$\frac{S}{S}$ **DIAMOND DRILL RECORD**

0	NAME O HOLE N LOCATIO LATITUD	0F PROP 0 0N 0E9 - 0N	ERTY McDermott 1c-84-54 LENGTH 183.80 meters + 00 E DEPARTURE $1 + 21 SAZIMUTH 344^{\circ} DIP -70^{\circ}$	FOOTAGE 0 45.70 91.40	DIP -70 ^{°0} -68 ^{°0} -66 ^{°0}	AZIMUTH	FOOTAGE 152.60 - 183.00 -	DIP A2 -65 ⁰ -62 ⁰	ZIMUTH	HOLE N	0. <u>Mc-8</u> 8ks <u>C</u> 2	34-54 SHE asing Pu	ET NO. <u>1</u>	<u>OF 6</u>
	STARTED	Jan	Jary 31, 1984 FINISHED February 3, 1984		l	······	<u></u>		J	LOGGED	BY	Gilles T	ousigna	nt
LOWAY	FOO	TAGE	DESCRIPTION			<i>a</i> :	SAMP	' L E			A	SSAY	s	
	FROM	то			N	O. SULP	FROM	TO	TOTAL	- 36	%	OZ/TON (DZ/TON	
33.561	0	7.30	CASING											
	7.30	14.28	BASALT											
- 366-1168	14.28	22.87	<pre>Coarse grained, center of a flow, dark green. Massive, ver homogeneous, chloritized, 10% epidote as small specks (less in size). Few, very narrow quartz-carbonate veinlets, 1-3m 10-20° to core axis. Trace pyrite. <u>FLOW BRECCIA</u> Medium to light green, fine grained, brecciated fragments; in diameter, sub-angular, with argillaceous material inside fractures. Slightly chloritized and carbonated. Trace to in disseminated cubes. 16.80 - 18.92: more brecciated, 1% pyrite, 5% quartz-carbo stringers and amygdules. 19.12 - 20.73: Fault Zone - broken core, 0.6m ground; trac pyrite. 20.73 - 22.58: 10-15% quartz-carbonate stringers, 2% pyrite</pre>	y than ln m wide, 0.5-2cm the 2% pyrit nate xe	nm 50 50 50 50 50	001 tr 102 1 103 1 104 2 105 2 106 2	16.80 17.95 18.92 19.50 20.73 21.58	17.95 18.92 19.50 20.73 21.58 22.58	1.15 0.97 0.58 1.23 0.85 1.00	(actual	0.73)	0.01 0.01 0.01 0.01 0.01 0.01		
ONTO	22.87	70.82	BASALT											
- TOR6			Massive flows, medium green, fine to very fine grained, ver uniform. 5% carbonate veinlets and anwrdules (elongated)	y 20-500	50	07	26.00	26.82	0.82			tr.		
TED -			to core axis. There are many flows in the sequence marked	by sharp	o 50	08	28.87	29.61	0.74			tr.		
			24.80 - 25.47: flow breccia. 26.00 - 26.82: brecciated, 30% quartz-carbonate, 8% pyrite 27.00 - 27.82: guartz-carbonate stringers, 5° to core axis	2 .	50	09	30.30	31.27	0.97			tr.		
			epidote.	-		-								

FORM 2

NAME OF PROPERTY McDermott

HOLE NO. MC-84-54 SHEET NO. 2 OF 6

FOO	TAGE	BECCRIPTION			SAMPI	-E				ASSAYS		
FROM	то	DESCRIPTION	NO.	", SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	••	OZ TON	OZ TON	
		28.87 - 29.61: slightly brecciated, quartz-carbonate veining at	5011		33.32	34.16	0.84			tr.		
		29.17 - 29.32: 15% coarse pyrite. 30.30 - 31.27: slightly brecciated, 10% quartz-carbonate veinlets.	5012		37.80	38.69	0.89			tr.		
		30.38 - 30.52: 50% quartz-carbonate, 10% pyrite. 32.47 - 34.16: Fault Zone - heavily broken core.	5013		43.47	43.91	0.44			tr.		
		32.92-33.32: quartz vein with a few basalt xenoliths, 15% carbonate, mostly barren.	5014		65.93	66.44	0,51			tr.		
	2 	37.80 - 38.69: quartz-carbonate veins, 1cm wide, parallel to core axis, not mineralized.										
		43.60 - 43.87: quartz-carbonate veinlets, 70° to core axis, 2% pyrite.										
		65.93 - 66.44: quartz-carbonate veining, parallel to core axis, pinkish in colour.										
70.82	89.10	BASALT										
		Coarse grained, gradational contact with the adjoining units becoming coarser from 70.82-73.69 and finer from 87.50-89.10 m. The coarse grains are up to 7mm in diameter, very homogeneous, massive; 5% quartz-carbonate stringers, 30-50° to core axis, 5-10% epidote. The center of the flow can easily be mistaken for an intrusive if the contacts are not seen. 70.82 - 71.77: brecciated. 71.77 - 73.69: numerous yellowish dykelets, 2-4cm wide with pinkish margins and 5-10% associated pyrite; 75-85° to core axis.	5015 5016 5017	5 5 5	70.82 71.77 72.69	71.77 72.69 73.69	0.95 0.92 1.00			tr. tr. tr.		
89.10	103.40	FLOW BRECCIA										
		very fine grained, medium to light green, basaltic, brecclated sub-angular fragments, 0.2-5cm with interstitial carbonate, but without the argillaceous material as in 14.28-22.87 m. 2% quartz-carbonate stringers, 30-70° to core axis.										
									-			

NAME OF PROPERTY_____

McDermott

HOLE NO. ________ MC-84-54 _______ SHEET NO. ______ 3 OF 6

FOO	TAGE	DESCRIPTION	SAMPLE							ASSAYS		
FROM	то	DESCRIPTION	NO.	" SULPH	FROM	FOOTAGE TO	TOTAL		-	OZ TON	OZ TON	
103.40	104.80	FAULT ZONE Highly broken core, chloritized, dark green.	5018 5019		103.40 104.30	104.30 104.80	0.90 0.50			tr. tr.		
104.80	106.66	QUARTZ VEIN										
		Massive, white quartz with a few xenoliths of pyritized, silicified sediments. Silicified sediments; 10% pyrite: 104.80-104.90; 104.98-105.12; 105.97-105.81; 106.22-106.33; 106.44-106.56 meters.	5020 5021	3 5	104.80 105.77	105.77 106.66	0.97 0.89			tr. tr.		
106.66	109.20	SILICIFIED SEDIMENTS										
		Dark grey to beige, with 15% greyish quartz veining, 70° to core axis, up to 10cm wide and up to 10% pyrite. Very heterogeneous, laminations at 30-60° to core axis, irregular.	5022 5023 5024	3 3 8	106.66 107.66 108.40	107.66 108.40 109.20	1.00 0.74 0.80			0.14 0.01 0.01		
109.20	111.56	SEDIMENTS										
		Light to dark green, well laminated with alternating pale and dark beds; 45-50° to core axis, carbonated.	5025 5026 5027	1 1 1	109.20 110.30 110.95	110.30 110.95 111.56	1.10 0.65 0.61	(actua	1 0.90)	0.05 0.01 0.01		
111.56	118.75	BASALT										
		Medium to dark green, fine grained, slightly brecciated, 10% quartz- carbonate veinlets, 0.2-0.5cm wide, 30-60° to core axis.										
118.75	120.07	INTRUSIVE (SEDIMENT?)										
		Pinkish green, massive, fine grained with up to 5% disseminated fine pyrite; contacts at 60° to core axis; 10% quartz-carbonate veinlets, magnetic.	5028	3	118.75	120.07	1.32			0.01		
120.07	121.23	TUFFS										
		Dark green, 15% carbonate stringers, 50 ⁰ to core axis. 120.88-120.93: dykelet, same as above.	5029	2	120.07	121.23	1.16			0.01		
		i i										

FORM 2

⊷.

-

NAME OF PROPERTY______McDermott

HOLENO MC-84-54	SHEET NO 4 OF 6
	3REET NO 01 0

F	DOTAGE	DETCRIPTION			SAMPI	Ē				ASSAYS		
FROM	то		NO,	SULPH	FROM	FOOTAGE TO	TOTAL	•	~.	OZ TON	OZ TON	
121.2	23 122.10	INTRUSIVE (SEDIMENTS?) Same as above 118.75-120.07 meters. 1% pyrite, contacts at 65° to core axis.	5030	2	121.23	122.10	0.87	(actua	1 0.83	0.01	Rech.	
122.1	0 127.93	BASALT										
		Dark green, chloritized, 10-15% carbonate veinlets, 0-50° to core axis; 0.1-1cm wide, often displaced by later fracturing. Contact at 127.93 meters is fairly well defined.										
127.9	93 133.37	SEDIMENTS Dark to greyish-green, fine grained (1-3mm), well laminated, 40-50° to core axis; 8% quartz-carbonate veinlets, 0.2-2cm wide, 30-45° to core axis. Chloritized and moderately carbonated; grain size is increasing down the hole.	5031 5032 5033 5034 5035 5026		127.93 128.93 130.00 131.00 132.00	128.93 130.00 131.00 132.00 133.00	1.00 1.07 1.00 1.00 1.00			0.01 0.01 tr. tr. tr.		
133.3	7 164.30	MAIN MINERALIZED ZONE Includes the usual three units; the upper transition zone, main silicified zone and the lower transition zone.	5036		133.00	133.37	0.37			tr.		
⁰ / ₂ 133.3	7 134.00	UPPER TRANSITION ZONE			-							
TORONTO - 366		Sediments, greenish to pinkish grey, gradually becoming more silicified down-hole and increasing grain size up to 1cm. Well laminated, 50-60° to core axis, weakly chloritized and carbonatized. 2-3% very fine grained pyrite in the matrix. 133.40-133.50: clay filled <u>FAULT</u> , same as seen in previous holes.	5037	3	133.37	134.00	0.63			0.10	0.14	
134.0	0 147.95	MAIN SILICIFIED ZONE Honey to purplish coloured; the beginning of the zone is honey, becoming purplish down the hole. Intensely silicified, weakly carbonated compared to the overlying sediments. Alternating honey and purple horizons. Well laminated in places, 40-50° to axis.										

FORM 2

-

FORM 2

NAME OF PROPERTY

McDermott

HOLE NO. MC-84-54 SHEET NO. 5 OF 6

FOO	TAGE		DESCRIPTION								ASSAYS		
FROM	то		DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	~	-	OZ TON	OZ TON	
		134.00-135.00: 135.00-136.80: 136.80-138.83: 138.83-139.42: 139.42-140.42: 140.42-141.38: 141.38-142.47: 142.47-143.86: 143.86-144.60: 144.60-146.60: 146.60-147.95: 147.95:	purplish, some honey coloured areas. honey, purplish coloured zones, 6% pyrite. honey coloured, very few purple zones, 2-3% pyrite. fine grained, honey coloured, up to 10% fine, disseminated pyrite. purplish, honey coloured zones, 2-3% pyrite. honey to reddish coloured, less silicified, well laminated with some chlorite patches (unsilicified sediments). slightly less silicified, finer grained, more matrix than above, laminated at 45° to core axis, some sections at 30° to axis. greenish-grey; brecciated with broken grey cherty fragments, silicified with some patches of unsilicified matrix. honey coloured, brecciated, 3% pyrite. greyish to honey coloured, with 5% chloritic patches. Brecciated, cherty in places, poorly laminated. purplish to honey coloured, brecciated, poorly laminated. arbitrary contact.	5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054	2 2 5 7 3 10 2 5 3 3 2 3 3 2 3 4	134.00 135.00 136.00 136.80 137.80 138.83 139.42 140.42 141.38 142.05 142.47 143.40 143.86 144.60 145.50 146.60 147.30	135.00 136.00 136.80 137.80 138.83 139.42 140.42 141.38 142.05 142.47 143.40 143.86 144.60 145.50 146.60 147.30 147.95	1.00 1.00 0.80 1.00 1.03 0.59 1.00 0.96 0.67 0.42 0.93 0.46 0.74 0.90 1.10 0.70 0.65			0.08 0.12 0.09 0.06 0.18 0.24 0.08 0.13 0.08 0.10 0.04 0.01 0.07 0.06 0.10 0.03 0.04	Rech. 0.09 0.10 0.11 0.10 0.18 0.30 0.09 0.13 0.09 0.13 0.05 0.10 0.04 0.01 0.07 0.04 0.03 0.03 0.03	
147.95	164.30	LOWER TRAN Alternating ban 10-50cm wide, wi upper part of th zone; the average laminated. 147.95-148.70: 148.70-149.65: 149.65-150.42: 150.42-152.50:	ASITION ZONE ds of silicified and non-silicified sediments, from ith up to 80% of the rock being silicified in the he zones, and up to 20% in the lower part of the ge being above 60% for the whole zone. Poorly greenish-grey, chloritized, broken chert fragments. purplish-grey, silicified, brecciated. green, fine grained, chloritized sediments, poorly laminated, 10-25° to core axis. wide, silicified, purplish-grey to green zones, separated by narrow, chloritized green sediments, poorly laminated, 30-40° to core axis, 1-2% py.	5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065	3 2 3 1 1 2 1 2 1	147.95 148.70 149.65 150.42 151.42 152.50 153.35 154.00 155.10 155.46 156.30	148.70 149.65 150.42 151.42 152.50 153.35 154.00 155.10 155.46 156.30 157.30	0.75 0.95 0.77 1.00 1.08 0.85 0.65 1.10 0.36 0.84 1.00			0.01 0.02 0.01 0.05 0.01 0.01 0.01 0.15 0.05 0.14	0.03	

tı

FORM 2

NAME OF PROPERTY _____ McDermott

HOLE NO. _____MC-84-54_____ SHEET NO. ____6 OF 6_____

	F00	TAGE		DESCRIPTION			SAMPL	Ē				ASSAYS		
1	ROM	то.		DESCRIPTION	NO.	SULPH	EROM	FOOTAGE	TOTAL	~.	~,	OZ TON	OZ TON	
\vdash						IDES	PRUM	10	TOTAL					
			152 50 154 00.	groon chloritized codiments with minor silicified	5066	2	157 30	157 90	0.60			0.03		
			152.50-154.00:	numlish zones 300 to core axis	5067	2	157.90	158.60	0.70			0.01		
			154.00-157.90:	dark grey to purplish, fine grained, 75% silicified	5068	1	158.60	159.36	0.76		•	0.02		
			154000 1570500	sediments, fairly uniform, weakly brecciated and	5069	2	159.36	160.00	0.64			0.09		
				mineralized, 1-2% very fine pyrite.	5070	2	160.00	161.10	1.10			0.07		
			157.90-161.10:	50% green sediments alternating with 50% silicified	5071		161.10	161.80	0.70			0.01		
				sediments; purplish, some cherty bands, brecciated,	5072		161.80	162.80	1.00			0.04		
				poorly mineralized.	5073		162.80	163.80	1.00			0.01		
			161.10-164.30:	light green, fine grained sediments, 25% silicified	5074		163.80	164.30	0.50			0.18		
				with purplish zones, poorly laminated, 40° to core										
				axis.										
				162.50: fractured zone.	1									
1.	1 20	100 15	CEDIMENTIC		5075		164 30	165.30	1.00			0.01		
	54.50	100.12	SEDIMENTS		5076		165.30	166.30	1.00			0.04		
			Medium green, f	ine grained, carbonatized, poorly laminated, 35° to	5077		166.30	167.30	1.00			0.01		
			core axis. 15-2	0% guartz-carbonate veinlets, 0.2-1cm wide, 30-60°	5078		167.30	168.30	1.00			0.01		
			to core axis.	The lower contact with the volcanics is uncertain and	5079		168.30	169.30	1.00			0.01		
			diffuse.		5080		169.30	170.30	1.00			0.01		
					5081		170.30	171.30	1.00			0.01		
18	30.15	183.80	BASALT		5082		171.30	172.30	1.00			0.02		
					5083		172.30	173.30	1.00			tr.		
æ			Dark green, les	s carbonated than adjoining sediments, 5%	5084		173.30	174.30	1.00			tr.		
9			quartz-carbonat	e stringers, 30-450 to core axis.	5085		1/4.30	1/5.30	1.00			tr.		1
Ś					5086		175.30	177 20	1.00			tr.		-
36					5087		177 30	178 30	1.00			+r		
빙					5089		178.30	179.30	1.00			tr.		
Ĕ					5090		179.30	180.15	0.85			tr.		
8					5050		2							
입														
ᆡ			·											
핀														
Σ			183.80 meters	END OF HOLE										
ğ														
E I														
Σ														
Z ∠														

	NAME O HOLE NG LOCATIO ELEVATIO STARTED F O O T	F PROP D. <u>Mc</u> N <u></u> E <u>9</u> ON <u></u> D <u>Febru</u> F A G E	ERTY McDermott FOOTAG $-84-55$ LENGTH 229.21 meters 0 $+ 50$ DEPARTURE $1 + 48$ S 0 $+ 50$ DEPARTURE $1 + 48$ S 0 $- 344^{\circ}$ DIP -70° 91.46 $- 344^{\circ}$ DIP -70° 167.0 $- 379^{\circ}$ FINISHED February 10, 1984 167.0	GE	DIP A 70° $69^{1_{2}^{\circ}}$ $66^{1_{2}^{\circ}}$ $63^{1_{2}^{\circ}}$	ZIMUTH	S A M F	DIP		HOLE I REMA LOGGE	NO. <u>MC-</u> RKS <u>C</u>	Gilles C	EET NO Dilled Cousignar	nt
	FROM	то			NO	. SULP	FROM	FOOTAGE	TOTAL	36	76	OZ/TON	OZ/TON	
	0	14.63	CASING											
والمواقع والمحافظة والمرابعين والمرافع والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ	14.63	61.30	BASALT Medium to coarse grained, dark green, massive, can be mistaken for an intrusive, but is a flow center. Gradual contacts with adjoin units, fine grained in contact zones. 2% quartz stringers, 5% epidote, trace pyrite. 21.90 - 22.90: 5-8% coarse, disseminated pyrite. 44.30 - 44.46: greyish quartz vein. 60-30 - 61-30: gradual contact going from coarse to fine grained	or ning d.	509	1 5	21.90	22.90	1.00			tr.		
	61.30	78.78	BASALT (ANDESITE?)	u•		- - 					-			
10-366-1168			Fine grained, medium green, massive, fairly homogeneous, in seven flows, separated by pillows and flow breccia zones. 4% quartz-carbonate amygdules, elongated, 2-4mm in diameter; 5% quan carbonate stringers. 64.28 - 64.58: quartz veins, 5% pyrite. 73.22 - 74.13: brecciated, greyish-green, 10% quartz. 77.48 - 78.78: flow breccia, fragments oriented 30-35° to core axis, carbonatized, 2% pyrite in veinlets.	ra1 rtz-	5093 5093 5094	2 5 3 2 4 2	64.28 77.48 78.38	64.58 78.38 78.78	0.30 0.90 0.40			tr. tr. tr.		
LANGRIG LIMITED - TORON	78.78	91.72	ANDESITE? Medium to pale green, fine grained, heterogeneous, represents a series of thin flows, separated by pillow and flow breccia. 5% quartz-carbonate stringers, 5% epidote. 87.26 - 87.38: quartz-carbonate veinlets, flow contact, 10% pyrite.		509	5 10	87.20	87.50	0.30			tr.		

_

• ----- ---- ----

NAME OF PROPERTY McDermott

HOLE NO. MC-84-55 SHEET NO. 2 OF 6

F001	TAGE	DEFORMATION .			SAMP	LE				ASSAYS		
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	~.	~	OZ TON	OZ TON	
91.72	96.93	BASALT										
		Medium green, fine to very fine grained, very homogeneous, massive, 2% carbonate stringers.										
96.93	108.35	BASALT										
		Medium to dark green, medium to coarse grained, massive, 1% quartz-carbonate stringers, trace hematite in fractures. 105.00-108.30: gradually decreasing in grain size toward contact.										
108.35	110.38	QUARTZ VEIN										
		Bull quartz, white, with 10% xenoliths of dark green, chloritized lava, and chlorite filled fractures. 2-3% pyrite in stringers, localized, trace chalcopyrite. 110.23-111.38: quartz-carbonate, green, 7% finely disseminated pyrite.	5096 5097	3 3	108.35 109.42	109.42 110.38	1.07 0.96			tr. tr.		
110.38	113.60	SEDIMENTS										
00		Dark green, tuffaceous, well laminated, 55-60° to core axis, chloritized; 15-20% quartz-carbonate veinlets, usually parallel to the laminations. Black (argillite?) filling in between fragments.	5098 5099 5100	7 1 1	110.38 111.40 112.40	111.40 112.40 113.60	1.02 1.00 1.20			tr. tr. tr.		
113.60	136.60	BASALT										
		Dark green, chloritized, numerous flows separated by pillow and flow breccia, some parts are vesicular. Few hematite filled fractures. 10% carbonate stringers, 1-2mm, 40-60° to core axis; few quartz veinlets, 1-2cm, 50° to core axis. 113.60-115.20: dark green, weakly brecciated. 115.20-119.78: lighter green, possibly pillowed, slightly silicified due to quartz veining and filling, 1% pyrite. 133.00-136.60: numerous tuffaceous interbeds, more or less laminated, 40° to core axis, carbonatized.	5101 5102		115.45 117.46	116.60 118.71	1.15	(actua	1 0.95)	tr. 0.01		

NAME OF PROPERTY_____MCDermott

HOLE NO. MC-84-55 _____ SHEET NO. _____ OF 6

FOO	TAGE				SAMPL	-E				ASSAYS	
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE TO	TOTAL	·	~.	OZ TON	OZ TON
36.60	141.55	TUFFS Dark green, chloritized, carbonated, more or less well laminated at 40-45° to core axis; 15% black, cherty beds and possibly thin, less than 1cm flows; trace to 2% pyrite.	5103 5104 5105		136.60 139.46 140.51	137.50 140.51 141.55	0.90 1.05 1.04			0.01 0.01 0.01	
41.55	142.28	SEDIMENTS Pinkish-grey due to hematite staining, fairly massive, fragments up to 4mm, poorly laminated at 40° to core axis. Very similar to what has been called "mafic intrusive" in previous holes (ie. #54), but non-magnetic. Heavily carbonatized, contacts well defined. Trace pyrite.	5106		141.55	142.28	0.73			0.01	
42.28	144.08	<u>VOLCANICS</u> Mixed tuffs and lavas, poorly or not laminated at all, dark green, fine grained, 5% carbonate veinlets.									
144.08	146.63	<u>SEDIMENTS</u> Same as 141.55-142.28 m, pinkish-grey, fine to medium grained, trace pyrite.	5107 5108 5109	tr tr tr	144.08 144.94 145.61	144.94 145.61 146.61	0.86 0.67 1.00			tr. tr. tr.	
146.63	160.72	BASALT Medium green, fine graned, with alternating flows and flow breccias, sometimes silicified at flow contacts, 7% quartz-carbonate veinlets at 45° to core axis. 149.40-149.92: creamy coloured, silicified (cherty), no pyrite, brecciated.	5110		149.40	149.92	0.52			tr.	
160.72	169.10	BASALT Coarse grained, dark green, center of a flow, phenocrysts up to O.3cm, gradual contacts. Massive, some hematite along fractures.									

McDermott NAME OF PROPERTY____

HOLE NO. MC-84-55 SHEET NO. 4 OF 6

F00	TAGE	DESCRIPTION	[SAMPI	_E			ASSAYS		
FROM	то		NO.	SULPH	FROM	FOOTAGE	TOTAL	 	OZ TON	UZ TON	·
169.10	173.65	SEDIMENTS									
		Medium green, chloritized, carbonatized, from poorly laminated at 169.10 to well laminated at 178.65 meters. Light green near the contact at 173.65 meters. Upper contact is arbitrary. 169.36-170.50: 7% quartz-carbonate stringers, 0.3 mm. 170.50-173.65: 20% quartz-carbonate veinlets, 15-50° to core axis, laminations are 45-50° to core axis; trace to 2% pyrite.	5111 5112 5113 5114 5115	1 2 tr tr 2	169.10 169.45 171.00 172.00 172.90	169.45 171.00 172.00 172.90 173.65	0.35 1.55 1.00 0.90 0.75		tr. tr. tr. 0.02		
173.65	196.90	MAIN MINERALIZED ZONE									
		Includes an upper transition zone, a main silicified zone and a lower transition zone.									
173.65	174.55	UPPER TRANSITION ZONE									
		70% silicified, olive green, well developed laminations at 45 ⁰ to core axis, 3% disseminated pyrite, carbonatized.	5116	3	173.65	174.55	0.90		0.01		
174.55	182.71	MAIN SILICIFIED ZONE									
		Greenish-grey to honey-grey, highly silicified; very fine fragments seldom laminated, carbonatized, brecciated. Purplish tint in places, variable pyrite content, fine grained, disseminated. 174.55-174.70: Fault Zone - clay, same as in other holes. 174.55-175.30: grey to honey coloured, poorly laminated, 3% fine pyrite. 175.30-177.22: dark grey, honey tint, massive, poorly laminated, carbonatized, 2-3% fine pyrite. 177.22-178.24: better laminated, dark to medium grey with interbedded honey coloured sediments (up to 30%), 50° to core axis, 2% pyrite, slightly brecciated. 178.24-182.71: dark grey to greenish grey, slightly brecciated, rare, honey coloured bands, poorly laminated, 1-2% pyrite. Contact at 182.71 meters is not well defined.	5117 5118 5119 5120 5121 5122 5123 5124 5125	3 2 3 2 1 1 2 1	174.55 175.30 176.17 177.22 178.24 179.22 180.22 181.22 181.22 182.22	175.30 176.17 177.22 178.24 179.22 180.22 181.22 182.22 182.71	0.75 0.87 1.05 1.02 0.98 1.00 1.00 1.00 0.49		0.02 0.02 0.06 0.04 0.01 0.02 0.01 0.07 0.01		

.

NAME OF PROPERTY______McDermott

HOLE NO. _____ MC-84-55 ____ SHEET NO. ___ 5 OF 6

FOOTAGE	DESCRIPTION			SAMP	LE		1		ASSAYS	• • <u>• • • •</u>	
FROM TO	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL		·.	OZ TON	UZ TON	· · · · · · · · · · · · · · · · · · ·
182.71 196.90	LOWER TRANSITION ZONE Dark green, tuffaceous sediments, poorly laminated, containing 25% silicified sediments, alternating with unsilicified zones; 30-50° to core axis. 10% quartz-carbonate veinlets, 0-40° to core axis. 182.71-186.63: dark green tuffs, poorly laminated, 10% quartz- carbonate veinlets, 10% silicification. 186.63-189.28: grey-green, dark, silicified, 5% pyrite stringers	5126 5127 5128 5129 5130 n 5131	1 1 1 1 3 2	182.71 183.75 184.63 185.63 186.63 187.63	183.75 184.63 185.63 186.63 187.63 188.30	1.04 0.88 1.00 1.00 1.00 0.67			0.01 0.01 0.01 0.01 0.01 0.01		
	 189.28-190.46: less silicified, 20% quartz-carbonate stringers. 190.46-193.44: fairly well laminated, 45° to core axis, dark greyish green, 2% fine grained pyrite, brecciated, 50% silicified, 8% quartz-carbonate veinlets. 193.44-194.93: dark green, poorly laminated, 20% silicified, tract to 1% pyrite. 194.93-196.90: 30% silicified, 15% quartz-carbonate veinlets and fillings, brecciated, trace pyrite. 	5132 5133 5134 5135 5136 5137 5138 5139 5140	1 1 1	188.30 189.28 190.46 191.41 192.44 193.44 194.00 194.93 195.90	189.28 190.46 191.41 192.44 193.44 194.00 194.93 195.90 196.90	0.98 1.18 0.95 1.03 1.00 0.56 0.93 0.97 1.00			0.06 tr. 0.11 0.01 0.01 0.02 0.01 tr. tr.		
196.90 229.21	SEDIMENTS										
	 Dark green, probably tuffs, chloritized, poorly to well laminated a 25-40° to core axis; quartz-carbonate veining, and some silicified areas. 196.90-204.70: 15% silicified, dark green tuffs; the silicified zones being greyish; 10% quartz-carbonate stringers trace pyrite. 204.70-210.85: dark green, tuffaceous, poorly laminated, possibly thin basaltic flows, 10% quartz-carbonate stringers carbonatized matrix. 210.85-219.76: dark green, chloritized, tuffaceous, fairly well laminated, 40° to core axis. 20% carbonate veinlets, 25-40° to core axis; matrix is less carbonatized than above. Some rare, cherty, black fragments occur, 2-5mm thick. 	t 5141 5142 5143 5144 , 5145 5146 5147 , 5148 5149 5150 5151 5152		196.90 197.51 198.30 200.56 201.61 202.61 203.61 204.70 205.65 208.17 211.75	197.51 198.30 199.30 200.56 201.61 202.61 203.61 204.70 205.65 206.65 209.17 212.75	0.61 0.79 1.00 1.26 1.05 1.00 1.09 0.95 1.00 1.00 1.00			tr. tr. tr. tr. tr.		• .

LIMITED

ш

LANGR

ORM 2

NAME OF PROPERTY McDermott

HOLE NO. MC-84-55 SHEET NO. 6 OF 6

FOO	TAGE		DESCRIPTION			SAMPI	LE	<u></u>			ASSAYS		
FROM	то			NO.	T. SULPH	FROM	FOOTAGE TO	TOTAL	•	~.	OZ TON	UZ TON	
		219.76-227.10: 227.10-229.21: 226.16-226.22:	dark green tuffs, 10% silicified zones, 15% quartz- carbonate stringers, matrix not carbonatized, fairly well laminated. dark green, poorly laminated, chloritized, massive, fine grained; 5-7% quartz-carbonate veinlets. Must be close to the volcanic contact. Fault? Broken core.	5153 5154 5155 5156 5157 5158 5159	2 3 1 2 1	215.18 218.85 219.76 222.80 223.85 224.91 226.16	216.18 219.76 220.76 223.85 224.91 226.16 227.10	1.00 0.91 1.00 1.05 1.06 1.25 0.94			tr. tr. tr. tr. tr. tr. tr.		
1366-1168 10100		229.21 meters	END OF HOLE CASING PULLED										

NAME O		ERTY <u>McDermott</u> 1c-84-56 LENGTH <u>185.38 meters</u>	FOOTAGE	DIP	AZIN			DIP AZ		REMA	RKS	SH	LET NO	-
LOCATIO LATITUD ELEVATI STARTED	E 7 +	$\begin{array}{c} -00 \ E \\ \hline \end{array} \\ $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \end{array} \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\	0 46.00 92.00 137.00	-70° -68° -63° -63°						LOGGE	D вү <u>G</u>	illes Te	ousignar	3.
FOO	TAGE	DESCRIPTION					SAMP	LE			A	SSA'	rs	=
FROM	то				NO.	SUL PH-	FROM	FOOT AGE TO	TOTAL	36	76	OZ/TON	OZ/TON	
0	7.58	CASING												
7.58	41.50	BASALTS			-1		25.25	27.00	0.00			0.00		
		Medium to light green, fine to very fine grained, fractured are many flows separated by finer grained, lighter green co zones, from 2-6cm wide at approximately 45° to core axis. Hematite staining in fractures. 5% carbonate stringers, 3 core axis. Weakly chloritized, trace pyrite in contact zon 29.65 - 41.50: more massive, slightly darker green, coarso grained. 36.35 - 37.28: contact zone between two flows, greyish grey silicified, brecciated, trace hematite and fractures.	a; ther ontact 5-60° t nes. er een, pyrite	e o in	5160		30.35	37.28	0.93			0.02		
41.50	42.30	FAULT ZONE Heavily broken core, red clay filling.			5161		41.50	42.30	0.80			0.01		
42.30	46.85	BASALTS Medium to light green, fine grained, same as 7.58-41.50 me hematite(?) or red clay in fractures.	ters; s	ome										
46.85	60.00	BASALTS Medium to dark green, medium to coarse grained, thicker flo the preceding unit, very massive, homogeneous, very gradual contacts. 58.40 - 60.00: gradual contacts, becoming finer grained, brecciated.	ows tha 1	n										

HOLE NO. Mc-84-56 SHEET NO. 1 OF 6

NAME OF PROPERTY______McDermott

HOLE NO. MC-84-56 SHEET NO. 2 OF 6

FOOT	TAGE				SAMPL	.E			ASSAYS		
FROM	то	DESCRIPTION	NO.	7, SULPH	FROM	FOOTAGE TO	TOTAL	 ۰.	OZ. TON	OZ TON	
60.00	66.45	<u>FLOW BRECCIA</u> Fine grained basalts, medium to dark green, brecciated, sub-rounded fragments up to 1cm in diameter, slightly carbonated; flow contacts. 64.00 - 66.45: more massive.									
66.45	76.55	<u>BASALTS</u> Fine grained near contact, becoming gradually coarser grained toward center of flow, dark green, massive. 3% carbonate stringers.									
76.55	78.16	<u>TUFFS</u> Medium to light green, basaltic, well laminated at 50 ⁰ to core axis. Trace hematite, 1% pyrite, 15% quartz-carbonate veins up to 6cm wide, 50 ⁰ to core axis.	5162 5163	1 1	76.55 77.73	77.73 78.16	1.18 0.43		0.01 0.01		
78.16	81.25	<u>FLOW BRECCIA</u> More or less brecciated, medium green, fine grained; contacts not well defined. 3% thin carbonate stringers. BASALTS									
	111 10	Dark green, massive, medium to coarse grained, gradual contacts, finer grained near the contacts, homogeneous, 1% hematite in fractures, less than 5% quartz-carbonate stringers, 40-50° to core axis. 91.30 - 91.55: quartz veins, fractures, with red clay between fragments.									
	111.10	Dark green, medium to coarse grained like unit above, but heavily broken core, 1-2% hematite in fractures, chloritized. Represents a FAULT ZONE.	5164		103.40	103.95	0.55		tr.		

-

FORM 2

NAME OF PROPERTY McDermott

HOLE NO. _____ MC-84-56_____ SHEET NO. ____ 3 OF 6

F	OOTAGE	DESCRIPTION			SAMP	E			ASSAYS		
FRO	и то	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE TO	TOTAL	~ *	 OZ TON	UZ TON	
		 102.53-103.40; 104.75-105.05; 105.75-106.55; 106.75-107.80 meters: FAULT ZONE - very heavily broken core, gangue material (clay, plus hematite, red clay). 103.40-103.95: fine grained, tuffaceous, 1-2% pyrite, 15% quartz veining. 103.95-106.55: finer grained, dark green basalt. 									
111.	10 120.94	BASALTFine grained, medium to light green, highly broken core, alternating medium and light green zones, 10-15cm wide, often brecciated, numerous (15%) carbonate stringers with subsequent fracturing, 40-70° to core axis. Possibly flow or pillow breccia, 1-2% hematite in fractures.111.10-113.18: heavily broken core, 2% hematite in fractures, chloritized.112.17-113.18: quartz-carbonate vein, 1cm wide, parallel to core axis.117.15-117.35: very heavily broken core, chloritized, 1% red hematite staining.									
120. 8911-996-1-1	94 128.37	BRECCIATED BASALT Dark to medium green, fine grained flow breccia, angular fragments up to 1cm in diameter with carbonate filling between the fragments. Fairly massive; gradual contacts, not mineralized, but some hematite staining.									
LANGRAGE LIMITED - TORONTC	37 133.65	SEDIMENTS Dark green, chloritized, fine to medium grained, poorly laminated, gradual and poorly defined contacts. 12% carbonate. 130.00-131.25: possibly volcanics, not laminated, dark green, fine grained. 131.25-133.65: fractured, very heavily broken core, chloritized, 10% silicified zones, dark grey to honey coloured, 1-2% pyrite, poorly laminated, 45° to core axis.	5165 5166 5167		131.25 132.25 133.25	132.25 133.25 133.65	1.00 1.00 0.40		tr. tr. tr.		

NAME OF PROPERTY McDermott

HOLE NO. _____ MC-84-56_____ SHEET NO. ____4 OF 6_____

FOO	TAGE		SAMPLE NO T. SULPH FOOTAGE						ASSAYS		
FROM	то	DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE	TOTAL	7.	OZ TON	OZ TON	
133.65	154.60	MINERALIZED ZONE Includes an upper transition zone, very highly fractured and heavily broken core, 4.5 meters long with 30% silicified zones, and 70%									
		chloritized sediments. This zone is followed by the main silicified zone, which is not typical; purplish to pinkish with some honey coloured areas; 85% silicified, brecciated and sometimes carbonatized, slightly mineralized with pyrite (1-3%). Finally, it is followed by the lower transition zones, with alternating purplish, silicified zones up to 1 meter wide, and green, unsilicified, well laminated sediments, 50° to core axis, poorly mineralized.									
133.65	138.17	UPPER TRANSITION ZONE									
		Fractured, very highly broken core, continuation of the fault zone. 50% dark grey to pinkish silicified zones, alternating with dark green, chloritized, unsilicified sediments. 10-15% carbonate, poorly to well laminated at 45° to the core axis. Pinkish to reddish colour due to pink carbonate veinlets. 137.16-138.17: less fractured and broken. 136.40-137.16: FAULT ZONE - very heavily broken core, light grey, silicified, clay between fragments.	5168 5169 5170 5171		133.65 135.33 136.40 137.33	135.33 136.40 137.33 138.17	1.68 1.07 0.93 0.84		tr. tr. tr. tr.		:
138.17	145.70	MAIN SILICIFIED ZONE									
		Dark, greenish to pinkish grey, less grey than the typical zone, brecciated, silicified, carbonatized in the upper 4 meters; more purplish than usual, very fine disseminated sulphides but chloritized, fractured, and 15% green, unsilicified sediment bands up to 10cm wide. Few honey coloured sections, especially on the upper part of the zone. 138.17-139.20: 50% greyish to purplish and 50% honey coloured; 2-3% sulphides. 139.20-140.14: dark grey to pinkish, 20% honey coloured sections; 1-2% pyrite.	5172 5173 5174 5175 5176 5177 5178 5179		138.17 139.20 140.14 141.05 142.05 143.13 144.20 144.80	139.20 140.14 141.05 142.05 143.13 144.20 144.80 145.70	1.03 0.94 0.91 1.00 1.08 1.07 0.60 0.90		0.07 0.03 0.01 0.03 0.06 0.04 0.04 0.02		

FORM 2

NAME OF PROPERTY______McDermott

HOLE NO. MC-84-56 SHEET NO. 5.0F 6

FOOTAGE				SAMP	LE			ASSAYS		
FROM TO	DESCRIPTION	NO.	M SULPH	FROM	FOOTAGE	TOTAL	~.	OZ TON	OZ TON	
	 140.14-142.05: dark, greenish to purplish, silicified, poorly mineralized (1% pyrite); sediments with 10% dark green, unsilicified section up to 8cm. 142.05-144.20: 60% silicified, pinkish to purplish grey sediments and 40% dark green, poorly laminated, poorly silicified sediments, 1% pyrite. 144.20-145.70: dark, pinkish to purplish grey, 90% silicified, brecciated, 1% pyrite. 									
45.70 154.60	LOWER TRANSITION ZONE									
	Alternating silicified, purplish to pinkish zone and medium to dark green, unsilicified sediments, usually well laminated in unsilicified areas; from 40% silicified at the top to 10% silicified at the bottom of the zone. 145.70-146.47: medium to light green, poorly laminated sediments at 50° to core axis. 146.47-147.60: 50% silicified sediments, 30% pinkish zones, in medium green sediments. 147.60-148.00: medium green sediments. 148.00-148.81: dark, purplish grey, with 30% honey coloured, brecciated, 3% very fine pyrite. 148.40-148.60: pink quartz-carbonate vein at 10° to the core axis. 148.81-150.00: 70% silicified, purplish, brecciated, dark grey to purplish fragments with honey to reddish alteration along fractures. The more it is brecciated the more it is altered. 150.00-150.65: fine grained sediments, dark grey with faint purplish tint, possibly slightly magnetic; similar in texture to what has been called 'mafic intrusive' in other holes, but it is not as red. 150.65-151.60: dark green sediments, dark purplish-grey with 40% unsilicified dark green sediments.	5180 5181 5182 5183 5184 5185 5186 5187 5188 5189		145.70 146.77 147.60 148.00 148.81 150.00 150.65 151.60 152.50 153.50	146.47 147.60 148.00 148.81 150.00 150.65 151.60 152.50 153.50 154.60	0.77 0.83 0.40 0.81 1.19 0.65 0.95 0.90 1.00 1.10		tr. tr. tr. 0.05 0.01 tr. tr. tr.		

RM 2

NAME OF PROPERTY_

HOLE NO. ____

Mc-84-56

McDermott

SHEET NO. 6 OF 6

F00	TAGE	DECODIDITION			SAMPL	-E			ASSAYS		
FROM	то	DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE	TOTAL	<i>.</i>	OZ TON	OZ TON	
		152.50-154.60: 60% silicified sediments, dark greenish-grey to purplish-green, due to slightly silicified zones, laminated at 45° to core axis. Arbitrary Contact.	5190		154.60	155.53	0.93		tr.		
154.60	167.28	SEDIMENTS Dark, medium green, fine to medium grained, well laminated, 40-50° to core axis, 15% quartz-carbonate stringers parallel to laminations, very evenly distributed. 154.60-155.53: fractured parallel to core axis.	5191 5192 5193 5290 5291 5194 5292		155.53 156.53 157.53 158.60 159.90 160.93 161.93	157.53 158.60 159.90 160.93 161.93 162.90	1.00 1.07 1.30 1.03 1.00 0.97		tr. tr. 0.01 0.03 0.03		
167.28	179.05	SEDIMENTS Dark to medium green, poorly laminated, fine grained, tuffaceous sediments, much less carbonatized than previous unit, very few carbonate stringers, more massive.	5293 5294 5195 5295 5196 5296		162.90 163.90 164.45 165.45 166.28 167.28	163.90 164.45 165.45 166.28 167.28 168.28	1.00 0.55 1.00 0.83 1.00 1.00		0.01 0.01 0.10 0.02 0.05 tr.		
179.05	185.38	BASALT Light to medium green, heterogeneous, brecciated, possibly pillow and flow breccia. 183.90-185.38: nice brecciated zone, fragments up to 3cm; angular in fine, epidotized and carbonated matrix.	5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307		168.28 169.30 170.20 171.20 172.20 173.20 174.20 175.20 176.17 177.20 178.20	169.30 170.20 171.20 172.20 173.20 174.20 175.20 176.17 177.20 178.20 179.05	1.02 0.90 1.00 1.00 1.00 1.00 1.00 0.97 1.03 1.00 0.85		tr. tr. tr. tr. tr. tr. tr. tr. 0.02 0.01 0.01		
LANG GE LIMITED - TOROI		185.38 meters END OF HOLE									

		McDermott - Hennessy		A 7 IN411711	EMTAG		AZIMUTH	HOLE	NO	34-57 	HEET NO.	1 OF 6
NAME U		Mc-84-57 139.60 meters	UIP	AZIMUTH	I COTAGE			REMA	RKS_P	0 Core		
HOLE NO)	45.727	700						ş	olit fo	or analy:	sis
LOCATIO	∾ <u> </u>	+ 50 E DEPARTURE $0 + 74 S$ 91.44 -6	<u>590</u>							1	,	
FLEVATIO	2 <u></u>	$47.00 \pm 139.60 - 6$	<u>55</u>			<u> </u>						
STARTED	Febru	uary 17, 1984 FINISHED February 21, 1984						LOGGE	D BY	A.W. V	Jorkman	
							<u> </u>					
FOOT	AGE	DESCRIPTION			SAM	PLE			·	4 5 5 A	YS	
FROM	то		N	O. SULP	FROM	F00T/	TOTAL	- 2%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OZ/TON	OZ/TON	
0	14.90	OVERBURDEN				-						
14,90	61.35	BASALT										
JGE LIMITED - TORONTO - 366-1168		 Medium green to grey-green, fine to medium grained massive flow. The rock becomes variably textured locally below 33.50 meters with epioditized silicified patches up to 5cm. The zone is weakly fractured becoming moderately fractured locally with white carbonat and epidote filling. Rock is non-magnetic and contains 0-1% pyrite as blebs up to 1mm. 46.70 - 47.36: SEDIMENTS - dark green, fine to very fine grained and non-laminated, carries 3-5% pyrite as blebs and cubes up to 2mm. Upper contact is at 35° to core axis. 47.36 - 55.50: fine to very fine grained massive flow with occasional medium grained phases. Strongly fractured with white carbonate filling. Occasional lcm rounded pink xenoliths in lower 1.0 meters. A green clay filled fault zone at 40-45° to the core axis is located at 54.50-54.56 meters. 55.50 - 57.30: flow top breccia - strongly fractured with white carbonate filling. Fragments are angular to sub-angular, up to 2cm in size, and are sharply defined with irregular edges. 57.30 - 61.35: flow breccia - variably developed but seldom well exhibited. Fragments are up to 4cm in size with well developed reaction rims. The zone is locally brecciated due to tectonism with white carbonate filling dilatant zones. 	e :									
LANG			and a state of the									

NAME OF PROPERTY____

HOLE NO.

Mc-84-57

McDermott - Hennessy

SHEET NO

2 OF 6

FOOTAGE SAMPLE ASSAYS DESCRIPTION FOOTAGE SULPH NO. FROM TO OZ TON OZ-TON . 7 FROM TOTAL IDE 5 TO 61.35 73.37 SEDIMENTS 66.50 67.50 0-1 1.00 0.01 Medium to dark green, fine to very fine grained and well laminated. 5197 68.50 5198 0-1 67.50 1.00 0.01 The rock is brecciated along lamination sets with some white to pink 0.99 5199 0-1 carbonate filling. This is possibly due to heat from the overlying 68.50 69.49 0.01 flow and is most apparent above 63.45 meters. Below this point the 5200 0-1 70.50 0.01 69.49 1.01 70.50 71.50 1.00 rock is generally non-brecciated and is better laminated. The 5201 0-1 0.01 72.40 0.90 (actual 0.75) section is weakly to moderately chloritized. Some selective 5202 0-1 71.50 ltr. carbonatization of individual laminations is noted. Zone carries 5203 0-1 72.40 73.37 0.97 tr. 0-1% pyrite as blebs up to 1mm. A zone of ground core is noted at 72.40-72.54 meters. 63.83 - 65.08: BASALT - dark green fine to very fine grained with flow breccia locally. Flow carries reddish xenoliths up to 1.5cm in size. Bedding Laminations: 35-40° to core axis at 61.80 m, and 62.20 m 50-55° to core axis at 69.25 m 40-45° to core axis at 69.80 m 35-40° to core axis at 71.10 m 40° to core axis at 72.20 m 73.37 118.84 MAIN MINERALIZED ZONE This zone is composed of a central highly silicified breccia unit flanked by two transitional, variably silicified units. Pyrite contents increase with silicification up to 10% locally within the highly silicified member. Within the transitional zones, silicification is controlled by locally developed brecciation. 73.37 76.94 TRANSITIONAL SILICIFIED SEDIMENTS Dark green and fine to very fine grained becoming purple-grey and 5204 0-1 73.37 74.00 0.63 tr. aphanitic locally in selected lamination sets and brecciated 5205 0-1 74.00 74.91 0.91 tr. sections. Purple-grey rock is moderately hematized and becomes 5206 0-1 74.91 75.59 0.68 tr. 75.59 76.16 silicified with depth. The percentage of silicified rock gradually 5207 0.57 tr. 0-1 5208 increases with depth. Brecciated and non-brecciated rock alternate 1-2 76.16 76.94 0.78 tr. and control silicification. Some post-brecciation fracturing is

ANGRIDGE LIMITED - TORONTO - 366-1168

NAME OF PROPERTY______McDermott - Hennessy___

HOLE NO. _____ MC-84-57 _____ SHEET NO. ____ 3 OF 6_____

FOOTAGE	DESCRIPTION	SAMPLE							ASSAYS		
FROM TO		NO.	SULPH	FROM	FOOTAGE TO	TOTAL	-	٣.	OZ-TON	UZ TON	
76.94 105.21	 noted throughout accompanied by dilatant type movement. This produces silicified fragments up to 5cm in a green chloritized gritty matrix. Pyrite content is generally 0-18. 73.37: possible fault designated by short sections of ground core with green clay on fractures. 76.00: narrow green clay seam oriented at 40-450 to the core axis - FAULT. 74.10 - 74.42: well laminated at 50° to the core axis. The rock is hematized with a purple-grey colour but is non-silicified. 76.50 - 76.94: strongly silicified; zone develops a typical purple-grey colouration and pyrite increases to 2-38. MAIN SILICIFIED ZONE Purple-grey intensely silicified breccia with minor cream coloured siliceous filling around greyish angular breccia fragments. These fragments are intensely silicified and up to 1.5cm in size. They can often be reassembled into larger fragments. Cream coloured alteration appears to have developed radially away from fracture systems. Pyrite content increases from the overlying unit, and averages 3-58. It is found as a very fine dissemination, as Imm cubes (occasionally), and as 3-5mm clots of smaller grains. Minor green chloritized zones are present locally where silicifying fluids have not penetrated. 76.94 - 80.70: abundant fractures coated with thin chloritized plates. 80.70 - 84.34: massive silicified breccia, few fractures. 84.34 - 84.95: minor honey coloured alteration with increased pyrite up to 78, in part controlled by bedding laminations. These laminations are visible locally despite the brecciation. Minor reddish silicified breccia fragments are visible locally. 84.95 - 87.13: same as 80.70-84.34 m. 	5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222	2-4 3-5 3-5 3-5 2-4 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3	76.94 77.69 78.35 79.00 79.80 80.63 81.40 82.19 83.01 83.85 84.34 85.09 85.85 86.63	77.69 78.35 79.00 79.80 80.63 81.40 82.19 83.01 83.85 84.34 85.09 85.85 86.63 87.13	0.75 0.66 0.65 0.80 0.83 0.77 0.79 0.82 0.84 0.49 0.75 0.76 0.78 0.50			0.03 0.01 0.01 0.01 tr. tr. tr. tr. tr. tr. tr. tr. 0.01 0.02		

NAME OF PROPERTY_____

HOLE NO. _

Mc-84-57

McDermott - Hennessy

4 OF 6 _____ SHEET NO. ____

FOOT	AGE					SAMPL	.E				ASSAYS		
FROM	то		DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL		~.	02 TON	UZ TON	
					1025	FROM							
		87.13 - 88.27:	silicified breccia with abundant reddish and honey	5023	10	87.13	87.77	0.64			0.08		
Ì		0.000	coloured alteration. Relic laminations are visible	5024	4-6	87.77	88.27	0.50			0.05		
}			locally and pyrite is occasionally found as	5025	1-2	88.27	89.17	0.90			0.01		
			semi-massive stringers parallel to the laminations	5026	1-2	89.17	90.19	1.02			0.01		
			(eg. 45-50° to the core axis at 87.47 m). Pyrite	5027	2-3	90.19	90.85	0.66			0.01		
			content is more variable below 87.77 meters.	5028	3-5	90.85	91.72	0.87			0.01		
		88.27 - 90.19:	green gritty chloritized rock carries abundant round	5029	2-3	91.72	92.70	0.98			0.01		
			to lenticular silicified fragments - rip-up clasts?	5030	2-4	92.70	93.4/	0.55			0.02		
		90.19 - 93.20:	90% purple-grey silicified breccia with abundant	5031	2-4	93.47	94.02	0.55			0.01		
			chloritized fractures and seams increasing below	5032	2-4	94.02	94.57	0.88			tr.		
			92.70 meters.	5033	2-4	95.45	96.31	0.86	actual	0.76)	tr.		Í
		93.20 - 95.45:	purple-grey silicified precela, moderately fractured	5035	2-3	96.31	97.01	0.70		,	0.01		
			with chiloritized partings. Pyrite increases rotarry	5036	2-3	97.01	97.55	0.54			0.01		
		OF 45 07 55.	to 38.	5037	2-4	97.55	98.40	0.85			0.02		
		95.45 - 97.55:	contributived with additional sincerned breeced	5038	2-3	98.40	99.26	0.86			0.01		
			the degree of silicification increases below 97.25	5039	2-4	99.26	100.06	0.80			tr.		
			meters to nearly 100%. Relic laminations are noted	5040	1-2	100.06	100.82	0.76			0.01		
			locally (eq. 30° to core axis at 97.25 meters).	5041	0-1	100.82	101.28	0.46			tr.		
		97.55 -102.87:	nurple-grey silicified breccia with abundant	5042	1-2	101.28	102.15	0.87			0.01		
		J74JJ 1024074	chloritized fractures locally. Up to 5% pyrite is	5043	1-2	102.15	102.87	0.72			0.02		
			noted as a very fine dissemination and 2-3mm clots.	5044	8-10	102.87	103.51	0.64			0.08		
			A green chloritized section is noted at	5045	1-3	103.51	104.11	0.60			0.03		
			100.82-101.28 meters which is probably cross-	5046	1–3	104.11	104.64	0.53			0.02		
			laminated at 30° and 45° to the core axis.	5047	1-3	104.64	105.21	0.57			0.02		
			Carries abundant cream coloured siliceous clasts	ł									
			- rip-up?										
		102.87-103.51:	purple-grey silicified breccia with cream to pink										1
			coloured sections. Up to 20% pyrite locally.										1
		103.51-105.21:	purple-grey intensely silicified breccia.										
			Silicification gradually decreases down-hole.										
										1			
										ł			
											[
ł													
													1

,

366-1168 13 TORONTO LIMITED LANGRIDGE

FORM 2

NAME OF PROPERTY______McDermott - Hennessy

HOLE NO _____ MC-84-57 _____ SHEET NO ____ 5 OF 6

FOO	TAGE	DESCRIPTION SAMPLE								ASSAYS		
FROM	то		NO.	TDES	FROM	FOOTAGE	TOTAL			02 TON	UZ TON	
FROM	то 118.84	TRANSITIONAL SILICIFIED SEDIMENTS Dark green and fine grained with abundant purple-grey silicified breccia seams developed throughout. Numerous cream coloured carbonate stringers carry siliceous grit. Silicification is controlled within this zone by brecciation. As the amount of breccia decreases, silicification is found in locally selected laminations. Bedding laminations are moderately well developed, but are irregularly distributed throughout the section. The section is weakly hematized throughout. 105.21-106.88: 10-20% silicified breccia.	5048 5049 5050 5051 5052 5053 5054 5055 5056	0-1 0-1 1-2 1-2 1-2 1-2 1-2 1-2 2-3	FROM 105.21 106.07 106.88 107.80 106.65 109.50 110.35 111.30 112.16 112.06	106.07 106.88 107.80 108.65 109.50 110.35 111.30 112.16 112.96	0.86 0.81 0.92 0.85 0.85 0.85 0.85 0.95 0.86 0.80 0.80	actual	0.81)	0.01 0.03 tr. tr. 0.02 0.01 tr. 0.01 0.04 0.01	GZ TON	
		 106.88-107.69: 50-75% silicified breccia. 107.69-108.19: 25-50% silicified breccia. 108.19-112.16: 10-25% silicified breccia. 112.16-116.38: 90-95% strongly silicified breccia with several chloritized sections up to 10cm. Pyrite averages 5-6%. A cream to honey coloured altered zone carries up to 25% pyrite at 114.05-114.78 meters. Where pyrite is found in the highest concentrations, clots up to 5mm in size are noted. Some reddish silicified breccia with 5-7% pyrite is noted at 115.43-115.85 meters. 	5057 5058 5059 5060 5061 5062 5063 5064 5065	2-3 5-7 10-1: 2-3 5-7 2-4 1-3 1-2 1-2	112.96 113.76 2114.26 114.78 115.43 115.85 116.38 117.21 118.06	113.76 114.26 114.78 115.43 115.85 116.38 117.21 118.06 118.84	0.80 0.50 0.52 1.47.45 0.42 0.53 0.83 0.83 0.85 0.78			0.01 0.21 0.29 0.02 0.11 0.03 0.01 0.02 0.01		
		116.38-118.84: typical green chloritized rock with abundant cream coloured siliceous laminations and bands parallel to bedding laminations. Silicified rock occupies 10% of the section. Occasional rounded purple-grey silicified breccia clasts up to 3cm are noted. Bedding Laminations: 50° to core axis at 106.25 m. 50° to core axis at 116.60 m. 45° to core axis at 117.95 m. 50-55° to core axis at 118.65 m.										
118.84	139.60	SEDIMENTS Dark green fine to very fine grained, generally well laminated becoming less well bedded with depth. Laminations have a mottled appearance locally (eg. 120.53 and 121.10 m), due to the growth of										

FORM 2

NAME OF PROPERTY______McDermott = Hennessy

HOLE NO. MC-84-57 SHEET NO. 6 OF 6

FOOT	TAGE	DESCRIPTION			SAMPI	E				ASSAYS		
FROM	то	DESCRIPTION	NO.	SULPH	EROM	FOOTAGE		<u> </u>	·	OZ TON	OZ TON	
		<pre>1-3mm sub-round carbonate growths which displace the mafic laminations. Alternate laminations are moderately to strongly carbonatized. Occasional breccia seams up to 2cm are moderately silicified. 138.60-139.60: zone of intense silicification, pale to medium grey in colour carrying 4-6% pyrite as 1-2mm cubes. Uppermost contact of zone is at 70° to core axis. The lowermost 20cm is strongly fractured chloritize sediments. Bedding Laminations: (angle measured with respect to core axis) 119.00 m : 55° 120.85 m : 55° 120.85 m : 55° 121.75 m and 122.75 : 60° 123.60 m : 35° 124.45 m : 50°55° 125.20 m : 55° 126.05 m and 127.41 : 60° 128.35 m : 50°55° 129.95 m : 40°45° 131.70 m : 45° 132.90 m and 133.50 : 40° 135.80 m : 45° 137.60 m : 35°–50°</pre>	5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5084 5085 5086 5087 5088 5089	$\begin{array}{c} 1-2\\ 1\\ 1\\ 0-1\\ 0-1\\ 0-1\\ 0-1\\ 0-1\\ 0-1\\ 0-$	118.84 119.49 120.34 121.16 121.95 122.78 123.61 124.47 125.25 126.10 126.90 127.82 128.68 129.50 130.45 131.29 132.17 133.00 133.94 134.81 135.81 136.72 137.58 138.60	119.49 120.34 121.16 121.95 122.78 123.61 124.47 125.25 126.10 126.90 127.82 128.68 129.50 130.45 131.29 132.17 133.00 133.94 134.81 135.81 136.72 137.58 138.60 139.60	0.65 0.85 0.82 0.79 0.83 0.83 0.83 0.86 0.78 0.85 0.80 0.92 0.86 0.92 0.86 0.82 0.95 0.84 0.83 0.94 0.83 0.94 0.87 1.00 0.91 0.86 1.02 1.00			0.01 tr. tr. tr. 0.01 0.01 tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		
		139.60 meters END OF HOLE CASING PULLED									2	

NAME O HOLE NO LOCATIO LATITUD ELEVATI STARTED	F PROP D MC E9 + ON DFebr	ERTY 	McDermottNGTH234.06 metersPARTURE $1 + 61 S$ IMUTH 344° DIP -70° NISHEDFebruary 27, 1984	FOOTAGE D 45.72 -7 91.44 -6 137.16 -6 224.94 -6	IP AZ IN 0 ⁰ 7 ⁰ 7 ⁰ 6 ⁰		FOOTAGE	DIP	AZIMUTH	HOLE I REMA	NO. <u>MC-</u> .RKS	84-58 st BQ Core Split f A.W. Wo	or analy	1 OF 6 ysis
FOO	TAGE						5 A M 8	PLE		1		ASSA	Y S	
FROM	то		DESCRIPTION		NO.	SUL PH-	FROM	FOOTAG TO	E TOTAL	- 73	76	OZ/TON	OZ/TON	
о	15.85	OVERBURDE	N											
15.85	135.51	BASALT												
		Dark green to g and very fine g limited and rel carries up to 1 flows are massi is non-magnetic 15.85 - 18.55: 18.55 - 24.50: 24.50 - 30.30: 30.30 - 36.00: 36.00 - 41.35: 41.35 - 55.30: 55.30 - 77.10: 77.10 - 79.05: 79.05 - 79.98: 79.98 - 81.20: 81.20 - 82.37:	rey-green, generally fine grained but rained phases. Aphanitic, often sili ated to pillow rims and flow margins. # pyrite locally as blebs up to 0.2mm we and overly pillowed flows. The vo fine grained basal flow with minor x contact is at 38° to the core axis. vesicular flow top. fine grained massive flow. medium grained massive flow carries chalcopyrite associated with locally epidotized fractures. medium to coarse grained massive flo to 5mm locally. medium grained massive flow with a f mafic intrusive (or xenolith) at 47. fine grained massive flow with minor developed locally (30° to core axis medium grained massive flow. fine grained massive flow. fine grained to aphanitic silic bottom. aphanitic silicified sediments; prok tuffaceous.	t carrying medium icified zones are . The section m. The uppermost blcanic sequence kenoliths. Flow a trace of y developed ow - pyroxenes up fine grained .50-47.64 m. r shears at 58.40 m). ained with cified flow bably										

1

ANGRIDGE LIMITED – TORONTO – 366-1168

NAME OF PROPERTY_____ HOLE NO. ______MC-84-58 McDermott

_____ SHEET NO. ____ 2 OF 6

FOO	TAGE	DESCRIPTION			SAMPI	LE				ASSAYS		
FROM	то		NO	. SULPH	FROM	FOOTAGE	TOTAL	÷	~	OZ TON	UZ TON	
		 82.37 - 87.78: fine grained vesicular flow. 87.78 -121.60: fine grained pillowed flow(s) - pillow tops are occasionally vesicular and a strongly vesicular zone at 114.20-114.70 may reflect a questionable flow contact at 114.10 meters. The section becomes weakly brecciated with depth. 121.60-127.10: fine to very fine grained massive flow with gradually increasing grain size down-hole. 127.10-135.51: fine grained massive flow becoming medium grained locally. The lowermost 15cm is finer grained. 										
135.51	137.30	QUARIZ VEIN	l									
		White bull quartz with abundant dark green detritus and xenoliths near contacts. Areas near contacts carry up to 5% pyrite, often as cubes up to 4mm in size.	5308 5309	1-2 1-2	135.51 136.44	136.44 137.30	0.93 0.86			tr. tr.		
137.30	149.03	SEDIMENIS	5210	1 2	127 20	120.20	0.00			.		
149.03	149.85	Dark green fine to very fine grained with moderately to well developed laminations locally. The rock is weakly chloritized and moderately carbonatized locally - usually in patches along the laminations. Occasional white bull quartz veins up to 5cm in width are noted above 140.25 meters. The sediments carry 1-2% pyrite as a very fine dissemination; with up to 4% locally. 137.30-146.70: laminated - 45° to core axis at 137.75 m; 50° to core axis at 141.20 m; 45° to core axis at 143.65; and 55° at 145.65 m. 146.70-149.03: non-laminated, foliated locally, maybe highly tuffaceous. BASALT Dark green with a silicified aphanitic flow top grading downwards to hyaloclastite bearing flow top breccia (angular fragments up to lcm). The central part is flow brecciated with lcm rounded often vesicular fragments bearing reaction rims. The base is strongly brecciated with white carbonate filling voids.	5311 5312 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022	1-2 1-2 1-2 1 1 1 1 1 1 1 1	138.20 139.05 139.95 140.85 141.75 142.65 143.65 144.53 145.40 146.26 147.17 148.00	139.05 139.05 140.85 140.85 141.75 142.65 143.65 144.53 145.40 146.26 147.17 148.00 149.03	0.85 0.90 0.90 0.90 1.00 0.88 0.87 0.86 0.91 0.83 1.03			tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		

NAME OF PROPERTY McDermott

HOLE NO.

MC-84-58 SHEET NO. 3 OF 6

FOO	TAGE	DESCRIPTION			SAMPI	_E			ASSAYS		
FROM	то	DESCRIPTION	NO.	™. SULPH IDES	FROM	FOOTAGE	TOTAL		OZ TON	UZ TON	
149.85	152.95	<u>SEDIMENTS</u> Dark green, weakly foliated, fine to very fine grained with abundant clasts of volcanic rock. Some silicified tuffaceous clasts up to 5cm are noted.									
152.95	178.83	BASALT Medium to dark green, fine to very fine grained and weakly to moderately brecciated. The zone is probably massive flow and contains very little flow breccia. The uppermost 3.5m carries abundant pale green silicified volcanic blocks up to 20cm in size. Abundant quartz veining is noted between 155.05 and 156.60 meters, the largest vein being at 155.05-155.32 meters. Occasional 2-5cm laminated bands resembling sediments are noted (eg. 157.18 - laminated at 40-45° to the core axis). Minor silicification is developed locally, possibly marking flow tops at 164.75-164.90 and 171.32-171.67 meters. A fine to medium grained phase is noted at 175.30-177.90 meters.									
178.83	184.81	SEDIMENTS Dark green fine to very fine grained and non-laminated above 182.10 meters. The zone is probably strongly tuffaceous throughout. The lowermost 2.7m is weakly to moderately laminated with alternating dark green and greyish lmm scale bands. Paler laminations are moderately to strongly carbonatized and carry higher pyrite contents - up to 1% locally. Larger patches of strong carbonatization up to 3cm in size feather out along the laminations. Bedding Laminations: 182.25m: 45-50° (not well developed) 184.10 and 184.70 m: 40° to core axis.	5323 5324 5325 5326 5327 5328 5329	1 1 1 1 1 1	178.83 179.62 180.51 181.43 182.37 183.25 183.25 184.10	179.62 180.51 181.43 182.37 183.25 184.10 184.81	0.79 0.89 0.92 0.94 0.88 0.85 0.71		tr. tr. 0.05 0.01 0.01 tr.		
184.81	219.42	MAIN MINERALIZED ZONE The core of this zone is a variably silicified but usually strongly silicified breccia zone. In contrast to this zone in other holes, the main silicified zone is reactive to HCl thus indicating incomplete silicification. The upper and lower transitional zones									

NAME OF PROPERTY McDermott

HOLE NO. MC-84-58 SHEET NO. 4 OF 6

FOO	TAGE	DESCRIPTION			SAMPI	E				ASSAYS		
FROM	то		NO.	". SULPH	FROM	FOOTAGE TO	TOTAL	[.	۳.	OZ TON	UZ TON	
		carry short sections of silicified breccia. Pyrite contents average 1-2% in the transitional zones and up to 7% in the main silicified zone.										
184.81	187.15	TRANSITIONAL SILICIFIED SEDIMENTS										
		The transitional zone is wider than normal due to the lack of a well developed main silicified zone. The rock is dark green to greyish-green with many silicified fragments and lenses. These silicified fragments or clasts may in part have been ripped up from the underlying zone. Generally, the degree and amount of silicification increases down-hole. Silicification is marked by a greyish tone. A massive silicified bed at 185.34-185.90 meters, which might normally have marked the top of the main silicified zone, carries 10% green chloritized seams. All silicified rock tends to be highly reactive to HCL. Silicification has probably developed as the result of silica bearing fluids penetrating what were formally carbonate or carbonatized horizons. "Rip-up" clasts are also reactive. A 2cm clay seam at 184.98-185.00 dips at 55° to the core axis marking a fault.	5330 5331 5332	1 1 1	184.81 185.71 186.53	185.71 186.53 187.15	0.90 0.82 0.62			tr. tr. tr.		
187.15	193.14	MAIN SILICIFIED ZONE										
		Purple-grey to greyish green, aphanitic to very fine grained, moderately brecciated and variably silicified. Strictly speaking, the main silicified zone is very poorly developed and might be better labelled a transitional-type zone. All silicified rock is strongly reactive to HCl reflecting incomplete silicification. This reactiveness is also noted in seams and patches of green chloritized rock. A moderate to strongly silicified zone is located at 189.42- 191.93 meters. This zone carries higher pyrite contents, up to 7% locally, averaging 3%. Pyrite is present as a very fine dissemination.	5333 5334 5335 5336 5337 5338 5339 5340 5341	1 1 2-3 2-4 1-3 2-3 1-2 1-2	187.15 188.01 188.82 189.42 189.92 190.53 191.30 191.93 192.58	188.01 188.82 189.42 189.92 190.53 191.30 191.93 192.58 193.14	0.86 0.81 0.60 0.50 0.61 0.77 0.63 0.65 0.56			tr. tr. 0.16 0.17 0.10 0.19 0.01 0.01		

NAME OF PROPERTY_

McDermott

Mc-84-58 HOLENO

			н	OLEN	0	Mc-84-	58	SHE	EET NO.	5	DF 6	
F00	TAGE		Ī		SAMPI	_E				ASSAYS		
FROM	то	DESCRIPTION	NO,	". SULPH	FROM	FOOTAGE	TOTAL	·	۳.	OZ TON	OZ TON	
193.14	219.42	TRANSITIONAL SILICIFIED SEDIMENTS										
		Dark green and very fine grained with abundant greenish grey to grey aphanitic silicified seams and sections up to 30cm in length. Silicified rock is generally brecciated and is strongly reactive to HC1. Green chloritized rock is only weakly reactive. As brecciation decreases down-hole, silicification decreases and the rock becomes weakly laminated. Pyrite content, as a very fine dissemination, is highest in silicified rock. Major silicified intervals are noted at 196.63-196.93, 197.02-197.20, 197.61-197.80, 199.87-200.46, 202.30-202.49, 202.66-202.76, 207.13-207.35, 215.30-215.42, 215.65-215.75, 215.98-217.77, 218.10-219.22 meters. Below 206.60 meters, some relic laminations are visible despite the brecciation: 35° at 206.85; 30° at 208.05; 25° at 208.95; 30-35° at 215.40 and 40° at 217.80 meters. 193.14-196.63: 10% silicified breccia. 208.05-210.20: 50% silicified breccia. 210.20-215.30: 10-25% silicified breccia. 210.20-215.30: 10-25% silicified breccia. 215.30-219.42: greater than 75% silicified breccia.	5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5364 5365 5366 5367 5368 5369 5370 5371 5372	$ \begin{array}{c} 1\\1\\1\\1\\-2\\1\\-2\\1\\-2\\1\\-2\\1\\-2\\1\\-2\\-3\\1\\1\\-3\end{array}$	193.14 193.89 194.76 195.66 196.63 197.20 198.03 198.85 199.87 200.66 201.46 202.32 203.10 203.95 204.90 205.78 206.65 207.45 208.05 209.80 210.68 211.60 212.43 213.35 214.25 215.10 216.00 216.85 217.77 218.10	193.89 194.76 195.66 196.63 197.20 198.03 198.85 199.87 200.66 201.46 202.32 203.10 203.95 204.90 205.78 206.65 207.45 208.05 208.05 208.95 209.80 210.68 211.60 212.43 213.35 214.25 215.10 216.00 216.85 217.77 218.10	0.75 0.87 0.90 0.97 0.57 0.83 0.82 1.02 0.79 0.80 0.86 0.78 0.85 0.95 0.88 0.97 0.80 0.60 0.90 0.85 0.92 0.90 0.85 0.92 0.33 1.12			0.01 0.01 0.01 tr. tr. 0.01 tr. tr. 0.08 0.01 0.00 0.01 0.02 0.03 0.05 0.03 tr. tr. tr. tr. tr. tr. tr. tr. 0.06 0.01 0.01 0.02 0.03 0.05 0.03 tr. tr. tr. tr. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.		

•

RM Ż

NAME OF PROPERTY_____ HOLE NO. Mc-84-58

McDermott

SHEET NO. 6 OF 6

FOO	TAGE	DECORDETION			SAMPI	_E			ASSAYS		
FROM	то		NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	"•	DZ TON	UZ TON	
219.42	234.06	SEDIMENTS Medium to dark green, fine to very fine grained and well laminated with alternating green and grey bands on a mm scale. Greyish bands are weakly silicified initially and are moderately reactive to HCL. With depth, carbonatization becomes more prevalent throughout the rock. Weak silicification of carbonate alteration is noted at 229.17-229.37 meters with up to 2% very finely disseminated pyrite. A small clay coated fault plane is noted at 224.31 meters dipping at	5373 5374 5375 5376 5377 5378 5379	0-1 1 1 0-1 0-1 0-1	219.22 220.14 221.01 221.89 222.77 223.68 224.69	220.14 221.01 221.89 222.77 223.68 224.69 225.55	0.92 0.87 0.88 0.88 0.91 1.01 0.86		0.02 0.01 0.01 0.01 0.01 tr. tr.		
		A shall clay coaled faile plane is noted at 224.01 meters dipping at 45° to the core axis. Bedding laminations: (angle measured with respect to core axis) 219.55 m: 45° 220.75 m: 45° 222.00 m: $20-25^{\circ}$ 224.95 m: $40-45^{\circ}$ 226.20 m: 45° 228.00 m: 60° 229.05 m: 50° 230.10 m: $40-45^{\circ}$ 234.05 m: 65°	5380 5381 5382 5383 5384 5385 5386 5387 5388 5389	0-1 0-1 0-1 0-1 1 0-1 0-1 0-1 0-1 0-1	225.55 226.40 227.40 228.36 229.17 230.07 230.95 231.90 232.85 233.62	226.40 227.40 228.36 229.17 230.07 230.95 231.90 232.85 233.62 234.06	0.85 1.00 0.96 0.81 0.90 0.88 0.95 0.95 0.77 0.44		tr. tr. tr. 0.01 0.01 tr. tr. 0.01 0.01 0.01		
		234.06 meters END OF HOLE CASING PULLED									

NAME OF PROPERTY	Mallormott			I	n – – – – – – – – – – – – – – – – – – –		· · · · · · · · · · · · · · · · · · ·	HOLE I	10	SH	EET NO	
Ma 9/ EQ		FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP A	ZIMUTH	PENA	ave H	3Q Core		
HOLE NO	LENGTH LENGTH	0	-65		182.88	-55 [°]		REMA	<u> </u>	Split fo	or analy	vsis
LOCATION		45.72	-64 ⁰		237.74	-49 ⁰						
LATITUDE $_{}$ 8 + 50 E	DEPARTURE 1 ± 70.5	91.44	-62 ⁰									
ELEVATION	AZIMUTHDIP	137.16	-61					LOGGE		.W. Wor	kman	
STARTED rediualy 20,	1704 FINISHED											
FOOTAGE					SAMP	LE			A	SSAY	15	
FROM TO	DESCRIPTION				H-FROM	FOOTAGE		78	76	OZ/TON	OZ/TON	
0 14.05 g	VERBURDEN											
14.05 149.53 B	ASALT											
Dark gr grained with fl. Individ depth. locally 3mn. T sequenc 14.05 - 15.50 - 22.75 - 32.25 - 35.71 - 42.15 - 44.75 - 47.92 -	 een to grey-green and fine grained with abundant phases. Aphanitic, often silicified zones are ow margins. Flow tops are marked by vesicular sual vesicules up to 1cm are noted, decreasing in Average 0-1% pyrite; occasionally increasing up. Pyrite is found as blebs up to 1mm and more r the uppermost flows are massive and overly the pie. 15.50: fine to very fine grained and vesicular flow. 22.75: fine grained massive flow. Occasiona carbonate stringers up to 1cm in width silicified epidotized seams (shears) up width. Hornblende crystals up to 4mm a locally. 35.71: medium grained with abundant fine grained sections seem to have a texture in mafic minerals. 42.15: fine grained massive flow. 47.92: medium grained massive flow. 47.92: medium grained massive flow. 49.40: medium grained massive flow. 	t medium associated sections. h size with to 2% tarely up to illowed f massive al white and to 5mm in are noted hed patches. A cumulative hal medium										

LANGRID LIMITED - TORONTO - 366-1168

OPM 1

NAME OF PROPERTY McDermott

HOLE NO. MC-84-59 SHEET NO. 2 OF 9

FOO	TAGE					SAMP	LE				ASSAYS		
FROM	то		DESCRIPTION	NO.	". SULPH IDES	FROM	FOOTAGE TO	TOTAL	:	***	02 TON	UZ TON	
		49.40 - 64.30:	fine grained massive flow. A quartz vein carrying angular basalt fragments up to 3cm is located at 54.98-55.19 meters - silica may be from late-stage										
		64.30 - 66.30:	fine to very fine grained flow with increasing number of silicified epidotized fractures. A quartz epidote vein at 64.60-64.48 is a possible shear developed due to differential flowage.										
		66.30 - 76.65:	fine grained massive flow, weakly to moderately fractured.										
		76.65 - 77.28: 77.28 - 78.95:	fine to very fine grained basal flow. aphanitic silicified flow, abundant epidotization; carries 2-3% very finely disseminated pyrite. Probable flow contact at 78.95 meters.										
		78.95 - 79.35:	very fine grained to aphanitic with abundant angular breccia fragments up to 3cm in size - flow top breccia.										
		79.35 - 79.70:	very fine grained and vesicular with sub-angular to rounded flow breccia fragments up to 7cm in size. Fragments exhibit well developed reaction rims.										
		79.70 - 84.55: 84.55 - 86.70: 86.70 - 86.80:	fine grained massive flow. very fine grained to aphanitic, locally silicified. 5-10cm grey gritty siliceous seam cuts the core axis at 20° marking a flow contact.										
		86.80 -132.02:	fine to very fine grained, medium to light green, pillowed flow. Selvages tend to be narrow (1-2cm), epidotized and silicified with minor free quartz. Pillow interiors are often vesicular and weakly silicified. Rims occasionally carry 1-2% very finely disseminated pyrite. The zone from 90.40- 91.05 meters is ground core with 75% recovery. A zone, sheared at 25° to the core axis, is located at 113.35-113.45 meters.										
		132.02-132.20: 132.20-134.80:	fine grained breccia zone - base of pillowed flow. fine to very fine grained, locally silicified and epidotized seams.										

366-1168 TORONTO LANGRIDGE LIMITED

ORM 2

NAME OF PROPERTY_____

HOLE NO.

McDermott

Mc-84-59 SHEET NO. 3 OF 9

FOO	TAGE	DECONOTION			SAMPL	_E			ASSAYS		
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL		OZ TON	UZ TON	
149.53 150.45	150.45	 134.80-137.40: fine grained massive flow. 137.40-144.00: medium grained massive flow with occasional epidotized shear planes up to lcm in width. 144.00-145.40: fine grained massive flow. 145.40-146.31: very fine grained flow aphanitic locally. 146.31: possible flow contact at 35° to the core axis. 146.31-149.05: dark green very fine grained, finely brecciated flow (probably flow brecciated). Angular to sub-angular fragments up to 2cm. Zone carries 1% pyrite as blebs up to 2mm. 149.05-149.53: fine grained, weakly sheared flow. QUARTZ VEIN White bull quartz with minor included country rock near contacts. Pyrite cubes up to 4mm are noted near the contacts associated with dark green debris. SEDIMENTS Dark green fine to very fine grained and weakly to moderately laminated. The section carries abundant volcanic debris locally as pale green fragments (sometimes silicified or carbonatized), up to 3cm in size. Unit is probably highly tuffaceous. Abundant silicification is noted above 152.80 meters carrying elevated pyrite contents of 3-4% over the 1% average. This alteration zone formed as a result of heat from the overlying flows. Carbonatization is noderate locally as a patchy replacement; possibly of fragments and/or sets of laminations. Carbonatized lamination sets pinch and swell along the bedding. The rock is weakly to moderately magnetic locally as a consequence of magnetite concentrated along alternating laminations - most apparent below 160.85 meters with some magnetite seams up to 4mm in thickness concordant to bedding. 150.45-163.12: laminated to moderately foliated; 65-70° at 153.15; 60° at 155.30 and 55° at 157.25 m. 	5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402	1-2 2-3 1-2 1-2 1 1 1 1 1 1 1 1	150.45 151.34 152.30 153.30 154.30 155.30 156.35 157.35 158.26 159.21 160.21 161.15 162.12	151.34 152.30 153.30 154.30 155.30 156.35 157.35 158.26 159.21 160.21 161.15 162.12 163.12	0.89 0.96 1.00 1.00 1.00 1.05 1.00 0.91 0.95 1.00 0.94 0.97 1.00		tr:		
i											

-

NAME OF PROPERTY McDermott

HOLE NO. ____

Mc-84-59 SHEET NO. 4 OF 9

FOO	TAGE				SAMPL	E				ASSAYS		
FROM	то	DESCRIPTION	NO.	T SUL PH	FROM	FOOTAGE TO	TOTAL	•	۲ <u>۳</u>	OZ TON	UZ TON	
		 163.12-164.25: well laminated with magnetite interlaminations; 60° to core axis at 163.15 meters and 55° to core axis at 164.20 meters. 164.25-165.67: weakly brecciated and moderately silicified locally with pink colouration. Becomes fine to medium grained below 164.95 meters and carbonatization 	5403 5404 5405	1 1 1	163.12 164.25 164.97	164.25 164.97 165.67	1.13 0.72 0.70			tr. tr. tr.		
		increases in this lower part. Weakly laminated to moderately foliated at 55° to the core axis. May be very slightly magnetic.										
165.67	172.67	BASALT										
		Medium to dark green and fine grained with many very fine grained to aphanitic phases. A gritty, finely brecciated and moderately chloritized zone marks the flow top at 165.67-166.95 meters. Below this lies a moderately to strongly flow brecciated section. Fragments are up to 7cm in size and exhibit moderate rounding with 1-5mm reaction rims. Fragments are paler green in colour as a result of weak silicification. The flow is non-magnetic. Some sections up to 1.5 meters are marked by strong shrinkage fracturing with white carbonate filling.										
172.67	181.82	SEDIMENTS	5406 5407	2-3	172.67	173.55	0.88			tr. tr.		
			5408	2-3	174.40	175.02	0.62			tr.		
-00		green and very fine grained to aphanitic. The uppermost section is	5409 5410	1-3	175.02	176.40	0.58			tr.		
		silicified due to the overlying flow, with higher pyrite contents of	5411	1	176.40	177.20	0.80			tr.		
		2-5% over the average of 1%. Silicification decreases with depth.	5412		177.20	178.05	0.85			tr.		
2		non-laminated. Some increase in grain size is apparent below 178.08	5414		178.95	179.81	0.90			tr.		
2		meters although the rock remains fine grained. A moderate degree of	5415	1	179.81	180.58	0.77			tr.		
		pervasive carbonatization is noted. A weak foliation at 35° to the core axis is observed locally.	5416 5417		180.58	181.26	0.68	ectual	0.48)	tr. tr.		
				ł								
-												

M 2

NAME OF PROPERTY____

HOLE NO. ___

Mc-84-59

McDermott

SHEET NO. 5 OF 9

FOO	TAGE				SAMPI	_E			ASSAYS		
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	~	OZ TON	OZ TON	
181.82	222.41	MAIN MINERALIZED ZONE This zone is composed of variably silicified marginal units which flank a highly silicified core. In the case of this hole, the core is unusual in that it carries two silicified members separated by approximately 5m of transitional-type rock. Pyrite contents up to 7% are noted in highly silicified rock. The zone averages 2% pyrite mostly as a fine dissemination.									
181.82	183.03	TRANSITIONAL SILICIFIED SEDIMENTS Dark green fine to very fine grained and non-laminated with abundant pale grey to purple-grey moderately to strongly silicified clasts up to 2cm in size. These fragments are probably rip-up clasts derived from the underlying main silicified zone. They have a moderate reactiveness to HCl and were originally carbonate prior to silicification. A lcm green clay filled fault plane is noted at 182.82 meters. In general, the degree and amount of silicification increases down-section within this unit.	5418 5419	0–1 0–1	181.82 182.35	182.35 183.03	0.53 0.68		tr. tr.		
183.03	197.73	MAIN SILICIFIED ZONE Honey and pale pink coloured to purple-grey with 5% green chloritized seams up to 2cm in thickness locally. The rock is aphanitic where silicified; very fine grained where non-silicified. The zone is moderately to strongly brecciated, but brecciation has occurred along individual laminations. The original fabric of the rock is locally preserved (eg. 50-55° at 183.40 meters). Breccia fragments are highly angular but have undergone little rotation – small fragments can often be reassembled into larger ones. Pyrite contents up to 7% are noted as a very fine dissemination, as 1-2mm cubes, and occasionally as small clots up to 2mm in size. 183.03-184.70: generally honey coloured with abundant purple-grey seams; 2-4% pyrite. 184.70-185.16: mostly purple-grey intensely silicified breccia.	5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431	2-4 2-4 1-2 0-1 1 1 1 1 1-2 3-5 2-3	183.03 183.67 184.44 185.16 186.05 187.04 188.02 188.87 189.77 190.65 191.41 192.15	183.67 184.44 185.16 186.05 187.04 188.02 188.87 189.77 190.65 191.41 192.15 192.85	0.64 0.77 0.72 0.89 0.99 0.98 0.85 0.90 0.88 0.76 0.74 0.70		0.07 0.09 0.04 0.07 0.06 0.07 0.01 0.01 0.01 0.09 0.07 0.09))) <u>0.056</u>) <u>9.82</u>) (32.:))))	<u>3</u> 2')

NAME OF PROPERTY McDermott

HOLE NO. MC-84-59 SHEET NO. 6 OF 9

FOOT	TAGE	DESCRIPTION			SAMPI	E				ASSAYS		
FROM	то	DESCRIPTION	NO.	- SULPH	FROM	FOOTAGE TO	TOTAL	~	۳.	OZ TON	UZ TON	
		 185.16-185.47: selective silicification of individual laminations; zone is 25% chloritized and well laminated at 35° to the core axis. 185.47-186.05: strongly silicified fragments up to 3cm are supported in a generally chloritized matrix; 75-80% of the rock is silicified. 186.05-186.31: patchy purple-grey silicification. 186.31-187.02: selective silicification of individual laminations. 187.02-192.65: purple-grey strongly silicified breccia with honey coloured angular fragments up to 1cm in size; zone carries up to 7% pyrite locally. 192.65-192.85: moderate to strongly silicified, well laminated at 30° to core axis; probably tuffaceous. 192.85-193.41: abundant cream to honey coloured laminations and fragments; abundant purple-grey silicified breccia. 193.41-193.96: purple-grey silicified breccia. 193.96-197.73: purple-grey silicified breccia. 193.96-197.73: nurple-grey silicified	5432 5433 5434 5435 5436 5437 5438	1-2 1-2 1-2 1-2 1-2 1-2 1-2	192.85 193.41 194.24 195.05 195.63 196.36 197.01	193.41 194.24 195.05 195.63 196.36 197.01 197.73	0.56 0.83 0.81 0.58 0.73 0.65 0.72			0.01 0.01 0.08 0.01 0.01 0.01		
197.73	202.66	TRANSITIONAL SILICIFIED SEDIMENTS Medium to dark green fine to very fine grained with abundant dark purple-grey to honey coloured intensely silicified breccia zones. Silicification is spatially controlled by brecciation. Silicification content decreases with depth especially below 199.85 meters. Green, non-silicified rock is moderately chloritized and weakly carbonatized and tends to be well foliated. Parting is well developed parallel to foliation (eg. 50° to core axis at 200.50 meters). The rock is well laminated locally with selective silicification of individual laminations (eg. 45° to core axis at 199.95 meters). The largest silicified section is located at 198.88-199.85 meters.	5439 5440 5441 5442 5443 5444	1 1-2 1-2 1 1	197.73 198.50 199.23 199.86 200.69 201.61	198.50 199.23 199.86 200.69 201.61 202.66	0.77 0.73 0.63 0.83 0.92 1.05			tr. tr. 0.03 tr. tr. tr. tr.		
FORM 2

NAME OF PROPERTY_____McDermott

HOLE NO. _

Mc-84-59 St

SHEET NO. 7 OF 9

FOO	TAGE	DESCRIPTION			SAMP	LE				ASSAYS		
FROM	то		NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	-	n., B	OZ TON	UZ TON	
202.66	207.78	LOWER SILICIFIED ZONE										
		Purple-grey with abundant angular honey coloured fragments up to lom in size. Section carries 10% green chloritized rock initially but the percentage of chloritization rapidly decreases with depth. Silicified rock carries an average of 1-2% pyrite as a very fine dissemination of 0.1 mm blebs. The zone from 205.35-205.62 is composed of honey coloured silicified fragments and beds similar to the material in the upper transition zone at 181.82-183.03 meters. 202.66-205.35: purple-grey silicified breccia with 5-10% chloritized seams. 205.35-205.67: silicified carbonate(?) beds and lenses. 205.67-206.84: purple-grey intensely silicified tuffaceous sequence with clasts up to 2mm in size. 206.84-207.78: purple-grey and silicified with occasional dark green chloritized seams parallel to the laminations. Bedding is well developed at 60° to the core axis (eg. 207.10 meters). The percentage of chloritized rock increases with depth. The lower contact is somewhat arbitrary.	5445 5446 5447 5448 5450 5451	1 1-2 1-2 0-1 2-3 2-3 1-2	202.66 203.50 204.33 205.18 205.67 206.30 206.84	203.50 204.33 205.18 205.67 206.30 206.84 207.78	0.84 0.83 0.85 0.49 0.63 0.54 0.94	actual	0.44)	tr. tr. tr. tr. 0.01 0.01		
207.78	222.41	TRANSITIONAL SILICIFIED SEDIMENTS Dark green fine to very fine grained and weakly to moderately chloritized. The section carries 43% purple-grey silicified breccia zones. The best developed section of silicification is from 218.30-220.10 meters. Silicification is controlled mostly by brecciation in sections up to 70cm thickness. The unit as a whole is well laminated between brecciated intervals. Pyrite content averages 1% with increases up to 4% in silicified rock. Pyrite is found as a very fine dissemination (less than 0.1mm blebs), as grains up to 2mm and occasionally as 2-3mm clots of smaller grains. Carbonatization is weak but pervasive except in strongly silicified breccia, where it might be masked by silicification. Selective carbonate alteration has often affected individual laminations. Major silicified breccia horizons are located at 211.34-211.46;	5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464	$ \begin{array}{c} 1\\ 1\\ 1\\ 1-2\\ 1\\ 1-2\\ 1-2\\ 1\\ 2\\ 1-2\\ \end{array} $	207.78 208.63 209.53 210.42 211.36 212.22 213.07 213.81 214.57 215.46 216.30 217.13 217.71	208.63 209.53 210.42 211.36 212.22 213.07 213.81 214.57 215.46 216.30 217.13 217.71 218.57	0.85 0.90 0.89 0.94 0.86 0.85 0.74 0.76 0.89 0.84 0.83 0.58 0.86			0.01 0.01 0.01 0.02 0.09 0.02 0.01 0.01 0.01 0.03 0.01 0.02		

•

0RM 2

NAME OF PROPERTY McDermott

HOLE NO. MC-84-59 SHEET NO. 8 OF 9

FOOTAG	GE	DESCRIPTION	[SAMP	LE			ASSAYS		
FROM	то	DESCRIPTION	NO.	SULP	H EROM	FOOTAGE	TOTAL	~.	OZ TON	UZ TON	
FROM 222.41 24 241.27 24	то 1.27 4.45	DESCRIPTION 211.96-212.22; 213.21-213.36; 213.51-213.66; 213.81-214.12; 214.51-214.94; 215.68-215.95; 216.13-216.40; 216.58-216.85; 217.13-217.71; 218.60-218.76; 218.82-220.10; 220.23-220.72 and 221.56-222.05 m. Bedding Laminations: (angle measured with respect to core axis) 207.85 m: 60-659 208.60 m: 459 211.95 m: 459 214.05 m: 409 212.95 m: 459 218.37 m: 40-459 221.50 m: 459 218.37 m: 40-459 221.50 m: 459 218.37 m: 40-459 221.50 m: 459 201.01 field breccia. 212.40-218.30: 50% silicified breccia. 220.10 - 222.41: 45% silicified breccia. 220.10-222.41: 45% silicified breccia. 220.10 - 222.41: 45% silicified breccia. SEDIMENTS Medium to dark green, fine to very fine grained, weakly to moderately chloritized and variably laminated along the bedding. Occasional zones of purple-grey strongly silicified breccia (eg. 224.33-224.39), with a major zone of localized weakly silicified breccia (hoderately carbonatized), at 233.92-234.73 meters. Laminations are more localized in development below 235.00 meters. A gritty clay filled shear is noted at 239.50 meters. The zone from 228.51-228.64 is 50% lost core due to grinding. 222.45 m: 550 223.65 m: 459 222.45 m: 550 223.65 m: 459 222.45 m: 550 233.80 m: 559 230.65 m	NO. 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5483 5484 5483 5484 5485 5486 5487	0-1 0-1 0-1 0-1 0-1 1 1 1 1 1 0-1 0-1 0-	* 218.57 219.31 220.10 220.72 221.50 221.50 222.41 223.24 224.19 225.13 226.09 227.00 227.96 228.92 229.83 230.80 231.76 232.77 233.92 234.73 235.69 236.60 237.59 238.57 239.59	FOOTAGE 10 219.31 220.10 220.72 221.50 222.41 222.41 225.13 226.09 227.00 227.96 228.92 229.83 230.80 231.76 232.77 233.92 234.73 235.69 236.60 237.59 238.57 239.59 240.48	TOTAL 0.74 0.79 0.62 0.78 0.91 0.91 0.95 0.94 0.96 0.91 0.96 0.91 0.96 0.91 0.96 0.91 0.96 0.91 0.96 0.91 0.96 0.91 0.96 0.91 0.96 1.01 1.15 0.81 0.92 0.93 1.02 0.89	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.01 0.01 0.09 0.01 0.01 0.01 0.01 tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.	OZ TON	
		Dark green, very fine grained to aphanitic with occasional medium green weakly to moderately silicified patches up to 3cm in size. The flow is not well defined near the upper contact but is flow brecciated below 243.30 meters. The unit carries abundant quartz as	5489	0-1	240.48	241.27	0.79		tr.		

•

FORM 2

NAME OF PROPERTY_______McDermott

HOLE NO. _____ MC-84-59_____ SHEET NO. ____ 9 OF 9___

FOC	DTAGE	DECONDENS			SAMPL	.E			ASSAYS		
FROM	то	DESCRIPTION	NO.	" SULPH	FROM	FOOTAGE TO	TOTAL	~.	OZ TON	OZ TON	
		a void filling in the upper 1.7m of the flow. Some druzy quartz is noted in these openings. The flow is non-magnetic and only weakly carbonatized locally.									
		244.45 meters END OF HOLE									i
		CASING PULLED									
											í
0											
Ĺ											

NAME HOLE I LOCATI LATITU ELEVAT	OF PROP NO. <u>Mc</u> ON DE <u>6</u> TION TION	ERTYMcDermottt - HennessyFOOTAGE $\cdot 84-60$ LENGTH 211.47 meters0 -50 EDEPARTURE $1 + 28$ S 45.72 -50 EAZIMUTH 344° DIP -65° $azimuth$ 344° DIP -65° $at 5, 1984$ FINISHEDMarch 8, 1984137.16	-65° -65° -61° -64°	AZIMUTI	н FOOTA 178.9 211.5	5E DII 2 -6: 3 -6:	P A2		HOLE I REMA LOGGE	чо. <u>Mc-</u> rks d by	84-60 st BO Core Split f A.W. Wc	or anal	1 OF 7 ysis
FOO	TAGE	DESCRIPTION			5 A I	MPL	ε		┃	¢	SSA	Y 5	
FROM	то		N	IO. SUL		F00	TAGE	TOTAL	- 36	36	OZ/TON	OZ/TON	
0	12.19	OVERBURDEN						1					
12.19	122.43	BASALT											
LANGRIDGE LIMITEU- TORONTO - 366-1168		 Medium to dark green often grey-green, fine grained with abundant medium grained phases, and more rarely very fine grained to aphanitic phases. Flow centers are coarsest grained. The uppermos flows are massive and overly a pillowed flow which gives way downward to other massive flows. Occasional beds of sediments mark the section between flows. Zone averages 0-1% pyrite. 12.19 - 19.46: fine to medium grained. 19.46 - 20.20: weakly sheared flow at 40-45° to the core axis, fine grained. 20.20 - 22.85: fine grained flow. 22.85 - 23.45: weakly brecciated with white carbonate filling dilatant-type fractures. 23.45 - 31.20: fine grained massive flow. 32.92 - 33.70: fine to medium grained massive flow. 33.70 - 74.99: pillowed flow - fine to very fine grained, vesicular, with abundant 1-2mm hyaloclastite seams in pillow selvages. Minor silicified breccia locally in 10-15cm seams. A 60cm section of ground core is noted at 50.00-50.60 meters. From 72.00-73.00 pillow selvages and fractures are strongly hematized. 74.99 - 75.43: Sediments? Pale to medium green, fine to very fine grained and silicified. 	E										

FORM 1

NAME OF PROPERTY _____ McDermott - Hennessy

HOLE NO. _

Mc-84-60

2 OF 7 SHEET NO._

FOOTAGE SAMPLE			 ASSAYS		
FROM TO TO TO	TOTAL	4	 OZ TON	UZ TON	
 75.43 - 83.70: fine to very fine grained, weakly brecciated vesicular massive flow. 83.70 - 86.10: fine grained flow. 86.10 - 93.78: fine to very fine grained becoming increasingly brecciated with depth, particularly below 91.35 m. Section carries 2-38 pyrite locally in narrow silicified sections. 93.78 - 95.00: very fine grained to aphanitic massive flow with vesicules up to lom which are black chlorite filled. Number of vesicules decreases below 97.30 meters. 96.00 - 98.90: fine grained massive flow. 96.00 - 98.90: fine grained massive flow. 96.00 - 98.90: fine grained massive flow. 96.00 - 98.90: fine grained flow, weakly brecciated. 99.13 -100.00: very fine grained flow, weakly brecciated. 100.00-102.10: fine to very fine grained flow. 102.10-103.50: fine grained strongly brecciated flow. 102.10-103.50: fine grained strongly brecciated flow. 102.10-103.50: dark green with greyish silicified laminations and 2-38 pyrite locally. Bedding is well developed at 35-407 to the core axis. 104.42-104.57: well developed at 35-407 to the core axis. 104.57-117.60: flow brecciated with medium to dark green sub-angular to sub-around fragments up to lScm in size. These fragments are reaction rimmed, are generally very fine grained massive flow with solicitied or and are generally very fine grained massive flow with solicitien and provide and provide and phanitic, and are to be core axis. 104.57-117.60: flow brecciated fragments up to JScm in size. These fragments are reaction rimmed, are generally very fine grained massive flow with abundant silicified epidotized fragments up to JScm in size. These fragments are reaction rimmed, are generally very fine grained massive flow with abundant silicified epidotized fragments up to Scm in size. These fragments are form the underlying sediments. 	TOTAL				

NAME OF PROPERTY McDermott - Hennessy

HOLE NO. _____ MC-84-60 _____ SHEET NO. ____ 3 OF 7_____

FOO	TAGE	DESCRIPTION			SAMPI	E				ASSAYS		
EROM	то	DESCRIPTION	NO.	SULPH		FOOTAGE		-		OZ TON	OZ TON	
FROM	то 142.57	SEDIMENTS Dark green, fine to very fine grained and well laminated above 124.30 meters. Bedding laminations are irregularly developed below this point. A moderate to strong foliation is developed throughout. Minor highly localized silicification is noted surrounding fractures as lcm wide halos. A 10cm moderately silicified zone of laminations is located at 128.46-128.53 meters. Bands within this zone contain nodular shapes which have been silicified but which remain weakly reactive to HCL. Similar reactive zones are located at 131.34-131.49 and 139.60-139.68 meters. The rock is extremely vuggy	NO. C 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499	O-1 O-1 1 1 1 1 1 1 1	FROM 122.43 123.28 124.23 125.11 126.01 126.87 127.76 128.69 129.66 130.51	123.28 124.23 125.11 126.01 126.87 127.76 128.69 129.66 130.51 131.34	0.85 0.95 0.88 0.90 0.86 0.89 0.93 0.93 0.97 0.85 0.83	(actual		0.01 0.01 0.01 0.01 tr. tr. tr. 0.01 0.01 0.01 tr.	OZ TON	
142.57	163.89	from 125.91-126.47 meters. A very well laminated zone is noted at 127.70-128.40 meters. Bedding within this is at 50° to the core axis. Throughout the section, the rock is moderately to strongly carbonatized with grey carbonate alteration feathering out along laminations. Carbonate bearing fluids have locally brecciated the rock to form veinlets up to 2cm in width. Bedding Laminations: (angle measured with respect to the core axis) 122.60 m: 55-60° 124.15 m: 50-55° 127.25 m: 30-35° 127.95 m: 50° 131.60 m: 40-45° 133.80 m: 30° 136.30 m: 30-35° MAIN MINERALIZED ZONE	5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511	1 1 1 1 1 1 1 1 1 1 1	131.34 132.21 133.13 134.00 134.91 135.90 136.86 137.84 138.66 139.60 140.55 141.67	132.21 133.13 134.00 134.91 135.90 136.86 137.84 138.66 139.60 140.55 141.67 142.57	0.87 0.92 0.87 0.91 0.99 0.96 0.98 0.82 0.94 0.95 1.12 0.90	actual	0.97)	tr. tr. tr. tr. tr. tr. tr. 0.01 0.01 tr. 0.01 0.01		
		The main silicified zone is well developed and contains up to 10% pyrite locally, mostly as a very fine dissemination. This zone is flanked by transitional zones which carry lower pyrite contents and are more variably silicified. The total thickness of the main mineralized zone is notably less than average.										
142.57	144.58	TRANSITIONAL SILICIFIED SEDIMENTS Cream to honey coloured and purple-grey, intensely silicified rock with a few dark green gritty chloritized zones. Silicification is limited to clasts up to 2cm in size which are supported in chloritized rock. These fragments are weakly to moderately	5512 5513 5514 5515	6-8 1 4-6 2-3	142.57 143.10 143.33 143.76	143.10 143.33 143.76 144.58	0.53 0.23 0.43 0.82	actual	0.72)	0.01 0.01 0.08 0.02		

NAME OF PROPERTY McDermott - Hennessy

HOLE NO. MC-84-60 SHEET NO. 4 OF 7

FOOT	TAGE	DESCRIPTION			SAMP	LE				ASSAYS		
FROM	то		NQ.	", SULPH	FROM	FOOTAGE	TOTAL	-	~.	OZ TON	OZ TON	
144.58	151.85	 reactive to HCl and are generally oriented parallel to a well developed foliation (eg. 30° at 144.38 meters). A fine clastic (tuffaceous) texture is well exhibited in honey coloured rock. Silicified rock carries highly elevated pyrite contents (10%) as compared to the average 1% in chloritized rock. 142.57-143.10: honey coloured to purple-grey intensely silicified breccia with minor free quartz and up to 10% pyrite. 143.10-143.33: dark green with 10% cream coloured silicified fragments - possible rip-up clasts. 143.33-143.76: same as 142.57-143.10 m up to 7% pyrite. 143.76: lcm clay filled fault plane at 50° to the core axis. 143.76-144.58: abundant (50-60%) cream coloured silicified fragments up to 10cm in size are set in a green chloritized groundmass. Smaller clasts are well foliated at 30° to the core axis (eg. 144.38 m). MAIN SHLICIFIED ZONE Purple-grey intensely silicified breccia with abundant honey colour seams and sections up to 60cm in width. The rock is aphanitic and generally non-laminated (due to brecciation). Pyrite contents up to 10% present as a very fine dissemination and as closts up to 5mm. 144.58-144.89: honey coloured, feldspathized(?); up to 10% pyrite mostly as a very fine dissemination. 144.58-144.89: honey coloured seams and patches u to 3cm in width. 145.87-146.29: brownish red, aphanitic, highly siliceous zone - chemical sediment(?). 146.29-147.58: honey coloured silicified breccia, dminantly purple-grey with minor honey coloured intervals and halos surrounding fractures. Pyrite is mostly tied up in honey coloured rock. 	e 5516 5517 o 5518 5520 5521 5522 p 5523 5524 5525 5526 5527 y	8-10 2-3 0-1 3-4 3-4 1-2 1-2 1-2 1-2 3-5 2-4 2-4 1-3	144.58 144.89 145.87 146.29 146.99 147.58 148.27 149.02 149.50 150.07 150.84 151.59	144.89 145.87 146.29 146.99 147.58 148.27 149.02 149.02 149.50 150.07 150.84 151.59 151.85	0.31 0.98 0.42 0.70 0.59 0.69 0.75 0.48 0.57 0.75 0.75 0.26			0.03 tr. tr. 0.14 0.17 0.02 0.01 0.01 0.03 0.01 0.01 0.05	Rech. 0.13 0.15 0.03 0.01 0.02 0.02 tr. tr. 0.05	

FORM 2

.

NAME OF PROPERTY_____McDermott - Hennessy____

ł

HOLE NO. MC-84-60

SHEET NO. ____ 5 OF 7

FOOTAGE		DESCRIPTION	1		SAMP	LE				ASSAYS	
FROM TO	7		NO.	SULPH	EROM	FOOTAGE	TOTAL	1.	-	OZ TON	UZ TON
FROM TO 51.85 163.89	149.50-150.07: 150.07-151.59: 151.59-151.85: <u>TRANSITIO</u> Medium to dark rock with varyi silicified brea which is accent 154.00 meters). number and in s in silicified r 50-55° at 157.9 located at 152. 156.79 meters. 151.85-158.38: 158.38-159.28: 159.28-159.83: 159.83-160.49: 160.49-163.01:	DESCRIPTION increased honey coloured silicified breccia with elevated pyrite - up to 8% locally. same as 147.58-149.50 meters, but with clots of pyrite up to 1.5cm and up to 10% pyrite locally. purple-grey intensely silicified breccia with lower pyrite contents - up to 3% locally. NAL SILICIFIED SEDIMENTS green, fine to very fine grained chloritized clastic ng amounts of honey to purple-grey intensely cia. The rock has a well developed foliation locally ed by the orientation of mafic minerals (eg. 45° at Occasional silicified breccia seams decrease in size with depth. Pyrite content averages 1% with 2-3% ock. The section is weakly laminated locally (eg. 0 meters). Major silicified breccia zones are 45-152.70 m; 152.88-153.38; 155.07-155.13 and 156.72- 15% silicified breccia, up to 3% pyrite locally. chloritized and weakly laminated/moderately foliated at 50° to the core axis. 20-25% silicified breccia, up to 5% pyrite locally. intensely silicified breccia. May represent a lower silicified unit. Angular to sub-angular fragments can be reassembled - almost no post-brecciation rotation. Fragments are honey coloured; the matrix to fragments is purple-grey and contains up to 5% pyrite locally, averaging 2-3%. purple-grey tinted green chloritized rock with abundant orange and purple-grey silicified breccia. The rock is variably silicified. The amount of silicified breccia decreases below 161.80 meters to	NO. C 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542	1-2 1-3 1 1-2 1-2 1-2 1-2 1 1 2-3 2-3 1-3 1-3 1-3 1-2	FROM 151.85 152.76 153.38 154.10 155.93 156.84 157.80 159.28 159.83 160.49 161.33 162.10 163.01	152.76 153.38 154.10 155.00 155.93 156.84 157.80 159.28 159.83 160.49 161.33 162.10 163.01 163.84	0.91 0.62 0.72 0.90 0.93 0.91 0.96 0.90 0.58 0.55 0.66 0.84 0.77 0.91 0.88		~	02 TON 0.01 tr. tr. tr. tr. tr. tr. tr. tr.	02 TOW Rech.

NAME OF PROPERTY______McDermott - Hennessy

HOLE NO. MC-84-60 SHEET NO. 6 OF 7

FOO	TAGE	DESCRIPTION			SAMPL	_E				ASSAYS		
EROM	то	DESCRIPTION	NO.	* SULPH		FOOTAGE			~	OZ TON	OZ TON	
		163.01-163.89: green chloritized zone with 5% silicified halos surrounding fractures and traces of silicified breccia.		1003								
163.89	200.00	SEDIMENTS	С		100.00	164.00				0.07		
		Dark green, fine to very fine grained with occasional fine to medium grained phases. The rock is well foliated, locally laminated, as highlighted by mafic mineral alignments and by nodular carbonate growths along the foliation. Locally, carbonate has coalesced into 1-2mm bands along the foliation (eg. 164.15 and 171.00 meters). In the overlying zone of transitional silicified sediments, this carbonate has been silicified. A finer grained ubiquitous form of carbonate due to carbonatization is variably developed and often patchy. A third form is occasionally found in 1-2cm wide patches of pink carbonate, possibly filling voids or as a form of massive carbonatization. These cross-cut but feather laterally into the foliation along the original bedding planes. Cream to yellowish, 0.1-0.5mm blebs speckle the core locally - possibly altered tuff shards. The shape is highly variable; some fragments are oriented along the foliation. Bedding laminations are noted locally, becoming better developed below 175.50m. The zone from 185.90-188.65 meters is well laminated. Traces of green clay and 50% ground core at 175.05-175.20 m may indicate a minor fault. The zone from 188.65-191.20 is weakly brecciated. Bedding Laminations: (angle measured with respect to core axis) Foliation: 164.15 m: 35-400 " 174.10 m: 30-350 Lamination: 175.95 m: 350 " 174.10 m: 30-350 Lamination: 183.90 m: 300 Foliation: 183.90 m: 300 Lamination: 186.30 m: 550 " 187.58 m: 550 " 188.50 m: 700	5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5563 5564 5565 5566 5567 5568 5565 5566 5567 5568 5569 5570 5571 5572 5572	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0$	163.89 164.82 165.73 166.62 167.61 166.58 169.51 170.47 171.47 172.44 173.37 174.31 175.20 176.17 177.12 178.09 179.09 180.10 181.00 181.00 181.97 183.00 183.97 184.92 185.83 186.78 187.78 188.70 189.65 190.54 191.53 192.45	164.82 165.73 166.62 167.61 168.58 169.51 170.47 171.47 172.44 173.37 174.31 175.20 176.17 177.12 178.09 179.09 180.10 181.00 181.97 183.00 183.97 184.92 185.83 186.78 187.78 187.78 188.70 189.65 190.54 191.53 192.45 193.47	0.93 0.91 0.99 0.99 0.97 0.93 0.96 1.00 0.97 0.93 0.94 0.97 0.93 0.97 0.95 0.97 1.00 1.01 0.90 0.97 1.00 1.01 0.97 0.95 0.97 1.00 0.97 0.95 0.97 1.00 0.97 0.95 0.97 1.00 0.97 0.95 0.97 1.00 0.97 0.95 0.97 1.00 0.97 0.95 0.97 1.00 0.97 0.95 0.97 1.00 0.97 0.95 0.97 1.03 0.95 0.91 0.95 1.00 0.95 0.91 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.92 0.92 1.02			0.01 0.01 0.01 tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		

NAME OF PROPERTY

HOLE NO. ___

Mc-84-60

McDermott - Hennessy

SHEET NO. 7 OF 7

FOOTAGE	DESCRIPTION			SAMP	LE			ASSAYS		
FROM TO		NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	 ·.	OZ TON	OZ TON	1
	Foliation: 191.50 m: 50° " 197.55 m: 40-45° Lamination: 198.95 m: 60-70° Irregularly developed silicified breccia is noted below 164.60 meters with elevated pyrite contents. Silicification is weak to moderate in strength and the rock is moderately reactive to HCL. One zone at 194.62-194.72 meters carries 2-3% pyrite. The best zones are located at 195.64-196.26 (up to 8% pyrite), and at 196.60- 196.70 meters (2-3% pyrite). The section averages 0-1% pyrite. Below 197.00 meters the rock is weakly foliated and brecciated locally. The lowermost 1.5m resembles the underlying volcanics but lacks specifically volcanic textures and structures. Fractures in this zone are strongly hematized. The lower contact is at an irregular pillow selvage.	C 5574 5575 5576 5577 5578 5579 5580	0-1 1 2-4 1-2 0-1 0-1 0-1	193.47 194.42 195.54 196.30 197.10 198.09 199.09	194.42 195.54 196.30 197.10 198.09 199.09 199.95	0.95 1.12 0.76 0.80 0.99 1.00 0.86		tr. 0.01 0.11 0.04 0.01 0.01 0.01		
0.00 211.47	EASALT Medium to dark green with abundant pale green epidotized seams and patches, fine to very fine grained and pillowed. Abundant 1-4cm pillow rims are noted. Pillow size may be up to lm. Interiors are strongly brecciated and weakly silicified with a variable degree of epidotization. Minor increases in pyrite are associated with pillow selvages. These selvages are black in colour where the volcanic glass has devitrified to chlorite. Pyrite averages 0-1% as blebs up to lmm. The flow is non-carbonatized, non-magnetic, and fractures are often strongly hematized. A thin zone of sediments is noted at 208.80-211.30 meters as a dark green chloritized section, laminated at 55-60° to the core axis (eg. 210.90 meters). A volcanic block is noted within this sequence at 210.25-210.79 meters. 211.47 meters END OF HOLE CASING PULLED							•		

LANGRIDGE LIMITED - TORONTO - 366-1168

-

٠

NAME (HOLE N LOCATIO LATITUS ELEVAT STARTE	DF PROP 10. <u>Mo</u> DN <u></u> DE <u>7 +</u> 10N <u></u> D <u>Marc</u>	PERTYMcDermott $c-84-61$ LENGTH141.12 meters $+ 00 E$ DEPARTURE $0 + 82 S$ AZIMUTH 344° DIPAZIMUTH 344° DIPCh 9, 1984FINISHEDMarch 14, 1984	FOOTAGE 0 45.72	DIP -60 ⁰ -58 ⁰	AZIMUTH	FOOTAGE	DIP	AZIMUTH	HOLE REMA	ю. <u>Mc-8</u> RKS <u>- E</u> S D BY <u>-</u>	34-61 sH 30 Core Split fo A.W. Wo	IEET NO. or anal rkman	1 OF 7 ysis
FOO	TAGE	DESCRIPTION				SAMI	> L E			A	SSA	Y S	
FROM	то			N	0. SULP	FROM	FOOTAG TO	E TOTAL	7%	7%	OZ/TON	OZ/TON	
0	12.19	OVERBURDEN											
12.19	80.28	BASALT											
LANGRIDGE LIMITEUT TORONIO T366-1168		 Dark green to grey-green, variably textured from fine to grained, with occasional aphanitic and more often, mediphases. The coarsest textures are related to flow centphases are generally associated with flow margins and not silicified seams. These seams are often epidotized. A white bull quartz veins are noted locally (1% of section 12.19 - 19.00: fine to medium grained massive flow. 19.00 - 27.70: fine grained massive flow, generally we textured. Intensely silicified shears 23.00-23.06 (55° to core axis), and 25. meters. 27.70 - 39.18: fine to medium grained massive flow can pinkish silicified xenoliths up to 1cm 35.82 meters). 39.18 - 41.30: fine grained, moderately fractured massive flow. 41.40 - 41.45: white and grey laminated zone - possible 41.45 - 42.50: aphanitic flow top breccia with angular fragments up to 1.5cm in size. Very 1: has occurred due to shatter-type brecci consequence very little magma has infilibreccia. Fracture networks are carbona locally. 42.50 - 56.11: welded flow breccia with abundant round rimmed fragments up to 5cm in size. Fracture for the solution of the solution. 	to very fin tum grained ters. Fine care 1-2cm A few 1-2cm on). ery uniform are noted .30-25.40 cries rare locally (e sive flow. Ly sediment to very tigh ttle rotat tation. As trated the ate filled ded, reacti ragments ar	e st ly at g. s. t ion a on e er									

. **. .**

1

NAME OF PROPERTY______McDermott

HOLE NO. MC-84-61 SHEET NO. 2 OF 7

FOO	TAGE	DECORTION	T		SAMP	_E			ASSAYS		
FROM	то		NO.	". SULPH IDES	FROM	FOOTAGE	TOTAL	<i></i>	OZ TON	OZ TON	
		 angular fragments and magma - often epidotized. the matrix is rarely pyritic but may carry clots up to lcm in diameter. 56.11 - 56.62: pyroclastic zone - elongated fragments up to 3cm, largely tuffaceous, well foliated at 35° to the core axis. 56.62 - 59.10: flow top breccia with fragments up to 3cm. 59.10 - 74.80: fine to medium grained massive flow, possibly tuffaceous. The rock has a vague finely brecciated appearance locally with 1-2mm fragments. These clasts are surrounded by a matrix of coarser texture containing prismatic hornblendes up to 3mm (eg. 65.00 meters) - may be center of flow. 74.80 - 75.60: fine to very fine grained massive flow, moderately fractured. 75.93 - 75.94: silicified seam, abundant free quartz carrying mafic fragments - probable flow contact at 45° to the core axis. 75.94 - 80.28: very fine grained, moderately to strongly brecciated massive flow. 									
80.28	84.01	SEDIMENTS Dark green, fine to very fine grained, laminated visibly where alteration (carbonatization) highlights the structure (eg. 35-40° near the upper contact). The rock is variably carbonatized throughout with carbonate alteration feathering out into the laminations. Occasional seams of silicification, up to 5mm in width, are locally noted concordant to the laminations, especially below 83.05 meters. Below this point, increased silicification of narrow breccia seams is observed.	5581 5582 5583 5584 5585	0-1 0-1 0-1 1	80.28 91.26 82.23 83.05 83.52	81.26 82.23 83.05 83.52 84.01	0.98 0.97 0.82 0.47 0.53		tr. tr. tr. tr.		

FORM 2

NAME OF PROPERTY_______McDermott

HOLE NO. MC-84-61 SHEET NO. 3 OF 7

FOO	TAGE	DESCRIPTION			SAMPI	E				ASSAYS		
FROM	то	DESCRIPTION	NO	% SULPH IDES	FROM	FOOTAGE TO	TOTAL		۰.	02 TON	UZ TON	
84.01	114.07	MAIN MINERALIZED ZONE										
		This zone is located nearer the upper contact with volcanic rocks than is normal. The zone is well developed particularly the main silicified zone which carries up to 20% pyrite locally. The transitional silicified zones are well developed but carry relatively lower pyrite contents.	MMZ		84.01	114.07	30.06 TW= 25.5m (83.7')			0.021		
84.01	87.78	TRANSITIONAL SILICIFIED SEDIMENTS										
LANGRIDGE LIMITED - TOKON 10 - 366-1168		 Dark green to purple-grey, fine to very fine grained becoming aphanitic in dark grey silicified rock. Silicification is limited to pink to cream coloured fragments up to 3cm in size, initially, and becomes more widespread with depth. These fragments are sub-angular and are supported in a dark green clastic matrix. All non-silicified rock tends to be chloritized. The lower part of this section is variably silicified, in general associated with brecciation or individual laminations. These laminations, reflecting original bedding are visible throughout the zone, highlighted by selective alteration of individual bands (eg. 45-50° at 84.90 meters). All silicified rock is moderately to strongly reactive to HCl indicating that silicification of carbonate has occurred. As silicification becomes more widespread, the rock as a whole (including chloritized zones), is moderately reactive. 84.01 - 84.15: abundant silicified and carbonatized clasts, some laminated rock. Abundant ground core. 86.87 - 87.58: zone includes some honey coloured intensely silicified rock which is reactive to HCl and carries 2-38 pyrite. 87.58 - 87.78: ground core - probable location of clay filled fault. NOTE: A sample was taken for thin sectioning at 85.68 meters. 	5586 5587 5588 5589 5590	1 1 1 1-2	84.01 84.73 85.43 86.04 86.87 (20cm	84.73 85.43 86.04 86.87 87.78 ground	0.72 0.70 0.61 0.83 0.91 core @	37.58-	87.78)	tr. tr. 0.01 0.01		

α

FORM 2

NAME OF PROPERTY______ McDermott

HOLE NO. ______MC-84-61 ______ SHEET NO. _____4 OF 7____

FOO	TAGE					SAMPI	LE				ASSAYS		
EROM	70		DESCRIPTION	NO.	". SULPH		FOOTAGE				07 700	07 101	
					IDES	FROM	TO	TOTAL	ļ	·		01 104	
87.78	101.91	MAIN SILIC	CIFIED ZONE										
87.78	101.91	MAIN SILIC Purple-grey and abundant aphanit relic chloritize moderately react towards the base often rimmed wit surrounding frac It occurs as a v as aggregates of along lamination 89.63 - 90.75: 93.33 - 93.63: 94.72 - 95.50: 96.40 - 97.48: 97.48 - 98.02: 98.02 - 98.99: 98.99 -100.41: 100.41-100.93: 100.93 101 15.	CIFIED ZONE aphanitic, intensely silicified breccia with the honey coloured patches and sections. Very little ad rock is noted. The section above 89.15 meters is the to HCl whereas no reactiveness is observed a of the zone. In silicified breccia, fragments are the white silica which is also found as white halos thures. Pyrite is found in concentrations up to 20%. zery fine dissemination, or, in higher concentrations f small grains up to lcm in size and bands of pyrite is. 50% honey coloured rock with up to 5% pyrite locally. minor (10-15%) relic chloritized rock. 10-20% relic chloritized rock. 10-20% relic chloritized rock. 10-20% relic chloritized matrix. Up to 8% pyrite is noted locally; the zone averages 3-5%. chloritized zone of pink to cream to white coloured silicified fragments up to lcm in size set in a chloritized groundmass. Clasts may have been ripped up from below. The amount of silicified clasts decreases up-section. Zone averages 0-1% pyrite. very dark purple-grey, intensely silicified breccia. The uppermost 20cm carries two 1-2cm red siliceous bands - chemical sediments(?) mostly honey coloured rock with up to 20% pyrite locally - some pyritic replacement of individual laminations. intensely silicified breccia alternating honey coloured and purple-grey.	5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610	10ES 2-3 2-3 2-3 2-4 2-3 2-3 1-3 1-3 1-3 1-3 1-2 2-3 3-5 3-5 0-1 2-4 10-1 10-1 2-4 2-3 4-5	87.78 88.46 89.07 89.83 90.65 91.46 92.33 93.19 93.96 94.72 95.50 96.40 96.93 97.48 98.02 98.95 5 99.68 100.41 100.93 101.34	10 88.46 89.07 89.83 90.65 91.46 92.33 93.96 94.72 95.50 96.40 96.93 97.48 98.02 98.95 99.68 100.41 100.93 101.34 101.34 101.34 101.91	0.68 0.61 0.76 0.82 0.81 0.87 0.86 0.77 0.76 0.78 0.90 0.53 0.55 0.54 0.93 0.73 0.73 0.73 0.52 0.41 0.57		.057(2.05(6.7'((0.072(4.01(13.2'(0.08 0.04 0.05 0.01 0.01 0.01 0.01 0.01 tr. tr. tr. 0.11 0.05 tr. tr. 0.15 0.12 0.05 0.01 0.03	NOTE: Degree ground broker this i makes readir sample somewid diffic)0.1113)1.98)	e of l and n core in nterval accurate ig of e length wat sult (6.5')
		101.15-101.91:	cm in width. intensely silicified breccia; pyrite increases from 2-3% at the top to 8-10% near the base.										

NAME OF PROPERTY_____

HOLE NO. ____

McDermott

MC-84-61 SHEET NO. 5 OF 7

FOO	TAGE		DECORPTION			SAMP	LE				ASSAYS		
FROM	to		DESCRIPTION	NO.	SULPH	EBOM	FOOTAGE	TOTAL	-	~,	OZ TON	OZ TON	
101.91	114.07	TRANSITION	VAL SILICIFIED SEDIMENTS		1023								
}		Dark green. fine	e to very fine grained with abundant purple-grey and	5611	0-1	101.91	102.93	1.02			0.01		
1		honey coloured i	intensely silicified breccia seams and sections up to	5612	1-3	102.93	103.73	0.80			tr.		
		50cm width. The	e overall percentage of these zones tends to decrease	5613	2-3	103.73	104.63	0.90			tr.		
1		down-section. S	Silicified breccia averages 1-2% whereas chloritized	5614	1-3	104.63	105.50	0.87			tr.		
		rock averages 0-	-18.	5615	1-2	105.50	106.13	0.63			tr.		
		101.91-102.93:	dark green, very weakly magnetic - was previously	5616	1-2	106.13	106.88	0.75			tr.		
1			described as being intrusive. The rock is	5617	1-2	106.88	107.48	0.60			tr.		
İ			moderately carbonatized and carries 1-5mm elongated	5618	1-2	107.48	108.05	0.57	actual	0.50)	tr.		
			black tuff shards? foliated at 40° to the core	5619	1-2	108.05	109.01	0.96			tr.		
			axis.	5620	3-5	109.01	109.87	0.86			0.01		
		102.93-103.13:	purple-grey to cream coloured, weakly to moderately	5621	8-10	109.87	110.27	0.40			0.07		
			silicified breccia. Exhibits a good acid reaction	5622	1-2	110.27	110.61	0.34			0.01		
			as is typical in the upper transition zone.	5623	1	110.61	111.55	0.94			0.01		
1		103.13-105.50:	purple-grey strongly silicified breccia with 20%	5624	1	111.55	112.55	1.00			tr.		
1			dark green chloritized patches.	5625	1-2	112.55	113.57	1.02			tr.		
		105.50-106.88:	70-80% silicified breccia with minor sections of alternating silicified and chloritized laminations (eg. 40-45° at 105.90 meters).	5626	1-2	113.57	114.07	0.50			tr.		
		106.88-108.05:	approximately 50% silicified breccia as an irregularly distributed network surrounding non-brecciated chloritized rock.										
		108.05-109.01:	75-85% silicified breccia as an irregular but somewhat continuous body - more so than the overlying zone. Some moderate feldspathization(?) with 3-5% purity is noted locally.										
		109.01-109.87:	90-95% silicified breccia with less honey coloured "feldspathized" rock and 3-5% very finely disseminated pyrite. The rock is all moderately to strongly reactive to HCL. Honey coloured halos often surround fractures within the purple-grey breccia. These halos are often offset by later quartz filled fractures.										

NAME OF PROPERTY_____

McDermott

HOLE NO. MC-84-61 SHEET NO. 6 OF 7

FOOTAGE			SAMPL	E			ASSAYS		
DESCRIPTION	NO.	SULPH		FOOTAGE	TOTAL	"	OZ TON	UZ TON	
 109.87-110.27: honey coloured intensely silicified and feldspathized(2), although still reactive to HCL. The zone carries up to 12% pyrite some of which is present as Imm cubes and 2-4mm clots. The zone is cross-out by a 1.5cm pink carbonate wein at a relatively flat angle to the core axis. 110.27-110.37: dark green with abundant honey coloured, silicified "rip-up" clasts which are weakly reactive to HCL. 110.37-110.61: equal amounts of green chloritized rock and honey coloured silicified seams. 110.61-112.90: 25% silicified breccia act up to 2% pyrite. 113.57-114.07: 10-25% purple-grey silicified breccia with abundant honey coloured fragments up to 3cm locally. The largest part of the zone is chloritized. SEDIMENTS Dark green, fine to very fine grained, with abundant pinkish carbonate stringers and rare 1-5mm silicified seams as halos bordering fractures. Nodular carbonate growths are noted within a weakly to moderately developed foliation both locally and on a larger scale. This carbonate and be diagenetic as opposed to being the result of carbonatization. Carbonate alteration may be stronger below 121.00 meters where it highlights bedding is well developed and fis reflected by a well developed foliation/parting. Some cross filaminations measure 300 and 55-660° with respect to the core sxis. Rare sections of silicified breccia are noted (eg. 115.57-115.63 meters). Foliations: 60° at 116.70, 45° at 118.00; 65° at 118.30; 30-35° at 121.30; 55-60° at 123.80 and 55° at 128.70 meters. 	5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5916 5917	1 1 1 1 1 1 1 1 1 1 1 1 1 1	114.07 114.75 115.75 116.35 117.15 118.00 119.80 120.80 121.75 122.65 123.56 124.36 125.30 126.28 127.21 128.05 129.07 130.00 130.60	114.75 115.50 116.35 117.15 118.00 119.80 120.80 121.75 122.65 123.56 124.36 125.30 126.28 127.21 128.05 129.07 130.00 130.60 131.20	0.68 0.75 0.85 0.90 0.90 1.00 0.95 0.90 0.91 0.80 0.91 0.80 0.94 0.93 0.84 1.02 0.93 0.60 0.60		tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		

NAME OF PROPERTY______McDermott

-

HOLE NO. MC-84-61 SHEET NO. 7 OF 7

FOO	TAGE		[SAMPL	E			ASSAYS		
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE TO	TOTAL	-	OZ TON	OZ TON	
		 114.75-121.00: abundant nodular carbonate growths up to 4mm. 121.00-129.20: increasing carbonatization of the rock on a general basis, particularly in narrow breccia zones then feathering along laminations. 129.20-129.30: FAULT ZONE - chloritized shear zone with green clay and mylonite at 30° to the core axis. 129.30-131.20: rock tends to be finer grained and more finely foliated/laminated - parting is very well developed parallel to foliation (55-60° at 129.80 meters). The lowermost 30cm might coarsen slightly and appears to have a crystalline texture - possibly tuffaceous or extremely immature sediments. 									
131.20	141.12	BASALT Dark green, fine to very fine grained with possible skeletal pyroxenes found within 10cm of the upper contact. The rock becomes finely brecciated below 131.90 meters increasing below 135.60 meters. Brecciation tends to decrease below a fracture system at 137.75 meters. Brecciation is a shatter-type with no welding or re-melting of fragments and very little rotation. The zone from 137.75-138.70 is almost non-brecciated. The zone from 138.70 to the base of the hole is composed of poorly developed flow breccia. Some vesicular fragments are noted.									
		141.12 meters END OF HOLE CASING PULLED									

FORM 2

NAME OF	PROPERTY	McDermott			
HOLE NO.	Mc-84-62	LENGTH	215.80 m	eters	
LOCATION	<u></u>				
LATITUDE	8+50 E	DEPARTURE _	1+33.3 S		
ELEVATION		AZIMUTH	_344 ⁰	DIP _	<u>-65</u> °
STARTED	March 15, 1984	FINISHED	March 20,	1984	

	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
	0	-65 ⁰		182.89	-57	
	45.00	-63 ⁰		213.36	-54 ⁰	
	91.44	-63 ⁰				
[137.16	-62 ¹ /2				

HOLE NO. MC-84-62 SHEET NO. 1 OF 5

REMARKS ____

Amended By: A.W. Workman

LOGGED BY _ Gilles Tousignant

FOO	TAGE	D.C.C.D.L.D.Y.L.D.Y			SAMF	νιε			,	ASSA	YS	
FROM	то	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	- 36	76	OZ/TON	OZ/TON	
0	7.92	OVERBURDEN		1			-	1				
0 7.92	7.92	OVERBURDENBASALTMedium to dark green, fine to medium grained with fine grained to aphanitic phases associated with flow margins.7.92 - 20.30:fine to medium grained massive flow.20.30 - 21.25:medium to coarse grained massive flow.21.25 - 22.00:fine to medium grained massive flow.22.00 - 22.59:flow contact at 30° to the core axis.22.59:flow contact at 30° to the core axis.22.59:aphanitic to very fine grained pillowed flow with angular breccia locally.angular breccia locally.Pillow tops are strongly vesicular with up to 1cm selvages.83.59 - 84.20:fine to very fine grained massive flow, possible flow contact at 33.59m.84.20 - 87.30:fine grained massive flow becoming nearly medium grained locally.87.30 - 87.73:fine to very fine grained massive flow.87.73 - 89.30:fine grained, massive.89.88 - 91.15:aphanitic to very fine grained massive flow.87.73 - 89.30:fine grained becoming aphanitic down-section.89.88 - 91.51:aphanitic to very fine grained.91.15 - 94.70:fine to very fine grained becoming fine grained below 91.55m.94.70 - 95.86:if we contact at 20° to the core axis.95.86:if blow contact at 20° to the core axis.	5645		40.35	40.80	0.45			0.03		

FORM 1

NAME OF PROPERTY_

HOLE NO. _

Mc-84-62

McDermott

2 OF 5 SHEET NO.

FC	OTAGE	DESCRIPTION	SAMPLE NO. SULPH FOOTAGE IDES FROM TO TO						ASSAYS			
FROM	то		NO.	". SUL PH	FROM	TO TO	TOTAL	1 .	' •	OZ TON	UZ TON	
122.6 139.1 139.1	.9 142.54	 95.86 - 96.32: flow top breccia - generally aphanitic, angular breccia fragments up to 1.5cm in size, epidotized fractures with no welding of clasts. 96.32 -122.60: flow breccia - rounded, generally oblong fragments up to 3cm characterize a zone of poorly developed brecciation. Some reaction rims are observed above 98.80 meters but the zone is generally best developed below this point with fragments up to 10cm in size. Some variety in fragment lithology is noted with green and grey colours. This variation tends to increase below 121.00 meters reflecting proximity to the base of the flow. The ratio of fragment volume to matrix is relatively high (3:1). <u>SEDIMENTS</u> Dark green, fine grained carrying moderate to strong grey hued silicification locally between 124.23 and 129.25 meters. The zone below 130.85 is dark green with abundant pale pink carbonate void fillings. Minor carbonatization of localized breccia is noted locally. Bedding is weakly developed at 136.60-138.40 meters, 450 near the top of this interval and 55-600 near the bottom. A cream coloured section of gritty, sand-like material is noted in some ground core near 126.76 meters. This is similar to suspected fault gouge observed in nearby holes. Up to 90% silicification is noted above 129.25 meters. Some increase in pyrite content is associated with this alteration (maximum 5-7% very fine grained). This alteration is similar to the transitional type bordering the main silicified zone. This rock is frequently magnetic and is greyish in colour. The best silicification is noted at 126.76-129.25 meters. Below this point, alteration gradually decreases. <u>BASALT</u> Dark green, indistinct grain size and crudely flow brecciated with some altered clasts of sediment near the base of the flow. Lower contact is at 400 to the core axis. 	5646 5647 5648 5650 5651 5652 5653 5654 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5918 5919 5920 5921	$5 \\ 3 \\ 4 \\ 1-2 \\ 4 \\ 1-2 \\ 4 \\ 1-2 \\ 1-2 \\ 1 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	122.05 123.25 124.23 124.64 125.24 125.74 126.76 127.55 128.35 130.25 130.25 130.25 130.85 131.85 132.80 133.75 134.20 135.15 136.05 136.38 137.30 138.17 139.19 140.10 141.01	123.25 124.23 124.64 125.24 125.74 126.76 127.55 128.35 130.25 130.25 130.85 131.85 132.80 133.75 134.20 135.15 136.05 136.38 137.30 138.17 139.19 140.10 141.01 141.96 142.65	1.20 0.98 0.41 0.60 0.50 1.02 0.79 0.80 0.90 1.00 0.60 1.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0			0.01 0.02 0.01 tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		
Ĺ												

FORM 2

NAME OF PROPERTY_____

HOLE NO. ___

McDermott

MC-84-62 _____ SHEET NO. ____ 3 OF 5_____

FOO	TAGE	DESCRIPTION	[SAMPL	.E				ASSAYS		
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE TO	TOTAL		~ .	OZ TON	UZ TON	
142.54	145.45	SEDIMENTS										
145.45	146•75	Dark green, fine grained, with abundant white to grey, 1-3mm pod-like carbonate growths (possible replacements), below 143.40 meters. Carbonate is elongated parallel to the foliation/bedding - 45-50° at 144.35 meters. The degree of carbonatization, as a replacement, increases down-hole. <u>TRANSITION ZONE</u> Looks much more like the usual transition zone than 124.23-129.25; silicification varies from 85% in top of unit to less than 50% at the bottom. A clay filled fault zone is noted at 146.30 meters. 145.45-146.25: honey coloured, remants(?) or beginnings(?) of silicified zone, very heavily fractured, 2-4%	5802 5803 5804 5805 5657 5658 5659 5660 5661 5662 5663 5664 5665	1 1 1 3 3	142.65 143.50 144.45 144.95 145.45 145.85 145.85 146.75 147.75 148.75 149.75 150.75 151.75	143.50 144.45 144.95 145.45 145.85 146.75 147.75 148.75 149.75 150.75 151.75 152.75 152.75	0.85 0.95 0.50 0.50 0.40 0.90 1.00 1.00 1.00 1.00 1.00 1.00	actual	0.65)	tr. tr. tr. 0.04 0.01 0.01 0.01 0.01 0.01 tr. tr. tr.		
146.75	149.16	pyrite, 90% silicified. 0.25 meters of ground core. 146.25-146.75: alternating silicified and unsilicified sediments very uniformly distributed - 70-80% purplish grey silicified zone, weakly mineralized, well laminated alternating with zones of 20-30% dark green chloritized sediments in bands up to 4cm wide. <u>MAIN SILICIFIED ZONE</u> The rock is generally aphanitic, purple-grey and highly silicified,	5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676		153.75 154.75 155.75 156.75 157.75 158.75 159.75 160.75 161.35 161.95 162.95	154.75 155.75 156.75 157.75 158.75 159.75 160.75 161.35 161.95 162.95 163.75	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.6			tr. tr. tr. tr. tr. tr. tr. tr. tr.		
149.16	172.60	<pre>but alternates with some (10-20%), dark green non-silicified and chloritized rock. Pyrite contents tend to be lower than is normal in the main silicified zone of other holes. <u>TRANSITIONAL SILICIFIED SEDIMENTS</u> This zone is a continuation of the overlying section with much lower contents of silicified rock. The degree of silicification is quite high but is entirely controlled by seams of breccia. Pyrite content tends to be low, in the 1-2% range. Most of this is as a fine dissemination.</pre>	5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687		163.75 164.75 165.75 166.65 167.15 167.75 168.50 169.50 170.50 171.10 171.75	164.75 165.75 166.65 167.15 167.75 168.50 169.50 170.50 171.10 171.75 172.60	1.00 1.00 0.90 0.50 0.60 0.75 1.00 1.00 0.60 0.65 0.85			tr. tr. 0.03 0.01 0.02 0.01 0.01 0.01 0.01 0.10		

FORM 2

NAME OF PROPERTY McDermott

HOLE NO. _____ MC-84-62 _____ SHEET NO. ____ 4 OF 5

FOOT	AGE	DESCRIPTION			SAMPI	LE				ASSAYS	
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE	TOTAL	· ·	۳.	OZ TON	OZ TON
		149.16-161.95: the zone carries approximately 40% silicified	5806	1	172.60	173.54	0.94	1		tr.	
Í		breccia, with remainder of section tending to be	5807	1	173.54	174.39	0.85			tr.	
		very weakly to non-silicified.	5808	1	174.39	175.35	0.96			tr.	
		161.95-167.75: sediments - same as above, 50% silicified, well	5809	1	175.35	176.40	1.05			tr.	
ļ		laminated, fairly mineralized zones alternating wi	th 5810	1	176.40	177.35	0.95	l		tr.	
		chloritized zones up to 50cm.	5811	1	177.35	178.30	0.95			tr.	
		167.75-172.60: sediments - 30-40% silicified, well laminated,	5812	1	178.30	179.30	1.00			tr.	
1		greenish to greyish in colour, weakly mineralized.	5813	1	179.30	180.35	1.05			0.01	1
		171.75-172.60: pale grey, 60% silicified.	5814	1	180.35	181.50	1.15			0.01	
Ì			5815	1	181.50	182.43	0.93			0.01	
72.60	206.97	SEDIMENTS	5816	1	182.43	183.39	0.96			10.01	
			5817		183.39	184.30	0.91			tr.	
		The rock is dark green, fine to very fine grained, with alternation	g 5818		184.30	185-25	0.95			tr.	
		well laminated and weakly to non-laminated sections. Only a few	5819	0-1	185.25	186-25	1.00			tr.	
		silicified seams up to 1cm in width are noted in this generally	5820	1-2	186.25	18/.1/	0.92			tr.	
		chloritized sequence. A fine grained clastic zone, possibly	5821	1	18/.1/	188.00	0.83			tr.	
		pyroclastic in origin, carries fragments up to 1.5cm and is locate	d		100.00	1 00 70	0.00				
		at 185.72-186.41 meters. Minor localized silicification is best	5822		188-80	189.10	0.90			tr.	
		noted at 186-41-18/.1/ meters. Weak selective silicification of	1 5000		100 50	102 11	0 51			A	
		carbonatized lensitic lamination sets is noted at 196.45-197.35 m	5823		192.50	193-11	0.51	ł			
		These laminations are developed at 45° to the core axis.	1 5824	1-2	193.11	193.59	0.48			0.01	
		Localized highly silicified preccia is noted at 202.05-202.69 m ar	0 5825	' 1	193.59	194.20	0.00	1			
		carries up to 10% pyrite locally. A rew stillcified rip-up clasts	up E 026	1	105 05	106 15	0 50			0 01	
ŀ		to 4cm in size are found in this interval. The zone averages 1%	5020	1 1 2	195.95	190.45	0.50				
		pyrite as dieds up to inno	5929	1-2	107 35	107 00	0.50	Į		0.01	
		$\frac{5600119}{172.12} = 45.500 = 175.20 = 50.550$	5020	<u>'</u>	157.5.5	19/090	0.55	ł		0.01	
		$1/5 \cdot 12$ m; $45 - 50^{\circ}$ $1/5 \cdot 20$ m; $50 - 55^{\circ}$	5820	0_1	109-23	200.23	1.00			0_01	
		$1/0.15$ III. $50-55^{\circ}$ $1010/0$ III. 45°	1 3023		155025	200020	1000			0.01	
		103-00 11. 40-000	5830	2-3	202-05	202-69	0.64	ľ		0-01	
206 97	208 00	RΔSΔΙ Τ	5000			202003					
.00.37	200.50							1			
-		Dark green, fine to very fine grained massive flow except for what						ł			
		appears to be a pillow selvage at 207.24 meters. The base of the									
		flow is strongly brecciated, epidotized and chloritized, and carri	es								
		fragments probably derived from the underlying sediments.								1	
					1						
					ļ			1			

FORM 2

NAME OF PROPERTY McDermott

HOLE NO. MC-84-62 SHEET NO. 5 OF 5

FOO	TAGE	DESCRIPTION			SAMP	LE			ASSAYS		
FROM	то		NO.	. SULPH	FROM	FOOTAGE	TOTAL	·•	OZ TON	OZ TON	
208.90	212.08	SEDIMENTS									
		The section is dark green, fine to very fine grained, and moderately chloritized. A foliation is weakly developed, probably reflecting original bedding at 45° to the core axis. The zone carries up to 1% pyrite as blebs up to 1mm in size. Approximately 10% quartz- carbonate stringers are noted.									
212.08	215.80	BASALT									
		Dark green and fine to very fine grained with abundant silicified pale green aphanitic zones - possibly pillowed or very coarsely flow brecciated. This is especially noticeable above 213.00 meters. Minor fine angular breccia is irregularly dispersed throughout the flow. The rock is non-carbonatized and non-magnetic.									
		215.80 meters END OF HOLE									
		CASING PULLED									
168											
366-1											
TORO											
Σ L											
GRIE											

NAME O	F PROP	ERTY	McDermott LENGTH179.16 meters	FOOTAGE	DIP -65 ⁰	AZIMUTH	FOOTAGE 179.16	оір -59 ⁰	AZIMUTH	HOLE I	ю. <u>Mc.</u> RKs <u>BQ</u>	84-63 st Core -	IEET NO. <u>1 OF 9</u> Split for assay
LATITUD	e <u>6</u> on <u>Mar</u>	+ 00 E	DEPARTURE $1 + 02 \text{ S}$ AZIMUTH 344° DIP -65° FINISHED March 26, 1984	48.16 91.44 137.16	-65° -63° -67°					LOGGE	Са D вү	sing pu A.W. Wo	rkman
FOOT	TAGE		DESCRIPTION				SAM	PLE				ASSA	Y S
FROM	τo					IO. SULF	FROM		TOTAL	- %	.76	OZ/TON	OZ/TON
0 23.16	23.16 41.55	OVERBUI BASALT	RDEN								-		
	41.55 44.12 Dar	40.04 - 41.5	 akly sheared base. Rock is non-magnetic a Chloritization is weak to moderate. fine to medium grained, occasional ep grained sections - probably deuteric fine grained with abundant white quar stringers up to lcm. Shearing has im foliation in the lowermost 75cm at 55 core axis. 	idotized fine alteration. tz-carbonate parted a -60° to the	P								
41.55	44.12	SEDIMER Dark green, i Carries abund the bedding, 5% pyrite as along laminad up to 3mm. I 55-60° to the carries seven (pyroclastic)	<u>MTS</u> fine to very fine grained and well laminal lant quartz stringers up to 1.5cm in width particularly near the top of the unit. a fine dissemination and as lmm cubes contions. Quartz stringers carry rare chalc Bedding laminations are well developed lo e core axis (eg. 42.50 meters). The lowe ral epidotized volcanic clasts up to 5cm ?).	ted locally. h cross-cutti Carries up to ncentrated opyrite blebs cally at r half	ng S	88 3-	5 43.12	44.1	2 1.00			tr.	
44.12	84.15	BASALT Dark green, f brecciated se	fine to medium grained massive flow with a actions. Minor angular brecciation is as	abundant flow sociated with						-			

NAME OF PROPERTY_____McDermott

HOLE NO. ______ MC.84-63 _____ SHEET NO. _____ 2 OF 9

FOOTAGE	DESCRIPTION			SAMPI	_E				ASSAYS		· · · · · · · · · · · · · · · · · · ·
FROM TO	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	· · ·	"".	OZ TON	UZ TON	
	 flow tops. Little welding or alteration of fragments is noted these sections. Flow breccia contains more rounded and general larger fragments, up to 5cm in size. These fragments generally welded and have well developed reaction rims. Flow is non-magned non-carbonatized. 44.12 - 46.20: fine to very fine grained, strongly fractured, uppermost 30cm is vesicular. 46.20 - 53.80: fine to medium grained. 56.55 - 57.96: fine to very fine grained; quartz stringer at 5 probably marks a flow contact at about 50° to the core axis. 57.96 - 58.11: very fine grained to aphanitic. 58.11 - 72.00: fine to very fine grained, rock has a mottled appearance possibly due to segregation of mafice felsic components. 72.00 - 72.56: fine to very fine grained. 72.56 - 73.40: very fine grained to aphanitic flow top unit, m silicification of angular flow top breccia. Carson vesicular fragments. 73.40 - 76.85: flow breccia - generally not well developed with epidotized fragments up to 5cm. 76.85 - 80.00: mixed zone of flow breccia and more angularly brecciated rock. Minor shearing. Abundant epidotized aphanitic zones up to 10cm. Carries clots of pyrite up to 1.5cm locally in voids associated with angular brecciation post-dating breccia. 80.00 - 82.60: very fine grained, locally fine grained flow with moderate to strong fracturing. Some quartz vein is possibly related to flow margins. 82.60 - 83.25: angularly brecciated minor reaction rims - void fractures are quartz-hematite filled. 83.25 - 84.15: flow breccia - fragments up to 3cm. 	in ly are etic 7.96 he and inor cries h flow ch ning s and									

FORM 2

NAME OF PROPERTY McDermott

HOLE NO. MC. 84-63 SHEET NO. 3 OF 9

		DESCRIPTION	1		SAMPI	LE				ASSAYS		
FROM TO		DESCRIPTION	110	- SULPH		FOOTAGE		I		OZ TON	OZ TON	
			+	IDES	FROM	10	TOTAL	<u>+</u>	f	<u> </u>	}	ļ
84.15 97.	4 <u>SEDIMENTS</u>	<u>S</u>										
GRIDGE LIMITED - TORONTO - 366-1168	Dark green, fin Bedding is not and shearing. T Abundant pale of in voids throw hematization. up to 3cm), that fall-out. Loca below 93.50 met reddish, highly are also noted locally - possi are brecciated surrounding roo located at 95.3 strongly silic variable, usual 84.15 - 89.61: 88.45: 89.61 - 95.30: 95.30 - 97.44:	The to very fine grained, becoming aphanitic locally. well exhibited due to a combination of brecciation This is most apparent in the zone at 35.90-87.67 m. grey, occasionally pale purple-grey carbonate is found ghout the unit. Purple tint is due to localized Zone carries far more volcanic debris (as fragments an is normal for this unit - possibly pyroclastic alized patches of silicification up to 3cm are noted ters - usually pale purple-grey in colour. Minor y siliceous sub-rounded fragments up to 2cm in size . Some pale green patchy alteration is observed ibly due to very weak silicification. These patches and slightly more reactive to HCl than the ck. A 10cm zone of moderate to strong brecciation is 30-95.40, fragments up to 2mm are pale green and are ified. Throughout the unit, carbonatization is 11y weak to moderate. extremely angular brecciation - possibly a result or steam explosion due to overlying basalts. Matrix is quartz with minor carbonate. Fragments often have weakly altered reaction rims. The most extreme brecciation is noted at 85.90-87.67 meters; the lower contact marked by a flesh coloured gritty sear at 55-60° to the core axis. cream coloured gritty seam, same as at 87.67 meters and similar to the seam reported in drill hole 82-13. zone is more recognizable as sediments, well laminated locally. laminated sediments with localized brecciation and silicification in seams up to 10cm. Carries a few silicified fragments eroded from lower in the hole. <u>Bedding Laminations:</u> 90.80 m: 50-55°; 91.65 m: 45°; 94.40 m: 50° and 95.57 m: 40-45°.	C 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700	0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	86.12 87.78 88.74 89.61 90.56 91.48 92.34 93.26 94.10 95.07 95.92 96.85	86.80 88.74 89.61 90.56 91.48 92.34 93.26 94.10 95.07 95.92 96.85 97.44	0.68 0.96 0.87 0.95 0.92 0.86 0.92 0.84 0.97 0.85 0.93 0.59			tr. tr. tr. tr. tr. tr. tr. 0.01 0.01 0.01		

🚺 - Land and a star in the 🗰

NAME OF PROPERTY McDermott

HOLE NO. ______ MC.84-63 _____ SHEET NO. _____ 4 OF 9

F00	TAGE	DESCRIPTION			SAMPL	.E			ASSAYS		
FROM	то		NO.	" SULPH	FROM	FOOTAGE TO	TOTAL	"•	07 TON	UZ TON	
97.44	127.17	MAIN MINERALIZED ZONE									
		Three components are represented; an upper transitional zone of variable silicification and carbonatization, a central main silicified zone which is highly silicified and carries elevated pyrite contents and a lower transition zone which carries locally developed zones of silicified breccia. All sections within this sequence are of typical thickness and the main silicified zone is well developed.									
97.44	98.94	TRANSITIONAL SILICIFIED SEDIMENTS									
		Dark green and fine to very fine grained with purple-grey aphanitic silicified breccia zones. The amount and degree of silicification increase down-section. The lowermost 50cm is at least 50% silicified and all silicified rock is moderately to strongly reactive to HCl. This is a result of prior carbonatization. A 5cm section of ground core at 98.89-98.94 meters marks the clay filled fault plane observed in other holes - the McKenna Fault. Just above this fault, the rock acquires a purple hue due to hematization.	с 5701 5702		97.44 98.19	98.19 98.94	0.75 0.75		tr. tr.		
98.94	118.79	MAIN SILICIFIED ZONE									
LANGRIDGE LIMITED - TORONTO - 366-1168		Dark purple-grey, becoming honey coloured locally, aphanitic and strongly brecciated. The sediments are highly silicified and carry elevated pyrite contents with respect to flanking formations. Near the top of the unit, above 100.13m., all rock is reactive to HCl, but silicification obscures carbonatization below this level. Where purple-grey breccia is post-dated by fracturing, the fractures commonly have narrow (mm. scale), honey coloured halos. Pyrite content is highest in the paler coloured rock. Up to 10% is noted as a very fine dissemination and as 1cm. clots of finer grains. A fine pyroclastic texture is noted locally and likely points, at least in part, to the origin of these sediments. 98.94-99.53: honey coloured, intensely silicified breccia, 5-7% pyrite.									

• - -

NAME OF PROPERTY

HOLE NO.

McDermott

Mc.84-63 SHEET NO. 5 OF 9

FOOTAGE				<u> </u>	SAMPL	Ē				ASSAYS		
FROM TO	1	DESCRIPTION	NO.	" SULPH	FROM	FOOTAGE	TOTAL		۳.	oz t on	OZ TON	
FOOTAGE FROM TO	99.53 -106.76: 106.76-108.42: 108.42-109.12: 109.12-109.23: 109.23-111.00: 111.00-111.66: 111.66-112.22: 112.22-113.70: 113.70-118.79:	DESCRIPTION dark purple-grey intensely silicified breccia with a few chloritized fractures which post-date brecciation and silicification. Some fractures are actually micro-faults parallel to the core axis with offsets of up to 2cm. purple-grey with increasing honey coloured mottling and increasing pyrite content - up to 7% locally. purple-grey with a fine network of very tight chloritized fractures - some regular planar fractures are slickensided. reddish-brown highly siliceous zone - 2-3% very finely disseminated pyrite. purple-grey with abundant honey coloured halos surrounding fracture networks. Pyrite occurs dominantly in clots up to 1.5cm with 5% locally. medium dark green, fine grained sediments, occasionaly with clasts up to 2mm - possibly pyroclastic. Very weakly magnetic. dark charcoal grey to purple-grey with minor reddish-brown intensely silicified breccia. Up to 10% pyrite highly localized in reddish rock (eg. 111.79-111.85 meters). reddish-brown very fine grained to aphanitic with possible white to cream coloured fractured feldspar planes up to 1.5mm. Possible syenitic origin is being determined by thin sectioning. purple-grey intensely silicified breccia; minor highly localized honey coloured patches with up to 5% pyrite. 114.75-114.95: weakly silicifed, moderately chloritized, abundant laminations at 55° to the core axis. Rare blebs and platelets of chalcopyrite in fractures associated with pink carbonate stringers.	NO C 5703 5704 5705 5706 5707 5708 5709 5710 5712 5713 5714 5715 5716 5717 5718 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730	5-7 2-3 2-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1	SAMPL 98.94 99.53 100.39 101.15 101.91 102.48 102.48 103.61 104.42 105.22 106.10 106.76 107.37 108.02 108.02 108.42 109.12 109.77 110.42 111.00 111.66 112.22 112.98 113.70 114.40 115.21 116.03 116.86 117.70	-E FOOTAGE 70 99.53 100.39 101.15 101.91 102.48 103.61 104.42 105.22 106.10 106.76 107.37 108.02 108.42 109.12 109.77 110.42 111.00 111.66 112.22 112.98 113.70 114.40 115.21 116.03 116.86 117.70 118.79	10 TAL 0.59 0.86 0.76 0.77 0.40 0.73 0.81 0.88 0.66 0.61 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.63 0.70 0.81 0.82 0.83 0.84 1.09	(0.95	act.)	ASSAYS 02 TON 0.09 tr. tr. tr. 0.01 0.01 0.01 0.01 0.01 0.01 tr. tr. tr. tr. tr. tr. tr. tr.	OZ TON	

NAME OF PROPERTY___

HOLE NO.

Mc.84-63

McDermott

6 OF 9 SHEET NO.

FROM TO 118.79 127.17 TRANSITIONAL SILICIFIED SEDIMENTS Medium to dark green fine to very fine grained and chloritized with abundant purple-grey to pink silicified breccia zones. Occasional clasts of silicified rock up to 3cm are supported in a green chloritized matrix (eg. 122.70 meters). Within chloritized rock, pale green lenses up to 2mm in width seem to have grown within the laminations. These lenses are essentially carbonate as evidenced by a strong HCl reaction. Major silicified breccia zones are located at 119.15-119.25, 119.36-119.40, 119.72-120.07, 120.35-120.40, 120.85-121.40, 122.12-122.30 and 122.75-122.86 meters.	NO. C 5731 5732 5733 5734	-, SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	r	OZ TON	OZ TON	,
118.7927.17TRANSITIONAL SILICIFIED SEDIMENTSMedium to dark green fine to very fine grained and chloritized with abundant purple-grey to pink silicified breccia zones. Occasional clasts of silicified rock up to 3cm are supported in a green chloritized matrix (eg. 122.70 meters). Within chloritized rock, pale green lenses up to 2mm in width seem to have grown within the laminations. These lenses are essentially carbonate as evidenced by a strong HCl reaction. Major silicified breccia zones are located at 119.15-119.25, 119.36-119.40, 119.72-120.07, 120.35-120.40, 120.85-121.40, 122.12-122.30 and 122.75-122.86 meters.	C 5731 5732 5733	1-2	118 70							-
 118.79-118.90: chloritized with abundant siliceous clasts foliated at 35-40° to the core axis - clasts are moderately to strongly carbonatized. 118.90-118.95: ground and lost core. 118.95-119.53: chloritized with occasional silicified breccia beds up to 1cm thickness. 119.53-119.72: pinkish green, fine to very fine grained and weakly to moderately magnetic - zone was formerly thought to be intrusive. Upper contact at 38° to the core axis. 119.72-122.86: zone carries 45% silicified breccia beds up to 65cm thickness and carries up to 3% very finely disseminated pyrite. 122.86-127.17: zone carries less than 20% silicified breccia seams, which are generally narrower than the overlying section. The zone is generally well laminated with minor soft sediment deformation locally (123.06-123.76 meters). Silicified breccia seams are located at 125.42-125.45 meters and a reddishbrown seam carrying 5-7% pyrite is located at 126.01-126.09 meters. Bedding Laminations: 55-60° at 123.36 m 45° at 124.20 m 45° core at 124.05 m 	5735 5736 5737 5738 5739 5740 5741	1-3 1-2 2-3 1-2 1-3 1-2 1-2 1 1 1	119.72 120.07 120.85 121.40 122.12 122.86 123.61 124.55 125.45 126.35	119.72 120.07 120.85 121.40 122.12 122.86 123.61 124.55 125.45 126.35 127.17	0.93 0.35 0.78 0.65 0.72 0.74 0.75 0.94 0.90 0.90 0.82			0.01 0.04 0.01 0.02 tr. tr. tr. tr. tr. tr. tr. tr.		

NAME OF PROPERTY_______McDermott

HOLE NO. MC.84-63 SHEET NO. 7 OF 9

FOO	TAGE	DECORIDION			SAMPL	.E				ASSAYS		
E PON	то	DESCRIPTION	NO.	SULPH		FOOTAGE			<i>i</i>	OZ TOM	GZ TON	
FROM				IDES	FROM	to	TOTAL	· · · ·	<u> </u>			
127.17	168.06	SEDIMENTS Modium to dark green fine to very fine grained and well laminated	C 5742	1	127.17	127.94	0.77			tr.		
		on a moular basis throwhout the unit Occasional numbergrey	5743	1	127.94	128.86	0.92	1		tr.		
		cilicified brossis come up to 20cm are noted (eq. 128.50-128.60 and	5744	1	128.86	129.71	0.85	1		0.01		
		121 52-121 72 meters) Silicification of individual laminations is	5745	1	129.71	130.61	0.90	[0.01		
	1	more common and makes up 20% of some sections. Some fracture	5746	1	130.61	131.52	0.91	[0.01	Í	
		more combinated makes up 205 of some seccions. Done fractare	5747	2-3	131.52	131.94	0.42			0.06		
		Redding Laminations. (measured with respect to core axis)	5748	1	131.94	132.89	0.95	1		0.01		
		$\frac{120.25 \text{ m} \cdot 55-600}{120.25 \text{ m} \cdot 55-600} = 138.60 \text{ m} \cdot 600$	5749	1	132.89	133.80	0.91	l		tr.		
		129.55 m; $55-600$ 130.05 m; $55-00^{\circ}$ 130.00 m; 00°	5750	1	133.80	134.70	0.90			tr.		
		141.45 m; $35-00^{\circ}$ 142.25 m; $50-55^{\circ}$ 149.10 m; 40°	5751	1	134.70	135.60	0.90	1		tr.		
		157 90 m. 500 163 70 m. 45-500	5752	1	135.60	136.50	0.90	1		tr.		
		137.80 m: 30° 103.70 m: 45 50	5753	1	136.50	137.35	0.85	1		tr.		
		131.52-131.94. intensely silicified breccia with up to 5% locally	5754	1	137.35	138.15	0.80	1		tr.		
		near the top of the zone.	5755	1	138.15	138.77	0.62			tr.		
		138.77-140.39. abundant purple-grey silicified breccia with many	5756	1	138.77	139.56	0.79	ł		tr.		
		weakly to moderately silicified carbonatized zones.	5757	1	139.56	140.39	0.83	1		0.01		
		140.39-145.33. abundant lensitic carbonate replacements in pods	5758	1	140.39	141.35	0.96	1		0.01		
		1.5cm thick and greater than 5cm in length	5759	1	141.35	142.30	0.95			tr.		
		concordant to bedding. These have a purple-grey	5760	1	142.30	143.20	0.90			tr.		
		colour due to benatization (eg. 140.75 meters). The	5761	1	143.20	144.10	0.90			tr.		
		pods are silicified in the interval below 142.05	5762	1	144.10	145.05	0.95			tr.		
		meters - some resembling pink quartz veins.	5763	1	145.05	145.93	0.88			tr.		
1		145.33-149.57: few silicified seams, generally well laminated.	5764	1	145.93	146.75	0.82	ł		tr.		i
		149.57-151.46: abundant grey carbonate alteration, moderate	5765	1	146.75	147.71	0.96	Į		tr.		
		hematization along individual laminations. Minor	5766	1	147.71	148.64	0.93 (m	easure	s 0.87	tr.		
		silicification develops in carbonatized laminations	5767	1	148.64	149.57	0.93]		tr.		
		towards base.	5768	1-2	149.57	150.43	0.86			tr.		
		151.46-156.48: continuation of overlying section with some	5769	1-2	150.43	151.46	1.03			0.01		
		intense silicification of carbonatized laminations	5770	2-3	151.46	152.35	0.89			0.01		
		and seams up to 10cm in thickness. This section is	5771	2-3	152.35	153.16	0.81			0.01		
		75-80% silicified becoming 50% silicified below	5772	1-3	153.16	154.00	0.84			0.01		
		154.00 meters. Bedding is well preserved above	5773	1-3	154.00	154.84	0.84			0.01		
		152.00 m but is weakly brecciated below this point.	5774	1-3	154.84	155.65	0.81			tr.		
		Chloritized, non-silicified rock seems to be non-carbonatized. Increased pyrite is noted in more	5775	1-3	155.65	156.48	0.83			tr.		

NAME OF PROPERTY _____ McDermott

HOLE NO. _____ MC.84-63 _____ SHEET NO. ____ 8 OF 9

rnow ro rook r
massively silicified sections with up to 15% locally. Average content is 1-3%. Pyrite is observed as very narrow stringers along (replacing?) bedding laminations. 156.48-157.25: chloritized with 25% silicification. Silicified seams decrease in number and thickness with depth. 157.25-158.52: 5-10% silicified seams. 158.52-160.65: increasing silicification similar to zone at 151.46- increasing silicification similar to zone at 151.46- to strongly becoming more prevalent below 159.15 meters. Silicified reagments parallel to laminations. Silicified fragments are only weakly reactive to HCL. 163.59-164.03: chloritized with 25-0% selective silicification of similar to upper transitional member in the Main Silicified Zone. Silicified laminations and lensitic clasts parallel to laminations similar to upper transitional member in the Main Silicified Zone. Silicified Iaminations strongly reactive to HCL. Carries 5-7% pyrite (up
164.03-166.00: chloritized and dark green with abundant grey coloured patches of carbonate replacement along selected lamination sets. These act to highlight laminations, (55° at 164.20, 70° at 164.70 and 60° at 165.80 meters). 166.00-168.06: well foliated on a very fine scale becoming less well foliated with depth (40° at 167.23 meters).

•

NAME OF PROPERTY McDermott

HOLE NO. ______ MC.84-63 _____ SHEET NO. ____ 9 OF 9

FOO	TAGE	DESCRIPTION			SAMPL	_E				ASSAYS		
FROM	то	DESCRIPTION	NO.	". SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	14 •	OZ TON	OZ TON	
	TAGE TO 179.16	DESCRIPTION BASALT Dark green fine to very fine grained with a vesicular(?) flow top at 168.06-168.18 meters. The remainder of the section is weakly fractured with red hematite filling and does not exhibit any structural features above a laminated (50° to core) sedimentary horizon at 169.25-170.10 meters. Below the sediments, the flow is pillowed. Selvages are well exhibited on 0.7-1.0 meter centres. Pillow interiors are highly brecciated, epidotized, and silicified. The upper contact at 168.06 meters is at 65° to the core axis. The volcanics are non-magnetic and essentially, are non-carbonatized. 179.16 meters END OF HOLE CASING PULLED	NO.	~ SULPH IDES	FROM	FOOTAGE	TOTAL			OZ TON	OZ TON	

FORM 1

NAME O HOLE NO LOCATIO LATITUD ELEVATI STARTED	F PROP D N E ON D Ma	ERTY c-84-64 +00 E rch 27, 1984	McDERMOTT LENGTH DEPARTURE AZIMUTH FINISHED	185.32 m 1+05 S 344 [°] March 30, 1	DIP <u>-65⁰</u> 984	Гоотасі 0 45.11 91.44 137.16	DIP -65° -66° $-62^{1}2^{\circ}$ -60°	AZIMUT	тн F оотад	E DIP	AZIM	UTH	HOLE REMA	NO. <u>Mc-8</u> RKS D BY	<u>4-64</u> sH <u>BO Core</u> Split f A.W. Wo	or assa	1 OF 7
FOO	TAGE	T	<u></u>						SAN	IPLE				A	SSA	rs	
FROM	то			DESCRIP			٢	10. SUL IDI	PH-	F00T/ M TC	AGE	TOTAL	76	%	OZ/TON	OZ/TON	
0 13.41	13.41 108.40	OVERBUR BASALT	<u>'DEN</u>														
		Medium to dar phases. Pill pillowed flow brecciated wi brecciation i 14-28 meters frequently ep meter size. thickness. B with up to 28 carbonatized. 13.41 - 33.45 33.45 - 33.65 33.65 - 36.80 36.80 - 37.25 37.25 - 38.55 38.55 - 45.10 45.10 - 48.10 48.10 - 49.90 49.90 - 50.45 50.45 - 51.85 51.85 - 54.00	k green, fi owed and ma 's being fin th flow top 's noted - d in thicknes idotized an The single asalt flows associated : pillowed : aphaniti : fine to : angular I : massive, rimmed f : fine to epidotiz : fine gra fracture sub-para : fine to : fine to : fine to : fine to : fine to	ne to very f ssive flows er grained. and flow va lue to shrink s. Pillow s d indicate p pillowed flo are non-mag l with pillow l - vesicular c, silicifie very fine gr y brecciated flow brecci ragments up very fine gr ined massive s below 46.5 allel to core medium grain very fine gr medium grain ined; fine t	tine grained with are noted in th Massive flows arieties. Minor tage. Massive f belvages are sil- billows of appro- to is at least 2 metic and avera- to selvages. Roo pellow tops. The epidotized fil- tained, vesicular to to to to to to to 10cm. The flow; abundant to 10cm. to 10cm.	th medium grain his section - t are well c shatter-type flows range fro licified, oximately 1.0 20 meters in age 0-1% pyrite the are non- low bottom. ar massive flow ate filling. led reaction- flow - occasion c hematized -carbonate vein -49.30 meters.	ed he m • al let										

FORM 7

NAME OF PROPERTY______McDermott

HOLE NO. _______ MC-84-64 ______ SHEET NO. _____ 2 OF 7

FOOT	TAGE					SAMPI	LE				ASSAYS		
FROM	то	1	DESCRIPTION	NO	". SULPH	FROM	FOOTAGE	TOTAL		۲ 	OZ TON	UZ TON	
		54.00 - 54.75: 54.75 - 55.30:	fine to very fine grained. aphanitic to very fine grained; 3-5% pyrite as										
		55.30 - 55.70:	0.5-1.0mm cubes. aphanitic flow bottom, 3-5% pyrite. flow margin										
		55.70 - 56.30:	SEDIMENTS - medium to dark green, fine to very fine grained, highly silicified and weakly foliated at $60-65^{\circ}$ to the core axis. Carries 3-5% pyrite.										
		56.30 - 62.95:	flow top breccia - medium to dark green, with aphanitic to very fine grained angular fragments up to 3cm in size in epidotized, often silicified matrix.										
		62.95 - 72.85:	fine to very fine grained massive flow with minor flow breccia above 66.40 m. Becomes moderately well developed below this point. Fragments are somewhat more angular than usual, are reaction-rimmed and up to 6cm in size.										
		72.85 - 74.00:	fine to very fine grained flow, weakly brecciated with some hematized fractures.										
		74.00:	probable flow contact.						1				
		74.00 - 74.85:	very fine grained vesicular zone.		1				[ĺ			
		74.85 - 77.80:	angularly brecciated flow top variety - some extreme shatter-type brecciation - epidotized.										
6-1168		77.80 - 82.27:	fine to very fine grained, occasionally brecciated - possible pink feldspar phenocrysts up to 1mm at 81.50 m - very weakly magnetic at this point.										
9		82.27:	very sharp flow contact.				1						ł
0110		82.27 - 83.50:	epidotized, highly vesiuclar flow top. Vesicules up to 3mm are chloritized and get smaller with depth - TOPS UP.										
N N N N N N N N N N N N N N N N N N N		83.50 - 84.05:	fine to very fine grained massive flow.			1	1	{		[ĺ
ř.		84.05 - 92.45:	fine grained massive flow.								1		1
		92.45 - 94.23:	fine grained to medium grained flow.								}		
		94.23 - 94.31:	aphanitic, silicified, carbonated flow bottom with occasional xenoliths up to 1cm. Carries 2-3% pyrite.										
ANGRIDG													

FORM Z

NAME OF PROPERTY____

McDermott

HOLE NO. Mc-84-64

_____ SHEET NO. _____ 3 OF 7

FOOTAGE				SAMP	LE	_		ASSAYS		
FROM TO	DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE TO	TOTAL	•	 OZ TON	UZ TON	
	 94.31 - 94.46: epidotized, silicified aphanitic chill zone. 94.46 -100.00: fine to medium grained massive flow. 100.00-100.10: aphanitic epidotized and silicified chill zone. 100.10: flow contact. 100.10-100.65: rock has appearance of highly contorted (ropey) flow. 100.65-103.00: fine grained, massive flow. Rare epidotized medium grained phases up to 15cm width. 103.00-108.40: fine to very fine grained massive flow; occasional epidotized, silicified patches of breccia up to 15cm width below 106.20 meters. 	ne of the second s								
108.40	SEDIMENTS Dark green, fine to very fine grained and becomes well laminated below 110.05 meters. The bedding is highlighted by strong carbonatization of individual laminations and sets of laminations. Carbonate alteration is evidenced by a grey colouration and feathers out along bedding. A moderate degree of chloritization is noted. A 10cm zone of intense carbonatization and silicification is observed at the upper contact. A number of weakly silicified breccia zones have a pink colouration - possibly the result of carbonatization. The rock carries very pale green 0.1-0.5mm shards of vitric tuff. These are observed best above 109.90 m and extend into the overlying flow. 108.40-112.30: weakly foliated/laminated (45-50° at 110.25 m; 55-60° at 111.80 meters). 112.30-112.90: weakly bereciated; weakly silicified; moderately carbonatized. 112.90-115.35: carbonatized seams are 10-15% of section. A vuggy section of ground core is noted at 114.50-114.95 m. Laminated at 55° at 115.10 meters. 115.35-116.08: increased carbonatization with lensitic replacements along laminations. Minor increased pyrite is noted - 2% locally. Laminations are at 45° to core at 115.85 meters.	5831 5832 5833 5834 5835 5836 5837 5838 5839	0-1 0-1 1 1 0-1 0-1 0-1 0-1	112.28 113.18 114.13 114.95 115.87 116.70 117.70 118.60 119.60	113.18 114.13 114.95 115.87 116.70 117.70 118.60 119.60 120.40	0.90 0.95 0.82 0.92 0.83 1.00 0.90 1.00 0.80		0.03 0.01 tr. tr. tr. tr. tr. tr. tr.		

NAME OF PROPERTY_____

McDermott

HOLE NO. _______ MC-84-64 _____ SHEE

SHEET NO. _____ 4 OF 7

FOOTAGE			[SAMPI	_E		ASSAYS				
FROM	то	DESCRIPTION		". SULPH	FROM	FOOTAGE TO	TOTAL		147 1	OZ TON	UZ TON	
		 116.08-116.40: degree of carbonatization is lower and related to brecciation. Not as well foliated. 116.40-117.45: weakly foliated (50-55° at 117.40 m), and becomes relatively coarser grained with depth. 117.45-120.40: fine grained, weakly foliated locally. Carbonatization increases markedly below 119.60 m as carbonate replaces many laminations some of which are subsequently weakly silicified. Foliations: 45° at 118.25; 35-40° at 119.55 and 45-50° at 120.40 meters. 										
120.40	143.18	MA IN MINERALIZED ZONE						l				
		A well developed main silicified zone, perhaps somewhat narrow in width, is flanked by an excellent upper transition zone and a definitely narrow lower transition zone. Some high pyrite contents are noted in the upper transition zone (8-10%) and at the top of the main silicified zone (5-7%) but, in general, pyrite contents are low with respect to the observed lithologies.										
120.40	124.02	TRANSITIONAL SILICIFIED SEDIMENTS										
		The rock is initially dark green, fine to very fine grained and well laminated. Alternating laminations are strongly carbonatized and are weakly silicified. Silicification is also noted as 1-3mm lenticular blebs concordant to the foliation. With depth, silicification penetrates narrow breccia seams to give them a purple hue, also with minor hematization. Also with depth, carbonatization increases but carbonatized rock has increasing silicification. An intensely silicified purple-grey to honey coloured zone is noted at 121.65-121.77 m. Pyrite averages 1-2% but up to 20% is noted in some intensely silicified seams. The foliation, probably bedding, is preserved throughout, (40-45° at 122.05; 45° at 123.75 m). In the lowermost half of the zone, silicified seams coalesce to form a semi-massive bed of 80% cream coloured silicification.	5840 5841 5842 5843 5844	1 1 8-10 1-2 1-2	120.40 121.20 122.17 122.62 123.34	121.20 122.17 122.62 123.34 124.02	0.80 0.97 0.45 0.72 0.68			tr. tr. 0.16 0.01		

.

NAME OF PROPERTY_____ HOLE NO. ______MC-84-64 McDermott

SHEET NO. 5 OF 7

FOOTAGE		DESCRIPTION	SAMPLE					ASSAYS				
5004 70			NO.	" SULPH	FOOTAGE						() • • • • •	
FROM	то			IDES	FROM	TO	TOTAL	· ·	•	02 101	02 10	
		NOTE: Compared to other transition zones, the degree of silicification is very high and few honey to cream coloured clasts are reactive to HCl despite carbonatization. Pyrite contents are often much higher. The clay fault seems to be absent (some brecciation at 123.45 meters).										
124.02	133.10	MAIN SILICIFIED ZONE										
133.10		The rock is 50% purple-grey and 50% honey coloured to cream coloured intensely silicified breccia. The rock is aphanitic. Most sections of purple-grey rock have honey coloured halos surrounding fracture systems, and zones of extreme brecciation. Purple-grey rock locally appears as relics within honey coloured sections. Very little zoneation is noted within this unit and while honey coloured rock is	5845 5846 5847 5848 5849 5849 5850	5-7 2-3 2-3 2-4 2-3 2-3	7 124.02 124.60 3 124.60 125.26 3 125.26 125.85 4 125.85 126.45 3 126.45 127.08 3 127.08 127.72	0.58 0.66 0.59 0.60 0.63 0.64			0.02 0.01 0.01 0.01 0.01 0.01			
		more abundant than usual, few zones exceed 20cm in length. Pyrite content is higher in these sections. In a similar sense, no zones of only purple-grey rock are observed. No chloritized seams are observed. Minor relic bedding laminations are noted locally. Fracture surfaces are chlorite plated from 130.00 to 130.50 meters. 124.02-131.08: 50% or greater honey to cream coloured rock. 131.08-132.35: 25-50% honey coloured seams and halos surrounding	5851 5852 5853 5854 5855 5856 5856 5857	2-3 1-3 1-3 2-4 2-3 2-3 3-4	127.72 128.36 129.04 129.70 130.45 131.08 131.75	128.36 129.04 129.70 130.45 131.08 131.75 132.40	0.64 0.68 0.66 0.75 0.63 0.67 0.65			0.01 0.01 0.01 0.05 0.05 0.03) <u>0.050</u>) 1.30 (4.3')	
	143.18	fracture systems - up to 5% pyrite locally. 132.35-133.10: purple-grey due to hematization, strongly silicified - minor pink coloured quartz in fractures. TRANSTIONAL SILICIFIED SEDIMENTS	5858 5859 5860 5861	2-3 1-2 1-2 1-2	132.40 133.10 133.68 134.38	133.10 133.68 134.38 135.06	0.70 0.58 0.70 0.68 0.79			0.01 0.01 tr. tr.		
		Dark green, fine grained and weakly to moderately chloritized with 40-45% purple-grey and honey coloured silicified breccia. Silicified rock is aphanitic and is found in beds up to 75cm thickness. Silicification is solely located in brecciated rock although some selective silicification of individual laminations is noted. Most silicified rock is at least weakly reactive to HCl due to carbonatization. A zone of moderate to strong carbonatization with weak silicification is located at 142.39-143.18 meters and has a purple-grey hue. Bedding laminations are well developed locally	5862 5863 5864 5865 5866 5867 5868 5869 5870 5871	$ \begin{array}{c} 1-2 \\ 1-2 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1 \end{array} $	135.06 135.85 136.60 137.50 138.32 139.23 140.10 140.95 141.87 142.56	135.85 136.60 137.50 138.32 139.23 140.10 140.95 141.87 142.56 143.18	0.79 0.75 0.90 0.82 0.91 0.87 0.85 0.92 0.69 0.62			tr. tr. 0.01 0.01 tr. tr. tr. tr. tr. tr.		

FORM 2
NAME OF PROPERTY____

McDermott

HOLE NO. MC-84-64 SHEET NO. 6 OF 7

FOOTAGE		SAMPLE NO. SULPH FOOTAGE						ASSAYS		
	DESCRIPTION	NO.	SULPH		FOOTAGE			07 708	67 TON	
FROM 10		 	1065	FROM	TO	TOTAL	·	01 04		
(50° to core chloritized re degree of car beds are loca 135.55-135.65 137.99-138.75 from 137.62-1 the equivalen	at 139.55 m and 45-50° at 141.81 m). Green, ock averages 2-3%. All rock has experienced some bonate alteration. Major silicified breccia seams and ted at: 133.18-133.35; 133.75-134.09; 134.15-134.34; ; 136.60-136.80; 136.97-137.21; 137.62-137.84; ; 138.85-139.33 and 140.33-140.44 meters. The zone 39.33 meters is 85% silicified breccia. This may be t of the lower mineralized zone.									
143.18 180.03 <u>SEDIMEN</u>	IS									
Dark green, fr bedding lamina is noted - us Carbonatizatio of individual This often hid deformed bedd meters. Very noted at 148. noted at 153.0 fine grained f 143.18-150.00 150.00-151.50 151.50-171.50	ine to very fine grained with irregularly developed ations throughout the zone. Very little silicification wally confined to breccia seams less than 1cm in width. on is weakly developed on a wide scale but replacement laminations by carbonate is well developed locally. ghlights the bedding (eg. 55° at 143.61 m). Some ing due to soft sediment slumping is noted at 154.50 weak silicification of carbonatized laminations is 78-149.18 m. An 8cm (true thickness), graded bed is 33 m. A fine grained base gives way upwards to a very top - TOPS UP. moderately developed bedding laminations highlighted by carbonatization. 55° at 143.61 m 55-60° at 146.70 m 60-65° at 144.96 m 45° at 148.75 m massive, non-laminated/foliated. weakly to moderately laminated. A vuggy zone with carbonate filling is located at 164.50-165.50 m. <u>Bedding</u> : (measured with respect to core axis) 152.75 m: 50° 153.80 m: 40° 155.50 m: 60-65° 161.85 m: 50° 162.25 m: 50-55° 166.50 m: 35-40° 168.20 m: 45°	5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ -1 \\$	143.18 144.06 144.97 145.75 146.65 147.63 148.43 149.30 150.20 151.10 151.98 152.85 153.90 154.90 155.90 156.87 157.89 158.89 159.86 160.93 162.00 163.00	144.06 144.97 145.75 146.65 147.63 148.43 149.30 150.20 151.98 152.85 153.90 154.90 155.90 156.87 157.89 158.89 159.86 160.93 162.00 163.98	0.88 0.91 0.78 0.90 0.98 0.80 0.87 0.90 0.90 0.88 0.87 1.05 1.00 1.00 0.97 1.02 1.00 0.97 1.07 1.07 1.07 1.07		tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		

FORM 2

NAME OF PROPERTY______McDermott

• .

HOLE NO. _____ MC-84-64 ____ SHEET NO. ____ 7 OF 7

FOOTAGE				SAMPL	_E			ASSAYS		
FROM TO	DESCRIPT	NO.	". SULPH	FROM	FOOTAGE TO	TOTAL	~.	OZ TON	UZ TON	
180.03 185.32	 171.50-172.80: slightly coarser grai becoming well foliate 171.75 m). 172.80-174.99: very fine grained, we rescal sections of point is several sections of point is silicified breecia and from 175.45-176.78 m. mineralized zone. Si carbonatized whereas rock is weakly carbon 177.55-177.76 m was one is noted in silicified seams which may carry disseminated. 178.50-180.08: dark green, very fine silicified seams. Zoon 179.45 m: 65-70° to 179	ned, very weakly foliated d locally (50° to core at sakly foliated. aurple-grey moderately to noted - the most extensive This may be the lower licified rock is moderately non-silicified, chloritized atized. The section from fround and lost. Higher pyrite d rock - especially narrower to up to 5% very finely grained with minor 1-2cm one is well foliated: core axis. core axis. 2% are noted locally. d, weakly to moderately ents up to 3cm are noted - no d flow top. Upper contact is weakly silicified zones are than major horizons.	$\begin{array}{c} 1003 \\ \hline 001 \\ 5 & 0-1 \\ 6 & 0-1 \\ 7 & 0-1 \\ 8 & 0-1 \\ 9 & 0-1 \\ 0 & 0-1 \\ 1 & 0-1 \\ 2 & 0-1 \\ 3 & 0-1 \\ 4 & 0-1 \\ 5 & 0-1 \\ 6 & 1-2 \\ 7 & 1-2 \\ 8 & 1-2 \\ 9 & 1-2 \\ 1 & $	163.98 165.00 165.99 166.97 168.01 169.04 170.07 171.01 172.00 172.96 174.04 174.99 175.45 176.78 177.54 178.50 179.18	165.00 165.99 166.97 168.01 169.04 170.07 171.01 172.00 172.96 174.04 174.99 175.45 176.07 176.78 177.54 178.50 179.18 180.00	1.02 0.99 0.98 1.04 1.03 1.03 0.94 0.99 0.96 1.08 0.95 0.46 0.62 0.71 0.76 0.96 0.68 0.82		0.01 tr. tr. tr. tr. tr. tr. tr. 0.01 0.01 0.01 0.05 0.06 0.01 0.01 0.01 0.01	0.051 2.09 (6.9)	

.

FORM 1

NAME OF	PROPERTY	McDERMO'	TT			
HOLE NO.	Mc-84-65	LENGTH	423.06	meters		
LOCATION						
	9+50 E	DEPARTURE	2+95 S			
ELEVATION	4	AZIMUTH	344 ⁰	DIP	-70 ⁰	
STARTED _	March 30, 1984	_ FINISHED	April 12.	1984		

TROPARI TESTS

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
121.92	-82 ⁰	349.5 ⁰			
243.84	-72 [°]	348.5°			
389.53	-70 ⁰	011.5 [°]			
420.01	-73 ⁰	054.5°			

HOLE NO. Mc-84-65 SHEET NO. 1 OF 15 REMARKS BQ COTE

Split for assay Tropari used Casing left in ground

LOGGED BY A.W. Workman

FOO	TAGE				SAMP	LE			A	SSA	YS	
FROM	то		NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	2%	76	OZ/TON	OZ/TON	
0	43.28	OVERBURDEN										
43.28	167.33	 BASALT Pale green to medium grey-green, with occasional dark green phases, and generally fine to very fine grained. Vesicules up to 1.5mm are observed associated with flow tops. Rare pyroclastic (tuff) horizons up to 15mm thickness mark flow contacts. The majority of the flows in this section are pillowed. The margins of pillowed flows are massive as evidenced by a lack of selvages. Interspaced with pillowed flows are fine grained, occasionally medium grained massive flows. Little structuring is observed within these flows. Massive flows range from 6 to 13.3 m in thickness along the hole. Pillowed flows range from 5.8 to 41.7 m in thickness. The uppermost flows are weakly to very weakly magnetic. Lower flows tend to be non-magnetic. Flows are not carbonatized. 43.28 - 47.88: fine to very fine grained, massive flow. 47.88 - 48.10: aphanitic, silicified flow top. 48.10 - 60.20: pillowed flow - selvages are strongly chloritized, often pale yellow green and intensely silicified, and average 0.75-1.00 m apart. A vesicular zone at 52.25-52.45 m seems to be size graded from 1-8mm indicating tops up. 60.20 - 60.80: moderately brecciated phase of pillowed flow - fragments are epidotized and strongly silicified, matrix is relatively soft. Some free quartz in fractures surrounding fragments. 60.80 - 62.05: weakly brecciated, very fine grained flow. 			ACID D 0 45.06 91.44 139.60 182.88 228.60 274.32 320.04 365.76 423.00	-70 ⁰ -67.5 ⁰ -67.5 ⁰ -67.5 ⁰ -67.0 ⁰ -66.5 ⁰ -66.8 ⁰ -65.8 ⁰ -65.8 ⁰	6					

NAME OF PROPERTY McDermott

HOLE NO. MC-84-65 SHEET NO. 2 OF 15

FOO	TAGE	•				SAMP	LE				ASSAYS		
FROM	to	1	DESCRIPTION	NO	". SULPH	FROM	FOOTAG	TOTAL		·	OZ TON	OZ TON	
LANGRIDGE LIMITED - TORONTO - 366-1168		62.05 - 62.29: $62.29:$ $62.29 - 63.05:$ $63.05 - 65.61:$ $65.61:$ $65.61 - 66.40:$ $66.40 - 68.30:$ $68.30 - 68.58:$ $68.58 - 69.30:$ $69.30 - 72.40:$ $72.40 - 76.90:$ $76.90 - 80.60:$ $80.60 - 81.60:$ $81.60:$ $81.60:$ $81.60:$ $81.73 - 82.03:$ $82.03 - 87.77:$ $87.77:$ $87.77:$ $87.77:$ $113.00:$	fragmental zone - clasts of varying lithologies indicate a dirty flow bottom. FLOW CONTACT - sheared at 35° to core axis. weakly vesicular, very fine grained, upper flow. fine to very fine grained massive flow. FLOW CONTACT - 30° to core axis. weakly to moderately vesicular upper part of flow. weakly vesicular, very fine grained flow. FLOW CONTACT - 35-40° to core axis. weakly brecciated flow top, silica dumping in voids; 5-7% pyrite as 1-3mm cubes. fine to very fine grained massive flow, medium to dark green. fine grained; mottled pale and dark green possibly as a result of micro-brecciation. fine grained, medium to dark green massive flow, weakly brecciated tectonically below 75.80 m. fine to very fine grained, strongly hematized fractures locally. Rock lightens to a pale green colour and fines through this section. pale grey-green, very fine grained massive flow. The lowermost 1-2cm is aphanitic, silicified and very weakly brecciated. FLOW CONTACT - 55° to core axis. PYROCLASTIC - possible lapilli tuff with well foliated (55-60° to core), clasts up to 2cm in size. flow top breccia - angular to sub-rounded fragments up to 5cm in size, exhibit reaction rims and are weakly to strongly silicified. pale green, very fine grained massive flow, occasional breccia zones (85.03-85.63 m). possible silicified flow contact. pillowed flow - very fine grained, selvages are 50-60C mapart becoming 0.75-1.00 m below 105.00 meters. Non-magnetic.			*NOTE:	Core at 8 Canr	length 4.12 m (ot be ra	is 30c 276') tional	m shor to 89. ized.	t from D3 m (2	marker 87').	

NAME OF PROPERTY_____

HOLE NO.

Mc-84-65

McDermott

SHEET NO. ____ 3 OF 15

FOO	TAGE		SAMPLE NO. SULPH FOOTAGE						ASSAYS			
FROM	то	DESCRIPTION	NO.	". SULPH		FOOTAGE				OZ TON	OZ TON	
FROM	10			IDES	FROM	TO	TOTAL	· ·	•	02 104	02 104	
366-1168		 113.00-115.90: fine grained, non-pillowed. 115.90-119.87: fine grained, weakly pillowed flow. 119.87: FLOW CONTACT - 45° to core axis. 119.87: FLOW CONTACT - 45° to core axis. 119.87-119.95: strongly silicified, epidotized aphanitic flow top. 119.95-120.05: vesicular flow top section - relic vesicules up to 2mm are vague and strongly altered. 120.05-120.95: very fine grained, moderately silicified with highl silicified halos surrounding fractures. 120.95-125.68: pale green, pillowed flow, selvages are 0.75-1.00 meters apart. Lowermost 5cm is epidotized and intensely silicified. Non-magnetic. 125.68: FLOW CONTACT - 20-25° to core axis. 125.68-125.85: black, very fine grained to aphanitic, chloritized and variably silicified - probably tuffaceous. 126.20-128.85: fine to very fine grained massive flow. 128.85-144.04: pillowed flow - same as 120.95-125.68 m. Selvages are chloritized, black to very dark green, up to 1.10 m apart. Pillow centres are often variolitic. 144.04-148.50: weakly to moderately brecciated, non-pillowed section, weakly silicified locally. 148.50-167.33: continuation of pillowed flow above 144.04 meters. Pillow tops are moderately vesicular. Some intenses silicification is noted locally near selvages, also minor carbonated breccia along selvages. Lowernost 1.00 meters is massive and sheared along flowage. 	Y									
LANGRIDGE LIMITED - TORONIC	170.67	SEDIMENTS Dark green, fine to very fine grained, and generally well laminated/foliated. A pale coloured 20cm section of moderate to strong silicification is noted at the upper volcanic-sedimentary contact (60° to core axis). Bedding is best displayed where alteration such as silicification or carbonatization has selective altered only part of the rock, (eg. 60-75° at upper contact).	5912 5913 5914 5915 y	4-6 3-5 2-3 1-3	167.33 167.83 168.70 169.56	167.83 168.70 169.56 170.61	0.50 0.87 0.86 1.05		- -	tr. tr. tr. tr.		

•

NAME OF PROPERTY____

HOLE NO. ___

Mc-84-65

McDermott

SHEET NO. 4 OF 15

FOOTAGE		SAMPLE NO. ", SULPH FOOTAGE IDES FROM TO						ASSAYS			
FROM TO		NO.	" SULPH	FROM	FOOTAGE TO	TOTAL	~	~.	OZ TON	OZ TON	
	A pinkish-green, strongly hematized zone is located at 167.52-167.77 meters. The rock is moderately to strongly carbonatized throughout as lensitic and pod-like replacements oriented along bedding laminations. The lenses are most visible during HCl reaction. The zone averages 2-4% pyrite as a very fine dissemination and 1-2mm cubes. Up to 10% is observed locally near the upper contact. Silicified volcanic clasts up to 1.5cm are noted proximal to the lower contact. Bedding Laminations: 168.90 m: 50° to core axis. 169.90 m: (foliation) 60° to core axis. 170.60 m: 65-70° to core axis.										
170.67 216.33	BASALT										
	 Dark green, fine to very fine grained with pillowed and massive flow varieties exhibited. The uppermost parts of flows are vesicular. The rock is non-magnetic and non-carbonatized. It carries 0-1% pyrite as blebs up to 1mm. Occasional grains of chalcopyrite up to 3mm are associated with quartz veins. These veins, up to 3cm in thickness comprise up to 5% of the section locally. 170.67-173.40: vesicular massive zone. 173.40-180.00: pillowed flow. 180.00: possible flow contact. 180.00-189.40: weakly to moderately vesicular zone. 189.40-189.90: vaguely flow brecciated. 189.90-192.20: massive flow with localized locm seams of strong angular brecciation. 192.20-194.65: pillowed flow - selvages are not well developed. 194.65-215.73: massive, fine grained flow; abundant silicified and sheared seams at 45-50° to core resembling flow contacts - no textural change. 215.73-216.33: basal flow - clasts of underlying sediments throughout; greater than 50% in lowermost 10-20cm. 										

0

FORM 2

NAME OF PROPERTY___

HOLE NO. _

Mc-84-65

McDermott

SHEET NO. ____ 5 OF 15

F00	TAGE	DESCRIPTION			SAMP	LE			ASSAYS		
FROM	то		NO.	SULPH	FROM	FOOTAGE TO	TOTAL	~	OZ TON	OZ TON	
216.33	??	SEDIMENTS									
		Pale grey to greyish-green, fine to very fine grained, although several sections of narrow laminations have a sandy appearance. Partings parallel to bedding are micaceous. Bedding is well developed in the upper 1.0-1.5 meters (65° at 216.45 and 55-60° at 216.88 m). The zone coarsens downhole with clasts in the 0.5-1.5cm range (lapilli tuff?), at 217.68-217.82 meters. The zone from 217.82 to218.85 is composed of angular chloritized and often silicified fragments of volcanic rock. Some fragments up to 3cm may be pyroclastic. Voids are strongly carbonated. The interval 218.85-224.48 is dark green with pale green siliceous highly fractured fragments up to 5mm. Rock has a clastic rather than volcanic appearance. Minor strong brecciation is noted at 219.05- 219.32 meters. The section has a vague volcanic appearance below a zone of weak brecciation at 224.48 m. This zone has been thin sectioned for identification.	5980 5981 5982 5983 5984 5985	7-9 5-7 3-5 1-3 1-3 1-2	216.33 217.77 217.82 218.85 220.35 222.35	217.17 217.82 218.85 219.40 221.00 223.20	0.84 0.65 1.03 0.55 0.65 0.85		tr. tr. tr. tr. tr.		
??	335.57	 BASALT The upper half tends to be dark green, fine grained and massive, while the lower section tends to be medium green, fine to very fine grained and pillowed flows. The flows are silicified near flow contacts, are chloritized weakly and non-magnetic. Carbonatization is generally absent. 236.55-237.50: very round patches up to 2cm - resemble vesicules - filled with material resembling matrix. 238.40-244.80: localized patches of silicification in generally fine grained flow. 244.80-247.80: medium, occasionally coarse grained flow. 247.50-254.45: medium grained; mottled flow due to cumulative mafic minerals. 254.45-258.65: fine grained massive flow; carries 10-20% pinkish-grey highly silicified xenoliths below 258.50 m. Zone is cut off by a flowage shear at 30° to the core axis at base. 									

α

COD4 7

NAME OF PROPERTY_

HOLE NO. _

Mc-84-65

McDermott

SHEET NO._

FOO	TAGE	DESCRIPTION SAMPLE						ASSAYS					
FROM	то		DESCRIPTION	NO.	N SUL PH	FROM	FOOTAGE TO	TOTAL	*	~.	OZ TON	UZ TON	
		258.65-259.20: 259.20-260.00: 260.00-262.15:	fine to very fine grained, fining downwards. very fine grained to aphanitic, abundant shear planes - probable flow contact in this interval. very fine grained flow becoming weakly vesicular with depth. Minor epidotized and silicified angular										
		262.15-262.65:	flow-top breccia. strongly vesicular flow-top with relic vesicules up to lcm becoming smaller with depth - TOPS UP. Silicified flow contact at 262.10-262.15 meters.										
		262.65-274.76:	fine grained massive flow - may have incorporated pyroclastic debris at 265.45-265.90 meters.										
		274.76: 274.76-275.00: 275.00-276.60: 276.60-280.01: 280.01:	flow contact at 40-45° to core axis. very fine grained flow top. fine grained massive section. pillowed - selvages are 0.90-1.00 m apart. silicified, epidotized flow contact at 65° to core										
001-005		280.01-280.70: 280.70-316.61:	axis. strongly vesicular flow top. pillowed - selvages are 0.70-1.20 m apart; tops are vesicular; up to 4% pyrite found in selvages versus 0-1% in pillow interiors. Non-magnetic. Pillow size is estimated to vary from 50-100cm near the top to 25-50cm at 289.00-294.00 m becoming larger again down section. A shear developed at 318.70 m is at 20° to the core axis. A silicified and epidotized breccia zone at 316.61-316.69 may represent a flow contact between two pillowed flows - the section at 316.69-318.52 is non-pillowed.										
		318.52-333.00:	pillowed - very fine grained with selvages as little as 20cm apart. Pillows averaging 50cm in size are likely above 325.00 m and averaging 75-80cm below.										
		333.00-334.80: 334.80-335.57:	fine grained, weakly fractured flow; white carbonate filling. very fine grained to aphanitic carrying xenoliths up										
			to 10cm of the underlying sediments.										

.

FORM 2

NAME OF PROPERTY_____

HOLE NO. -

Mc-84-65

McDermott

SHEET NO. _

FOO	TAGE	DESCRIPTION	SAMPLE NO					ASSAYS			
FROM	то	DESCRIPTION	NO.	TDE S	FROM	FOOTAGE TO	TOTAL	 <i></i>	OZ TON	OZ TON	
335.57	340.10	TUFFACEOUS SEDIMENTS									
		Greyish to pink, fine grained (0.5-2.0mm), may be slightly reworked but little evidence of bedding is apparent. Average clast size is lmm - seem to be quite angular. The rock carries moderately to strongly chloritized mafic minerals, possibly altered to muscovite. Occasional reddish-pink siliceous clasts up to lcm are noted locally. The rock is strongly carbonatized and is variably magnetic. 338.77-339.67: some coarsening noted with reddish siliceous clasts up to 1.5cm and quartz void filling. 339.67-340.10: mixture of tuff and rapidly eroded and deposited highly angular volcanic debris and quartz vein material - carries 1-2% pyrite. Fractures are strongly hematized. The rock is moderately magnetic.	5986 5987 5988 5989 5990 5991	0-1 0-1 0-1 0-1 1-2	335.57 336.42 337.17 337.95 338.77 339.67	336.42 337.17 337.95 338.77 339.67 340.10	0.85 0.75 0.78 0.82 0.90 0.43		tr. tr. 0.01 0.01 tr.		
340.10	352.45	BASALT									
		Dark green, fine to very fine grained, highly tuffaceous flow. The lava carries abundant pyroclastic debris throughout and has a well	5992	1-2	340.10	341.01	0.91		tr.		
		Foliation ranges from 25-50° to the core - flatter angles are favoured. Reaction-rimmed, sub-rounded blocks up to 10cm resemble	5995 5994	1-2	345.02	345.82	0.80		tr.		
		are best exhibited below 350.50 m. The lava is non-carbonatized although carbonatization is moderate in pyroclastic rich zones. The rock is weakly to moderately magnetic becoming strongly magnetic in pyroclastic bearing sections. Fractures are strongly hematized and probably carry magnetite. Narrow zones (10-20cm) of angular brecciation are weakly to moderately silicified, and lighter green in colour. Very little increased pyrite is noted - usually associated with the matrix around fragments in flow breccia or shears in flow foliation. The average content is 1-2% as blebs and cubes up to 2mm. Up to 4% is noted locally.	5995	3–5	352.20	352.45	0.25		tr.		

. 📕

NAME OF PROPERTY_____

HOLE NO.

Mc-84-65

McDermott

SHEET NO.

FOOTAGE	DESCRIPTION	SAMPLE NO. SULPH FOOTAGE IDES FROM TO							ASSAYS		
FROM TO	DESCRIPTION	NO.	~ SULPH	FROM	FOOTAGE TO	TOTAL	4	۰.	OZ TON	UZ TON	
	Flow Foliation: 30-35° at 344.25 m 35° at 345.30 m; 347.00 m and 348.18 m 20-30° at 351.10 m The zone at 352.20-252.45 meters is weakly to moderately magnetic, strongly carbonatized and locally silicified. A moderate degree of brecciation is noted. May be sediments or altered sediment incorporated into basal flow.										
352.45 357.08	SEDIMENTS										
	Medium to dark green, fine to very fine grained, generally well foliated/laminated and well parted parallel to bedding. The upper part of the section resembles the overlying flow except for parting. The sediments are non-magnetic. 352.45-353.76: weakly to moderately foliated, non-laminated, non-magnetic, very weakly to non-carbonatized with 58 carbonated fractures. Bedding at 45° to core at 353.00 meters. 353.76-357.08: tuffaceous - well developed foliation has a definite clastic appearance. Occasional lcm thick bands of intensely silicified breccia with up to 3-5% pyrite - generally as a very fine dissemination. These seams are generally oriented parallel to bedding. Carbonatization is moderate to strong replacing individual laminations thus highlighting the bedding. The section carries abundant (greater than 10%) pale grey highly carbonatized clasts aligned along the foliation. The number and size of these clasts increases with depth. Average size is 1-3mm. These fragments are silicified internally below 356.75 meters.	5996 5997 5998 5999 6000 6001	0-1 0-1 0-1 0-1 0-1	352.45 353.21 353.76 354.64 355.50 356.39	353.21 353.76 354.64 355.50 356.39 357.08	0.76 0.55 0.88 0.86 0.89 0.69			tr. tr. tr. tr. 0.04		

NAME OF PROPERTY_

HOLE NO.

Mc-84-65

McDermott

9 OF 15 SHEET NO._

FOO	TAGE	DESCRIPTION			SAMP	LE			ASSAYS		
FROM	to		NO.	SULPH	FROM	FOOTAGE TO	TOTAL	~	OZ TON	OZ TON	
357.08	382.66	MAIN MINERALIZED ZONE									
		This section is composed of three members - a central highly silicified zone and two marginal transitional zones. The upper transition zone is wider than the same in overlying drill holes. It is composed of silicified clasts set in a chloritized matrix. The clasts were probably ripped up from underlying beds. The central silicified zone is quite narrow, comparatively, and is composed of intensely silicified purple-grey and honey coloured breccia. Pyrite contents up to 10% are noted. The lower transition zone is somewhat narrow and contains less silicified breccia sections than is normal. However, pyrite contents may be average to slightly better than average.									
357.08	365.23	TRANSITIONAL SILICIFIED SEDIMENTS Dark green, fine to very fine grained with 10-50% highly carbonatized and moderately to strongly silicified clasts up to 3cm in size (average 1-2cm). The clasts are grey in colour, are sub-rounded to sub-angular and are oriented along a well developed foliation. Purple-grey to pinkish, intensely silicified clasts up to 5mm are noted locally. Up to 10% of the section is grey silicified breccia seams up to 2cm in thickness. These seams are strongly carbonatized and moderately to strongly silicified. They carry up to 5% pyrite. The zone averages 1-2% overall as a very fine dissemination and as 1mm cubes. Some concentration of pyrite is noted in mafic chloritized bands - shears? Some white free quartz is noted as a void filling - a late addition post dating any brecciation. The zone is weakly magnetic throughout, becoming moderate to strong locally. Magnetism possibly increases down-section but is suddenly lost at 365.05 m. The upper contact is somewhat arbitrary. 357.08-358.40: 50% carbonatized and silicified clasts. Foliation: 35-40° at 357.80 meters.	6002 6003	1-2	357.08 357.68	357.68 358.40	0.60 0.72		0.01 0.01		

🔹 🔹 🗤 🚛 🚛 🚛 🚛 🚛 👘 🚛

NAME OF PROPERTY__

HOLE NO.

Mc-84-65

McDermott

SHEET NO. 10 OF 15

FOO	TAGE					SAMPL	Ε				ASSAYS	<u> </u>	
FROM	то			NO.	" SULPH	FROM	FOOTAGE TO	TOTAL	in a	" •	OZ TON	OZ TON	
001002		 358.40-359.28: 5% carba through is generated by through is generated by the second s	conatized clasts but 10% silicified clasts but along well developed foliation. The rock rally weakly carbonatized. Carries up to 3% mely disseminated pyrite. localized strong brecciation is strongly to ly silicified in sections up to 5cm. The ding rock is chloritized, well foliated and cciated. It is moderately carbonatized and 10% white carbonatized pinkish-grey ied fragments throughout. The fragments are inded to angular and up to 5cm in size. laminations wrap around clasts. Some es cutting chloritized rock have 1-3mm ied halos; silicification is penetrative s. Average pyrite is 1-2% with 2-4% in ied breccia. on: 30-35° at 360.20 m. 30° at 361.70 m. 35-45° at 362.80 m. e carries 25% purple-grey silicified breccia ontains 5-7% pyrite as a fine dissemination clots up to 5mm. The groundmass is ized and carries 1-3% pyrite. Abundant -grey clasts are supported by the foliated ass. The amount of silicified breccia es down-hole. No apparent clay filled fault s noted in this section.	6004 6005 6006 6007 6008 6009 6010 6011	1-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3	358.40 359.28 360.11 361.04 361.95 362.80 363.70 364.60	359.28 360.11 361.04 361.95 362.80 363.70 364.60 365.23	0.88 0.93 0.91 0.85 0.90 0.90 0.63			0.01 0.01 tr. tr. tr. tr. tr. tr.		
365.23	371.97	MAIN SILICIFIED Z Purple-grey to honey or silicified breccia with silicification has not non-brecciated. With s hematization although h A weak degree of carbon The rock is non-magneti	ONE cream coloured, aphanitic, intensely 5% green, relic chloritized seams where developed. These seams are generally ilicification has come a moderate degree of ematite is also present in chloritized rock. atization is noted in the uppermost 50-75cm. c.										

•

FORM 2

NAME OF PROPERTY_____

HOLE NO. ___

Mc-84-65

McDermott

SHEET NO.

FOO	TAGE				<u>, , , , , , , , , , , , , , , , , , , </u>	SAMPI	E	<u></u>			ASSAYS	-	
FROM	τŌ		DESCRIPTION	NO.	" SULPH IDES	FROM	FOOTAGE TO	TOTAL	:	".	OZ TON	OZ TON	
		365.23-366.23:	honey coloured, intensely silicified breccia, weakly carbonatized, carrying up to 10% pyrite as a very fine dissemination, as 1mm cubes and as clots up to 5mm. Minor relic purple-grey silicified breccia at 365.83-366.06 meters with honey coloured halos	6012 6013	6-8 8-10	365.23 365.72	365.72 366.23	0.49 0.51			0.66 2.01		
		366.23-370.26: 370.26-371.05:	surrounding fractures. purple-grey, intensely silicified breccia with abundant honey coloured halos surrounding fractures. The zone carries 10-20% relic green chloritized, possibly sheared, non-brecciated rock. The zone averages 2-3% pyrite with 0-1% in chloritized rock and 8-10% in honey coloured sections. Quartz is noted as a filling around purple-grey angular breccia fragments. This quartz does not carry pyrite. Some 1-2mm clear quartz stringers develop cream to honey coloured halos when transversing from purple-grey silicified rock to chloritized green coloured rock (eg. 368.05 meters). honey coloured to pale brown with 10% green chloritized seams; section averages 2-3% pyrite.	6014 6015 6016 6017 6018	3-4 2-3 2-3 3-5 2-3	366.23 366.96 367.73 368.62 369.47	366.96 367.73 368.62 369.47 370.26	0.73 0.77 0.89 0.85 0.79			0.11 0.02 0.02 0.01 0.01		
		371.05-371.97:	The rock carries occasional laminated red siliceous angular fragments up to 3cm in size - these may be cut and offset by later silica-filled fractures. grey to purple-grey, silicified breccia, with honey coloured halos around fractures and up to 5% pyrite locally. Pyrite content decreases with depth. Section carries 10% relic green chloritization.	6020 6021	2-4 1-3	371.05 371.52	371.52 371.97	0.47 0.45			tr. tr.		
371.97	382.66	TRANSITIO Medium to dark silicified brec generally orien developed and a of alternating by a pale grey	MAL SILICIFIED SEDIMENTS green and fine grained with aphanitic purple-grey cia zones up to 17cm in thickness. These zones are ited parallel to bedding. Laminations are well re highlighted by selective intense carbonatization lamination sets. Carbonate alteration is indicated to cream coloured colouration. Silicification is										

NAME OF PROPERTY_____

McDermott

HOLE NO.

MC-84-65 SHEET NO. 12 OF 15

FOOT	FAGE	DESCRIPTION			SAMPL	E			ASSAYS		
FROM	то		NO	". SULPH IDES	FROM	FOOTAGE T0	TOTAL		OZ TON	OZ TON	
		well developed locally as a further alteration of carbonatized strata throughout the section although the degree and amount of silicification decreases with depth. Carbonatization remains relatively constant throughout. Pyrite content in chloritized rock averages 1-2%; and, in silicified breccia, averages 3-5%. The zone is non-magnetic. Some hematization is noted in chloritized rock - probable interstitial.									
		371.97-372.80: weakly laminated with 10-20% silicified laminations and breccia seams. None of these are greater than 2cm in thickness. The zone carries 10-20% siliceous clasts - possibly rip-up clasts, crudely foliated parallel to laminations at 35° to core axis. Little of rock is reactive to HCl.	6022	1-2	371.97	372.80	0.83		tr.		
		372.80-373.60: carries 40-45% silicified breccia seams. Major examples are located at: 372.96-373.07; 373.21- 373.30; and 373.46-373.55 meters. Silicified breccia carries 3-5% finely disseminated pyrite; chloritized rock averages 1%. Very little carbonatization is noted which is presently reactive	6023	2-3	372.80	373.60	0.80		0.01		
-1168		373.60-375.61: chloritized with 5% silicified seams up to 1cm thickness. The rock is non-laminated and weakly carbonatized. A crude foliation is noted locally. Abundant pink carbonate stringers are noted and up to 3% finely disseminated pyrite is noted along the stringer margins.	6024 6025	1-2 1	373.60 374.58	374•58 375•61	0.98 1.03		0.01 0.01		
RONTO - 366		375.61-376.50: carries 40-45% silicified breccia seams which contain 3-5% very finely disseminated pyrite. The rock is weakly reactive to HCl. Major silicified breccia seams are located at: 375.71-375.76; 375.95- 376.00: 376.13-376.31 and 376.44-376.50 meters.	6026	2-4	375.61	376.50	0.89		0.02		
LANGRIDGE LIMITED - TO		376.50-377.18: rock is quite reactive to HCl as general degree of silicification is lower although some seams of silicification up to 10cm are noted. Silicified rock is weakly brecciated in zones parallel to a well developed foliation (40° to core axis at	6027	2-3	376.50	377.18	0.68		0.05		

•:

NAME OF PROPERTY_

McDermott

			н	OLEN	0	Mc-84-6	55	SHE	EET NO.]	3 OF 15
F001	AGE	DESCRIPTION			SAMPI	_ E				ASSAYS	
FROM	то	DESCRIPTION	NO.	". SULPH	FROM	FOOTAGE TO	TOTAL	-	~.	OZ TON	GZ TON
		376.75 meters). These zones carry 3-5% very finely disseminated pyrite; largest at 376.74-376.85 m. 377.18-382.66: chloritized, generally well foliated with silicified and carbonatized sets of laminations. Few silicified breccia seams (377.98-378.02 m). Rock is approximately 20-30% silicified laminations - minor sections of 50% alteration are noted. Pale grey nodular growths up to 1mm are noted in highly carbonatized sections. Foliation: 50-55° at 378.20 m 45° at 381.10 m 30-40° at 382.30 m Chaotic zones of non-laminated rock may represent periods of rapid deposition (eg. 382.39-382.66 m).	6028 6029 6030 6031 6032 6033 6034	1-2 1-2 1-2 1-2 1-2 1-2 1-2	377.18 378.10 378.95 379.84 380.85 381.77 382.39	378.10 378.95 379.84 380.85 381.77 382.39 382.66	0.92 0.85 0.89 1.01 0.92 0.62 0.27			0.01 tr. tr. tr. tr. tr. tr.	
32.66	416.20	SEDIMENTS (The upper contact is somewhat arbitrary.) Dark green, fine to very fine grained and well laminated with 20-30% pale grey to cream coloured, highly carbonatized and weakly to moderately silicified laminations. Pyrite is found as a very fine dissemination and occasional blebs up to lmm. Highest ocncentrations of 3-5% are found in silicified sets of laminations. Bedding is often rippled and is locally deformed due to soft sediment slumping. The rocks are non-magnetic. 382.66-385.05: deformed bedding often exhibit 90° changes in dip direction. An llcm zone of moderately silicified, carbonatized laminations at 384.83-384.94 m carries 3-5% pyrite. Laminations: 40-50° at 383.70 m 20-40° at 384.50 m 385.05-391.34: chloritized, rippled laminations with 10-15% silicified and carbonatized laminations up to 3mm in thickness. Bedding is often offset up to lcm across micro-faults at 10-30° to the core axis. Minor soft sediment slumping is noted at 388.23-388.80 m.	6035 6036 6037 6038 6049 6041 6042 6043	0-1 0-1 1-2 0-1 0-1 0-1 1 1	382.66 383.51 384.45 385.39 386.39 387.35 388.35 389.35 389.35 390.34	383.51 384.45 385.39 386.39 387.35 388.35 389.35 390.34 391.34	0.85 0.94 0.94 1.00 0.96 1.00 1.00 0.99 1.00			tr. 0.01 0.01 0.01 0.01 0.04 0.01 0.02	

Ø ANGRID

:

NAME OF PROPERTY McDermott

HOLE NO. MC-84-65 SHEET NO. 14 OF 15

FOOTAGE		DESCRIPTION			SAMPL	E			 ASSAYS		
FROM TO		DESCRIPTION	NO	SULPH	FROM	FOOTAGE	TOTAL	3	 DZ TON	OZ TON	
	391.34-391.88:	Laminations: 40° to core at 385.00 m 45° to core at 385.40 m 50° to core at 387.20 m 45° to core at 389.50 m 45-50° to core at 390.30 m laminated - moderately to strongly carbonatized and strongly silicified - carries 2-4% finely disseminated pyrite. Zone is 25% brecciated with a purple-grey hue. Bedding at 45° to core axis at	6044	2-4	396.34	391.88	0.54		0.17		
	391.88-393.60:	same as 385.05-391.34 m. Laminations are moderately to strongly carbonatized at 35-40° to core at 393-10 meters and 40-45° at 393-45 meters.	6045 6046	1 1	391.88 392.70	392•70 393•60	0.82 0.90		0.02 tr.		
	393.60-394.54:	weakly brecciated zone is strongly carbonatized and carries pink siliceous clasts up to 3mm and pale green clasts up to 1.5cm. Average 2-3% pyrite-	6047	2-3	393.60	394.54	0.94		0.06		
	394.54-397.00:	same as 391.88-393.60 meters. Laminations at 45-50° to core at 395.00 meters.	6048 6049	1 1	394.54 395.36	395 . 36 396.20	0•82 0•84		0.01 tr.		
	397.00-397.71:	carries 20-25% silicified breccia seams up to 5cm thickness - developed on a highly localized basis - no intervening brecciation. Silicified angular clasts up to 1cm base a purple-grey bue-	6050 6051	1 1-2	396•20 397•00	397.00 397.71	0•80 0•71		tr. tr.		
NTO - 366-1168	397.71-400.50:	same as 391.88-393.60 meters - very little silicification but strong carbonatization of laminations. Bedding is not well developed below 400 m but rock retains a strong foliation. Bedding: 45-50° at 397.95 m 40° at 398.55 m 35° at 399.10 m	6052 6053 6054	1 1 1	397.71 398.68 399.63	398.68 399.63 400.54	0.97 0.95 0.91		tr. tr. tr.		
TORO	400.50-401.40:	weakly foliated to massive; slight increase in grain size is noted: moderately carbonatized.	6055	1	400.54	401.47	0.93		tr.		
ANGRIDGE LIMITED	401.40-403.55:	similar to 397.71-400.50 m. Weak to moderate localized brecciation is noted in 1-2cm seams which are weakly to moderately silicified with 1-2% pyrite. Weakly laminated to strongly foliated.	6056 6057	1 1	401.47 402.37	402 . 37 403 . 29	0.90 0.92		0.01 0.01		

FORM 2

•

.

FORM 2

NAME OF PROPERTY_

Mc-84-65

McDermott

15 OF 15 SHEET NO.

			+		10			SHE	EET NO.		
FOOTAGE	E				SAMPI	_E				ASSAYS	
FROM T	то	DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE	TOTAL		~.	OZ TON	UZ TON
		 401.75 m: laminations at 35-40° to core axis. 402.70 m: laminations at 45-50° to core axis. 403.30 m: foliation at 40-45° to core axis. 403.55-406.00: weakly foliated to non-foliated. 406.00-407.66: moderately to strongly foliated, laminated local: (40-45° to core at 406.20 m). Weakly silicified breccia locally with 2-3% pyrite. 407.66: a lcm silicified and epidotized seam probably represents a volcanic fragment rather than a flow top. 407.66-411.20: massive, very weakly foliated to non-foliated. Weak parting noted. Fractures are hematized below 409.70 meters. 411.20-412.02: well foliated, laminated locally. 411.20 m: 50-55° to core axis. 411.70 m: 35-40° to core axis. 412.02-415.20: same as 407.66-411.20 meters. 415.20-416.20: well foliated, possible lapilli tuff with siliced clasts locally. 415.25 m: foliation at 40-45° to core axis. 	6058 6059 6060 6061 6062 6063 7 6064 6065 6066 6067	1 1 1 2-3 1 0-1 0-1 1 0-1	403.29 404.26 405.17 406.00 406.78 407.20 408.20 410.10 411.40 413.70	404.26 405.17 406.00 406.78 407.20 407.65 409.04 410.87 412.25 414.59	0.97 0.91 0.83 0.78 0.42 0.45 0.84 0.77 0.85 0.89			0.01 0.01 tr. tr. 0.22 0.01 tr. tr. tr. tr. tr.	
16.20 423	3.06	EASALT Medium to dark green, fine to very fine grained and pillowed. Up contact at 70° to core axis is along a pillow selvage. Pillow rims are epidotized and strongly silicified. The flow is more massive below 419.40 meters. A shear has developed at 420.15 m a 20-25° to the core axis. The rock is non-carbonatized, to very weakly carbonatized. It is non-magnetic and carries 0-1% pyrite. 423.06 meters END OF HOLE CASING LEFT IN GROUND	oper at								

				r		- T	n				HOLE	NO. Mc .	<u>84-66</u> si	HEET NO.	1 OF 9
NAME C	F PROP	ERTY	AcDermott	FOOTAGE	DIP	AZIM	UTH	FOOTAGE	DIP	AZIMUTH	REMA	RKS B	Q Core ·	- Split	for assay
HOLE N	o	LE	NGTHI94.40 meters	0	-60			191.41	-56 ¹ 2			Cooina	pulled	brok	on off in
LOCATIO	ом <u> </u>	+00 F	1+13 5	45.72	-59	2					(asing	purred	- DIOK	ound
	E	DEF	$\frac{344}{344} \qquad \text{Pip} -60^{\circ}$	91.44	-56 ¹	2								0	
STARTE	Apri	1 13, 1984 FIN	USHED April 19, 1984	137.16	-57						LOGGE	D BY	<u>A.W.</u> W	orkman	
		1									Π			<u> </u>	
FOO	TAGE	4	DESCRIPTION			r	2!	SAM			┨	<u>г</u>	<u> </u>	<u> </u>	
FROM	то					NO.S	DES	FROM	T0	TOTAL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	76	OZ/TON	OZ/TON	
ο	19.81	OVERBURDEN	3												
19,81	98.70	BASALT	-												
	100.70														
		Medium to dark g	green fine to very fine grained massive a	nd pillowe	a										
		flows. The rock	is are occasionally medium grained in the	centres o	£										
		contacts. They	are non-magnetic and weakly altered.	itle at il	ow										
		19.81 - 42.31:	pillowed flow - selvages are 0.75-1.0 me	ters apart											
			with minor associated pyrite. The lower	most 1.0									1		
		12 31 - 12 00.	meters is non-pillowed.	1~											
		43.90 - 48.40:	fine to medium grained massive flow.	tow top.											
		48.40 - 49.00:	very fine grained to aphanitic flow botto	Om.								ł			
_		49.00 - 49.55:	very fine grained to aphanitic sheared, p tuffaceous flow top - upper flow contact	possibly at 40° to											
168		40 55 - 50 26	core axis.												
6-1		50.36 - 50.45:	lapilli tuff - clasts up to 2cm are well	foliated	at										
6 0			35° to the core axis.	uvvu											
ė		50.45 - 51.82:	flow top breccia - angular non-welded fra	agments up											
NO			to 5cm in size. Matrix is epidotized. (Occasional											
OR		51.82 - 54.90:	flow breccia - sub-angular to sub-round,	reaction											
			rimmed, welded fragments up to 10cm in s	ize.											
		54.90 - 57.30:	fine grained massive flow.												
W		57.30 - 58.20:	sediment - very fine grained, weakly lam	inated of noor											
4			upper contact.	eu nedi											
4															
RG R															
LAN															
										1		l			

FORM 1

-

NAME OF PROPERTY McDermoti

HOLE NO. MC. 84-66 SHEET NO. 2 OF 9

FOO	TAGE					SAMPI	LE			ASSAYS		
FROM	то		DESCRIPTION	NO.	SULPH	58014	FOOTAGE		~	OZ TON	OZ TON	
200 		58.20 - 58.75: fine 58.75 - 61.40: fine 61.40 - 71.15: medi volu 71.15 - 71.30: fine 71.30 - 71.39: fine 71.30 - 71.39: fine 71.39 - 71.65: fine 71.65 - 74.30: medi 74.30 - 75.90: fine 75.90 - 76.78: fine 76.78 - 78.64: sedi core upper 87.95 - 96.10: weak 96.10 - 98.70: fine and flow	e grained massive flow, moderately brecciated. e to medium grained massive flow. ium grained, occasional very fine grained canic clasts up to 5cm in size (eg. 65.4 m). e to very fine grained flow, aphanitic at base. w contact 65° to the core axis. e to very fine grained massive flow - continuation zone at 61.40-71.15 meters; possibly part of the e flow. ium grained massive flow. e to medium grained. e grained, weakly foliated massive flow. iments - dark green well foliated at 60° to the e axis and moderately carbonatized. Near the er contact, rock is weakly to moderately icified. k green fine to very fine grained massive flow h abundant white carbonate filled shrinkage ctures. Flow carries pinkish epidotized oliths below 79.85 meters. Weak flow brecciation patchy silicification is noted locally. kly to moderately flow brecciated with reaction med silicified fragments up to 10cm in size. e to very fine grained, weakly brecciated locally weakly to moderately shrinkage fractured. Lower w contact is at 28° to the core axis.									
98.70	111.17	SEDIMENTS Medium to dark greer laminated/foliated of volcanic (tuff?) fra upper contact. High are noted at 102.10 rip-up clasts. Lami	n, fine to very fine grained, and well on a mm scale. Carries abundant pale green agments up to lcm in size, particularly near the hly elongated and silicified fragments up to 3cm meters oriented parallel to bedding - possibly inations are moderately to strongly carbonatized.									

-

.

NAME OF PROPERTY____

HOLE NO. -

Mc.84-66

McDermott

<u> 3 OF 9</u>

SHEET NO.

F00	TAGE	DECODIDITION			SAMPL	Ē			ASSAYS		
FROM	то	DESCRIPTION	NO.	". SULPH	FROM	FOOTAGE TO	TOTAL	"•	02 TON	UZ TON	
		Carbonate alteration is indicated by a pale grey colouration. The	6068	1	98.76	99.55	0.79		0.01		
		been dumped in voids - probably due to heat of overlying basalt.	6069	1-2	100.18	101.05	0.87		0.01		
		silicification of carbonatized laminations is noted below 109.50 m.	6070	1	101.80	102.55	0.75		tr.		
		Increased pyrite contents (5-10%) are noted with silicification. The zone averages 1% finely disseminated pyrite.	6071	1	103.40	104.23	0.83		tr.		
		Bedding Laminations: (measured with respect to the core axis) 99.25 m: 30-35° 101.80 m: 40°	6072	1	105.00	105.86	0.86		tr.		
		103.00 m: 30-40° 106.45 m: 45° 109.15 m: 45° 111.00 m: 65°	6073	1	106.79	107.69	0.90		tr.		
		100.18-101.05: weak to moderate silicification of carbonatized	6074	1	108.55	109.54	0.99		tr.		
		zones, up to 2% pyrite locally.	6075 6076	1-2 1-2	109.54	110.42 111.17	0.88 0.75		tr. tr.		
111.17	157.36	MAIN MINERALIZED ZONE									
00		The zone is composed of three members, the uppermost of which is a thin variably silicified zone which overlies a main silicified zone of normal thickness and a lower variably silicified zone also of normal thickness. The main silicified zone is in general highly silicified although some relic chloritized (non-silicified) rock is noted locally. Pyrite contents within the main silicified zone are locally up to 10%. Some localized increase in pyrite content is noted locally within silicified rock in the lower transition zone.									
111.17	112.41	TRANSITIONAL SILICIFIED SEDIMENTS									
		Dark green, fine to very fine grained with abundant pink to purple-grey intensely silicified clasts and laminations. The fragments have probably been ripped up from underlying, more massively silicified sections. Most silicified rock is moderately to strongly reactive to HCl as a result of carbonatization. Bedding is highly chaotic below 111.85 m with many 60-90° reversals - at least partly a result of soft sediment deformation. The zone ends at a 3cm clay filled zone - the McKenna Fault. The zone from 111.89 to 112.04 m has been ground and lost.	6077 6078	1	111.17 111.83	111.83 112.41	0.66 0.58		tr. 0.01		

NAME OF PROPERTY McDermott

HOLE NO. _____ Mc.84-66_____ SHEET NO. ____ 4 OF 9____

FROM TO NO. SULPRE FOOTAGE Image: Control of the product of the	FOOT	AGE	DESCRIPTION			SAMP	LE			ASSAYS		
112.41 137.09 MAIN SILICIFIED ZONE 6079 2-4 112.41 113.07 0.66 0.03 Purple-grey and honey coloured intensely silicified breccia. The paler coloured rock is dominant initially but gives way down-hole into a increasing arount of relic purple-grey silicified breccia. 6080 1-3 113.07 113.80 0.73 0.01 The purple hue is due to hematization, whereas the honey colour is probably due to the presence of sericite. Pyrite contents are higher in the honey coloured rock. The uppermost 50-75 cm is weakly reactive to HCl although silicification is probably masking original carbonatization. 6081 1-3 115.84 116.53 0.69 0.02 112.41-113.80: dominantly honey coloured, intensely silicified breccia. 6089 1-3 118.14 118.97 0.75 0.01 112.41-113.80: dominantly honey coloured, intensely silicified breccia. 6089 1-3 118.14 118.97 0.83 0.01 0.01 carbonatization. 0.02 0.03 0.01 0.03 0.01 0.12.41-113.80: dominantly honey coloured, intensely silicified breccia. 6089 1-3 118.14 118.97 0.76 0.01 0.01 breccia with up to 5% pyrite. 6089	FROM	TO		NO.	SULP	FROM	FOOTAGE	TOTAL		OZ TON	OZ TON	
 113.80-114.55: rook grades to purple-grey with or holey (1997) (2-3) 120.82 [121.47] 0.65 (113.80-114.55: 115.21: same as above with up to 10% pyrite locally (3-5% average). (115.21-115.84: dominantly purple-grey intensely silicified breccia with 1-2% very finely disseminated pyrite. (115.84-117.10: rook rapidly grades back to honey coloured silicified breccia and pink carbonate filled fracture is noted sub-parallel to the core axis from 116.30-117.00 meters. (117.10-120.45: mottled purple-grey and honey coloured breccia - fragments tend to be dark whereas matrix is light coloured. Abundan thloritized fractures sub-parallel to core axis. (120.45-120.82: chloritized fractures - weakly reactive to HCL. (120.82-121.92: purple-grey intensely silicified breccia. 	LANGRIDGE LIMITED - TORONTO - 366-1168	137.09	MAIN SILICIPIED ZONE Purple-grey and honey coloured intensely silicified breccia. The paler coloured rock is dominant initially but gives way down-hole into a increasing arount of relic purple-grey silicified breccia. The purple hue is due to hematization, whereas the honey colour i probably due to the presence of sericite. Pyrite contents are higher in the honey coloured rock. The uppermost 50-75 cm is weak reactive to HCI although silicification is probably masking origi- carbonatization. 112.41-113.80: dominantly honey coloured, intensely silicified breccia with up to 5% pyrite. 113.80-114.55: rock grades to purple-grey with 30-40% honey colouration as halos surrounding fractures and in very finely brecciated rock. Section carries up 4% pyrite. 114.55-115.21: same as above with up to 10% pyrite locally (3-5% average). 115.21-115.84: dominantly purple-grey intensely silicified brecc with 1-2% very finely disseminated pyrite. 115.84-117.10: rock rapidly grades back to honey coloured silicified breccia below 116.10 meters. Pyrite content remains relatively constant at 1-3%. A major chloritized and pink carbonate filled fract is noted sub-parallel to the core axis from 116.3 117.10-120.45: mottled purple-grey and honey coloured breccia - fragments tend to be dark whereas matrix is light coloured. Abundant chloritized fractures sub-parallel to core axis. 120.45-120.82: chloritized zone - fine grained strongly silicifi clasts are set in a chloritized matrix or a fine matrix of chloritized fractures - weakly reactive HC1. 120.82-121.92: purple-grey intensely silicified breccia.	 a b a a a a a a a b a a a a b a a b a a a b a a a a a b a /ul>	$\begin{array}{c} 1015\\ 2-4\\ 1-3\\ 2-3\\ 3-5\\ 1-2\\ 1-3\\ 1-2\\ 2-3\\ 1-3\\ 1-3\\ 1-3\\ 1-2\\ 2-3\end{array}$	112.41 113.07 113.80 114.55 115.21 115.84 116.53 117.22 118.14 118.97 119.73 120.36 120.82	113.07 113.80 114.55 115.21 115.84 116.53 117.22 118.14 118.97 119.73 120.36 120.82 121.47	0.66 0.73 0.75 0.66 0.63 0.69 0.92 0.83 0.76 0.63 0.46 0.65		0.03 0.01 0.03 0.01 0.02 0.01 0.03 0.01 0.01 tr. tr. tr.		

NAME OF PROPERTY____

HOLE NO. _____ Mc.84-66

McDermott

SHEET NO. 5 OF 9

•

FORM 2

NAME OF PROPERTY McDermott

HOLE NO. MC.84-66 SHEET NO. 6 OF 9

FOO	TAGE				SAMP	LE			ASSAYS		·
FROM	то		NO.	TDES	FROM	FOOTAGE TO	TOTAL	~.	DZ TON	UZ TON	
137.09	157.36	 133.55-134.38: same as 131.26-132.06 with 20% chloritized rock ar abundant pink carbonate veining up to 1cm thickness. 134.38-135.16: same as 132.06-133.55 with 1-3% pyrite. 135.16-135.70: pale grey silicified breccia with 10-20% pyrite ar carrying 50% green chloritized rock. Zone average 7-9% pyrite. 135.70-135.87: intrusive - pale green, chloritized with hornblend up to 2mm. Foliation is well developed at 35-55° to the core axis. Well developed alteration halos are developed at the contacts. 135.87-137.09: purple-grey highly silicified breccia with 2-3% pyrite locally and honey coloured halos surroundir fractures. TRANSITIONAL SILICIFIED SEDIMENTS Sediments are dark green and fine to very fine grained with varyir 	d 6109 6110 6111 s 6112 6113 es g g	1-2 2-3 7-9 1-2 1-2 1-2	133.55 134.38 135.16 135.70 136.29	134.38 135.16 135.70 136.29 137.09	0.83 0.78 0.54 0.59 0.80		0.01 0.02 0.04 0.01 0.02		
		 amounts of purple-grey to honey coloured intensely silicified breccia in seams or beds up to 1.25 meters thickness. Chloritized non-silicified rock is hematized and carries an average of 18 pyrite. Silicified breccia carries an average of 2-38 pyrite with up 108 locally. Most of the rocks in this unit are magnetic and the degree of magnetism is proportional to the degree of alteration. Fine magnetite bearing laminations are observed in the lowermost part of the zone. 137.09-137.83: greyish green, marginally silicified, with abundar 1-3cm silicified breccia seams. Total content of silicified rock is 20-308. 137.83-139.07: purple-grey silicified breccia with 58 chloritized seams. 139.07-139.63: chloritized with 25-508 silicified breccia. 139.63-140.23: purple-grey silicified breccia. 140.23-141.15: silicified breccia with 20-308 green chloritized patches and up to 108 pyrite - often associated with chloritized seams. 	th	1-2 2-3 2-3 1-2 2-4 3-4	137.09 137.83 138.48 139.07 139.63 140.23	137.83 138.48 139.07 139.63 140.23 141.15	0.74 0.65 0.59 0.56 0.60 0.92		0.01 0.01 tr. tr. tr. tr.		

FORM 2

NAME OF PROPERTY______McDermott

HOLE NO. _____ MC.84-66 _____ SHEET NO. ____ 7 OF 9

FOOTAGE				SAMPI	E			ASSAYS	
	DESCRIPTION	NO.	SUL PH		FOOTAGE		Lot.	DZ TON	07 TON
Image: 100 FAGE Image: 100 FAGE Image: 100 FAGE Image: 110 Fill Image: 110 Fill	Chloritized with 50% silicified breccia seams. dark green with 20-30% grey to purple grey intensely silicified breccia. Breccia has developed radially at right angles from parallel fractures. The fractures are spaced 1-2cm apart. Silicification is penetrative outwards from the main parallel fractures (eg. 142.30-142.37 meters). Minor 10cm seams of intensely silicified breccia carry up to 10% pyrite. Fractures within breccia are quartz filled, whereas fractures in chloritized areas are white carbonate filled. Several pink quartz veins up to 8cm are noted. Relic bedding laminations become visible as the level of brecciation decreases (eg. 50° at 143.60 meters). A slight increase in silicified breccia with elevated pyrite (up to 4%) is noted from 144.66-145.20 meters. green chloritized rock with very rapidly decreasing amounts of brecciation, and consequently silicification. Some selective silicification of individual laminations is noted. dark green, chloritized, laminated rock with 5-10%	NO. 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130	1-3 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2	SAMPI FROM 141.15 142.09 142.88 143.80 144.66 145.20 145.74 146.65 147.60 148.55 149.20	E FOOTAGE TO 142.09 142.88 143.80 144.66 145.20 145.74 146.65 147.60 148.55 149.20 149.91	TOTAL 0.94 0.79 0.92 0.86 0.54 0.54 0.91 0.95 0.95 0.65 0.71		ASSAYS 22 TON tr. tr. tr. tr. tr. tr. tr. tr.	OZ TON
145.74-148.55: 148.55-149.91:	dark green, chloritized, laminated rock with 5-10% purple-grey silicified breccia seams up to 2cm in width. A degree of reactiveness to HCl is noted in weakly to moderately silicified seams and laminations. Non-silicified rock is not reactive. Occasional pink quartz veins up to 2cm are noted. Pyrite contents of 2-4% are concentrated along laminations locally. Bedding dips 45° to the core at 145.80 meters, and 50° at 147.30 meters. dark green with 5% silicified breccia seams. Silicification of individual laminations is best developed where the laminations are kinked or rippled. Silicified laminations are moderately carbonatized. Bedding is noted at 45° to the core axis at 148.65 and 149.75 meters.								

NAME OF PROPERTY McDermott

HOLE NO. ______ MC.84-66 _____ SHEET NO. ____ 8 OF 9

FOO	TAGE			- 44 million - 100 million	SAMPL	E		· · · · · · · · · · · · · · · · · · ·	ASSAYS		
FROM	то		NO.		FROM	FOOTAGE TO	TOTAL	fra •	OZ TON	OZ TON	
149.91	157.36	MARGINALLY SILICIFIED SEDIMENTS Dark green, fine to very fine grained, with a general greyish hue due to a combination of moderate to strong carbonatization and weak silicification. However, silicification builds in strength due to increased carbonatization and culminates in a zone of strong localized silicification at 154.77-157.36 meters. Silicification has accompanied brecciation as well but is irregularly distributed rather than concentrated in wider intervals. The rock is generally well laminated although some massive green (tuffaceous?), sections are noted. Bedding laminations are masked by brecciation locally. The rock is weakly to moderately magnetic throughout and the degree of magnetism is roughly proportional to the degree of alteration (silicification and carbonatized laminations. Total silicified breccia is 3-5%, increasing in the lowernost 0.75 m. Bedding at 45° to the core axis at 150.50 meters, 45-50° at 152.10 and 45-50° at 153.50 meters. 154.77-157.36: increasingly silicified and brecciated, moderately to strongly magnetic, and moderately carbonatized (especially in silicified zones). Bedding at 40-45° at 154.50 meters. 157.36: this should be considered as the base of the Transitionally Silicified Sediments. SEDIMENTS Medium to dark green, fine to very fine grained with traces of grey silicification in highly carbonatized rock near the upper contact. A green clastic zone (tuff?) which is weakly magnetic and was formerly called "intrusive" is located at 157.81-158.33 meters. In	6131 6132 6133 6134 6135 6136 6137 6138	$ \begin{array}{c} 1-2 \\ 1-$	149.91 150.83 151.79 152.78 153.68 154.77 155.73 156.60	150.83 151.79 152.78 153.68 154.77 155.73 156.60 157.36	0.92 0.96 0.99 0.90 1.09 0.96 0.87 0.76		tr. tr. tr. tr. 0.01 0.01		
		general the rock is chloritized with occasional lcm pink silicified breccia seams carrying 1-2% pyrite over the average 0-1%. Rare 10cm seams of silicified breccia are noted. The rock is well foliated/laminated and is non-magnetic. The rock becomes less well									

FORM 2

-

RM 2

NAME OF PROPERTY___________McDermott

HOLE NO. MC.84-66 SHEET NO. 9 OF 9

FOOT	AGE		CRIPTION			SAMPI	_E			ASSAYS		
FROM	то	023		NO	" SULPH		FOOTAGE		· ·	 OZ TON	OZ TON	
					IDES	FROM	10	TOTAL		 		
1		laminated below 167.00 meters.	A moderate foliation with parallel	(100		1						
		parting is noted below this poin	A slight increase in	6139		157.36	15/.81	0.45	1	0.01		
		silicification is noted below 17	12.35 meters Some highly cilicitied	6140	1-0	157.81	158.33	0.52	ł	tr.		
		rock with 2-4% pyrite is noted h	vetween 174 95 and 176 80 meters	6141	1-0	158.33	159.23	0.90	1	tr.		
		Silicification in this zone is c	of transitional type rather than the	6142	0-1	159.23	160.15	0.92		tr.		
		more massive type of silicificat	ion. Silicified rock is strongly	6143	1-0	160.15	161.08	0.93		tr.		
		reactive to HCl. A clay and gri	t filled fault plane is noted at	6144	1-0	161.08	162.97	0.89		tr.		
		55° to the core axis at 175.55 m	peters.	6145	0-1	162.97	163.90	0.93		tr.		
ļ		157.36 - 167.00; well laminated -	bedding at $45-500$ to core axis at	6146	0-1	163.90	163.95	1.05	ļ	tr.		
		160.25 meters 5	100 at 162 95 600 at 164 90	6147	0-1	163.95	164.92	0.97	1	tr.		
		550 at 166.85.	0° at 102.99, 00° at 104.90,									
		167.00-177.34; moderately folia	$t_{ed} = 500 \text{ at } 171 \text{ 40 meters}$	6148	2-4	174.95	175.82	0.87		0.07		
		177.34-179.07: intensely silici	fied breccia developed locally	6149	2-3	175.82	176.80	0.98		0.01		
		numle-grey in g	plair and weakly carbonatized with	6150	1-2	176.80	177.34	0.54		0.08		
		1-28 nurite. Th	e rock is very weakly memotia	6151	1-2	177.34	178.23	0.89		0.01		
		locally.	le lock is very weakly hagheric	6152	1-2	178.23	179.07	0.84		0.01		
		179.07-191.00: well laminated 1	ccally with bodding at 450 to the	6153	0-1	179.07	180.00	0.93		0.01		
		core avis at 179	50 and 500 to the core avis at					~ - •				
		186.50 meters.	. To the core axis at	6154	1	186.22	186.95	0.73		0.04		
		$191_{\circ}00-192_{\circ}45$; moderately to st	rongly foliated A localized chear	(155		100.00	100.05	1 05		0.01	1	
		at 450 to the operation	re axis with minor clay	0122	1	188.80	189.85	1.05		0.01		
		development is n	oted at 191.20 meters - fault.	()F(101 00	100.00	1 00		0.01		
		Foliation at 450	to the core axis at 191.40 and	0120	0-1	191.20	192.22	1.02		0.01		
		50-55° at 192.35	meters.	6157	0.1	102 10	101 10	1 00				
		192.45 - 194.46: rock is slightly	coarser grained and more highly	0157	0-1	193.40	194.40	1.00		tr.		
		carbonatized. F	oliation is well developed locally -									
		55° at 193.30 me	ters and 45° at 194.45 meters.									
		.										
		194.46 meters END OF HOLE										
		CASING PULLED - 1	BROKEN OFF IN GROUND									

ω ø

66. ო

roronto

Σ

LANGRID

				TROP	ARI TI	ESTS						Mc	84-67	1 OF 9
NAME C	DE PROP	ERTY	McDermott	FOOTAGE	DIP	AZIN	литн	FOOTAGE	DIP	AZIMUTH	HOLE	NO	<u>04-07</u> Sł	IEET NO. 1 01 9
HOLE N	oM	lc.84-67	LENGTH 426.30 meters				0				REMA	RKS BQ	Core -	- Split for assa
LOCATIO	DN			242.32	-73	001	1.5					Ca	sing le	eft in ground.
LATITUD	ρε <u>7</u>	' + 50 E	_ DEPARTURE _ 2 + 80 S	394.72	-72 2	00:	3.5			 				
ELEVATI			AZIMUTH DIP710	425.20	-73	001	3.5		- <u>1</u>				•• ••	1
STARTE	D Aj	pril 19, 1984	4 FINISHED May 1, 1984					l			LOGGE	D BY	.W. WOI	Kman
FOO	TAGE				T			SAMF	, Г. Е.		li	Δ	SSA	YS
- FROM	TO	4	DESCRIPTION			NO	S	L	FOOTA	GE				
FROM						<u></u>	IDES	FROM	то	TOTAL	36	%	OZ/TON	OZ/TON
0	2.44	OVERB	URDEN											
244	40 40	DACAL	m								ACII	DIP T	ESTS	
2.44	849.40	BASAL										45 72	701.0	
	1	Medium gree	n. fine to very fine grained flows alter	mate with darke	er	ĺ			ļ.	İ		45.72	-/02	
	1	green and re	elatively coarser grained flows. The la	was are of								91.44	-70°	
		massive and	pillowed varieties, the latter being mu	ich finer graine	.d.							136.55	$-70\frac{1}{2}^{0}$	
		Flow rocks a	are generally non-magnetic and weakly al	tered. Flow		[102 00	701.0	
		margins are	highly silicified, often highly epidoti	zed and carry								102.00	-/0%	
	ļ	variable py	rite contents. Pillow selvages are high	ly silicified,								228.60	-7212	
	1	are variably	y epidotized and may carry up to 20% pyr	ite associated								274.32	-7250	
		with inter-	pillow sediment. Pillow interiors, which	h may have										
		vesicular to	ops, are often brecclated with accompany	ing epidotizati	on							320.04	-72	
		and silicin	fation. Flow top precela consisting of	angular								365.76	~71 [°]	
		tops Flow	the similar composition, is frequency associated and composed of more rounded and composed of more roun	Sociated with 11								411 40	7.0	
1		fragments o	f varying composition, exhibits welding	of fragment rin								411.40	-/2	
		Flow breccia	a fragments well in excess of 7cm, have	been observed.	5.									
		Pyrite is p	resent as blebs up to 2mm. but seldom ex	ceeds 1%. Minc	or									
		zones of int	terflow (tuffaceous) sediments are obser	ved throughout								~		
		the volcanio	c section. These zones are usually well	laminated and										
		carry more	variable and higher pyrite contents.											
		2.44 - 58.60	0: massive flow - weakly silicified, wit	h a 450 shear										
			shear located at 30.70m. Carries occ	asional blebs o	o£									
			chalcopyrite up to lcm. associated wi	th white bull										
			quartz veins. A hematized breccia zon	ne is located at	:									
			35.20-35.53m. An aphanitic, silicifi	led flow contact	-									
			is located at 40.89m. at 70° to the c	xore axis.				1						
			Abundant quartz and pyrite filled she below 48.20 meters - these are not pi	ars are noted llow rims.										
;									1					
2														
	ļ													

NAME OF PROPERTY_

McDermott

2 OF 9

				۲	OLE N	10	Mc.8	4-67	<u>-</u> .	Sне	EET NO.	2	OF 9	-
F001	TAGE			1.79		SAN	IPLE		·			ASSAYS		
ROM	то		DESCRIPTION	NO	". SULPH	FROM	FO	OTAGE TO	TOTAL	:	K.u •	OZ TON	UZ TON	<u> </u>
		58.60 - 58.87: 58.87 - 60.40: 60.40 - 83.10:	flow bottom - aphanitic to very fine grained with abundant white bull quartz in voids. pale green to pinkish green, aphanitic, highly silicified and vesicular flow top - minor flow top breccia locally near upper contact. Carries 2-3% pyrite with up to 10% locally concentrated in voids within relic vesicules. medium grey-green, massive, fine to medium grained flow. Weakly brecciated locally and very weakly											
		92.10 99.40.	fractured. Fractures are carbonate filled. A silicified flow contact is noted within a section of ground core at 76.90 meters. Approximately 70cm of core is lost in this area.											
		83.10 - 88.40:	shear at 30° to the core axis at 83.10 meters. The underlying flow is fine grained.											
		88.40 - 89.25:	very fine grained to aphanitic flow contact zone. Carries abundant white bull quartz in rock that is moderately brecciated, weakly epidotized and locally silicified.											
		89.25 - 93.40:	pale grey-green, fine to very fine grained, weakly to moderately vesicular locally within this flow top.		-									
		93.40 - 98.90: 98.90 -104.75:	fine to very fine grained massive flow. aphanitic to very fine grained and moderately silicified locally with abundant free quartz in voids and abundant silicified and epidotized seams.											
		104.75-104.95:	aphanitic, epidotized and silicified flow contact.											
		104.95-108.75: 108.75-124.45:	aphanitic to very fine grained massive flow. fine grained massive flow becomes very fine grained near the lower contact.											
		124.45-130.82:	flow contact is noted in the uppermost 10cm. The zone below is fine to very fine grained and non-pillowed.											
		130.82-142.00:	pillowed flow - pale grey-green, very fine grained, pillow centres are occasionally variolitic.											

LIMITED - TORONTO - 366-1168

LANGRID

NAME OF PROPERTY McDermott

HOLE NO. ________ Mc.84-67 ______ SHEET

· -		3	OF	9	
<u> </u>	NO.	 -	~1	-	

F00	TAGE					SAM	PLE			ASSAYS		
FROM	то		DESCRIPTION	NO.	", SULPH	FROM	FOOTAG	TOTAL		OZ TON	OZ TON	
	то	142.00-154.75: 154.75-155.80: 155.80-157.55: 157.55-186.00: 186.00-186.36: 186.36-222.78: 222.78-274.10: 274.10: 274.10: 274.10: 274.10: 284.50-288.78:	extension of overlying flow but is non-pillowed. A fault zone is noted at 148.15-148.65 meters with slickensided and brecciated core. sheared or flow foliated(?). Fine to very fine grained. thin flow - dark greenish tone, fine grained core with very fine grained to aphanitic contacts. pillowed flow - medium to light green, very fine grained with incorporated tuff at 159.16-159.72 m. This zone is essentially the same as 130.82-142.00 meters. The pillows are 1.0-1.5 meters in size. The lowernost 15-20cm of the flow is highly epidotized and silicified. SEDIMENTS - purple-grey, fine grained, and highly silicified at the upper contact. The rock is weakly to moderately magnetic. Minor bedding is visible at the upper contact at 60° to the core axis. pillowed flow - medium to dark green, very fine grained to aphanitic, becoming increasingly brecciated locally below 190.00 meters. massive flow - dark green with very fine grained margins becoming coarser internally. The zone from 226.20-228.78 meters is strongly vesicular with abundant hematized fractures. Several clay filled fault zones at 40° to the core axis are noted between 228.75 and 229.20 meters. A shear at 226.43 meters is at 400 to the core axis. Medium to coarse grained phases of the flow are noted at 240.50-245.65 and 254.90-256.11 meters and the flow is otherwise fine to medium grained from 235.00- 273.87 meters. aphanitic flow contact. fine grained pillowed flow with very fine grained contact zones and pillows well developed from 277.50 to 284.50 meters. very fine grained vesicular massive flow.	NO.	". SULPH IDES	FROM		E TOTAL		OZ TON	GZ TON	

NAME OF PROPERTY_____ McDermott

HOLE NO. _____ MC.84-67 _____ SHEET NO. ____ 4 OF 9

FOO	TAGE		Τ		SAMPI	E		·	ASSAYS		
FROM	то		NO.	~ SULPH IDES	FROM	FOOTAGE TO	TOTAL	f	OZ TON	UZ TON	
		 288.78-306.46: massive, flow brecciated flow, reaction rimmed fragments up to 10cm in size. Flow breccia is weakly magnetic locally and best developed above 301.50 meters. Below 301.50 meters, brecciation is more angular - reaction rims and welding are not in evidence. A flow contact may be present between 301.50 and 302.50 meters. 306.46-309.90: SEDIMENTS - dark green fine to very fine grained and well laminated locally with moderate carbonatization and moderate to strong chloritization. The sediments are weakly magnetic locally. Bedding is noted at 45° to the core at 307.05 meters and at 40° to the core at 309.55 meters. 309.90-318.21: massive flow, fine to very fine grained with abundant red hematized fractures becoming fine grained and less fractured below 314.30 meters. 318.21-318.97: SEDIMENTS - same as 306.46-309.90 meters with bedding at 70-75° to core at 318.85m. 318.97-346.50: massive flow - dark green, fine grained, and weakly brecciated locally. In the upper part of the flow, weak magnetism is locally developed. The zone from 327.70 to 331.00 meters carries abundant epidotized shears at varying angles to the core axis; from sub-parrallel to 45°. The rock has a tuffaceous appearance locally (eg. 331.95-322.15m.). Parting is usually absent but becomes better developed with depth. 	I h								
346.50	349.40	<u>?????????????????????????????????????</u>									

NAME OF PROPERTY___

HOLE NO. _

Mc.84-67

McDermott

SHEET NO. 5 OF 9

FOO	rage	DESCRIPTION			SAMPI	LE				ASSAYS	<u></u>	
FROM	то		NO.	TOES	FROM	FOOTAGE T0	TOTAL	:	".	OZ TON	02 TON	
349.40	357.21	SEDIMENTS										
		Dark to very dark green, fine to very fine grained and weakly foliated initially, becoming strongly foliated below 351.15 meters. The section carries abundant silicified and carbonatized clasts up to 2cm in size, averaging less than 1cm. These clasts seem to be angular rip-up clasts from the main silicified zone. They are generally oriented along the foliation and are highly reactive to HC1. Small purple tinted breccia seams up to 1cm are also strongly reactive. The zone below 354.35 meters is greater than 50% clasts, with up to 80% below 352.40 m. Individual laminations are partially replaced by carbonate - thus becoming reactive to HC1. Silicified clasts decrease near the base of the unit possibly due to local silicification increasing the resistance to erosion. Sediments are moderately magnetic becoming strongly magnetic locally.	6158 6159 6160 6161 6162 6163 6164 6165	1 1 1 1 1 1	350.00 350.98 351.95 352.96 353.92 354.80 355.68 356.52	350.98 351.95 352.96 353.92 354.80 355.68 356.52 357.21	0.98 0.97 1.01 0.96 0.88 0.88 0.88 0.84 0.69			tr. tr. tr. tr. tr. tr. tr. tr.		
357.21	379.83	MAIN MINERALIZED ZONE										
		The zone is composed of three members - an upper variably silicified transition zone of normal thickness, a central main zone of silicification which is much narrower than normal and a lower variably silicified member of somewhat narrow width. The overall degree of silicification is not as high as would be considered normal within the main silicified zone. Nor are pyrite contents up to average levels within this section. However, sulphide contents in the lower transitional zone are much higher than is usual for this member and levels of silicification are similarly elevated.										
357.21	358.98	TRANSITIONAL SILICIFIED SEDIMENTS										
		Dark green with approximately 50% purple-grey hued breccia seams which are moderately to strongly silicified, and a few rare cream to grey coloured rip-up clasts up to 1.5cm in size. Some cream to pale pink quartz is dumped in voids locally. Pyrite is very fine grained and variable in content from 1-3%, averaging 2%. The rocks in this section are non-magnetic. The magnetism observed in the overlying sediments is lost within 30cm of the upper contact. A clay filled	6166 6167 6168	1-2 1-3 1-3	357.21 357.71 358.31	357.71 358.31 358.98	0.50 0.60 0.67		-	tr. 0.13 0.10		

FORM 2

. • •

.

FORM 2

NAME OF PROPERTY_____

McDermott

HOLE NO. ______MC.84-67______ SHEET NO.___

FOC	TAGE	DESCRIPTION			SAMP	LE			ASSAYS		<u></u>
FROM	то	DESCRIPTION	NO	". SUL PH	FROM	FOOTAGE TO	TOTAL	~.	OZ TON	OZ TON	
		fault is observed at 358.08 meters at 38° to the core axis. Seam is lcm in width. Silicified rock is moderately to strongly carbonatized along relic laminations/foliations. Silicification is selective to brecciation and increasing carbonatized laminations. Foliation at 357.75 meters at 50° to the core axis.									
358.98	363.73	MAIN SILICIFIED ZONE									
		Cream to purple-grey in colour with abundant dark green chloritized seams up to several cm in width. Zone is generally strongly silicified and weakly to moderately reactive to HCl due to carbonatization. Due to incomplete silicification carbonatization is most intense near upper contact. 358.98-363.17: 10-20% relic chloritized rock with up to 5% pyrite in intensely silicified breccia. Very fine grained with seams in brecciated matrix. 363.17-363.73: 20-25% relic green chloritized rock. Up to 2% pyrite locally.	6169 6170 6171 6172 6173 6174 6175 6176 6177	2-4 2-3 3-5 1-3 1-3 2-4 2-3 1-2	358.98 359.40 359.85 360.29 360.80 361.29 361.96 362.41 363.17	859.40 859.85 860.29 860.80 861.29 861.96 862.41 863.17 863.73	0.42 0.45 0.44 0.51 0.49 0.67 0.45 0.76 0.56		0.08 0.07 0.08 0.05 0.06 0.05 0.07 0.01		
363.73	379.83	TRANSITIONAL SILICIFIED SEDIMENTS									
		 Dark green, fine to very fine grained and moderately chloritized with highly silicified seams (lamination sets, breccia zones and rip-up clasts(?)). Total content of silicified rock averages 60%. Silicified rock is pale grey, purple-grey and cream coloured, and, is non-reactive to moderately reactive to HCl; reflecting varying degrees of silicification of carbonate - assuming all silicified rock was strongly carbonatized initially. Relic bedding laminations are highly developed locally but brecciation often masks structure. Silicified zones are comparatively increasingly silicified and well laminated. 363.73-364.50: well laminated, 50-60% silicified. Lamination at 45-50° to core axis at 364.30 meters. 364.50-364.78: well laminated, 20-25% silicified. 364.78-365.23: 80% silicified breccia - purple-grey to honey coloured but carries a greenish tint throughout. 	6178 6179	2-3 1-2	363.73 364.50	364.50 365.23	0.77 0.73		0.11 0.05		

FORM 2

NAME OF PROPERTY_____

McDermott

HOLE NO. ______MC.84-67______SHEET NO. ____7 OF 9

FOO	TAGE					SAMP	LE				ASSAYS		
FROM	то			NO	IDES	FROM	FOOTAGE	TOTAL	•	ine. •	OZ TON	OZ TON	
		365.23-366.23:	green chloritized rock with 20-30% silicified breccia - the largest seam is purple-grey in colour	6180 6181	1	365.23	366.23 367.20	1.00			0.01		
		366.23-367.20:	at 365.65-365.75 meters. green chloritized zone with 10-20% silicified breccia and silicified halos surrounding fractures.	6182 6183 6184	1 1 20-3	367.20 367.96 368.58	367.96 368.58 368.96	0.76 0.62 0.38			0.01	h	
		367.20-368.58:	same as 364.78-365.23 meters with 65-75% purple-grey silicified breccia in seams up to 20cm width. The degree of silicification increases down-hole. The	6185 6186 6187	3-5 3-5 3-4	368.96 369.47 370.12	369.47 370.12 370.96	0.51 0.65 0.84			0.15 0.09 0.18		
		368.58-368.96:	core axis with 90% silicified laminations. purple-grey, intensely silicified breccia with pyrite in 1-3cm massive seams infilling the breccia matrix. Pyrite may be replacing carbonate - weakly reactive to HCL. Pyrite seams have gradational	6188 6189 6190 6191 6192 6193	1 2-3 5 4-5 3-5	371.50 372.10 372.48 373.16 373.73	372.10 372.48 373.16 373.73 374.27	0.54 0.60 0.38 0.68 0.57 0.54			0.02 0.02 0.02 0.07 0.07	\int	
			boundaries as pyrite is finely disseminated in rock, radiating outwards from massive pyrite. Pyrite is also weakly magnetic.	6194 6195 6196	3-5 2-4 2-4	374.27 374.81 375.41	374.81 375.41 376.04	0.54 0.60 0.63			0.01		
		368.96-370.12:	same as 368.58-368.96 meters but no massive seams in this section. Up to 10% pyrite locally in matrix, averaging 3-5% where brecciation is weak. Rock has a tuffaceous texture (eq. 369.80 meters).	6197 6198 6199 6200	2-3 1-3 1-2 1	376.04 376.57 377.19 378.00	376.57 377.19 378.00 378.86	0.53 0.62 0.81 0.86			0.01 0.01 0.01 0.01		
6-1168		370.12-370.96:	same as 364.78-365.23 meters with 50-60% silicified breccia. Pyrite is concentrated in silicified rock with an average content of 3-4% - mostly finely disseminated - and up to 10% locally over 10cm sections. Silicified rock is not reactive to HCL.	6201	1	378.86	379.83	0.97			0.01		
20NTO - 36		370 .96-372. 10:	green chloritized rock - seems to be sheared(?) with isolated intensely silicified seams (2-3% finely disseminated pyrite) and broader zones of moderate silicification in breccia.										
401		372.10-372.48:	purple-grey to honey coloured silicified breccia with 10-20% chloritized seams.										
MILED		372.48-372.16:	extension of overlying zone with no chloritized rock and increasing pyrite contents up to 5-7% - mostly very finely disseminated.										
ANGRIDGE		372.16-373.73:	as above - 25-30% chloritized seams.										

NAME OF PROPERTY_____

HOLE NO. ___

Mc.84-67

McDermott

SHEET NO. 8 OF 9

FOOTAGE		DESCRIPTION			SAMP	LE		ASSAYS					
FROM TO	то	DESCRIPTION	NO	TDES	FROM	FOOTAGE TO	TOTAL		·~•	07 TON	OZ TON		
		 373.73-374.81: as above - less than 5% chloritized rock. 374.81-376.04: as above - 5-15% chloritized rock with abundant chloritized fractures sub-parallel to core axis from 374.81-375.90 meters. 376.04-377.19: green chloritized rock with 5-10% purple-grey intensely silicified breccia. Amount of silicified breccia decreases rapidly down-hole from 75% above 376.59 meters to 20-30% below this level. With decreasing brecciation, the amount of silicified decreased and is then controlled by aclested 											
		 laminations. Bedding is well developed below 376.59 as brecciation decreases. Bedding at 377.00 meters is at 35-40° to core axis. 377.19-379.83: green chloritized, non-carbonated rock with greater than 50% grey to purple-grey silicified seams and lamination sets - moderately to strongly carbonatized. Bedding at 378.00 meters is at 45° to the core axis and at 379.60 meters is at 55-60° to the core axis. 											
379.83 40	5.21	SEDIMENTS											
		Dark green, fine to very fine grained, moderately chloritized and well foliated/laminated. Bedding is highlighted by pale greenish- grey to pale pink coloured lamination sets. Colouration is due to strong carbonatization. The green intercalated rock is non-carbonatized to very weakly carbonatized. Strongly carbonatized seams are often vuggy. Trace amounts of pyrite are noted in green rock; up to 1% noted as very finely disseminated and 1mm cubes in carbonate seams. Rarely a 0.5mm scale carbonate lamination is 50% replaced by pyrite. Bedding Laminations: (measured with respect to core axis) 380.30 m: 55° 381.85 m: 45° 382.65 m: 45–50° 383.30 m: soft sediment deformation at 20° 384.80 m: 50–55° 385.75 m: 40° 386.85 m: 45° 387.95 m: 50–55° 389.90 m: 55–60°	6202 6203 6204 6205 6206 6207 6208 6209 6210	0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	379.83 380.70 381.70 382.64 383.56 384.46 385.28 386.19 387.01	380.70 381.70 382.64 383.56 384.46 385.28 386.19 387.01 387.87	0.87 1.00 0.94 0.92 0.90 0.82 0.91 0.82 0.86			0.01 0.01 0.01 0.01 tr. tr. tr. tr.			

FORM 2

NAME OF PROPERTY_____

McDermott

SHEET NO. 9 OF 9

FOOTAGE		SAMPLE					ASSAYS					
FROM TO	NO.	". SULPH	FROM	FOOTAGE	TOTAL		·-	OZ TON	OZ TON			
 Amount of increasing carbonatization decreases slightly below and 394.00 meters. It is often contained in gritty quartz (breecia?) seams or beds. Zones up to 30cm exhibit soft sedin deformation with bedding angles deflected by up to 50° - often sub-parallel to the core axis. Non-magnetic. Rock is less we laminated and possibly relatively coarser grained below 391.30 Clasts up to 10m are noted in 10-20cm beds - usually strongly carbonatized. Rock is non-laminated below 395.50 meters but in a moderate foliations: (measured with respect to the core axis 391.90 m: 65° 393.45 m: 40-45° 395.30 m: 40° 396.50 m: 45-50° 440.30 m: 45° (strongly carbonatized) 401.70 m: 50° 403.15 m: 25-30° 396.70-400.20: massive, non-laminated, very weakly foliated locally. 405.10-405.21: highly breeciated and sheared at 25° to the core axis. 405.21 426.30 BASALT 405.21 426.30 BASALT 405.21 426.30 EASALT 405.21 426.30 METER 406 40 40 40 40 40 40 40 40 40 40 40 40 40	385.40 6211 6212 ment 6213 n 6214 ell 6215 0 m. 6216 6217 retains 6218 6219 xis) 6220 6221 6223 6224 6225 6226 6227 6228 6229 ontact. nd the ed(?) ters. ted t top y	0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	387.87 338.74 389.57 390.40 391.21 392.15 393.10 394.01 394.91 395.79 396.63 397.54 398.46 399.33 400.22 401.00 401.95 402.84 403.75	388.74 389.57 390.40 391.21 392.15 393.10 394.01 394.91 395.79 396.63 397.54 398.46 399.33 400.22 401.00 401.95 402.84 403.75 404.77	0.87 0.83 0.83 0.81 0.94 0.95 0.91 0.90 0.88 0.84 0.91 0.92 0.87 0.89 0.78 0.95 0.89 0.91 1.02			tr. tr. 0.01 0.01 0.01 tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.				

FORM 2

.

AND GY PROPERTY SELEVATION ASSECTION ASSECTIO					T	1	Π		T		HOLE	NO. MC .	<u>84–68</u> si	HEET NO.	1 <u>OF</u>
Die No. Mc. Barba Leworn 322.21 meters 0 -200 228.60 -600 TUTUDE Departure 3440 DIP -700 214.42.404 -011 Status ALTUUTH 3440 DIP -700 214.42.404 -011 Status ALTUUTH 3440 DIP -700 214.42.404 -011 Longen Longen Longen -000 22.21 -514 Longen -000 -200 22.8.60 -000	IAME OF	PROPI	ERTY McDermott	FOOTAGE	DIP	AZIN	иитн	FOOTAGE	DIP	AZIMUTH					
OCATION	OLE NO.	•	<u>Mc. 84-68</u> LENGTH <u>432.21 meters</u>		70	5		228 60	-60 ⁰		REMA	RK5	<u> </u>	<u> </u>	·
VITUOE 12400 E DEFARTURE 340° 01° -70° 20.04 -60° -10° 20.04 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 137.16 -60° -10° 10° -10° 10° -10° 10° -60° -10° 10° <t< td=""><td>OCATION</td><td></td><td></td><td>15 70</td><td>-70</td><td>+</td><td></td><td>220.00</td><td><u>-00</u></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	OCATION			15 70	-70	+		220.00	<u>-00</u>						
EVATION	ATITUDE		<u>12+00 E</u> DEPARTURE <u>3+00 S</u>	45.72	-66	+		274.52	<u>-002</u>						
CARTED FINISHED CONCLUS ALL CONSTANT CONSTANT FROM TO DESCRIPTION SAMPLE ASSENTS FROM TO DESCRIPTION SAMPLE ASSENTS REAL DESCRIPTION SAMPLE ASSENTS <tr< td=""><td>LEVATIO</td><td>N</td><td>AZIMUTH344 DIP70</td><td>127 16</td><td>-00</td><td></td><td></td><td>320.04</td><td>-60</td><td>{</td><td></td><td></td><td>A 1.7 1</td><td>lo ml- o-</td><td></td></tr<>	LEVATIO	N	AZIMUTH344 DIP70	127 16	-00			320.04	-60	{			A 1.7 1	lo ml- o-	
IDESCRIPTION SAMPLE ASSANS ration To DESCRIPTION SAMPLE ASSANS 0 30.48 DVERUMPEN No. NOR S. ANDEL ASSANS 10.46 25.08 BESRUI The uoper flows are medium grey-green becoming darker green in the lower flows. Both massive and pillowed flows are represented in this section. Pillowed flows are generally fine grained to anotheritic and often silicified. Massive flows are generally fine grained to anotheritic and often silicified. Massive flows are generally fine grained to anotheritic flow contacts and medium to coarse grained phases. The rocks are wrained medium to coarse grained phases. The rocks, especially when very fine grained, are weakly silicified and moderabulated along selective laminations. These rocks are variably megnetic. S. AM To interflow sediments is associated with these contacts. The rocks carry in 20.40 at 42.60 meters at 30-30° to the core axis. The rock carry in 20.40 at 42.60 meters at 30-30° to the core axis. The rock carry in 20.40 meters carries 20X silicified seams up to low in midth which vaguely resemble oillow distres at 30-30° to the core axis. The rock carry in 20.40 meters carries 20X silicified seams up to low in midth which vaguely resemble oillow distres at 30-30° to the core axis. The rock carry in 20.40 meters carries 20X silicified seams up to low in axis is noted at 54.50 meters. Increased shrinkapa-type fracturing is noted below 61.50 meters.	TARTED		FINISHED	192.00	()0		1	365.76	$\frac{-58.8}{-5410}$		LOGGE	D BY	A. w.	workman	
PROM TO 0 30.48 OVERBURDEN 80.48 OVERBURDEN 80.48 OVERBURDEN 80.48 OVERBURDEN 80.48 S25.88 9050LT The uober flows are medium gray-green becoming darker green in the lower flows. Both massive and oillowed flows are represented in this section. Pillowed flows are very fine grained to abharitic and often silicified. Massive flows are grained phases. The rocks, especially then very fine grained, are weally silicified and moderately poldotized. Interflow sediments is associated with these contacts. The rocks carry i-3% white quarts stringers un to 2cm in width locally at 56-369 to the cone axis. The zone from 44.59-45.59 meters carries 25% to to 180m in with which vaguely resemble pillow tribe. A variable zone tart softed sears up to 180m in with which vaguely resemble pillow mites. A lower flow contact at 75-500 to the core axis is noted at 54.50 meters. In conserts with since carries 20% silicified sears up to 180m in with which vaguely resemble pillow mites. A lower flow contact at 75-500 to the core axis is noted at 54.50 meters. Increased shrinkage-type fracturing is noted below 61.58 meters.	FOOT	AGE		02.00	-04			5 A M P	- <u>J42</u>		T		<u> </u>		
a 30.48 <u>DVESBURDEN</u> a 30.48 <u>DVESBURDEN</u> i0.48 25.09 <u>BBSBLI</u> The upper flows are medium grey-green becoming darker green in the lower flows. Both massive and pillowed flows are represented in this section. Pillowed flows are very fine grained to aphantic due of thes. Both massive flows are greenally fine grained phases. The rocks in this section are non-carbonalized and non-magnetic with the exception of thin interflow sequences are used and non-magnetic with the exception of thin interflow sequences are used to aphantic flow contacts at 30.50 and 40.80 seters at 30.305 to the core axis. These rocks are variably magnetic. 30.48 - 65.101: massive, very fine grained, with aphantic flow contacts at 35.50 and 40.80 seters at 30.305 to the core axis. The rocks carry 13% white emarts stringers us to 20m in width locally at 50-90 to the core axis. The rocks carry 13% white emarts stringers us to 20m in width locally at 50-90 to the core axis. The rocks carry to 20m in width which vayuely resemble pillow rims. A variabilit core is noted at 57.60° to the core axis. Increased shrinkage-type fracturing is noted below 61.50 meters.			DESCRIPTION				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	FOOTAG	E		1	T ,		
0 30.48 OVERBURDEN 52.48 255.08 BESALT The uoper flows are medium grey-green becoming darker green in the lower flows. Both massive and pillowed flows are represented in this section. Fillowed flows are generally fine grained to anhantic in and often silicified. Massive flows are generally fine grained phases. The rocks in this section are non-carbonatized and non-magnetic with anhantic flow contacts and medium to coarse grained phases. The mocks is sepecially when very fine grained, are weakly silicified and moderately epidotized. Interflow sediments is associated with abhantic flow flow sections. Flow rocks, especially when very fine grained, are weakly silicified and moderately epidotized. Interflow sediments is associated with these contacts at 30-250 to the core axis. The rock flow may have the section of the interflow sediments is associated with these contacts. The roces rarry 1-3% white duarts tringers up to 20m in width locally at 60-90° to the core axis. The core from M4, 90-45.50 methes: 20% silicified eadems up to 100m in width which vaguely resemble sillow rims. A variabilit cone is noted at 75-20° to the core axis is noted at 5, 40-51.83 methes. A lower flow contact at 75-20° to the core axis is increased shrinkage-type fracturing is noted below 61.50 meters.	FROM					NO.	IDES	FROM	то	TOTAL	- %	?0	OZ/TON	OZ/TON	
NO. 448 225.08 BSSUI The uoper flows are medium grey-green becoming darker green in the lower flows. Both massive and oillowed flows are represented in this section. Pillowed flows are generally fine grained with adhanitic flow contacts and medium to coarse grained phases. The rocks in this section are non-carbonatized and non-magnetic with the exception of thin interflow sediments (tuff) horizons. Flow rocks, especially when very fine grained, are weakly silicified and moderately epidotized. Interflow sediments are chloritized and carbonatized along selective laminations. These rocks are variably magnetic. 30.48 - 65.10: massive, very fine grained, are weakly solicified and works the these contacts. The rocks carry 1-3% white owariz stringers us to 2cm in witch locally at 50°90 to the core axis. The rocks carry 1-3% white owariz stringers us to 2cm in witch locally at 50°90 to the core axis. The zone from 44, 90-45, 90 meters carries 20% silicified eases up to 10 min witch which valuely resemble pillow rims. A variolitic rone is moted at 51.78-51.89 meters. A lower flow contact at 75-50° to the core axis is noted at 54.50 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.	e :	30.48	DVERBURDEN									{			
The upper flows are medium grey-green becoming darker green in the lower flows. Both massive and pillowed flows are represented in this Section. Pillowed flows are very fine grained to abharitic and often silicified. Massive flows are generally fine grained with abhanitic flow contacts and medium to coarse grained phases. The rocks in this section are non-carbonatized and non-magnetic with the execution of thin interflow sediment (tuff) horizons. Flow rocks, especially when very fine grained, are weakly silicified and moderately endosized. Interflow sediments are chloritized and carbonatized along selective laminations. These rocks are variably magnetic. 30.48 - 65.10: massive, very fine grained, with abhanitic flow contacts at 35.50 and 48.05 meters at 30-350 to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-3% white quartz stringers up to 2cm in with locally at 60-990 to the core axis. The zone from 44.99-45.90 meters carries 20% silicified seams up to 10 for in width which vaguely resemble pillow rims. A varialitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-60° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.	30.48 53	26.08	BASALT												
The upper flows are medium grey-green becoming darker preprint the lower flows. Both massive and oillowed flows are represented in this section. Pillowed flows are generally fine grained with abhantic flow Contacts and medium to coarse grained phases. The rocks in this section are non-carbonatized and non-magnetic with the excention of thin interflow sediments are flow rocks, especially when very fine grained, are weakly sillicified and moderately epidotized. Interflow sediments are chloritized and carbonatized along selective laminations. These rocks are variably megnetic. 30.40 - 65.10: massive, very fine grained, with abhanitic flow contacts at 35.50 and 40.05 meters at 30-35° to the core axis. Minor interflow sediments is associated with these contacts. The zone from 44.90+45.90 meters carries 20% sillicified seams up to libem in with which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75.60° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.															
<pre>lower flows. Both massive and pillowed flows are represented in this section. Pillowed flows are years fine grained to adhanitic and often silicified. Massive flows are generally fine grained with abhanitic flow contacts and medium to coarse grained phases. The rocks in this section are non-catrobratized and non-magnetic with the exception of thin interflow sediment (tuff) horizons. Flow rocks, especially when very fine grained, are weakly silicified and moderately epidotized. Interflow sediments are chloritized and carbonatized along selective laminations. These rocks are variably magnetic. 30.48 - 65.10: massive, very fine grained, with abhanitic flow contacts at 35.50 and 48.40 meters at 30-359 to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-35 white quartz stringers up to 2cm in width locally at 60-300 to the core axis. The zone from 44.90-45.500 meters carries 20% stilicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is moted at 51.78-51.89 meters. A lower flow contact at 57-60% to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.</pre>		ļ	The upper flows are medium grey-green becoming darker gr	een in t	he				1						
<pre>this section. Pillowed flows are very fine grained to abharitic and often silicified. Massive flows are generally fine grained with abharitic flow contacts and medium to coarse grained phases. The rocks in this section are non-carbonalized and non-magnetic with the exception of thin interflow sediment (uff) horizons. Flow rocks, especially when very fine grained, are weakly silicified and moderately epidotized. Interflow sediments are chloritized and carbonatized along selective laminations. These rocks are variably magnetic. 30.48 - 65.10: massive, very fine grained, with abhanitic flow contacts at 35.50 and 48.65 meters at 30-35° to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-3% white quartz stringers up to 2cm in width locally at 60-90° to the core axis. The zone from 44.90-45.90 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rmims. A variolitic one is noted at 51,78-51,89 meters. A lower flow contact at 75-60° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.</pre>			lower flows. Both massive and pillowed flows are represe	ented in											
<pre>and often silicified. Massive flows are generally fine grained with abhanitic flow contacts and medium to coarse grained phases. The rocks in this section are non-carbonatized and non-magnetic with the exception of thin interflow sediment (luff) horizons. Flow rocks, especially when very fine grained, are weakly silicified and moderately epidotized. Interflow sediments are chloritized and carbonatized along selective laminations. These rocks are variably magnetic. 30.48 - 65.10: massive, very fine grained, with achanitic flow contacts at 35.50 and 48.05 meters at 30-359 to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-3% white quartz stringers up to 2cm in width locally at 60-90° to the core axis. The zone from 44.90-45.00 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rims. A variabilitizor us is noted at 51.78-51.89 meters. A lower flow contact at 75-80° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.</pre>			this section. Pillowed flows are very fine grained to an	ohanitic											
 With abhanistic flow Contacts and medium to coarse grained phases. The rocks in this section are non-carbonatized and non-magnetic with the exception of thin interflow sediment (tuff) horizons. Flow rocks, especially when very fine grained, are weakly silicified and moderately epidotized. Interflow sediments are chloritized and carbonatized along selective laminations. These rocks are variably magnetic. 30.48 - 65.10: massive, very fine grained, with abhanitic flow contacts at 35.50 and 48.05 meters at 30-350 to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-3% white quartz stringers up to 2cm in width locally at 60-900 to the core axis. The zone from 44.90-45.90 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-800 to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters. 			and often silicified. Massive flows are generally fine r	grained										1 1	
<pre>mith the exception are non-carbonatized and non-magnetic with the exception of thin interflow sediment (tuff) horizons. Flow rocks, especially when very fine grained, are weakly silicified and moderately epidotized. Interflow sediments are chloritized and carbonatized along selective laminations. These rocks are variably magnetic. 30.48 - 65.10: massive, very fine grained, with achanitic flow contacts at 35,50 and 48.05 meters at 30-350 to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-33 white quartz stringers up to 2cm in width locally at 60-900 to the core axis. The zone from 44.90-45.90 meters carries 20X silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-800 to the core axis is noted at 54.50 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.</pre>			With abhanitic flow contacts and medium to coarse grained	d phases	-										
Flow rocks, especially when very fine grained, are weakly silicified and moderately epidotized. Interflow sediments are chloritized and carbonatized along selective laminations. These rocks are variably magnetic. 30.48 - 65.10: massive, very fine grained, with abhanitic flow contacts at 33.50 and 48.05 meters at 30-35° to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-3% white quartz stringers up to 2cm in width locally at 60-90° to the core axis. The zone from 44.90-45.90 meters carries 20% silicified seams up to 10ccm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-60° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			The rocks in this section are non-carbonatized and non-ma	agnetic											
silicified and moderately epidotized. Interflow sediments are chloritized and carbonatized along selective laminations. These rocks are variably magnetic. 30.48 - 65.10: massive, very fine grained, with abhanitic flow contacts at 35.50 and 48.85 meters at 30-25° to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-3% white guartz stringers up to 2cm in width locally at 60-90° to the core axis. The zone from 44.90-45.90 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-50° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			Flow rocks, especially when very fine praired are weakly	izons.											
chloritized and carbonatized along selective laminations. These rocks are variably magnetic. 30.48 ~ 65.10: massive, very fine grained, with abhanitic flow contacts at 35.50 and 48.05 meters at 30-35° to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-3% white ouartz stringers up to 2cm in witch locally at 60-90° to the core axis. The zone from 44.90-45.90 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-60° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			silicified and moderately endotized. Interflow sedimer	y ts arp											
rocks are variably magnetic. 30.48 - 65.10: massive, very fine grained, with abhanitic flow contacts at 35.50 and 48.05 meters at 30-35° to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-3% white ouartz stringers up to 2cm in width locally at 60-90° to the core axis. The zone from 44.90-45.90 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-60° to the Core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			chloritized and carbonatized along selective laminations.	These		1				1] [
30.48 - 65.10: massive, very fine grained, with achanitic flow contacts at 35.50 and 48.05 meters at 30-35° to the core axis. Minor interflow sediments is associated with these contacts. The rocks carry 1-3% white quartz stringers up to 2cm in width locally at 60-90° to the core axis. The zone from 44.90-45.90 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-60° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			rocks are variably magnetic.												
the core axis. Minor interflow sed metrs is associated with these contacts. The rocks carry 1-3% white quartz stringers up to 2cm in width locally at 60-90° to the core axis. The zone from 44.90-45.90 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is moted at 51.78-51.89 meters. A lower flow contact at 75-80° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			30.48 - 65.10: massive, very fine grained, with ashanit:	ic flow											
associated with these contacts. The rocks carry 1-3% white quartz stringers up to 2cm in width locally at 60-90° to the core axis. The zone from 44.90-45.90 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-60° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			the pope svic Minon intenflow and rest.	-30- to											
1-3% white quartz stringers up to 2cm in width locally at 60-90° to the core axis. The zone from 44.90-45.90 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-60° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			associated with these contacts. The rock	a carrv 2 to											
locally at 60-90° to the core axis. The zone from 44.90-45.90 meters carries 20X silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-80° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			1-3% white quartz stringers up to 2cm in	width											
44.90-45.90 meters carries 20% silicified seams up to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-80° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			locally at 60-90° to the core axis. The	zone fr	om										
to 10cm in width which vaguely resemble pillow rims. A variolitic zone is noted at 51.78-51.89 meters. A lower flow contact at 75-80° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			44.90-45.90 meters carries 20% silicified	d seams	up										
rims. A variolitic zone is noted at \$1.78-51.89 meters. A lower flow contact at 75-80° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			to 10cm in width which vaguely resemble p	billow											
meters. A lower flow contact at 75-80° to the core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			rims. A variolitic zone is noted at S1.	78-51.89						ł					
core axis is noted at 54.65 meters. Increased shrinkage-type fracturing is noted below 61.50 meters.			meters. A lower flow contact at $75-80^\circ$ t	to the											
shrinkage-type fracturing is noted below 61.50 meters.			core axis is noted at 54.65 meters. Incr	~eased											
meters.			shrinkage-type fracturing is noted below	61.50		ļ									
			meters.			[
					[[[l			
NAME OF PROPERTY_____

McDermott

SHEET NO. 2 OF 14

FOOT	FAGE					SAMPL	- E			ASSAYS		
FROM	то			NO.	SULPH	FROM	FOOTAGE TO	TOTAL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OZ TON	OZ TON	
		65.10 - 70.15:	moderately speared, massive flow with a 3mm green clay filled fault plane at 43 ⁰ to the core axis at 66.09 m. The rock in this section seems to be relatively coarser grained than the overlying zone.									
		70.15 - 77.93:	fine to medium grained massive flow becoming silicified at the lower contact.									
		77.93 - 82.36:	fine grained massive flow becoming fine to medium below 79.15 meters with several silicified and epidotized seams at 82.20-82.25 meters and 82.31-82.36 (marking a flow contact at 65-70° to the core axis).									
		82.36 - 89.65:	a 30-40cm very fine grained flow too grades to a fine to medium grained massive zone then to a fine grained base. A narrow mafic intrusive with feldspar phenocrysts up to 5mm in size is noted at 87.05-87.11 meters.									
		89.65: 89.65 - 96.98:	silicified and epidotized flow contact. fine to medium grained massive flow, moderately brecciated with a mafic fine grained intrusive (same as 87.05-87.11 meters) at 93.35-93.89 m.									
		96.98:	flow contact - epidotized and chloritized with minor strong silicification.									
		96.98 -114.10:	same type of flow as $89.65-96.98$ meters with alternating dark green and pale grey-green sections and generally fining below 108.86 meters. The lowermost flow contact is at 52° to the core axis.									
		114.10-172.17:	pillowed flow - abundant epidotized seams and flow breccia above 121.70 meters with minor angular flow top breccia locally - usually mixed with flow breccia. Pillow rims are well exhibited in the underlying section to a depth of 165.00m. and more sporadically to a depth of 170.60m. The largest pillows are probably in the 0.70 to 1.00 meter range. Pillow centres are often vesicular and are strongly epidotized.									
		172. 17:	flow contact at 40° to the core axis.									

.

FORM Z

NAME OF PROPERTY______McDermott_____

HOLE NO. Mc. 84-68 SHEET NO. 3 OF 14

F001	TAGE			1		SAMPI	-E			ASSAYS		
ROM	то		DESCRIPTION	NO.	". SULPH		FOOTAGE		 	OZ TON	OZ TON	
		172.17-178.44:	massive flow - dark green, fine to medium grained with abundant reddish silicified clasts of		IDES	FROM	10	TOTAL				
		178.44-179.22:	sediment noted below 177.70 meters. sediments - dark green and fine to very fine grained, well laminated (60° at 178.50 meters), and probably of tuffaceous origin. Rock is moderately to strongly magnetic locally near the upper contact. Weak to strong carbonatization is noted near the upper contact. The lower contact									
		179.22-205.48:	may be fost in ground core at 175.22 meters. pillow flow - same as the zone from 123.90-170.60 meters. Pillows are weakly silicified. A flow contact between two pillowed flows is noted at 195.40 meters with minor associated angular flow top breccia. NOTE: A 23cm discrepancy is noted in the location of the 658' (200.56 meter) depth marker in the core box. The position was changed to solit the difference in excess core and several lower markers were also moved.									
		205.48-205.64: 205.64-209.29: 209.29-209.98:	highly silicified and epidotized flow contact zone. flow top breccia with minor flow breccia. sediments - reddish green, fine grained, non-laminated and moderately magnetic near the upper contact. The basal contact is well laminated at 25-30° to the core axis. The zone is moderately to strongly carbonatized and epidotized throughout.									
		209.98-210.74: 210.74-210.90:	a thin angularly brecciated massive flow. sediments - dark green fine to very fine grained, strongly carbonatized and well bedded at 65° to the core axis.									
		210.90-227.82:	a zone of angular flow-top breccia with fragments up to 5cm in size gives way below 215.60 meters to a zone of sub-angular to sub-round reaction rimmed flow breccia fragments up to 5cm in size. Reaction rims become more common with depth and the matrix to fragments also becomes more strongly									

FORM 2

NAME OF PROPERTY____

HOLE NO. ____

Mc. 84-68

McDermott

SHEET NO. 4 OF 14

FOOT	AGE					SAMPL	_E				ASSAYS		
FROM	то	-	DESCRIPTION	NO.	"L SULPH IDES	FROM	FOOTAGE TO	TOTAL	· ·	۲۰	OZ TON	UZ TON	
			hematized, and carries blebs of chalcopyrite up to 3cm in size. This matrix is generally a mixture of siliceous and epidotized crap which has a fine granular appearance. The zone is non-magnetic. A poorly developed flow contact may exist at the										
		227.82-234.70:	dark green, fine grained massive flow, weakly fractured locally - shrinkage-type with white carbonate filling. A 1.5cm fracture at 233.25-233.80 meters is sub-parallel to core axis and filled with reddish hematite and very weakly magnetic locally.										
		234.70-238.30:	highly chloritized and epidotized seams resemble pillow selvages with associated silicification.										
		238.30-246.05:	dark green, fine to medium grained massive section with abundant siliceous cream coloured void fillings. Rock overall is weakly to moderately silicified with moderate pervasive epidotization. Abundant hematite filled fractures up to 1cm in width. sub-narallel to the core avis										
		246.05-251.35:	dark green to black, fine grained massive section. 5% intensely silicified and epidotized 1cm seams - resemble pillow selvages, probably flowage features. Pale yellow shardy specks up to 1mm noted, same or similar to those in basal sediments of underlying Sedimentary Formation.										
0 - 366-1168		251.35-256.51:	INTRUSIVE - pinkish green, fine grained with a fine to medium grained core carrying deformed chloritized biotites (foliated at 50-55° to core axis) up to 3mm in size. Weakly to moderately carbonatized. Non-magnetic. Chills at contact at 45° to core axis.										
LANGRIDGL		256.51-311.65:	pillowed flow - dark green becoming medium green with depth, very fine grained to aphanitic. No selvages above 259.20 meters but rock has a reddish hue due to hematite in this zone. Non-magnetic. Trace noted locally in pyritized										

NAME OF PROPERTY______McDermott

HOLE NO. _____MC. 84-68 _____ SHEET NO. ____ 5 OF 14

FOOT	AGE		DESCRIPTION	SAMPLE						ASSAYS		
FROM	то	1		140.	SULPH	FROM	FOOTAGE	TOTAL	еч .	OZ TON	OZ TON	
		311.65-313.43: 313.43-316.80: 316.80-317.33: 317.33-326.08:	<pre>(10%) pillow selvages. Pillow interiors are epidotized and brecciated, often silicified. Pillow tops are vesicular. The zone from 300.80 to 301.33 meters is angularly brecciated with quartz filling. This zone probably represents a flow contact between two similarly pillowed flows. sediments - dark green, very fine grained and well laminated locally - generally well foliated throughout (45° at 312.35 and 55-60° at 313.20 meters). A 3cm bull quartz vein is located at 313.25 meters. Up to 1% chalcopyrite is found in the wallrock near the vein. massive flow, dark green fine to very fine grained. sediments - green to grey, very fine grained and strongly carbonatized. A crudely developed set of laminations reflects bedding at 70° to the core axis. Minor strong magnetism is noted in 1-2cm sections of purple-grey intensely silicified breccia. pillowed flow - same as the overlying zone at 256.51-311.65 meters.</pre>									
326.08 3	3 0. 71	SEDIMENTS Dark green, fin carbonatized at overlying basal 326.15 meters. 330.10 meters. sub-barallel to to strongly chl Bedding Laminat 45° at 327.25 m 50° at 330.65 m	the upper contact - probably due to heat from the t. Bedding is noted at 38° to the core axis at Soft sediment deformation is noted at 329.40 to Bedding in this section is irregular and often the core axis. In general, the rock is moderately oritized, weakly carbonatized and non-magnetic. <u>ions:</u> (measured with respect to core axis) meters meters	6230 6231 6232 6233 6234	1 1 1 1 1 1 1	326.25 327.23 328.23 329.08 329.88	327.23 328.23 329.08 329.88 330.71	0.98 1.00 0.85 0.83 0.83		0.01 0.01 0.02 0.01		

FORM 2

NAME OF PROPERTY______McDermott

HOLE NO. MC. 84-68 SHEET NO. 6 OF 14

FOC	TAGE		Ι		SAMPI	LE		······································	ASSAYS		
FROM	то	DESCRIPTION	NO.	", SUL PH	FROM	FOOTAGE TO	TOTAL	~.	OZ TON	UZ TON	
330.71	331.36	VARIABLY SILICIFIED SEDIMENTS									
		Dark green, fine grained and coloritized with irregularly dispersed purple-grey aphanitic, intensely silicified breccia sections. The degree and amount of silicification increases down-hole. The lowermost 10cm carries silicified clasts up to 5cm in size supported in a chloritized matrix. Silicification is spacially controlled in a general sense by brecciation, and is proportional in degree to the degree of brecciation. All silicified rock is weakly rective to HCl reflecting prior carbonatization. A narrow chloritized shear may be present at the lower contact.	6235		330.71	331.36	Ø. 65		Q. Q1		
331.36	341.58	UPPER SILICIFIED ZONE									
		Dark purple-grey, often with a greenish hue locally, very fine grained to aphanitic. The purple colouration accompanies moderate to strong hematization in silicified breccia zones. Silicification is controlled by brecciation and the degree of silicification is generally very strong to intense. The greenish colouration is due to relic chloritization which has not been subjected to complete silicification. This rock may be moderately hematized locally. The degree of silicification increases down-hole as does the overall pyrite content. Pyrite is found as a very fine dissemination, as a fracture filling, and as coarse aggregates of finer grains up to 1.5cm in size. The rock is moderately magnetic throughout becoming weakly magnetic near the lower contact. 331.36-333.02: 80-90% silicified with indistinct patches of relic chloritization in the matrix to silicified breccia clasts. 333.02-336.99: greater than 95% silicified breccia - purple-grey matrix to fragments is often honey coloured on a mm scale - chloritized fractures have honey coloured halos. The rock is weakly reactive to HCL. Pyrite content increases (averaging 3-5%), in all previously noted forms.	6236 6237 6238 6240 6241 6242 6243 6244 6245 6245 6246 6247 6248 6249 6250	2-3 2-3 3-5 3-5 3-5 3-5 3-5 1-2 1-3 1-3 1-3 1-5 4-6 3-5	331.36 332.15 333.02 333.62 334.26 334.92 335.70 336.39 336.99 337.46 338.14 338.82 339.23 340.07 340.67	332.15 333.02 333.62 334.26 334.92 335.70 336.39 336.99 337.46 338.14 338.82 339.23 340.67 341.58	0.79 0.87 0.60 0.64 0.65 0.78 0.69 0.69 0.60 0.47 0.68 0.41 0.68 0.41 0.60 0.91		tr. tr. 0.02 0.01 tr. tr. tr. 0.01 tr. 0.05 tr.		

FORM 2

366-1168

2 TORON

LANGRIDGES

McDermott NAME OF PROPERTY_____

۵...**.**

HOLE NO _____ Mc. 84-68

-

SHEET NO. 7 OF 14

FOOTAGE				SAMP	Ē			ASSAYS		
FROM TO	UESCRIPTION	NO	SULI	FROM	FOOTAGE TO	TOTAL	 -	OZ TON	UZ TON	
FROM TO 341.58 361.8	 336.99-337.46: highly fractured with a lower pyrite content. Fractures are chloritized. 337.46-338.82: same as 331.36-333.02 meters. 338.82-339.23: weakly to moderately silicified with a distinct greenish hue. 339.23-340.67: purple-grey with abundant chloritized seams and fractures - carries up to 10% pyrite as a matri to silicified fragments and as a fracture filli - zone averages 3-5%. 340.67-341.58: abundant cream coloured siliceous filling to purple-grey breccia fragments. Zone is non-magnetic to very weakly magnetic. UPPER IRANSITIONALLY SILICIFIED SEDIMENTS Dark green, fine grained and moderately chloritized with 50-600 purple-grey, abhanitic silicified breccia zones. Silicificatio is dependent upon prior brecciation and the degree of silicification is very high with moderate to strong (prior) carbonatization. Chloritized rock is hematized but is not appreciably carbonatized. All rock is weakly to moderately magnetic beccing strongly magnetic locally. Major zones of silicified breccia are located at 342.46-342.62; 342.77-343.31; 344.02-344.71 and 346.82-348.09 meters. The zone from 341.58 t 346.82 averages 65% silicified breccia. Intervening sections of rock are up to 50% silicified breccia. Intervening sections of rock are up to 50% silicified breccia. 349.95-349.68: 5-10% silicified breccia with 1% pyrite. Weakl to moderately magnetic. 349.68-351.33: 80-90% purple-grey silicified breccia with 1% pyrite. Weakl to moderately magnetic. 349.68-351.33: 80-90% purple-grey silicified breccia with 1% pyrite. 352.96-357.96: Ominantly chloritized with 5-10% silicified breccia with 1% pyrite as clots up to 30m in size. Moderately magnetic. 352.96-357.96: ominantly chloritized with 5-10% silicified breccia with 1% pyrite as clots up to 30m in size. Moderately magnetic. 	No X <p< td=""><td>$\begin{array}{c}1 \\ 1 \\ -2 \\ 2 \\ -3 \\ 3 \\ 2 \\ -3 \\ 5 \\ 1 \\ -2 \\ -3 \\ 3 \\ -3 \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ -3 \\ 1 \\ 2 \\ -3 \\ 3 \\ -4 \\ 5 \\ 1 \\ 2 \\ -3 \\ 3 \\ -4 \\ 5 \\ 1 \\ 2 \\ -3 \\ 3 \\ -4 \\ 5 \\ 1 \\ 2 \\ -3 \\ 3 \\ -4 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$</td><td>341.58 342.36 343.31 344.01 344.71 345.65 346.31 344.01 344.71 345.65 346.31 346.82 347.42 348.07 348.95 349.68 350.25 350.25 350.85 350.25 350.85 351.33 352.17 352.96 353.92 354.76 355.62 356.56</td><td>10 10 342.36 343.31 344.01 345.65 346.31 344.71 345.65 348.07 348.07 348.95 350.25 350.85 351.33 352.17 352.96 353.92 354.76 355.62 357.45</td><td>0.78 0.95 0.70 0.94 0.66 0.51 0.60 0.65 0.88 0.73 0.60 0.65 0.88 0.73 0.57 0.60 0.48 0.74 0.79 0.96 0.84 0.94 0.94 0.94 0.89</td><td></td><td>02 TON tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. 0.01</td><td>UZ TON</td><td></td></p<>	$\begin{array}{c}1 \\ 1 \\ -2 \\ 2 \\ -3 \\ 3 \\ 2 \\ -3 \\ 5 \\ 1 \\ -2 \\ -3 \\ 3 \\ -3 \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ -3 \\ 1 \\ 2 \\ -3 \\ 3 \\ -4 \\ 5 \\ 1 \\ 2 \\ -3 \\ 3 \\ -4 \\ 5 \\ 1 \\ 2 \\ -3 \\ 3 \\ -4 \\ 5 \\ 1 \\ 2 \\ -3 \\ 3 \\ -4 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	341.58 342.36 343.31 344.01 344.71 345.65 346.31 344.01 344.71 345.65 346.31 346.82 347.42 348.07 348.95 349.68 350.25 350.25 350.85 350.25 350.85 351.33 352.17 352.96 353.92 354.76 355.62 356.56	10 10 342.36 343.31 344.01 345.65 346.31 344.71 345.65 348.07 348.07 348.95 350.25 350.85 351.33 352.17 352.96 353.92 354.76 355.62 357.45	0.78 0.95 0.70 0.94 0.66 0.51 0.60 0.65 0.88 0.73 0.60 0.65 0.88 0.73 0.57 0.60 0.48 0.74 0.79 0.96 0.84 0.94 0.94 0.94 0.89		02 TON tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. tr. 0.01	UZ TON	
	alternating very fine medium green and black ve	ery								

NAME OF PROPERTY___

HOLE NO.

Mc. 84-68

McDermott

SHEET NO. 8 OF 14

FOO	TAGE		SAMPLE NO. SULPH FOOTAGE IDES FROM TO TOTAL						ASSAYS			
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE	TOTAL	~.	~.	OZ TON	OZ TON	
		<pre>fine grained to aonanitic laminations. Black laminations carry magnetite - best noted at 352.98, 354.65, and 355.35 meters. Magnetite laminations up to 1cm in width rest on a strongly carbonatized and weakly silicified bed which becomes less altered with depth. No apparent relationship between alteration and brecciation is noted. Above the magnetite laminations, the green chloritized rock has abundant angular yellow-green shards which decrease in number upwards. <u>Bedding:</u> 65° at 354.65 and 355.35 meters. 60° at 356.80 meters. 357.00-358.11: essentially the same as the overlying zone with less than 5% silicified breccia and no magnetite bearing laminations. The zone from 356.95 to 357.05 is 50% ground core. The rock is non-magnet to very weakly magnetic. Bedding is noted at 50° to the core axis at 357.75 meters. 358.11-359.01: the rock is strongly silicified without evidence of brecciation and carries minor increased pyrite contents (1-2%). 359.01-361.88: chloritized with 50% spotty silicification similar to the overlying section. The rock is strongly reactive to HCL, especially where brecciated.</pre>	6278 6273 6274 6275 6276	2 1 1 - 2 1 1 - 2 1 1 1 - 2 1 1 1 - 2 1 1 1 - 2 1 1 - 2 1 1 - 2 1 1 - 2 1 - 2 1 - 2 - 2	357.45 358.11 359.01 359.98 361.05	358.11 359.01 359.98 361.05 362.00	0.65 0.90 0.37 1.07 0.95			0.01 0.01 tr. tr. 0.01		
361.88	363.72	SEDIMENTS Dark green, fine grained and chloritized rock with less than 5% silicified breccia seams up to 3cm in width. Green rock is very weakly carbonatized and does not exhibit bedding laminations. It is very similar in alteration style and texture to the zone at 326.08-330.71 meters.	6277 6278	7 1 3 1	362. ØØ 362. 82	362.82 363.72	0.82 0.90			0.01 0.01		

NAME OF PROPERTY____

HOLE NO. -

•

•

Mc. 84-68

McDermott

SHEET NO. 9 OF 14

FOO	TAGE	DECEMBRICH			SAMP	LE			ASSAYS		
FROM	то	DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE TO	TOTAL	<i>"</i> .	OZ TON	UZ TON	
363.72	375.84	MAIN_MINERALIZED_ZONE									
		The zone is composed of three members of which the lower two are much thinner than normal. The upper member is a zone of increasing silicification which overlies the main silicified zone. The former zone is a section characterized by rip-up clasts derived from the underlying member. The main silicified zone, which is much thinner than normal, is characterized by intensely silicified breccia and much higher pyrite contents - up to 12% locally. The lowermost member, which is also thinner than normal, is characterized by gradually decreasing contents of silicified breccia. However, this zone retains some relatively high pyrite contents (3-5%) locally.									
363.72	364.73	TRANSITIONAL SILICIFIED SEDIMENTS									
		Green chloritized fine grained rock with pale grey to purple-grey highly carbonatized clasts and fragments up to 5cm in size. These clasts were derived through rip-up action through brittle brecciation of partially silicified sets of bedding laminations. Minor silicified breccia seams up to 1cm in width carry up to 5% pyrite locally. The percentage of silicified clasts increases down-hole to merge with a massive silicified breccia bed at 364.48-364.64 meters. This bed carries up to 10% finely disseminated pyrite. Angular, mm scale brecciation increases markedly below this level. A clay coated fault plane (the McKenna Fault), is noted at 60° to the core axis at 364.64 meters. A 9cm zone of silicified grit underlies this fault. The grit is contained within a chloritized matrix which is foliated at 50-55° to the core axis. Some well developed foliation (bedding) is noted at 364.15 meters at 40° to the core axis.	6279	1-2	363.72	364.48	Ø.75		0.03		
364.73	367.30	MAIN_SILICIFIED_ZONE Purple-grey to honey coloured intensely silicified breccia - very fine grained to aphanitic, with localized dark green fine grained zones of relic non-silicified, chloritized rock. Initially, silicified rock is strongly reactive to HCl due to prior	6280 6281 6282 6283 6283	8-10 8-10 3-5 8-10 8-10	364.48 365.00 365.58 366.25 366.90	365.00 365.58 366.25 366.90 367.30	0.52 0.58 0.67 0.65 0.40		0.11 0.08 0.09 0.07 0.08		

FORM Z

•

.

McDermott NAME OF PROPERTY_____

Mc. 84-68 SHEET NO. 10 OF 14 HOLE NO

FOOTAGE	DECODIDITION			SAMP	LE			ASSAYS		
FROM TO	DESCRIPTION	NO.	TDES	FROM	FOOTAGE	TOTAL	~	07 TON	OZ TON	
367.30 375.84	 Carbonatization. The reactiveness diminishes with depth due to masking by silicification. The zone averages approximately 6-8% pyrite as a fine dissemination and as cubes up to 10mm in size. 364.73-365.58: intensely silicified breccia, minor carbonate reaction, with 10-12% pyrite locally averaging 8-10% as a fine dissemination and as 10mm cubes. 365.58-366.25: same as above but with 1-5% gritty chloritized seams up to several cm in width. This section carries lower pyrite contents, averaging 3-5% with up to 10% locally. 366.25-367.30: silicified breccia clasts and silicified fragments up to 1.5cm in size have a pinkish hue and are set in a dark grey intensely silicified and finely brecciated matrix. The zone carries up to 10% pyrite in the matrix. Breccia has a crude fabric which probably reflects original bedding (eg. 45° at 366.65 meters). TRANSITIONQLLY_SILICIFIED_SEDIMENTS Dark green, fine grained and chloritized with gradually decreasing amounts of purple-grey intensely silicified breccia. Too of zone is approximately 80% silicified breccia seams. Average pyrite content decreases with depth in response to decreasing silicification. Breccia seams are often foliated along what is protoably original bedding (eg. 45° at 368.80 meters). 367.30-368.20: 280% silicified breccia, often with cream to honey coloured matrix and up to 5% pyrite. Laminations at base at 65° to core axis. 369.83-371.29: dark purple-grey intensely silicified clasts (rip-up) in graphitic matrix. Graphitic fault place at 65° to core axis. Silicified laminations with graphitic fault place at 65° to core axis. Silicified laminations with graphitic fault place at 65° to core axis. Silicified laminations with graphitic fault place at 65° to core axis. Silicified laminations with graphitic fault place at 65° to core axis. Silicified laminations with graphitic fault place at 65° to core axis. Silicified laminations with graphitic fault place at 65° to core axis. Silicified lamination	6285 6285 6286 6287 6288 6290 6291 6292 6293 6293 6295 6295	$3-5 \\ 5-7 \\ 2-4 \\ 2-4 \\ 5-7 \\ 3-5 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1$	367.30 367.76 368.20 369.09 369.83 370.58 371.29 371.59 372.51 373.38 374.29 375.19	367.76 368.20 369.09 369.83 370.58 371.29 371.59 372.51 373.38 374.29 375.19 375.84	0.46 0.44 0.89 0.74 0.75 0.71 0.30 0.92 0.87 0.91 0.91 0.65		0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01		

FORM 2

NAME OF PROPERTY McDermott

HOLE NO. _____ Mc. 84-68 _____ SHEET NO. ____ 11 OF 14

FOOTAGE	DETERION			SAMPI	LE	:			ASSAYS		
FROM TO	UESCRIPTION	NO.	". SULPH	FROM	FOOTAGE	TOTAL			OZ TON	UZ TON	
	Bedding:369.98 m:60° to core axis. 370.15 m:55° to core axis.A massively silicified bed with 9-10% pyrite is located at 371.05-371.15 meters.371.29-371.59:purple-grey silicified breccia with pink clasts up to 1cm and 3-5% very finely disseminated pyrite.371.59-373.38:same as 368.20-369.83 meters - 25-50% silicified breccia.373.38-375.84:dark green, chloritized with $\frac{1}{57}$ silicified breccia seams up to 1cm. Bedding laminations are better developed than above sections. Rippled laminations may be original rather than soft sediment deformation. Highly convoluted from 374.00 to 375.00 meters. Bedding laminations highlighted by carbonate which is subsequently weakly to moderately silicified. Non-magnetic. Bedding:Bedding:375.20 m: 60° to core axis. 375.70 m: 55-60° to core axis.		IDES	FROM		TOTAL	•				
375.84 430.23	SEDIMENTS Dark green, very fine grained becoming fine grained locally in tuffaceous-looking zones. Bedding laminations are moderately well developed throughout but best observed when highlighted by selective carbonatization. Minor selective silicification of 1-2mm. Siliceous laminations are noted locally (also carbonatized). A zone of 40-50% silicified breccia with up to 5% pyrite is noted at 378.32 meters. A few white quartz veins up to 6cm in width are noted locally (eg. 379.73 meters). Zones of transitional-type silicified breccia are noted at 381.24-392.67 and at 387.45-388.62 meters. The latter has massive silicified breccia beds up to 32cm in thickness. A zone starting at 383.65 meters is well laminated/foliated and moderately to strongly carbonatized. <u>Bedding:</u> (measured with respect to the core axis) 381.70 m: 60° 383.40 m: 55° 384.45 m: 45° 387.25 m: 55° 388.70 m: 45-50°	6297 6298 6299 6300 6301 6302 6303 NOTE 6304 6305 6306 6307 6308 6309 6310 6411	$ \begin{array}{c} 1 \\ 2-3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2-3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 3-5 \\ 3-5 \\ 3-5 \end{array} $	375.84 376.74 377.64 378.32 379.31 380.26 381.24 1 of 109 381.93 382.67 383.55 384.50 385.50 386.49 387.45	376.74 377.64 378.32 379.31 380.26 381.24 381.93 t core 382.67 383.55 384.50 385.50 385.50 385.49 387.45 387.99 388.62	0.90 0.90 0.68 0.95 0.95 0.98 0.69 at 381 0.74 0.88 0.95 1.00 0.99 0.95 0.54 0.54 0.63	93 met	ers	0.01 0.01 0.01 0.01 0.01 0.01 tr. tr. tr. tr. tr. tr. tr. tr. 0.04 0.05		

FORM 2

.

NAME OF PROPERTY____

McDermott

HOLE NO. Mc. 84-68 SHEET NO. 12 OF 14

FOO	TAGE					SAMPL	E		[ASSAYS		
FROM	то		DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TD	TOTAL		~.	OZ TON	OZ TON	
		381.24-382.67: tr co di ca 387.45-388.62: as	ransitional-type silicified breccia - total ontent is 25-35%. Up to 3% pyrite as a finely issemination. Silicified rock is strongly arbonatized. Non-magnetic. a above with purple-grey silicified breccia beds to 32cm in thickness. Up to 10% pyrite locally										
		387.45-388.62: as up as fr Mi to 388.62-407.58: da la Ca in <u>Be</u> 39 Pa st de oy 10 to be ar So fr Eg	s above with burple-grey silicified precela beds b to 32cm in thickness. Up to 10% pyrite locally avery fine dissemination and as clots in acture voids up to 2cm. Average 3-5% (Lower ineralized Zone). Minor bedding locally at 55° b core axis at 387.95 meters. ank green with 5L% grey strongly carbonatized aminations. Trace of silicification locally. arbonate alteration often crosscuts laminations in feathering out. adding Foliations: (with respect to core axis) 30.30 m: 55° 392.60 m: 55-60° arting is very well devleoped along moderate to crong foliations. Bedding is generally not well eveloped but is quite good locally. Carries 1% write as blebs up to 1mm in size. Rock carries 0-20% pale grey-yellow angular 'shardy' specks up is imm throughout. Local variations noted across adding. Specks are not reactive to HCL. These re highly visible in vicinity of 393.50 meters. becks are generally absent or greatly reduced from 399.10-400.20 and from 402.05-404.95 meters. 395.33 m: 50° 400.20 m: 55° 406.85 m: 55°	6412 6413 6414 6415 6416 6417 6318 6420 6421 6422 6423 6425 6425 6425 6425 6425 6429 6429 6430 6431	$ \begin{array}{c} 1\\ 1\\ 1\\ 0-1\\ 0-1\\ 0-1\\ 0-1\\ 0-1\\ 0-1\\ $	388.62 389.53 390.54 391.51 392.49 393.49 393.49 394.44 395.43 396.39 397.37 398.40 399.35 399.80 400.80 401.81 402.51 403.55 404.50 405.50 406.53	389.53 390.54 391.51 392.49 393.49 394.44 395.43 396.39 397.37 398.40 399.35 399.80 400.80 401.81 402.51 403.55 404.50 405.50 406.53 407.18	0.91 1.01 0.97 0.98 1.00 0.99 0.99 0.99 1.03 1.03 1.04 1.01 1.04 1.03 1.03 1.03 1.03 1.03			tr. tr. 0.03 0.01 0.01 tr. tr. tr. tr. tr. tr. 0.06 0.01 0.01 0.01 0.01 0.01 tr. tr.		
		L <u>a</u> Mi py me se 1-	407.75 m: 55° aminations: 396.31 m: 55° inor localized silicified breccia with up to 7% write (average 2-3%) between 399.35 and 399.80 aters. Minor increasing pyrite in narrow breccia eams noted at 401.81-402.51 meters, averaging -2%.	6432	5-7	407.18	407.88	Ø.70			tr.		

NAME OF PROPERTY_____MC

HOLE NO. _

Mc. 84-68

McDermott

SHEET NO. _____ 13 OF 14

FOOT	TAGE					SAMPL	.E				ASSAYS		
FROM	то		DESCRIPTION	NO,	T. SULPH	FROM	FOOTAGE TO	TOTAL	~	•	OZ TON	OZ TON	
FROM	то	407.58-407.88: 407.88-410.66: 410.66-411.31:	dark green with abundant black intensely chloritized seams and laminations. Becding 15 generally well developed. Silicified rock was strongly carbonatized evidenced by strong HCl reactions locally. Well laminatec sections are separated by more massive but well foliated/parted sections. Pyrite occurs as very fine disseminations and cubes up to 3mm. Averages 3-5% but up to 20% is noted in well laminated sections. Replacement of silica. Trace of magnetism noted locally in laminated rock. dark green, very fine grained with abundant (10%) yellowish specks as described in 388.62-407.58 meters. Rock is very well parted along a weak foliation at 65° to core axis at 408.45 meters. Zone carries 5-10% white angular clasts up to 4mm - mostly silica or siliceous. Rock has a general amygdaloid appearance except for angularity of clasts - TUFF? Weakly reactive to HCl - also being replaced by pyrite as cubes and grains up to 4mm. Pyrite also has a fine dissemination in narrow (1-2mm) carbonated and silicified seams. Overall averages 1-2%. A fine grained, obviously clastic zone, (relatively coarser grained) which has sharp contacts with very fine grained rock noted below 410.25 meters. dark green to black, very fine grained, very finely developed laminations with abundant pyrite as crystals up to 2mm and as disseminations along bedding - replacement of earlier ohase - possibly carbonate. An angular unconformity is noted at	6334 6335 6336	1-2 1-2 1-2	408.88 409.84 410.66	409.84 410.66 411.31	0.96 0.82 0.65			tr. tr. tr.	62 TON	
			411.05 meters between two lamination beds - possible cross-bedding (one set at 55-60°, lower set at 45-50°). Upper set is black, lower is pale greenish-grey. Pale unit quickly loses sense of laminations down-hole. Bedding laminations at 50-55° to core axis at 410.76 meters.										

LANGRIDGES - TORONTO - 366-1168

•

FORM 2

NAME OF PROPERTY___

HOLE NO. _

Mc. 84-68

McDermott

SHEET NO. 14 OF 14

FOOTAGE SAMPLE ASSAYS
FROM TO DESCRIPTION OZ TON GZ TON GZ TON
 411.31-430.23: generally same as zone at 407.88-410.66 meters mith white clasts (concertrated) at upper contact to a decth of 411.73 meters. A well laminated zone at 413.77-414.65 meters (at about 30° to core axis) carries 55 oynite very finely disseminated along laminations. Zone below 414.67 meters often carries 1-2% (locally) very finely disseminated oynite and lam cubes. Strongly fractured subbarallel to core axis at 416.10-417.00 meters. Rock texture is highly ambuous below 416.00 meters but HCl etching reveals weak foliations locally - parting weakly to moderately developed below this coint and rock carries abundant bale coloured 'specks'. Weakly foliated zone at 423.28-423.35 meters at 456.00 meters. Soeckled texture is abundant grey siliceous clasts and 3-4% pyrite. 438.23 432.21 meters END OF HOLE 438.23 432.21 meters END OF HOLE

1

NAME OF	PROPERTY	Henness	y	
HOLE NO.	Mc 84-69	LENGTH	551.08 meters	
LOCATION				
LATITUDE _	<u>8+50 E</u>	DEPARTURE	<u>4+80 S</u>	
ELEVATION		AZIMUTH	335 ⁰ DIP	<u>-70⁰</u>
STARTED	May 14, 1984	FINISHED	May 31, 1984	

TROPARI TESTS

	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
	281.33	-540	358.5 [°]			
	433.73	-49 ¹ / ₂	002.5 [°]			
[551.08	-460	002.5			

HOLE NO. MC . 84-69 SHEET NO. 1 OF 10

REMARKS BQ Core

Casing left in ground.

A.W. Workman LOGGED BY

FROMTOFOOTAGE% OZ/TON020:12OVERBURDEN20.12203.61BASALTThe unit is composed of medium to dark green, fine grained massive flow. Medium grained phases are noted locally as flow centres. Flows are often flow brecciated with vesicular tops. Little interflow sediment is noted. Rocks are weakly to moderately chloritized but do not exhibit carbonatization. Silcification is limited to glassy flow margins and some flow brecia fragments. The unit is weakly to moderately magnetic, generally decreasing with depth. Averages 0-1% pyrite. 20.12 - 36.50: fine to very fine grained, angularly (tectonically) brecciated as a result of late stage flow movement. Non-magnetic. 36.50 - 37.05: 57.85: vesicular, often welded fragments (flow breccia) associated with this flow top. Fragments are often pale yellow-green as a result of intenseNo.Sile FOOTAGE TO TOTAL% ZOZ/TONNo.Sile fication 102 - 36.50Sile fication is 1132.88-580 228.60-530 228.60-530 228.6020.12 - 36.50: fine to very fine grained, angularly (tectonically) brecciated as a result of late stage flow movement. Non-magnetic. 37.05 - 57.85: vesicular, often welded fragments (flow breccia) associated with this flow top. Fragments are often pale yellow-green as a result of intense cilicification intenseSile FOOTAGE TOTAL% Zoz/ToNNo.Sile fication 200.12 - 36.50Sile fication is 128.64Sile fication is 228.60Sile fication 228.60Sile fication 200.12 - 36.50: fine to very fine grained, angularly (tectonically) breceriated as a result of late stage flow movement. Non-magnetic.Sile fication is 366.50 - 37.05: abundant ca	FOO	TAGE				SAMP	LE			4	SSA	YS	
O 20.12 OVERBURDEN 20.12 203.61 BASALT ACID DIP TESTS The unit is composed of medium to dark green, fine grained massive flow. Medium grained phases are noted locally as flow centres. Flows are often flow brecciated with vesicular tops. Little interflow sediment is noted. Rocks are weakly to moderately chloritized but do not exhibit carbonatization. Silcification is limited to glassy flow margins and some flow brecia fragments. The unit is weakly to moderately magnetic, generally decreasing with depth. Averages 0-1% pyrite. 0 -700 20.12 36.50 37.05 57.85: vesicular, often welded fragments (flow breccia) associated with this flow top. Fragments are often pale yellow-green as a result of intense cillow indicate flow pale yellow-green as a result of intense 502.92 -45.50 36.50 57.85: vesicular, often welded fragments (flow breccia) associated with this flow top. Fragments are often pale yellow-green as a result of intense 502.92 -440	FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	76	76	OZ/TON	OZ/TON	
20.12203.61BASALTThe unit is composed of medium to dark green, fine grained massive flow. Medium grained phases are noted locally as flow centres. Flows are often flow brecciated with vesicular tops. Little interflow sediment is noted. Rocks are weakly to moderately 	0	20.12	OVERBURDEN								1		
57.85 - 58.90: weakly brecciated massive flow. 58.90 - 59.05: strongly epidotized and silicified basal flow. 59.05 - 59.60: weakly vesicular flow top - angularly brecciated. 59.60 - 61.70: fine to very fine grained massive flow, moderately vesicular locally.	FROM 0 20.12	то 20.12 203.61	OVERBURDEN BASALT The unit is composed of medium to dark green, fine grained massive flow. Medium grained phases are noted locally as flow centres. Flows are often flow brecciated with vesicular tops. Little interflow sediment is noted. Rocks are weakly to moderately chloritized but do not exhibit carbonatization. Silcification is limited to glassy flow margins and some flow brecia fragments. The unit is weakly to moderately magnetic, generally decreasing with depth. Averages 0-1% pyrite. 20.12 - 36.50: fine to very fine grained, angularly (tectonically) brecciated as a result of late stage flow movement. Non-magnetic. 36.50 - 37.05: abundant carbonate veining may indicate flow margin. 37.05 - 57.85: vesicular, often welded fragments (flow breccia) associated with this flow top. Fragments are often pale yellow-green as a result of intense silicification. 57.85 - 58.90: weakly brecciated massive flow. 58.90 - 59.65: strongly epidotized and silicified basal flow. 59.05 - 59.60: weakly vesicular flow top - angularly brecciated. 59.60 - 61.70: fine to very fine grained massive flow, moderately vesicular locally.	NO.	SULPH SULPS	AC 11 0 45.72 91.44 137.16 182.88 228.60 274.32 320.04 365.76 410.87 459.64 502.92 548.64	TO TO DIP T	TOTAL STS -700 -61.50 -59.50 -59.50 -580 -500 -500 -500 -490 -46.50 -45.50 -440	76	76	OZ/TON	OZ/TON	

NAME OF PROPERTY____

HOLE NO.

Mc. 84-69

Hennessy

SHEET NO. ____ 2 OF 10

FOO	TAGE				<u> </u>	SAMP	LE				ASSAYS		
FROM	то		DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE	TOTAL	~.	۰.	OZ TON	OZ TON	
FROM	то	61.70 - 84.62: 84.62: 84.62 - 87.55: 87.55 - 94.45: 94.45 -100.75: 100.75-108.95:	fine grained massive flow becomes weakly to moderately magnetic below 72.24 meters and moderately to strongly magnetic below 79.00 meters. Zone is cut by 1-2cm shears sub-parallel to core axis. Carries 1-2% pyrite. 1-2cm clay-filled shear at 15-20° to core axis. Rock above is strongly magnetic and below is non-magnetic. <u>DIORITE</u> - fine to medium grained with a pinkish, feldspathic medium grained core at 85.00-85.30 m. same as 61.70-84.62 meters. A purple-grey colouration is noted at 92.00-92.90 meters due to hematite and magnetite - may be a flow contact. Magnetism in lowermost 25cm decreases with increasing grain size. fine to medium grained, becoming medium grained at 96.65-100.10 meters. Non-magnetic to locally weak magnetism. fine grained massive flow, very weakly magnetic	ΝΟ.	~ SULPH IDES	FROM	TO	TOTAL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		OZ TON	OZ TON	
		108.95-111.90: 111.90-112.37:	<pre>locally. fine to very fine grained massive flow - weakly magnetic beoming moderate locally. very fine grained flow margin - minor brecciation in lower 10cm - underlying zone lacks flow top</pre>										
		112.37-113.15: 113.15-114.27: 114.27: 114.27-121.00: 121.00-121.31:	features. fine to very fine grained flow with grain size increasing down-hole. medium grained massive flow. faulted or displaced flow contact across a fracture at 55° to the core axis. flow-top breccia - angular fragments up to 4cm are surrounded by very dark green, moderately magnetic flow. Grades down-hole to mixed flow-top and flow breccia. mixed zone of basal flow and debris incorporated from underlying rock.										

FORM 2

NAME OF PROPERTY_____

HOLE NO. Mc. 84-69

Hennessy

_____ SHEET NO. _____ 3 OF 10

FOOT	AGE					SAMP	LE				ASSAYS		
FROM	то	1	DESCRIPTION	NO.	SULPH	EROLL	FOOTAGE	TOTAL	-	7	OZ-TON	OZ TON	
FOOT	TAGE	121.31: 121.31-127.58: 127.58: 127.58-128.11: 128.11-132.05: 132.05: 132.05-146.05: 146.05-146.22: 146.22-148.60: 148.60-164.95: 164.95-165.30: 165.30-203.61:	DESCRIPTION sheared flow contact. fine grained, angularly brecciated and fractured; vesicular above 124.10 meters. flow contact at 20° to the core axis. intensely silicified and strongly brecciated upper flow - resembles a quartz vein. strongly brecciated; locally weakly silicified flow. Breccia is foliated at 20-25° to the core axis. Fractures are filled with a mix of hematite and magnetite. Moderately magnetic below 130.30 m. flow contact at 45° to the core axis. fine grained, irregularly flow banded locally near upper contact at 40-60° to core. Becomes fine to medium grained at 143.80-145.00 meters. Abundant epidotized seams and breccia above 136.00 meters. Very weakly magnetic - moderate locally. flow contact - epidotized, locally silicified and brecciated. very fine grained to aphanitic, brecciated flow. fine to very fine grained, weakly to very weakly magnetic. Rock is fine grained in a core at 157.55- 160.35 meters. Lowest 3 m of flow is characterized by an increasing number of 1-5cm epidotized breccia seams and several 1-8cm white quartz veins. contact (?) - highly brecciated with abundant free quartz dumped in voids. brecciated and epidotized flow-top - minor weakly developed flow breccia grades down-hole to a fine to very fine grained, weakly tovery weakly magnetic massive flow. Abundant magnetite-bearing shears and breccia seams up to 1.5cm thickness (eg. 180.45 and 181.80 m). Below 191.00 m, texture is variable with narrow 1-3cm medium grained seams. Some flow foliation is noted locally at 40-45° (eg.194.10).	NO.	* SULPH IDES	SAMP		TOTAL	~	7	ASSAYS OZ:TON	OZ TON	
			narrow 1-3cm medium grained seams. Some flow foliation is noted locally at 40-45° (eg.194.10).										

NAME OF PROPERTY_____

Hennessy

HOLE NO. Mc. 84-69 SHEET NO. 4 OF 10

FOOT	AGE				SAMPL	Ē			ASSAYS		
FROM	то		NO.	" SULPH	FROM	FOOTAGE TO	TOTAL	 ۳.	02. TON	UZ TON	
203.61	217.61	SEDIMENTS									
217.61	500.56	Upper contact is designated at a silicified seam (uncertain). Dark green, fine to very fine grained, well foliated at top becoming very finely laminated below 209.40 meters. Highly siliceous clasts up to 4cm in size are rafted into lamination sets. Fragments are essentially quartz and may have originated from magmatic flow-tops. Greyish, highly silicified laminations are noted locally - similar to those in upper transition of main mineralized zone. These may have been carbonatized although no acid reaction is apparent now. The zone from 213.08 to 214.20 meters is strongly brecciated along the bedding laminations with white carbonate filling. The zone 214.20-216.85 m is well foliated, non-laminated. The sediments in the unit are generally non-magnetic. Minor soft sediment deformation is noted locally over 5-10cm thicknesses. <u>Bedding:</u> (measured with respect to the core axis) 209.50: 380 209.70: 550 210.25: 420 211.00: 550 212.00: 45-500 213.10: 500 214.20: 40-450 216.95: 500 217.55: 45-500 <u>BASALT</u> Pale grey-green to dark green, fine grained flows - mostly pillowed but with massive tops up to 27 meters thickness. Flow thickness ranges from 4 to 45 meters. The massive flow tops are often irregularly zoned with vesicular phases. Pillowed sections are well developed and are usually silicified. Interflow sediments are common in beds up to 50cm thickness. The lowermost flow is typical in that it is massive and strongly flow brecciated. The rocks in this section are non-magnetic as is usual in the hanging wall. 217.61219.75: weakly angularly brecciated with minor silicification. 219.75-220.30: strongly vesicular zone. 220.221.28: same as 217.61-219.75 meters. 221.28-221.90: vesicular, massive flow.	6354	1-2	210.00	210.58	0.58				

FORM 2

.

NAME OF PROPERTY____

HOLE NO. ____

Mc. 84-69

Hennessy

_____ SHEET NO. ____ 5 OF 10

FOOT	TAGE					SAMP	LĒ				ASSAYS	_	
FROM	то	1	DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE	TOTAL		~	OZ TON	UZ TON	
FROM		221.90-224.55: 224.55-238.40: 238.40-247.05: 247.05: 247.05-247.73: 247.73-265.05:	pale green, massive, locally brecciated, weakly developed pervasive silicification. strongly silicified pillowed flow - selvages are irregularly developed and brecciated. same appearance as above but no selvages - abundant narrow silicified breccia seams. silicified flow contact at 50° to the core axis. silicified and angularly brecciated flow-top. pale grey-green, silicified, very fine grained pillowed flow. Pillow centres are strongly epidotized. Selvages are chloritized and inter-pillow sediment is noted.	NO.	IDES	FROM	TO	TOTAL	78	7	02.70	OZ TON	
		265.05-265.57:	<u>SEDIMENTS</u> - purple hued, fine grained, non-laminated.										
		265.57-280.85:	same as 24/./3-265.05 meters - lowermost 15cm 15 debris clogged. A grit and clay filled fault plane is noted at 271.80 meters.										
		280.85: 280.85-284.71:	flow contact at 30° to the core axis. medium to light green, very fine grained, pillowed flow with abundant debris in lower 3-5cm.										
		284.71: 284.71-299.90:	flow contact at 30° to the core axis. olive green, very fine grained, with abundant epidotized and silicified breccia seams. Angular fragments up to 3cm gradually decrease in number and size with depth. Overall degree of brecciation also decreases with depth. The section below 294.20 m is weakly pillowed.										
		299.90-300.14:	<u>SEDIMENTS</u> - weakly to moderately laminated, and foliated at 55-60° to core. Moderately carbonatized along selected laminations with selective epidotization and silicification. Probably tuffaceous.										
		300.14-305.70:	medium to dark green, moderately to strongly silicified and brecciated massive flow.										
		305.70:	flow contact.										

NAME OF PROPERTY____

HOLE NO. __

Mc. 84-69

Hennessy

SHEET NO. 6 OF 10

FOOTAGE	DECONSTICN	T		SAMP	LE		I	- <u> </u>	ASSAYS		
FROM TO	DESCRIPTION	NO.	", SUL PH	FROM	FOOTAGE	TOTAL	<u> </u> .	-	OZ-TON	GZ TON	
	305.70-326.50: pale grey-green, very fine grained to aphanitic, strongly silicified pillowed flow. Pillows are poorly developed near basal contact.										
	326.50: 326.50-353.25: medium to dark green, fine grained massive flow - weakly silicified and brecciated above 327.90 m. Vesicular to a depth of 328.45 m grading from 5-10 to 0.5-1.0mm down-hole - TOPS UP. Grain size is variable due to internal mixing. The section from 333.50-353.25 meters is fine to medium grained wit' several medium grained phases. A very fine graine purple hued intrusive is noted at 347.98-348.27 m (non-magnetic).	m L •									
	353.25-353.46: diminishing grain size grading into underlying pillowed section.						Ì				
	353.46-370.13: pillowed - gradational into above. Pillows are we developed above 365.21 but few selvages noted below this point. Lower section has a more massive appearance and is relatively coarser grained. It also moderately to strongly magnetic locally. Gra size diminishes in lowermost 1.0 meter and basal 55cm is strongly brecciated.	1 s n									
	370.13: flow contact at 60-70° to the core axis. 370.13-186.62: medium to dark green, pillowed flow, abundant angular brecciation of interiors. Generally non-magnetic - trace locally.										
	386.62: flow contact at 60-65 ⁰ to the core axis. 386.62-390.40: strongly brecciated, epidotized and silicified flow-top.										
	390.40-394.90: medium grey-green, weakly brecciated locally, abundant narrow epidotized and silicified seams. Generally fine grained with minor medium grained phases up to 10cm in thickness. Grades into the underlying pillowed zone.										
	phases up to lucm in thickness. Grades into the underlying pillowed zone.										

FORM 2

NAME OF PROPERTY_

Hennessy

HOLE NO. _____ Mc. 84-69 _____ SHEET NO. _____ 7 OF 10

FOOT	AGE					SAMP	LE				ASSAYS		
FROM	то	1	DESCRIPTION	NO,	SULPH	EROM	FOOTAGE		1.	-	OZ TON	OZ TON	
FROM	TO	394.90-465.27: 465.27-465.80: 465.80-500.56:	<pre>medium green to pale grey-green, fine to very fine grained pillowed flow. Selvages are strongly epidotized and silicified. Interiors are moderately silicified. A zone of interflow sedimen (lapilli tuff), is noted at 413.80-413.97 meters. Angular to sub-rounded clasts up to 1cm are noted - varying lithologies. Probably separates two pulses of same magma. A possible silicified flow contact is noted at 457.30-457.40 meters although no variation in lithologies. Non-magnetic. <u>SEDIMENTS</u> - medium green, very fine grained to aphanitic, thinly laminated on a 0.1mm scale at 450 to the core (465.60 m). Lower contact is at 430 to core axis. dark green, aphanitic to very fine grained, angularly brecciated with mixed flow breccia locally. Angular breccia is flow-top variety - non-welded, homogeneous lithology, often interlocking. Flow breccia fragments are sub-rounded and up to 5cm in size, welded, and contains varying volcanic compositions. Flow breccia is not well developed as a zone unto itself flow is essentially non-brecciated below 477.00 m. Narrow mafic intrusives are noted at 479.08-479.18 and 486.12-491.25 meters. They are pinkish-green i colour (dioritic), are fine grained, non-magnetic and carry biotite. Well developed chills mark the contacts at 40-60° to the core axis. Volcanic rocks within 1-2m of the intrusives are weakly magnetic. The zone below 493.25 meters carries epidotized and silicified xenoliths of sediment. The basal flow below 499.50 meters is flow foliated The lower contact is uncertain.</pre>		IDES	FROM		TOTAL			92 TON	GZ TON	

NAME OF PROPERTY_____ HOLE NO. _____MC - 84-69

Hennessy

SHEET NO. 8 OF 10

FOO ⁻	FAGE	DESCRIPTION			SAMPL	-E				ASSAYS		
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	"7	24 •	OZ TON	UZ TON	
500.56	508.81	SEDIMENTS										
		Dark green, very fine grained and moderately chloritized. Bedding is not well developed near the top - possibly obscured by tight breccia development. Some selective carbonatization replaces selected laminations or sets of laminations locally. This highlights a moderate to well developed foliation due to the grey hue of carbonate. Carbonatization also expands into feathery patches which cross-cut the bedding foliation. Yellow-green, leucoxenitic specks are noted near the upper contact. Minor silicification of carbonatized laminations is observed near the lower contact as the amount of carbonatization increases. The zone carries some purplish hematite in association with grey carbonatized laminations and bands. Some parting surfaces are strongly hematized. The zone averages 1% finely disseminated pyrite and carries up to 2% locally. It is weakly magnetic throughout. Bedding Foliation: (measured with respect to the core axis) 502.00 m: 40-450 504.10 m: 60-650 506.50 m: 650	6356 6357 6358 6359 6360 6361 6362 6363	1 1-2 1 1 1 1 1 1	502.31 503.12 503.97 504.82 505.63 506.45 507.26 508.07	503.12 503.97 504.82 505.63 506.45 507.26 508.07 508.81	0.81 0.85 0.85 0.81 0.82 0.81 0.81 0.74			tr. tr. tr. tr. tr. tr. tr.		
508.81	526.35	MAIN MINERALIZED ZONE This zone is not well developed as reflected by its lack of thickness, lack of a main silicified zone and lack of pyrite mineralization. A zone of strong silicification at 509.41-509.75 represents the main silicified zone. The main mineralized zone is composed of essentially transitional-type alteration.										
508-81	526•35	TRANSITIONAL SILICIFIED SEDIMENTS Dark green, very fine grained to aphanitic with abundant pale grey, strongly carbonatized and variably silicified lamination sets and breccia seams. Near the upper contact, a few massively silicified breccia beds up to 15cm thickness are noted. The degree and amount of silicification increases down-hole, especially below 509.41 m. Silicification is generally breccia controlled and silicified rock										

M 2

NAME OF PROPERTY_

HOLE NO. _____Mc. 84-69

Hennessy

SHEET NO. 9 OF 10

FOOTAGE				SAMP	LE		Γ		ASSAYS		
FROM TO	DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE TO	TOTAL	~.	·	OZ TON	OZ TON	
	becomes purple-grey in colour below 510.65 meters - probably the result of hematization. The McKenna Fault is represented by a 0.5cm grit and clay filled plane at 650 to the core axis at 509.58 m. No distinct "Main Silicified Zone" is present although a zone of intense silicification is observed at 509.41-509.75 m. This zone carries 2-3% pyrite - the highest amount observed. Other zones of silicification are noted at 511.78-512.28 and 512.58-513.15 meters although they carry up to 20% relic chloritized rock. Brecciation is on a very fine scale - often 0.1-0.5mm. Previous carbonatization of breccia has been masked by later silicification. Barren 1-2mm quartz stringers often cut silicified breccia - dumping of excess silica. The amount of brecciation, and consequently silicification decreases with depth - markedly below 515.85 m. Between 513.15 and 515.85 meters, the widest silicified breccia seams are 3-5cm. Below this zone, the widest examples are 1cm in thickness although silicification is often quite strong. All silicified rock below 513.15 m is reactive to HCl whereas green, non-silicified rock is not. The zone below 515.85 meters is relatively well laminated. Rarely, fracture surfaces and very narrow halos are honey coloured - similar to highly pyritiferous zones in other holes. A minor increase in silicified breccia is noted at 518.90-519.10 and 519.35-519.65 meters. The zone is initially weakly to moderately magnetic above the McKenna Fault but is non-magnetic below this point. Bedding/Foliation: (measured against core axis) Foliation at 508.85 m: 550 " 515.20 m: 550 Laminations at 516.10 m: 60-650 " 526.30 m: 600 " 523.35 m: 50-550 " 526.30 m: 600	6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386	1 2-3 1-2 1-2 2 1-2 1 1 1 1 1 1 1 1 1 1 1 1 1	508.81 509.41 509.75 510.58 511.19 511.78 512.28 513.15 514.00 514.82 515.64 516.44 517.30 518.11 518.81 519.68 520.50 521.40 522.20 523.00 523.82 524.63 525.50	509.41 509.75 510.58 511.19 511.78 512.28 513.15 514.00 514.82 515.64 516.55 517.30 518.11 518.81 519.68 520.50 521.40 522.20 523.00 523.82 524.63 525.50 526.35	0.60 0.34 0.83 0.61 0.59 0.50 0.87 0.85 0.82 0.91 0.75 0.81 0.75 0.81 0.70 0.87 0.82 0.90 0.80 0.80 0.80 0.82 0.81 0.85			0.03 0.14 0.01 0.03 0.01 tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		

.

LANGRIDGES - TORONTO - 366-1168

FORM 2

NAME OF PROPERTY

HOLE NO. _____ Mc . 84-69

Hennessy

SHEET NO. 10 OF 10

F00'	TAGE	DESCRIPTION			SAMPI	_E				ASSAYS		
FROM	то		NO.	V, SULPH	FROM	FOOTAGE TO	TOTAL	~	۰.	OZ TON	UZ TON	
526.35	539.32	SEDIMENTS										
		Medium to dark green, very fine grained with selective grey carbonatization highlighting variably developed bedding laminations. The degree and amount of carbonatization decreases down-hole, particularly below 532.50 meters. Rare cream coloured sections of strongly silicified breccia are noted at 528.50-528.70 and 529.18- 529.36 meters. These zones average 3-4% pyrite. A shear zone is located at 530.19-530.30 m with slippage at 35-40° to the core axis. The rock is well laminated above 531.25 meters and locally below this point. Abundant yellow-green leucoxenitic specks are noted below 531.80 m. Fractures in the lowermost 1-2 meters are moderately hematized. Bedding Laminations: (measured with respect to the core axis) 530.00 m: 50° 532.00 m: 45° 538.10 m: 55°	6387 6388 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401	1 1 2-3 1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	526.35 527.10 527.86 528.50 529.36 530.19 531.12 532.00 532.86 533.75 534.67 535.55 536.42 537.20 538.05	527.10 527.86 528.50 529.36 530.19 531.12 532.00 532.86 533.75 534.67 535.55 536.42 537.20 538.05 538.89	0.75 0.76 0.64 0.86 0.83 0.93 0.88 0.86 0.89 0.92 0.88 0.87 0.78 0.85 0.84			tr. 0.06 0.01 0.09 tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		
539.32	551.08	BASALT Dark green, fine grained and weakly brecciated throughout. Interflow sediment is noted at 542.10-545.15 meters. The sediments are poorly bedded and carry abundant leucoxenitic specks - possibly derived from lava. The underlying flow is a lighter green colour. Minor weak carbonatization of lava is observed and weak silicification is noted near the base of the hole. The rocks are non-magnetic. Fracture surfaces in sediments and lavas are strongly hematized. No pillows are observed but the lower flow might be a massive top to a pillowed unit. 551.08 meters END OF HOLE CASING LEFT IN GROUND										

Diariond Drill Record

NAME OF	- PROP	ERTY CAM	IFLO_WEST_BLOCK	FOOTAGE	DIP AZI	митн	FOOTAGE	DIP AZ	имитн	HOLE
HOLE NO	·	1c - 84 - 70 L	ENGTH240.60 meters		50 [°]		182.88	-33%		ALC M
LOCATION LATITUDE ELEVATIC STARTED	N = 74 	-06 W de AZ AZ	EPARTURE <u>3+72 N</u> 21MUTH <u>360⁰ dip -50⁰</u> NISHED June 8, 1984	45.72 - 91.44 - 137.16 -	$\frac{44^{\circ}}{40^{\circ}}$ 36^{1}_{2}		240.60	-29 ¹ 2		LOGG
FOOT	AGE						SAMP	L. E.		1
FROM	то		DESCRIPTION		NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	
0	18.90	OVERBURDI	EN							
18.90 1	07.07	BASALT								
		Dark green, fir Although no flo	ne grained massive flow with rare p ow breccia is noted, minor angular '	illow development.	6402	1	54.37	55.26	0.89	
		often associate The flows are m	ad with flow tops. These zones are noderately magnetic becoming strong	often vesicular. ly magnetic	6403	1	57.30	58.25	0.95	
		locally. The down-hole. Sil	general degree of magnetism decrease Licification of moderate strength is	es slightly s noted locally	6404	1	58.99	59.89	0.90	
		over meter-scal lnm. No apprec	le intervals. Flows carry 1% pyrite stable degree of chloritization or e	e as blebs up to carbonatization is	6405	1	61.00	61.97	0.97	
		noted.	Fine entired Flat		6406	1	62.79	63.66	0.87	
		36.50 - 52.50:	fine grained flow. fine to medium grained flow becom grained at 49.90-52.05 meters. A angular brecciation at 39.85-40.08 zone of minimal displacement.	ing nearly medium narrow seam of 3 meters is a shear	6407	1-2	64.49	65.19	0.70	
		52.50 - 54.24: 54.24 - 65.19:	fine grained flow - probably basa <u>FELDSPAR PORPHYRY</u> : green to pinkis grained to aphanitic matrix surrou pale green euhedral feldspar pheno in size. Feldspars are fractured zoned. Rock carries 1% pyrite as and as a fine dissemination. Weak magnetism is noted. Narrow pinkis carry elevated pyrite - up to 2% 10% pyrite is noted in seams paral	l flow. sh-green, very fine ands 10% white to perysts up to lem and occasionally cubes up to lmm a to moderate sh breccia seams locally. From 5 to lel to the lower						

NO. MC-84-70 SHEET NO. 1 OF 5

ARKS BQ Core

Split for assay

Casing pulled

ASSAYS

0.01

0.01

0.03

tr.

tr.

tr.

OZ/TON OZ/TON

GED BY A.W. Workman

.

.

LIMITED - TORONTO - 366-1168

LANGRIDG

NAME OF PROPERTY_____

HOLE NO. Mc.84-70

Camflo West Block

_____ SHEET NO. ____ 2 OF 5

FOOT	TAGE					SAMPL	E				ASSAYS		<u></u>
FROM	то		DESCRIPTION	NO.	SULPH	FROM	FOOTAGE TO	TOTAL	"",	67 .	OZ/TON	OZ, TON	
			contact below 65.10 meters. The lowermost 30cm is	6408	1-3	107.28	108.21	0.93			tr.		
			very fine grained, non-porphyritic and the contact	6409	1-3	108.21	109.00	0.79			tr.		
			is at 55° to the core axis.	6410	1-2	109.00	109.30	0.30			tr.	1	
		65.19 - 65.90:	fine to very fine grained massive flow.	6411	1-2	109.30	110.20	0.90			tr.		
		65.90:	flow contact.										
		65.90 - 66.35:	vesicular, very fine grained flow top.	6412	1-2	111.50	112.50	1.00			tr.		
		66.35 - 67.35:	weakly to moderately developed angular flow top										
			breccia.	6413	1-2	113.74	114.70	0.96			tr.		
		67.35 - 78.66:	fine to very fine grained massive flow; moderately				116 70						
			magnetic becomes less magnetic with depth. Carries	6414	1-2	115./0	116.70	1.00			tr.		
		70 66 70 70	It pyrite as blebs up to zmm.	GATE	1 2	117 00	110 02	1 02			+ r		
		/8.66 - /8./0:	quartz filled and epidotized flow contact.	6415	1-2	117.80	118.82	1.02			LI.		
		/8./0 - 89.32:	very fine grained to aphanitic, very weakly	6416	1_2	120 25	121 25	1 00			tr		
		90 22 - 90 75.	cilicified and broccisted flow contact: 3-58 purite	0410	1-2	120.25	121.23	1.00					
		09.32 - 09.13:	locally	6417	1-2	122.40	123.40	1.00			tr.		
	}	89.75 - 93.40:	fine to very fine grained, moderately magnetic.	0117			120110	2000					
			weakly to moderately brecciated.	6418	1-2	124.55	125.51	0.96			0.01		
		93.40 - 95.25:	pillowed flow - abundant epidotized and silicified										
			selvages, very weakly magnetic locally, carries up	6419	1-2	126.61	127.62	1.01			0.01		
			to 10% pyrite in selvages.										
		95.25 -106.25:	fine grained, strongly epidotized breccia seams up	6420	1-2	128.76	129.73	0.97			0.01		
			to 10cm. The lowermost 50cm is brecciated on a lmm										
			scale; weakly magnetic locally.	6421	1-2	131.00	132.00	1.00			0.01		
		106.25:	flow contact at 50° to the core axis.								. 1		
		106.25-107.06:	medium to dark green, aphanitic and very finely	6422	1-2	133.50	134.47	0.97			tr.		
			brecciated with angular fragments up to 3mm -	C 400		125 60	100 00	0.05			*		
1			shatter-type brecciation - no pull apart or rotation	6423	1-2	135.60	130.55	0.95					
			- rare matrix. A 1-2mm seam of nyaloclastite is	6121	1	137 05	130 01	1.06			tr		
168			noted at the upper contact.	0424	-	137.95	139.01	1.00					
				6425	1	140.35	141.34	0.99			tr.		
ň				V ILJ	-	1.0.00		0000			j		
2				6426	1	142.65	143.65	1.00			tr.		
2 2 2													
2													
1 20													
HON													
											[
1	1	t		I	I	l I	1 1		. 1	1	1	1	

NAME OF PROPERTY_____ Camflo West Block

HOLE NO. ______MC.84-70 ______SHEET NO. ______3 OF 5

FOOT	AGE	DESCRIPTION	SAMPLE NO. "SULPH FOOTAGE IDES FROM TO TOTAL						ASSAYS			
FROM	то		NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	67	÷.	OZ, TON	OZITON	
107.07	240.60	SEDIMENTS	6427 6428	1 1-2	144.74	145.73 148.20	0.99 0.98			tr. tr.		
		Dark charcoal grey, very fine grained to aphanitic, well laminated sections alternate with pale grey, fine grained and non-laminated massive beds. Dark coloured sections and bands tend to be	6429	1-2	148.95	149.75	0.80			tr.		
		argillitic and are well parted. Pyrite is often found as narrow seams along the bedding laminations, and as clasts growing radially	6430	1	150.48	151.25	0.77			tr.		
		away from fractures (diagenetic pyrite). Laminations frequently include paler coloured and slightly coarser grained lensitic bands	6431	1–2	152.06	153.11	1.05			tr.		
		of 1-3mm thickness and several cm in length. These lenses are non-carbonate. Similar lenses of dark grey, very fine grained	6432	1	154.10	155.10	1.00			tr.		
		sediment are found in the pale grey massive beds. These beds have no bedding laminations and consequently no preferred parting.	6433	1	156.90	157.89	0.99			tr.		
		Pyrite is found as a fine dissemination. Overall pyrite content is 1-2%. Narrow (1-3mm) cross-cutting quartz stringers carry a trace	6434	1-2	158.69	159.70	1.01			tr.		
		of chalcopyrite and up to 2% pyrhotite. Rare platelets of pyrhotite are observed on parting surfaces. The rock is not	6435	1-2	160.84	161.85	1.01			tr.		
		cemented. No carbonatization was observed. With depth, it becomes	6430	1-2	165.00	164.18	1.04			tr		
		apparent that the change from dark grey, very fine grained fock to pale grey fine grained rock represents graded bedding. Bedding	6437	1-2	169.33	169 79	0.93			tr		
		non-magnetic. Some angularity of clasts in relatively coarser	6439	1-2	168.79	169.52	0.40			tr.		
		107.07-122.00: dominantly dark charcoal grey, very fine grained to aphanitic, well laminated, well parted parallel to	6440	1–2	170.40	171.38	0.98			tr.		
		bedding: 50° at 107.90 and 112.55 meters 45-50° at 115.40 and 121.30 meters.	6441	1-3	172.45	173.49	1.04			tr.		
		122.00-146.15: dominantly pale to medium grey, fine grained, poorly laminated except in dark grey, very fine grained	6442	1-3	174.50	175.50	1.00			tr.		
		intercalations. <u>Bedding</u> : $45-50^{\circ}$ at 125.75 meters $40-45^{\circ}$ at 130.15 meters $60-65^{\circ}$ at 142.10 meters	6443	1-3	1/6.59	1//•61	1.02			tr.		
		65 ⁰ at 146.00 meters										
							-					

FORM 2

•

Scale 1:2500

FORM 2

NAME OF PROPERTY____

Camflo West Block

HOLE NO. _____ Mc.84-70 _____ SHEET NO. ____ 4 OF 5

FOO	TAGE		DESCRIPTION	[SAMPL	-E				ASSAYS		
FROM	то	1	DESCRIPTION	NO.	% SULPH		FOOTAGE		~	~	OZ-TON	OZ TON	
		<u> </u>		ŀ	IDES	FROM	TO	TOTAL	ł – –	<u> </u>			
		146.15-152.80:	same as 107.07-122.00 meters. Clay and grit filled	6444	1-3	178.70	179.73	1.03			tr.		1
			shear planes are noted at 70° to core axis at						ł				
			150.10-150.15 and at 151.40-151.45 meters.	6445	1-2	180.85	181.85	1.00			tr.		ļ
			Bedding: 50-55° at 151.95 meters						1				
		152.80-155.96:	medium to pale grey to greenish-grey, massive,	6446	1-2	182.89	183.95	1.06			tr.	1	1
			generally non-laminated section. A minor increase										
			in grain size down-section is noted. TOPS UP.	6447	1–2	185.05	186.04	0.99			tr.		
		155.96-158.45:	dark to medium grey, very fine grained to aphanitic,						ł				
			well laminated and parted locally. A narrow	6448	1	187.20	188.21	1.01			tr.		ļ
			slickensided fault plane is noted at approximately										
			158.00 meters in a section of ground core.	6449	23	189.35	190.48	1.13			tr.		
		158.45-187.90:	similar to 152.80-155.96 meters. Dark green, very	6450	1-2	190.48	191.41	0.93			0.01		Ì
			fine grained tops grade down-section to fine grained										
	2		bases with clasts up to 1.5mm.	6451	1-2	193.24	194.05	0.81			0.01		
			Eg. 168.33-168.79: well parted fine grained top.	6452	2–3	194.05	194.95	0.90			0.01		
			168.79-169.52: relatively coarser grained,										
			conchoidal fracture.	6453	2-3	196.22	197.22	1.00			tr.		
			Below 173.00 meters, graded beds are approximately										
			30cm in thickness. A slight reddish-green hue is	6454	2-3	198.28	199.28	1.00			tr.		
			noted at 1/3.95-1/5.05 meters. White bull quartz	CAFE		000 47	201 40	0.05					
			veins up to 1cm make up 1% of section - randomly	6455	2-3	200.47	201.42	0.95			tr.		
			oriented - diagenetic.	CAFC		202 50	202 61	1 05			tr		
			$\frac{\text{Bedding: } 25-30^{\circ} \text{ at } 165.00 \text{ meters}}{600 \text{ at } 172.45 \text{ meters}}$	6456	1-3	202.50	203.61	1.05			LI.		
			1/2.45 meters	6157	1 2	201 70	205 70	1 00			+		
			Below 170.00-175.00 meters, liner grained tops are	0457	1-2	204.70	205.70	1.00					
			arcillitia debria	6150	1_2	206 70	207 77	1 07			tr.		
		197 00-100 /8.	dark groen and fine grained with abundant enidetized	0450	1-2	200.70	201.11	1.07					
		10/.90-190.40:	halos surrounding fractures	6150	1_2	208 92	209 90	0 98			tr.		
		190 48-194 05+	INTRUSIVE(2) - dark green fine grained with lum		1-2	200.72	205.50	0.90					
		1)0.40-1)4.05.	high the standard in the standard with trace	6460	1-2	210.90	211.92	1.02			tr.		
			locally. The lower contact is highly sheared over		+ 6	210.50	211.072	1.02					
			5cm.										

NAME OF PROPERTY Camflo West Block

HOLE NO. _____MC.84-70 _____SHEET NO. _____5 OF 5

FOO	TAGE					SAMPI	E				ASSAYS		
FROM	то	1	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE	TOTAL	ć,	7.	OZ TON	OZTON	
		194.05-201.80:	medium to dark greenish-grey, fine to very fine	6461	1-2	213.00	214.05	1.05			tr.		
			grained, very weakly laminated locally (eg. 55° at 198.20 meters). The rock is moderately brecciated	6462	1-2	215.15	216.15	1.00			tr.		
			and silicified locally in 10-15cm sections (eg. 201.10-201.25 meters) - associated with very fine grained tops of beds - probably diagenetic in	6463	1-2	217.15	218.15	1.00			tr.		
		201.80-210.10.	origin.	6464	1-2	219.40	220.40	1.00			tr.		
		201100 210110	tops grade downwards to fine grained greyish bases. The beds are well defined along sharp depositional	6465	1-2	221.45	222.47	1.02			tr.		
			boundaries. Below 205.00 meters, beds are slightly thicker and a slight increase in maximum grain size	6466	1-2	223.55	224.56	1.01			tr.		
			is noted (0.5mm). Bedding at 203.50 meters is at $45-50^{\circ}$ to the core axis.	6467	1-2	225.61	226.61	1.00			tr.		
		210.10-228.00:	average bed thickness continues to increase ranging from 45cm to 1.5 meters. Clasts up to 1.5mm are	6468	1-2	227.70	228.80	1.10			tr.		
			noted at the bases of beds. They are a mixture of very angular and sub-rounded crystal and lithic	6469	1-2	229.90	231.00	1.10			tr.		
			material. Occasional biotites are noted up to 1mm in size - very immature. Rock has a purple hue	6470	1-2	232.10	233.10	1.00			tr.		
			locally - associated with relatively coarser grained fractions.	6471	1-2	234.20	235.21	1.01			tr.		
			Bedding: 40 ⁰ at 211.50 meters 35 ⁰ at 216.15 meters	6472	1-2	236.31	237.30	0.99			tr.		
		228.00-240.60:	similar to overlying section. Beds are thicker,	6473	1-2	238.43	239.40	0.97			tr.		
			ranging up to 2.0-3.5 meters. Maximum grain size is 1.5mm. Tops are very fine grained, and beds are not overturned. Bedding is often off-set by microfaults - up to 2cm displacement noted. Some bedding laminations are noted in the lowermost 20cm of the hole - $60-65^{\circ}$ at 231.61; 50-55° at 236.71; 50°	6474	1-2	239.40	240.44	1.04			tr.		
		240.60 meters	at 240.07 meters.										
		240.00 Meters	CASING PULLED										

FORM 2

AE OF	PROP	ERTY Hennessy	AGE	DIP	AZIMU	итн	FOOTAGE	DIP	AZIMUTH	HOLE	NO	84-71 s	HEET NO.	1
E NO	. <u> </u>	Ic. 84-71 LENGTH115.21 meters		150	-	#				REM	ARKS	Casing	pulled	
AT10	N	<u> </u>	20	-43 -43										
	<u> </u>	$\frac{+00 \text{ E}}{344^{\circ}} = -45^{\circ} \qquad 106.$	10	-40 [°]										
RTED	Jun	e 11, 1984 June 15, 1984								LOGG	ED BY	Gilles	Tousign	ar
00т	AGE						5 A M F	νιε				ASSA	YS	
ROM	то	DESCRIPTION		N N	0. Isi			FOOTAC	SE		72			Г
	21 05	CACINC				IDES	FROM	то	TOTAL		70		02/100	\vdash
	21.95	CASING												ĺ
.95	58.06	MAIN MINERALIZED ZONE												
Í		The hole reached bedrock in the Main Silicified Zone, and from	tha	t						l				
		point the usual sequence is found, ie. Main Silicified Zone at	<u>م</u> د .											
]		and by unsilicified sediments and volcanics.	00;								1			
0.5														
.95	29.93	MAIN SILICIFIED ZONE					1							
		Dark grey to greenish-grey, massive, well silicified, brecciate	d;											ĺ
		some honey and reddish coloured zones; 2-5% pyrite - fairly eve	nly	'										
		21.95 - 22.49: light grey to honey coloured, up to 10% pyrite,	wi	th 64	75	10	21.95	22.4	9 0.54			0.11		ļ
		almost massive area. Fractured. 22-49 - 23-10: fractured parallel to the core axis: darker gre	v	64	76	3 5	22.49	23.1	$0 0_{\bullet}61$ 7 0_67					
		with 15% honey coloured spots; 3% pyrite.	5	64	78	2	23.77	24.6	3 0.86			0.01		
		23.10 - 23.77: dark grey with some honey to purplish zones; 5%	•	64	79 80	2	24.63	25.5	4 0.91			tr.]
		23.77 - 26.33: dark grey, brecciated with a few paler zones, 2	- 3%	64	81	5	26.33	26.9	1 0.58			0.05		1
		pyrite; well laminated at 45° to core axis;		64	82	3	26.91	27.5	5 0.64			0.01		l
		26.33 - 26.91: lighter grey, with some honey coloured zones;		64	84	3	28.47	29.4	1 0.94			0.01		
		contains over 5% pyrite - very fine, disseminat	eđ	64	85	2	29.41	29.9	3 0.52			tr.		
		26.91 - 27.55: fairly massive, dark grey, 3% very finely					1							Į
		disseminated pyrite.												
		2/.31: White, cherty tragment?					[1

NAME OF PROPERTY_____

Hennessy

HOLE NO. Mc. 84-71 SHEET NO. 2 OF 4

FOO	TAGÉ			and a second second second second second second second second second second second second second second second	SAMPL	-E		Τ		ASSAYS		
FROM	то	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE TO	TOTAL		7.	OZ TON	OZ TON	
20.02	59.06	 27.55 - 28.47: more or less laminated; 2% fine disseminated pyrite. Pinkish and cherty material from 27.55-27.74 m. 28.47 - 29.41: dark grey, fairly well laminated at 50° to the core axis; 3% pyrite. 29.41 - 29.93: greenish-grey with a purplish tint, and 4cm of honey coloured material at 29.90 meters; 2% pyrite. 										
	58.00	The silicification is gradually decreasing; the rock is a series of alternating silicified and unsilicified zones of varying widths; the silicified zones being from dark grey to purplish and the unsilicified zones are dark green. More than 80% of the rock is silicified at the beginning of the zone to less than 20% at the end of the zone. 29.93 - 36.73: 70-80% silicified, dark grey; 20% well laminated, unsilicified dark green sediments, carbonated. Laminated at 50-60° to the core axis. 29.93 - 30.78: 90% silicified, medium grey, with purplish to creamy tint; 1-2% very finely disseminated pyrite. 30.78 - 31.40: fractured, 50% silicified dark to greyish-green, with few light grey to creamy coloured areas (due to sericite alteration) and purplish tint; 2% pyrite. 31.40 - 31.91: 50% silicified, well laminated, dark green to purplish-grey; 1-2% pyrite. 32.77 - 33.53: 70% silicified, purplish zones. 30% dark green, unsilicified zones; 3% pyrite. 33.53 - 36.27: 60-65% silicified, dark grey to purplish; 1-2% pyrite. 36.73 - 44.81: 10% silicified zones, composed mostly of light "vein-like" beds in dark green sediments. 36.73 - 44.81: 10% silicified and carbonated, as thin, white beds and quartz-carbonate veinlets; massive, well laminated at 50-60° to core axis; tr-1% pyrite.	6486 6487 6488 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503	2 2 1-2 1-2 3 1 1 1 1 1 1 1 1 1 1	29.93 30.78 31.40 31.91 32.77 33.53 34.44 35.33 36.27 36.73 37.64 38.40 39.32 40.23 41.15 42.06 42.98 43.89	30.78 31.40 31.91 32.77 33.53 34.44 35.33 36.27 36.73 37.64 38.40 39.32 40.23 41.15 42.06 42.98 43.89 44.81	0.85 0.62 0.51 0.86 0.76 0.91 0.89 0.94 0.94 0.91 0.92 0.91 0.92 0.91 0.92 0.91 0.92			tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		

FORM 2

DRM 2

NAME OF PROPERTY

Hennessy

HOLE NO. Mc. 84-71 SHEET NO. 3 OF 4

FOOT	FAGE	DESCRIPTION	SAMPLE NO. SULPH FOOTA IDES FROM TO			-E				ASSAYS		
FROM	то		NO.	", SUL PH	FROM	FOOTAGE TO	TOTAL	·~,	۳,	0Z-TON	OZ TON	
58.06	61.72	 44.81 - 47.79: 40% silicified, looks more like the typical transition zone than previous section. Alternating dark grey, silicified sediments and dark green unsilicified sediments. 2-3% pyrite. It is possibly the beginning of another silicified zone. 46.63-47.46: 5% pyrite - coarse, disseminated. 70% silicified. 47.79 - 58.06: light to dark green, 10-20% quartz-carbonate veining, slightly silicified with purplish to pinkish thin beds?; about 50° to the core axis, well laminated; local pyrite concentration up to 5% but 1-2% average. Very uniform. 56.88-57.30: 5% pyrite. 58.06: arbitrary contact. 	6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519	2-3 2-3 5 1-2 1-2 1-2 1-2 1-2 1-2 1 1 5	44.81 45.72 46.63 47.46 47.79 48.77 49.77 50.78 51.82 52.82 53.83 54.86 55.87 56.88 57.30 58.06	45.72 46.63 47.46 47.79 48.77 49.77 50.78 51.82 52.82 53.83 54.86 55.87 56.88 57.30 58.06 59.01	0.91 0.91 0.83 0.33 0.98 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.0			0.03 0.01 0.01 tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		
C1 70	62 67	10-15% quartz-carbonate veinlets in medium green, poorly laminated sediments.	6520 6521 6522		59.01 60.05 60.96	60.05 60.96 61.92	1.04 0.91 0.96			tr. tr. tr.		
61.72	63.67	Dark red, massive, brecciated, very few phenocrysts and some carbonate veinlets, but less than adjoining sediments. Trace pyrite. 62.36 - 62.82: dark green sediments.	6523 6524 6525		61.92 62.36 62.82	62.36 62.82 63.67	0.44 0.46 0.85			tr. 0.02 0.01		
63.67	91.00	SEDIMENTS Medium green to dark green, medium to fine grained, tuffaceous, more or less well laminated. 15% carbonate veinlets at 60° to the core axis down to 74.85 meters; and 10% down to 87.78 meters. Trace to 1% pyrite. 67.97 - 68.28: quartz vein, 4% pyrite. 74.52 - 87.78: slightly lighter green, poorly laminated at 60° to core axis; 5-10% carbonate veining; trace pyrite.	6526 6527 6528 6529 6530 6531 6532 6533 6534	1 1 1 4 tr 1	63.67 64.68 65.71 66.75 67.36 67.97 68.28 69.28 70.29	64.68 65.71 66.75 67.36 67.97 68.28 69.28 70.29 71.32	1.01 1.03 1.04 0.61 0.61 0.31 1.00 1.01 1.03			0.06 0.01 0.01 tr. tr. tr. tr. tr. tr.		

NAME OF PROPERTY_____

Hennessy

HOLE NO. _____ MC. 84-71 _____ SHEET NO. ____ 4 OF 4

FOO	TAGE	DESCRIPTION	SAMPLE						ASSAYS			
FROM	to		NO.	SULPH	FROM	FOOTAGE TO	TOTAL	7.	۳.	OZ TON	OZ TON	
91.00	106.07	<u>VOLCANICS</u> Intercalated pillows, flows and tuffs, sheared and laminated; trace pyrite. Contacts are not well defined.	6535 6536 6537	1 tr 1	71.32 72.33 73.33	72.33 73.33 74.52	1.01 1.00 1.19			tr. tr. tr.		
106.07	115.21	BASALTS Medium to dark green, fine to medium grained, at center of flow, massive, weakly carbonated.	6539 6540 6541		79.25 82.30 85.34	80.25 83.30 86.35	1.00 1.00 1.01			0.03 0.01 0.01 0.01		
		115.21 meters END OF HOLE CASING PULLED										
LANGHUGES - ICHUNIC - 300-1100												

			[I	1 1	—		HOLE	NO. NO.	<u>34-72</u> st	EET NO.	<u>1 OF 6</u>
NAME O	F PROP	ERTY Lost Treasure	FOOTAGE	DIP	AZIMUTH	FOOTAGE		ZIMUTH	REMA	RKS	Casing	oulled	
LOCATIO	0. <u> </u>		0	-50 ⁰									
LATITUD	E]	.+00 E DEPARTURE 0+75 S	45.00	-44									
ELEVATI	ON	AZIMUTH3440 DIP500	91.00	$-40\frac{5}{2}$								n	
STARTE	ο <u>Jι</u>	ine 15, 1984 FINISHED June 21, 1984			L	1f	L.		LOGGE	0 BY	JILLES	lousigna	ant
FOO	TAGE		<u>,</u>			SAM	PLE			ļ	SSA'	15	
FROM	то	DESCRIPTION			IO. SULP	FROM	FOOTAG	TOTAL	26	%	OZ/TON	OZ/TON	
0	31.70	CASING						1					
31.70	53.04	INTRUSIVE(?)											
F2 04	EQ 22	Coarse grained, phenocrysts up to 3mm in diameter, dark of 10-15% epidote - possibly diorite or center of flow(?) W fractured and broken core - ground and lost coreless than 30% of the core is gravel. Diabase texture noted in plac 35.97 - 37.34: rusted; 0.8 meters ground core. 39.01 - 40.84: rusted, very heavily fractured. 45.11 - 47.85: 1 meter ground core. 49.38 - 50.60: rusted, very heavily fractured. 51.20 - 53.04: very heavily broken core.	reen, 'ery heav 10% and :es.	ly									
53•04	58.22	<u>VOLLANICS</u> Probably andesite; dark green, heavily brecciated, possib zone. Aphanitic, hard, some hematite staining in fractur	ly fault es∙										
LANGRID LIMITED - TORONTO - 366-28 - 22 - 22 - 22 - 22 - 22 - 22 - 22	67.64	<u>FLOW BRECCIA</u> Medium to dark green, very fine grained fragments, 2-3% of stringers. The fragments are up to 2cm in diameter - pos pillows. Andesite(?) 60.98: more carbonated, 5% carbonate veinlets.	arbonate sibly fro	m									

0RM 2

NAME OF PROPERTY_____Lost Treasure

HOLE NO. ______ MC . 84-72 _____ SHEET NO.__ 2 OF 6

FOOT	AGE	DESCRIPTION	SAMPLE						ASSAYS	
FROM	то		NO.	", SULPH	FROM	FOOTAGE TO	TOTAL	··. ·	OZ. TON	OZ TON
67.64	72.48	BASALT								
		Medium green, 10% quartz-carbonate veinlets, massive, few breccia zones, carbonated.								
72.48	74.16	SEDIMENTS	6542	1	72 48	73 40	0 92		0.01	
		Dark green, poorly laminated at 60-65 ⁰ to the core axis, fine grained, trace to 1% pyrite.	6543		73.40	74.16	0.76		0.01	
74.16	75.29	UPPER TRANSITION ZONE								
		Medium to purplish green, fairly well laminated, 50-60% silicified, 20% quartz veining with pale brown to reddish material, 2-3% very fine pyrite. 74.16 - 74.71: 40% silicified, dark, brownish to purplish-green, 2-3% pyrite, 5% honey coloured material associated with quartz veins (20° to core axis). 74.71 - 75.29: 70% silicified, dark green to honey coloured with some purplish tint, weakly brecciated. 75.29: Clay Fault	6544 6545	33	74.16 74.71	74.71 75.29	0.55 0.58		0.02 tr.	
75.29	84.98	MAIN SILICIFIED ZONE Dark to purplish-grey, fairly well laminated at 60-65° to the core axis. Silicified, massive, highly carbonated, brecciated - not typical of this zone. Contact at 84.98 meters is more or less arbitrary - not well defined. 75.29 - 75.90: dark grey to greenish, 5% pyrite. 75.90 - 76.75: lighter grey, honey tint, up to 10% very finely disseminated pyrite. 76.75 - 77.57: dark grey, weakly laminated at 60-65° to core axis, some honey tinted sections. 77.57 - 78.33: lighter grey, well laminated, weakly brecciated, 3 quartz-carbonate veinlets at 45° to core axis, sub-parallel to laminations.	6546 6547 6548 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559	5 10 3 4 10 5 5 3 3 7 3 3 7 3 3	75.29 75.90 76.75 77.57 78.33 78.82 79.25 80.07 80.71 81.31 82.08 82.72 83.52 84.22	75.90 76.75 77.57 78.33 78.82 79.25 80.07 80.71 81.31 82.08 82.72 83.52 84.22 84.22 84.98	0.61 0.85 0.82 0.76 0.49 0.43 0.82 0.64 0.60 0.77 0.64 0.80 0.70 0.76		tr. 0.03 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 tr. tr. tr.	

NAME OF PROPERTY Lost Treasure

HOLE NO. Mc. 84-72 SHEET NO. 3 OF 6

FOOTAGE	DESCRIPTION	SAMPLE					ASSAYS				
FROM TO		NO.	" SULPH	FROM	FOOTAGE	TOTAL	•	-	OZ TON	OZ TON	
84.98 146.82	 78.33 - 78.82: dark, greenish-grey, 3-4% fine pyrite. 78.82 - 79.25: dark grey, honey to white tint, up to 10% finely disseminated pyrite. 79.25 - 80.07: lighter grey, fairly well laminated, greenish beds, 5% pyrite. 80.07 - 80.71: greyish-green with pinkish to honey tints, 5% pyrite. 80.71 - 82.08: lighter greenish-grey, 95% silicified, 3-4% pyrite. 82.72: lighter grey, massive, 3% pyrite. 82.72: 83.52: medium to dark grey, some honey coloured zones, up to 7% pyrite. 83.52 - 84.22: medium grey to greenish-grey, 3% pyrite. 84.22 - 84.98: dark to medium greenish-grey, 3% pyrite. 84.22 - 84.98: dark to medium greenish-grey, 3% pyrite. 10WER TRANSITION ZONE No sharp contact with silicified zone; the degree of silicified period. The pyrite content varies accordingly. The zone is made of silicified, some times cherty, rock horizons alternating with unsilicified beds. In some areas, quartz-carbonate veinlets also add to the silica content. 85.59 - 86.47: light, honey to pinkish-grey, 95% silicified, some white cherty beds, 5% pyrite. 87.23 - 87.97: 85% silicified, greenish-grey, poorly laminated, 2% disseminated pyrite. 87.97 - 90.43: dark, greyish-green, 70% silicified, some lighter, pinkish to honey coloured sections, 1-2% pyrite. 90.43 - 92.08: 50% silicified, medium to pinkish-green, well laminated at 55° to the core axis, 1% pyrite. The silicified sections are pinkish to purplish. 	6560 6561 6562 6563 6564 6565 6566 6567 6568	5 5 5 2 2 2 1 2 1	84.88 85.59 86.47 87.23 87.97 88.82 89.49 90.43 91.14	**************************************	0.61 0.88 0.76 0.74 0.85 0.67 0.94 0.71 0.94			tr. 0.10 0.03 0.01 0.01 0.02 0.01 0.01		
NAME OF PROPERTY Lost Treasure

HOLE NO. MC . 84-72 SHEET NO. 4 OF 6

FOOTAG	9E		DESCRIPTION			SAMPL	_E				ASSAYS		
FROM	то			NO.	T SULPH	FROM	FOOTAGE TO	TOTAL	74	~.	OZ TON	UZ TON	
FOOTAG	TO	92.08 - 92.96: 92.96 - 94.88: 94.88 - 98.82: 98.82 - 99.12: 99.12 -100.86: 100.86-101.74: 101.74-102.78: 102.78-103.63: 103.63-107.17: 107.17-109.73: 109.73-110.28: 110.28-110.88: 110.88-111.83: 111.83-112.59: 112.59-115.88:	DESCRIPTION medium to dark green, 40% silicified, pinkish tint. 60% silicified, dark to pinkish-green, poorly laminated, 2-3% pyrite. 30% silicified, medium to dark green, with pinkish quartz-carbonate veinlets and silicified beds, poorly laminated, trace to 1% pyrite. dark pink, fine grained syenitic dyke, massive, not mineralized, almost parallel to bedding. 30% silicified, poorly laminated, medium to dark green, pinkish quartz-carbonate veinlets. 40% silicified, dark medium green, pinkish horizons, 1% pyrite. 25% silicified, poorly laminated, pinkish quartz- carbonate veinlets, trace pyrite. pinkish-green, 60% silicified, brecciated, 1-2% pyrite. pinkish-green, 40% silicified, brecciated, poorly laminated, 1% pyrite, 10% pinkish quartz-carbonate veinlets. 20% silicified, medium pinkish-green, poorly laminated. 30% silicified, pinkish to greenish, poorly laminated. 30% silicified, pinkish, fairly well laminated at 600 to the core axis, possibly some cherty beds. 40% silicified, poorly laminated, pinkish-green, trace pyrite. 60% silicified, poorly laminated, dark pinkish-green, frew quartz-carbonate veinlets and cherty beds.	No. 6569 6570 6571 6572 6573 6574 6575 6576 6577 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6596 6597 6598 6596 6597 6598 6597 6598 6597	Ta SULPH IDES 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	SAMPL 92.08 92.96 93.88 94.88 95.74 96.93 97.90 98.82 99.12 99.70 100.86 101.74 102.78 103.63 104.58 105.37 106.22 107.17 108.11 108.81 109.73 110.28 110.86 111.85 112.59 113.32 114.30 115.21 115.88 116.83 117.74	FOOTAGE FOOTAGE 92.96 93.88 94.88 95.74 96.93 97.90 98.82 99.12 99.70 100.86 101.74 102.78 103.63 104.58 105.37 106.22 107.17 108.11 108.81 109.73 110.28 110.86 111.85 112.59 113.32 114.30 115.21 115.88 116.83 117.74 118.66	TOTAL 0.88 0.92 1.00 0.86 1.19 0.97 0.92 0.30 0.58 1.16 0.88 1.04 0.85 0.95 0.79 0.85 0.95 0.95 0.95 0.95 0.95 0.92 0.55 0.92 0.55 0.92 0.55 0.92 0.55 0.92 0.92 0.55 0.92 0.92 0.95 0.92 0.95 0.95 0.92 0.95 0.95 0.92 0.95 0.95 0.95 0.92 0.95 0.95 0.95 0.95 0.92 0.95 0.95 0.95 0.95 0.92 0.95 0.95 0.95 0.95 0.92 0.95 0.95 0.95 0.95 0.92 0.95 0.95 0.95 0.95 0.95 0.92 0.95 0.95 0.95 0.95 0.92 0.95 0.95 0.95 0.95 0.92 0.95 0.95 0.95 0.92 0.95 0.95 0.95 0.95 0.95 0.92 0.95 0.98 0.99 0.92 0.95 0.99 0.92 0.95 0.99	72	~	ASSAYS 02 TOW 0.01 0.02 tr. tr. tr. tr. tr. tr. tr. tr.	OZ TON	
		115.88-116.83: 116.83-118.66:	<pre>green, few quartz-carbonate veinlets and cherty beds. 114.30-115.88: some honey coloured zones, 3%</pre>	6598 6599	2 2	116.83	117 . 74 118 . 66	0.91 0.92			0.01		

366-1168 1 TORONTO .1 LANGRID

_

FORM 2

NAME OF PROPERTY

HOLE NO. Mc. 84-72 SHEET NO. 5 OF 6

FOOT	AGE		DESCRIPTION	SAMF			E				ASSAYS		
OM	то	1		NO.	SULPH	FROM	FOOTAGE TO	TOTAL	77 10	~,	OZ TON	UZ TON	
		118.66-120.45:	75% silicified, lighter grey, purplish to honey coloured, brecciated - lower zone? 3% very finely	6600 6601	3	118.66 119.54	119.54 120.45	0.88 0.91			0.01		
		120.15-121.07:	40% silicified, dark pinkish-green, purplish tint. pinkish to purplish-green, some honey zones, 70%	6602 6603 6604	1 2 1	120.15 121.07 122.10	122.10 122.10 123.08	1.03 0.98			tr. tr.		
		122.10-124.54:	silicified, 2% pyrite. dark to greyish-green, fairly well laminated, some	6605 6606	1 1	123.08 123.78	123.78 124.54	0.70 0.76			tr. tr.		
		124.54-127.04:	medium green, 10-15% silicified, only the quartz- carbonate veinlets are reacting to HCl, the matrix being less carbonated. It is not like the typical	6608 6609 6610	tr tr tr	125.30 126.16 127.04	126.16 127.04 127.50	0.86 0.88 0.46			tr. tr. 0.02		
		127.04-127.50:	brown to honey coloured, 90% silicified, 2% finely disseminated pyrite, brecciated.	6612 6613	tr tr	127.50 128.44 129.42	129.42 130.45	0.94 0.98 1.03			0.02		
		127.50-128.44:	40% silicified, medium green with brownish to pinkish zones, poorly laminated.	6614 6615	tr tr	130.45 131.40	131.40 132.28	0.95 0.88			0.01		
		_120+44-130+43.	carbonate veinlets ~ not typical of transition zone.	6617 6618	tr tr	133.35 134.17	133.33 134.17 135.21	0.82			0.13 tr.		
		130.45-135.21:	medium to light green, 20% silicified, not typical of transiton zone but included because of the few silicified horizons present in the unit.	6619 6620 6621	tr 1 1	135.21 136.03 136.70	136.03 136.70 137.68	0.84 0.67 0.98			tr. tr. 0.01		
		135.21-138.20:	typical zone - pinkish to medium green, 30-35% silicified, better laminated than the previous.	6622 6623	1 2	137.68 138.20	138.20 139.20	0.52 1.00			0.01 0.01		
		138.20-140.15:	70% silicified, grey to pinkish zone with 30% dark green, unsilicified horizons. 2% pyrite, fairly well laminated at 65% to the core axis.	6624 6625 6626	2 1 1	139.20 140.15 141.18	140.15 141.18 142.22	0.95 1.03 1.04			tr. tr. tr.		
		140.15-146.82:	silicification decreasing from 30% at 140.15 meters to about 10% at 146.82 meters. Dark green sediments with pinkish-grey, silicified zones, trace to 1%	6627 6628 6629	1 tr tr	142.22 143.01 144.08	143.01 144.08 145.08	0.79 1.07 1.00			tr. tr. tr.		
			pyrite. Contact arbitrary - not well defined.	6630 6631 6632	1 tr tr	145.08 146.03 146.82	146.03 146.82 147.98	0.95 0.79 1.16			tr. tr. tr.		
	-												

-

FORM 2

NAME OF PROPERTY____

HOLE NO. Mc . 84-72

Lost Treasure

6 OF 6 _ SHEET NO.___

FOO	TAGE	DESCRIPTION	SAMPLE							ASSAYS		
FROM	то		ND.	", SULPH	FROM	FOOTAGE	TOTAL	~,	~.	OZ-TON	OZ TON	
146.82	150.94	<u>SEDIMENTS</u> Dark green, fine grained, massive, 10% quartz-carbonate veinlets, poorly laminated at 60° to the core axis. contacts are not well defined.	6633 6634 6635 6636	tr tr tr tr	147.98 148.74 149.50 150.27	148.74 149.50 150.27 150.94	0.76 0.76 0.77 0.67			tr. tr. tr. tr.		
150.94	154.84	<u>SEDIMENTS</u> Dark green to medium green, fine grained, with some black chlorite seams and some tuffaceous interbeds.	6637 6638 6639 6640	tr tr tr tr	150.94 151.88 152.80 153.77	151.88 152.80 153.77 154.84	0.94 0.92 0.97 1.07			tr. tr. tr. tr.		
		154.84 meters END OF HOLE CASING PULLED										

				_				·	n	r	·1	HOLE	NO. Mc. 8	. <u>4-73</u> sh	IEET NO.	1 OF 9
NAME O	F PROP	ERTY	Lost	Treasure		FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	DEMA	PKS B	0 Core		
HOLE N	or	IC. 84-73	LENGTH	219.43 met	ers	- 0	-60°		182.88	$-45\frac{1}{2}$		N E M R	<u></u>	nlit fo	or analy	veie
LOCATIO	м <u>— </u> С	μ+00 E		- 0+72 S		45.71	-49 ⁰						U	pire it	/r anary	y515
FIEVATI	E		JEPARIURE	3440	-60 ⁰	91.44	$-48\frac{1}{2}$									
STARTED	ο	me 22, 1984	FINISHED	June 28, 198	4	137.16	-48 ⁰					LOGGE	D BY		ckman	
							T					<u> </u>				
FOO	TAGE	4		DESCRIP	TION				5 A M	PLE			A	SSAN	/ S	
FROM	то						N	O. SULF	FROM		TOTAL	- %	76	OZ/TON	OZ/TON	l
0	32.31	OVERBURI	DEN													
32.31	83.45	BASALT														
		Medium grey to	o greenish	n-grey, fine to	medium grained	massive flows										ł
		with minor ver	ry fine gr	ained to aphan	itic phases. A	minor amount	of						1			
		fine grained	inter-flow a rock ten	/ sediment is n ids to become c	oted associated	with flow tively coarser										Å
		grained with o	depth. Th	le zone above 7	0.45 m has been	subjected to							Į !			
		two stages of	fracturin	ıg - initial sy	ngenetic shrink	age-type which										
		is welded, sil	licified a	nd epidotized;	, and a much late	er and stronge Many shear	r (ł		([
		zones and plar	nes of fau	ilt gouge are r	oted - a major	fault may be										
		close to the H	nole. All	rocks in this	section are nor	n-magnetic.							i '			
		32.31 - 47.50	: very fi	ne grained to	aphanitic, high Hilling	ly fractured							i I			
~		47.50 - 49.40	: possibl	e DIABASE - fi	ne grained but	locally							1			
165			approac	hing medium gr	ained, ophitic f	to sub-ophitic	1						1			
6-9			texture	d. No appreci	able hematite in	n fractures -										
n I		49.40 - 52.60	: verv fi	ne grained to	aphanitic, pale	green, abunda	nt	}	j							
2			medium	grained phases	as narrow intri	usives up to										1
Z			50cm su	b-parallel to	core axis. Abur	ndant hematize	d									
Ó		52-60 - 55-10	rractur nossibl	e flow – mediu	m grained phase	s are non-										
			ophitic	: becoming sub-	ophitic texture	d locally.							j l			
		55.10 - 66.30	: medium	grained, inten	sely fractured w	with abundant										
		1	on loca	e on tracture	surfaces. Abunc planes (eg. 57	-90, 58,90,	ge						. 1			
1 C E E			59.70,	61.35, 64.90 a	ind 66.00 meters).			ł						1	
אור	1															l
AN																
													, I		1	
I	1	1					11	}	1	1	1		.	1 1	i 1	

FORM 2

NAME OF PROPERTY_____Lost Treasure

HOLE NO. Mc. 84-73 SHEET NO. 2 OF 9

-

FOOTAG	GE				SAMPL	E				ASSAYS		
FROM	то	DESCRIPTION	NO.	". SULPH	FROM	FOOTAGE TO	TOTAL	~7,	~.	OZ TON	UZ TON	
83.45 8	37.78	 66.30 - 70.45: essentially same as above, fewer hematized fractures. 70.45 - 77.35: fine to medium grained massive flow, carrying 5-10% pale yellow-green silicified xenoliths of sediment. The zone becomes aphanitic below 72.20 meters and is often moderately to strongly silicified particularly where angularly brecciated - shatter-type due to shrinkage. 77.35 - 77.45: SEDIMENTS - dark green, fine to very fine grained, generally non-laminated. 77.45 - 78.42: flow-top breccia - angular fragments up to 2cm in size, no welding or matrix. 78.42 - 79.25: very fine grained, weakly brecciated flow. 79.25 - 83.45: flow breccia - rounded to sub-angular fragments up to 5cm in size exhibit reaction rims, welding, and variation in composition. SEDIMENTS The upper contact is somewhat uncertain - appears to be along a plane of slippage at 20° to the core axis. The rock below has a defineable fabric despite moderate brecciation. The rock in this section is dark green to grey-green, fine to very fine grained. The uppermost zone above 86.80 meters, does not carry sedimentary laminations although brecciation has occurred along a preferred parting. Selected laminations or sets of laminations comprising up to 80% of the rock volume are intensely carbonatized. Below 87.20 informatized and consequently non-silicified. Minor elevated pyrite is noted in association with this localized silicification - up to 2% very finely disseminated above the 0-1% average. Silicification is denoted by a slightly purple hue to the greyish carbonatization. The section is weakly magnetic locally. Bedding laminations are noted locally: 85° to core axis at 87.15 and 65° at 87.45 m. 	6641 6642 6643 6644 6645	0-1 0-1 0-1 0-1 0-1	84.10 84.84 85.50 86.29 87.05	84.84 85.50 86.29 87.05 87.78	0.74 0.66 0.79 0.76 0.73			0.01 0.01 0.03 0.01 0.02		

FORM 2

NAME OF PROPERTY_____ Lost Treasure

HOLE NO. _____ MC. 84-73 ____ SHEET NO. ____ 3 OF 9

FOOT	TAGE				SAMPL	_E			ASSAYS		
FROM	то	DESCRIPTION	NO.	SUL PH	EROM	FOOTAGE	TOTAL	 	OZ TON	OZ TON	
87.78	144.78	MAIN MINERALIZED ZONE									
		The sediments in this zone are divided into three sub-zones based upon alteration. A central Main Silicified Zone is flanked by Transitionally Silicified Sediments. All members are slightly thicker than average. The central zone averages 2-3% pyrite except for a lower section which averages 10% pyrite. This differs from the usual in that the sericitized pyrite-rich zone is not cyclic or repetitive down the zone but rather is clumped in one basal section. The lower transitional member does not carry as much silicified breccia or pyrite as is usual.									
87.78	89.72	TRANSITIONAL SILICIFIED SEDIMENTS									
		Dark green and very fine grained with abundant (greater than 50%) purple-grey silicified laminations and narrow silicified breccia seams. The degree of silicification is moderate to strong increasing in strength down-hole. Silicification has replaced formerly carbonatized sections as evidenced by some remaining reactiveness to HCl. Dark green, non-silicified rock is non-reactive. Bedding laminations are well preserved above 88.25 m (eg. 50° at 88.15 m), but are obscured below due to rising levels of brecciation. The zone is non-magnetic. The McKenna Fault is indicated by grit and clay filled slippage (fault) planes between 89.52 and 89.72 meters. Pyrite content averages 0-1% as a very fine grained dissemination.	6646 6647 6648	0-1 0-1 0-1	87.78 88.42 89.15	88.42 89.15 89.72	0.64 0.73 0.57		0.01 0.01 tr.		
89.72	112.75	MAIN SILICIFIED ZONE									
		Dark purple-grey, aphanitic becoming very fine grained locally, intensely silicified and moderately to strongly brecciated. Purple hue due to hematization - most noticeable on chloritized partings which streak red. A trace of relic, non-silicified rock is found locally. Pyrite, most abundant in silicified breccia, is present as a fine dissemination, as clots of fine grains up to 1cm and as lensitic bands along relic bedding. Some 1-2mm cubes are also									

NAME OF PROPERTY Lost Treasure

HOLE NO. Mc. 84-73 SHEET NO. 4 OF 9

FOOT	AGE	DECOUDTION	1		SAMP	_E				ASSAYS		
FROM	то	DESCRIPTION	NO.	" SULPH		FOOTAGE		<u> </u>		OZ TON	OZ TON	
FOOT	TAGE	DESCRIPTION noted. Honey coloured, sericitized rock is confined to a 7.05 me section at the base of the zone. Some halos of similar colouratif flank fractures in purple-grey rock. Some initial reactiveness the HC1 is noted but diminishes with depth as the silicification increases. 89.72 - 90.90: purple-grey, strongly silicified, moderately to strongly reactive to HC1; 1% pyrite with up to 2% locally in lcm honey coloured pods. Breccia fragments have a greyish tone due to carbon- atization. Matrix is non-reactive. Silicificatification becomes much stronger at 90.70 meters. Weakly magnetic locally. 90.90 - 93.23: as above - degree of silicification becomes inter non-reactive to HC1; several lcm honey coloured silicified breccia seams carry 10-15% pyrite. The alteration also noted within 10cm of underlying z (heat due to intrusive). 93.23 - 93.78: deep reddish-brown to purplish-red, aphanitic, indistinct clasts (feldspars?) up to lmm. This z is similar to syenitic rock logged in other holess except that this zone carries 1-2% finely disseminated pyrite. 93.78 - 94.54: purple-grey, intensely silicified breccia - same 90.90-93.23 meters with many honey coloured seams carrying 10-20% pyrite. A 5cm zone at the upper	NO. eter ion to 66649 6650 6651 6652 ion 6653 6654 6655 6656 6657 his 6658 20ne 5, as 3	1 1 1 1-2 1-2 1-3 1-2 1-3 2-4 2-3 2-3 2-3 2-3 2-3	SAMP FROM 90.45 91.22 91.97 92.65 93.23 93.78 94.54 95.30 96.03 96.03 96.86 97.55	-E FOOTAGE TO 90.45 91.22 91.97 92.65 93.23 93.78 94.54 95.30 96.03 96.03 96.86 97.55 98.29	0.73 0.77 0.75 0.68 0.55 0.76 0.76 0.73 0.83 0.69 0.74	~	5°.	ASSAYS 02 TON tr. tr. tr. tr. tr. tr. tr. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	OZ. TON	
		 94.54 - 98.29: essentially same as overlying zone - honey colour sericite alteration is locally penetrative away f fractures. The rock grades down-hole into a weak HCl reactive zone composed of 80-90% elongated purple-grey patches up to 5cm set in a very dark grey-green silicified rock. Reactiveness is confined to the purple hued patches which are oriented along original bedding and are probably diagenetic feature. Pyrite averages 2-4% as a verient dissemination and as clots up to 1.5cm. Som 	a ery ne									

NAME OF PROPERTY_____Lost Treasure

.

HOLE NO. Mc. 84-73 SHEET NO. 5 OF 9

FOOT	TAGE					SAMP	LE			ASSAYS		
FROM	то		DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE	TOTAL	 ~.	OZ TON	02 TON	
		98.29 -101.50: 101.50-102.17:	platelets are found in hematized fractures. The zone is moderately magnetic locally. the amount of free quartz due to silica-dumping increases between breccia fragments. These fragments acquire a pinkish colouration. zone carries several 10-20cm sections where relic bedding is visible through brecciation. Zones of elevated pyrite are locally associated with honey coloured sections. Pyrite increases to 10-15% within 10cm of the basal contact.	6661 6662 6663 6664 6665 6665 6666 6667 6668	2-3 1-3 1-3 1-3 3-4 0-1 4-6 1-2	98.29 99.01 99.79 100.58 101.36 102.17 102.79 103.28	99.01 99.79 100.58 101.36 102.17 102.79 103.28 104.12	0.72 0.78 0.79 0.78 0.81 0.62 0.49 0.84		0.02 0.02 0.01 0.01 tr. tr. tr. 0.01		
		102.17-102.79:	Bedding: 45-50° to core axis at 101.55 meters 50-55° to core axis at 102.00 meters deep burgundy-red to reddish-purple, aphanitic, highly siliceous 'syenitic' zone with an upper contact at 45° to core axis. Contact is blocky and irregular. Stringers emanating from this zone	6669 6670	1-2 3-4	104.12 104.85	104.85 105.70	0.73 0.85		0.03 0.01		
		102.79-103.02:	into the surrounding sediments are orange to pink in colour. Brecciation is moderate. honey coloured, intensely silicified and probably sericitized with a strong sense of original bedding at 40-50° to the core axis. Brecciation is moderate. Carries up to 15% pyrite locally,									
		103.02-103.10: 103.10-104.12:	averaging 8-10% as a fine dissemination. same as 102.17-102.79 meters. purple-grey, intensely silicified breccia with diminishing pyrite - 3-4% beocming 1-2% below									
		104.12-105.70:	103.30 meters. alternating 70-80% purple-grey, intensely silicified breccia with 20-30% greenish, weakly to moderately silicified and strongly hematized sections. Pyrite content increases from 1-2% to 3-4% below 104.85 m. The degree of brecciation increases below 105.10 and the rock becomes pinkish hued, then honey coloured locally. Relic bedding is observed locally in the upper part due to lower brecciation - eg. 55° at 104.50 and 45° at 105.05 meters. The rock is weakly to moderately magnetic.									

FORM 2

FORM 2

NAME OF PROPERTY_____Lost Treasure

HOLE NO. ____

Mc. 84-73 SHEET NO.___ 6 OF 9

FOOTAGE		ASSAYS	······
FROM TO TO TOTAL	·. ·	. OZ TON OZ	ZTON
 105.70-112.75: homey coloured, sphanitic, intensely silicified breecia carrying up to 20% pyrite especially as clots and lenses filling volds along relic 6671.0-12 105.70-112.75: homey coloured, sphanitic, intensely silicified or 6671.0-12 105.70-112.75: homey coloured, sphanitic, intensely silicified or 6671.0-12 105.70-112.75: homey coloured, sphanitic, intensely silicified or 6671.0-12 105.70-112.75: homey coloured, sphanitic, intensely silicified or 6671.0-12 105.70-12.75: homey coloured, sphanitic, intensely silicified or 671.0-12 105.70-12.75: homey coloured, sphanitic, intensely silicified or 618.00 107.24 108.05 0.84 0.72 0.84 0.74 0.84 0.84 0.74 0.84 0.74 0.84 0.74 0.84 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.77 0.76 0.76 0.77 0.76 0.76 0.76 0.77 0.76 0.77 0.76 0.76 0.77 0.76 0.77 0.76 0.76 0.77 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.77 0.76 0.76<		0.02 0.07 0.06 0.03 0.08 0.04 0.04 0.04 0.01 0.03 0.01 tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.	

NAME OF PROPERTY_____Lost Treasure

HOLE NO. Mc. 84-73 SHEET NO. 7 OF 9

FOOTAGE	DESCRIPTION								ASSAYS		
FROM TO	DESCRIPTION	NO. SULPH FOOTAGE					·	~.	OZ TON	OZ TON	
144.78 194.99	<pre>are weakly to moderately magnetic, are probably tuffaceous and have often been called intrusive. Fining upwards cycles are noted locally - TOPS UP. Bedding: 55-60° to core axis at 131.80 meters 50-55° to core axis at 134.65 meters 40-45° to core axis at 136.10 meters 40-45° to core axis at 139.15 meters 112.75-123.33: 15-20% silicified rock. 123.33-127.89: 5-10% silicified rock. 127.89-134.47: 30-35% silicified rock. 134.47-144.78: 5-10% silicified rock. <u>SEDIMENTS</u> Dark green and very fine grained with 10-50% white, pale grey, and pink carbonatized laminations, sets of laminations and 1-2cm breccia seams. Carbonate alteration tends to highlight the original bedding. Breccia development is mostly along laminations rather than across. Fracture systems often radiate across the bedding - probably the result of folding or slumping rather than fault movement. Very litle silicification of breccia or carbonatized laminations is noted, although a zone of localized silicification is found at 162.90-163.98 meters. It is evidenced by purple-grey colouration, hematization and moderate reactiveness to HCI. The degree of silicification is moderate to strong. A broad zone of silicified breccia is noted at 167.20-171.00 meters. Major beds are noted at 167.20-167.25, 168.10-168.37 and 168.87-169.76 meters (75% silicified). A zone of silicified breccia carrying 2% pyrite is found at 174.38-174.66 meters. Minor sericitization of fragments is noted locally. 193.00-193.65: Tuff - dark greyish-green, and fine grained with 10% pink siliceous clasts up to 2mm - generally well rounded. The upper contact is strongly altered; epidotized and silicified. The lower contact is conformable to the sediments at 45-50° to the core axis. Non-magnetic.</pre>	6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6724 6725 6726 6727 6728 6729 6730 6731 6732	0-1 0-1 1-2 1 0-1 0-1 1 1 0-1 0-1 0-1 0-1 0-1 0-1 0	129.41 130.35 131.01 131.65 132.51 133.39 134.20 135.10 135.91 136.89 137.90 138.91 139.91 140.86 141.80 142.81 143.80 144.78 145.81 146.83 147.85 148.84 149.89 150.90 151.90 152.90 153.90 155.95 156.90 157.89 158.90	130.35 131.01 131.65 132.51 133.39 134.20 135.10 135.91 136.89 137.90 138.91 139.91 140.86 141.80 142.81 143.80 144.78 145.81 146.83 147.85 148.84 149.89 150.90 151.90 152.90 153.90 154.90 155.95 156.90 157.89 158.90	0.94 0.66 0.64 0.88 0.81 0.90 0.81 0.98 1.01 1.01 1.00 0.95 0.94 1.01 0.99 0.98 1.03 1.02 1.02 0.99 1.05 1.01 1.00 1.00 1.00 1.00 1.00 1.00			tr. 0.01 0.01 tr. tr. tr. tr. tr. tr. tr. tr.		

-

NAME OF PROPERTY_____Lost Treasure

HOLE NO. _____ MC. 84-73 _____ SHEET NO. ____ 8 OF 9

FOOTAG	GE				SAMPI	_E				ASSAYS		
FROM	TO	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	~.	۳.	OZ TON	UZ TON	·
		Bedding: (measured with respect to core axis) 50-55° at 150.50 meters 50-55° at 153.20 meters	6733 6734 6735	0-1 1 0-1	161.90 162.90 163.98	162.90 163.98 164.90	1.00 1.08 0.92			tr. tr. tr.		
		50-550 at 157.80 meters 45-500 at 160.65 meters 600 at 167.70 meters 450 at 187.05 meters 55-600 at 195.80 meters	6736 6737 6738 6739	0-1 1 1 0-1	167.20 168.10 168.87 169.76	168.10 168.87 169.76 170.75	0.90 0.77 0.89 0.99			tr. tr. tr. tr.		
194.99 198	98.87	BASALT	6740	0-1	171.98	172.94	0.96			tr.		
		Medium to dark green, very fine grained to aphanitic, and weakly sheared near the upper contact giving an appearance of foliated	6741	1	174.25	174.81	0.56			tr.		
		sediment. A number of strongly chloritized seams and associated epidotization are used in diagnosis. The rock reflects massive flow and carries little textural variation. It is non-magnetic and	6742 6743	0-1 0-1	176.93	177.97	1.04 1.05			tr.		
		non-silicified. It is weakly to moderately brecciated due to shrinkage.	6744	0-1	184.60	185.69	1.09			tr.		-
198.87 20	05.17	SEDIMENT	6745	0-1	188.20	189.19	0.99			tr.		
		Dark green, very fine grained, becoming fine grained down-hole - probably indicating TOPS UP. A 1cm zone at the upper contact is intensely silicified resembling a quartz vein. The rock is well foliated - probably reflecting original bedding - 55-60° at 199.12; 40-45° at 200.05 and 55-60° at 205.01 meters.	6746	0-1	191.17	192.40	1.23			tr.		
205.17 21	19.43	BASALT										
		Dark green, fine grained massive flows with medium grained central phases. Generally non-brecciated even at flow tops. Up to 20cm of sediment associated with flow contacts at 206.90 and 213.25 meters. 205.17-206.90: massive, weakly brecciated flow. 206.90-206.95: interflow sediment - foliated at 55-60° to the core axis, moderately to strongly silicified - 1-3% pyrite.										

NAME OF PROPERTY_____Lost Treasure

HOLE NO. _____ Mc. 84-73 ____ SHEET NO. ___ 9 OF 9

FOO	TAGE					SAMPI	_E			ASSAYS	antonen,	
FROM	то		UESCRIPTION	NO.	T. SULPH	FROM	FOOTAGE	TOTAL		OZ TON	OZ TON	
		206.95-213.20: 213.20-213.34: 213.34-219.43:	fine grained, massive flow, becoming medium grained at 211.45-212.55 meters. Non-magnetic. Interflow Sediment - highly silicified, well laminated at 50° to the core axis. intermixed phases of fine and medium grained massive flow - no apparent single phase of gradational coarsening into centre of flow. A zone from 216.90 to 219.35 meters is dominantly medium grained. Base of hole is slightly finer grained.									
		219.43 meters	END OF HOLE									
			CASING PULLED									
LANGRIDGES - TORONTO - 366-1168												

NAME O HOLE N LOCATIO LATITUD ELEVATI STARTED	F PROP 0 N E0 ON DJun	ERTY Lost Treasure FOOTAGE Mc. 84-74 LENGTH 154.84 meters 0 0 0 0 0 0 0 27.43 0 0 0 27.43 0 0 0 27.43 0 0 0 27.43 0 0 0 27.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIP -50° -48° -50° -40 ¹ 3			оотаде 137.16	DIP 4		HOLE R REMA LOGGE	NO. MC. 8 RKS <u>B(</u> Ca ba	84-74 s Q Core asing c e pulle .W. Wor	ould no d. kman	1 OF 7
FOO	TAGE	DESCRIPTION			41	SAMI	Р L Е			A	ASSA	Y S	
FROM	то			₹0. s	ULPH-	FROM	TO	TOTAL	- 2%	36	OZ/TON	OZ/TON	
0	56.20	OVERBURDEN											
56.20	135.66	MAIN MINERALIZED ZONE											
56.20	70.52	Due to unusally deep overburden, the upper zone of 'Iransitionall Silicified Sediments' was not intersected. Nor was the upper par of the 'Main Silicified Zone' represented in this hole and it is believed that 5-7 m of the zone are missing. An anomalous amoun of red to reddish-brown, siliceous rock is present within the 'Ma Silicified Zone'. This rock is often intrusive in appearance in other drill holes. In this hole, it is intensely brecciated and (consequently) carries elevated pyrite contents. Purple-grey intensely silicified sediment breccia carries higher pyrite conter proximal to this rock hence supporting an intrusive interpretation However, fragments of this reddish rock are also found within brecciated sediment sections making an intrusive origin somewhat suspect. Thin sectioning has been ordered. The Lower 'Transitionally Silicified Sediments' are much thicker than usual although no single zones of high level silicification exceed 30cm and most are less than 20cm in thickness. Pyrite content through the Main Silicified Zone is normal for the lithologies present an the maximum observed is 8-10% as a fine dissemination, as clots u to 1.5cm filling voids in breccia, and as 1-2mm cubes. <u>MAIN SILICIFIED ZONE</u> Purple-grey, aphanitic and intensely silicified breccia with abundant reddish to reddish-brown highly siliceous intrusives(?) which are aphanitic and similarly brecciated. A few pale green sericitic phases are noted locally which exhibit well	y t t in nts n. , out d p										

FORM 1

NAME OF PROPERTY Lost Treasure

HOLE NO MC. 84-74 SHEET NO 2 OF 7

FOO	TAGE		1		SAMPI	E			ASSAYS		
FROM	то	DESCRIPTION	00	SHEPH IDES	ورزع ع	FOOTAGE	TOTAL		DZ TON	UZ TON	
		 developed relic bedding. Pyrite content averages 3% as a fine dissemination. However, proximal to reddish (syenitic?) zones, pyrite content reaches 10% - largely in the form of 1-2cm clots and seams filling voids in the breccia. Some reactiveness to HCl due to carbonatization is noted in purple-grey breccia zones. The overall content of reddish aphanitic rock is much higher than usual even allowing for 5-7 meters of missing upper zone. However, as noted if other holes, this rock does carry significant pyrite when brecciated and up to 8% is noted locally. A mixture of this rock as breccia fragments and 'normal' purple-grey brecciated sediments is often observed. Perhaps intrusion(?) pre-dated brecciation and silicification. 56.20 - 57.60: purple-grey, highly silicified breccia, relic laminations locally at 55° to core axis, minor melic carbonate indicated by moderate reactiveness to HCl. Non-magnetic. 57.60 - 58.00: Slight greenish hue to purple-grey rock - degree of silicification is moderate to strong. Abundant ground core with 20cm core lost. Moderately reactive to HCl. Non-magnetic. 58.00 - 59.27: same as 56.20-57.60 meters. 59.27 - 60.10: reddish hued, highly siliceous, aphanitic, moderate to strong brecciation. 60.42 - 61.31: similar to 59.27-60.10 - more strongly red coloured, strongly moderate to strong sericitization. 60.42 - 61.31: greenish-grey intensely silicified breccia with minor sedimentary laminations locally. Carries 2-49 pyrite a dissemination and fracture filling. 61.91: greenish-grey intensely silicified breccia by pyrite solicated with 4-6% pyrite. 61.31 - 61.91: greenish-grey intensely silicified breccia with minor sedimentary laminations locally. Carries 2-49 pyrite as dissemination and fracture filling. 62.03 - 65.76: similar to 61.31-61.91 - carries 10-20% reddish laminations and angular clasts up to lcm are supported in a 	6747 6748 6749 6750 6751 6752 6753 6755 6756 6757 6758 6759	1-2 1-3 1-2 2-3 1-3 4-6 4-6 2-4 2-4 2-4 2-4 2-4 8-10 7-9	56.20 56.95 58.00 58.72 59.27 60.10 60.42 61.31 62.03 63.56 64.27 65.14	56.95 58.00 58.72 59.27 60.10 60.42 61.31 62.03 62.80 63.56 64.27 65.14 65.76	0.75 1.05 0.72 0.55 0.83 0.32 0.89 0.72 0.77 0.76 0.71 0.87 0.62		0.07 0.01 0.01 0.01 tr. tr. 0.04 0.05 0.02 0.01 tr. tr. tr.		

FORM 2

FORM 2

NAME OF PROPERTY_____

HOLE NO.

Lost Treasure

Mc. 84-74 SHEET NO. 3 OF 7

FOO	TAGE		DESCRIPTION			SAMPI	LE			ASSAYS		
FROM	то		DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL		OZ TON	OZ TON	
		65.76 - 66.80: 66.80 - 68.10: 68.10 - 70.52:	greenish silicified matrix. Clasts appear to be same composition as 'syenitic' zone at 60.42-61.31. The matrix is moderately reactive to HC1 - carbonatized. Pyrite content increases down-hole - generally confined to matrix surrounding fragments. Some concentrations are noted as 1-2mm seams oriented along relic bedding laminations. Local pyrite concentrations of 10-15% are noted, especially where the percentage of reddish breccia fragments approaches 75% of the rock volume. The lower boundary of this zone is uncertain within 5cm. The section from 63.40-63.58 meters is ground and lost core. pale greenish-grey, initially brecciated, becoming laminated below 65.95 meters with up to 10% pyrite concentrated along bedding at 65° to core axis. Rock has a 'typical' sericite-green colouration. Some reddish, 1-2mm laminations begin in the lowest locm. same as 60.42-61.31 meters but carries less pyrite. Some 1-2cm clots of massive pyrite fill voids near the lower contact. Reddish breccia has a foliation at 45-50° to core axis. dark purple-grey, strongly to intensely, silicified breccia. The degree of brecciation is variable - in weaker areas, some relic, vaguely green hued rock is wisible (on 69.13.69.55 meters)	6760 6761 6762 6763 6764 6765 6766	3-5 3-5 2-4 5-7 1-3 1-3 1-3	65.76 66.30 66.80 67.65 68.10 68.95 69.65	66.30 66.80 67.65 68.10 68.95 69.65 70.52	0.54 0.50 0.85 0.45 0.85 0.70 0.87		tr. tr. tr. tr. tr. tr. tr.		
70.52	135.66	TRANSITON Dark green to m The unit carrie silicified brec in part are con relationships a reactiveness, w	AL SILICIFIED SEDIMENTS edium grey-green, very fine grained and chloritized. s abundant purple-grey to pale grey, intensely cia seams and silicified laminations. Breccia seams trolled by bedding but some cross-cutting re noted. Carbonatization indicated by variable HCl as a precursor to silicification. The purple									

FORM 2

NAME OF PROPERTY_____Lost Treasure

HOLE NO. _____ Mc. 84-74 ____ SHEET NO. ____ 4 OF 7

FOOTAGE					SAMP	_E				ASSAYS		
FROM TO		DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	1.	-	OZ TON	UZ TON	
	colouration is non-silicified, general, the de of brecciation. size. Most sil beds of intense found at: 70.70 75.62-75.73; 76 96.75-96.89; 98 117.17-117.32; laminations); 1 A trace of weak association wit silicified brec 70.52 - 72.76: 72.76 - 73.72: 73.72 - 74.59: 74.59 - 78.03: 78.03 - 78.93: 78.93 - 79.65: 79.65 - 80.32: 80.32 - 82.50: 82.50 - 83.70: 83.70 - 86.23:	due to hematization. Green rock, although is also moderately to strongly hematized. In gree of silicification is proportional to the degree Breccia fragments are angular and up to 2cm in icified breccia seams are 1-3cm in width. No massive 19 silicified breccia are noted. Major zones are -70.84; 71.50-71.65; 72.21-72.35; 72.97-73.17; .70-76.95; 78.93-79.65; 83.48-83.70; 91.88-92.10; .05-98.15; 110.91-111.03; 114.30-114.49; 119.72-119.90; 122.75-122.97 (silicified 24.43-124.58; 128.10-128.24; 130.33-130.43 meters. to moderate magnetism is noted locally in h hematized fractures and pyrite-rich seams in well cia. 80% silicified breccia. 50% silicified breccia. 10-20% silicified breccia - well laminated locally (eg. 35-400 at 74.45 meters). 40-60% silicified breccia - well laminated locally (500 at 75.70 m). Two narrow biotite-bearing sedimentary beds are found between 75.81 and 75.99 m at 45-500 to the core axis. 10-15% silicified breccia in beds up to 5cm thick. 90% silicified breccia in beds up to 5cm thick. 90% silicified breccia in seams up to 5cm. 20-30% silicified breccia - one seam of 22cm is 90% silicified. 10% silicified breccia in seams averaging 2-3cm. Silicified. 10% smeters).	6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785	$ \begin{array}{c} 1-3\\1-3\\1-3\\1-2\\1\\2\\1-2\\1-2\\1-2\\1-2\\1-2\\1-2\\1-2\\1-2$	70.52 71.42 72.25 73.17 73.72 74.59 75.39 76.10 76.95 78.03 78.93 79.65 80.32 81.42 82.50 83.10 83.70 83.70 84.56 85.55	71.42 72.25 73.17 73.72 74.59 75.39 76.10 76.95 78.03 78.93 79.65 80.32 81.42 82.50 83.10 83.70 83.70 84.56 85.55 86.23	0.90 0.83 0.92 0.55 0.87 0.80 0.71 0.85 1.08 0.90 0.72 0.67 1.10 1.08 0.60 0.60 0.86 0.99 0.68			tr. tr. tr. tr. tr. tr. tr. tr.		

FORM 2

NAME OF PROPERTY_____

Lost Treasure

HOLE NO. _____ Mc. 84-74 ____ SHEET NO. ____ 5 OF 7

NAME OF PROPERTY_____

HOLE NO. _____ Mc. 84-74

Lost Treasure

SHEET NO. 6 OF 7

F001	TAGE	DESCRIPTION			SAMPL	-É				ASSAYS		
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	•	<i>i</i> r,	OZ, TON	UZ TON	
135.66	140.55	<pre>110.52-124.58: 20-40% silicified breccia in seams up to 20cm. A shear at 119.65-119.72 meters is noted at 25-30° to core axis. Bedding: 45-50° at 112.20 meters 60° at 115.45 meters 50-55° at 120.45 meters 53° at 122.90 meters 124.58-135.66: 5-10% silicified breccia, most as 1-2mm seams along bedding laminations. Several silty, possibly tuffaceous beds are noted locally (eg. 125.84-125.95 meters). Bedding: 40-45° at 125.95 meters 60-65° at 129.90 meters 65-70° at 132.85 meters SEDIMENTS</pre> Dark green, very fine grained with 5% 1-2cm greyish to cream coloured strongly carbonatized breccia seams. Very little bedding laminations - minor preferred parting locally at 60° to core axis. Some slight increase in grain size is possible compared to overlying unit. An average 0-1% pyrite as blebs up to 1mm is noted. The rock is altered by ubiquitous carbonatization of weak to moderate strength. The lower contact is along a contorted altered seam.	6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6836		110.52 111.55 112.55 113.55 114.55 114.55 115.55 116.60 117.58 118.60 117.58 118.60 119.65 120.60 121.60 123.60 124.58 125.56 126.60 127.60 128.60 129.58 130.57 131.61 132.60 133.59	111.55 112.55 113.55 114.55 115.55 116.60 117.58 118.60 119.65 120.60 121.60 122.60 123.60 124.58 125.56 126.60 127.60 128.60 129.58 130.57 131.61 132.60 133.59 134.59	1.03 1.00 1.00 1.00 1.05 0.98 1.02 1.05 0.95 1.00 1.00 1.00 1.00 0.98 0.98 1.04 1.00 1.00 0.98 0.99 1.04 0.99 1.04 0.99			tr. tr. tr. tr. tr. 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.0		
140.55	142.59	BASALT Dark green, fine grained, massive and generally featureless flow. The upper contact is poorly defined. Lower contact is against a strongly chloritized and laminated zone.	6839 6840 6841 6842 6843 6844	0-1 0-1 0-1 0-1 0-1 0-1	135.66 136.55 137.60 138.59 139.60 140.65	136.55 137.60 138.59 139.60 140.65 141.64	0.89 1.05 0.99 1.01 1.05 0.99			tr. tr. tr. tr. tr.		

FORM 2

NAME OF PROPERTY

HOLE NO. ______ Mc. 84-74

Lost Treasure

SHEET NO.

7 OF 7

FOO	TAGE	DESCRIPTION			SAMPI	LE		l –		ASSAYS		<u></u>
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	-	~.	OZITON	OZ TON	
F00 ⁻ FROM 142.59	то 152.09	DESCRIPTION <u>SEDIMENTS</u> Dark green, fine to very fine grained interflow sediments - probably tuffaceous. The upper contact is well altered over 5-7cm with moderate to strong carbonatization and silicification. Alteration is selective along bedding laminations. Bedding is well developed above 143.65 meters at 50-55° to core axis. Minor amounts of brecciation along individual sets of laminations - slippage? A number of gritty fault planes with minor displacement are noted between 145.10 and 145.20 meters at 50-55° to core axis - parallel to bedding. 149.09-150.77: dark green, fine grained with distinct clasts visible. Weakly to strongly foliated at 50-55° to core axis. Carries 5-10% reddish-pink, rounded and occasionally elongated clasts up to 2cm (average 2-4mm). Some darker green, 1-2mm possibly micaceous clasts are also noted. <u>BASALT</u> Dark green, fine to very fine grained with silicified flow top breccia at 152.35 meters in narrow seams. A narrow seam resembling hyaloclastite is noted at 152.43 meters. The rock below 154.42 m is probably brecciated, carbonatized and weakly silicified interflow sediments.	NO. 6845 6846 6847 6848 6849 6850 6851 6852 6853	* SUL PM IDES 1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	FROM 142.59 143.65 144.64 145.69 146.69 147.66 148.65 149.09 149.74	E FOOTAGE 143.65 144.64 145.69 146.69 147.66 148.65 149.09 149.74 150.74	TOTAL 1.06 0.99 1.05 1.00 0.97 0.99 0.44 0.65 1.00			ASSAYS 02-TON tr. tr. tr. tr. tr. tr. tr. tr.	GZ TON	
		154.84 meters END OF HOLE CASING COULD NOT BE PULLED										

•

õ

NGRIDG

	_		Loot Tr	0.000 F0			T	·	Π			HOLE	NO. Mc. 8	4-75 st	IEET NO.	1 <u>0F9</u>
IAME O	F PROP	ERTY	LUSL III	209.70 mete		FOOTAGE	DIP	AZ IMUTH	FOOTAGE	DIP	AZMUTH	REMA	RKS	BQ Core	2	
OLE NO	N			<i>LUJATU</i> MCLC		0	-60°		182.27	-51 3	······································					
ATITUD	E 1.	+00 W	PARTURE	0+65 S		45.72	-55 ¹ ⁄2	··								
LEVATI	он ис	AZ	IMUTH	3440 0	IP	91.44	-54 ¹ 2		₩							
TARTED	Jul	y 6, 1984 FII	NISHED	July 12, 19	84	137.16	-531		<u>//</u>	l	L	LOGGE	D BY	A.W. Wo	vrkman	
FOOT	AGE								SAM	PLE		1		SSA	Y 5	
FROM	то			DESCRIPT	ION		N). 50LP	H EROM	FOOTA	GE	- 3	3	OZ/TON	OZ/TON	
0	33.77	OVERBURDE	N	<u></u>			-#-						<u> </u>	<u> </u>		
33.77	82.63	BASALT														
		Nodius to dark		an fina to mai	tum grained maget	ve flow.										
[Flow contacts a	re frequ	ently marked by	narrow beds of i	nterflow	I							ĺ	[[Í
		sediments. The	lowest	flow(s) is flow	brecciated. The	lavas are)									
		non-magnetic, w	reakly ch	loritized and m	ion-carbonatized.	Margins of				}				}		
		33.77 - 50.20:	fine to	medium grained	flow, becoming m	edium grain	ed]		
			at 34.4	48-41.45 and 45.	05-46.50 meters.							Į.				j
		50.20 - 50.43:	very fi	ne grained to a	phanitic.		J.			·]						
]		50.43:	flow con	ntact at 40-450	to core axis.											1
		50.43 ~ 50.65:	fragment	angular flow-to ts up to lcm.	op breccia with ve	ery tight										
		50.65 - 50.80:	fine to	very fine grai	ned.											
•		50.80 - 51.50:	fine gra	ained, weakly f	ractured.]]									
ļ		51.50 - 58.20:	fine to	medium grained	l•					1						1
		58.20 - 59.00:	fine to	very fine grai	ned.										1 1	
		59.00 - 59.15	aphanic:	1C.	stad at 550 to co	ra arta]]		ļ	1						
		59.22 - 64.90:	fine gr	ained flow -11	ttle structuring	or zonation	.									
			Zone be	low 63.35 meter	s carries 5-10% e	pidotized										
		• • • •	pink xe	noliths up to 1	.5cm in size. Ba	se of flow	1			-	·					1
			below 64	4.40 is very fi	ne grained to aph	anitic.			{	1		ű.				
		64.90:	flow com	ntact at 60-65°	to core axis.					1					1	
1		64.90 - 67.70:	angular	flow top brecc	:18.		- íí	1		{					1	[
										1		#				
ł		÷								1						
										1						
								1		1						ł
		• .						ł								l
							11	1								

•

NAME OF PROPERTY____

HOLE NO. __

Mc. 84-75

Lost Treasure

SHEET NO. _____2

•	OF	0	
	Or.	7	

FOOTAGE				SAMPL	-E			ASSAYS		
FROM TO	DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE	TOTAL	 ~,	OZ TON	UZ TON	
82.63 83.10	 67.70 - 74.00: very fine grained with moderate shrinkage-type fracturing. Tuffaceous beds at 71.06-71.17 and 71.53-71.57 meters cut core axis at 60-65°. The section below 71.17 meters carries xenoliths similar to the section below 63.35 meters. 74.00 - 74.50: highly silicified and epidotized flow margin with moderately developed brecciation. 74.50 - 76.10: variably silicified flow-top breccia with fragments up to 3cm - no welding observed - some reaction rims with depth. 76.10 - 80.60: flow breccia, reaction rimmed fragments up to 10cm. 80.60: flow brecciated and silicified - aphanitic flow top zone. 81.30 - 81.34: strongly vesicular (or variolitic?) zone. 81.34 - 82.63: mixed angular breccia and flow breccia with reaction rims. <u>SEDIMENTS</u> Dark green, fine to very fine grained with rapidly increasing levels of carbonatization indicated by grey to pinkish-grey tone. Alteration is as a selective replacement of certain laminations, often swelling into sections up to lcm thickness. Bedding laminations are not well demonstrated. Pyrite content averages 0-12. Some sulphide is concentrated in altered rock. MAIN MINERALIZED ZONE This zone begins much higher in the stratigraphic section than normal. This is in part a result of the upper transition zone being much thicker than normal. The main silicified zone is much narrower than normal but does carry some significant pyrite contents in possibly sericitized rock. The main zone of silicification is not diminished to the benefit of the overlying transition zone - evidenced by the normal position of the McKenna Fault. The lower 	6854	0-1	82.70	83.10	0.40		tr.		

LANGRIDGES – TORONTO – 366-1168

NAME OF PROPERTY_____

Lost Treasure

SHEET NO._

HOLE NO. _____Mc. 84-75

•

3 OF 9

FOOT	AGE				SAMPL	E		<u> </u>	ASSAYS	<u> </u>	
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE TO	TOTAL	 	OZ TON	OZ TON	
		transition zone is much wider than normal although it does not carry sub-sections of well developed silicified and brecciated beds (ie. greater than 50cm).									
83.10	91.28	TRANSITONAL SILICIFIED SEDIMENTS									
		Dark green, fine to very fine grained with abundant pale grey to purple-grey zones of alteration. Carbonatization initially affects only selected laminations and sets of laminations. Subsequent silicification has penetrated these seams. The high level of alteration serves to highlight the bedding laminations. the degree and percentage of silicification increases markedly in response to increasing carbonatization - particularly below 86.92 meters. A minor amount of honey coloured alteration (sericite) is noted in brecciated seams - carrying 3-5% pyrite. Overall sulphide content averages 1% as a very fine dissemination and as 1mm blebs. The McKenna Fault is located at 91.14 meters and is represented by a lon clay and grit filled seam at 55° to core axis. The underlying section from 91.14 to 91.28 meters carries 50-60% silicified clasts and breccia fragments set in a green chloritized clastic matrix. The lower contact of the zone is along a planar fracture or cleavage at 57° to the core axis - very sharp, no slickensides. 86.81 - 87.15: very well laminated - alternating dark green chloritized and grey to purple-grey altered laminations at 60° to core axis (eg. 86.95 m).	6855 6856 6857 6858 6860 6861 6862 6863	1 1 1 1 1 1 1	83.10 84.09 85.10 85.92 86.81 87.73 88.76 89.58 90.50	84.09 85.10 85.92 86.81 87.73 88.76 89.58 90.50 91.28	0.99 1.01 0.82 0.92 1.03 0.82 0.92 0.78		0.06 0.01 0.09 0.05 0.03 0.01 0.01 tr. tr.		
91.28	96.76	MAIN SILICIFIED ZONE									
		Grey to purple-grey, aphanitic, strongly to intensely silicified breccia with relatively minor (less than 5%) dark green, chloritized rock. Minor honey to pink coloured alteration is noted locally. some quartz is found in voids locally as result of silica dumping. Silicification has been largely confined to strongly brecciated rock. In places, the origin rock may have been a silicfiied tuff prior to brecciation and subsequent silicification. Pyrite content averages 3-4% with the largest percentage as a very fine									

•

NAME OF PROPERTY____

Lost Treasure

SHEET NO._

HOLE NO. Mc. 84-75

4 OF 9

FOOTAGE	DESCRIPTION			SAMPL	-E				ASSAYS		
ROM TO		NO.	SULPH	FROM	FOOTAGE TO	TOTAL	7	~	02. TON	UZ TON	
	<pre>dissemination. In areas of 5-10% pyrite, clots are found (in voids), up to 2cm in size. Silicified rock is magnetic locally ar weak reactiveness to HCl is noted throughout - often moderate in strength as a result of carbonatization. 91.28 - 91.48: purple-grey, intensely silicified breccia with fragments up to 1mm in size. Some fragments which appear to be tuffaceous clasts can be reassembled into larger clasts up to several mm in size. Several cm scale patches of honey coloured</pre>	d 6864	1-2	91.28	91.67	0.39			tr.		
	alteration with up to 5% pyrite are noted. 91.48 - 91.67: seams of purple-grey silicified breccia are separated by lcm bands of green chloritized rock - possibly later shears(?). These are parallel to bedding in overlying zone of transitional silicifi rocks.	ed									
	91.67 - 92.25: purple-grey - a mixture of previously micro- brecciated (less than 0.5mm), silicified breccia clasts up to 8mm in size. Most are angular and honey coloured or pinkish with few purple-grey varieties. These are supported in a purple-grey, very fine grained silicified groundmass. Matrix to not fragments is reactive to HCl and is hematized. Clasts often carry up to 5% pyrite. This is a re-deposited silicified sediment. Fragments demonstrate a weak foliation locally where the matrix is chloritic. The amount of relic chloritized rock increases with depth as also does	6865 ut	2-3	91.67	92.25	0.58			tr.		
	<pre>92.25 - 92.88: the number of pinkish fragments or clasts. 92.25 - 92.88: greyish-pink, highly silicified and moderately to strongly brecciated. Abundant quartz dumped in voids. Rock carries 5-7% pyrite as a very fine dissemination and as a void filling (up to 3mmxlcm Pyrite content is highest below 92.60 meters at 10-15%.</pre>	6866	10	92.25	92.88	0.63			tr.		

NAME OF PROPERTY_____LOST

Lost Treasure

HOLE NO. Mc. 84-75 SHEET NO. 5 OF 9

FOOT	AGE		1	<u></u>	SAMPL	Ē				ASSAYS		
FROM	то		NO.	SULPH	FROM	FOOTAGE TO	TOTAL	7.	2	DZ TON	OZ TON	
96.76	172.63	 92.88 - 93.09: dark purple-grey silicified breccia with 3-5% pyrite. 93.09 - 93.36: same as 92.25-92.88 meters with 7-9% pyrite. 93.36 - 95.38: dark purple-grey silicified breccia with minor vare honey colouration below 95.06 meters. Carries 3-2 pyrite as a very fine dissemination, as 1mm cubes and as 0.5-1.5cm seams in breccia matrix. Up to 1 pyrite is noted locally. Carries many cross-cutting unarts stringers. 95.38 - 96.20: honey coloured to pale purple-grey, silicified breccia clasts cut by a network of later chloritized fractures. 96.20 - 96.76: 80% pale purple-grey, occasionally honey or pale pink hued, silicified breccia with 20% dark green, chloritized and moderately hematized rock. Carried up to 5% pyrite in silicified rock; 0-1% in chloritized rock. 96.76: lower contact is against a chloritized tuffaceous bed - no slickensides although change is very sharp. TRANSITIONAL SILICIFIED SEDIMENTS Dark green, fine to very fine grained, chloritized sediments with abundant (10-20%), silicified breccia seams up to 40cm thickness haveraging 10-20cm thickness. The degree of silicification is not maximum strength and broader zones tend to be broken by chloritized seams. Few sections on a meter scale are greater than 50% silicification is mostly controlled by carbonatized 	686 686 686 687 687 687 687 07 ng ec	1DES 7 5-7 9 3-5 9 3-5 1 4-6 2 2-4	92.88 93.36 94.05 94.86 95.38 96.20	10 93.36 94.05 94.86 95.38 96.20 96.76	TOTAL 0.48 0.69 0.81 0.52 0.82 0.56			tr. tr. tr. tr. 0.05 tr.		
		breccia seams and beds although some selective alteration of individual laminations is noted. Silicified breccia is similar in purple-grey colouration to the main silicified zone. Likewise, an increase in pyrite content is noted in silicified rock, most of which is reactive to HC1. Bedding laminations are variably developed and are best observed when silicified or carbonatized. Major beds of silicified breccia are found at: 100.30-100.37;										

LANGRIDGES - TORONTO - 366-1168

NAME OF PROPERTY_

HOLE NO.

Mc. 84-75

Lost Treasure

_ SHEET NO. _____ 6 OF 9

FOOT	AGE	DESCRIPTION		_	SAMPL	E				ASSAYS		
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	~.	•	OZ TON	OZ TON	
		107.99-108.14; 110.10-110.28; 111.47-111.64; 111.71-111.80; 116.12-116.35; 120.40-120.73; 143.20-143.38; 114.40-114.50 and 145.79-146.20 meters.										
		96.76 -101.09: 5-10% silicified breccia and silicified lamination	s. 6873	1-3	96.76	97.50	0.74			tr.	ſ	(
		Relic bedding laminations at 45 ⁰ to core axis at	6874	1	97.50	98.34	0.84			tr.		
		98.50 meters. A narrow grit and clay filled fault	6875	0-1	98.34	99.30	0.96			tr.		
		plane is noted at 75° to core axis at 101.09 m.	6876	0-1	99.30	100.22	0.92			tr.		
ļ		98.91-99.06: reddish-brown, aphanitic (syenite?)	6877		100.22	101.09	0.8/			tr.		
		zone with fragments of this found in overlying	6878		101.09	101.98	0.89			tr.		
		sediments up to 98.76 meters. May be an intensely	6879	0-1	101.98	102.83	0.85			tr.		
		hematized and silicified zone. Lower contact is	6880	0-1	102.83	104.00	1.1/			tr.		
		best developed at 50-55° to core axis. Upper	6881		104.00	105.00	1.00			0.01		
		contact is irregular (erosion?). A similar but	6882		105.00	106.00	1.00			0.01		
		intensely brecclated zone 18 at 99.88-99.90 m.	0003	0-1	106.00	100.52	0.52			0.01		
		101.09-102.83: 50-60% silicified breecia.	6004	0-1	107.04	107.04	0.92			0.01		
1		102.83-106.52: 20-30% silicified preceia = reddish syenitic: 20		0-1	107.04	109 05	0.95			0.01		
		at 103.62-103.77 meters. Fragments of this reduis	6997		108 05	100.93	1 02			0.01		
		rock are round in overlying and underlying	6007	0-1	100.93	110 05	0.02			0.01		
		sediments. A second zone is noted at 100.55 to	6880		110 95	111 95	1 00			0.01		
1		106.45 meters.	6890	0-1	111 95	112 94	0.99			0 01		[
		100.52-107.04: DIORITE - dark green, the grained, well developed	6801	0-1	112 94	112 77	0.83			++		
		chills. Sediments are preculated hear the	6892	0-1	113.77	114.45	0.68			tr.		
		107 0/-110 10 came as 102 83-106 52 meters. A parrow very pale	6893	0-1	114.45	115.48	1.03			tr.		
		107.04-110.10; same as $102.03-100.32$ meters. A hallow very pare	6894		1154.8	116.55	1.07			tr.		1
		carries 30% hornhlandes up to 1mm as phenorrysts i	n 6895	0-1	116.55	117.53	0.98			tr.		
		an anhanitic giliceous matrix.	6896	0-1	117.53	118.57	1.04			tr.		}
		$110.10-113.77 \cdot 40-50\%$ gilicified breccia.	6897	0-1	118.57	119.51	0.94			tr.	1	
		113.77-114.30: dark green, fine grained sediments carrying 1-3%	6898	0-1	119.51	120.41	0.90			tr.		
		reddish-brown siliceous clasts.	6899	2-3	120.41	120.73	0.32			tr.]
		114.30-114.32: very fine grained, green chloritized seam.	6900	0-1	120.73	121.11	0.38			tr.		1
		114.32-114.45: same as 98.91-99.06 meters - svenite??	6901	0-1	121.11	121.70	0.59			tr.		1
		114.45-115.48: dark green with 10-20% purple-grey to pink	6902	0-1	121.70	122.67	0.97			tr.		1
(silicified breccia seams.	6903	0-1	122.67	123.69	1.02			tr.	1	(
1		115.48-116.94: 40-50% silicified breccia.	6904	0-1	123.69	124.67	0.98			tr.		[
1	I		ł	I							E E	1

FORM 2

366-1168

TORON TO

LANGRIDGES

NAME OF PROPERTY_____Lost Treasure

HOLE NO. _____ Mc. 84-75 ____ SHEET NO. ____ 7 OF 9

rec rec reconstruction <	FOOT	TAGE		DESCRIPTION			SAMPI	E				ASSAYS		
116.94-121.11: 10-20 silicified breecia. Bedding laminations visible locally as a relic structure - eg. 118.52 to (60-65° to core axis). 6005 0-1 124.67 125.65 0.98 (600-61 123.65 127.85 1.00 (77.85 127.85 1.00) tr. tr. (60-65° to core axis). tr. (60-65° to core axis). 100 (77.85 127.85 1.00) tr. (77.85 127.85 127.85 1.00) tr. (77.85 127.85	FROM	то	1	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	· .	~.	OZ TON	OZ TON	
116.94-121.11: 10-202 stiltcified breccia. Bedding Laminations (905) 0-1 124.67 125.65 0.98 (r. 120) (r. 18.66 meters (40-45% to core); and, at 121.08 m (50-65% to core axis). 121.11-121.63: gale green colour - no slitcified breccia or (909) 0-1 128.85 128.85 1.00 (r. 126.85 127.85 1.00 (r. 126.85 127.85 1.00 (r. 126.85 127.85 1.00 (r. 126.85 127.85 1.00 (r. 126.85 126.85 1.00 (r. 126.85 126.85 1.00 (r. 126.85 127.85 1.00 (r. 126.85 126.85 126.85 1.00 (r. 126.85 126.85 126.85 1.00 (r. 126.85 126.85 126.85 126.85 1.00 (r. 126.85 126.85 11.85 1.00 (r. 126.85 126.85 11.85 126.85 1.00 (r. 126.85 126.85 126.85 126.85 1.00 (r. 126.85 126 (r. 126.85 126.85 126.85 126.85 126.85 126						1025	PROM		TOTAL					<u> </u>
<pre>visible locally as a relic structure - eg. 118.5 to 6906 0-1 125.65 126.65 1.20 tr. 118.66 meters (40-45% to core); and, at 121.05 meters (60-65% to core axis). 6908 0-1 127.85 128.65 1.00 tr. carboantized laminations. 6910 0-1 127.85 128.45 1.00 tr. carboantized laminations. 6910 0-1 129.85 129.65 1.00 tr. carboantized laminations. 6910 0-1 129.85 129.65 1.00 tr. carboantized laminations. 6910 0-1 129.85 129.65 1.00 tr. carboantized laminations. 6910 0-1 129.85 130.85 1.00 tr. carboantized laminations. 6910 0-1 129.85 131.88 1.03 0.01 bed at 40° to core axis. 6911 0-1 130.85 133.86 1.09 0.01 laminations at 30-35° to core axis. 6910 0-1 132.88 132.88 1.00 0.01 laminations at 30-35° to core axis. 6910 0-1 132.86 134.86 1.00 0.01 laminations at 30-35° to core axis. 6910 0-1 134.86 135.46 1.00 0.01 laminations at 30-35° to core axis. 6917 0-1 134.86 135.46 1.00 0.01 laminations at 30-35° to core axis. 6917 0-1 136.80 137.60 1.00 tr. laminations at 30-35° to core axis. 6917 0-1 136.80 137.60 1.00 tr. laminatic second labels of 6919 2-3 138.60 139.26 0.66 tr. laminatic second labels of 6919 2-3 138.60 139.26 0.66 tr. tr. thickness. 6922 0-1 140.26 140.25° 140.26 1.00 tr. core axis. 6921 0-1 140.26 140.25° 140.2</pre>			116.94-121.11:	10-20% silicified breccia. Bedding laminations	6905	0-1	124.67	125.65	0.98	ł	}	tr.		1
$ \begin{array}{c} 118.66 \text{ meters} (40-59 \text{ to core}); \text{ and, at } 121.08 \text{ m} \\ (60-69^{\text{ to core axis}}, \\ 121.11-121.63; \text{ pale green colour - no silicified breccia or \\ core axis, \\ 121.63-121.70; \text{ pale greygreen micaceous} (biotitic?) sedimentary \\ (600) 0-1128.45 129.45 130.83 1.00 \\ tr. \\ (601) 0-1120.48 131.48 1.03 \\ (010) 0-1122.48 131.48 1.03 \\ (010) 0-1122.48 131.48 1.03 \\ (010) 0-1123.48 133.48 1.00 \\ (011) 0-1130.48 133.48 1.00 \\ (011) 0-1130.48 133.48 1.00 \\ (011) 0-1132.48 133.48 1.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (011) 0-1139.26 10.00 \\ (012) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.20 \\ (013) 0-1144.25 143.2$				visible locally as a relic structure - eg. 118.52 to	6906	0-1	125.65	126.85	1.20			tr.		
(60-65° to core axis.) 6908 0-1 127.85 128.85 1.00 tr. 121.1-121.63 pale gree colour - no silicified breccia or carbonatized laminations. 6908 0-1 127.85 128.85 1.00 tr. 121.63-121.70: pale grey green micaceous (biotitic?) sedimentary for carbonatized laminations. 6910 0-1 129.85 130.85 1.00 tr. 121.70-130.27: bait at 40° to core axis. 6911 0-1 132.88 1.03 0.01 130.27-130.27: b-107 silicified breccia. 6913 0-1 132.88 1.00 0.01 130.27-130.27: b-107 silicified breccia and balos of silicified breccia and balos of silicified breccia and balos of silicified breccia and balos of silicified breccia and balos of silicified breccia and balos of silicified breccia and balos of silicified breccia in seams up to 5cm 6912 0-1 132.68 1.00 tr. 137.05-143.20: 10-207 silicified breccia with some laminations 6921 0-1 142.25 143.20 0.38 0.01 tr. 137.05-143.20: 10-207 silicified breccia with some laminations 6921 0-1 142.25 143.20 0.38 0.1 tr. <td></td> <td></td> <td></td> <td>118.66 meters $(40-45^{\circ} \text{ to core})$: and at 121.08 m</td> <td>6907</td> <td>0-1</td> <td>126.85</td> <td>127.85</td> <td>1.00</td> <td>1</td> <td></td> <td>tr.</td> <td></td> <td></td>				118.66 meters $(40-45^{\circ} \text{ to core})$: and at 121.08 m	6907	0-1	126.85	127.85	1.00	1		tr.		
121.11-121.63: pate premonications - no silicified breecia or carbonatized laminations. 6900 0-1 128.85 1.00 tr. 121.63-121.70: pate grey green micaceous (biotitic?) sedimentary bed at 40° to core axis. 6910 0-1 130.85 1.00 0.01 121.70-130.27: 5-102 silicified breccia. 6911 0-1 130.85 1.00 0.01 130.27-130.55: increasing degree of carbonatization with mearly massive pink low carbonate beds locally. Bedding 6912 0-1 133.86 1.36 0.01 130.55-136.63: 20-402 purple-grey silicified breccia. 6918 0-1 133.66 1.00 0.01 136.63-137.05: 40-502 silicified breccia and hales of silicification surrounding fractures in seams up to 5cm 6918 0-1 136.60 1.00 tr. 143.20-143.81: 50-602 silicified breccia with some laminations completely carbonatized prior to silicification. Carries up to 32 pyrite. Bedding at 40-45° to 6922 6923 0-1 142.25 142.25 142.25 142.25 142.25 142.25 142.25 142.25 142.25 142.25 142.25 142.25 142.25 142.25 143.80 145.79 0.99 tr. <td></td> <td></td> <td></td> <td>$(60-65^{\circ}$ to core axis).</td> <td>6908</td> <td>0-1</td> <td>127.85</td> <td>128.85</td> <td>1.00</td> <td></td> <td></td> <td>tr.</td> <td></td> <td></td>				$(60-65^{\circ}$ to core axis).	6908	0-1	127.85	128.85	1.00			tr.		
121.63-121.70: pale grey-green micsceous (biotitic?) sedimentary bed at 40° to core axis. 6910 0-1 129.85 130.85 1.00 0.01 121.70-130.27: 5-107 silicified breccia. 6910 0-1 130.85 130.86 0.098 0.01 130.27-130.27: 5-107 silicified breccia. 6913 0-1 132.86 1.48 1.00 0.01 130.27-130.27: 5-107 silicified breccia. 6914 0-1 133.86 1.48 1.00 0.01 130.55-136.63: 20-402 purple-grey silicified breccia. 6917 0-1 135.86 1.60 0.74 0.01 136.63-137.05: 40-507 silicified breccia and halos of silicification surrounding fractures in seams up to thickness. 6912 0-1 136.60 1.00 tr. 137.05-143.20: 10-207 silicified breccia in seams up to 5cm completely carbonatized prior to silicificatiou. Cartries up to 32 pyrite. Bedding at 40-45° to core axis. 6921 0-1 142.25 143.81 0.00 147.48 143.81 0.99 tr. 143.81-45.79: 5-07 silicified breccia. 6924 0-1 142.25 143.20 0.95 tr. 143.81-45.79: </td <td></td> <td></td> <td>121.11-121.63:</td> <td>pale green colour - no silicified breccia or</td> <td>6909</td> <td>0-1</td> <td>128.85</td> <td>129.85</td> <td>1.00</td> <td></td> <td></td> <td>tr.</td> <td></td> <td> </td>			121.11-121.63:	pale green colour - no silicified breccia or	6909	0-1	128.85	129.85	1.00			tr.		
121.63-121.70: paie grey-green micaceous (biotitic?) sedimentary bid at 40° to core axis. 6911 0-1 13.68 131.88 1.00 0912 0-1 13.88 13.288 1.00 0912 0-1 13.88 133.86 0.98 0.01 0.01 121.70-130.27: 5-10% silicified breecia. 6911 0-1 13.68 133.86 1.00 0.01 0.01 130.27-130.55: increasing degree of carbonatization with nearly massive pink 10cm carbonate beds locally. Bedding 1aminations at 30-35° to core axis. 6916 0-1 133.86 134.86 1.00 0.01 0.01 130.55-136.63: 20-407 purple-grey silicified breccia. 6917 0-1 13.66 133.60 1.00 tr. 136.63-137.05: 40-50% silicified breccia in seams up to 1cm thickness. 6918 0-1 137.60 138.60 1.00 tr. 137.05-143.20: 10-20% silicified breccia in seams up to 5cm completely carbonatized priot to silicification. Carries up to 3% pyrite. Bedding at 40-45° to 220 0-1 142.25 143.20 1.43.81 0.61 tr. 143.81-45.79: 5-10% silicified breecia with 1-2% very finely disseminated pyrite. 6922 0-1 144.26 143.80 0.99 tr. 146.20-149.35: 10% silicified breecia in seams up to 5cm. 6929 0-1 147.00 147.98 0.98 0.01 146.20-149.35: 10% silicified breecia with 1-2% very finely disseminated pyrite. 6921 0-1 147.00 147.98 0.99 tr. 143.81-45.79: 5-10% silicified breecia with 1-2% very finely disseminated silicified breecis and thoreceis with up to 37 093 0-1 147.98 148.74 0.76				carbonatized laminations.	6910	0-1	129.85	130.85	1.00		ļ	tr.	:	
121.70-130.27: 5-107 silicified breecia. 6912 0-1 131.88 132.88 1.00 0.01 130.27-130.55: increasing degree of carbonatization with nearly massive pink 10cm carbonate beds locally. Bedding 6913 0-1 133.86 133.86 1.00 0.01 130.25-136.63: 20-407 purple-grey silicified breecia. 6914 0-1 133.86 136.60 0.74 0.01 130.55-136.63: 20-407 purple-grey silicified breecia. 6912 0-1 133.86 136.60 1.00 tr. 130.55-136.63: 20-407 purple-grey silicified breecia. 6918 0-1 133.86 1.00 tr. 1310.55-137.05: 40-507 silicified breecia and halos of silicification surrounding fractures in seams up to 5cm thickness. 6912 0-1 136.60 1.00 tr. 137.05-143.20: 10-207 silicified breecia with some laminations completely carbonatized prior to silicification. 6922 0-1 140.25 142.25 1.00 tr. 143.20-143.81: 50-607 silicified breecia. 6922 0-1 143.81 0.61 tr. 143.81-145.79: 5-107 silicified breecia. 6922 142.25 143.			121.63-121.70:	pale grey-green micaceous (biotitic?) sedimentary	6911	0-1	130.85	131.88	1.03			0.01		
121.70-130.27: 5-107 silicified breecia. 6913 0-1132.88 133.86 0.98 0.01 130.27-130.55: increasing degree of carbonate beds locally. Bedding 6914 0-1133.86 138.86 1.00 0.01 1aminations at 30-35° to core axis. 6916 0-1133.86 138.66 0.00 0.01 130.55-136.63: 20-407 purple-grey silicified breccia. 6917 0-1135.86 136.60 0.74 0.01 136.63-137.05: 40-500 silicified breccia and halos of 6918 0-1137.60 138.60 1.00 tr. 137.05-143.20: 10-207 silicified breccia in seams up to 5cm 6920 0-1139.26 140.26 141.25 0.99 tr. 143.20-143.81: 50-607 silicified breccia with some laminations 6922 0-1142.25 143.20 0.95 tr. 143.20-143.81: 50-607 silicified breccia with some laminations 6927 0-1143.81 144.80 0.99 tr. 143.81-145.79: 5-107 silicified breccia with 1-27 very finely 6927 0-144.80 165.70 0.99 tr. 143.81-145.79: 5-107 silicified breccia in seams up to 5cm. 6927				bed at 40° to core axis.	6912	0-1	131.88	132.88	1.00			0.01		
130.27-130.55: Increasing degree of carbonatization with nearly massive pink 10cm carbonate beds locally. Bedding defined for the set of the			121.70-130.27:	5-10% silicified breccia.	6913	0-1	132.88	133.86	0.98			0.01		
massive pink 0.0m carbonate beds locally. Bedding laminations at 30-35° to core axis. 6915 0-1 134.86 135.86 1.00 0.01 130.55-136.63: 20-402 purple-grey silicified breecia. 6917 0-1 136.60 137.60 1.00 tr. 136.63-137.05: 40-502 silicification surrouding fractures in seams up to lcm thickness. 6918 0-1 137.60 138.60 10.00 tr. 137.05-143.20: 10-20Z silicified breccia in seams up to 5cm thickness. 6922 0-1 140.26 140.26 1.00 tr. 143.20-143.81: 50-60Z silicified breccia with some lamination corre axis. 6922 0-1 141.25 142.25 1.00 tr. 143.81-145.79: 5-10Z silicified breccia. 6922 0-1 143.80 0.99 tr. 145.79-146.20: 80-90X silicified breccia. 6927 0-2 144.80 145.79 0.40 146.20-149.35: 10Z silicified breccia with 1-2Z very finely disseminated pyrite. 6927 1-1 146.20 0.41 0.04 145.79-146.20: 80-90X silicified breccia with 1-2Z very finely disseminated pyrite. 6929 1 147.			130.27-130.55:	increasing degree of carbonatization with nearly	6914	0-1	133.86	134.86	1.00		1	0.01	I	[
laminations at 30-35° to core axis. 6916 0-1 135.66 136.60 0.74 0.01 130.55-136.63: 20-402 purple-grey silicified breccia. 6917 0-1 136.60 137.60 1.00 tr. 136.63-137.05: 40-50X silicified breccia in halos of silicification surrounding fractures in seams up to lum thickness. 6919 2-3 138.60 1.00 tr. 137.05-143.20: 10-20X silicified breccia in seams up to 5cm thickness. 6921 0-1 140.25 142.25 1.00 tr. 143.20-143.81: 50-60X silicified breccia with some laminations completely carbonatized prior to silicification. Garries up to 3X pyrite. Bedding at 40-45° to core axis. 6922 0-1 142.25 143.80 0.61 tr. 143.81-145.79: 5-10X silicified breccia. 6924 0-3 143.81 0.48 0.69 tr. 144.25.79: 5-10X silicified breccia with -2X very finely disseminated pyrite. 6927 1-2 145.79 0.44 0.04 145.79-146.20: R0-30 x pinkish hued silicified breccia with up to 3X 6931 0-1 148.27 0.47 0.01 145.20-149.35: 10X silicified breccia in seams up to 5cm. 6				massive pink 10cm carbonate beds locally. Bedding	6915	0-1	134.86	135.86	1.00			0.01		
130.55-136.63: 20-407 purple-grey silicified breccia. 6917 0-1 136.60 137.60 1.00 tr. 136.63-137.05: 40-507 silicified breccia and halos of 6918 0-1 137.60 138.60 1.00 tr. 137.05-143.20: 10-207 silicified breccia in seams up to 5cm 6919 2.3 138.60 139.26 0.66 tr. 137.05-143.20: 10-207 silicified breccia in seams up to 5cm 6921 0-1 140.25 140.25 1.00 tr. 143.20-143.81: 50-607 silicified breccia with some laminations 6922 0-1 142.25 1.00 tr. tr. 143.81-145.79: 5-107 silicified breccia. 144.80 144.80 0.99 tr. tr. 143.81-145.79: 5-107 silicified breccia with 1-27 very finely 6922 0-1 144.80 145.79 0.99 tr. 145.79-146.20: 80-907 silicified breccia with 1-27 very finely 6928 0-1 146.20 147.98 0.98 0.01 149.35-150.02: 70-807 pinkish hued silicified breccia with up to 37 6931 0-1 147.98 0.88 0.01 149.35-150.21: same as 146.20-149.35 meters - a small increase in brecciation at 161.55-108.0 meters <t< td=""><td></td><td></td><td></td><td>laminations at $30-35^\circ$ to core axis.</td><td>6916</td><td>0-1</td><td>135.86</td><td>136.60</td><td>0.74</td><td>i</td><td></td><td>0.01</td><td></td><td></td></t<>				laminations at $30-35^\circ$ to core axis.	6916	0-1	135.86	136.60	0.74	i		0.01		
136.63-137.05: 40-507 stilicified preceia and halos of silicification surrounding fractures in seams up to silicification surrounding fractures in seams up to com thickness. 6918 0-1 137.60 138.60 139.26 0.66 tr. 137.05-143.20: 10-20X silicified breccia in seams up to Scm thickness. 6920 0-1 139.26 140.26 141.25 0.99 tr. 143.20-143.81: 50-60X stilicified breccia with some laminations completely carbonatized prior to stilicification. 6923 0-1 142.25 143.20 0.95 tr. 143.81-145.79: 5-10X stilicified breccia with some laminations core axis. 6924 0-1 143.81 0.61 tr. 143.81-145.79: 5-10X stilicified breccia. 6925 0-1 143.81 0.61 tr. 145.79-146.20: 80-90X stilicified breccia with 1-2X very finely disseminated pyrite. 6928 0-1 146.20 147.00 0.80 0.01 149.35-150.02: 70-80X pinkish hued stilicified breccia with up to 37 6931 0-1 148.74 149.35 0.61 0.01 149.35-150.02: 70-80X pinkish hued stilicified breccia with up to 37 6931 0-1 148.74 149.35 0.61<			130.55-136.63:	20-40% purple-grey silicified breccia.	6917	0-1	136.60	137.60	1.00	1		tr.		
silicification surrounding fractures in seams up to 6919 2-3 138.60 139.26 0.66 tr. 137.05-143.20: 10-20X silicified breccia in seams up to 5cm 6920 0-1 139.26 140.26 1.000 tr. 143.20-143.81: 50-60X silicified breccia with some laminations 6921 0-1 140.25 142.25 0.99 tr. 143.20-143.81: 50-60X silicified breccia with some laminations 6922 0-1 144.25 143.20 0.95 tr. 143.21-145.79: 50-60X silicified breccia. 6924 2-3 143.81 0.61 tr. 143.81-145.79: 5-10X silicified breccia. 6927 1-2 145.79 146.20 0.41 0.04 145.79-146.20: 80-90X silicified breccia with 1-2X very finely 6928 0-1 144.80 0.99 tr. 143.93-145.79: 5-00X silicified breccia with up to 3X 6930 0-1 143.28 145.79 0.66 0.01 143.93-145.20: 80-90X silicified breccia with up to 3X 991 147.00 0.80 0.00 0.01 149.35: 100X silicified breccia in seams up t			136.63-137.05:	40-50% silicified breccia and halos of	6918	0-1	137.60	138.60	1.00			tr.		
lcm thickness. 6920 0-1 139.26 140.26 1.00 tr. 137.05-143.20: 10-20X silicified breccia in seams up to 5cm 6921 0-1 140.26 141.25 0.99 tr. 143.20-143.81: 50-60X silicified breccia with some laminations 6922 0-1 141.25 142.25 143.20 0.95 tr. 143.20-143.81: 50-60X silicified breccia. 6924 0-3 143.20 143.81 0.61 tr. carries up to 3X pyrite. Bedding at 40-450 to 6925 0-1 143.81 0.61 tr. 143.81-145.79: 5-10X silicified breccia. 6927 1-2 145.79 0.99 tr. 143.81-145.79: 5-10X silicified breccia with 1-2Z very finely 6926 0-1 144.80 0.99 tr. 145.79-146.20: 80-90X silicified breccia with 1-2Z very finely 6927 1-2 145.79 0.62 0.41 0.04 146.20-149.35: 10X silicified breccia with 0 to 3X 6931 0-1 147.98 0.98 0.01 149.35-150.02: 70-80X pinkish hued silicified breccia with up to 3X 6931				silicification surrounding fractures in seams up to	6919	2-3	138.60	139.26	0.66			tr.		
137.05-143.20: 10-20% silicified breccia in seams up to 5cm thickness. 6921 0-1 140.26 141.25 0.99 tr. 143.20-143.81: 50-60% silicified breccia with some laminations completely carbonatized prior to silicification. Carries up to 3% pyrite. Bedding at 40-45% to core axis. 6924 2-3 143.20 143.20 143.20 143.20 143.20 143.20 0.99 tr. 143.81-145.79: 5-10% silicified breccia. 6924 2-3 143.20 143.20 0.41 0.61 tr. 143.81-145.79: 5-10% silicified breccia. 6926 0-1 144.80 145.79 0.99 tr. 145.79-146.20: 80-90% silicified breccia with 1-2% very finely disseminated pyrite. 6928 0-1 146.20 147.00 0.80 0.01 146.20-149.35: 10% silicified breccia in seams up to 5cm. 6930 0-1 147.98 148.74 0.76 0.01 149.35-150.02: 70-80% pinkish hued silicified breccia with up to 3% 6931 0-1 149.35 150.02 0.67 0.01 149.35-150.02: 70-80 145.50 61.80 0.91 0-1 150.90 150.90 <t< td=""><td></td><td></td><td></td><td>lcm thickness.</td><td>6920</td><td>0-1</td><td>139.26</td><td>140.26</td><td>1.00</td><td></td><td></td><td>tr.</td><td></td><td></td></t<>				lcm thickness.	6920	0-1	139.26	140.26	1.00			tr.		
thickness. 6922 0-1 141.25 142.25 1.00 tr. 143.20-143.81: 50-607 stlicified brectia with some laminations completely carbonatized prior to silicification. Carries up to 3% pyrite. Bedding at 40-450 to core axis. 6922 0-1 142.25 143.20 0.95 tr. 143.81: 143.81 0.61 tr. tr. tr. tr. core axis. 6926 0-1 144.80 145.79 0.99 tr. 143.81-145.79: 5-107 stlicified breccia. 6927 1-2 145.79 0.99 tr. 145.79-146.20: 80-907 stlicified breccia with 1-2% eyry finely 6928 0-1 146.20 147.00 0.88 0.01 disseminated pyrite. 6920 1 147.00 147.98 0.98 0.01 149.35-150.02: 70-807 pinkish hued silicified breccia with up to 3% 6931 0-1 148.74 149.35 0.61 0.01 149.35-150.02: 70-807 pinkish nued silicified breccia with up to 3% 6933 0-1 148.74 149.35 0.61 0.01 pyrite locally. 6933 0-1 150.02			137.05-143.20:	10-20% silicified breccia in seams up to 5cm	6921	0-1	140.26	141.25	0.99			tr.		
143.20-143.81: 50-60% silicified breccia with some laminations completely carbonatized prior to silicification. Carries up to 3% pyrite. Bedding at 40-45° to core axis. 6923 0-1 143.20 143.20 0.95 tr. 143.81-145.79: 5-10% silicified breccia. 6926 0-1 144.80 145.79 0.99 tr. 143.81-145.79: 5-10% silicified breccia. 6927 1-2 145.79 146.20 0.41 0.04 145.79-146.20: 80-90% silicified breccia with 1-2% very finely disseminated pyrite. 6927 1-2 145.79 146.20 0.41 0.04 146.20-149.35: 10% silicified breccia with 1-2% very finely disseminated pyrite. 6929 1 147.00 147.98 0.98 0.01 149.35-150.02: 70-80% pinkish hued silicified breccia with up to 3% 6931 0-1 148.74 149.35 0.61 0.01 150.02-172.63: same as 146.20-149.35 meters - a small increase in brecciation at 161.55-161.80 meters. 6934 0-1 150.90 1.50 0.88 0.01 150.02 128.94 159.90 1.00 0.01 1.00 0.01 1.00 0.01 0.1 0.1 0.01 </td <td></td> <td></td> <td></td> <td>thickness.</td> <td>6922</td> <td>0-1</td> <td>141.25</td> <td>142.25</td> <td>1.00</td> <td>1</td> <td></td> <td>tr.</td> <td></td> <td></td>				thickness.	6922	0-1	141.25	142.25	1.00	1		tr.		
completely carbonatized prior to silicification. 6924 2-3 [43.20] 143.81 0.61 tr. Carries up to 3Z pyrite. Bedding at 40-45° to core axis. 6925 0-1 143.81 144.80 0.99 tr. 143.81-145.79: 5-10Z silicified breccia. 6927 1-2 145.79 146.20 0.41 0.04 145.79-146.20: 80-90Z silicified breccia with 1-2Z very finely disseminated pyrite. 6928 0-1 144.80 145.79 0.80 0.01 146.20-149.35: 10Z silicified breccia in seams up to 5cm. 6930 0-1 147.00 147.98 0.88 0.01 149.35-150.02: 70-80Z pinkish hued silicified breccia with up to 3Z 6931 0-1 148.74 149.35 0.61 0.01 149.35-150.02: 70-80Z pinkish hued silicified breccia with up to 3Z 6931 0-1 148.74 149.35 0.61 0.01 150.02-172.63: same as 146.20-149.35 meters 6933 0-1 150.02 151.90 0.88 0.01 Merciation at 161.55-161.80 meters 6936 0-1 152.90 150.00 0.01 <td< td=""><td></td><td></td><td>143.20-143.81:</td><td>50-60% silicified breccia with some laminations</td><td>6923</td><td>0-1</td><td>142.25</td><td>143.20</td><td>0.95</td><td></td><td>]</td><td>tr.</td><td></td><td></td></td<>			143.20-143.81:	50-60% silicified breccia with some laminations	6923	0-1	142.25	143.20	0.95]	tr.		
Carries up to 32 pyrite. Bedding at 40-45° to core axis. 6925 0-1 143.81 144.80 0.99 tr. 143.81-145.79: 5-102 silicified breccia. 6926 0-1 144.80 145.79 0.99 tr. 145.79-146.20: 80-902 silicified breccia with 1-2% very finely disseminated pyrite. 6928 0-1 146.20 147.00 0.80 0.01 146.20-149.35: 107 silicified breccia in seams up to 5cm. 6929 1 147.00 147.98 0.98 0.01 149.35-150.02: 70-802 pinkish hued silicified breccia with up to 3% 6931 0-1 148.74 149.35 0.661 0.01 149.35-150.02: 70-807 pinkish hued silicified breccia with up to 3% 6931 0-1 148.74 149.35 0.661 0.01 149.35-150.02: 70-807 pinkish hued silicified breccia with up to 3% 6931 0-1 150.02 151.90 0.88 0.01 149.35 160.20-149.35 meters - a small increase in brecciation at 161.55-161.80 meters. 6933 0-1 150.02 151.90 0.88 0.01 150.02 164ding: 40° at 168.70 meters 6936				completely carbonatized prior to silicification.	6924	2-3	143.20	143.81	0.61			tr.		
core axis. 6926 0-1 144.80 145.79 0.99 tr. 143.81-145.79: 5-107 silicified breccia. 6927 1-2 145.79 146.20 0.41 0.04 145.79-146.20: 80-907 silicified breccia with 1-27 very finely 6928 0-1 146.20 147.00 0.80 0.01 146.20-149.35: 107 silicified breccia in seams up to 5cm. 6930 0-1 147.98 148.74 0.76 0.01 149.35-150.02: 70-807 pinkish hued silicified breccia with up to 37 6931 0-1 148.74 149.35 0.61 0.01 149.35-150.02: 70-807 pinkish bued silicified breccia with up to 37 6931 0-1 148.74 149.35 0.61 0.01 149.35-150.02: 70-807 pinkish bued silicified breccia with up to 37 6931 0-1 148.74 149.35 0.61 0.01 150.02-172.63: same as 146.20-149.35 meters. 6933 0-1 150.02 0.57 0.01 brecciation at 161.55-161.80 meters. 6935 0-1 151.90 152.90 1.00 0.01 40° at 168.70 me				Carries up to 3% pyrite. Bedding at 40-45° to	6925	0-1	143.81	144.80	0.99			tr.		
143.81-145.79: 5-10% silicified breccia. 6927 1-2 145.79 146.20 0.41 0.04 145.79-146.20: 80-90% silicified breccia with 1-2% very finely disseminated pyrite. 6928 0-1 146.20 147.00 0.47 0.01 146.20-149.35: 10% silicified breccia in seams up to 5cm. 6930 0-1 147.98 148.74 0.76 0.01 149.35-150.02: 70-80% pinkish hued silicified breccia with up to 3% 6931 0-1 148.74 149.35 0.61 0.01 150.02-172.63: same as 146.20-149.35 meters - a small increase in brecciation at 161.55-161.80 meters. 6933 0-1 150.02 151.90 0.88 0.01 150.02-172.63: same as 146.70 meters. 6935 0-1 150.90 151.90 0.88 0.01 160.70 40° at 168.70 meters 6936 0-1 151.90 152.90 1.00 0.01 40° at 168.70 meters 6937 0-1 153.95 1.05 tr. 70° at 172.55 meters 6937 0-1 153.95 1.00 tr. A reference sample was taken at 168.66-168.77 meters 6938				core axis.	6926	0-1	144.80	145.79	0.99	ļ		tr.		
145.79-146.20: 80-90% silicified breccia with 1-2% very finely disseminated pyrite. 6928 0-1 146.20 147.00 0.80 0.01 146.20-149.35: 10% silicified breccia in seams up to 5cm. 6930 0-1 147.98 148.74 0.76 0.01 149.35-150.02: 70-80% pinkish hued silicified breccia with up to 3% 6931 0-1 148.74 149.35 0.61 0.01 150.02-172.63: same as 146.20-149.35 meters - a small increase in brecciation at 161.55-161.80 meters. 6933 0-1 150.02 151.90 0.88 0.01 0.01 0.02 155.20 meters 6935 0-1 151.90 1.80 0.01 0.01 40° at 168.70 meters 6937 0-1 151.90 1.50 0.01 0.01 40° at 168.70 meters 6937 0-1 153.95 1.05 tr. 148 149.55 1.55.97 meters 6936 0-1 151.90 1.00 0.01 0.01 1.68.66-168.77 meters 6937 0-1 153.95 1.05 tr. 1.05 1.68.66-168.77 meters 6938 0-1			143.81-145.79:	5-10% silicified breccia.	6927	1-2	145.79	146.20	0.41	Į		0.04		
disseminated pyrite. 6929 1 147.00 147.98 0.98 0.01 146.20-149.35: 107 silicified breccia in seams up to 5cm. 6930 0-1 147.98 148.74 0.76 0.01 149.35-150.02: 70-807 pinkish hued silicified breccia with up to 37 6931 0-1 148.74 149.35 0.61 0.01 pyrite locally. 6932 1-3 149.35 150.02 0.67 0.01 150.02-172.63: same as 146.20-149.35 meters - a small increase in brecciation at 161.55-161.80 meters. 6934 0-1 150.02 151.90 0.88 0.01 150.02-172.63: same as 146.20-149.35 meters 6934 0-1 150.02 151.90 0.88 0.01 140° at 168.70 meters. 6934 0-1 150.90 151.90 0.88 0.01 40° at 168.70 meters 6935 0-1 151.90 152.90 1.00 0.01 40° at 168.70 meters 6936 0-1 152.90 153.95 1.05 tr. 70° at 172.55 meters 6938 0-1 154.95 156.01 1.06 tr.			145.79-146.20:	80-90% silicified breccia with 1-2% very finely	6928	0-1	146.20	147.00	0.80			0.01		
146.20-149.35: 10% silicified breccia in seams up to 5cm. 6930 0-1 147.98 148.74 0.76 0.01 149.35-150.02: 70-80% pinkish hued silicified breccia with up to 3% 6931 0-1 148.74 149.35 0.61 0.01 pyrite locally. 6932 1-3 149.35 150.02 0.67 0.01 150.02-172.63: same as 146.20-149.35 meters - a small increase in brecciation at 161.55-161.80 meters. 6933 0-1 150.02 151.90 0.88 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 brecciation at 161.55-161.80 meters. 6935 0-1 150.90 151.90 0.00 0.01 Areference sample was taken at 168.70 meters 6936 0-1 152.90 153.95 1.00 tr. A reference sample was taken at 168.66-168.77 meters 6938 0-1 154.95 156.01 1.06 tr.				disseminated pyrite.	6929	1	147.00	147.98	0.98			0.01		
149.35-150.02: 70-80% pinkish hued silicified breccia with up to 3% 6931 0-1 148.74 149.35 0.61 0.01 pyrite locally. 6932 1-3 149.35 150.02 0.67 0.01 150.02-172.63: same as 146.20-149.35 meters - a small increase in brecciation at 161.55-161.80 meters. 6933 0-1 150.02 151.90 0.88 0.01 Mercciation at 161.55-161.80 meters. 6934 0-1 150.90 151.90 1.00 0.01 Areference sample was taken at 168.66-168.77 meters 6937 0-1 153.95 154.95 1.00 tr. A reference sample was taken at 168.66-168.77 meters 6938 0-1 154.95 156.01 1.06 tr.			146.20-149.35:	10% silicified breccia in seams up to 5cm.	6930	0-1	147.98	148.74	0.76	ſ	ĺ	0.01		
pyrite locally. 6932 1-3 149.35 150.02 0.67 0.01 150.02-172.63: same as 146.20-149.35 meters - a small increase in brecciation at 161.55-161.80 meters. 6933 0-1 150.02 151.90 0.88 0.01 Relic Bedding: 45-50° at 155.20 meters 6935 0-1 151.90 152.90 1.00 0.01 40° at 168.70 meters 6936 0-1 152.90 153.95 1.05 tr. 70° at 172.55 meters 6937 0-1 153.95 154.95 1.00 tr. A reference sample was taken at 168.66-168.77 meters 6938 0-1 154.95 156.01 1.06 tr.			149.35-150.02:	70-80% pinkish hued silicified breccia with up to 3%	6931	0-1	148.74	149.35	0.61	1]	0.01		
150.02-172.63: same as 146.20-149.35 meters - a small increase in brecciation at 161.55-161.80 meters. 6933 0-1 150.02 151.90 0.88 0.01 Netice Bedding: 45-50° at 155.20 meters 6935 0-1 151.90 15.90 1.00 0.01 40° at 168.70 meters 6936 0-1 152.90 153.95 1.00 0.01 40° at 168.70 meters 6937 0-1 152.90 153.95 1.05 tr. A reference sample was taken at 168.66-168.77 meters 6938 0-1 154.95 156.01 1.06 tr.				pyrite locally.	6932	1-3	149.35	150.02	0.67			0.01		
brecciation at 161.55-161.80 meters. 6934 0-1 150.90 151.90 1.00 0.01 Relic Bedding: 45-50° at 155.20 meters 6935 0-1 151.90 152.90 1.00 0.01 40° at 168.70 meters 6936 0-1 152.90 153.95 1.05 tr. 70° at 172.55 meters 6937 0-1 153.95 154.95 1.00 tr. A reference sample was taken at 168.66-168.77 meters 6938 0-1 154.95 156.01 1.06 tr.			150.02-172.63:	same as 146.20-149.35 meters - a small increase in	6933	0-1	150.02	151.90	0.88			0.01		
Relic Bedding: 45-50° at 155.20 meters 6935 0-1 151.90 152.90 1.00 0.01 40° at 168.70 meters 6936 0-1 152.90 153.95 1.05 tr. 70° at 172.55 meters 6937 0-1 153.95 154.95 1.00 tr. A reference sample was taken at 168.66-168.77 meters 6938 0-1 154.95 156.01 1.06 tr.				brecciation at 161.55-161.80 meters.	6934	0-1	150.90	151.90	1.00			0.01		
40° at 168.70 meters 6936 0-1 152.90 153.95 1.05 tr. 70° at 172.55 meters 6937 0-1 153.95 154.95 1.00 tr. A reference sample was taken at 168.66-168.77 meters 6938 0-1 154.95 156.01 1.06 tr.				Relic Bedding: 45-50° at 155.20 meters	6935	0-1	151.90	152.90	1.00			0.01		
70° at 172.55 meters 6937 0-1 153.95 154.95 1.00 tr. A reference sample was taken at 168.66-168.77 meters 6938 0-1 154.95 156.01 1.06 tr.				40° at 168.70 meters	6936	0-1	152.90	153.95	1.05			tr.		
A reference sample was taken at 168.66-168.77 meters 6938 0-1 154.95 156.01 1.06 tr.				70° at 172.55 meters	6937	0-1	153.95	154.95	1.00			tr.		
			A reference sam	ple was taken at 168.66-168.77 meters	6938	0-1	154.95	156.01	1.06			tr.		
									:					
			1											

RM Z

NAME OF PROPERTY_____Lost Treasure

HOLE NO. ______ MC. 84-75 _____ SHEET NO. ____ 8 OF 9

FOOT	TAGE	DESCRIPTION			SAMPI	_E				ASSAYS		
FROM	TO		NO.	SULPH		FOOTAGE	TO TA 1	- I	[.	OZ. TON	OZ TON	
FROM	то 199.17	<u>SEDIMENTS</u> Dark green, fine to very fine grained with very little intense carbonatization and subsequent silicification of breccia or lamination sets. The degree of general carbonatization is moderat Bedding laminations are not well exhibited. 172.63-174.48: minor ground core at upper contact - possibly 5-10	6939 6940 6941 6942 ≥• 6943 6944 cm 6945	0-1 0-1 0-1 0-1 0-1 1 0-1 1 0-1	FROM 156.01 157.00 157.75 158.68 159.75 160.75 161.80	157.00 157.75 158.68 159.75 160.75 161.80 162.72	0.99 0.75 0.93 1.07 1.00 1.05 0.92	7	<i></i>	02. TON tr. tr. tr. tr. tr. tr. 0.02	OZ TON	
		 lost. Carries 5% pinkish-red siliceous clasts (tuff?) up to 1mm. 174.48-175.33: very dark charcoal grey - slight purplish hue - ve fine grained. 175.33-175.60: similar to above, slight greenish hue - strongly silicified. 175.60-179.22: very dark green, fine grained, occasional (5-10%) greyish silicified breccia seams up to 5cm. 179.22-179.71: ground core - 75% recovery - vuggy, variably silicified zone containing up to 5% pyrite - averaging 2-3% as a fine dissemination. 179.71-199.17: generally massive but very weakly developed beddim laminations are observed locally - parting is moderately well developed - probably reflecting original bedding. Laminations at 50° to core axis at 194.40 meters. A 10cm zone at the base of the section is well laminated at 60-70° to the axis. 	6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6956 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968	0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	162.72 163.80 164.80 165.82 166.86 167.85 168.77 169.75 170.70 171.79 172.63 173.51 174.48 175.33 175.60 176.68 177.55 178.37 179.22 179.71 180.75 181.75	163.80 164.80 165.82 166.86 167.85 168.66 169.75 170.70 171.79 172.63 173.51 174.48 175.33 175.60 176.68 177.55 178.37 179.22 179.71 180.75 181.75 182.75 183.78	1.08 1.00 1.02 1.04 0.99 0.81 0.98 0.95 1.09 0.84 0.88 0.97 0.85 0.27 1.08 0.87 0.85 0.27 1.08 0.87 0.85 0.49 1.04 1.00 1.00 1.00 1.00 1.00			0.01 0.02 0.01 0.01 0.02 0.02 tr. tr. tr. tr. tr. tr. tr. 0.05 0.01 0.01 0.01 0.01 0.01 0.01 tr. tr. tr. tr. tr. tr. tr. 0.05 0.01 0.02 tr. tr. tr. tr. tr. tr. tr. 0.05 0.01 0.01 0.02 tr. tr. tr. tr. tr. tr. tr. tr.		
			6969 6970 6971 6972 6973 6974	0-1 0-1 0-1 0-1 0-1 0-1	183.78 184.78 185.84 186.85 187.84 188.90	184.78 185.84 186.85 187.84 188.90 189.85	1.00 1.06 1.01 0.99 1.03 0.95			0.01 0.02 0.03 0.02 0.01 0.01		

NAME OF PROPERTY_____

HOLE NO. _____ Mc. 84-75

Lost Treasure

_____ SHEET NO._____ 9 OF 9

FOO	TAGE				SAMP	LĒ			ASSAYS		
FROM	то		NO.	SULPH	FROM	FOOTAGE TO	TOTAL	 ÷.	OZ TON	OZ TON	
199.17	209.70	<u>BASALT</u> Dark green, fine grained massive flow. Weakly fractured with red hematite coatings locally. Lava below a small section of interflow sediments may be pillowed. Non-magnetic rocks throughout. 199.17-204.00: fine grained massive flow. 204.00-205.00: very fine grained to aphanitic. 205.00-206.97: sediments - interflow tuffs(?) - well laminated at 60° to core axis. 206.97-209.70: very fine grained possibly pillowed flow top - selvages at 207.30-207.40 meters; massive below.	6975 6976 6978 6979 6980 6981 6982 6983	0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	189.85 190.91 191.90 192.90 193.88 194.88 195.90 196.95 198.00	190.91 191.90 192.90 193.88 194.88 195.90 196.95 198.00 199.17	1.06 0.99 1.00 0.98 1.00 1.02 1.05 1.05 1.17		0.01 tr. tr. tr. 0.01 0.08 0.01 0.01		
		209.70 meters END OF HOLE CASING PULLED									

FORM 2

