AMERICAN BARRICK RESOURCES CORPORATION LTD.

A Report on Exploration Activity for the Year 1986
on the
Barrick West Block Property

RECEIVED.

APR 201986

MINING LANDS SECTION

R. Brian Alexander

February, 1986

Page
INTRODUCTION 1
PREVIOUS WORK 1
LINE-CUTTING 2
GROUND GEOPHYSICAL SURVEY 2
AIRBORNE GEOPHYSICS 3
AIR PHOTOS 3
TOPOGRAPHIC SURVEY 4
REGIONAL GEOLOGICAL SETTING 4
LOCAL GEOLOGY 5
GENERAL LITHOLOGIES 7
STRUCTURAL GEOLOGY 8
CONCLUSIONS AND RECOMMENDATIONS 9
REFERENCES 12
LIST OF MAPS
PROPERTY LOCATION MAP
CLAIM BLOCK MAP
GEOLOGY MAP 1:5,000
MAGNETIC SURVEY (TOTAL FIELD) 1:12,000
MAGNETIC SURVEY (VERTICAL GRADIENT) 1:12,000
VLF-EM PROFILES 1:12,000
TOPOGRAPHIC SURVEY 1:5,000

APPENDIX
TABLE 1 Bedrock Geology Samples and Assays
FIGURE 1 Plot of the poles to all measured fracture trends and the linear trends produced.

FIGURE 1A Linear Trend AA2

INTRODUCTION

The West Block Property is located in the western portion of Harker Township, Ontario, Larder Lake Mining Division.

The property is approximately 5 km . west of the McDermott Project and 51.5 km . east of Matheson, Ontario via highway 101.

Access to the property is by secondary gravel road, 3.2 km . south, from highway 101.

The West Block includes 37 contiguous, unpatented claims. The claims numbered L641387 to 406 , and L641410 to 416 were staked by Camflo Mines Ltd. which merged with Barrick in 1984. Certificates of record were issued to Barrick Resources Corp. in March, 1985. Claims numbered L802656 to 659, L802668 to 669, and L802671 to 674 were staked in May, 1985.

PREVIOUS WORK

In 1982, Camflo Mines Ltd. staked claims numbered L641382 to 641416, inclusive.

In 1983, Camflo Mines. Ltd. established a surface grid for the purpose of ground control. The grid consisted of 30 km . of cut line, with 100 m . line spacing and 25 m . stations. Camflo conducted an EM-16 and a magnetometer survey over the above mentioned grid system. The equipment used was a Scintrex MP-2 proton magnetometer with a compatible base station for diurnal corrections, and the Geonics EM-16 using the transmitter at Cutler, Maine at 17.8 KHz . The survey was conducted over claims L641395 to L641416.

In 1984, Camflo Mines Ltd. drilled one diamond drill hole on claim L641406. The drill hole was designated Mc.84-70 and was drilled to a depth of 240.6 m . along the hole. The BQ drilling was orientated at 360 degrees, with a minus 50 degree dip. The drill collar was located 140 m . east and 40 m . north of claim post $\# 3$ of L641406. No significant assays were obtained.

In 1984, claims L641407 to L641409 were cancelled by the recorders office due to overstaking.

Barrick and Camflo were amalgamated in July, 1984, as Barrick Resources Corporation.

LINE-CUTTING

The surface grid established in 1983 was destroyed by a forest fire in the spring of 1984.

Ground control needed to be re-established for the purpose of geological mapping and further ground geophysical surveys.

The line-cutting contract was awarded to Mario Duquette of Rouyn, Quebec. A total of 59.3 km . of line were cut in 1985 , with 100 m . line spacing and 25 m . stations.

GROUND GEOPHYSICAL SURVEY

A VLF (EM-16) and a magnetometer survey are in progress. A separate report will be submitted at a later date.

AIRBORNE GEOPHYSICAL SURVEY

The contract was awarded to Geophysical Surveys Inc., of St. Foye, Quebec. The survey was flown in July, 1985, using a helicopter-born gradiometer. Two cesium vapour magnetometers, of 0.005 gamma resolution and vertically separated by 2 meters, were towed under a helicopter at an average elevation of 45 meters above ground. The average traverse spacing was 200 meters and the flight path recovery was effected using a video tape, recorded by a vertically mounted camera inside the helicopter.

The accessory equipment consisted of:

1) a VLF-EM from Herz Industries, the TOTEM-2A, measuring the total field and quadrature component of the electro-magnetic field at two frequencies.
2) a Sonotek SDS-1200 digital data acquisition system.
3) a radar altimeter, King KRA-10.

The West Block Property was covered by 23,700 meters of flight line.

AIRPHOTOS

Aquarius Flight Inc. have completed a series of flight lines over the West Block Property for Barrick Resources. Air photos were produced on two scales, 1:10,000 and $1: 20,000$. These photos were used to facilitate ground control for the geological mapping program, to prepare a photo mosaic for the helicopter-born gradiometer survey, and for the topographic survey.

TOPOGRAPHIC SURVEY

The topographic survey was done in conjunction with the interpretation of the air photos by Norway Map Technology Ltd. The area was mapped digitally and the final cronaflex sheets were plotted at a scale of $1: 5,000$. The map provides 10 meter index contours, with a 2 meter contour interval. Contours in areas of heavy relief were limited to a 5 mm . spacing.

REGIONAL GEOLOGICAL SETTING

The volcanic rocks of Harker and Holloway Townships are of Archean age and belong to the Superior Province of the Canadian Shield. This particular region is referred to as the Lightning River Area of the Abitibi Belt. The stratigraphy of the Abitibi Belt has been sub-divided as follows (Jensen, 1982):

Upper	(Timiskaming Group (Blake River Group Supergroup Kinojevis Group (Stoughton-Roquemaure Group
Lower	(Porcupine Group Supergroup (Hunter Mine Group (Wakewada Group

The two supergroups represent successive volcanic cycles from ultrabasic komatiitic volcanism to acid calcalkalic volcanism. Each cycle is topped by a dominantly sedimentary (tuffaceous), sequence which reflects relative quiescence in extrusive activity.

The tectonic regime in which the majority of these rocks are located is one of regional subsidence. The formation of a broad, east-west trending synclinal basin is
attributable to this subsidence. The Destor-Porcupine Complex forms the north boundary of this basin, and the south side is marked by the Larder Lake-Cadillac break.

A few later intrusives have been emplaced into the volcanic succession, Compositionally, these rocks range from pyroxenite, diabase and lamprophyre, to diorite, granite and syenite. The mafic and ultramafic varieties tend to be found as narrow dykes whereas the intermediate and felsic varieties are more common as larger, more rounded bodies.

The Destor-Procupine Complex strikes approximately 075 degrees across Harker and Holloway Townships in the same approximate position as highway 101. Rocks to the south of this complex, or zone of dislocation, have approximately the same strike and dip 75 to 85 degrees south. All units top south - there has been no reported evidence of overturning in this area.

LOCAL GEOLOGY

Bedrock geology was mapped on a scale of 1:5,000, utilizing the surface grid and air photos for control on claims L641387 to 398, L802671 to 674, L802658 to 659 and the northern portion of L802657.

The claim block was found to be underlain by tholeiitic basalts and interflow sediments of the Kinojevis Group (Satterly, 1951).

Generally the units are striking east-west (between 076 and 100 degrees) and dip to the south (between 60 and 74 degrees). The basalts are right side up, younging to the
south, as indicated by vesicular and pillowed flow tops in massive flows. Basalt flows and interflow sediments are cut by dioritic intrusives and syenitic dykes, which are in turn cut by later, fresh syenite and monzonite dykes.

Specific descriptions of the individual lithological units have been provided in the following section entitled "GENERAL LITHOLOGIES".

Bedrock geology samples were taken during the course of the geological mapping program. Geochemically anomalous gold assays were obtained from:
a) quartz veining with minor pyrite
b) pyritized argillitic sediments
c) epidotized and pyritized pillowed flow top

These outcrop samples are listed and described in TABLE 1, with the appropriate assay results.

The 1984 diamond drilling intersected a wide band of sediments in claim L641406, with a true thickness of at least 100 meters. The sediments are striking roughly 060 degrees and probably dip approximately 75 degrees south. Massive beds occasionally contain graded bedding which indicate the sediments are right side up, younging to the south. This band of greywacke and argillitic sediments was not reported in outcrop, although magnetometer data suggests 'formational-type' continuity.

GENERAL LITHOLOGIES

The following broad generalizations can be made as to the major rock types.
A) The basalt is usually dark grey-green, very fine to fine grained, weakly to moderately chloritized, variably magnetic, and occurs as both massive and pillowed flows. The massive flows are characterized by the development of brecciated flow contacts. Flow tops are commonly variolitic or amygdaloidal. The pillowed flows contain weakly to strongly developed selvages, up to 3 cm . in width; and pillow margins are commonly variolitic.
B) The sediments include intercalated dark grey, very fine grained to aphanitic, well laminated argillitic beds and pale grey, fine grained, massive greywacke beds. Cherty sediments were reported in outcrop as grey, aphanitic, highly siliceous, massive beds with a conchoidal fracture.

NOTE: The following intrusive lithologies have been tentatively identified by visually observed characteristics. These field terms may not be mineralogically correct.
C) Syenitic intrusives have been described as having a pink to reddish-brown, aphanitic to very fine grained, siliceous groundmass, with up to 50% euhedral to subhedral feldspar phenocrysts. The phenocrysts are usually white to pink in colour and range in size up to 5 mm .
D) Monzonitic intrusives are generally described as being pinkish-grey in colour, with an aphanitic to very fine grained, massive, crystalline texture. Quite often the intrusive is pervasively carbonatized and may have a variable magnetic character.
E) Dioritic intrusives are generally a dark green-grey colour, fine to medium grained and locally magnetic. Pervasive carbonatization may also be present. The diorite is identified in the field by the presence of rectangular laths of feldspar in a mafic groundmass, forming a sub-ophitic texture. Occasionally, sections of the diorite may contain a decussate texture, formed by randomly orientated chlorite in a finer grained, massive groundmass.

STRUCTURAL GEOLOGY

Faulting in the area has been classified by Satterly (1951) as:
a) strike faults trending east-west; and
b) cross faults striking to the east and west of north, which offset the rock formations and strike faults.

Recent diamond drilling in the area has shown the east-west strike faults to be crosscutting the stratigraphy at a very small, acute angle. Therefore, they can not be termed strike faults in the classical sense.

As a result of measuring fracture directions in outcrop, seven major fracture trends were determined by the use of stereographic projections, and are listed as follows:

1) $004 / 83$ west
2) $024 / 82$ northwest
3) $047 / 85$ northwest
4) $068 / 84$ southeast
5) $091 / 82$ south
6) $145 / 87$ southwest
7) $159 / 82$ southwest

The poles to the measured fracture planes and the general trends produced are plotted in FIGURE 1, contained in the appendix. FIGURE $1 A$ is an example of how the linear trend $A A^{\prime}$ is interpreted as the major fracture trend striking 004 degrees and dipping 83 degrees west. The remaining fracture trends were interpreted similarly.

Shearing has been observed parallel to each of the above fracture trends. The movement on each of the individual shear planes may be small, but the total displacement on a series of closely spaced, parallel shears is probably cumulative and quite large. As a result, geological correlation along strike becomes complicated and disjointed. The West Block Property is therefore described as structurally complex.

It is generally observed that north-south faulting post-dates east-west fracture. Locally there has been some evidence that 068 degree faulting offsets 004 degree faulting, and further proof should be sought after in future geological mapping.

CONCLUSIONS AND RECOMMENDATIONS

Diamond drilling results from 1984, show a band of sediments striking east-west and dipping 75 degrees south. The true thickness of the sediments is at least 100 meters in claim L641406, and they are expected to extend across the southern portion of the claim block.

The 1985 geological mapping program covered claims L641387 to 398, L802668 to 669, L802671 to 674, L802658 to 659, and the northern portion of L802657. Claims L641387 to 392, L641398, L802668 and L802671 to 674 were covered with glacially transported overburden. The northwest corner of the property was found to be underlain by tholeiitic basalt and interflow sediments of the Kinojevis Group as previously described by Satterly (1951).

The units were found to be striking between 076 and 100 degrees and dipping steeply to the south between 60 and 75 degrees. Amygdaloidal and pillowed flow tops indicated that the flows are right side up, and younging to the south.

The area is described as structurally complex, with at least seven major fracture trends noted. Faulting or shearing was observed to be associated with each of these trends. Therefore geological correlation of the units along strike was found to be complicated and disjointed.

The geological mapping program did not cover the southern portion of the West Block Property and it is recommended to be completed in the 1986 field season.

Geochemically anomalous gold assays were obtained from:
a) quartz veining with minor pyrite
b) pyritized argillitic sediments
c) epidotized and pyritized pillowed flow top.

There is no evidence at present to support the existence of gold mineralization, similar to the McDermott model (Workman, 1985), on the West Block Property.

Assessment work must be submitted for most of the West Block claims by February, 1986, and by March, 1986. In order to complete these requirements, a diamond drilling program will probably be initiated in early 1986. Diamond drill targets should be dependant upon the ground geophysical survey that is presently in progress. A separate report on the geophysical program will be submitted at a later date. Particular attention should be paid to results from the magnetometer survey, since the VLF survey has been known in the past to be affected by conductive overburden. Any

VLF conductor axis used as a drill target should be coincident with a magnetic low. The low magnetic values have been correlated with drill targets associated with the McDermott model for gold mineralization.

REFERENCES

1) Satterly, J.; 1951
"Geology of Harker Township"
Ontario Department of Mines,
Volume LX, Part VII
2) Jensen, L.S.: 1982
"Precambrian Geology of the Lightning River Area"
Cochrane District,
Ontario Geological Survey, Map P2433,
Geological Series - Preliminary Map,
Scale $1: 63,360$ or 1 inch $=1$ mile
Geology 1973
3) Jensen, L.S. and Langford, F.F.; 1983
"Geology and Petrogenesis of the Archean Abitibi Belt in the Kirkland Lake
Area, Ontario"
Ontario Geological Survey
Open File Report 5455
4) Tousignant, G.; 1984
"Geophysical Survey on the West Block Property"
Harker Township, Ontario
Larder Lake Mining Division
NOTE: Internal report for Camflo Mines Ltd.
5) Workman, A.W,: 1985
"The McDermott Gold Deposit"
C.I.M. Distribution, Annual Meeting,

Timmins, 1985

APPENDIX

$$
-13-
$$

SAMPLE NO.	LOCATION	SAMPLE DESCRIPTION	AU ASSAY gm/tonne
20110	15+88W/6+75N	Grab sample taken from north side of small trench. Probably argillitic with pyrite up to 5\%.	0.17
20111	$15+88 \mathrm{~W} / 6+75 \mathrm{~N}$	Grab sample of quartz vein in the NW corner of small trench with pyrite and hematite alteration.	0.17
20112	$15+76 \mathrm{~W} / 5+75 \mathrm{~N}$	Grab sample of dark green grey, very fine grain breccia with fragments up to 3 $\mathrm{cm} ., 5-10 \%$ pyrite, and minor hematite alteration. (0.5 M . wide)	0.34
20113	$16+25 \mathrm{~W} / 1+05 \mathrm{~N}$	Grab sample of pillowed flow top with epidote and disseminated pyrite up to 4\%.	0.69
20114	$16+08 \mathrm{~W} / 1+12 \mathrm{~N}$	Grab sample of quartz vein contact with basalt. Strongly epidotized, minor pyrite and hematite alteration.	Tr
20115	$16+90 \mathrm{~W} / 3+90 \mathrm{~N}$	Grab sample of pyritic basalt, highly fractured with pyrite up to 3%.	Tr

FIGURE I
Plot of the poles to all meosured fracture planes, and the general trends produced.

NOTE Lineor trends are produced by those fracture plones with the same strike direction, although the dip of the tracture plane moy vary.

NOTE Linear trend AA' produces a strike direction of 004°, with 0 variable dip to the generalized fracture plane. An average dip to the fracture plane of 83° West Is obtained from the crosshoired circle (P) or average pole to the great circle, drawn on the stereonet.

Marker Township
Prospector's Licence No.

Address

24 Hazelton Avenue, Toronto, Ontario
Survey Company
Mario Duquette et al, Rouyn, Quebec

Name and Address of Author (of Geo-Technical report)
Brian Alexander, C.P. 178, Duparquet, Quebec, JOZ Iwo

Credits Requested per Each Claim in Columns at right

instructions
Total Days Credits may be apportioned at the claim holder's
choice. Enter number of days credits per claim selected
in columns at right.

Mining Claims Traversed (List in numerical sequence)

see attaches sheet
for individual entries

Date
Feb 25, $1986{ }^{\text {recorded }} \times$ (-2 / Lily
Certification Verifying Report of Work
 or witnessed same during and/or after its completion and the annexed report is true.
Name and Postal Address of Person Certifying
M.E. Holt, American Barrick Resources Corporation

24 Hazelton Avenue, Toronto M5R 2E2
Date Cortitieo
Feb 25,
1986

Ministry of Natural Resources

File \qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL

 TECHNICAL DATA STATEMENT
TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Geophysical
Township or Area Harker Township
Claim Holder(s) American Barrick Resources Corp.
Survey Company Duquette et al., Rouyn, Quebec
Author of Report Brian Alexander
Address of Author C.P. 178, Duparquet, Quebec JOZ 1W
Covering Dates of Survey July - December 1985
Total Miles of Line Cut $\quad 36.8$ miles

SPECIAL PROVISIONS CREDITS REQUESTED	$\begin{aligned} & \text { DAY8 } \\ & \text { per clailm } \end{aligned}$
ENTER 40 days (includes line cutting) for first survey.	-Electromagnetic_40
	-Magnetometer_20
	-Radiometric
ENTER 20 days for each additional survey using same grid.	-Other
	Geological
	Geochemical

AIRBORNE CREDITS (Special provision credite do not apply to airborne surveys)
 Total $=588$ days (enter days per claim)
DATE: Feb 25,1986 SIGNATURE:

MINING CLAIMS TRAVERSED List numerically

L $\quad 641387$
(prefix)
64138 dinumber) $^{\text {a }}$
641389
6.41 .3 .90

641391
6.413 .22

641393
6.413 .9 .4

641395
6.41396

641397
6.41398

641399
6.414 .00

641401
6.41 .4 .02

641403
6.4.1.4.0.4.

641405
$6.41,4,06$
641410
6.4.1.411

641412
6.4.14.1.3

641414
64.1.4.1.

641416
80.2656

802657
80.265.8

802659
80.26.68.

802669
80.26.7.1

802672
80.26.7.3

802674

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Instrument Scintrex Model MP-2, portable magnetometer
Accuracy - Scale constant $\quad \pm 10$ gammas
Diurnal correction method ___ compatible base station
Base Station check-in interval (hours) approx. 5 hours
Base Station location and value \qquad

Instrument Geonics EM-16

Coil configuration \qquad
Coil separation \qquad ± 18
Accuracy \qquad
Method:
[\times Fixed transmitterShoot backIn line
Frequency 17.8 KHz , Cutler, Maine
(specify V.L.F. atation)
Parameters measured Vertical in-phase component and guadrature

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain
Frequency Domain
Parameters - On time Frequency \qquad

- Off time Range
- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode

Attachment to Geophysical Report of Work

The following claims were not covered by the geophysical ground survey:

$$
\text { L- } 641399
$$

641406
641410
641411
641412
641413
802674

SELF POTENTIAL

Instrument _______ Range
\qquad
Survey Method \qquad

Corrections made \qquad

RADIOMETRIC

Instrument \qquad
Values measured \qquad
Energy windows (levels) \qquad
Height of instrument \qquad Background Count \qquad
Size of detector \qquad
Overburden \qquad (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey \qquad
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results)

AIRBORNE SURVEYS

Type of survey(s) gradiometer/VLF-EM
Instrument(s) cesium vapour magnetometer/TOTEM-2A
Accuracy ± 0.005 gammas \quad (specify for each type of survey)
Aircraft used helicopter
Sensor altitude 43 meters
Navigation and flight path recovery method radar altimeter, King KRA-10 and video camera vertically mounted in helicopter for flight path recovery
Aircraft altitude_ 45 meters Line Spacing 200 meters
Miles flown over total area 96.9 miles Over claims only_14.7 miles

Numbers of claims from which samples taken

Total Number of Samples
Type of Sample__ (Nature of Material)
Average Sample Weight
Method of Collection \qquad

Soil Horizon Sampled
Horizon Development \qquad
Sample Depth \qquad
Terrain.

Drainage Development
Estimated Range of Overburden Thickness
\qquad

SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis \qquad
\qquad
\qquad
\qquad

General
\qquad \longrightarrow
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad

Ministry of
Northern Development and Mines

Technical Assessment Work Credits

Recorded Holder	AMERICAN BARRICK RESOURCES CORPORATION
Township or Aree	HARKER TOWNSHIP

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims

not sufficiently covered by the survey\square insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical -80; Geologocal - 40; Geochemical - 40; Section 77(19) -60.

Ministry of
Northern Development and Mines

Fecorded Holder	AMERICAN BARRICK RESOURCES CORPORATION
Township or Aree	HARKER TOWNSHIP

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims
X not sufficiently covered by the survey \square insufficient technical data filed

L 641410 to 12 inclusive

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geologocal - 40; Geochemical - 40; Section 77(19) - 60.

AMERICAN BARRICK RESOURCES CORPORATION

Mr. Andrew Barr
Assessment Office
Mineral Resources Branch
Ministry of Northern Development \& Mines Whitney Block
99 Wellesley Street West
Toronto, Ontario
MFA 1W3
Re: West Block Project \#161
Marker Township, ontario

RECEIVED
 APR 291986

MINING LANDS SECTION

Dear Mr. Barr
This is further to our submission to the mining recorder's office in Kirkland Lake pertaining to work performed on mining claims L641387 et al. (37 in total) in the Marker Township.

Enclosed is the following:
Duplicate signed maps of; Section $2+00$ W (2 holes)
Geology
VLF EM16 Profiles
VLF EM16 Fraser Filter
Magnetic Data
Magnetic Contours
Interpreted Anomalies
Report on Exploration Activity for 1986 (duplicate copies)
Your attention to this matter shall be appreciated.
Yours very truly
AMERICAN GARRICK RESOURCES CORPORATION

Ms. C.A. Mathews
Office Geologist
Enc.

Dear Madam:

RE: Notice of Intent dated September 19, 1986
Geophysical (Electamagnetic Magnetomater)
Surveys on Mining Claims L 641387, et al, in Harker Township

The assessment work credits, as listed with the above-mentioned Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,
J.C. Smith, Supervisor

Mining Lands Section
Whitney Block, 6th Floor
Queen's Park
Toronto, Ontario
M7A 1 W3
Telephone: (416) 965-4888
DK/me

cc: American Barrick Resources Corporation	Brian Alexander
24 Hazelton Avenue	C.P. 178
Toranto, Ontario	Duparquet, Quebec
M5R 2E2	JOZ 1WO
	Mrtention: M.E. Holt
	Mesident Geologist. Ferguson
Kirkland Lake, Ontario	Mining Lands Commissioner
	Toronto, Ontario

Encl.

LÉGENDE	
L-a-n	ligne arret moro
L-A-S	ligne araet suo
-	Poteau pe deraims vus sur le
	ligne de claims GHEMIN
	sentier oe timeer jack.
-	Rivivere.
	ruis seaux.

