ARG-B4-15-03-8 ARG-B4-16-03-8	S (S (S (S (S (S		
ATE-B4-12-66-8 - ATE-B4-18-05-8 ARE-B4-19-03-8 - BRG-B4-20-05-8 ARE-B4-21-06-8	S (S 20 (S (S		•
AK6-84-22-04-8 AK6-84-23-05-8	< <u>\$</u> <\$		
			<u></u>
D			

APPENDIX C

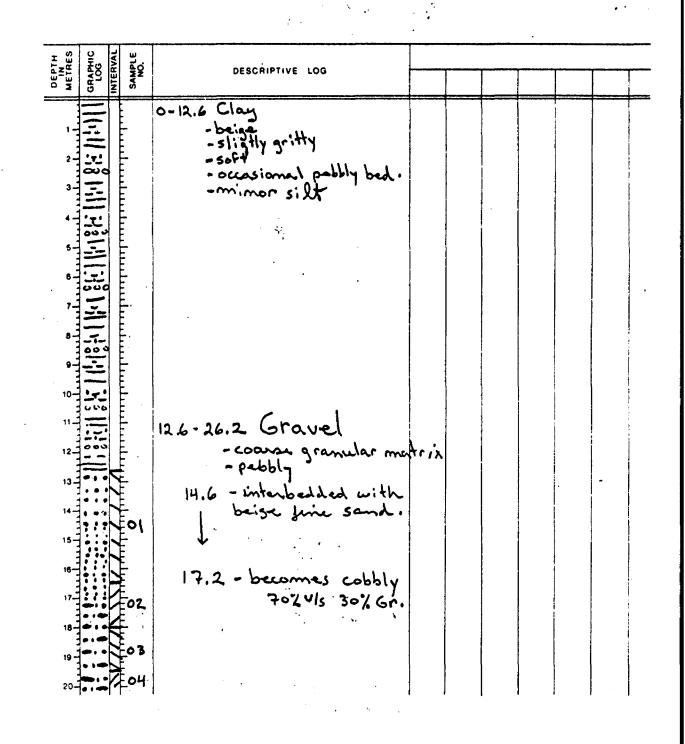
REVERSE CIRCULATION DRILL HOLE LOGS

Real

Hage 1 of 2

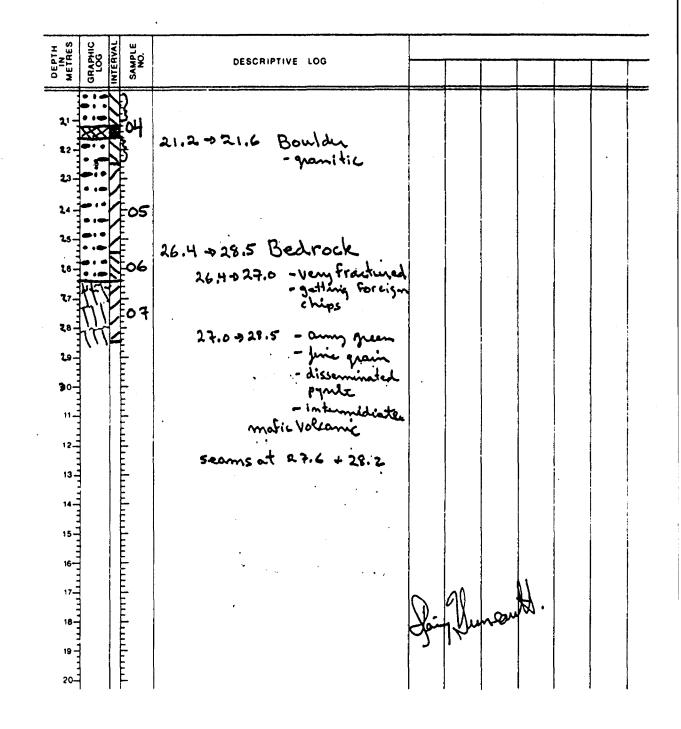
DATE ALAgue 1819 54	HOLE NO ARG-84-01 LOCATION 43+65 E 12+60 S GEOLOGIST RUNNEAULT DRILLER DIGISSON BIT NO COMPLE BIT FOOTAGE 0-31.5
SHIFT HOURS	MOVE TO HOLE 9:00 710:15 ; pull out 10:15 -> 10:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS Rods clagged at 20.0 m. 5:45 - 9:00
CONTRACT HOURS	OTHER TRAVEL: 3:00 to 3:00
	MOVE TO NEXT HOLE

Page 2 of 2


DATE BUSHET 1819 24	HOLE NO ARG-84-01 LOCATION BIT NO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
TO	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
21-00 21-00 22-00 22-00				
23 . 0	24.6 329.1 Sand & Gravel - interbedded coan			
25 0 0 0 11	gravel. - occasional time			
27 00 0 1	sand bed, beise.			
30-000	- clast supported - grannlag mateix			
31-11/11-13 32-	- 8.0% Uls, 20% Gr.	1 1		
337 74 15 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	30.6-331.5 Bedrock -finegrain - dark grain to bl			
	- dark green to ble - disseminated sulf: Pyrite 2 magnetik - intermediate mafi	les		
	volconic. - magnetic.			

Page 1 of 2


OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE August 18 19 84	HOLE NO ARG. 84-02 LOCATION HH +00 E 11 + 50 S GEOLOGIST BITHMAD BRILLER D. GIDGO BIT NO COLLEGE BIT FOOTAGE SLE - 60.0
DATE DATE 19 23	
SHIFT HOURS	MOVE TO HOLE 101 30 3 101 45
TO	DRILL 10:45 -> 11:45 -> 11:45 -> 12:00
TOTAL HOURS	MECHANICAL DOWN TIME
· · · · · · · · · · · · · · · · · · ·	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

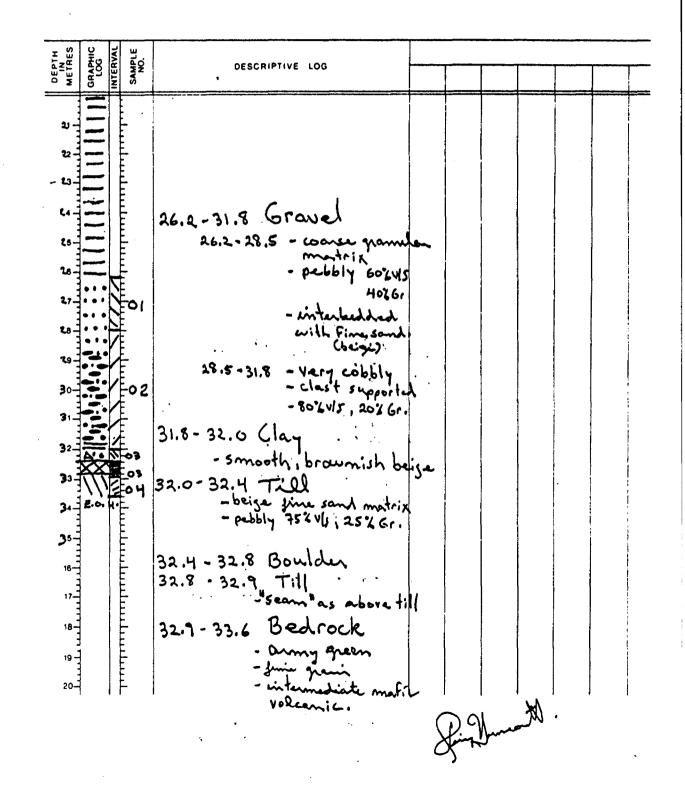
and and

DATE ANA 1984 SHIFT HOURS	HOLE NO AR6+34 • 02. LOCATION BIT FOOTAGE GEOLOGIST DRILLER BIT NO BIT FOOTAGE MOVE TO HOLE DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
<u></u>	MOVE TO NEXT HOLE

Hoge 1 of 2

يتبدق يعتبك للاعتباطين

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG


DATE August 18 19 24	HOLE NO BRG-84-03 LOCATION 44400 F 10+75 5 GEOLOGISTRHUMANH DRILLER DIGIDSON BIT NO CAGE496 BIT FOOTAGE 60.0.93.6
SHIFT HOURS	MOVE TO HOLE 18:00 to 12:15
TO	MOVE TO HOLE 12:00 to 12:15 DRILL 12:15 to 1:15; pull out 1:15 to 1:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

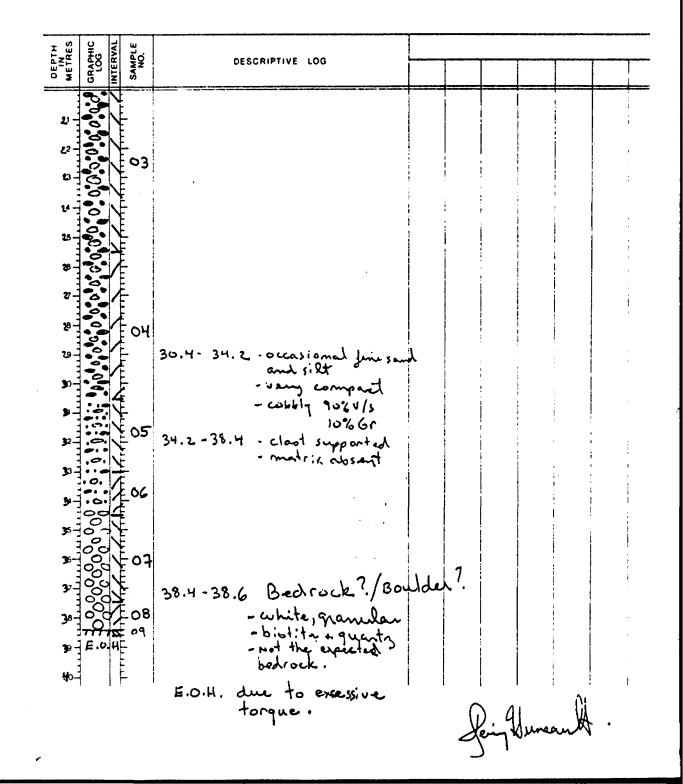
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	:
	0-0.3 Organics with minor fine sand - oxidized tusty brown	
	0.3-26.2 Clay 0.3-6.2 - greybinge	
	0.3-6.2 - greyberge - silt - sooply return - occasionnal grit.	
	6.2-14.2 - very silty -occasional pebbly beds, very thin	
	say ivery thin	
	t t	
	14.2 - 26.2 - guy beige to guy - Vary soft	
	- vang soft - soopy return	
19		

rage 2 of 2

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE August 1919 84	HOLE NO ARG-84 - 03 LOCATION BIT NO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
TO	
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

Page 1 of 2


DATELIJUST 18 184	HOLE NOAR - 84.04 LOCATION 44+00 E 9+75 > GEOLOGISK HUNDENNI DRILLER GIDSON BIT NO BIG 476 BIT FOOTAGE MOVE TO HOLE 1:30 3 1:45 DRILL 1:45 3 3:15 ; pull out 3:15 3:50
SHIFT HOURS	MOVE TO HOLE 3:15 ; pull out 3:15 - 3:50
TOTAL HOURS	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
	D-8.6 Silt - beige to gray beige - occasional fine Sand be - occasional thin pebbly beds. - minor fine sond. 8.6 - 38.4 Gravel 8.6 - 30.4 - coarse grander montrine - cobbly 70% V/S 30%Gr. - very compact		
2	NOTE: Very porous gravel, return poor plong sample interval.		

poge 2 of 2

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE August 18 19 84	HOLE NO ARG-84-04 LOCATION BIT NO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
TOTAL HOURS	DRILL
CONTRACT HOURS	
	MOVE TO NEXT HOLE

Pageroft

DATE August 1819 84	HOLE NO ABG-84-05 LOCATION 47400E 12+50 5 GEOLOGIST RIMUNERAL DRILLER DIGIDSEN BIT NO GO02244 BIT FOOTAGE 0-1510
SHIFT HOURS	MOVE TO HOLE 3:30 -24:00
TO	DRILL 4:00 -> 4:45 ; pull out 4:45 -> 5:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER TRAVEL: 5:30 7 6:30
	MOVE TO NEXT HOLE 5:00 - 5:30

X NEW BIT :	•		· •		
H L L L L L L L L L L L L L L L L L L L		·		<u> </u>	
	╉┷╼╍╾╞		┉┼╌╌╌┥	┉┉┼┉	
2 3.6-10.8 3.27 and lay					
3.6-7.0-grey buige 3					
= 7.0-10.8 - mainly silt					
s grey beige - occasional fim					
E E Sand					
10.8-11.4 Sand					
fine, beige					i I
12 01 11.4-12.3 Till					
- beige Fine sand to silt matrix					
- Pebbly 80% V/1, 20% Gr					
1/// 101 1200 1000 1000 1000 1000 1000 1					
15 - Very Fine grain - anning green					
16- 16- 18- 19- 13.6-12.2 T:00	Sic				
	1 1				
18 - grey beige fine san	42				
19 - Folobly - 90% v/s, 10% Gr					
E 13.3-15.0 Bedrock					
20-1 F - Fine grain - dark green	4 1	ļ	1 1	1	I
- aisseminated on	rite				
- intermediate mo	afic	volcani	د.		

Page 1 of 2

DATE Dugust 19 54	HOLE NO ARG. R4-07 LOCATION 53+00 E 15+00 5 GEOLOGIST A.HUNCAN BRILLER D.GINSON BIT NO GOAD 244 BIT FOOTAGE 15.0747.0
SHIFT HOURS	MOVE TO HOLE ORILL OF 9:15 -> 9:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER TRAVEL : 7:00 - 78:00 AM.
· · · · · ·	MOVE TO NEXT HOLE

4.

۰.

aze i	Eg a	<u></u> <u></u>	DESCRIPTIVE LOG			 		1	
DEPTH IN METRES	GRAPHIC LOG	SAMPLE NO.		· •					
		E	0-12.4 Clay & Silt 0.3.6. beige, smooth, soft - interbedded with sit				1		† 1
· -]	Ē	Ē	0.3.6. beige smooth sott	-					
2-		Ę					ł		
		Ē	3.6.12.4 - verg soopy return - mainly sitt - minor clay - beige		ł				
3-4		E	- mainly silt						
•1		È.	- minor clay						
5	3	E.						r.	
		E C							
61		Ē							
,	<u> </u>	F					Ì		
Ē		Ē	<u></u>						
3	~~		· .						
9-		Ē							
10-									
1.1		Ē							-
11		Ē	12.4-28.5. Sand Silt		ĺ				
12-1		Ē							
13-		F	12.4-16.2 mostly silt						ļ
14-1		-	- minor fine so - baige	md					
1		Ē	- brig-c	•					ĺ
15-1		Ē	- occasional th	in.					
16-		Ē	clay bed agray		1				
17-		Ē	16.2-20.6- mainly fine - minor silt - beige	sand					
-		Ē	- minor silt						
18-1			- beige						
19 -		Ē		·,					
20-		E :		•		ļ			1

Page 28 2

حضين مستعصيص

DATE August 1984. SHIFT HOURS	HOLE NO ARG-84.07 LOCATION BIT FOOTAGE
TOTAL HOURS	DRILL
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG					 	
2 ² 2 ³	(20.6-20.8) Gravel - pebbly - gramilar mail	di X					
2	28.5 - 30.5 Till baige - fine sand it o sett matric - cobbly 8021/s 20% Gr						
2 ² 2 ² 2 ² 2 ² 2 ³ 2 ³ 2 ³ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴	- cobbly 8020/s 20% Gr 30.5 - 32.0 Bedrock - fine grain - dark gring green - intermedict medic volcance.						
32-1 E.O. H. 33-1 14-1	- darke army green - intermediete mafie volcanie.						
19		S	en	lune	ank		

Page of 2 .

.

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE Aug 19 19 84 SHIFT HOURS	HOLE NO <u>AQG-84-08</u> LOCATION <u>56+00 E</u> 134 50 S GEOLOGIST <u>RHUMMENH</u> DRILLER <u>D.Gibson</u> BIT NO. GOOD 264 BIT FOOTAGE <u>43.0.9.82.6</u> HOUS TO HOLE <u>7:45</u> 2 10:00
TO	MOVE TO HOLE <u>1:45 3 10:00</u> DRILL <u>10:00 to 10:30 ; pullout 11:30 3 12:00</u>
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE
•	

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG				
	0-164 Clay 0-3.2. beige - smooth - compart				
	3.2-12.2 · beige to grey - smooth - very soft - soopy return				
				• •	
	12.2 - 16.4 - minor guy beig silt - occasional gram - soopy return.	les Res			
	16.4-29.4 Sand 16.4-21.4 . fine - beige.				
	- beige .				

Page 2 of 2

i Q

DATE August 19 54	HOLE NO <u>ARG-34-08</u> LOCATION BIT NO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
TO	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
منديب منه	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG					
21	21.4-29.4 - sand silt - grey beige - Fine sand minor					
23	· •,					
	00					
20	29.4 + 34.8 Till 29.4 - 31.0 - Junie sand to silt biger matrix - cobbly 70% V/s, 30% 6r 31.0 - 33.8 - Fime sand to silt					
32-A-02 33-A-03 34-04	-cobbly 80-70% V/S -cobbly 80-70% V/S 10-202 Gr. 33.8-34.8 - matrix Scarce - boundary					
35- 36- 87-	- Verg connect - 802 v/s 20% Gr. 34.8-35.6 Bedrock. - June grain - pale army green - intermediate matic					
38-1 - · · ·	- fine grain - pale anny green - intermediate matic volconie. E.O.H. et 35.6 due to rods	bindim				
· · · ·	· · · · ·		si Jung	fune	xt.	

Page 1 of 2

.....

DATE Ruguet 19 54 SHIFT HOURS	HOLE NO ARGAN-02 LOCATION 56100 E 12+50 5 GEOLOGIST R. HUNSONT, DRILLER DIGISCOL BIT NO 141350 BIT FOOTAGE 2:39.1
to	MOVE TO HOLE 12:00 to 12:15 DRILL 12:15 to 1:45; pall out 1:45 to 2:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG				
	0-16.0 Clay 0-3.0 beize, smooth, compact				
	3.0-11.8 - beize to gray - smooth iven soft : - soppy return.				
				2	
	11.8 - 12.8 . minor guit				
	11.8 - 12.8 - minor quit -minor sist 3 quybayi to beize. 12.8 - 16.8 - increasing sist content.				
	-soopy return.				
	16.0-36.0 Sand . Silt - beise . mainly silt, fine				
	sand mimer.				
20					

Pagezofi

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

antice というたいや ストションボルからう 中国の教会会 伊 日本の名

A LOUGH AND AND A LOUGH AND

DATE August 19 24	HOLE NO DRG-94-09 LOCATION BIT NO BIT FOOTAGE
SHIFT HOURS	
SHIFT HOURS	
TOTAL HOURS	
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER

DEPTH IN METRES GRAPHIC LOG	SAMPLE NO.	DESCRIPTIVE LOG					
2		21.0 - 36.0 - increasing fime sand - beige - oilt becoming minor.					
26	والمحاط			-			•
17	لليتمايي						
30 31	ليبطيبه	36.0 - 39.0 Till			•		
33	يت ما ي	36.0-37.6 - beize Fine sand to cite matrix - cobbly 80°LVIs 20°LGr.					
36		37.6-39.0. grey silt matrix -cobbig 90% 113 10% Gr.					
30- 0 .0 90- 0.0 40-	v-	39.0-39.1 Bedrock? - outer grain - dark grain - diabase					
		E.O.H. Bit broke inside sub	•	Pei	Alen	and	

and a state of the second

DATE August 19 19 81. SHIFT HOURS	HOLE NO ARG. 94. 10 LOCATION 56400E 11450 5 GEOLOGIST RAMEANTA DRILLER D. Gibson BIT NO COMMAN BIT FOOTAGE 0-19.5 MOVE TO HOLE 2:05 10 2:15
TO	MOVE TO HOLE 2:00 to 2:13 ORAL 2:15 to 3:00 : pull out 300 to 3:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

٠.

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG
	0-14.2 Clay. 0-1.4. brown.oxidized - przanies - compart.
	1.4-12.5. beige - smooth, soft. - poopy return.
	12.5-14.2 - beige silt content increasing. - soft, soopy neture.
	14.2 - 17.8 Sand + Silt
	14.2-16.0'- beige - mainly silt - minur Fine sand - occasional granula
	16.0-17.8 - increasing same content. - silt breaming minor - beige
	17.8 - 18.2 Till - Juie sant to silt matrix - beige - cobbly - 92 2 1/2 10261
19- 20-E.D.H.L	18.2-19.5 Bedrock
	- pale anny green, carbonedised / . - estand intermediate matice for furneault ' 19.5 E.O.H. Valcanic

DATE Dugundia 1984	HOLE NO BAG- TH-IL LOCATION 56+00 E 114 50 5. GEOLOGIST R. HUMANING DRILLER D. GIBSON BIT NO CAGENER BIT FOOTAGE 1959242
SHIFT HOURS	MOVE TO HOLE 3:15 to 3:30 DRILL 3:30 to 4:15 j 4:15 to 4:30 pull out.
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	DRILLING PROBLEMS
	MOVE TO NEXT HOLE

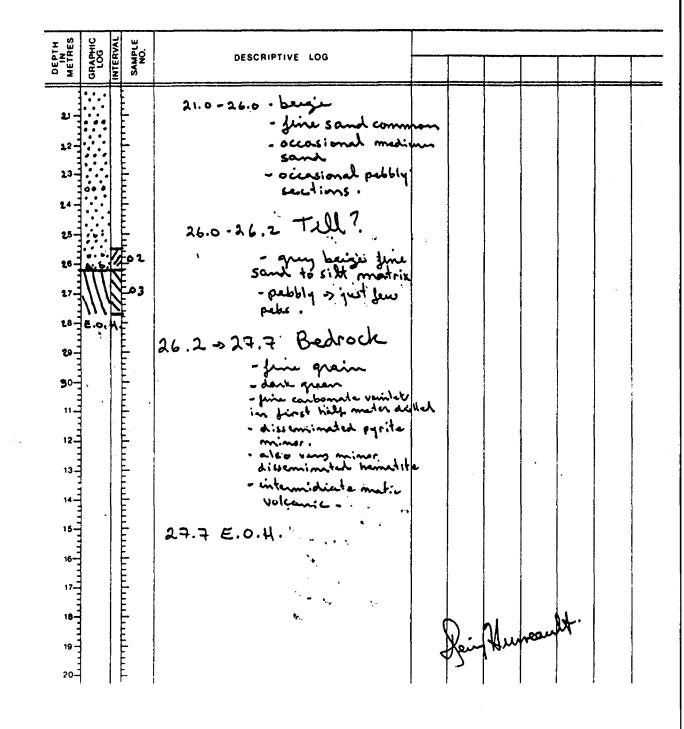
DEPTH IN METRES GRAPHIC GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG					
	0-3.8 Clay. 0-0.5 -ruoty brown -slightly gutty - organics 0.5-3.8 - barger - imcreasing sixt content 3.8.4.4 Till	•				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- beize fine sand to silt matrix - pebbly 70% vis 30% Gr. 4.4-6.0 Bedrock - fine grain - porphysitic orgrozene phenocysite. - anny green					
	- minor carbonde verilet - intermediale martic volcanic. NOTE: Produced sample at till . bedrock interface labelled ARG. 54. 54. 01B					
8-1 9-1 10-1 11-1 12-1 13-1 14-1 15-1 16-1 19-1 19-1 19-1 19-1 19-1 19-1 19		Ę	Right	 4.		

Page 1 of 2

and the second state of the second state of the

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

ALC: BARRA


5.2 A.V.

DATE BUQUET 1984	HOLE NO ARG-94-12 LOCATION 58+90 E 14410 5 GEOLOGIST BHUNGHUT DRILLER D. GIDSON BIT NO COLLEGE BIT FOOTAGE 24.2-58.4
SHIFT HOURS	MOVE TO HOLE 4130 to 4145
	DRILL 4:45 to 5:45 : 5:45 to 6:00 pull out.
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER TRAVEL TO LODGE : 7:00 to 7:30
	MOVE TO NEXT HOLE 6:00 77:00 (parti)

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG				
	0-13.5 Clay 0-3.0 - beige - smooth, compact 3.0-7.8 - gray beige - smooth, soft - soopy return 7.8-12.0 - minor gray beige silt 12.0-13.5. silt becoming more abundant.				
11 12 13 14 15 16 17 18 19 19 20	13.5-26.0 Sand. 13.5-16.6-beige - mostly Fine - jew coarse to gravelly beds. 16.6-21.0. mostly medium sand. - minor june sand sections.				

Page 2.FZ

DATE August 19 19 24 SHIFT HOURS	HOLE NO BRG-RH-12 LOCATION BIT FOOTAGE BIT FOOTAGE MOVE TO HOLE
TO	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

Page 1 of 2

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE Burnet 20 1984	HOLE NO BAG-54-13 LOCATION 40+00 & 13+00 5
•	GEOLOGIST BUHUNDANT DRILLER D GIDSON BIT NO CO 14 433 BIT FOOTAGE 52.4 367.4 MOVE TO HOLE 3130 to 5:00 (PART &) 44755 0 73.2
SHIFT HOURS	MOVE TO HOLE _ +130 to 5:00 (PART &) + pull out 10:30 to 10:45
TO	
TOTAL HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS 8:45-09:15 pull out at 15.0 m. to replace worm bit
	OTHER TRAVEL TO DELLE : 3100 to 3130
CONTRACT HOURS	
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1111	0-7.0 <u>Silt + Clay</u> -berge -mainly clay with minor silt - smooth soft clay givin	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	soopy return. -occasional compart be of smooth clay.	
	7.0-21.0 Sand . Gravel 7.0-9.4 - interbeddet de sand and gravel -beige.	
	- gravel sections pebbly 60% uls 40% Gr. 40% Gr. 5:me gravn, gran intermediate matic volc.	
13 13 13	9.2 -> 10.5 as 7.0 -> 8.4 10.5 -> 12.2 - interbedded June and coases s	Stand
14-1-1-03 15-1-1-0-3 16-1-1-0-3	with minor gave -beige 12.2-216.0-coarse sand -beige - granular	
17 19 05 18 19 19 19 19 19 19 19 19 19 19 19 19 19	- mimor gravel 16.0 -7 17.6 - gravel - coarre grand matrix - cobbly 60°641	sten
20	4026 - 4026 - 17.6 - 19.6 - clast suppor - matrix abse	Gr.

tage 20t2

المتحقيقة والمستحسط فتشاعده وسيس

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

1

DATE Augustas 1982	HOLE NO ARG: SH- 13_ LOCATION BIT NO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
10	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
·	MOVE TO NEXT HOLE

DEPTH MEINES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG						
21 06	1. 20.4 -> 21.0-gravel - granular mate - minor fine san	ix d.					
23- 25- 6-	21.0 - 22.2 Bedrock - medium grain - dark grain - minor disseminated Printe - Elistication				•		
70000000000000000000000000000000000000	Prite Prite - slightly magnetic - diabase. 22.2 E.O.U.	- do	maart	¥ ·			
10-11-11-11-11-11-11-11-11-11-11-11-11-1	Here .						
20-							

يويرين يريين الوالية للمحاذ فالعمانية أكالمرابير

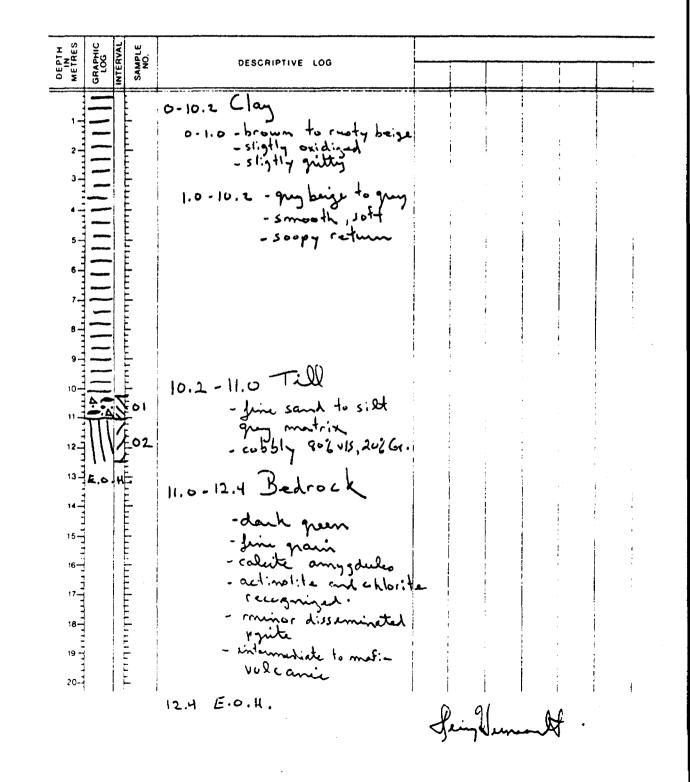
DATE Augustas 1984	HOLE NO ARG SHILL LOCATION 37 LOOE 12+50 5. GEOLOGIST P. HUMARUL DRILLER D.G. BIT NO 44355 BIT, FOOTAGE 7.2 9 23.0
SHIFT HOURS	MOVE TO HOLE -10:45 - 11:00
	MOVE TO HOLE 10:15 to 11:00 DRILL 11:00 to 12:00 g pull out 12:00 to 12:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

	4.						
DEPTH METRES METRES CLOG LOG CLOG SAMPLE SAMPLE	DESCRIPTIVE LOG			1	1		
	0-5.4 Clary 0-3.0 -beize -slighty oxidized -smooth, compact 3.0-5.4 - minor sitt -beize -soopy return 5.4-9.0 Silt -beize -minor fine sant 9.0-9.4 Boulder. -deal green -med. green -med. green -med. flow 9.4-16.8 Till 9.4-16.8 Till 10.4-16.8 - medric grey 10.26r 10.4-16.8 - medric grey 10.26r 10.4-16.8 Bedrock -dark green -coare grein, diabase te -slightly magnetic -coare medic flow 18.0 E.O.H.						
		()	n	. 1			

.

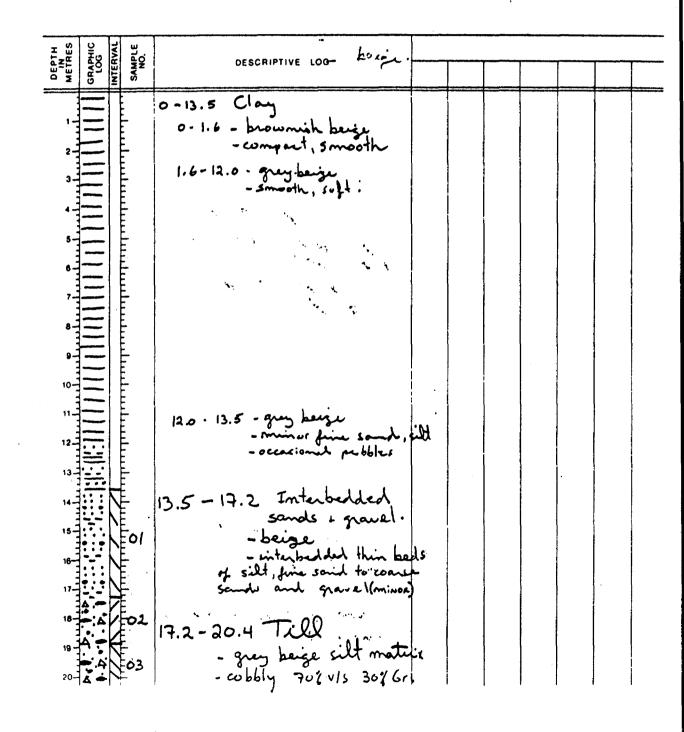
an a she wastant have

haan aa ka cina ca qaaba


Ę

DATE August 20 19 24	HOLE NO ARG. 94-15 LOCATION 34+00 E 12+50 S GEOLOGIST Rithere and DRILLER DE DE DE NO GODOLES BIT FOOTAGE 122.37.2
SHIFT HOURS	MOVE TO HOLE 1:00 to 1:15
TO	nous 1:15 to 2:00 : 2:00 to 2:15 pull out:
TOTAL HOURS	MECHANICAL DOWN TIME 2:15 -> 3:15 replace broken universal joint Fave
	DRILLING PROBLEMS PALMA take of an Acill.
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

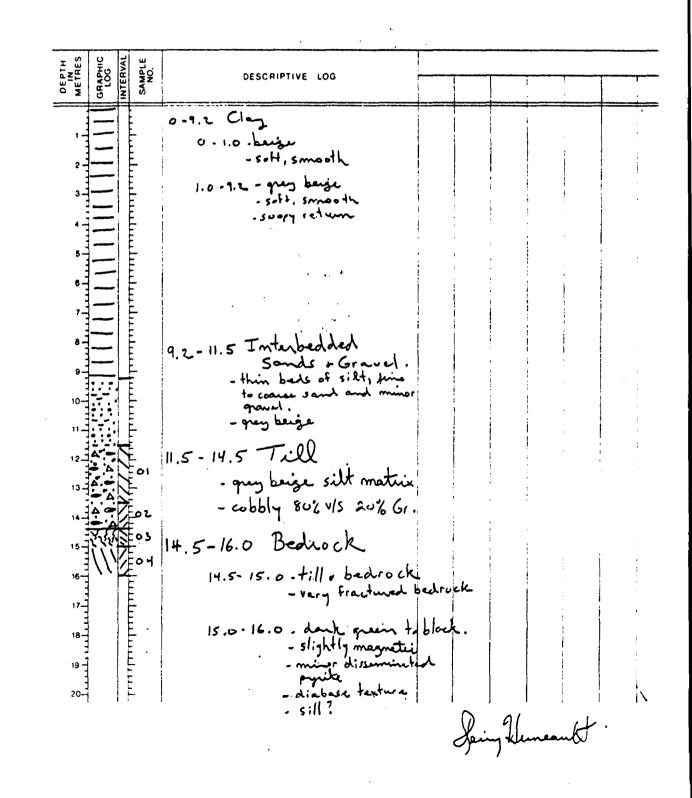
1


DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		1		•
	0-17.8 Clay. 0-1.0 - moty beige - sligtly oxidized - smooth, compact				
	1.0-3.8 - Soopy return - ruoty beige - mimor silt 3.8-17.8 - grey beige togey - Smooth suit, - soopy return.				
	-silt becoming more abundant.				T
	17.8-18.0 Till				
	- quy silt matine - pebbly - 20% v/s 20% Gr. 18.0-19.0 Bedrock				: :
18 19 19 20	18.0-19.0 Dearrock I whe green - prively shirtose - slightly magnetic - minor disseminated pyrite - fragmental tuff.				r I
۹.	19.0 E.O.H.	Ja		t.	

DATE Augustan 19 84 SHIFT HOURS	HOLE NO BRG-84-16 LOCATION 30100 E 13+50 S GEOLOGIST BHUMANH DRILLEH D. GIDSON BIT NO GOOD 265 BIT FOOTAGE 37.2349.7 MOVE TO HOLE 3:15 to 3:30
TO	MOVE TO HOLE 3:15 to 3:30 DRILL 3:20 to 3:45 ; pull out 3:45 to 4:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

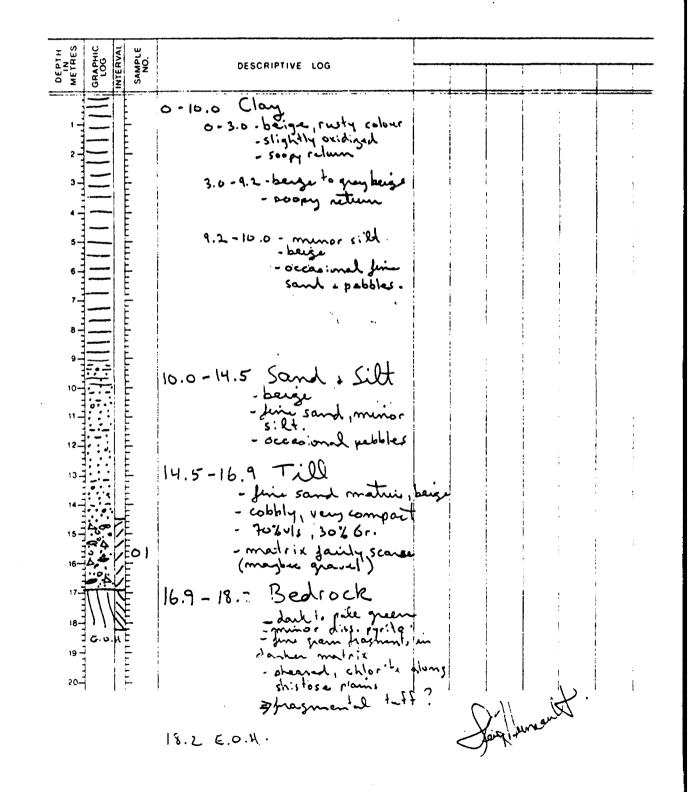
Yazer of 2

DATE Muntal 1984	HOLE NO ARG: SHI IZ LOCATION _26 +00 E 13+50 S GEOLOGIST R.HUNSON DRILLER CILSON BIT NO GOOD R62 BIT FOOTAGE 57.3 + 80-2
SHIFT HOURS	MOVE TO HOLE LIS to INS
TO	MOVE TO HOLE 115 to 1:45 DRILL 1:45 to 2:15 ;
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
· · · · · · · · · · · · · · · · · · ·	MOVE TO NEXT HOLE


Page & of 2

. . . .

DATE August 21 1984	HOLE NO ARG-84-17 LOCATION BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
TO	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
·····	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE


DEPTH IN METRES GRAPHIC LOG LOG SAMPLE SAMPLE	DESCRIPTIVE LOG						
6	A. 20.4-22.5 Bedrock - grey green - jore green - porphysitic 3 chlorite - probably station with - probably station with - probably station with - dihe medianid. - crystal laths oriented in all directions. 20.41-21.0 - very fractme - lots till modules - sampled to be pro at a till. 21.0-21.8 fresh i clean, be - chupo reduren. 21.8-22.0 - Seam & Till? 22.0 & 22.5 fresh; clean ch	k sive, k k k k k k k k k k k k k k k k k k k	Vm	eenl	J.		

DATE August 21. 19 24 SHIFT HOURS	HOLE NO ARG-84-18 LOCATION R2+66 E 13+755 GEOLOGIST R. Mumerul DRILLER D.Gibsun BIT NO G000263 BIT FOOTAGE 80.2-96.2 MOVE TO HOLE 2:45 to 3:00
TO	DRILL 3:00 to 3:30 ; pull out: 3:30 to 3:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

}

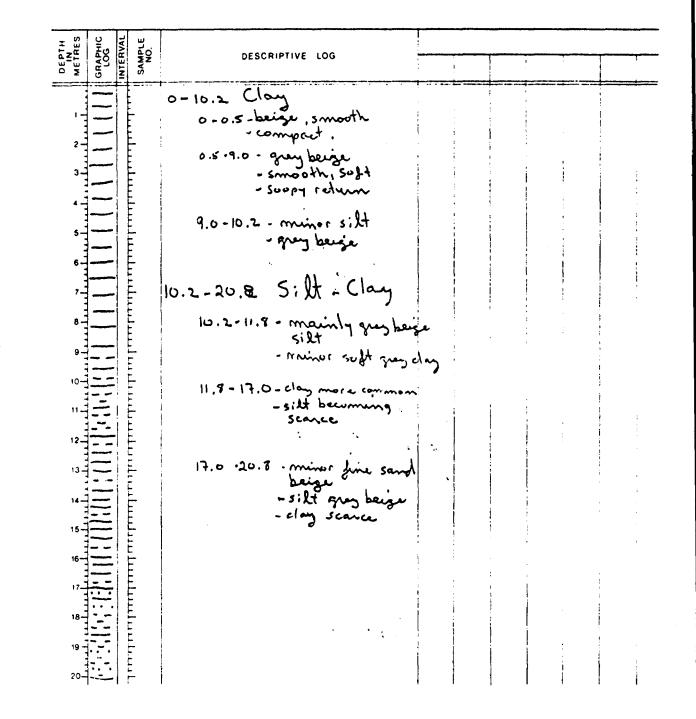
DATE August 20 1984	HOLE NO ARG. 84.19 LOCATION 37400 E 11400 S GEOLOGIST & HUMANNEL DRILLEAD. GILSON BIT NO GOOD 265 BIT FOOTAGE 03 18.2
SHIFT HOURS	MOVE TO HOLE 12: 15 to 12:30
O	MOVE TO HOLE <u>12:15 to 12:30</u> DRILL <u>12:30 to 10:45 ; pull out 12:45 to 1:00</u>
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

Hoge 1 of 2

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

and the second secon

DATE ANAL AD 19 SH	HOLE NO ARG-94-20 LOCATION 30+05 E 12+50 5 GEOLOGIST PURSON DRILLER DIGISLER BIT NO GOOD 265 BIT FOOTAGE 49.7-76.
DATE MATTER 19 23	GEOLOGIST RHUMANH DRILLER DIGISERN BIT NO GOODRES BIT FOOTAGE 49.3 - 36.3
SHIFT HOURS	MOVE TO HOLE 4160 4 4:15
0	DRILL 4:15 to 4:45 ; 5:30 to 6:15 ; pull out 6:15 to 6:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS clagged role opull 9 role, change starter rod 4:45 to 58
CONTRACT HOURS	OTHER Travel: 6130 to 7130
<u></u>	MOVE TO NEXT HOLE


DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG				
	0-22.0 Clay. 0-1.0-rusty beige. -slightly oxiduced				
	-slightly oxidused -slightly gutty 1.0-20.2 - minior sitt				
	-grey benje - soopy return				
6					
9					and a sufficiency of the second se
				-	
15					
18					
20-					

DATE Auguat 20 19 84	HOLE NO ARG -54-10 LOCATION BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
TO	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG				
	20.2 - 22.0 - gray basige - silt more abundant - clay becoming minist 22.0 - 26.2 Till - gray silt matrix - cobbly 80 24/5 2026r *NOTE: sample over he due to pulling row stor taking semple 23. 26.2 - 27.2 Bedrock - dank green - June grain - Vary minior dissem prute - chlorite alteration - intermediate to matrix volcance 27.2 E.O.H.	•			

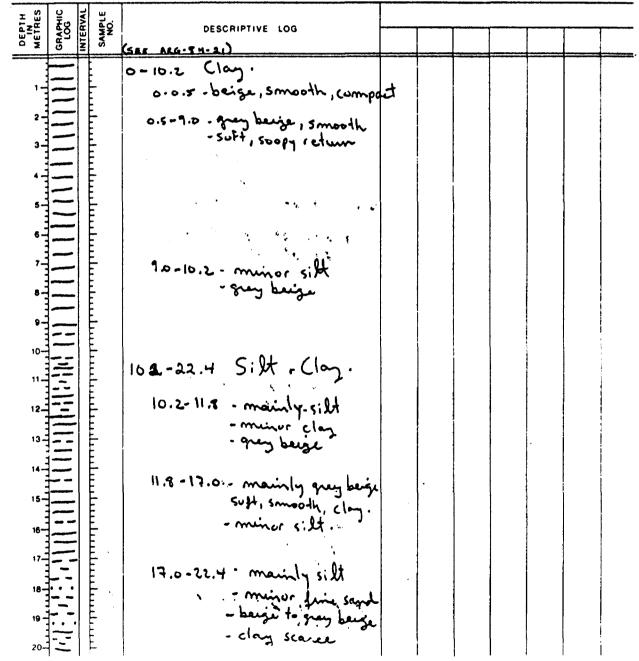
Page of 2

DATE August 21 19 84	HOLE NO ABG-RY- 21 LOCATION 30+00 E 11+15 5
DATE BURGENIAL 19 2-1	
SHIFT HOURS	MOVE TO HOLE 9:15 to 9:30
TO	DRILL 9:20 to 10:30
TOTAL HOURS	MECHANICAL DOWN TIME CHANGE TILE ON GT 1000 7:45 - 9:00
	DRILLING PROBLEMS pull up at 26.5m & 2 rods broken : 10: 30 to 11:00
CONTRACT HOURS	OTHER TRAVEL : 7:00 to 7:45 3 9:00 to 9:15
	MOVE TO NEXT HOLE

Page 2 of 2

1

リ


DATE Magual & 19 84	HOLE NO ALG-84-21 LOCATION BIT NO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
0TO	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NOLE	DESCRIPTIVE LOG	
	20.8-21.1 Boulder - intermediste to mati- volconie - dark green, fine grein 21.1-23.0 Till - grey beize silt matrix - cobbly 80%18, 2026r. 23.0-23.4 Boulder - intermediate tormatic volcanie - dark green, fine grein 23.0-25.5 Till - as above till(21.1-23.	
11 12 13 14 15 16 17 18 19 19 20	Note: rods broken when is suspect contamination #1 by above silt + for 25.5 D E.O.H - No return - No advance -pullout. Hole reduilled 5 Feet beside. Hole mumber is ARG-84-21A.	e sand faction.

2144 C . SH . D .

	HOLE NO ARG-34-21A LOCATION _ 30+00F 11+15 5
DATE 848 19 84	GEOLOGIST R.Hudeault DRILLER D.Gibsand BIT NO GeoDAL BIT FOOTAGE 0. 29.2
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 11:00 to 11:45 ; pull out : 11:45 to 12:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

×.

Page 2 of 2

المقصول بالبار والمار سيحمله الفاطيس كالوارد والرابيلية

DATE August 21- 1984. SHIFT HOURS	HOLE NO ALG. SH. 21A LOCATION BIT NO BIT NO	BIT FOOTAGE
TO	DRILL	
TOTAL HOURS	MECHANICAL DOWN TIME	
	DRILLING PROBLEMS	
CONTRACT HOURS	OTHER	
	MOVE TO NEXT HOLE	*******

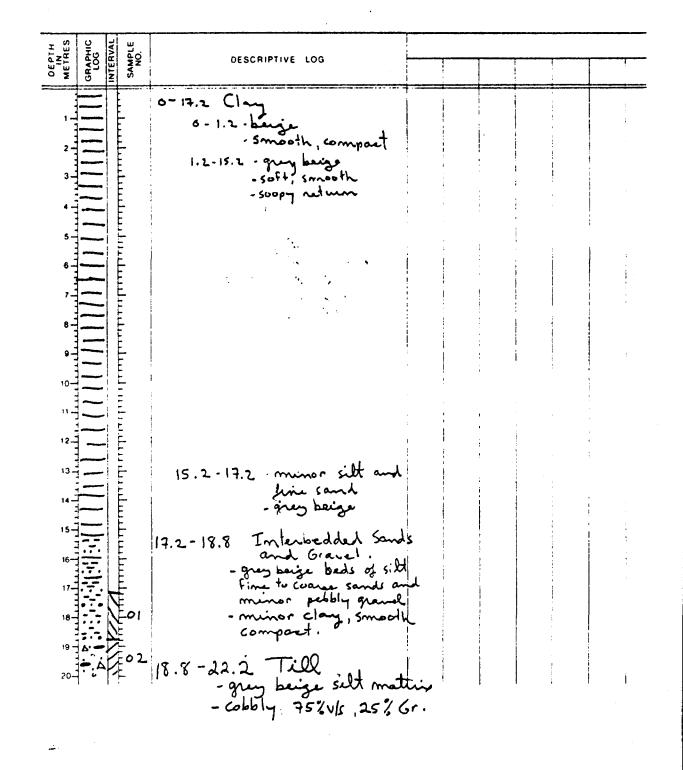
DEPTH METRES GRAPHIC GRAPHIC LOG INTERVAL SAMPLE SAMPLE	DESCRIPTIVE LOG					
	22.4-26.9 Till 22.4-26.9 Till 22.4-25.0- gray benja silt matrix - cobbly 7024s 2026r 25.0-26.0. Veny compart - up to 902 VIS 1026r - cobbly 26.9 - 28.2 Bedrock - dank green - finely shistose - chlorite alteration - veny minor disceminate pyrite - fragmental tuff. 28.2 E.O.H.	 - Ha	nea	-UA		

Hage 1 of 2

DATE Augustat 19 84 SHIFT HOURS	HOVE TO HOLE 12:00 to 12:15
TO	DRILL 12:15 to 1:00 ; pull out 1:00 to 1:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC GRAPHIC CGRAPHIC INTERVAL SAMPLE SAMPLE	DESCRIPTIVE LOG		
	0-17.4 Clay 0-1.0 - brownish beige -smooth, compart.		
	1.0-15.0 - grey berge -soft, smooth - suopy return		
	18 4 - miner silt		
	15.0-19.4 - minor silt - minor fine sound - beize to grey beize		
	19.4-21.0 Silt. - grung berge		

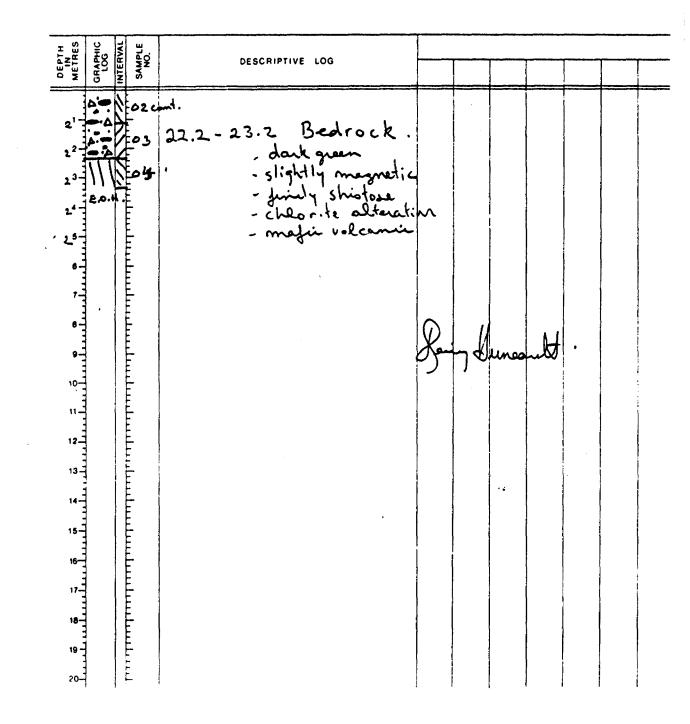
Page 2 of 2


the main and marked and the work of the

DATE AURA 1 21 19 84 SHIFT HOURS	HOLE NO ACCITICN BIT NO BIT FOOTAGE GEOLOGIST DRILLER BIT NO BIT FOOTAGE MOVE TO HOLE DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG					
2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1	21.0-25.2 Interbedded sands - Gravels. - gray beige to beign beds of silt, fine to coace sand and minor publy gravel. 25.2-27.4 Till - gray beige silt mattrix - cobbly 75% U/S 25% Gr. 27.4 - 28.5 Bedrock - medrum army gran - cheorite elemetry. - fagmental tuff.	Jei	J	lum	1J-	

Page 1 of 2


	HOLE NO ARG-84-22 LOCATION 22+00 E , 13+00 S
DATE August AI 19 84	GEOLOGIST R. Human H. DRILLER D. GIBSON BIT NO GOOD AG3 BIT FOOTAGE 96.2-
SHIFT HOURS	MOVE TO HOLE 3:45 to 4:00
TO	DRILL 4:00 74:30 ; pull out 4:30 74:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER TRAVEL: 5:00 to 6:30 (+ load sample)
and the second se	MOVE TO NEXT HOLE 4:45 to 5:00

Page 2 of 2

- decises

DATE 0	HOLE NO ARE GHAR LOCATION	
SHIFT HOURS	MOVE TO HOLE	
10	DRILL	<u> </u>
TOTAL HOURS	MECHANICAL DOWN TIME	
	DRILLING PROBLEMS	
CONTRACT HOURS	OTHER	
	MOVE TO NEXT HOLE	
	2 N N	

Pagerofz.

DATE August 22 19 84	HOLE NO ASC- SH-24 LOCATION 22400 E 124005 GEOLOGIST RINUMANT DRILLER D. SILSON BIT NO. 44753 BIT FOOTAGE D. A.S. E
SHIFT HOURS	MOVE TO HOLE
0	DRILL \$:30 to 10:00 ; pull out 10:00 to 10:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER TRAVELS 7:00 to 8:30
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG				
	0-19.4 Chang. 0-1.0 - brown:sh beige -smooth, composit 1.0-5.0 - grey beige -smooth, soft - soopy return -occessionel thin beige composit clay beig 5.0-19.4 - minor grey beig silt	1			
	19.4-19.8 Sand & Silt - grey beige - silt & fine sand - minor publes 19.8-28.0 Till 19.8-21.0 - grey beige sit matrix				

Page 2 of 2

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

والمحافظ بمعاط بمحتد بالمحاد والما

DATE August 22 1984 SHIFT HOURS	HOLE NO ARC. 8H 24 LOCATION BIT FOOTAGE BIT FOOTAGE BIT FOOTAGE BIT FOOTAGE DRILLER BIT FOOTAGE DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG					
	t. 21.0 - 21.4 Boulder - medium green - medium grein - intrusive.	-	•			
	21.4-24.4 till - grey beige silt matrix - cobbly 75% v/s					
25 A	25% Gr. 24.4-24.8 Boulder - rate whitish		,			
28 06	24.8-25.1 Boulder - donk green					
3 0	- June grain - intermedio te to matin volcamie				 	• •
13 13 14	- grey beige silt matrix - cobbly 80% vis 2036		-		-	
	28.0 - 28.5 Bedrock: - pres green - fine fram - fresh, reghard					
	- intermediate volconic - probably And-site.					
20-1 -		Gein	Jellun	eand	•	ł

Page 1 of 2

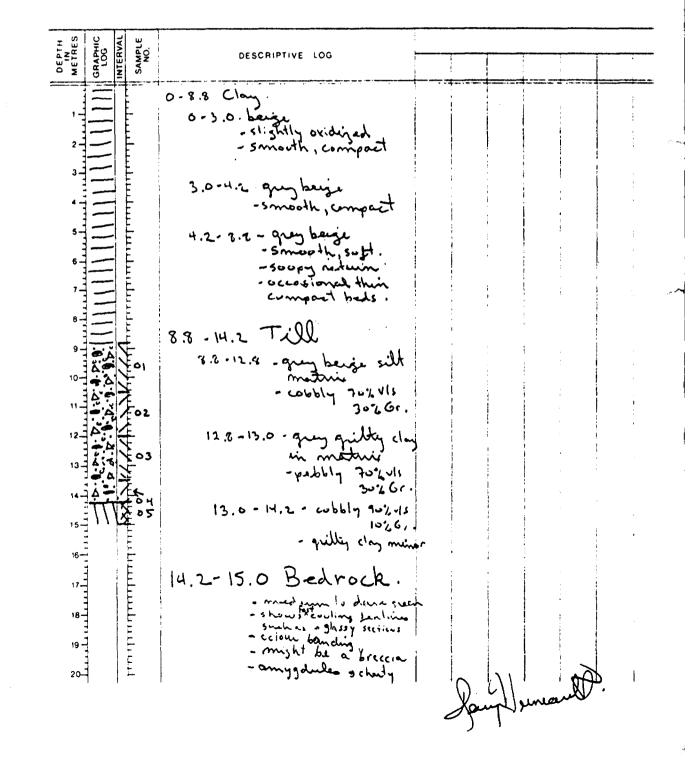
กร้างการสารสุด (1976) เป็นสินทางการสารสารสารสุด (สุดสารสารสารสารสาร

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

بها المتعادية محتد معادية والأكساء

DATE August 22 19 84	HOLE NO ARGINI 25 LOCATION 22+00 E 11+00 S GEOLOGIST R. HUMANH DRILLER D. GIDSON BIT NO. 44753 BIT FOOTAGE 29.5-50.5 MOVE TO HOLE 10:15 10 10:30
TO	MOVE TO HOLE 10:15 TO 10:30 DRILL 10:30 to 11:00 ; pull out 11:00 \$ 11:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
	0-14.0 Clay. 0-1.0 - organics and clay. -brownish beige -oridized 1.0-13.0 - grey beige to grey -smooth, soft - soopy return	
	13.0-14.5 Silt - gray beige - occosional peobles	
15	14.5-21.2 Till - gun beige silt matri pelbly - 75% V/S 25% Gr.	
•• <u>4</u> -9;		


Page 2 of 2

1

DATE Busud 22. 19 84	HOLE NO ARG-84-25 LOCATION BIT NO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
TO	MOVE TO HOLE
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG						
21	20.2-21.2 c-bbly. 55% vls 15%6r.						
23-1 -	21.2-22.0 Bedrock. -pale green						
24	- very fine gravin - intermèdialesvossen 22.0-E.O.H.	~				N	
6-1 L 	the second se	0.	AI	<i>¥</i>	•		
8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Jein	Here	Bund			
	· ·						
					•		
	•						
					-		

DATE August 12 19 34	HOLE NO BAG. 84-26 LOCATION 23+00 E ON SURVEY LINE GEOLOGIST BULLING DORILLER D.GLOSDAN BIT NO BESSUS BIT FOOTAGE O. 15.0
SHIFT HOURS	MOVE TO HOLE 11:15 10 11:45
TO	DRILL 11:45 to 12:15
TOTAL HOURS	MECHANICAL DOWN TIME 12:45 to 1:00 change oil + Full Filters on Nodu
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 12:30 to 12:45 Clean rig.
	MOVE TO NEXT HOLE 1:00 to 1:45 more to ROAD.

900

Mining Lands Section

File No 27793

Control Sheet

TYPE OF SURVEY ____ GEOPHYSICAL GEOLOGICAL GEOCHEMICAL EXPENDITURE

MINING LANDS COMMENTS:

ling and humans reports relate to file 2.7755

Ľ.

Signature of Assessor

Apr.11

Date

Ontario Geo	ort of Work ophysical, Geological, chemical and Expend		J.J.T Mining		Note:	Please type or If number of exceeds spare of Only days or "Expenditures" in the "Expen-	mining cla on this form edits calcu ' section mi nd, Days (n, attach a hist lated lin the ay be entered Dr." (Columns.
Type o Survey(s)	588052)			Township (ded areas be	low.[g]
Geolog Claim Holder(s)	ical, VLF - EM	and Ma	gnetomete	er	Holl	OWay	cence No.	
A CARD IN CARD IN A CARD AND AND A CARD AND AND A CARD AND A CARD AND AND A CARD AND AND A CARD AND AND A CARD AND AND AND AND AND AND AND AND AND AN	an Nickel Compa	any Lim	ited			A - 17	52.7	
Address	cliff, Ontario.		,	,				
Survey Company				Date of Surve	ey (from & to)	Tota	Miles of hir	ne Cut
Argentex Resource	·····	Corp. 1	sta.	018 M26	84 0181	29 84	50.3	
Glenn C. Kasner	•	ervices	P.O. Bo:	x 1053 Kirl	kland Lake	, Ontario	. P2N 3	Li
Credits Requested per Each	Claim in Columns at r		the second s	aims Traversed		المرجعين فيتباليه أكبك المتحصي فالتها		
1	Geophysical	Days per Claim	Prefix	ining Claim Number	Expend. Days Cr.	Prefix	Claim Number	Expend. Days Cr.
For first survey: Enter 40 days, (This	- Electromagnetic	9.4	L	588052	58.8	L 59	9027	58.8
includes line cutting)	• Magnetometer	9.4		588053	58.8	59	9028	58.8
For each additional survey:	- Radiometric			588054	58.8		5029	58.8
using the same grid: Enter 20 days (for each)	- Other			588055	58.8		9030	58.8
	Geological	40		588056	58.8		9031	58.8
	Geochemical			588057	58.8		9032	58.8
Man Days	Geophysical	Days per Claim		588147	58.8		9033	58.8
, Complete reverse side 1 7	Electromagnetic			-				-
and enter total(s) here	Magnetometer			588148	58.8		9034	58.8
	-			588149	58.8		9035	58.8_
011.61	- Radiometric R	FCE	MED	588150	58.8		9036	58.8
	Other			588151	58.8	59	9037	58.8
ي الم	Geological U	EC 0 2	1985	588152	58.8	59	9038	58.8
Airborne Credits	Geochemical	GLAND	SECTION	588154	58.8	59	9039	58.8
Anoone creats		Claim	, acunun	588155	58.8	59	9040	58.8
Note: Special provisions credits do not apply	Electromagnetic			588156	58.8	59	9041	58.8
to Airborne Surveys.	Magnetometer			588157	58.8	59	9042	
	Radiometric			588158	58.8	59	9043	58.8
Expenditures (excludes pow Type of Work Performed	er stripping)			588161	58.8	59	9044	58.8
Type of Work Fertornied				588162	58.8		9045	58.8
Performed on Claim(s)				588163	58.8		9046	58,8
				588164	58.8		9047	
				-				58.8
Calculation of Expenditure Day Total Expenditures	-	Fotal s Credits		588168	58.8		9048	58.8
\$] ÷ [15] = [L	_ 599026	58.8		9049	58.8
						Total number claims covered report of work	by this	5 0
Instructions Total Days Credits may be a choice. Enter number of day			· [For Office Use	Only	1	Ľ	
in columns at right.			Total Days Becorded	Cr. Date Recorde	d	Mining Record	° /1,	
Date	corded Hoyser or Agent (eignature)	ngg C	Date Approve	- 6 1984	Branch Directo	Alla	0
November 28, 1984	+ Anno Ann		3	Upn	115785	Fan	iaul	this
Certification Verifying Repo				7				
I hereby certify that I have a or witnessed same during and		-			T OT Work annex	ed nereto, havin	g performed	i the work
Name and Postal Address of Per	son Certifying C. Kasner P.O.	Box 10)53 Kimbi	and Laka	Ontento D'	2N 3T1		,
Grenni (- nuclear 1.0.	DOV I		Date Certified		Certified by IS	ignazuroł	
1362 (81/9)				November	28,1984.	fland	Liller	

annuk berformed by

素製

Pgz

۱.

١

Mining Claims	Expend Days Cr.
L 599050	58.8
599051	58.8
599052	58.8
599053	58.8
	ч
- 1	

Arthorne Create - Do not us usuade area used with 13 g. Cool option 1, VLP - EX, Hagnetometer Holloway Argentex Resource Exploration Corp. 114. Framework 100 area Argentex Resource Exploration Corp. 114. Trade Stander 64. Marrier and Anders 1 Asher 14 Victoria Street Toronto, Ontario. Date of Exercising Anders 14. Garne and Ander 14 Victoria Street Toronto, Ontario. Date of Exercising Anders 14. Garne C, Kasner P, O. Box 1053 Kirkland Lake, Ontario. P2N 311 Trade While of Hage Corp. Garne C, Kasner P, O. Box 1053 Kirkland Lake, Ontario. P2N 311 Trade Street Corp. Garne C, Kasner P, O. Box 1053 Kirkland Lake, Ontario. P2N 311 Trade Street Corp. Second Tarontonia Corp. Ander Corp. Second Tarontonia Corp. Participantic Corp. Point trade works Corp. Corp. Second Tarontonia Corp. Corp. Res Cell VED Corp. Corp. New Corp. Corp. Corp. Corp. Corp. Second Corp. Corp. Corp. Corp. Corp. New Corp. Corp. Corp. Corp. Corp. New Corp. Corp. Corp. Corp. Corp. New Corp. Corp. Corp. Corp. Corp. Co	Natural Geo	oort of Work ophysical, Geological, chemical and Expend			2.14	Note:	exceeds s - Only da "Expende in the "	pe or print. The pace on this form, ys credits calcul tures" section ma Expend, Days C	, atteQ: a list ated in the y be entered r." _columns
U Geological, VLF, - EN, Magnetoneter Holloway Commission Argentex Recourse Exploration Corp. Ltd. 77.072 Market 1816 44 V3 ctoria Street Toronto, Ontario. Date of Survey Union Survey Total Market Survey Same Name and Andres of Same Toronto P. O. Box 1055 Kirkland Lake, Ontario. F2R 311 Total Market Survey General Resource Toronto Resource Reso	L 279	9696)		Minin	g Act		- Do not us	e shaded areas belo	w1573
Claim closer Argentex Resource Exploration Corp. Ltd. To State Argentex Resource Exploration Corp. Ltd. To State Same Data of Survey With a to 1 Same Data of Survey With a to 2 Same Data of Survey With a to 2 Credits Requested for Each Claim in Columny at 19th Mining Claim Treasured (Link in Columner to 1) For With Survey Careony State For Other Control Only Claim Treasured (Link in Columner to 1) For other Control Only Claim Treasured (Link in Columner to 1) For other Control Only Claim Treasured (Link in Columner to 1) For other Control Only Claim Treasured (Link in Columner to 1) For other Control Only Claim Treasured (Link in Columner to 1) For other Control Only Claim Treasured (Link in Columner to 1) For other Control Only Claim Treasured (Link in Columner to 1) Complete interne stide Only Claim Treasured (Link in Columner to 1) State of Stat	Geological	VLF - EM, Mag	netomet	er					
Index 1816 14/ Victoria Street Toronto, Ontario. Same Data and Additional Street Toronto, Ontario. Same Data and Survey from 6 tor) Same Data and Survey from 6 tor) Contract Additional of Additional for dear Technical import) Data and Survey from 6 tor) Contract Additional Information Device Technical import) Contract Additional Information Contract Contract Additional Information For last survey: Contract Contract Contract Contract Additional Information Port last survey: Contract Contr							•	or's Licence No.	
1816 44 Victoria Street Toronto, Ontario. Same Same Same Same Same Same Grant and Access of Author for Generatives recent Same of Authors of Author for Generatives recent Same Greatis Requested por Each Claim in Columns at right Manage Claims Traversed (List in numerical sequenced) For first surver: Exectionsparite 40 For first surver: Recomparite 20 Part edition and Access of the call of th	Argentex R	esource Explora	ation Co	orp. Ltd	•		TR	590	
Sture version Date Stane Inter of Survey (for a lot) The I Millet of Ine Cut Glamma Address Address of an Achieve (for a lot) Stane (for a lot) The I Millet of Ine Cut Glamma Address of an Achieve (for a lot) Stane (for a lot) The I Millet of Ine Cut Glamma Address of an Achieve (for a lot) Stane (for a lot) The I Millet of Ine Cut Green (for an Achieve (for a lot) For (fit starwe) Stane (for a lot) The I Millet of Ine Cut For (fit starwe) Exercision appendix 400 The I Millet of Ine Cut The I Millet of Ine Cut For (fit starwe) Exercision appendix 400 The I Millet of Ine Cut The I Millet of Ine Cut For (fit starwe) Exercision appendix 20 The I Millet of Ine Cut The I Millet of Ine Cut For (fit starwe) Exercision appendix 20 The I Millet of Ine Cut The I Millet of Ine Cut For (fit starwe) Exercision appendix 20 The I Millet of Ine Cut The I Millet of Ine Cut For Office (for cond) Exercision appendix 20 The I Millet of Ine Cut The I Millet of Ine Cut Manon exercision<			ne see ste	Ontoni	•				
Same Barne <	1	ctoria Street I	010110,	Untart		ev (from & to)	•···	Total Miles of lin	Cut
Name A concept of Allon Gr Bar Technic Incomf Glamma A concept of Allon Gr Bar Technic Incomf Glamma A concept of Allon Gr Bar Technic Incomf Great Incomf Streat Transferred List in numerical sequence! For Instance Part and Gray. This Include Stream Part and Gray. This Bare and enter total filmer Bare and filmer Bare and and enter tota									
Credit Required por Each Claim in Columns at right Great Free 40 days. (This For first survey: Enter 40 days. (This Columns at right) For each additional survey: Using the sund good: For each additional survey: For office Use Daily	Name and Address of Author (c	of Geo-Technical report)	······		<u> 087 1010,</u>	1 11, J Uay	1 100 1 111		
Special Provision Decophysical Data part For first survey: - Electromagnetic 40 Include time cutting - State construct 20 For each additional survey: - Rectionagnetic 40 For each additional survey: - Rectionagnetic 20 For each additional survey: - Rectionagnetic 20 For each additional survey: - Rectionagnetic 20 Complete recurse side and enter total life there - Rectionagnetic - Rectionagnetic - Badometric - Badometric - Data part - Other - Electromagnetic - Rectionagnetic - Rectionagnetic - Rectionagnetic - Rectionagnetic - Badometric - Electromagnetic - Rectionagnetic - Rectionagnetic - Rectionagnetic - Rectionagnetic - Rectionagnetic - Rectinagnetic - Rectionagnetic	Glenn C. k	asner P.O. Box	1053 Ki	rkland	Lake, Onta	rio. P2N	3L1		
For first survey: Claim Claim Claim Days Child For each additional survey: In adiometric 20 In 799696 In 799696 For each additional survey: In adiometric Comprise reverse side and enter totalish here One per Comprise reverse side and enter totalish here Days per Comprise reverse side and enter totalish here Total and per Comprise reverse side and enter totalish here Type of Work Performed on Chainf(a) For Office Use Only Total second per		Claim in Columns at r		and the second s	the second s		the second s		
Ener 40 days (This includes interviting - Electromagnetic 40 For each additional surver: using the same grid: - Realisment ic	Special Provisions	Geophysical						produces of the contract of the second secon	
Enter 40 digits 11 digits Magnetionater 20 For each additional turvey: Padiometric Padiometric Using the same girld. Other Other Geophysical Ocher Ocher Geophysical Ocentration Base per Geophysical Ocentration Date per Orber Ocentration Date per Other Ocentration Date per Orber Ocentration Date per Orber Ocentration Date per		- Electromagnetic	40	L	799696				
For each additional turvey: enter 20 days (for each) Enter 20 days (for each) Geophysical Only each Complete reverse side and enter costful here Beterromagnetic Badiometric Complete reverse side and enter costful here Beterromagnetic Beterromagnetic Complete reverse side and enter costful here Beterromagnetic Beterromagnetic Complete reverse side and enter costful here Beterromagnetic Beterromagnetic Complete reverse side and enter costful here Beterromagnetic Expenditures (excludes power stripping) Type at Work Ferformed Performed on Claim(3) Type at Work Ferformed		Magaziometer							
Productional and weight Other Complete result data service Other Beilding of the service Device performed Recommendation Device performed Complete results and endowers Beilding of the service Complete results and endowers Beilding of the service Production Factoring of the service Production Factoring of the service Production Data performed Complete result do not apply to Automa bury to Automa bury to Automa bury to Automa bury. Here results and on the service of the service servic		-	20		799097				
Enter 20 days (for each) 0 for exchanges) Beological 20 Geological 20 Geological 20 Geological 20 Geological 20 Geological 20 Geological Complete reverse side end enter total(s) here • Electromagnetic • Stationmetric • Sectomagnetic • Other Geological Geological Geological Object Geological Becometric • Sectomagnetic • Other Geological Geological Geological Note: Special provisions credit sig not apply to Alrbore Survey. Electromagnetic Propertures (excludes power stripping) Type of Work Reformed Propertures (excludes power stripping) Type of Work Reformed Total Aurober Cedits may be apportioned at the claim holder's noturns in right. Total number of mining report of Work and coding action interced metrics (Specific Cedits may be apportioned at the claim holder's noturns in right. Total number of Work annexed hereto, having performed the work Properture to the formed of the form sterced metrics of a region of dow is action in sterced metrics of a region of dowing addor after it is completion and the annexed report it true.<		- Radiometric							
Geological 20 Man Days Geochemical Complete reverse side and enter total(s) here Ceophysical Complete reverse side and enter total(s) here Electromagnetic - Rediometric - - Rediometric - - Geological Geochemical Airborne Credits Geochemical Note: Special provisions to Airborne Survey. Electromagnetic Redometric Electromagnetic Airborne Credits Geochemical Note: Special provisions to Airborne Survey. Electromagnetic Ferformed on Claim(s) Electromagnetic Type of Work Performate Ferformate Ferformed on Claim(s) Total Expenditures Days Credits S		- Other							
Main Days Geochemical Complete reverse side and enter total(s) here Geophysical Bestionnetic - Electromagnetic - Other - Bestionnetic - Other Geochemical Airborne Credits Geochemical Note: Special provisions credit do not happly to Airborne Survey. Electromagnetic Dave per Dave per D	Enter 20 days (for each)	Geological	20						
Nam Days Geophysical Days per Claim Complete reverse side and enter total(s) here Electromagnetic RECEIVED Sectorizal Geochemical Days per Claim Arborne Credits Balometric Claim Casim Casim Claim Note: Special provisions Electromagnetic Claim Casim Claim Claim Note: Special provisions Electromagnetic Claim Casim Casim Claim Note: Special provisions Electromagnetic Claim Casim Casim Claim Expenditures (excludes power stripping) Trust If			-20						
Complete reverse side and enter total(d) here Geophysical Caim Complete reverse side and enter total(d) here Fiscionespretic Neter Special provisions Geochemical RECEIVED Airborne Credits Geochemical Days per Geochemical Days per Geochemical Days per Geochemical Note: Special provisions credits do not apply to Airborne Survey. Electromagnetic Geochemical Days per Geochemical Note: Special provisions credits do not apply to Airborne Survey. Belevromagnetic Geochemical Days per Geochemical Type of Work Performed Hadiometric Total Days Credits Total Days Credits Total Days Credits For Office Use Only coolumes repst. + 15 = Total Days Credits may be apportioned at the claim holder's one of many treation to days credits metcleter Catculations Total Expenditures (Conceptiones repst. For Office Use Only Conceptiones repst. Mining Record Mining Record for Mining Catculation to days credits metcleter Catculations Mining Record Mini		Geochemical	ļ						
and enter total(s) here - Electromagnetic - Magnetiometer - Radiometric - Radiometric - Other Geological Geochemical Airborne Credits Geochemical Note: Special provisions credits do not apply to Airborne Surveys. Electromagnetic Note: Special provisions credits do not apply to Airborne Surveys. Electromagnetic Pays Credits Radiometric Expenditures (excludes power stripping)	Man Days	Geophysical						Ì	
Image: Section strice in the section of the section strice is consistent of the section of the section strice is consistent of the section of the section of the section of the section strice is consistent of the section of the section strice. Image: Section is the section strice is consistent of the section of the section strice. Image: Section is consistent of the section strice. Image: Section is the section strice is completion and the annexed report is true. Image: Section is consistent of the section is consistent of the section is true. Image: Section is is completion and the annexed report is true. Image: Section is consistent of the section is consistent of the section is true. Image: Section is is completion and the annexed report is true. Image: Section is consistent of the section is consi		- Electromagnetic			· • •		h = -		
Image: Section strice in the section of the section strice is consistent of the section of the section strice is consistent of the section of the section of the section of the section strice is consistent of the section of the section strice. Image: Section is the section strice is consistent of the section of the section strice. Image: Section is consistent of the section strice. Image: Section is the section strice is completion and the annexed report is true. Image: Section is consistent of the section is consistent of the section is true. Image: Section is is completion and the annexed report is true. Image: Section is consistent of the section is consistent of the section is true. Image: Section is is completion and the annexed report is true. Image: Section is consistent of the section is consi	and enter total(s) here	Magnatomator					KEC	EIVED	
Other Geological Geological Geochamical Airborne Credits Days per Claim Note: Special provisions or: effective do not apply to Airborne Survey. Electromagnetic Claim Expenditures (excludes power stripping) Type of Work Performed Performed on Claim(3) (1) (1) (1) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (3) (2) (4) (2) (2) (2) (3) (2) (4) (2) (5) (2) (4) (2) (5) (2) (4) (2) (5) (2) (4) (2) (5) (2) (4) (2) (5) (2)									
Other Geological Geological Geochamical Airborne Credits Days per Claim Note: Special provisions or: effective do not apply to Airborne Survey. Electromagnetic Claim Expenditures (excludes power stripping) Type of Work Performed Performed on Claim(3) (1) (1) (1) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (3) (2) (4) (2) (2) (2) (3) (2) (4) (2) (5) (2) (4) (2) (5) (2) (4) (2) (5) (2) (4) (2) (5) (2) (4) (2) (5) (2)		- Radiometric	·				DEC	0 2 1985	
Airborne Credits Geochemical Airborne Credits Days per Cleim Note: Special provisions credits provisions credits do not apply to Airborne Surveys. Electromagnetic Radiometric Radiometric Expenditures (excludes power stripping) Type of Work Performed Performed on Claim(a) Iff (1) Performed on Claim(a) Iff (1) Calculation of Expenditure Days Credits Total Appenditures S + Total Expenditures + Days Credits Days Credits Total Expenditures + Days Credits may be apportioned at the cleim holder's chice. Enter number of days credits per cleim selected in columns at right. Date Days Credits may be apportioned at the cleim holder's chice. Enter number of days credits per cleim selected in columns at right. Date Days Credits may be apportioned at the cleim holder's chice. Enter number of days credits per cleim selected in columns at right. Date Days Credits may be apport of Work Maining Recorder Mining Recorder Date Days Credits may be apport of Work Marchanter Date Date Credits may be apport of Work Thereby certify that I have a personal and intimate knowledge of the facts set forth in the report of Work annexed h		- Other					1		
Airborne Credits Geochemical Airborne Credits Days per Cleim Note: Special provisions credits provisions credits do not apply to Airborne Surveys. Electromagnetic Radiometric Radiometric Expenditures (excludes power stripping) Type of Work Performed Performed on Claim(a) Iff (1) Performed on Claim(a) Iff (1) Calculation of Expenditure Days Credits Total Appenditures S + Total Expenditures + Days Credits Days Credits Total Expenditures + Days Credits may be apportioned at the cleim holder's chice. Enter number of days credits per cleim selected in columns at right. Date Days Credits may be apportioned at the cleim holder's chice. Enter number of days credits per cleim selected in columns at right. Date Days Credits may be apportioned at the cleim holder's chice. Enter number of days credits per cleim selected in columns at right. Date Days Credits may be apport of Work Maining Recorder Mining Recorder Date Days Credits may be apport of Work Marchanter Date Date Credits may be apport of Work Thereby certify that I have a personal and intimate knowledge of the facts set forth in the report of Work annexed h		Geological			· · ·		INING LA	NDS SECTION	
Airborne Credits Days per Cleim Note: Special provisions credits do not apply to Airborne Surveys. Electromagnetic Magnetometer Radiometric Radiometric Expenditures (excludes power stripping) If (1) 1 20 mining Type of Work, Performed If (1) 1 20 mining Performed on Claim(s) If (1) 1 20 mining Calculation of Expenditures Days Credits S + 15 Instructions Total Expenditures Days Credits may be apportioned at the claim holder's choice, End number of days credits per claim selected Instructions Magnetored Moder or Adjent (Signeture) Date Approvage an Apport of Work. Interby certify that I have a personal and intimate knowledge of the facts set forth in the report of Work annexed hereto, having performed the work or witnesed asmed during and/or after is completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasher P.O. Box 1053 K1rkland Lake, Ontario, P2N 3L1 Certified by King performed Othe Certified True, 1984 Certified by King Logity King With			-					100 SLUTION	L
Note: Special provisions credits do not apply to Airborne Surveys. Electromagnetic Magnetometer Radiometric Expenditures (excludes power stripping) Type of Work Performed Performed on Claim(s) []] (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Airbonn Crudin	Geochemical							
credits do not apply to Airborne Surveys. Magnetometer Radiometric Expenditures (excludes power stripping) Type of Work Performed Performed on Claim(s) ()1 (1:1) ?::::::::::::::::::::::::::::::::::	Airoorne Credits								
to Airborne Surveys. Magnetometer Radiometric Radiometric Expenditures (excludes power stripping) Type of Work Performed Performed on Claim(s) (1) (1) Calculation of Expenditure Days Credits Total Expenditures Days Credits Total Expenditures Days Credits Total Expenditures Days Credits Total Days Credits Total Days Credits Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits selected in columns at right. Date Approvation Notifying Report of Work. December NO, 198 Manuex Approvation Notifying Report of Work. I hereby certify that I have a personal and intimate knowledge of the facts set forth in the meport of Work annexed hereto, having performed the work or writessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Optic Certified December NO, 1984	Note: Special provisions	Electromagnetic		· ·					
Radiometric Expenditures (excludes power stripping) Type of Work Performed Performed on Claim(s) III (1:1) III (1:1) Calculation of Expenditure Days Credits Total Expenditures Desy Credits Total Days Credits may be apportioned at the claim holder's in columns at right. Total Days Credits per claim selected in columns at right. Despecember 10, 1986 Mining Recorded Holder or Agent (Signature) Certification Verifying Report of Work I hereby cerify that have a personal and intimate knowledge of the facts set forth in the neptor of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Ontario. P2N 3L1 Ontario. P2N 3L1		Magnetometer							
Expenditures (excludes power stripping) Type of Work Performed Performed on Claim(s) Image: Concentration of Expenditure Days Credits Total Expenditures Days Credits Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits por claim selected in columns at right. Date: December 10, 1984 Date: December 10, 1984 Date: December 10, 1984 Instructions Certification Verifying Report of Work I hereby certify that have a personal and intimate knowledge of the facts set forth in the report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Oate: December 10, 1984 Certified Dots Person Certifying Clenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1	to Andorne Surveys.								
Type of Work Performed Performed on Claim(s) Performed on Claim(s) Instruction of Expenditure Days Credits Total Expenditures Days Credits Total Days Credits Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right. Datp Datp December N0, 198 Recorded Molder or Agent (Signature) Dectification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the neport of Work annexed hereto, having performed the work or witnessed sme during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified by (Signature) Date Certified by (Signature) Date Certified by (Signature) Date Certified by (Signature)		l	<u> </u>	1	LARE			 	
Performed on Claim(s) Iff (1, 1, 1, 3, 6) Calculation of Expenditure Days Credits Total Total Expenditures Days Credits Total Days Credits + 11 15 Instructions + Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right. Total Days Credits Date December 10, 198 Recordeg Holder or Agent (Signature) Date Recorded Mining Recorded Min	- A Contraction of the second s	er stripping)			MIN. FISA SA A				
Calculation of Expenditure Days Credits Total Expenditures Days Credits S + 15 Instructions Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right. Dat December 10, 198 Mining Recorded Molder or Agent (Signature) Caltification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the neport of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified Date Certifie	Type of work Performed				13 3				1
Calculation of Expenditure Days Credits Total Expenditures Days Credits Total Expenditures Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right. Date December 10, 198 Recorded Molder or Agent (Signature) Loss Credity that I have a personal and intimate knowledge of the facts set forth in the report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.0. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified by (Signature) Date Certified by (Signature)	Performed on Claim(s)					1 193.20			
Calculation of Expenditure Days Credits Total Expenditures Days Credits S + Instructions Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right. Date December 10, 198 Mining Recorded Holder or Agent (Signature) Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the neport of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified 10, 1984 Certified by (Signature) December 10, 1984						A + 25,024		· · · · · · · · · · · · · · · · · · ·	
Calculation of Expenditure Days Credits Total Days Credits Total Expenditures Days Credits Instructions + 15 =						2112:30	1516		
Total Expenditures Days Credits S + 15 Instructions Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right. Total Days Cr. Date Recorded O 1984 Date December 10, 198 Recorded Holder or Agent (Signature) Instruction Verifying Report of Work Mining Recorded Uses Only Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified Date Certified Date Set Off. 1984 Certified by (Signature)				6	and the she have a set.				
\$ + 15 = Total number of mining claims covered by this report of work. 2 Instructions Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right. Port Office Use Only 2 Date December N0, 198 Recorded Holder or Agent (Signature) Date Approved as Proceed BisAct Jurget Mining Recorded Date December N0, 198 Recorded Holder or Agent (Signature) Date Approved as Proceed BisAct Jurget Mining Recorded Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Certified Date Certified Date Certified Date More of Certified by (Signature)		-							
Instructions claims covered by this report of work. 2 Instructions Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right. For Office Use Only Mining Recorded 2 Date December 10, 198 Recorded Holder or Agent (Signature) Date Approved as Performed to 1984 Mining Recorded Mining Recorded Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Certified by (Signature) Date Certified December 10, 1984 Certified by (Signature)								<u> </u>	
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right. Date December 10, 198 Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified December 10, 1984 Certified by (Signature) December 10, 1984 Certified by (Signature) December 10, 1984 Certified by (Signature) December 10, 1984 Certified by (Signature) December 10, 1984	\$	÷ [15] = [•
choice. Enter number of days credits per claim selected in columns at right. Datp December 10, 1984 Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified 10, 1984 Certified 10, 1984 Certified by (Signature) December 10, 1984 Certified by (Signature) Certified by (Signature)							report of	work.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dath December 10, 198 Recorded Holder or Agent (Signature) December 10, 198 Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the neport of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified December 10, 1984 Certified by (Signature) Mathematical Section 200 December 10, 1984	choice. Enter number of day			7		and the second s	Atio in a	14	
Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 December 10, 1984 Certified by (Signature) Mark Mark	in columns at right.				net.	1 0 1984			
Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 December 10, 1984 Certified by (Signature) Mark Mark	Date Re	corded Holder or Agent (Signature)	1.10	Date Approv	ed as Reported	Elench L		4
Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set forth in the report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified December 10, 1984 Certified by (Signature)	December 10,198			\ ♥	pub	157850	The	niant	5
or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified December 10, 1984 Certified by (Signature)				·····		1			
Name and Postal Address of Person Certifying Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 Date Certified December 10, 1984 Certified by (Signature) Certified by (Signature)						n of Work ann	exed hereto,	having performed	the work
Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario. P2N 3L1 December 10, 1984			and the anne	exea report is	true.				
December 17, 1984 Certified by (Signature)			(intri and	Leko	Intaria D'	2N 21.1			
	Grenn C. Kasher	1.01 DUX 1055 P	7171010	uare,	Date Certifie		Certified	by (Signature)	
1362 (81/9)				•	Decembe	sr iv, 1984	121.	MED,	
	1362 (81/9)								

.

2.7793

TELEPHONE 705-568-8263

GLENN C. KASNER MINING TECHNOLOGIST X 1053 ND LAKE, ONT. P2N SLI KI

March 27,1985.

Queens Park

M7A 1W3

Mr. Doug Isherwood

Toronto. Ontario.

RECEIVED Land Management Branch 1.1 CIRCULATE COMMENTS PLEASE RY APR - 9 1985 S.E. YUNDT L TA MOLITON J. C. STREELS W. L. 0000 Ministry of Natural Resources Whitney Block, Room6643 M. J. HOGAN W. P. BROOK RETURN TO R. 6643

Re: Geophysical and Geological Surveys submitted on Mining Claims L. 588052, et al., and Mining Claims L. 799696,97, Township of Holloway, File No. 2.7793 and File No. 7561 1v2, Rpt. of Work #573

Dear Mr. Isherwood:

In responce to your letters dated March 4,1985 and further to our recent telephone conversation, please find enclosed.

- (1) Amended copies of pages 6 and 7 of the Progress Report On The Holloway Township Property to include Mining Claims L. 799696 and 799697.
- (2) Claim Location Plan of the Inco Argentex claim group, including the above two claims in duplicate.
- (3) Two copies of Geophysical and Geological maps with all claim lines and posts plotted on the Geological plan and the Max Min II Survey Plan.
- (4) Completed man days break-down forms.

As discussed by telephone only 9.4 days assesment credit for the Magnetometer Survey and 9.4 days assesment credit for the EM - V.L.F. Survey was applied to 50 of the 52 Inco - Argentex Claims in order to bring the group up to the maximum Geophysical Credits allowed per claim.

Thank you for your time in helping me resolve this matter and if you HAUE any questions concerning this submission please call.

Yours truly, Glenn Kasner

cc. Mr. R.J. Kasner, President Argentex Resource Exploration Corp. Ltd., 1816 - 44 Victoria Street Toronto, Ontario. M5C 1Y2

Details of Assessment Work Breakdown

ELECTROMAGNETIC - MAX-MIN I

FIELD WORK

3 5 5

Ŷ

Type of Work	Name & Address	Dates Worked	8 hour days
Stewart Charmich	eal Dundas Ontario	Aug. 19 to21 1984	3
Gordon Houston	Englehart Ontario	H H H H	3
			••
CONSULTANTS	· · · · · · · · ·	· · · · · · · · · · · ·	Number of
Name & Address		fy in field or office)	8 hour days
Glenn Kasner	Field August		
DRAUGHTSMAN, TYPING	, OTHERS (specify)		Na 1997 - 196
Name & Address	Type of Work	Dates Worked	Number of 8 hour days
Glenn Kasner	draughting and repo	ort	2
		TOTAL 8 HOUR TECHNICAL DAY	s <u>9</u>
LINE-CUTTING			Number of
Name	Address	Dates Worked	8 hour days
Norm McBride Ltd	Notre Dame Du Nord	June	3 ?
6 men			

TOTAL 8 HOUR LINE-CUTTING DAYS _____18

1.1

wnship or A		magnetic. Max	Min II				
wnship or A			Min II			-	
-	rea Hollowa	37					******
nbers of Mi		4					
		Traversed by					
	_						
nber of Sta	tions Establ	ished 001]	seperat	lon 100 me	ters		
ke and type	of Instrume	nt Used					
ale Constan	t or Sensiti	vity					
equency Use	d and Power	Output	77 Hz.				
6 .							
						9	
				s, Draugh	ting etc.)		
tal 8 hour	Line-Cutting	Days <u>10</u>					
lculation							
9 x 7 chnical	=63	+ <u>18</u> Line-cutt	<u>= 81</u>	÷	4 Number of claims	= 20.25 Assessment per clai	credit
the chase	listed claim please expl	s 🗌 Check ain	No	_			
ed, Ma	rch 27,1985.			Signed:	fer ten		
	aber of Mil aber of Sta aber of Sta a and type ale Constan equency Use <u>mary of As</u> al 8 hour al 8 hour al 8 hour <u>culation</u> <u>9 x 7</u> chnical e dates lis the above otherwise,	wher of Miles of Line C aber of Stations Estables and type of Instrume ale Constant or Sensiti equency Used and Power mary of Assessment Cre and 8 hour Technical Da cal 8 hour Line-Cutting <u>culation</u> 9 x 7 =63 Enhnical	wher of Miles of Line Cut $_{-8.0}$ wher of Stations Established $_{}$ ce and type of Instrument Used alle Constant or Sensitivity equency Used and Power Output $_{}$ mary of Assessment Credits (details cal 8 hour Technical Days (Include Co cal 8 hour Line-Cutting Days culation 9 x 7 =63 +18 culation 9 x 7 =63 +18 chnical Check otherwise, please explain	wher of Miles of Line Cut <u>8.0</u> wher of Stations Established <u>991</u> Seperations the and type of Instrument Used <u>991</u> Seperations all Constant or Sensitivity <u>991</u> equency Used and Power Output <u>1.777 Hz</u> . mary of Assessment Credits (details on rever tal 8 hour Technical Days (Include Consultant tal 8 hour Line-Cutting Days <u>18</u> <u>18</u> <u>18</u> <u>18</u> <u>18</u> <u>18</u> <u>18</u> <u>18</u> <u>18</u> <u>18</u> <u>19</u> <u>19</u> x 7 = <u>63</u> + <u>18</u> <u>81</u> <u>18</u> <u>18</u> <u>18</u> <u>19</u> <u>18</u> <u>18</u> <u>18</u> <u>18</u> <u>19</u> <u>19</u> <u>19</u> <u>19</u> <u>19</u> <u>19</u> <u>18</u> <u>10</u> <u>19</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u>	wher of Miles of Line Cut _8.0	The of Miles of Line Cut <u>8.0</u>	The second seco

(A) * Complete only if applicable.
 (B) Complete list of names, addresses and dates on reverse side.

(C) Submit separate breakdown for each type of survey.

(C) Submit separate break(D) Submit in duplicate.

N

Ş

t.

Ontari	Ministry of Natural Resources	Assessment Work Breakdown	ELECTRO	MAGNETIC	2.77	93		
1.	Type of Surv	ey Electro ma	agnetic V.L.F.					
			Tp					
3.	Numbers of M	ining Claims '	Traversed by Surve	y <u>L. 5</u> 8	38052-0	57. L. 5	88147-152	
	L58815	4-158.L.588:	161-164.L.588168.	L599026 .	Q53			

	~~~~~~~~~~							
4.	Number of Mi	les of Line C	ut _50.3		Fl	.own		
		ations Establ:		· .				•••••
*6.	Make and typ	e of Instrumen	nt Used Phoenix					
		nt or Sensitiv	+	00				
			Output 24.0 khz	. Cutler M	laine			
9.	Total 8 hour		dits (details on r ys (Include Consul 174 Days			g etc.)	52	
	Calculation		्य)म 🔹					
	<u>52</u> x Technical	7 =364	+ 174 Line-cutting	538	Ni	50 mber claims		6 ent credits claim
	of the above	listed claims	ain also	_	claims	_L7996	96.97 20	
	Dated: <u>Mar</u>	ch 27,1985.		Signed	ı <u>: <b>///</b>/////////////////////////////////</u>	M. BELL	,	, ,
	Note:		te only if application to the second se		and da	tes on r	everse sid	le.

Complete list of names, addresses and dates on rever Submit separate breakdown for each type of survey. Submit in duplicate.

(B) (C) (D)

.

Details of Assessment Work Breakdown

FIELD WORK , Electromagnetic 2.7793	lumber of
	hour days
EM Doug Demers General Delevery Larder Lake Ont.	
July 7 to August 22 1984	41
CONSULTANTS	
	Number of 8 hour days
Glenn Kasner Kirkland Lake Field July, August	3
Office August	3
DRAUGHTSMAN, TYPING, OTHERS (specify)	•
	Number of 8 hour days
Glenn Kasner draughting, report writting	5
TOTAL 8 HOUR TECHNICAL DAYS	52
LINE-CUTTING	Number of
	8 hour days
Norm McBride Ltd. Notre Dane Du Norde May 10 to June 9,1984	29
- 6- men	
TOTAL 8 HOUR LINE-CUTTING DAYS	174

Asses	sment	t
Work		
Break	down	

Ministryof Natural Resources

Ontario

MAGNETOMETER 2.7793

÷

.

ı	
1.	Type of Survey Magnetometer
2.	Township or Area Holloway Tp.
	Numbers of Mining Claims Traversed by Survey L. 588052-057, L. 588147-152, L. 588154- 158, L. 588161-164, L. 588168, L. 599026-053,
4.	50.3 miles Number of Miles of Line Cut
*5.	2198 Number of Stations Established
*6.	Geometrics G-826 Proton Magnetometer
	Scale Constant or Sensitivity
*8.	Frequency Used and Power Output
	Summary of Assessment Credits (details on reverse side)
9.	Total 8 hour Line-Cutting Days (Include Consultants, Draughting etc.) 50 174
9.	Total 8 hour Technical Days (Include Consultants, Draughting etc.) 50
9.	Total 8 hour Technical Days (Include Consultants, Draughting etc.) 50 174 Total 8 hour Line-Cutting Days 174
9.	Total 8 hour Technical Days (Include Consultants, Draughting etc.) $\frac{50}{174}$ Total 8 hour Line-Cutting Days $\frac{174}{174}$ <u>Calculation</u> $\frac{50}{174} \times 7 = \frac{322}{174} + \frac{174}{174} = \frac{524}{524} \div \frac{50}{10.48} = \frac{10.48}{10.48}$
9.	Total 8 hour Technical Days (Include Consultants, Draughting etc.)       50         Total 8 hour Line-Cutting Days       174         Calculation         50       x 7 = 322         4       174         Technical       x 7 = 322         4       174         50       x 7 = 322         4       174         50       x 7 = 322         50       x 7 = 50         50       10.48         Assessment credit of claims         9       10.48         10       10.48         Assessment credit of claims         9       10.48         10       10.48         11       10.48         12       10.48         13       10.48         14       10.48         15       10.48         16       10.48         17       10.48         18       10.48         19       10.48
9.	Total 8 hour Technical Days (Include Consultants, Draughting etc.)       50         Total 8 hour Line-Cutting Days       174         Calculation $50$ x 7 = 322 $174$ $50$ Technical       x 7 = 322 $174$ $524$ $50$ $50$ $10.48$ Assessment credit         of claims       per claim $10.48$ The dates listed on this form represent working time spent entirely within the limits of the above listed claims         Check       Check         If otherwise, please explain       also surveyed claims L, 799696, 97. 20 assessment days.

۰[°] و

 $\Theta^{\dagger}$ 

•.

Deta	ils	of	Assessment	Work	Breakdown

Magnetometer 2.7793

FIELD WORK		المحمد المحمد والمحمد المحمد والمحمد المحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد وا محمد محمد و		-
Type of Work	Name & Address	Dates Worked	Number 8 hour	
Magnetometer	Donald Dagget Kapuskasing	Ontario July 7. to Aug 18 1984	37	••••
				••••
<u>CONSULTANTS</u> <u>Name &amp; Address</u>	Dates Worked (specify	in field or office)	Number 8 hour	
Glenn Kasner Kirkl:	and Lake Field July	August	5	
**********		August		
	011106	August		<b>.</b> ]
DRAUGHTSMAN, TYPING	, OTHERS (specify)		• ••	_
Name & Address	Type of Work	Dates Worked	Number 8 hour	
Glenn Kasner	Report and Draughtin	ng August	4	
		TOTAL 8 HOUR- TECHNICAL DAYS	50	
LINE-CUTTING				
Name	Address	Dates Worked	Number 8 hour	
**************		•••••		7
Norm McBride Ltd.	Notre Dame Du Nord Ma	y 10 to June 9 1984	29	
6 men				
• • • • • • • • • • • • • • • • • • • •				

TOTAL 8 HOUR LINE-CUTTING DAYS ______

March 4, 1985

Our File: 2.7793 Nining REcorder's File: 560

Canadian Nickel Company Limited Copper Cliff, Ontario POM 1NO

Dear Sirs:

RE: Geophysical (Electromagnetic, Magnetometer) and Geological Surveys submitted on Mining Claims L 588052, et. al., in the Township of Holloway

This will acknowledge receipt of reports and maps for the above-mentioned surveys.

Returned herein are the plans, in duplicate. In order to complete your submission for assessment, please provide:

- 1) Plot all the claim lines and claim numbers on each map.
- 2) Complete the enclosed Man-Bays Breakdown forms for the time spent on the Geophysical surveys as none was included in the submission.

Please return the above information, in duplicate, to this office quoting file 2.7793.

For further information, please contact Douglas Isherwood at (416)965-4888.

w har assessed the

+2/3/85 G. K. feels & an be applied will supply "ball park" figures on Man Days.

Sing

Yours sincerely,

S.E. Yundt Director Land Management Branch

Whitney Block, Room 6643 Queen's Park Toronto, Ontario M7A 1W3 Phone:(416)965-4888

D. Isherwood:mc Encl.

cc: Mining Recorder Kirkland Lake, Ontatio cc: Glenn C. Masner P.O. Box 1053 Kirkland Lake, Ontario P2N 3L1



Order of the Minister

AMENDED

The Mining Act

Room 6450, Whitney Block Queen's Park Toronto, Ontario M7A 1W3 416/965-1380

In the matter of mining claims:

L 588052 to 57 inclusive 588147 to 52 inclusive 588154 to 58 inclusive 588161 to 64 inclusive 588168 599026 to 53 inclusive

On consideration of an application from the recorded holder, <u>Canadian Nickel Company Limited</u> under Section 77 Subsection 22 of The Mining Act, I hereby order that the time for filing reports and plans in support of <u>Electromagnetic</u>, Magnetometer& Geological assessment work recorded on <u>December 6</u>, 1984 be extended until and including <u>February 8</u>, 1985,....

<u>85-03-15.</u> Date

Coples:

P.C

Canadian Nickel Company Limited Copper Cliff, Ontario POM 1NO

Sign Director, Land Management Branch

R.

cc: Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario P2N 3L1

Mining Recorder Kirkland Lake, Ontario

Ontario	Order of the Minister	AMENDED . The Mining Act	Room 6450, Whitney Block Queen's Park Toronto, Ontario M7A 1W3 418/965-1380
In the matter of minin	g claims:	L 588052 to 57 inclusive	•

588052 to 57 inclusive 588147 to 52 inclusive 588154 to 58 inclusive 588161 to 64 inclusive 588168 599026 to 53 inclusive

in the Township of Holloway

On consideration of an application from the recorded holder, <u>Canadian Nickel Company Limited</u> under Section 77 Subsection 22 of The Mining Act, I hereby order that the time for filing reports and plans in support of <u>Electromagnetic</u>, Magnetometer & Geological assessment work recorded on <u>December 6</u>, <u>19</u>84 be extended until and including <u>February 8</u>, <u>19</u>85.

1985.02.18 Date

Copies:

Rs.

Canadian Nickel Company Limited Copper Cliff, Ontario POM 1NO

Mining Recorder Kirkland Lake, Ontario

of Director, Land Management Branch

K

cc: Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario P2N 3L1

on file 2.7793

March 4, 1985

ß

2

### File: 7561 1v2 : Rpt of Wk #573

### REGISTERED

Argentex Resource Exploration Corp Ltd 1816 - 44 Victoria Street Toronto, Ontario N5C 1Y2

Dear Sirs:

Enclosed is a copy of a Report of Work for Magnetometer Electromagnetic and Geological assessment work credits that was recorded by the recorder on December 10, 1984 on Mining Claims L 799696-97.in the Township of Holloway.

We have no record that you provided the full reports and maps to the Ninister within the sixty day period provided by Section 77 of the Mining Act.

Unless you can provide evidence by March 13, 1985 that the reports and maps were submitted as required, the mining recorder will be directed to cancel the work credits recorded on December 10, 1984.

Yours sincerely

S.E. Yundt Director Land Management Branch

Whitney Block, Room 6643 Queen's Park Toronto, Ontario M7A 1W3 (416)965-4888

A. Barr:sc

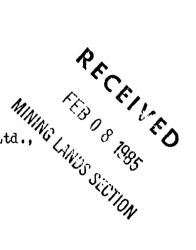
Encls:

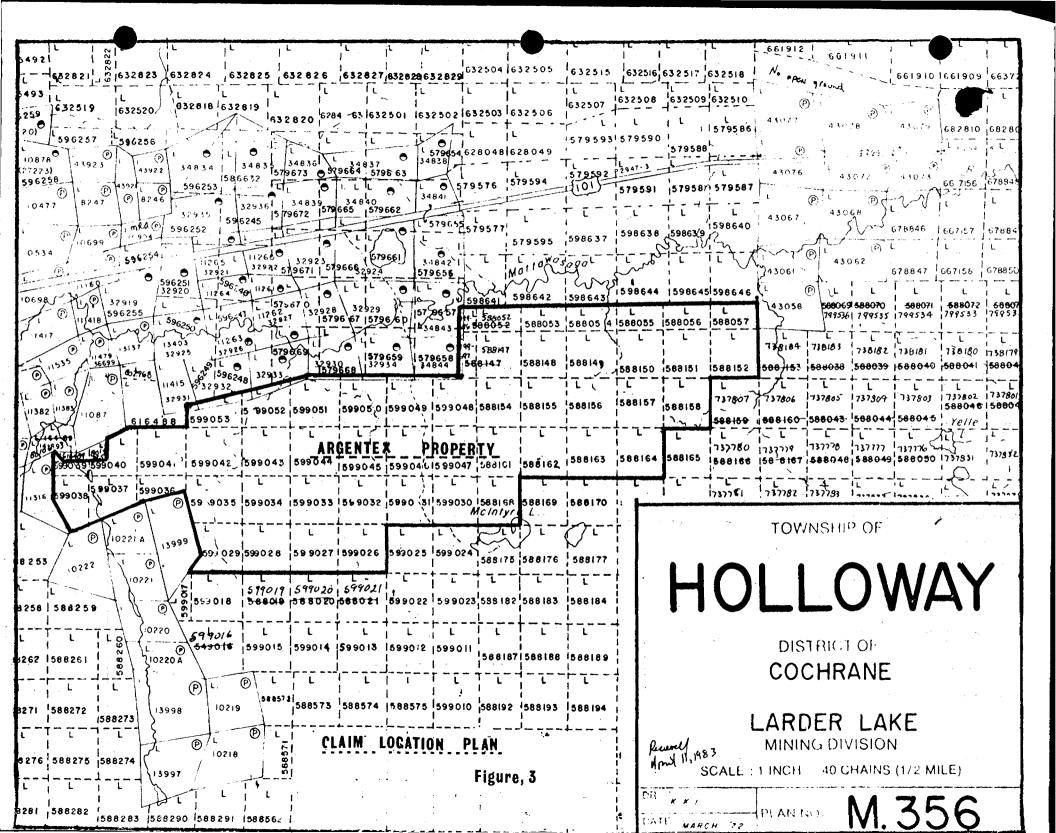
cc: Glenn C. Kasner P.O. Box 1053 Kirkland Lake, Ontario P2N 3L1

cc: Mining Recorder Kirkland Lake, Ontario GLENN C. KASNER MINING TECHNOLOGIST P.O. X 1053 KIR, ND LAKE, ONT. P2N 3L1

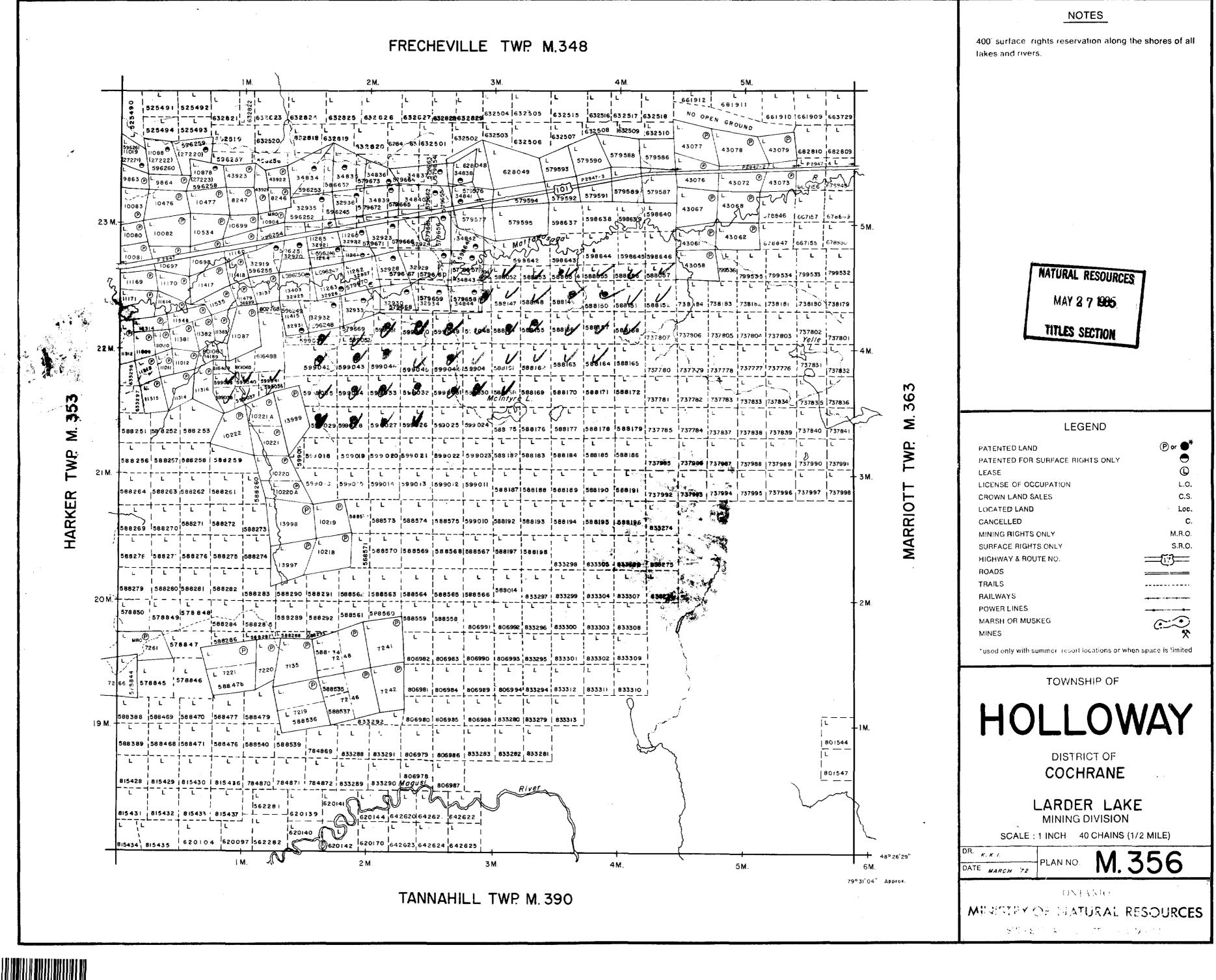
\$ _\

February 5,1985.

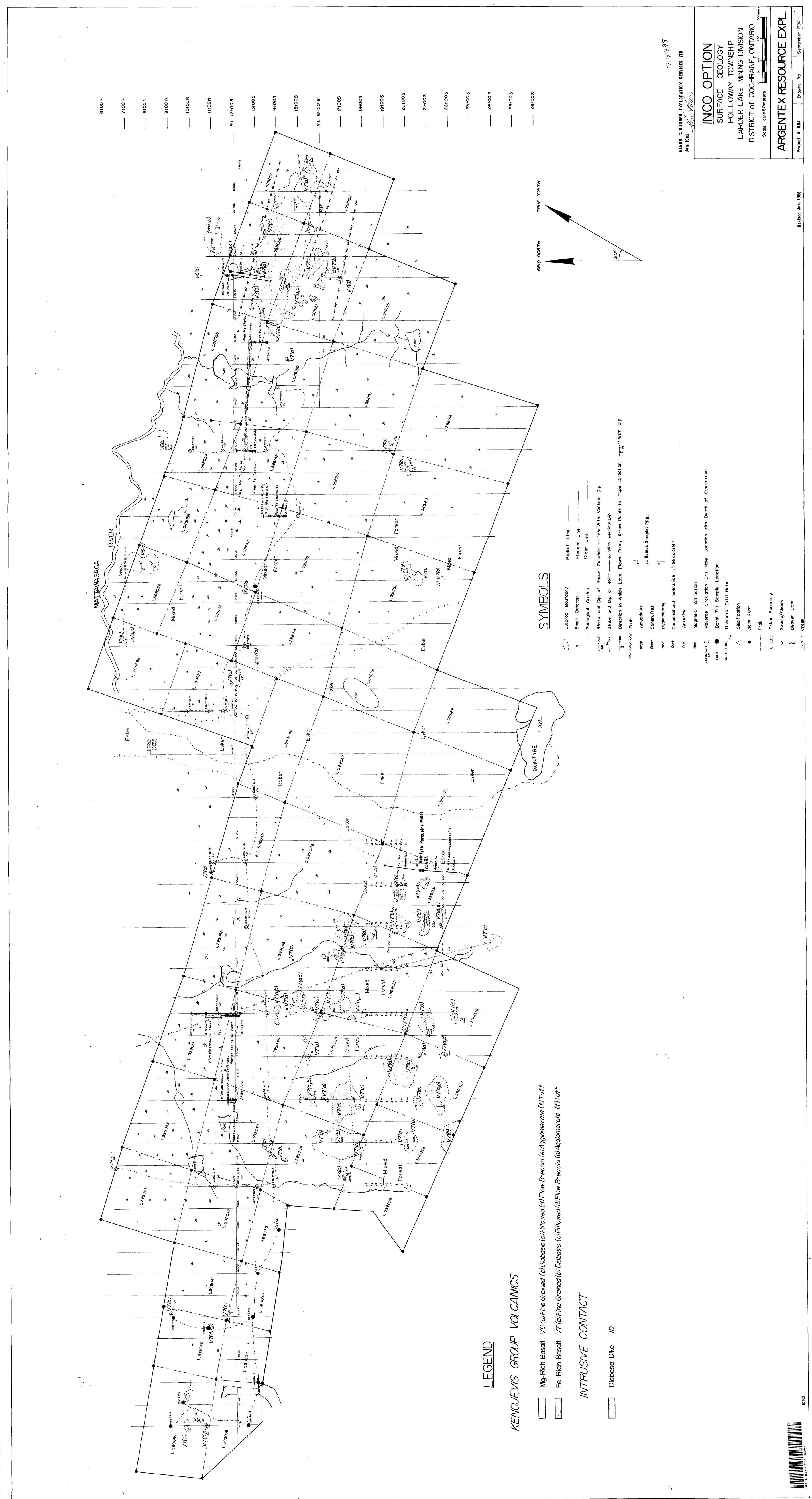

Mr. Aruther Barr Land Management Branch Ministry of Natural Resources 6th Floor, Whitney Block, Room 6610 99 Wellesly Street West Toronto, Ontario. M7A 1W3


Dear Mr. Barr:

Please find enclosed 2 copies of a report on the 1984 field activities and results of Argentex Resource Exploration Corp. Ltd., Holloway Township property, which is under option from Inco Metals Company Sudbury, Ontario. I trust everything is in order.


Yours truly, Mean fame Glenn Kasner

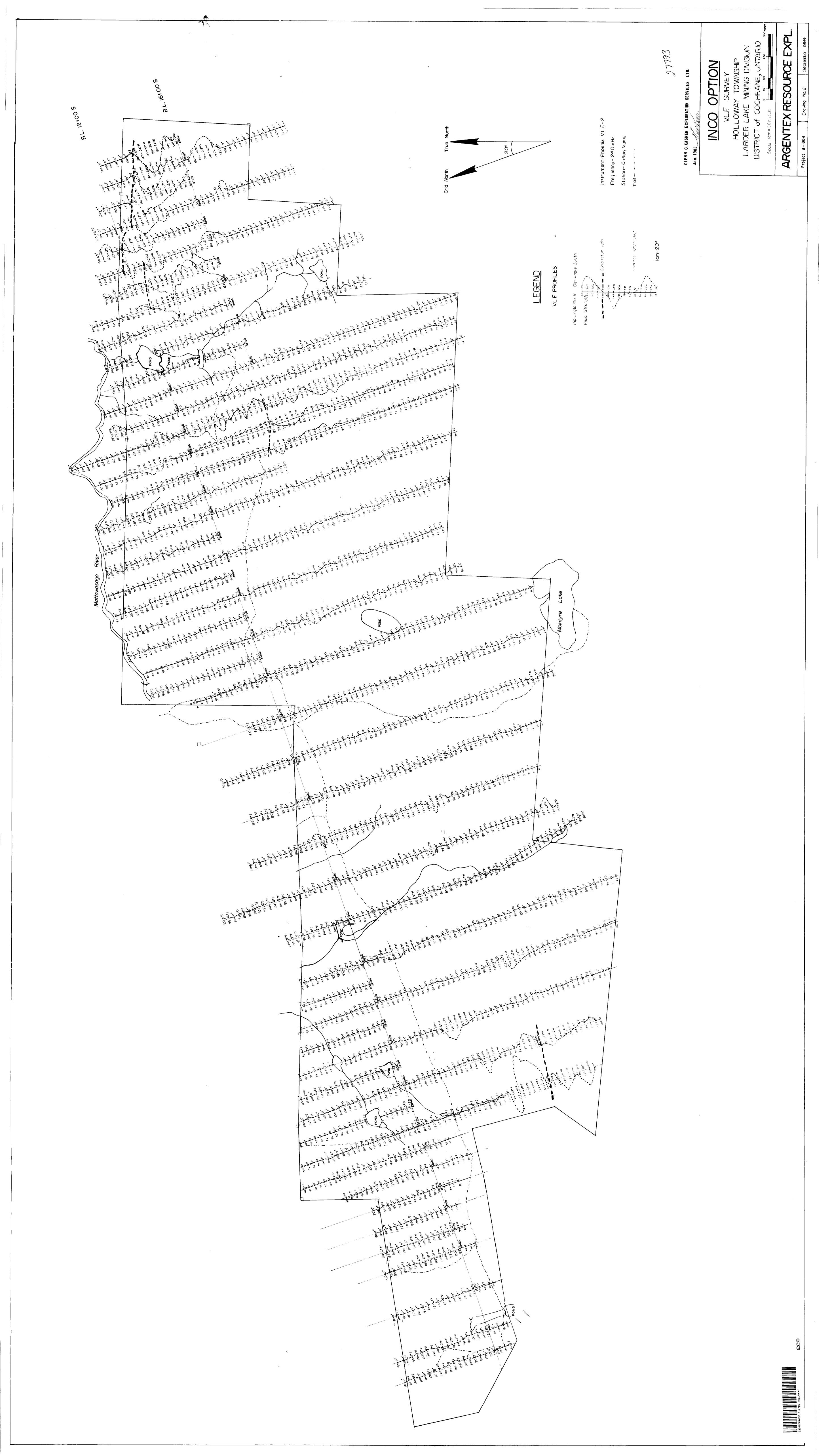
cc. Mr. R.J. Kasner Argentex Resource Exploration Corp. Ltd., Lenora Exploration Ltd., 1816 - 44 Victoria Street Toronto, Ontario. M5C 1Y2

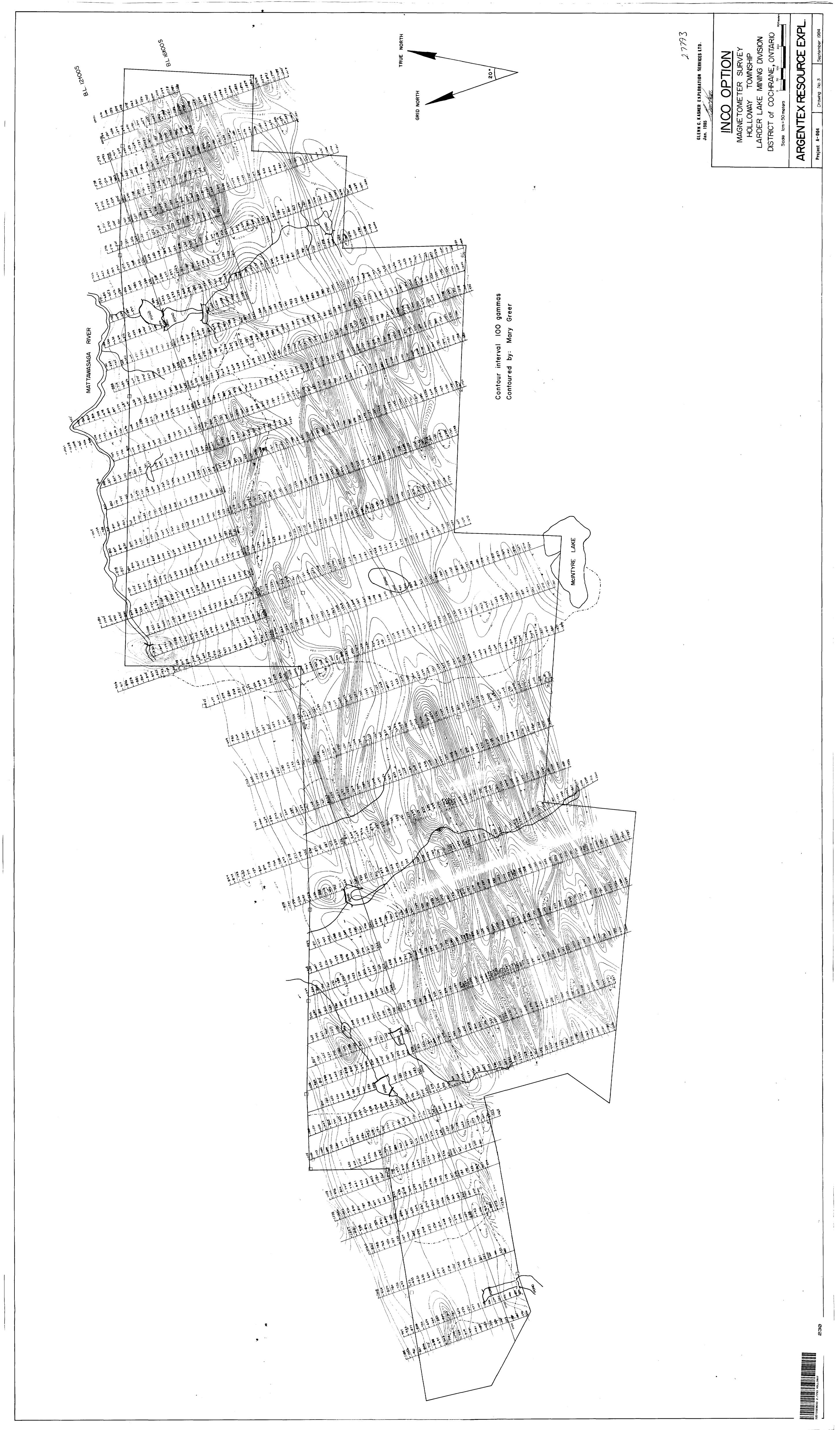


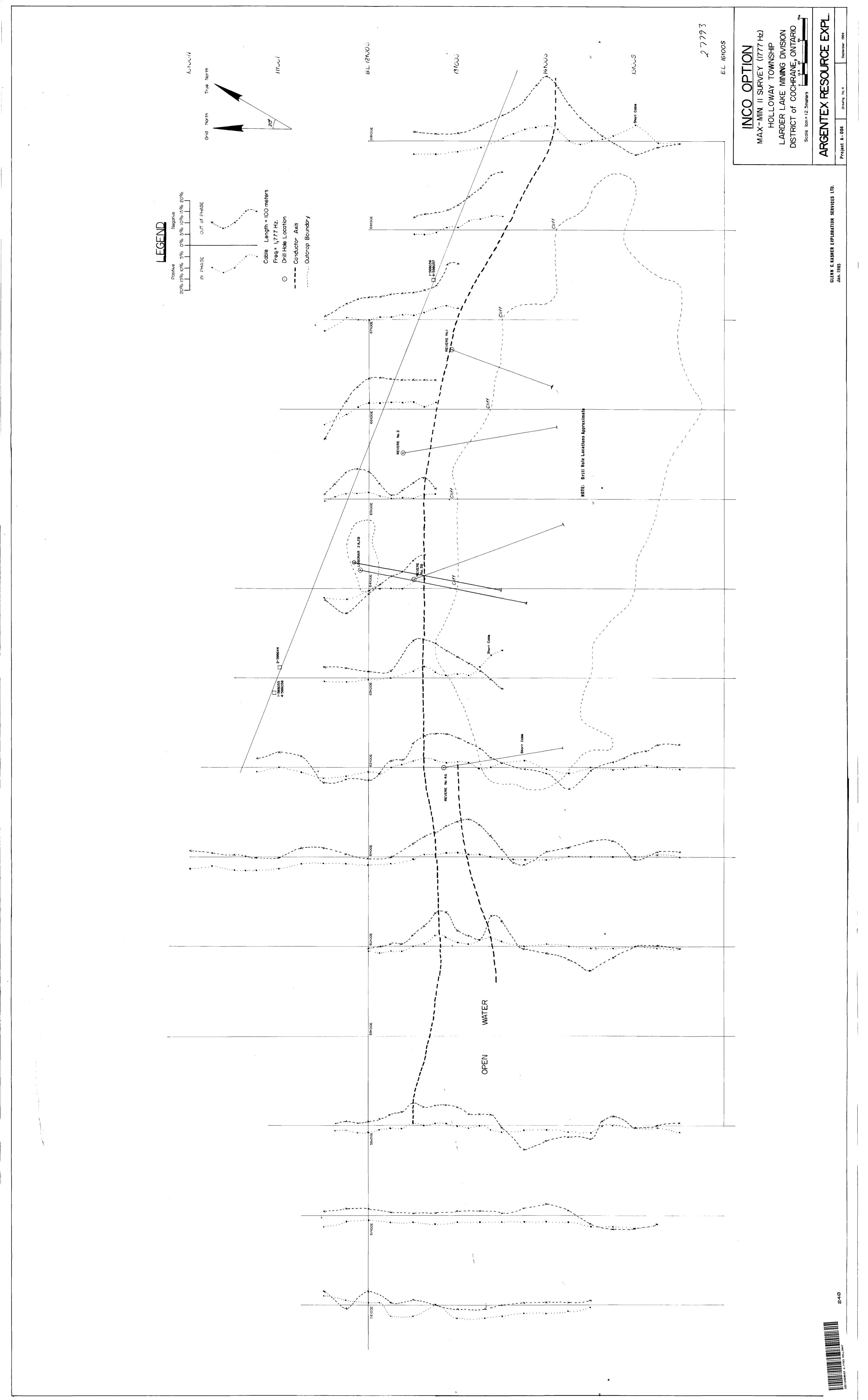



FRECHEVILLE TWP M.348




200





٠

. . . . . . . . . . .

-----







-----

_____

The second state of the second