Report on the ms Group.
Adar * Abbots ford Pups.

1967
010 C
INTRODUCTION
GENERAL INFORMATION 1
Location 1
Topography 1
Claims 1
History 2
Line Cutting 5
E. M. Surveys 6
Drilling 7
GEOLOGY 7
General 7
Area Three 10
North Conductor 11
South Conductor 11
Area One 12
Areas Four, Five and Six 13
CONCLUSIONS 15
Joe Lake 17
APPENDIX
Personnel
Spectrographic analysisMaps, areas 1, 3, 4-6, Airborne survey, claimsE. M. Profiles ${ }^{\text {L }}$D. D. H. LogsD. D. H. SectionsMan Day DistributionAerial Survey

REPORT ON THE M3 GROUP ADAIR AND ABBOTSFORD TOWNSHIPS, ONTARIO

INTRODUCTION

Exploration interest in the Adair-Abbotsford Township area by Canadian Javelin and associated companies began with the acquisition of 62 claims lying west of Joe Lake, Adair Township in the summer of 1964. This property became the focal point of an airborne geophysical survey (magnetic and electro magnetic) covering a block of about 300 square miles considered as favorable exploration territory. This was selected on the bas is of published aero magnetic data and recent geologic mapping as presented in "South Patten River Area" by S. B. Lumbers, Ontario Department of Mines, Report 14, 1963.

The geophysical survey was flown at $1 / 8$ mile intervals in an east-west direction searching for conductors oriented transverse to the general geologic trends. This work was done by Canadian Aero Mineral Surveys on May 5, 1965, their project number 5060, with report of June 29, 1965.

This survey did not locate anomalies of any significance around Joe Lake, but it did report several conductors in the western part of the area near the Mace Bay Road. Six anomalous zones or areas occur, three of which appear on two or more flight lines and appear to trend roughly north-south. These targets became the center of interest during the summer's exploration program herein described.

GENERAL INFORMATION

LOCATION

The area of interest lies in the western part of Adair and the eastern part of Abbotsford Townships, District of Cochrane, Ontario. The Mace Bay road of the Abitibi Pulp \& Paper Co. roughly biscets the area around mile 16 on this road. A recently opened road to Val Paradis, Quebec permits fairly easy access to the labour and supply markets.

TOPOGRAPHY

The area is generally quite flat and covered with forest growth in various stages of development. Logging operations were currently under way in the general region. Boulder clay covers most of the area, though there are several areas of sandy outwash deposits. Erosion resistant rocks form the cores of low ridges here and there in which scatter ed outcrops occur.

CLAIMS

The M3 group consists of 36, approximately 40 acre, unpatented mineral claims registered in the name of Canadian Javelin Limited with the Ontario Department of Mines Recorders Office, Kirkland Lake, Ontario, Larder Lake Division, as per list:

L 91663-91667	5 claims
L 91671-91673	3 claims
L 91685-91686	2 claims
L 91716	1 claim
L $91723-91730$	8 claims
L $91734-91737$	4 claims
L $91745-91747$	3 claims
L $91749-91750$,	2 claims

HISTORY

Fifty nine claims were staked on May 23-25, recorded June 21. Some existing claims covering the anomalous area were due to expire June 24th, and operations were planned to stake these claims the next day. Accordingly, camp was re-established at old camp 20 on: June 23 rd and 28 claims posted June 25th by W. \& P. Hegler, W. Blakeman, T. Fitzgerald and others. Eight claims were added in August to make a total of 95 claims in the block, but only 36 of these are to form the block to be retained.

Anomaly 3, near the Mace Bay road, was quickly located on the ground, but efforts to find anomaly 1 with east-west lines proved unsuccessful. By July 2nd, T. Fitzgerald had learned that there seemed to be several, discontinuous conductors in area 3 rather than a continuous north south conductor as suggested by the aerial survey.

Bad weather had hampered operations and no clear picture of the conductor situation existed when the writer and W. Hegler arrived on July 8th. Examination of the work suggested that the conductive bodies might be parallel with the NW-SE trends of the rock, therefore, a new coordinate system was laid out along the camp 20 road and NE-SW lines run.

By July 17th, the two conductors in anomaly 3 had been outlined. The northern anomaly was entirely covered, though two small outcrops very
close to it exhibited oxidized sulfides in contorted amphibolitic tuff. The southern conductor seemed to lie between outcrops exhibiting little evidence of mineralization. Samples of the rusty rocks were collected for spectrographic analysis, the returns were virtually nil, see Appendix.
W. Hegler and the writer left for Ottawa on July 14th to review the situation with the Chief Engineer; T. Ftizgerald and P. Hegler remained to continue the line cutting and E.M. work. The essence of the report to the Chief Engineer was that the strong conductors in anomaly area 3 had been located, were drift covered, adjacent outcrops exhibited evidence of sulfide mineralization, there were signs of structural disturbance, but that there were no signs of significant mineralization. It was concluded that the anomalies could be tested with a drill faster than any other method.

The Ottawa review affirmed that more work was to be done, and W. Blakeman arrived July 17th. From then till about the end of the month activities consisted of outlining conductors, geologic examinations and additional protective staking further west. Some old drill sites were encountered in area one. Other staking parties were in the area by July 30 th.

One drill machine arrived July 3lst and a second on August 3rd. Hole 1 began August 4th, drilling the north conductor in area 3. A very fine grained, sulfide bearing, thinly banded material was encountered which looks more like metallic cement than anything else. W. Blakeman's log of the 154.5-159 ft. section reads: "finely disseminated pyrite-pyrrhotite
with possible sphalerite, and magnetite in a banded quartz-hornblende host."

Hole 2 began August 7th, and encountered more of this very fine grained material across some 50 feet. As in hole 1 , this material was split and sampled, not for what could be seen but for what couldn't be seen.

Hole 3 began to explore the southern conductor on August 6th. The conductor was encountered below 121.5 as a "breccia zone containing massive, extremely fine grained, very metallic (looking) grey brown material, possibly sphalerite, and fragments of quartz and minor scattered pyrite" to 124.5 , then a graphitic, chloritized and pyrrhotiferous shear zone to $131.5,--$ "below which are intermixed hornblende tuff, cherts, garnetiferous amphibolites, altered fault zones, some carbonate, and pyritepyrrhotite mineralization locally heavy enough to have been sampled.

Holes 4, 5, and 6 encountered similar material, but sampling began to drop off because returns from the first holes had begun to show
the lack of any metallics. W. Blakeman left about the middle of the month on other matters so that general responsibility fell to W. Kegler and T. Fitzgerald. It had been decided in Ottawa to probe the southern conductor at depth with one drill, using the other to investigate other anomalies. The writer arrived back in camp August 20th, but was unable to participate much in activities because he was committed to another project being started in nearby Quebec. W. Hegler left August 22nd.

As in area 3, the ground E.M. work showed the presence of several NW-SE conductors instead of a N-S conductor. These were drilled by holes 8 and 9. Both drills were stopped August 27th, the hole 9 rig was immediately moved to the Quebec job and the hole 7 rig moved into the anomalous areas east of the Mace Bay road. This rig was later returned to area one for holes 13 and 14 .

By early September, the inclement weather and the priority of work in Quebec made removal of the camp necessary. Accordingly, T. Fitzgerald or the writer made several trips to the job to keep track of things while holes $10-14$ were in progress. The last drill was released September 30th.

LINE CUTTING

Line cutting began immediately after the June staking. A N10 ${ }^{\circ} \mathrm{E}$ base line was established along the Mace Bay road near zone 3 and cross lines run from it. However, after determining that these lines were nearly
parallel with the conductors, a new base-line running about $N 60^{\circ} \mathrm{W}$ along the camp 20 road was established, and cross lines run from this line. The initial grid had been extended into zone 1, so that in this area there was a duplication of lines as well.

The lines were eut and chained by locally hired labor from Val Paradis Quebec under contract on a per mile basis. The distribution of lines is as follows:

Early grid, Zone 3, $23,000 \mathrm{ft}$. Zone 1, $33,000 \mathrm{ft}$.
Detail grid, Zone 3, 32, 000 ft . Zone 1, 45, 000 ft . Zones 4-6 $\frac{36,600}{169,600} \mathrm{ft}$. $169,600 \mathrm{ft} ., 32$ miles

Line spacing was 400 or 200 ft . as required, pickets were placed at 100 ft . intervals.
E. M. SURVEYS

The early E. M. work was laid out looking for the N.S. trending conductors indicated by the aerial survey. When no sense could be made of the responses, some spot checks were run which lead to the revised gird system and all areas had to be redone.

The survey was conducted by T. Fitzger ald as operator, P. Hegler was generally on the transmitter of the McPhar VHEM unit. Initially, the equipment was used as horizontal loop, 200 ft . cable length. Holes 1-4 were spotted on this information.

Some minor discrepancies in conductor position arose and part
of the anomalous zones were rerun using the vertical loop broadside method. This procedure seemed to give better results and was used exclusively in zones 4-6. Eight conductors were detailed, all running NW-SE, with a steep northerly dip, widths around 50 ft . or less. Frequencies used were 600 and 2400 cps. . Tange: $100 / 200 \mathrm{q} 300 \mathrm{ft}$ agpantioni as Aryoutal Ro0po.

The plots of the survey are shown in the appendix. In phase to out of phase ratios of 2 or 3 or greater were quite frequently encountered and contributed to the decision to drill.

DRILIING

All drilling was done under contract by Continental Diamond Drilling of Rouyn, who erected a separate camp near the Camp 20 - Mace Bay road corner. Total footage drilled was $4234 \mathrm{ft}$. , including 487 ft . of overburden.

GEOLOGY

GENERAL

The area in which the aerial survey picked up conductors corresponds with a low topographic rise trending NW-SE crossing between mile 1 and 2 of the Adair-Abbotsford town line. Scattered outcrops occur here and there along this rise, generally in clusters of several small exposures separated by intervals of overgrown sandy glacial debris. Lowlands seem to be underlain by clay. The outcrops are far from being as large or continuous as shown on Lumbers feport of the area, and the tangle of brush makes outcrop searching quite difficult.

Lumbers classified the rocks of the area as volcanics, ruffs, amphibolite, garnet amphibolite, pillow lava and prophyritic lavas. He was content to classify them only as acid or intermediate in composition. The writer agrees with Lumbers classification and interpretation of general geology.

The terms andesite and rhyolite have been used in this report for the sake of brevity. The distinction between them was made on the basis of light or darker color only, their usage is restricted to this sense and in no way do they imply a significant compositional difference, especially in that the color or some other feature of ten changes gradually in a few feet from one to another. Considerable petrographic work would be needed to properly identify the composition of these meta-volcanics of diverse origin. The light colored, thinly banded, often contorted rocks are clearly ruffs, and they seem to be the most erosion resistant.

The characteristic feature is the almost ubiquitous presence of amphibole, mostly hornblende, in nearly all rocks. No pyroxenes were seen, though some undoubtedly exists.

The amphibole exists in two different environments, first as a small percentage in rhyolite, and second as dark green, amphibole rich bands.

The amphibole in the lavas occurs as discrete, r randomly oriented crystals (phenocrysts) scattered throughout the aphanitic ground mass, usually in vaguely defined bands gradational into amphibole free bands in which small
feldspar phenocrysts often appear. Small garnets are sometimes present in these amphibole bearing bands.

Amphibole also occurs in a very fine grained matrix in which the several amphibole crystals are arranged more or less radially in small clusters. This is the poikiloblastic texture often observed. This may give way to feldspar porphyry, garnet sometimes is seen in the poikiloblastic bands.

The amphibolite bands often contain $\frac{1}{2}$ to $l^{\prime \prime}$ garnets. A few cases of the amphibolite forming injection stringers in volcanics were also observed. Amphibole also is found in the tuff, usually lying parallel with the banding. Garnets and feldspar porphyroblasts also occur in the tuff s.

It would appear that there are both igneous and metamorphic features present in these volcanics, and that metamorphism seems to have produced mineralogic - textural features in some places not significantly different from the igneous features. The feldspar and amphibole porphries are likely igneous features when enclosed in a massive matrix, but in banded tuff or accompanied by garnet they likely are metamorphic, as are the garnetiferous amphibolite bands associated with tuff.

Flow tops were not observed in any outcrops, but 1-3 ft. intervals in some holes exhibiting very irregular textures and structures likely represent flow boundaries.

In considering the mineralization, Lumbers speaks of a prominent. tuffaceous layer containing several, narrow, discontinuous shears marked by gossan and/or garnet-amphibolite, and all associated with three zones of shearing between his localities 4 and 5. He recognized that pyrrhotite pyrite were the principal sulfides, occurring in lenses or disseminations in 1-5 ft. shears and of short length. He claims to have seen chalcopyrite, but our examination failed to disclose any.

His description of the surface expression is essentially correct for the out crops clearly show that the gossan is usually associated with garnet-amphibolite bands, but not all such bands have gossan, and many such bands appear in massive volcanics. The percentage of sulfides in these bands is quite low, being 5% or less.

The tuffs outcrop in several places, and a few very narrow rusty bands can be seen. There are no exposures anywhere of the pyrrhotiferous tuffs responsible for the E,M. anomalies.

AREA THREE
If one were to interpret the geology from the outcrops, one would likely conclude that tuffs and amphibolites underlay the area. No exposures of massive flow rocks occur.

The electro magnetic survey located two conductor's, a northern one some 800 ft . long, and a southern one over $4,000 \mathrm{ft}$. long which becomes zone 5 to the east.

North Conductor:

The conductor consists of a tuff unit about 30-40 feet thick containing a thinly banded, aphanitic, mudstone like material in which many of the $1 / 4-1 / 2$ unit bands contain massive, very fine grained pyrrhotite. The sulfide mineralization is quite strong on the north (top?) side of the sequence and gradually changes southerly to coarser grained pyrrhotite disseminated in mixed amphibote-tuff.

The sulfide horizon is clearly associated with and is an intimate part of the tuffaceous zone. It is underlain by rhyolite for the most part. The conductive horizon was encountered in hole about where the E. M, survery suggested, but on line $2 W$ the horizontal loop response lies about 100 ft . to the south for some reason. Thus hole 2 started in the sulfide bearing zone, this lead to the VEM work which did locate the conductor about where it occurs.

South Conductor:

The mineralize south conductor in zone 3 varies in thickness along its length, 10 ft . hole 5, perhaps 50 ft . in hole 3, 20 ft . hole 4, and 10 ft . in hole 6. Again, it is basically a contorted pyrrhotiferous tuff horizon containing several thinly bedded bands of intermixed mudstone and aphanitic pyrrhotite all intermixed with amphibolitic tuff and garnetiferous amphibolite. Thin cherty bands are also present. The horizon lies in rhyolite-tuff sandwich dipping steeply north. The tuff are generally contorted, and core angles are so variable as to be largely impossible to keep track of.

Hole 7 was drilled to test the hole 3 conductor at depth. It was drilled from the north so as to test the ground N of hole 3 , and by continuation was expected to undercut the hole 3 conductor at around 450-500 ft. Instead, it cut an amphibolitic zone from 386 to 412 which contains only a few blebs of pyrrhotite scattered here and there. Monotonous, massive, rhyolite lies below 412. There is no sign of any tuffaceous material whatsoever as found in hole 3 above.

A reasonable correlation between holes 3 and 7 can be made for the weakly mineralize amphibolitic section, but whatever happened to the main mineralized tuff horizon is unknown, it simply vanishes somewhere in the 150 ft . between holes 3 and 7. Whether the horizon is a lens of restricted depth, or has a plunge, or whether there is an intervening fold or fault is unknown.

AREA ONE
This area lies about a half mile NW of area three along the Camp 20 road. It is only slightly wooded compared to area 3 , but there is such a tangle of alder and r_{n}^{a} sherry underbrush, plus logging debris, that travel very far off the access roads is very difficult. The reported mineral occur rance number 5 of Lumbers was never found, though one 500 ft . from the road around 1400 NW was found.

Most of the outcrops are confined to a low ridge north of the camp 20 road in which isolated outcrops occur here and there. These continue further $S E$ all along the road, these were examined but not mapped because
no lines were cut. Most outcrops are contorted tuff containing amphibolite stringers, most of which exhibit a few rusty spots or seams. There are three conductive horizons, 700-2400 ft. long, plus two E. M. responses located on one line only. All responses are parallel with geologic trends.

Hole 8 cut a 45 ft . thick zone of contorted hornblendic gneiss containing rare, disseminated blebs of pyrrhotite. None of the usual banded pyrrhotiferous mudstone was seen.

Hole 9 intersected similar material, but no sulfides of any dercription were observed, so that presumably the sulfides responsible for the E.M. response probably do not extend to the depth of the hole. This band of gneiss is likely the same band encountered in hole 8.

The southwestern anomaly had previously been drilled by somebody, this, combined with the lack of mineralization in holes 8 and 9, lead to the release of the drill. However, to insure that no stone had been left overturned, the S. W. anomaly was drilled later by holes 13 and 14.

Hole 13A was lost in overburden just before reaching bedrock. Holes $13 B$ and 14 intersected the usual pyrrhotiferous mudstone in tuff, associated with andesitic volcanics.

AREAS 4, 5, 6
These three E. M. responses were investigated by holes 10,11 and 12. The outcrops in the area show similar signs of rare mineralization.

CONCLUSIONS

While the presence of several, strong, unexposed, electromagnetically anomalous zones prompted drill testing, the geologic indications of probably uneconomic mineralization as found in nearby outcrops proved to be essentially correct.

For the most part, the conductor is caused by a particular horizon, or horizons, lying in a tuffaceous zone in a sequence of intermediate to acidic flows. The pyrrhotiferous tuff is composed of innumerable thin layers of fine grained, variously coloured layers giving every indication of having an aqueous origin. The muds appear to have been accompanied by iron and sulphur, which upon diagenesis and metamorphism converted to the very fine grained pyrrhotite. This particular horizon no where outcrops to our knowledge.

It does grade into pyrrhotiferous amphibole however, and several outcrops of this material were found, though only one or two of these outcrops were directly associated with the conductors.

After the returns of the early holes were in, no samples were sent for assay in that no mineralization was encountered significantly different than that earlier found. The remaining holes were drilled in accordance with management policy to ensure that nothing had been missed by a premature pull out.

The writer concludes that the pyrrhotiferous mudstones represent small scale syngenitic iron-sulphur deposits of sedimentary origin in a volcanic environment, and that the few signs of epigenitic mineralization present originated during the period of metamorphism.

David M. Knowles,
 Chief Geologist, CANADIAN JAVELIN LIMITED.

On August 25, 1965, the writer, T. Fitzgerald and P. Hegler went over to the Joe Lake property. The trenches reported in Lumbers report were found. There are actually about 6 of them totaling several hundred feet. They are very old, excavated in the overburden and obviously were dug in an effort to chase cross cutting quartz veins. There is a little pyrite in the milky quartz.

There is an old log cabin there and it would appear that whoever dug the trenches was searching for gold. One trench is in rock for about 30 feet, but there are no signs of sulfides in it.

The E.M. gear was used in the vicinity of the showing, but. there was absolutely no response to either horizontal or vertical loop tests.

GEOCHEMICAL SURVEY - PROCEDURE RECORD

APPLICANT AANADLAM AGUELMY LTD

 AREA ADAIR-HRBOTSFORO TOWNSHIPS - ABITIBL ERST CLAIM NOS. $\qquad$$\frac{\text { SAMPLING DATA }}{\text { Sampling dates } 6.46 Y \ldots \text {. } 3.1965_{\text {To }} \ldots . . .}$ Sampler (s) . . S....Kr!o.s.KF.S.

Analysis dates $J_{4}, \frac{y}{2} 8 \% .1 \% 45$. To Analyst (s) TFSHNMCAK. SSEPVIFLE.

METHODS
Sampling method RocK..C.hIP.S........
 Average Sample weight ..G. OZ Z....... Field Analysis (......tests)

Horizon Sampled \qquad
Horizon Development \qquad
Terrain.
Sample Preparation
Commercial Laboratory (.......tests)

 General SAMPKFS. .TAKEN. FPOM.
 2 SAMPLES TAKEN

COMMENTS \qquad

Figures abown in brackets are approxdmates
\qquad -1
SWASTIKA LABORATORIES LIMITED
\mathfrak{U}^{2} ertiftuate of Analynia
\qquad

$$
\mathrm{No} .37640
$$ split core Received Aug:13,1965. and submitted by

SWASTIKA LABORATORIES LIMITED
Urrtifitatr of Analygin

$$
\text { No. } 37646
$$

We have assayed twenty
samples of- oplstoexe.

Attention: W. H. Roxburgh, Esq. with the following results:

Swastika, Ont.,.....ugust 19, 196. 19 \qquad
Swastika Laboratories Limited
©watitate nit Analysis

with the following results:

SWASTIKA LABORATORIES LIMITED,
per: \leq, \rightarrow.

AERIAL ELECTROMAGNETIC SURVEY RESULTS

Copies of Canadian Aerial Mineral Surveys Data

Tape Sections Showings:
(1) Anomalous Response
(2) Map showing location of flight lines, anomalous responses and claim holdings.

E										-
$1 z^{200}$										
			\sim							
${ }^{20}$										
						${ }^{\text {y }}$				
						*).w				
	mar	2)	,	\%		Nom	Lious	$\begin{aligned} & 20 \mathrm{NH} \mathrm{M}, \mathrm{~W} \end{aligned}$

	-	--...--		\cdots							--	
$+60$	-	- - - - -	-	--	-			-			\square	
\square	-	\cdots	- - - .	-	\square							
		- - - - - - -		-								
		---7.-...- -		\square								
$+40-\square$												
	- $-\square$	-										
	--- - -	\cdots										
	\square											
$+20-\cdots$		-										
				\square								
	\square	\square		---								
				-	-			-				
0				,)			$1+$				0
				-	0			$\underline{+}$	\square			
							\square					
	$\underline{\square}$							7	-			
-20												
												20
		-		-		-						
		-------1										
	1	-										
						\square						
-40												
						-						
	\square								$\stackrel{N}{\text { N. angios }}+$			
	$\square 3$	-				-						
-60--		\square							R.65.E.	\bar{Z}	\square	-
		$-\infty$									$\square 0]$	$\square-60$
600 cPS IN-PHASE OUT-OF-PHASE							\square			ANOMALOUS ZONE NO.		
$\left\lvert\, \begin{aligned} & 600 \text { C.P.S. }-\cdots \\ & 1200 \text { C.P.S. }-\cdots \end{aligned}\right.$				二 3						LINE SS.E.LOOKINGN.V.		
				二		is	Tin		$\square 2$			
										$\text { SCALE: } 1^{\prime \prime}=200$		

												\bigcirc
$+60$	O	--										$-\mathrm{+}+60$
-	-										- - -	
-												-
	-	----	- - - -		- - - -						-	-----
+40	- - - -	- -		+		-						$\square+40$
-		- - -	-									
-	-	$\square \cdots$		-								
-	- $\quad-\quad-$	--7.o.-u-									---	
-	- --										-	
-	- -	- ---------										
$+20$	-			+		\square					-	
		--										
	-	-․-. $-\cdots$										
	--	\square					\square					
	- - -	---										
0	-	$\square \square$	-				$-\alpha$					$\bigcirc-0$
	\cdots	- -						\square	\square	\longrightarrow		
	\square	-	-									
		-						\square				
-20	O-											
												$\square-20$
	-											
	--	--									-	
											-	
		\square										
-40	-	-					\square					
									N. anglos +			
		-							N, anglos ${ }_{\text {- }}$			
		\square							T, 4 N.W.			
	$\underline{\square}$	\square									\square	$\square-\square$
$[-60$	0											-60
	$\mathrm{N}-\mathrm{P}$	AASE IOUT-OF								ANOMALOUS ZONE MO. 1		
	0 C.P.S											
120	O.C.P.S. -	$\cdots-1$				3				LINE 6 N.W. LOOKING W.W.		
						N		\cdots	$\square \square$	SCALE: $1^{\prime \prime}=200^{\prime}$		

\square	\cdots	-	--	\square	-					---	---	
$+60$	- -	--	-									$+60$
	- - - -	-										
\square												
-	-- - -		-	\square								
	---0,	--0.0.0.-	\square									
+40	-		\square	\cdots								$\cdots+40$

-	$\underline{-}$											
-		--										
+20	-	--, - - -		\cdots		-						$+20$
		-										
		+....-.-.										
		- $-\square$										- -
		\square	- - -	-	\square	-						
							- ${ }^{0}$					
0	-						\cdots					
					\square		\longrightarrow					
	-											
-20	\square											20
-	-											
-	- -	-										
-						-						
	---------					-						
-40	二											-40
	-								V:ESM			
									N. ongles \pm			
		-							s.			
	-	\square							T.		-	-
	-											
60	0 C.P.S ${ }^{\text {IN- }}$		F-HAASE	-			\square			ANOMA	ALOUS 2	ONE
120	C.P.S. -	$\cdots-1-$		二 3		3				LINE 10	N.W. $100 K$	ING WG
				\square		N	-	\square	$\square+\square$	SCA	CALE: $1^{\prime \prime}=20$	

保

θ

Ma

保

rixs ¥avat pertains to the comomea amporne kM and F mgneconcecs euveg IJom on bchalf of Canadian Javelin Limited

 З．\therefore Guse－project Vaneser
Mase Batch

- Pilot
Z. ت. Saraciz - . Divigetor
D. Ga゙るくに
- operator
\cdots …csticac - Aiscraft Enginces
C. C -
2. Noccos
- Drafemera
$\because \because 2-2 y 000$
Data Chief
．ne ジcjoct mex cupevised by A．R．Rattew，P．Eng．，

We mice cac preented on a plan map at the sale
 cs the bese EON 大itu mos．
 2stectce．
agactur doscibes the ecuipment，the records，the survey an mop coptetua paccefures，and the data presentation 2yETas．

I． \qquad
an wajonigy of the survey area is covered by the ontario．

We cuvey blocie samples part of the belt of Adair meta－ voiacuice，Macin te pzesumed to Be the belt which conteins the

 ニssca゙zage．

To tin vout ths Adain volcanics are Elanked by en assemblage 0 anceccitcmte．re the noth they are in contact with the Nenule batolich，an coidic intrusive complex．Near the provincial
300.6 the voiccue bole is spIit by another acidic intrusive, Cha Racen siver piteon.

Sovara suphece chomings are reported in the area, all
 Wen 200 watuog.

Boven coccuccons have been located, 211 in the western cxae of tro suroy arou.
coacuacour + changa 6 tre ail interpreted as becrock cogcuever, -2π the consicceed prospects for massive sulphide Hac, izetion, os thene concuptoss, all but number 5 have Zancely cuincicue magnetic apmanes suggesting a pyrinotite

 apoceen.
 Bout mou-souch whon docs not appeat to be concordant with the
 San o

11 02 EHODe concouose, 1 through 5, occur in She vicinity o: cucaraing cciele volcanics. TuFs are prevalent in these

 cace, wownd ow,oge the conductors to be concordant. zone 1
ovarg too ox acu pecilel concuctors on some lines which could bo mevoreces as en intication of graphite. on the other hand,

 Note nico thet the norchermost anomaly in zone 3 is \mathbf{a}

 Gut tro convetor apenxs so peitilel the strike of the volcanics,
 Che mus zečebic doucee.
cural moct, duestiongle, bingle-ilne anomalies have been
 "culuncir ancunfed vesuning qrom men-made conductors. Anomalies
 Wen "ne a scawhan boutcr chance of being a legitimate EM response.

The electromag：．etic unit and the magnetometer are the key instaments in Che Canadian Aero Mineral Surveys Limited otter survey system．The remainder of the equipment consists of a rajijo－altimeter，a scintillation counter，an accelerometer， a continuous－staip camera，two zecorders and a fiducial numbering syscen．

Ghe $E \mathbb{N}$ unt is the low fraquency（ 320 c．p．s．） En－bhase／out－oE－phase system designed by Mullard Ltd．of England anc operated formerly by Riocanex．The transmitting and receiving coils are mounted on the wingtips of the otter， witr a vertical copianar orientation and a separation of 61 Eet．A eleacronic null device is adjusted so that in the absence of a conainctor within the range of the system no signai is reconced．rhe anomalous signal is divided into two components，tie＂n－phase＂component having the same phase as the transm．cted Eield and the＂quadrature＂or＂out－of－phase＂ component beinc at right angles to it．These two measurements are recoracio on two channels of the six－channel recorder．

Variacions in the total magnetic field of the aaxch aice ：aEasured by the Eiliott electron－beam tube magne－ tometer nowneed in the aircraft．This instrument was designed by Elifote Broters（Iondon）Ltd．Anomalies as small as 10－15 gamans can nozmaily be distinguished．The output of the magnetometex is presented as one channel on the six－channel recorder to Eaciititate corcelation with the EM traces．It is also presezted at a larger scaie and in rectalinear form on a sepaiate recorde：，these recordings being used in the preparation of isomagnetic contour maps whenever they are とequi゙ed．

An APN－1 radio altimeter provides a texrain clearance prozite on che channel of the six－channel recorder．Because EM resoonse decays rapialy with increasing altitude this altitude infonatio：is important in the analysis of the EM data．

A vertical accelerometer mounted in the aircraft provijes a zecord of the air．turbulence and of any drastic manouvvres of the aircrait．The accelerometer trace on the six－ chatid recozder is often helpful in recognizing spurious blips $0: \because E M$ traces caused by air turbulence on drastic manoeuvres．

Noclear Enterorises Mark VI－A scintillation councou in we airciaft records gamma radiation from the land sunzace．This recora can be used as auxiliary location infor－ mazu zince outcrop，overburden－covered areas and swamps are reajily aistinguishable by their radiation levels．

The Entire Fight path is photographed by a vertically－ mowned feropach 35 mm ．continuous－strip camera．

```
R2ミミNDIX =2 - cont`b
Rage 2
```

Whe six－channel recordei is a Brush curvilear unit． It is romainy operated at a paper speed of 2 mm ．per second． The magnetic àta is also recorded on a six－inch Pexas Instruments スecealinear recorder．

Syncian ization of the film strip with the two reconciors is accomplishea by means of an automaticefiducial numbexing system vinich prints simultaneous time markers on all tires zeconcis at regulã time intervals，normally every ten seconde．

B．
DESCRTPMION CE RECORDS
Rectaitnea：Magnevic Record
With the chart oriented so that fiducial numbers Incニease fron İght to left，upward deflections on the chart inaicate incroases in the total magnetic field of the earth．At the nomai weting（3u0 scale）the smallest division on the chart is approrimately ecuivalent to 12 gammas．When the record ＂steps＂a change oE approximately 400 gamas is indicated．Two other scaies are available to accommodate areas of large magnetic relies．On the＂600＂scale l smail division is 40 gammas and a step is equivalent to 1200 gammas．on the＂1200＂scale 1 division is 120 gamans and a step is 3600 gammas．All changes of scale are noted on the tape by the operator．

Ta Eiducial marks are normally spaced at lo－second intervais，a eoacing which is equivalent to approximately 1500 feet on the ground．The exact horizontal scale of the tape can be establisied by measuring the fiducial spacing on the map．

Sunen Six－Channel Record

Wh the chart oriented so that fiducial numbers inczaase finc：right to left the tracings from the bottom to the to： $0:$ the chart are as follows：

1）EiEucial markers－same comments as above．
2）Nac：etometer－positive upward．At the normal setting （30u scale） 1 mm ．is approximately equivalent to 15 gamas and a step is approximately 400 gammas．At the $\mathbf{~} 600^{\prime \prime}$ and ＂ $2200^{\prime \prime}$ scales 1 mm ．is 50 gammas and 150 gammas respectively and the zeeps are 1200 gammas and 3600 gammas．

It should be noted that this trace is a differential recora wie：a time constant of some 4 seconds．The ret result of this 能 to wipe out long term variations but to leave short ȧa．changes reiatively unaltened．This magnetometer record －3 therefore used primarily to check for possible relation－ shins between EM anomalies and sharp magnetic features．

R2EENDIX II－contia
age 3

3）IV In－こうase－positive upward． 1 mm ．represents approximately 20 〇ニitc pe：milion，referred to the primary field at the Eeceiving coil．The scale is linear until approximately $600 \mathrm{p} .0 . \mathrm{m}$. is reached，after which compression occurs to a ievel $0: 1200$ 0．p．m．，beyond which the value is＂off－scale．＂

4）Eu Qua己̃ãure－positive upwara．Same scale as In－Phase．
5）Aitinete：－Encreasing aititude upward．centre line position avoroxiaately 150 feet．Scale below 150 feet approximately亏＇Eet วer min．Scale above 150 feet approximately 7 feet per mer．

5）Accelenoneter－an acceleration of $1 / 3^{\prime \prime} \mathrm{G"}$ is equivalent to a 5 mm ． a Election Erom．the central point．

7）Scintinometer－positive upward． 5 mm ．represents a change oz approximateiy $0.06 \mathrm{mr} . / \mathrm{hr}$ ．
c．SURVEY ZND MAD COMPILATION PROCEDURES

Uncontrolleá airphoto mosaics usually serve as base maps for Elying the survey and fof compilation of the geophysical data．The …ここr common scale is $1 / 4$ mile per inch．

Oe Elight lines are oriented perpendicular to the assumec lo：cest cimension of massive sulphide occurrences antici－ pated in the suirvey area．Occasionally two or more line directions have to be used to accommodate changes of geological strike within the area．تthe spacings normally range between $1 / 8$ mile and 1／4 ミ上゙こ。

The navigator is provided with＂flight strips＂of the area चo De surveyed．These filght strips are a copy of the aiajoto mosaic，with the intended flight lines inked and numbered． Navigation along the parallel flight lines is accomplished by visual means based on the physical detail，observed on the photos． Fhe aircratt is Elown at a terrain clearance of 150 feet or，in rough ternain，at the lowest safe altitude．

Flight path is recovered in the field by comparison of the 35 mm ．strip fin with the airphoto mosaics．Identifiable $00 \pm \pi E$ are marked on the mosaics and designated by numbers $\overline{\mathrm{a}}$ Ear．．．．aed frcin the fiducial numbering system on the film．These cecoveced Elight innes provide the positional basis for plotting the seomivsical data．The EM anomalies are listed and graded in the Eid and are often plotted on the field mosaics to pemit immediate accuisition of ground．

On our Ottawa office transparent overlays of the mosaics are prepared，upon which are drafted the recovered

Eiductai sones，the interpolated flight line posithons，the key pianimetic Eeazures as traced ffom the mosaics，and the signifi－ cant ceopysical cita．The geophysical data are subjected to a careful analysis by a geophysicift who prepares an interpretation report inciüing cecommenciations for further work．

D．

Me はaこa presentation
the oteer geopysical system is a combination of an anomaly İsting anc a plan map plot of gaded EM anomalies．The anomaly lisuing vaovides the significant details concerning each anomaly and the maj gives a＂bira＇s eye yiew＂of the conductors detected．

Sor purposes of listing and to facilitate reference in the revorr each EM anomaly is assigned a＂name，＂which is made up of the nubea oz the line voon which the anomaly occurs plus a ietcer．Fo：example，on line 257 anomalies would be named 257 A ， 2573， $257 \mathrm{C}, \mathrm{E}=0$. Erom south to north or from west to east．The letter which appears beside each EM anomaly on the map is therefore pazt of zis name．These names also appear on the Brush necoras and in the anomaly list．

Ghe anomaly list contains the fiducial numbers at the edges of the Evinomaly，the in－phase and quadrature amplitudes in p．o．m．Ge altituda at which the anomaly was detected，the oosicional Ealationship of the EM anomaly to magnetic anomalies （is any），a zaing，and comments concerning any other pertinent characteraselos ois the anomaly．

The ：cmenclature used in the＂magnetics＂column of the anonaly list requires some explanation．The main termsused ane sice，lank，eçe and direct．These refer to the position of the M peak relative to the axis of the magnetic feature． ＂Direc：＂dipicts coincident peaks and similar widths；edge＂is síkE－y ofiset：＂Fiank＂is somewhere along the flank of the agyeuc anomaiy；＂side＂is down near the base．＂N．Flank 800g＂ means that the EM anomaly occurs along the northern flank of a magnetic feavure of 800 gammas total amplitude．When one peak 0 a muitipie $E V_{1}$ anomaly coincides with a magnetic high the specific paak may be designated．For example，if the southern〇EAK JE a couble IM anomaly coincided with a 250 gamma magnetic ancanay the nonenciature would be＂Dir．S．250g＂．

The rating assigned to each EM anomaly in the listing detemines the symol which represents the anomaly on the map． Six categozies of anomalies are defined：1A，1B，2A，2B，3，and X ． Rhe numers＂I＂，＂2＂and＂3＂are primarily a measure of in－phase anoㄴunde correctea Eor altitude variation：＂I＂is for very iance anomaites，＂2＂for intermediate，and＂3＂for relatively Weak response．This rating is sometimes affected by the shape， Dy the in－oinse co quadrature ratio，or by the location of the anomaly，The ictecis＂A＂and＂B＂merely refer to the magnetics：

SロコENOM IZ－cone：
Page 5
＂z＂indicates a ainectly coincident magnetic anomaly，and＂B＂ incicaces the iack thereor．The＂X＂rating is reserved for iestionabie anomaifes．The ieqend or the map shows the symbol
 تectancie is Eilled in，the stronger the anomaly．

In the dase of direttly coincident magnethe anomalies， the anpintuã of the magnetic feature is shown on the EM map． It is stenciiled jeqeath the syobol which portraysthe EM anomaly．

Duninc the finaz interpretation stage，EM anomalies二ae covrelated Eron Line to ling wherever possible and the conductive zones are outlined．All definite conductors are numbeaed oi the mao and aiscussed in the report．

LIMITED

$$
\begin{array}{r}
1-1-1-1-1-1+1
\end{array}
$$

Aj]

Ontin.

$$
300 \mathrm{~V}
$$
 ! ! $\because A^{*}$

SCINTILLO:NETER

aCCELEROMETER

ALTMETER

E.M. OUT-OF-PHASE

E.M.

IN-PHASE

MAGNETOMETER

Flight line No. T-1W
Anomalt A
Zone No.

SCINTILLOMETER

ACCELEROMETER

ALTIMETER

- 1 ?

```
*
```


EM.

 OUT-OF-PHASE
EM.

IN-PMASE

MAGNETOMETER Flight Line No. T- 1W

Anomaly B
Zone No.

4

					ACCELEROMETER ALTIMETER E.M. OUT-OF-PHASE EM. IN-PHASE MAGNETOMETER Flight Line No. T-2e Anomaly A Zone No. \qquad

SCINTHLOMETER

ACCELEROMETER

```
ALTIMETER
```

```
#
```


 MH+tata
 E.M.

```

\section*{OUT-OF-PHASE}

\section*{\(18+4\)}

\section*{E.M. \\ IN-PHASE}
\(\qquad\)


MAGNETOMETER
Flight line no. T-4W Anomaly A.
ZONE NO. 1


SCINTILLOMETER

\section*{ACCELEROMETER}

\section*{ALTIMETER}
E.M. OUT-OF-PHASE

\section*{E.Ni.}

IN-PHASE

\section*{MAGNETOMETER} Flight Line No. T- 5 E Anomaly AEB
ZONE NO. 2 L 1



\author{
EM.
}

\section*{EM. \\ IN-PIASE}

MAGNETOMETER
FLight Line No. T-9E
Anomaly A
ZONE No. 3








\section*{SCINTILLOMETER}

\section*{Sherawh kat}

\section*{ACCELEROMETER}

\section*{E.M. \\ OUT-OF-PHASE}

\author{
E.M. \\ IN-PHASE
}


\author{
MAGNETOMETER \\ FLIGHT Line No. T-17E \\ ANOMALY A \\ ZONE NO. \(?\)
}

SCINTILLOMETER

\section*{ACCELEROMETER}

ALTMETER

EM.
OUT-OF-PHASE

EM.
N-PHASE

MAGNETOMETER
FLIGHT LINE No. T- 18 w
Anomaly \(A\)
ZONE NO. 7


Mr.R.V.Scott,
Director,
Mining Lands Branch, Department of Mines, Parliament Buildings, Toronto, Ontario.


Dear Sir:
Herewith are a number of maps received June 29th from Canadian Javelin Limited, 100 Bronson Avenue, Ottawa, with reports of work as follows:
24.4 days ' geophysical work on each of mining claims
 L. 91716 , L. 91745, L. 91746, L. 91747, L.91749, L. 91750 , L.92300, \(\mathrm{L} .92301^{\prime}, \mathrm{L} .92306^{2}\)

9 days' geclogical work on each on each of the above mentioned.
20 days' geophysical work on each of mining claims \(\boldsymbol{I}, 91685{ }^{2}\) L. 91686 , L. \(91723^{2}\) to L. 91730 Incl usive, L. \(91734^{2}\), L. 91735 , L.91736 L. 91737, L. \(92304,-\mathrm{L} .92305, \mathrm{~L} .92307\) and L. 92309 ?
7.4 days' geological work on each of the aforementioned.

Herewith also are maps and reports of an airborne geophysical survey for which no assessment work credit is being claimed by way of reports of this work to this office.

I also enclose duplicates sent to this office of reports of 1.6 days ' work for assaying on mining claims L. 91663 et al and .4 days' work for assaying on mining claims L. 91685 et al which I am informed have already been submitted to the Miniater. Perhaps these could be marked approved and returned to be recorded if found acceptable to the Minister.
/PL.










```

