Work performed by: Newmont Lta.

Claim ${ }^{\text {Ho. }}$	hole No.	Footage	Date	Note
L 633564	260-83-3	850	Feb/83	(1)
L 633355	260-83-4	627	Mar/83	(1)
L 633367	260-83-5	517	Mar/83	(1)
L 624982	260-83-6	507	Mar/83	(1)
L 624982	260-83-7	537	Mar/83	(1)
		3038		

Hotes: (1) \#263-83

DIAMOND DRILL HOLE RECORD

LOCATION	DIP TEST			LEvel		HORIZONTAL COMPONENT. 625 feet	DATE STARTED Feb. 26,1983	
Noseworthy Twp. Ont.	footage	AMGLE				VERTICAL COMPONENT den	DATE FINISHED March 2, 1983	
	0	50°	50	ELEVATION		bearing True North	LOGGED BY R.A. Archer	
No. 633564	$\frac{450}{850}$	$\frac{51}{420}$	$\frac{42.25}{} 34$.					
32E12 UTM				latitude	$11+505$		LENGTH 850 feet	PURPOSE To test IP Anomaly
				departure	$20+00 \mathrm{E}$	CORE LOCATION Timmins	TOT. RECOVERY 99.5\%	

NEWFONT EXPLORATION OF CANADA LTD.
PROJECT Mikwam - 260
HOLE No. DDH-260-83-3 Page 1 of 9

DIAMOND DRILL HOLE LOG

NEWMONT EXPLORATION OF CANADA LTD.

DIAMOND DRILL HOLE LOG

DIAMOND DRILL HOLE LOG

NEWHONT EXPLORATION OF CANADA LTD.
DIAMOND DRILL HOLE LOG

PROJECT
HOLE No. DDH-260-83+3

NEWMONT EXPLORATION OF CANADA LTD.
PROJECT _ Mikwam - 260

DIAMOND DRILL HOLE LOG

NEWHONT EXPLORATION OF CANADA LTD.
DIAMOND DRILL HOLE LOG
PROJECT Mikwam - 260
HOLE NO. DDN-260-83-3 Page 8 of 9

NEWMONT EXPLORATION OF CANADA LTD.
DIAMOND DRILL HOLE LOG

PROJECT Mikwam - 260
HOLE NO. DDH-260-83-3

DIAMOND DRILL HOLE RECORD

LOCATION	DIP TEST			LEvEL		HORIZONTAL COMPONENT		DATE STARTED	March 5, 1983
Noseworthy Twp.	FOOTAGE	RECCRDING	CORRECTED			VERTICAL COMPONEN		$\begin{aligned} & \text { DATE } \\ & \text { FINISHED } \end{aligned}$	March 7, 1983
\%. 633355	O	$\frac{-50}{45.75^{\circ}}$	$\frac{50}{37.5}$	Elevation		bearing	South	LOGGED BY	R.A. Archer
	625	38.20	$30.5{ }^{\circ}$	Latitude	$37+12.5 s$	LENGTH	627 feet	Purpose test	st EM \& Mag
32/E12 UTM				DEPARTURE	$30+00 \mathrm{~W}$	CORE LOCATION	Timmins	TOT. RECOVE	ERY 100\%

DIAMOND DRILL HOLE LOCATION SKETCH

SCALE: 1:5.000

NEWMONT EXPLORATION OF CANADA LTD.
DIAMOND DRILL HOLE LOG
HOLE No. DDH-260-83-4

PROJECT Mikwam - 260
DIAMOND DRILL HOLE LOG HOLE №. DDH-260-83-4

DIAMOND DRILL HOLE LOG

NEWMONT EXPLORATION OF CANADA LTD.
PROJECT Mikwam-260
HOLE No. DDH-260-83-4 Page 4
DIAMOND DRILL HOLE LOG

DIAMOND DRILL HOLE LOG

PROJECT Mikwam-260
HOLE No. DDH-260-83-4

NEYNONI EXPLORATION OF CANADA LTD.

DIAMOND DRILL HOLE LOG

	footage		ROCK TYPE AND DESCRIPTION (alteration, structure, mineralization)	CORE Anges TO AxIS		SAMPLE				Analytical Result:								
	FROM	T0				number	FROM	T0	LENGTH	Au	As	Cu	zn		Sensen			
										ppb	ppm	ppm	ppm		Cation Plot			
						14797	542.0	547.0	5.0	16	15							
			Poorly developed graded bedding indicates tops to the			14798	547.0	549.2	2.2	7	50							
			south															
,																		
	549.2	581.6	Argillite	55°	1\%													
			-laminated to well bedded with occasional cherty interbe	S														
			(non-mineralized). Carbonate is pervasive, first as															
			granular ankerite (1 mm disseminated) to about 565' the	c as														
			very fine grained and stringer calcite; $1_{1}{ }^{1}$ "' quartz			14799	554.0	554.5	0.5	5	300							
			carbonate vein with 38 sulphides at 554.3'. about one															
			foot of alteration is evident prior to the sharp															
			contact with the porphyry. The altered argillite is.															
			greenish - greyish brown in colour															
	581.6	627.0	Quartz- Feldspar Porphyry	45°	18													
			-30\% white feldspar and blue guartz phenocrysts (Up to			147800	586.4	587.0	0.6	5	18	72	120	3.2	Call	c-alk	Iin	
			$1 / 8{ }^{\prime \prime}$ across) in a fine to medium grained matrix of												and	esite		
			quartz, feldspar, chlorite, biotite, tuffaceous material															
			(ash ?) and occasionally, pyrrhotite. Matrix varies															
			from light grey to light brown in colowr. Quartz															
			veinlets are common but are non-mineralized															
			627.0' - End of hole															
			Sludge Samples			14539	88	97	9'	4								
			A			14540	97	107	12'	5								
						14541	107	127	20^{\prime}	4								
			$71+\mathrm{HON}$			14542	127	147	20^{\prime}	5								
			$A 1010$			14543	147	157	10^{\prime}	7								
						14544	157	167	10^{\prime}	5								
			$7+1^{2}$			14545	167	177	10^{\prime}	2								
						14546	177	187	10^{\prime}	5								
						14547	197	207	$10:$	5								
						14548	202	217	10	2								

NEWHONT EXPLORATION OF CANADA LTD.
DIAMOND DRILL HOLE LOG

PROJECT Mikwam-260

DIAMOND DRILL HOLE RECORD

LOCATION	DIP TEST			LEVEL	HORIZONTAL COMPONENT		DATESTARTED March 9, 1983DATEFINISHED March 11, 1983
AREA or	FOOTAGE ANGLE				VERTICAL COMPONEN		
TwP. Noseworthy Twp. Ont.	0	RECOging	CORRECTED				
CLAIM No. 633367	250	56.50	$47.75{ }^{\circ}$	elevation	BEARING	South	LOGGED BY R.A. Archer
CLAM No. 633367	510	$52.3{ }^{\circ}$	43.500	LATITUDE 40+50S	LENGTH	517 Feet	PURPOSE Geology/Geophysics
NTS 32E/12 UTM				DEPARTURE 36+00W	CORE LOCATION	Timmins	TOT. RECOVERY 100\%

DIAMOND DRILL HOLE LOCATION SKETCH

$$
\text { SCALE: } \quad 1: 5,000
$$

DIAMOND DRILL HOLE LOG
PROJECT Mikwam- 260
HOLE No. DDH-260-83-4

NEWMONT EXPLORATION OF CANADA LTD.
PROJECT 260-Mikwam
HOLE No. DDH-260-83-5 Page 1 of 6

DIAMOND DRILL HOLE LOG

DIAMOND DRILL HOLE LOG

PROJECT 260-Mikwam
HOLE No. DDH-260-83-5

NEWMONT EXPLORATION OF CANADA LTD.
DIAMOND DRILL HOLE LOG

	FOOTAGE		ROCK TYPE AND DESCRIPTION (alteration, structure, mineralization)	CoreAhGLesTOaxis		SAMPLE				Analytical Result:								
	FROM	ro				number	FROM	то		Au	As							
										ppb	ppm							
	391.5	404.2	Quartz-carbonate Rich Mudstone	55°	<18	14707	391.5	396.3	4.8	8	200							
			-contact is gradational over about ten feet but mudstone															
			first appears at 391.5'. This rock type is very fine			14708	397.0	401.3	4.3	7	30							
			grained, grey to green to brown in colour and may be															
			finely laminated or massive and bedded. The bedding			14709	403.3	404.2	0.9	4	10							
			within this unit is highly contorted due to the															
			injection of quartz veins. Again, brown, iron-rich															
			carbonate is pervasive throughout the host rock and															
			along edges and fractures of quartz veins. Quartz															
			veins average about $\frac{1}{2} 11$ in width and each foot of core															
			containstwo to three veins and or veinlets. Pyrite															
			and pyrrhotite are not common but a few stringers are															
			present in places. Coarse sericite and chlorite often															
			occur adjacent to quartz veins. Veins are for the most															
			part. conformable to bedding but locally are seen to															
			cross-cut it and often contain inclusions of wall-															
			rock material.															
	404.2	444.7	Laminated Iron Formation	45°	<18	14710	404.2	405.7	1.5	5	5							
			-oxide facies iron formation with laminations of magneti	te														
			mudstone and minor chert. The chert layers are blue			14711	405.7	410.0	4.3	4	5							
			to pink in colour and well-bedded in contract with															
			conformable quartz veins which are blue to milky-white			14712	410.0	414.7		' 22	13							
			(more commonly the latter) have irregular broundaries															
			and are usually accompanied by brown carbonate along			14713	414.7	417.0	2.3	11	10							
			the edges of the veins and in fractures. Due to the															
			nature of the occurrence of carbonate.			14714	417.0	421.2	4.2	7	10							
			-as fracture fillings, along contacts; and pervassive															
			through the more porous beds it appears that carbonatial	zation		14715	421.2	424.0	2.8	5	20							
			has occurred as a late process and that it does not															
			represent sedimentary carbonate. Sulphide minerals															
			are not found within the iron formation itself but		-													

DIAMOND DRILL HOLE LOG
HOLE NO. DDH-260-83-5

DIAMOND DRILL HOLE RECORD
HOLE No. 260=83-6

DIAMOND DRILL HOLE LOG
HOLE No.

NEWMONT EXPLORATION OF CANADA LTD.

DIAMOND DRILL HOLE LOG

ROCK TYPE AND DESCRIPTION
(alteration, structure, mineralization)
minerals, then at 192.6^{\prime}, these are selectively replaced by massive pyrite. Pyrrhotite is also present but in minor amounts. Siliceous fragments are not replaced but are further contorted by the introduction of the sulphides. 193'-194' contains 85\% pyrite. At 197.7' the sulphide content drops off to 38 and the pyrrhotite: pyrite ratio increases. Past 197.7', there is still some alteration of the chlorite, however, sericitization and silicification are more prevalent here. Bleaching to a light brown colour occurs from 203.1' to 210.0'. Sulphides are finely disseminated to 205.5' where they increase to 5% and occur as patches and irregular stringers. Small, irregular quartz veinlets and pods start occurring in this "stringer zone". Alteration dies off by 210^{\prime} and sulphides grade back into 48
disseminations with occasional stringers. Quartz veinlets are still present but are less common. Foliation is locally crenulated and rock is often bleached near fractures. 2% coarse magnetite occurs from 221.0'-221.7'. After 237', quartz veins and veinlets are abundant again. These may be conformable to or cross-cutting the foliation and show associated carbonate, sericite and sulphides. 253.8^{\prime} to 257^{\prime} is quite highly bleached but contains no quartz veins and only minor sulphides; $2^{\prime \prime}$. wide quartz-carbonate veins at 257.5', 267.6', 273.3' and 273.5'. Smaller veinlets are common throughout this zone. Sericite is becoming more prevalent than chlorite and the rock is becoming less fragmental and more flow-banded with some finegrained zones which are trending towards interflow sediments. Quartz veinlet at 287.0° contains coarse tourmaline. Starting at 290.5^{\prime} quartz veins show associat coarse chlorite sericite and carbonate. These veins are irregular in shape and are roughly conformable with the foliation although the latter is usually

$\|$CORE ARGES TO AXIS	$\begin{array}{\|c\|} \hline 8 \\ \text { S'SULPH- } \\ \text { IDES } \end{array}$	SAMPLE				Analytical Result:								
		number	FROM	To	LENGTH	$\frac{\mathrm{Au}}{\mathrm{ppp}}$	$\begin{aligned} & \mathrm{As} \\ & \hline \mathrm{ppm} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \mathrm{Cu} \\ \hline \mathrm{ppm} \\ \hline \end{array}$	$\frac{\mathrm{Zn}}{\mathrm{ppm}}$					
		14647	187.4	192.6	5.2'	4	10							
	40\%	14648	192.6	197.7	5.11	19	80	34	664					
		14649	197.7	203.1	5.41	4	N.D.							
		14650	203.1	205.5	2.4	10	5							
		14651	205.5	210.0	4.51	5	N.D.							
	58													
		14652	210.0	215.0	5.0^{\prime}	3	N.D.							
	48													
		14653	215.0	220.0	5.01	12	N.D.							
		14654	220.0	225.0	5.01	5	N.D.							
		14655	225.0	230.0	$5.0{ }^{\prime}$	7	N.D.							
		14656	230.0	235.0	$5.0{ }^{\prime}$	5	N.D.							
		14657	237.0	242.0	5.01	78	5							
		14658	247.6	250.3	2.71	19	N.D.							
		14659	253.8	257.0	3.2 '	16	N.D.							
		14660	257.0	258.7	1.71	14	N.D.							
	3\%	14661	260.3	265.0	4.71	5	N.D.							
		14662	265.0	271.0	$6.0{ }^{\prime}$	34	N.D.							
		14663	272.6	277.5	$4.9{ }^{\prime}$	60	N.D.							
		14664	277.5	283.0	5.51	29	5							
		14665	284.3	287.6	3.31	40	N.D.							
ted		14666	290.3	293.8	3.5'	19	N.D.							
	- \cdot													
		14667	297.4	302.0	4.6'	3	N. D.							

NEWMONT EXPLORATION OF CANADA LTD.
PROJECT 260-Mikwam
HOLE No. DDH-260-83-6 Page 3 of 5

NEWMONT EXPLORATION OF CANADA LTD.

DIAMOND DRILL HOLE LOG HOLE No. DDH-260-83-6 Page ${ }^{4}$ of 5

NEWMONT EXPLORATION OF CANADA LTD.
PROJECT _260-Mikwam
DIAMOND DRILL HOLE LOG
HOLE NO. DDH-260-83-6

DIAMOND DRILL HOLE RECORD

LOCATION	DIP TEST			LEVEL		HORIZONTAL COMPONENT VERTICAL COMPONENT	 DATE STARTED March 15, 1983 DATE March 17, 1983 FINISHED March
AREA or Noseworthy Twp.	FOOTAGE ANGLE						
	Or	$\frac{50.00}{}{ }^{\circ}$	50.000	Elevation		bearing n astro.	
CLAIM No. 624982	250°	$\frac{51.750}{51.00}$	42.75°	elevation		BEARING N astro.	LOGGED BY R.A. Archer
624982	530	51.00	42.25	LATITUDE	$43+75 \mathrm{~s}$	LENGTH 537 feet	PURPOSE Geological/Geophysical $^{\text {a }}$
NTS 32E/12 UTM				DEPARTURE	$\underline{L 50+00 w ~}$	CORE LOCATION TIMMINS	TOT. RECOVERY 100\%

NEWMONT EXPLORATION OF CANADA LTD.
DIAMOND DRILL HOLE LOG

NEWMONT EXPLORATION OF CANADA LTD.
PROJECT MIKWAM - 260
HOLE No. DDH-260-83-7 Page_ 2 of 9

	FOOTAGE		ROCK TYPE AND DESCRIPTION (alteration, structure, mineralization)		$\|$$\|c\|$ SULPH IDES	SAMPLE				Analytical Result:							
	FROM	то				number	FROM	то	Length								
			with regular foliation at 35° to CA														
	75.5	154.8	Lapilli tuff														
			-light grey siliceous fragments in a matrix of green		38	14371	75.5	80.5	5.0 '	3	N.D.						
			chlorite, dark grey sericite and fine grained quartz			14372	80.5	85.5	5.01	5	N.D.						
			and ankerite. Quartz-ankerite veinlets make up 5\%;			14373	85.5	90.5	5.0.		N.D.						
			very fine, disseminated pyrite and pyrrhotite is present			14374	90.5	95.5	$5.0 \cdot$	4	N.D.						
			throughout the matrix and along borders of veinlets.			14375	95.5	99.0	3.5 '		N.D.						
			Foliation is very irregular. Rusty brown staining at 791			14376	99.0	105.0	6.0^{\prime}	4	5						
			and 85.5° is due to the oxidation of ankerite as con-			14377	105.0	110.0	5.0'		N.D.						
			firmed by a positive KCN test. Pyrite and pyrrhotite			14378	110:0	115.0	5.0'		N.D.						
			often occur together, probably having been formed by			14379	115.0	120.0	5.01	3	5						
			exsolution, eq. at 89.2'. $13^{\prime \prime}$ wide quartz vein at 98.5'			14380	120.0	125.0	5.01		5						
			with 1\% sheared pyrite in fractures. Small irreqular			14381	125.00	130.00	5.0.		5						
			quartz vein with 28 pyrite at 122.5'. From 125'-140'			14382	130.00	135.00	5.0	3	5						
			fragments gradually get smaller until they are about			14383	135.00	140.00	5.0^{\prime}	3	5						
			178" in width. Ankerite is still pervasive but compris			14384	140.00	145.0	$5.4{ }^{\circ}$	7	5						
			only about 5\% of matrix. Pyrite is still present as 2\%	45°	22												
			disseminations. Quartz veinlets in this section contain														
			20-50\% coarse ankerite.														
			Tuff coarses slightly at 145, 4^{\prime} ' and_contains abundant			14385	245.4	151.5	6.1	5	10						
			ankerite, sericite and 5\% fine grained pyrite with		5\%												
			pyrrhotite following the foliation. At 151.5' the			14386	151.5	154.8	3.3	7	5						
			chlorite content increases and the matrix is more														
			greenish in colour than previously. Sulphide content		10\%												
			in this section increases to 10\% and ankerite is														
			pervasive throughout the matrix														
	154.8	157.6	Rhyodacite														
			-dense, poorly foliated, fine grained rock with 38		28	14387	154.8	157.6	2.8	12	5						
			magnetite crystals. Normally a dark greenish grey but.														
			bleaching to a pale brownish grey has occurred		\cdots												
			adjacent to fractures that are roughly conformable														
			to the foliation. Rock is highly carbonatized and both														

NEWMONT EXPLORATION OF CANADA LTD.
PROJECT MIKWAM - 260
HOLE No. DDH-260-83-7 Page 3 of_ 9
DIAMOND DRILL HOLE LOG

NEWMONT EXPLORATION OF CANADA LTD.
DIAMOND DRILL HOLE LOG

NEWMONT EXPLORATION OF CANADA LTD.
PROJECT MIKWAM - 260
DIAMOND DRILL HOLE LOG
HOLE No. DDH-260-83-7

NEWMONT EXPLORATION OF CANADA LTD.

DIAMOND DRILL HOLE LOG

NEWMONT EXPLORATION OF CANADA LTD.
PROJECT Mikwam - 260
DIAMOND DRILL HOLE LOG
HOLE No. DDH-260-83-7

ipector's Llomen No.

Summary of Work Performance and Distribution of Credits

$\begin{gathered} \text { Totail Work Dave G. claimed } \\ 3 / 60 \end{gathered}$	- Mining Claim		$\begin{gathered} \text { Work } \\ \text { Doys Or. } \end{gathered}$	Mining Clalm		Work Daye C	Mining Oialm		Doys O.
	Profix	Number		Profix	Number		Proflix	Number	
for performance of the following work. (Check one only)	L.	624981	20	L.	624989	20	L.	633270	20
\square Manuel Work		624982	20		624990	20		633271^{*}	20
$\square 8$ neft Sinking Drifting or		624983	20		633106	20		633272	20
\square Compressed Alr, other		624984	20		633107	20		633273	20
mechanical equip.	8	624985	20		633130	20		633312	20 ,
\square Power Stripping		624986	20		633132	20		633313	20
Diamond or other Core drilling		624987	20		633138	20		633330	20
Lend Survor		624988	20		633269	20		633331	20

Required Information eg: type of equipment, Names, Addresses, etc. (See Table below)

Hole No.	Claim No.	Depth	Sampies	Date Drilled	
260-83-3	L. 633564	$850{ }^{\circ}$	36	Feb. 26-March 3, 1983	886
260-83-4	L. 633355	627 '	25	March 5-7, 1983	652

260-83-5	L. 633367	5171
260-83-6	L. 624982	507 ${ }^{\prime}$
260-83-7	L. $624982^{\text {* }}$	537'
		3038

Drilling contracted to:
Dominik Drilling Inc.
P.O. Bax 247

VAL D'OR, Quebec
J9P 4P3

March 5-7. 1983
652
March 9-11, 1 \$83utario geoigetal survey ASSESB.ADNT FILES

March 15-17, 2983 SEP 3 Ese83 A E C E ${ }^{3} 760 \mathrm{E}$

D E MEFED DIVAKE SEP 141983

Certification Verifying Report of Work

I hereby cortify that I have a personal and intimate knowledge of the fects set forth in the Report of Work annexed hereto, having performed the work
or witnessed same during and/or after its completion and the annexed report ta true.
Name and Postal Address of Person Cortifving
R.A. Archer, P.O. Box 1430, TIMMINS, Ontario.

Table of Information/Attachments Required by the Mining Recorder

Type of Work	Specific information per type	Other informetion (Common to 2 or more types)	Attachments
Manual Work	1	Names and addresses of men who performed manual work / operated equipment, together with detes and hours of employment.	Work Eketch: thees ere required to show the location and extent of work in relation to the nearest claim poet.
Shaft Sinking, Drifting or other Leteral Work	NII		
Compressed air, other power driven or mechanical equip.	Type of equipment		
Power Stripping	Type of equipment and amount expended. Note: Proof of ectual cost must be submitted within 30 days of recording.	Names and addresses of owner or operstor together with dates whan drilling/stripping	

Mining Claims Traversed (List in numerical sequence)

Mining Clsim		$\begin{aligned} & \text { Expenco, } \\ & \text { Dops } 1 . \end{aligned}$	$\frac{\text { Mefix }}{\text { Mining }} \text { Claim }$	$\begin{aligned} & \text { Expend. } \\ & \text { Doyscr. } \end{aligned}$
Prefix	Number			
\underline{L}	633446	20	L. 633565	20
	633447	20	633566	20
	633448	20	633641	60
	633449	. 20	633642	60
	633450	20	633643	20
	633451	20	633644	20
	633548	20	633645	20
	633549	20	633646	20
	633550	20	633647	20
	633551	20	633648	20
	633552	40	633649	20
	633553	20	633650	20
	633554	40	633651	20
	633555	20	633652	20
	633556	20	633653	20
	633557		$\bigcirc 633654$	20
	633558	20	633655	20
	633559	20	633656	20
	633560	20	634364	20
	: 633561	40	634365	20
\vdots	633562	20	634366	40
	633563	20	634367	40
	633564	20	634368	20
			634369	20

