010

REPORT

on
MAGNETIC AND ELECTROMAGNETIC SURVEYS
DE'POUR LAKE AREA, OISIARIO
for

\because RECEIMED

IIIN - 31982
mining landes sfction

Toronto, Ontario, April, 1982.
W.E. Brereton, P.Eng., MPH Consulting Limited.

TABLE OF CONTENTS

1.0 INTRODUCTION 1
2.0 LOCATION AND ACCESS 2
3.0 GEOLOGY AND MINERAL OCCURRENCES 4
3.1 Summary 4
3.2 Survey Area Geology 4
3.3 Exploration History and Previous work 7
3.4 Detour Gold Deposit 8
3.4.1 Introduction 8
3.4.2 Geology and Mineralization 8
3.4.3 Mining 13
4.0 FIELD OPERATIONS 15
4.1 Linecutting 15
4.2 Geophysics 16
4.2.1 Maxmin II Horizontal Loop Electromagnetic System 16
4.2.2 Magnetometer Survey 18
5.0 GEOPHYSICAL RESULTS 20
5.1 Maxmin II Interpretation 20
5.2 Survey Results - Grid "A" 23
5.2.1 Maxmin II Electromagnetics 23
5.2.2 Magnetics 41
5.3 Survey Results - Grid "B" 43
5.3.1 Maxmin II Electromagnetics 43
5.3.2 Magnetics 55
6.0 CONCLUSIONS AND RECOMMENDATIONS 57
CERTIFICATE
APPENDIX I - Technical Data Statements APPENDIX II - Instrument Specifications

East Grid ("B")
$\operatorname{Map} B-1$
$\operatorname{Map} B-2$
Map B-3
Map B-4
Map B-5
Map B-6
Map B-7
Map B-8
Map B-9
Map B-10
Map B-11
Map B-12
Map B-13
Map B-14
Map B-15
Map B-16
Map B-17
West Grid ("A")
Map A-1
Map A-2
Map A-3
Map A-4
Map A-5
Map $A-6$
$\operatorname{Map} A-7$
Map A-8
Map A-9
Map A-10
Map A-11
Map A-12
Map A-13
Map A-14
Map A-15
Map A-16
$\operatorname{Map} A-17$
Map A-18
Map A-19
Map A-20
Map A-21
Map A-22
$\operatorname{Map} A-23$

Sheet 1 - 444 Hz EM
Sheet 2-444 Hz EM
Sheet 3-444 Hz EM
Sheet 4 - 444 Hz EM
Sheet 5 - 444 Hz EM
Sheet 1 - 1777 Hz EM
Sheet $2-1777 \mathrm{~Hz}$ EM
Sheet $3-1777 \mathrm{~Hz} \mathrm{EM}$
Sheet 4-1777 Hz EM
Sheet 5-1777 Hz EM
Sheet 1 - Magnetics
Sheet 2 - Magnetics
Sheet 3 - Magnetics
Sheet 4 - Magnetics
Sheet 5 - Magnetics
EM Detail (west)
EM Detail (east)

Sheet l - 444 Hz
Sheet $2-444 \mathrm{~Hz}$
Sheet $3-444 \mathrm{~Hz}$
Sheet 4 - 444 Hz
Sheet 5-444 Hz
Sheet 6-444 Hz
Sheet 7 - 444 Hz
Sheet 1 - 1777 Hz
Sheet $2-1777 \mathrm{~Hz}$
Sheet $3-1777 \mathrm{~Hz}$
Sheet 4-1777 Hz
Sheet 5-1777 Hz
Sheet 6-1777 Hz
Sheet 7 - 1777 Hz
Sheet 1 - Magnetics
Sheet 2 - Magnetics
Sheet 3 - Magnetics
Sheet 4 - Magnetics
Sheet 5 - Magnetics
Sheet 6 - Magnetics
Sheet 7 - Magnetics
EM Detail (west)
EM Detail (east)

1.0 INTRODUCTION

Ground geophysical surveys have been completed on a portion of the Detour Lake area, Ontario, mineral properties of Getty Canadian Metals, Limited by MPH Consulting Limited of Toronto. Field work consisted of Maxmin II horizontal loop electromagnetic and proton precession magnetic surveying.

This report presents the interpreted results of the geophysical surveying, indicating interpretive techniques employed, and makes recommendations for further work in the project area.

The ground geophysical surveying is part of a larger effort in the area on behalf of Getty which, to date, has involved land acquisition, airborne and ground geophysical surveying and geological and lithogeochemical studies.

Geophysical surveying was completed on a total of 206 mineral claims. The Technical Data Statements are presented as Appendix I to this report.

2.0 LOCATION AND ACCESS

The survey area abuts the Ontario-Quebec interprovincial boundary and is centred approximately 200 km northeast of Timmins, Ontario. The towns of Cochrane, Ontario and La Sarre, Quebec are located 144 km to the southwest and 128 km to the southeast respectively (Figure 1).

Easiest access to the property is by fixed-wing aircraft from bases at Cochrane and La Sarre. Distance from the Cochrane airbase to the field camp on Atkinson Lake is 135 km .

A winter road from La Sarre north to the Detour minesite transects the east portion of the grid area. An all-weather road presently under construction from Cochrane to the Detour minesite will pass to the northwest of the survey area.

The town of Cochrane served as a supply base for the geophysical crews.

3.0 GEOLOGY AND MINERAL OCCURRENCES

3.1 Summary

The Detour Project area is underlain by greenschist to amphibolite facies metavolcanic and metasedimentary rocks of Archean age in the north-central portion of the Abitibi Greenstone Belt. Later intrusives of granitic to dioritic composition truncate the metavolcanic and metasedimentary rocks. Diabase dykes, the youngest rocks in the region, cut all rock types. Pleistocene cover comprising clayey till, glaciolacustrine clay, sandy till and glaciofluvial eskers is variable in extent and may be up to 60 m or more in thickness although it generally averages 30 meters.

Regionally, the past-producing Normetal Cu-Zn (\pm Au, Ag) volcanogenic massive sulphide deposit is located within the next greenstone belt immediately to the south of the present project area. Selco's major "Mines Selbaie" Cu-Zn-Au-Ag deposit located 29 km to the east of Amoco's Detour deposit in Brouillan Township, Quebec, has recently been placed into production.

3.2 Survey Area Geology

The metasedimentary-metavolcanic rocks in the survey area occur in a broad east-west arc which is concave to the
north. The disposition of units has been interpreted in large part from airborne geophysical data as outcrop is scarce.

The claim area, based on recent geological/geochemical work and results of previous drilling is underlain predominantly by basaltic tholeiites with minor felsic metavolcanics and metasediments including interflow chemical metasediments. The latter types include sulphide iron formations, cherty sulphide \pm graphitic iron formations, etc. The iron formations are typically expressed as airborne electromagnetic/ magnetic anomalies.
A. prominent north-south aeromagnetic anomaly directly west of Vandette Lake, to the north of the present area, for example, is directly reflective of a mixed oxide-sulphide facies iron formation.

A major granitic body may occur to the south of the claim group based on limited outcrop west of Atkinson Lake.

Structurally, there appears to be two main fold directions in the region. The prominent regional trend is east-west as exemplified by the east-trending anticline north of Detour Lake. This fold plunges 35 to 45 degrees to the west. A
local flexure or warp on the north limb contains the Detour deposit.

The rock units in the claim area occur in a large fold which, on a regional scale, appears to be grossly synclinal although in detail probably consists of a number of discrete syn-clinal-anticlinal pairs.

East-west folds in the Detour area have been re-folded about northeast-southwest axes in the vicinity of major granitic intrusions. The northeast strikes in the west part of the claim block are a reflection of this re-folding.

The broad, arcuate form of rock units on the grid area may reflect a gentle doming related to a granitic body to the south.

The survey area rocks are cut by a series of late faults which cause minor offsets (to 200 m) in geophysical trends. These faults appear to have a radial array as in spokes emanating from a hub with the hub being to the south of the group - possibly related to the granite intrusion and doming.

3.3 Exploration History and Previous Work

The area encompassing the present holdings has recently been mapped by G. Johns of the Ontario Geological Survey from whose report many of the subsequent descriptions and comments are taken.

Mineral exploration activity has been recorded in the area since 1912 when gold was discovered on the Patten River. There has been sporadic exploration activity since 1925 following the discovery of a major copper-zinc deposit at Normetal, Quebec, with peak periods of exploration activity in the late $1950^{\prime} s$, early $1960^{\prime} s$, and early 1970's. Most of this activity was directed towards the search for base metals, with a concentration of exploration efforts in the vicinity of Atkinson and Vandette Lakes.

Numerous massive pyrite-pyrrhotite diamond drill intersections have been recorded in the assessment files of the respective provincial governments. Many of these intersections were probably never assayed for gold. In addition, many ground electromagnetic conductors were never drill tested.

A major rush into the region followed by Amoco gold discovery in 1974 and extensive claim staking occurred in the Lower

Detour-Detour-Sunday Lakes region. Extensive staking was also carried out in adjoining portions of Quebec.

Due to the usual problems of sparse outcrop in the clay belt of the Cochrane area, the main exploration approach to date has been airborne geophysics followed by ground geophysics and diamond drilling of EM conductors. Some companies in the area at present are employing overburden drilling as an exploration tool.
3.4 Detour Gold Deposit
3.4.1 Introduction

The following comments and descriptions are based largely on a paper delivered by A.C. Jackson of Amoco at the 1980 CIM annual meeting in Toronto, the Dome Mines Ltd. 1980 annual report and G. John's Ontario Government report.
3.4.2 Geology and Mineralization

In the immediate vicinity of the deposit, the stratigraphic sequence, as known, consists of several hundred to several thousand feet of fine-grained arkosic and graphitic sediments with occasional interbedded basaltic to ultramafic flows and tuffs. This grades upward into a sequence of interbedded
mafic tuffs and sediments approximately 310 m (l,000 ft) in thickness, with the mafic tuffs being predominant. This, in turn, is overlain by a distinctive variolitic basalt sequence which is up to $90 \mathrm{~m}(300 \mathrm{ft})$ thick. This basalt consists of 10% to 15% felsic clots set in a chloritic to amphibolitic groundmass. Within this unit there are several narrow (several cm thick) interbeds of pinkish coloured chert.

Abstract

The variolitic sequence is overlain by a very well banded sequence of mafic tuffs up to 30 m (100 ft) thick. These are chloritic and biotitic and are characterized by alternating light-dark beds up to 2 cm in thickness.

The mafic tuffs are overlain by a series of ultramafic flows and tuffs which vary in thickness from 3 m to 90 m . In the thicker portions, these rocks appear quite massive, varying from finely crystalline talc-carbonate rocks to medium to coarsely crystalline tremolite-actinolite talc-carbonate units. The thinner parts of the unit are usually very well-banded and appear to be tuffs as they contain numerous relict fragments. These are also highly altered to
talc-carbonate, Petrographically, the ultramafic is typically made up of 50% talc, 10-20\% tremolite, 10-15\% chlorite and 5% sulphides and magnetite.

Several quartz-eye porphyry units occur in the central part of the ultramafic. These units are generally foliated and in some cases appear tuffaceous but their somewhat irregular nature and the often chloritic contacts suggest that they are dikes.

Petrographically, the porphyry consists of $60-70 \%$ quartz and potash feldspar occurring as a fine-grained ground mass and also as larger phenocrysts. Foliated stringers of muscovite comprise up to 15% of the rock along with variable amounts of chlorite, biotite, and carbonate. Pyrrhotite with minor pyrite occurs as irregular masses and comprises up to 5% of the rock. Two other units found within the ultramafics consist of coarsely crystalline gabbroic and pyroxenitic intrusives. The gabbro is non-magnetic and has been largely altered to tremolite and chlorite. The pyroxenite is highly magnetic and is characterized by large pseudomorphs of tremolite and magnetic after olivine or pyroxene. This unit forms a large mass on the eastern end of the main Detour ore zone and is indicated by a large magnetic high.

The ultramafic unit is overlain by a cherty tuff which is generally from 0.3 m to 3 m but usually less than 1.5 m thick. It is a creamy grey, very well laminated chert. The lower contact is usually marked by a 0.3 m to 0.6 m band of pyrrhotite with minor chalcopytite. These sulphides usually contain rounded inclusions of quartz from 1 cm to 5 cm in diameter. The cherty tuff is overlain by several tens of to hundreds of meters of basaltic flows with occasional interbedded dacitic to andesitic flows and tuffs. The first 150 m to 200 m of the basalts are massive to moderately foliated, medium to coarsely crystalline rocks. They typically consist of $50-60 \%$ hornblende, 10% biotite, 5-15\% plagioclase, 5% quartz, 3% chlorite, 2% carbonate, and l-3\% pyrrhotite.

Intrusive into the sequence, particularly east of the deposit, are several magnetic dioritic sills.

The "main zone" of gold mineralization is essentially an auriferous quartz fracture zone. It is centred on the cherty tuff unit and the immediately overlying basalts. Gold values extend beneath the cherty tuff into the underlying altered ultramafics.

The main quartz fracture zone has an indicated strike length of 210 m to $275 \mathrm{~m}(700$ to 900 ft$)$. It is somewhat arcuate in plan with strikes varying from eastwest in the west to northeast-southwest in the east. The mineralized zone plunges 35 to 45 degrees to the west.

The main zone is generally 6 m to $12 \mathrm{~m}(20-40 \mathrm{ft})$ in width and consists of a system of quartz veins which contain 10-15\% pyrrhotite, $0.5-1 \%$ chalcopyrite and 1-5\% pyrite within the veins and as selvages. The zone is characterized by extensive biotite alteration of the basalts. The quartz veins are generally less than 15 cm in width and average 3 to 5 veins per 1.5 m through the zone. The gold occurs mainly as free grains within the quartz veins and sulphide selvages.

A small amount also occurs in gold-silver tellurides. Gold particles are usually 10 to 12 microns in size and are often adhered to sulphide grains. Other suiphides commonly encountered are marcasite and various bismuth and lead tellurides.

Several other zones of mineralization have been indicated but are less well-defined than the main zone.

Four zones were indicated in the hanging wall basalts above the main zone and are referred to as the quartzvein zones. The mineralization in these is similar to the main zone in that the gold is within quartz veins with associated pyrrhotites and chalcopyrite and biotite selvages. Most of these quartz-vein zones have been interpreted to occur in structures that parallel the main zone.

There are also several zones of mineralization indicated in the talc-carbonate rocks. In these zones the gold occurs as blebs and specks within the rock in close association with pyrrhotite and chalcopyrite. Quartz veins are occasionally present but are not essential for the presence of gold. These talccarbonate zones occur along the plunging hinge line of the subsidiary warp containing the main zone.

```
3.4.3 Mining
Present reserves are quoted at 30 million tons
averaging approximately 0.1 oz Au per ton.
```

Current plans call for production to start in the fall of 1983 at 2000 tons per day.

Initial production will be by open pit, stripping on which has commenced.

4.0 FIELD OPERATIONS

4.1 Linecutting

A grand total of approximately 435 km of line was cut in two overlapping grids in preparation for the geophysical surveying. Approximately 50 km of this consisted of baselines and tielines with the remaining 385 km comprising crosslines.

Two grids of approximately equal size were established over the survey area to accommodate a broad flexure in geologic trends.

The baseline for Grid "A" (west grid) was established at an azimuth of 070° to extend from a point approximately 350 m north of Atkinson Lake to Monaghan Lake, a distance of 10 km to the west. Main tielines were established at 10+00S, $10+00 N$ and $20+00 N$ to provide grid control.

The baseline for Grid "B" (east grid) was cut on an azimuth of 110° to extend from the above common point to beyond the Quebec border, a distance of approximately 5.5 km . Tielines were again established at $20+005,10+005,10+00 N$ and $20+00 N$.

Crosslines on both grids were established at 100 m intervals throughout with the exception of a local reconnaissance area
at the west end of baseline "A". All baselines, tielines and crosslines were chained and picketed at 25 m intervals.

The grids were overlapped north of Atkinson Lake to allow for continuous mapping of geophysical trends.

The majority of the linecutting was carried out by Ingamar Exploration Ltd. of Connaught, Ontario under contract to MPH Consulting. Approximately 20% of the linecutting was carried out directly by personnel of MPH.

The bulk of the linecutting operations was carried out in the period October to December, 1981.

4.2 Geophysics

4.2.1 Maxmin II Horizontal Loop Electromagnetic System

The system makes use of moving transmitter and receiver coils at a constant coil separation. The coils are maintained in a coplanar mode and are connected by a reference cable. The in-phase and out-ofphase components of the secondary field generated from electrically conductive zones are measured at the receiver coil. These are expressed as percentages of the primary transmitted field.

Five frequencies of primary field varying from 222 Hz to 3555 Hz are available on the Maxmin II. Two frequencies are usually read during a horizontal loop survey. A set of six cable lengths are also available. For this survey, lines were spaced at 100 m intervals and stations were read every 25 meters. A coil separation of 150 meters and frequencies of 444 Hz and 1777 Hz were utilized for routine coverage. This coil separation was felt to provide the optimum compromise between effective depth of penetration and resolution for the average overburden depths (25$30 \mathrm{~m} \pm$) known to be present in the survey area.

Several areas of complex EM conductivity were selected for detailing subsequent to the main survey coverage. Detail work was carried out with a 100 m cable and frequencies of 444 Hz and 1777 Hz as previous.

Specifications for the Maxmin II Horizontal Loop system are presented in Appendix II.

Grid areas were underlain by relatively flat terrain and secant (slope-corrected) chaining was therefore not required. In rough terrain, this type of chaining is required to correct for variable transmitter-

Abstract

receiver coil separation due to the uneven topography and to calculate topographic tilt angles enabling coplanar alignment of transmitter and receiver coils.

Field results are presented in a series of maps at a horizontal scale of $1: 2500$ in a separate volume accompanying this report.

For the Maxmin II, the in-phase and out-of-phase components have been plotted at a scale of $1 \mathrm{~cm}=10 \%$ of primary field. An interpretation has then been made as to the location of conductor axes and estimated width along with calculations on selected conductive intercepts to determine conductor dip, depth to top and conductance.

4.2.2 Magnetometer Survey

Exploranium/Geometrics Model G816 Proton Precession field magnetometers were used to survey the grid. This system utilizes the precession of spinning protons of a hydrogen atom within a hydrocarbon fluid. These spinning magnetic dipoles are polarized by applying a magnetic field using a current within a coil of wire. When the current is discontinued, the protons precess about the earth's magnetic field and
in turn generate a small current in the wire. This frequency of precession is directly proportional to the earth's total magnetic field at that point.

The instrument is read directly in gammas representing the absolute value of the earth's total field for that station.

Correction of the magnetic data for diurnal and instrument drift was done by referencing the daily field results to continuous magnetic profiles obtained on a Barringer Research BM-123 base station magnetometer which operated during the course of the survey in the field camp.

Instrument specifications are presented in Appendix II.

The magnetic data are presented as a series of isomagnetic contours superimposed on a map of corrected magnetic values recorded at each station. Contour intervals were selected at levels deemed to be suitable to adequately highlight magnetic features of interest within the survey area.

5.0 GEOPHYSICAL RESULTS

5.1 Maxmin II Interpretation

Interpretation of horizontal loop EM data is generally based on classical interpretation curves calculated from model studies of thin, tabular, conductive sheets. From these curves, information concerning the nature of the conductor, i.e. its depth, dip and quality can be extracted.

There is a critical conductor thickness at which the conductor response does not behave as in a thin dyke model. This critical thickness, which is not exceeded when constructing the model curves, is given by the formula:

Considering the two frequencies used in this survey, namely 444 Hz and 1777 Hz , one can calculate that

$$
T C(444 \mathrm{~Hz})=2 \times \mathrm{TC}(1777 \mathrm{~Hz})
$$

This indicates that when using the Maxmin II at 444 Hz , the conductor can be twice as thick as when employing the 1777 Hz frequency before the response recorded deviates from a thin
dyke model. This is one of the main reasons why interpretation at the higher frequencies tends to give lower estimates of both the conductivity-thickness product and depth to the top of the conductor than those found with lower frequency data. The lower frequency has been employed throughout for interpretation in the survey described herein.

A basic problem in obtaining completely reliable information from classical interpretation of horizontal loop data is the presence of conductive material in the vicinity of the conductor. This is often a problem in areas such as the Clay Belt of northern Ontario-Quebec and may be particularly severe in arid or tropical countries where surface resistivities may be very low.

There are three main problem areas related to the presence of conductive overburden or conductive host rock in the vicinity of a conductor.

The first of these involves conductive overburden or conductive host rock of variable thickness andor conductivity. A buried bedrock ridge under a clay cover, for example, may produce a HLEM anomaly related to the changes in thickness of the clay cover which is very similar to that from a bedrock source. With experience, these types of anomalies can
generally be recognized, however, and can be resolved by varying HLEM frequencies/coil separation and re-surveying.

A related problem is that of the conductive overburden sheet overlying but not in electrical contact with the conductor. In this case, both the primary field and the "return", secondary field will be attenuated and phase rotated in passing through the conductive layer. Interpretation using the classical curves will make the conductor appear too deep and the conductance in this situation will be decreased.

There is some indication that the above effect may be present in parts of the present survey area in that calculated depths to conductor top are typically greater than indicated depths in nearby drill holes.

The INPUT results, however, do not indicate extensive conductive overburden in the area in that the first channels are relatively quiet.

The final situation is that where the bedrock conductor is in electrical contact with a conductive host rock or conductive overburden. This will cause an increased anomaly amplitude due to the "current channelling" or "current gathering" effect whereby current is channelled into the conductor from

the surrounding region. Here, the conductor would be misinterpreted as being too shallow and with an incorrect value of conductance for the frequency involved.

Even though the conductors in the Detour survey are typically multiple features, current gathering does not appear to have been a serious problem suggesting that there is no electrical continuity in the form of veins, etc., between adjacent conductors.
5.2 Survey Results - Grid "A"
5.2.1 Maxmin II Elecromagnetics

Interpreted Maxmin II conductors for Grid "A" are presented in Volume 2 of this report.

A total of 10 conductors, $A-1$ to $A-10$, have been selected for discussion.

Conductor A-1
This appeared as a linear zone of weak to moderate INPUT conductivity near Monaghan Lake in the west portion of the survey area. There was an immediately flanking magnetic correlation of 210 gammas with one of the INPUT intercepts.

The conductor was investigated on the ground with 4 crossines at 200 m intervals (95+00W, 97+00W, 99+00W, 101+00W). A Maxmin II anomaly was located crossing all four lines immediately north of the baseline. The conductor is open in both directions. The source is indicated to be a relatively narrow, steeply dipping feature. Calculations on line 99+00W indicate an approximately vertical dip, a depth to top of 15 m and a conductance of 4 mhos.

There is a very localized ground magnetic coincidence of approximately 1000 gammas with conductor A-1 on line $99+00 \mathrm{~W}$ and, to a lesser extent, on line 101+00W.

The conductor is interpreted to represent primarily a variably but generally weakly graphitic unit containing a pyrrhotite concentration in the vicinity of line $99+00 \mathrm{~W}$ which possibly extends to the west in less concentrated form.

Conductor A-2 extends from approximately $17+50 \mathrm{~N}$ on line $63+00 \mathrm{~W}$ in a south-southwesterly direction off the grid area (Maps A-7, A-14). A series of grid lines was subsequently established perpendicular to the existing crosslines in this area to assist in tracing
this and other conductors to the west. Map A-22 indicates that conductor A-2 does persist to the west crossing the baseline between $81+00 \mathrm{~W}$ and $82+00 \mathrm{~W}$.

The conductor illustrates large conductivity variations with the most highly conductive portion being that between lines $68+00 \mathrm{~W}$ to $70+00 \mathrm{~W}$. The northeast and southwest extremities generally show poor to very poor conductivity.

The conductor appears to be a relatively narrow, linear feature with steep southeast to near vertical dips. Calculations on line 68+00W indicate an 80° south dip, a depth to top of 27 m and a conductance of 23 mhos.

There is a direct magnetic correlation with portions of the conductor, particularly between lines 63+00W to $65+00 \mathrm{~W}, 67+00 \mathrm{~W}$ to $70+00 \mathrm{~W}$ and $73+00 \mathrm{~W}$ to $74+00 \mathrm{~W}$. The magnetic responses appear to be somewhat discontinuous along strike although this may be mainly a reflection of the relative anomaly/picket line orientation. There is probably some northwest-oriented faulting in the area. Anomaly amplitudes are up to 1500 gammas above local backgrounds.

The causative source is interpreted to be an interflow metasedimentary-metatuffaceous unit with variabie but locally substantial pyrrhotite (\pm pyrite?) content as reflected in the magnetic signature particularly in the area between $67+00 \mathrm{~W}$ to $69+00 \mathrm{~W}$.

As presently interpreted, the west portion of Conductor $A-3$, along with the magnetic data, outlines an excellent example of a geophysically-inferred Archean fold nose. The north "limb" between lines 70+00W to $74+00 \mathrm{~W}$ is indicated to dip south while the south limb between the same lines is indicated to dip north thus outlining a synclinal (or synformal) fold nose.

Considering the 444 Hz response, the conductor displays weak to, at best, moderate conductivity and is relatively narrow. Conductance calculations on lines $63+00 \mathrm{~W}$ and $70+00 \mathrm{~W}$ indicate values in the 10 to 20 mho range.

There is a pronounced magnetic anomaly associated with the conductor. The Maxmin II anomaly is, however, generally offset by up to 50 to 75 m from the axis of the magnetic high. This indicates that although
spatially related, the causative sources for the EM and magnetic effects are probably distinctly different even allowing for downdip migration of magnetic peaks. Magnetic anomaly amplitudes range up to 3500 gammas or more above local background.

This type of relationship is displayed by several other conductors on the grid area. A very limited amount of previous drill information suggests that the magnetic responses may be related to magnetite-bearing mafic-ultramafic metavolcanics. The EM responses on the other hand appear to be related to regional interflow metasedimentary-metatuffaceous units with variable pyrrhotite-pyrite-graphite components.

In a volcanogenic context, the interflow tuffs and chemical sediments may reflect a sedimentary hiatus at the end of a volcanic cycle with the magnetite-bearing rocks representing the mafic-ultramafic base of the subsequent volcanic event. If stretched to its limits, this type of relationship may be used to infer stratigraphic tops, i.e. that the conductive units stratigraphically underlie the magnetic features.

Conductor $A-3$ is therefore interpreted to represent an interflow sulphidic \pm graphitic sedimentary zone in close spatial association with magnetite-bearing mafic to ultramafic rocks of probable extrusive origin. The form of particularly the magnetic response on Map A-20 further suggests that a z-symmetry drag fold may be present on the south limb of the interpreted synform in the vicinity of line $60+00 \mathrm{~W}$.

Conductor A-4 is part of a major regional feature extending from Fear Lake in the vicinity of line $60+00 \mathrm{~W}$ off the east edge of the "A" grid and entirely across the "B" grid, a distance in excess of ll km!

As in previous cases, there is a wide variation in conductivity along the length of the conductor. Clearly the most conductive section is that in the east between lines $1+00 \mathrm{~W}$ and $16+00 \mathrm{~W}$ where conductance calculations (444 Hz) typically yield values in the 35 to 60 mho range.

The conductor gives the impression of "beginning" in the west and "blossoming" towards the east portion of the grid. It is indicated to be a relatively narrow
feature throughout. Dips, where obvious, are consistently to the south. Calculated dips of 45° to 50° south between lines $13+00 \mathrm{~W}$ to $15+00 \mathrm{~W}$ are in close agreement with an INPUT calculated dip of $48^{\circ} \mathrm{S}$ in this region.

The high frequency results (Maps $A-8, A-10, A-12$) indicate that portions of the zone are areas of multiple conductivity as in the area between $38+00 \mathrm{~W}$ to 42+00W and $12+00 \mathrm{~W}$ to $18+00 \mathrm{~W}$. The latter is an excellent example of a conductor of extremely low conductivity flanking a more highly conductive feature. The very poor conductor appears only or primarily as a quadrature response at the high frequency with little or no in-phase. There is virtually no expression at the lower frequency.

Calculated depths of burial are typically in the 35 m to 40 m range in the east portion of the conductor.

Conductor A-4 is directly associated with a major, regional, linear magnetic high (Maps A-15, A-17, A-19). As in the previous case, the axis of the magnetic high is offset from the EM conductor typically by 25 m to 75 m . In all cases, the EM conductor is to
the north of the axis of the magnetic anomaly. Again, the magnetic and EM responses are reflective of two different although spatially related sources.

Numerous disruptions and offsets in the magnetic anomaly attest to the presence of much northerly-striking faulting in the area. The most conspicuous offsets are those in the vicinity of lines $18+00 \mathrm{~W}$ to $22+00 \mathrm{~W}$.

The causative source of the EM effect is again inferred to be a regional interflow metasedimentarymetatuffaceous unit with pyrrhotite (\pm pyrite) and graphitic components which vary considerably in quantity along strike. Assuming deposition in a broad, flat-bottomed basin, the centre of this feature would be in the area directly north of Atkinson Lake in the vicinity of line $1+00 \mathrm{~W}$.

Conductor A-5 crosses virtually the entire grid area extending easterly from under Fear Lake discontinuously to approximately $5+00 \mathrm{~N}$ on line 19+00W, a distance of approximately 4.4 km .

The conductor in general displays poor to very poor conductivity being mainly a weak quadrature response
area. It appears, for example, that a major synclinal axis crosses the east grid area in the vicinity of TL 10+00N. Consistent south dips in the central portion of the two grid areas may reflect an overturning to the north in this region. At least one more anticline-syncline pair may be inferred from the geophysical data in the southeast portion of the "B" grid. Specifically then, a detailed structural-stratigraphic interpretation should be carried out for the grid areas. This would most conveniently be done on a photo-reduced composite of the grid maps.
b) A detailed compilation of all previous drilling carried out on the grid areas should be carried out utilizing drill hole locations found during property work.

The results of the drill compilation should then be integrated with a) to produce a data base from which a series of drill recombmendations can be made to further evaluate the mineral potential of the property area.

Toronto, Ontario, April, 1982.

I, W.E. Brereton, of Toronto, Ontario, hereby certify that:

1) I hold an Honours Bachelor of Science degree in Geology and Physics from Queen's University at Kingston and a Master of Science (Applied) degree in Mineral Exploration from McGill University in Montreal.
2) I am a Professional Engineer registered with the Association of Professional Engineers of the Province of Ontario.
3) I have practised my profession as a mining explorationist since 1967.
4) I have based conclusions and recommendations contained in this report on previous geophysical experience and knowledge of the area and on observations made during the course of the field programme. I was present while some of the field work was carried out in December, 1981, and all of the work on the project was carried out under my direction.
5) I hold no direct interest (other than professional fees) nor do I expect to receive any interest in Getty Mines, Limited, Getty Canadian Metals, Limited or any of its subsidiary companies.

Toronto, Ontario, April, 1982.
at 444 Hz . This is particularly true in the west with the exception of line $56+00 \mathrm{~W}$ where an in-phase to quadrature ratio of approximately 1.0 at 444 Hz indicates moderate conductivity. In the east, the section from $21+00 \mathrm{~W}$ to $29+00 \mathrm{~W}$ displays moderate to good conductivity with a conductance calculation of 30 mhos on line 28+00W (444 Hz).

Dips are indicated to be to the north in the west portion ranging through vertical to moderate south dips $\left(50^{\circ} \pm\right)$ in the east.

The conductor appears to be a relatively narrow feature in general with slightly increased widths in the area of line $28+00 W$.

The conductor has a varying magnetic association along its length. In the vicinity of Fear Lake, there is a very distinct magnetic correlation in the form of a narrow, linear anomaly with a maximum relief in excess of 3000 gammas above local background. The EM conductor is again displaced, this time 50 to 75 m to the south, from the axis of the magnetic high. An abrupt truncation on line $62+00 \mathrm{~W}$ and disruption of the anomaly pattern in the area of lines $43+00 \mathrm{~W}$ to $46+00 \mathrm{~W}$ suggest a series of fault displacements.

Between lines $19+00 W$ and $42+00 W$, there is a complete absence of any magnetic signature associated with the conductor.

Conductor A-5 is interpreted to represent an interflow metasedimentary-metatuffaceous unit with a graphitepyrite (\pm pyrrhotite) component which is highly variable along strike. The greatest concentration of nonmagnetic conductive material is in the vicinity of line $28+00 \mathrm{~W}$. In the west, the conductor is in close spatial association with but separate from a unit of magnetite-bearing mafic-ultramafic metavolcanic which is in turn truncated to the west by a north-striking fault.

By the previous stratigraphic hypotheses, a synclinal fold axis is required between conductors A-4 and A-5. Further, the east portion of the south limb of this fold is overturned in that dips here are to the south.

Conductor A-6 has been selected as the zone of conductivity extending from line $61+00 \mathrm{~W}$ to $41+00 \mathrm{~W}$ where it is inferred to be terminated by or offset along a north-striking fault (Maps A-4, A-6).

The conductor displays generally low conductivity in the west with an area of good conductivity and increased width from $41+00 \mathrm{w}$ to $47+00 \mathrm{~W}$. Calculations on line 44+00W, for example, yielded a conductance value of 57 mhos with an in-phase to quadrature ratio of approximately 7.5 to $1(444 \mathrm{~Hz})$. Dips appear to be to the south throughout with calculated values in the $60^{\circ} \mathrm{S}$ range on lines $42+00 \mathrm{~W}$ and $44+00 \mathrm{~W}$. Depths to top in the east end are calculated to be in the 30 m to 40 m range.

The high frequency results (Map A-13) indicate the presence of a weak conductor flanking the main feature to the south between lines $46+00 \mathrm{~W}$ to $55+00 \mathrm{~W}$. As in previous cases, this conductor appears primarily as a weak quadrature response attesting to the low order of conductivity.

Magnetically, the conductor, in its west portion, occurs along the southwest flank of the complex magnetic high previously interpreted to be a drag fold along the south limb of a syncline. The conductor is again separate from the magnetic source and does not appear to have a direct magnetic correlation over most of its length.

The one exception is a localized magnetic high on lines $43+00 \mathrm{~W}$ to $45+00 \mathrm{~W}$ which is directly co-incident with this portion of conductor $A-6$. The magnetic anomaly is a relatively subtle feature with a maximum relief of approximately 300 gammas. It is also noted that the conductor is somewhat wider here than elsewhere.

The conductor is indicated to be primarily a weakly developed graphitic metatuffaceous unit over most of its length. The portion of the conductor between $43+00 \mathrm{~W}$ to $45+00 \mathrm{~W}$ is interpreted to contain a pyrrho-tite-rich sulphide concentration as reflected in the magnetic signature.

It is possible that conductor $A-6$ is the continuation of conductor A-3 if the previous fold interpretation is correct.

Conductors $A-7, A-8, A-9$ and the east portion of $A-6$ form a relatively complex area of conductivity west of Atkinson Lake.

Conductor A-7 has been subdivided into two separate although closely related features, $\mathrm{A}-7 \mathrm{a}$ and $\mathrm{A}-7 \mathrm{~b}$.

Conductor A-7a extends from an interpreted fault near line $41+00 W$ off the east edge of the grid, a distance of over 3 km .

The conductor is a very weak, mainly quadrature feature over most its length. There are two areas of higher conductivity in the central portion (lines $22+00 \mathrm{~W}$ to $26+00 \mathrm{~W}$ and $28+00 \mathrm{~W}$ to $32+00 \mathrm{~W}$) with inphase to quadrature ratios of $1: 1$ to $4: 1$.

Interference by adjoining conductors precluded extensive calculation of dip, etc.

Detailing on lines $15+00 \mathrm{~W}, 23+00 \mathrm{~W}, 27+00 \mathrm{~W}$ and $31+00 \mathrm{~W}$ with a 100 m cable confirmed the presence of the conductors essentially as indicated by the 150 m survey but provided little additional information as to dip, etc. (Map A-23). The one exception is the detailing of conductor A-7a on line $23+00 \mathrm{~W}$ which clearly indicates a moderate south dip to the conductor at the low frequency.

The low conductivity, western extremity of the conductor appears at both the 100 m and 150 m cable separa-
tions primarily as a low amplitude, quadrature response.

The conductor is characterized by the complete absence of any noteworthy magnetic signature with the exception of a very localized, weak (200 gammas) magnetic correlation on line $26+00 W$.

The conductor is interpreted to reflect a variably graphitic metatuffaceous unit. The magnetic anomaly on line $28+00 W$ may relate to a relatively local pyrrhotite concentration at this locality.

Conductor $A-7 b$ parallels the above appearing to die out or merge with A-7a in the vicinity of line $31+00 \mathrm{~W}$.

The conductor generally displays very poor conductivity being mainly a quadrature effect at 444 Hz . The best conductivity is indicated to be in the vicinity of line $23+00 \mathrm{~W}$.

Detail work with a 100 m cable on line $23+00 \mathrm{~W}$ suggests that the conductor here is flanked to the north by a second, very weak conductor centred at approximately 3+75S (Map A-23).

A south dip and generally narrow width is indicated for the conductor.

There is no magnetic signature associated with the conductor.

A narrow, weakly graphitic tuffaceous unit is interpreted to be the cause of the conductor.

It is possible that conductor $A-7 a$ or $A-7 b$ is the eastward stratigraphic continuation of conductor $A-6$.

Conductor $A-8$, as presently interpreted, extends from a very highly conductive bulbous zone on lines 39+00W to $40+00 \mathrm{~W}$ eastward in discontinuous fashion through a central, poorly conductive area into a second area of increased conductivity on lines $27+00 \mathrm{w}$ to $29+00 \mathrm{~W}$.

The west end of the conductor is indicated to have a surface width of up to 30 to 40 m as indicated by detailed surveying (Map A-23). Inphase to quadrature ratios of up to $10: 1$ at 444 Hz attest to the high conductivity of this portion of the conductor. Overburden depths in the order of 20 to 30 m are indicated

```
by previous drill results. A south dip is indicated by the detail work.
Interference from conductor A-9 makes it difficult to trace conductor \(A-8\) to east but it appears to extend approximately as shown.
```

The east end of the conductor again displays high conductivity and an indicated south dip.

There are very local, relatively low order magnetic correlations with the western, bulbous portion of the conductor on line $39+00$ and in the central portion in the vicinity of line $34+00 \mathrm{~W}$ at the baseline.

By interpretation and from previous drill results, the conductor probably consists primarily of a graphitic tuff with concentrations of magnetic sulphides in the western and central portions. The amount of conductive material varies considerably along strike with the greatest amounts being in the western and eastern extremities respectively.

The reason for the positive inphase response over the expected location of the conductor at approximately
$0+25$ S on line $38+00 \mathrm{~W}$ is not clearly understood at this point but appears to relate to the geometry of the situation, i.e. the position of the conductive body relative to the coil separation/frequencies involved. There may be a very abrupt truncation of the conductor immediately to the west of line $38+00 \mathrm{~W}$.

Conductor A-9 over most of its length displays very high conductance and very shallow depth of burial. Detail work on line 36+00W (Map A-23) clearly indicates a south dip and a very shallow depth of burial. A previous drill hole in the vicinity of line $32+00 \mathrm{~W}$ indicates a depth to conductor top of 2 to 3 m .

There are a series of magnetic highs associated with the west-central, west and extreme east portions of the conductor. The east-central area is magnetically low. Magnetic anomaly amplitudes range up to 5000 gammas above local background (line 34+00W). The high anomaly amplitudes probably relate in part to very shallow depths of burial. The magnetic pattern is again somewhat disjointed as a result of faulting.

Magnetic and EM anomalies are coincident or nearly so suggesting that the causative sources are one and the same.

The conductor is interpreted to reflect a strongly graphitic tuffaceous unit with variable but locally substantial concentrations of pyrrhotite with the pyrrhotite (\pm some magnetite?) being concentrated in the areas of high magnetic relief. The conductive body appears to vary in surface width from 10 to 25 m over most of its length.

The possibility of a relationship between conductors A-8 and A-9, conceivably via a very tight fold, cannot be ruled out.

Conductor A-10 is a very short strike length feature directly north of the central portion of conductor A-9 (Maps A-4, A-11).

The nature of the causative body is uncertain but the EM response may be reflective of a relatively flat, ribbon-like feature of limited width and thickness. The conductor is possibly an overburden-related response.

The conductor is closely but not exactly coincident with a local 400 gamma magnetic anomaly although the two are probably unrelated.

Other

Numerous other $E M$ responses have been indicated on the EM maps. These are very weak, poorly conductive features and are expressed mainly in the quadrature of the higher frequency. They have not been selected for discussion at this point and, in many cases, may relate to conductive overburden-type effects.

5.2.2 Magnetics

The magnetic pattern is dominated by a series of generally linear magnetic highs which in part form a broad arc over the north portion of the grid. These units typically have spatially associated EM conductivity and are interpreted to reflect magnetite-bearing mafic-ultramafic flows, possibly forming the base of a major volcanic cycle.

Areas of high but more erratic magnetic values as in the east-central portion of the grid directly north of Atkinson Lake, the area between lines 43+00W to 52+00W directly north of the baseline and between lines
$26+00 \mathrm{~W}$ to $32+00$, TL $10+0 \mathrm{~N}$ are again interpreted to represent mafic-ultramafic rocks, in this case possibly largely of intrusive origin.

Highly localized, narrow magnetic anomalies in direct correlation with EM conductors are interpreted to represent pyrrhotite (\pm magnetite) concentrations. The best examples of this are in association with EM conductors A-2 and A-9 and to a lesser extent with portions of A-6 and A-8.

The structural interpretation of an east-plunging synclinal fold nose in the vicinity of BL, 74+00W has been referred to previously along with the possibility that the irregular magnetic feature south of the baseline between lines $55+00 \mathrm{~W}$ to $68+00 \mathrm{~W}$ may represent a drag fold on the south limb of the main fold. If this is the case then conductors $A-4, A-3, A-6$ and $A-7$ may all represent the same time-stratigraphic interval.

A distinct linear magnetic high on the south ends of the westernmost lines is interpreted to reflect a late mafic intrusive body. This mafic intrusive may further mark the locus of a major eastwest fault.

The presence of numerous, generally north-striking faults is indicated by truncations, disruptions and offsets in the magnetic ($\pm \mathrm{EM}$) pattern. Lateral displacements in general do not appear to be large.

5.3 Survey Results - Grid "B"

5.3.1 Maxmin II Electromagnetics

A total of 13 conductors, $B-1$ to $B-13$, have been selected for purposes of discussion.

Conductor $B-1$ is a narrow, linear, south-dipping feature and is the continuation onto the "B" grid of conductor A-4. Comments made about the latter conductor generally apply to $\mathrm{B}-1$.

The east portion of $B-1$ shows extremely good conductivity with inphase to quadrature ratios up to in excess of 10:1. A conductance value of approximately 200 mhos was calculated on line 12+00E.

The conductor is again seen to be clearly associated with a linear magnetic high with the actual axis of the magnetic anomaly offset by 50 to 75 m to the south of the EM conductor axis indicating different causative sources. Both the magnetic high and the EM conductor end abruptly to the east, possibly at a fault.

The conductor is interpreted to represent a unit of pyrite-pyrrhotite bearing tuffaceous rocks, possibly with some graphite. The magnetic anomaly is interpreted to reflect a continuation to the east of the previous magnetite-bearing mafic to ultramafic volcanics.

Conductor $\mathrm{B}-2$ is indicated to extend between lines $10+00 \mathrm{E}$ to line $29+00 \mathrm{E}$ at approximately $12+00 \mathrm{~N}$ to $13+00 \mathrm{~N}$.

The conductor displays good to very good conductivity over virtually its entire length. Conductance calculations in the central portion of the conductor yielded values in the 80 to 100 mho range (Map B-1, 444 Hz).

A south dip is indicated throughout with a calculated value of $50^{\circ} \mathrm{S}$ on line $20+00 \mathrm{E}$. A depth estimate of 35 m was also made at this location.

The conductor is indicated to be a relatively narrow feature throughout with a possible slight increase in width near the east end.

The conductor has virtually the same relationship with a narrow, linear magnetic high as B-1, i.e. it occurs in general spatial association with but is displaced 25 to 75 m to the north of the magnetic axis. The exact coincidence of the conductor with a magnetic high on line $10+00 E$ may be more apparent than real as this area is off the end of the main conductive zone.

This conductor is interpreted to be primarily a narrow interflow sulphide-bearing tuffaceous unit. The conductor is positioned spatially and stratigraphically (?) immediately beneath a thin unit(s) of magnetitebearing mafic-ultramafic metavolcanics as represented by the linear magnetic high.

Conductor B-3 is generally a low amplitude, moderate to poorly conductive feature which extends across the northeast portion of the grid.

The conductor dips south ($75^{\circ}-$ line $34+00 E$) and is probably relatively deeply buried ($30-40 \mathrm{~m}+$) over most of its length. It appears to be relatively narrow throughout.

The conductor is again positioned immediately to the north of a linear magnetic high.

Conductor $\mathrm{B}-4$ is virtually identical to $\mathrm{B}-3$ in response, conductivity and magnetic association and may represent the eastward continuation of $B-3$. This would require a north-striking fault in the vicinity of lines $40+00$ to $41+00 \mathrm{E}$ with a right lateral displacement on the order of 150 m .

Conductor $\mathrm{B}-3$ is interpreted to represent a variably but generally weakly sulphidic-graphitic tuffaceous unit. Portions of higher conductivity, e.g. line $38+00 E$ may reflect local pyrite (\pm pyrrhotite) concentrations.

Conductor $\mathrm{B}-4$ is a weakly to moderately conductive, narrow, deeply buried, south-dipping ($60^{\circ}-1$ ine $45+00 \mathrm{E}$) feature which in all probability represents the faulted continuation of conductor $B-3$ as noted. The conductor is again interpreted to be primarily a narrow sulphidic-graphitic unit.

Conductors $A-4, B-1, B-2, B-3$ and $B-4$ may all represent the same general lithostratigraphic feature

```
judging by their relationship with the semi-continuous linear belt of magnetic highs which crosses the north portion of the grid area.
```

Conductor B-5 is a zone of multiple, conductivity between lines $38+00 E$ to $47+O 0 E$ in the vicinity of $T L$ $10+00 \mathrm{~N}$.

Detailing with a 100 m cable on lines $44+00 \mathrm{E}$ and 45+00E (Map B-16) clearly shows the presence of two separate conductors 80 m to 130 m apart. The more northerly conductor shows markedly better conductivity on line $44+00 E$ with an indicated conductance value of 120 mhos \pm.

Conductor dip is difficult to resolve because of the closeness of the conductors; however, the west and central portions of the north conductor appear to dip steeply to the north while the east portion of the south conductor may dip south. This would indicate the presence of a fold axis in the area.

Depth to conductor top is indicated to be in the 25 m to 30 m range in the central portion of the conductor.

There is a weak (200 gamma) local magnetic high immediately to the south of the southerly conductor on lines $45+00 \mathrm{E}$ and $46+00 \mathrm{E}$ which may be related to the conductive zone. With this exception, conductive zone B-5 does not have any magnetic expression.

Conductive zone $\mathrm{B}-5$ is interpreted to consist of at least two parallel pyrite/graphite-rich zones which locally may obtain appreciable widths, particularly in the east portion of the south conductor. The magnetic expression on lines $45+00 E+46+00 E$ may relate to a disseminated magnetite or pyrrhotite concentration part of or immediately flanking the south conductor.

Conductor B-6 extends from line $11+00 \mathrm{E}$ to $42+00 \mathrm{E}$ approximately parallel to TL $10+00 \mathrm{~N}$. The conductor is generally a narrow, linear feature which exhibits good to very good conductivity over most of its length.

There appears to be a variation in dip from west to east ranging from a relatively shallow north dip in the west $\left(30^{\circ} \mathrm{N}\right)$ through intermediate dips in the central portion to a vertical dip at the east end (Maps $B-2, B-3$).

Depths of burial appear to be shallowest at the west end ($15 \mathrm{~m} \pm$) to the greatest depth at the east end of $45 \mathrm{~m} \pm$ (line $35+00 \mathrm{E}$).

Magnetically, the conductor occurs in direct spatial association with a linear magnetic high. The EM conductor is offset to the south from the axis of the magnetic high by 25 m to 50 m , and the causative sources of the two responses probably represent different geological entities.

The conductor again probably represents primarily a pyritic (\pm pyrrhotite) tuffaceous unit with a variable graphite content overlain by a magnetite-bearing mafic-ultramafic metavolcanic unit.

Conductor $B-7$ is another major formational feature extending from line $6+00 E$ to the vicinity of line $40+00 \mathrm{E}$, a distance of 3.4 km . It exhibits some variation in width, conductance and dip along its length.

In the west, the portion of the conductor between lines $11+00 E$ to $25+00 E$ generally displays good to very good conductivity with some thicker conductive sections in the vicinity of lines $14+00 \mathrm{E}$ and $21+00 \mathrm{E}$. A steep north dip is indicated.

There is indicated to be a second, parallel conductor in the area between lines $27+00 \mathrm{E}$ to $33+00 \mathrm{E}(444 \mathrm{~Hz}$) which displays good conductivity on line $28+00 \mathrm{E}$ and $29+00 E$ and lower conductivity elsewhere.

The eastern extremity of conductor $\mathrm{B}-7$ comes in close proximity to conductor $\mathrm{B}-6$.

The conductor is indicated to have a moderate to steep north dip throughout.

There is a magnetic association as observed with other conductors, i.e. that the EM axis is associated with but displaced to the south of a linear magnetic high.

The conductor is interpreted to reflect a major interflow metasedimentary-metatuffaceous unit with variable pyrite-pyrrhotite-graphite components. High conductivity "nodes" as in the vicinity of lines $12+00 \mathrm{E}$, $20+00 E, 24+00 E$ and $29+00 E$ may relate to relatively sulphide-rich portions of the conductor. Direct correlation of local magnetic highs with weakly conductive portions on lines $7+00 E$ and $35+00 E$ may be reflective of magnetite concentrations.

Conductor $B-7$ could conceivably represent the continuation of conductor B-6 around a tight fold nose in the vicinity of line $40+00 \mathrm{E}$.

Conductor B-8 may be a continuation to the east of the weak conductor flanking $B-7$ to the south (Maps B-4, B-9).

The conductor displays relatively short strike length ($500 \mathrm{~m} \pm$), very good conductivity in its central portion, narrow width and steep south dip ($75 \pm$).

The conductor displays a direct to semi-direct magnetic correlation of up to 1500 gammas above background, particularly on lines $43+00 \mathrm{E}$ and $44+00 \mathrm{E}$.

Considering the geophysical results and a previous drill hole, this conductor is interpreted to be reflective primarily of a pyrrhotiterich (\pm pyrite) tuffaceous unit which is best developed on lines $42+00 E$ and 43+00E. A unit of magnetite-bearing "dacite" overlies the conductor.

The conductive axis with direct magnetic correlation which extends to the east across the Quebec border in
the vicinity of $7+00 N$, line $50+00 \mathrm{~m}$ may represent a faulted-off continuation of conductor $\mathrm{B}-8$.

Conductors B-9 to B-12 form a group of Maxmin conductors with a prominent magnetic association in the southeast portion of the grid area. Detail work with a 100 m cable proved of great assistance in unravelling the conductive picture in this area (Map B-17).

Conductor $\mathrm{B}-9$ consists of a poorly conductive, mainly quadrature feature at 444 Hz immediately north of the baseline (Maps B-4, B-9). The high frequency results indicate the presence of a very weakly conductive feature flanking the main zone to the north.

Conductor B-12 displays essentially the same characteristics, i.e. poor to very poor conductivity, and generally narrow width. Conductors B-9 and B-12 appear to merge in the vicinity of lines $41+00 \mathrm{E}$ to 43+00E near the baseline.

Conductors $B-10$ and $B-11$ also show the same general characteristics particularly in the form of very good conductivity. Conductor $\mathrm{B}-10$ shows appreciable width on line $50+00 \mathrm{E}(20 \mathrm{mt})$ relative to $\mathrm{B}-11$ which appears to be narrow.

It is difficult to make unequivocal dip determinations because of interference from adjacent conductors but it appears that at least the south conductors dip south.

The four conductors are associated with a major magnetic feature which extends from baseline $37+00 E$ "opening up" in an eastward direction and extending east off the grid area. Anomaly amplitudes range up to 4000 gammas above background. In detail, the EM conductors again do not coincide exactly with magnetic highs. Conductor $B-10$, for example, occurs in a relative magnetic low within the zone of overall higher magnetic intensities. On the other hand, conductors B-9/B-12 appear to coincide fairly closely with a major magnetic culmination on line $43+00 E$ at the baseline.

Results of previous driliing and the geophysical interpretation indicate that the EM responses are due to sulphide-bearing tuffaceous and chemical sedimentary zones spatially associated with magnetite-bearing mafic to ultramafic extrusive/intrusive rock units. There may be substantial magnetite associated with the sulphide conductive zones as in the vicinity of base-
line, 43+00E. The largest sulphide (pyrite \pm pyrrhotite) concentrations are probably associated with conductors $B-10$ and $B-11$ respectively.

The form of the magnetic anomaly and the four conductors under discussion is strongly suggestive of a fold closure in this area. By this reasoning, conductor $B-11$ would represent the continuation of $B-10$ and $B-12$ the continuation of B-9. The nose of the fold may be extensively "sheared out" giving rise to the observed pattern between conductors $B-9$ and $B-22$ in the nose area. The form of the hypothetical fold is probably anticlinal. The fold would have a northwest plunge.

Conductor $\mathrm{B}-13$ is another major regional feature extending from line $32+00 \mathrm{E}$ in an easterly direction past line 57+00 and off the grid area, a distance of at least 3 km .

The conductor consists of two parallel axes from 25 m to 200 m apart. The individual axes appear to represent two zones which dip south at a relatively steep angle $\left(70^{\circ}-80^{\circ} \mathrm{S}\right)$.

Conductivity for both features is generally poor to moderate with inphase to quadrature ratios rarely in excess of 1.1.

Overburden depths appear to be generally in the 20 m to 30 m range.

There is no magnetic expression associated with the conductors.

The conductors are interpreted to represent two weakly developed graphitic metasedimentary units.

Other
As on grid A, there are numerous other weakly conductive features on the grid area expressed mainly as quadrature responses at the high frequency. In many cases these probably have non-bedrock sources and have not been selected for consideration at this time.

5.3.2 Magnetics

The "A" grid is much more active magnetically than the "B" grid to the west.

The pattern is again dominated by a series of linear to folded magnetic highs which are typically spatially associated with Maxmin II conductors.

These linear highs are set in a more bland magnetic background as in the southeast portion of the grid. Such areas are probably underlain by Fe-poor metavolcanic and/or metasedimentary rocks.

Areas of higher but more erratic magnetic intensities as in the southwest portion of the grid north of Atkinson Lake are again interpreted to represent mag-netite-bearing mafic rocks possibly of mixed extrusive/intrusive origin.

Truncation and offset of magnetic trends again allows the interpretation of several north-east striking faults. One of the most obvious of these is in the northeast portion of the grid where a linear magnetic feature shows apparent right-lateral offset of $150 \mathrm{~m} \pm$ in the vicinity of $16+00 \mathrm{~N}, 41+00 \mathrm{E}$.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Ground geophysical surveying comprising Maxmin II electromagnetics and proton magnetics has been completed on a block of 206 mineral claims in the Detour Lake area of northeastern Ontario on behalf of Getty Canadian Metals, Limited by MPH Consulting Limited of Toronto.

The surveys were successful in delineating numerous electromag-netic-magnetic features which will require further evaluation for their gold-base metals potential.

The 23 EM conductors selected for discussion are interpreted to relate primarily to major interflow metasedimentary-metatuffaceous units with variable sulphide (pyrrhotite \pm pyrite) and graphitic components.

The conductors are invariably in close spatial association with linear magnetic features which are interpreted to reflect primarily magnetite-bearing mafic to ultramafic flow units.

Two specific recommendations are made at this point:
a) It appears that the geophysical data will enable a comprehensive structural picture to be constructed for the property
10

APPENDIX I

Technical Data Statements
\qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT
TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) Maximin II EM
Township or Area Atkinson Lake area
Claim Holder (s) Getty Canadian Metals, Limited

Survey Company MPH Consulting Limited
Author of Report W.E. Brereton, P. Eng.
Address of Author 141 Adelaide St.W.,\#706, Toronto,
Covering Dates of Survey $\frac{\text { Oct. } / 81-\text { May } / 82}{\text { (linecutting to office) }}$
Total Miles of Line Cut \qquad

SPECIAL PROVISIONS
CREDITS REQUESTED
ENTER 40 days (includes
line cutting) for first survey.

ENTER 20 days for each additional survey using same grid.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer \qquad Electromagnetic \qquad (enter days per claim) , Radiometric May 18, 1982 SIGNATURE:

Previous Surveys

P529159
P529162
P529163
P529164
P529165
P529166
P529167
P560161
P568293
P568294
P568295
P568296
P568297
P568300
P577564
P585180
P585181
P585182
P585183
P585184
P585185
P585186
P585187
P585188
P585189
P585190
P585191
P585202
P585203
P585204
p585205
P585206
P585207
P585208
P585225
P585226
P585227
P585228
P585244
P585245
P585246
P585247
P585248
P585249
P585602
P585603
P585604
P585605
P585606
P585607
P585608

P585609
P585610
P585611
P585612
P585613
P585614
P585615
P585616
P585617
P585618
P585619
P585620
P585626
P585653
P585654
P585655
P585656
P585657
P585899
P585900
P585901
P585902
P585903
P585904
P585905
P585906
P585907
P585908
P585909
P585910
P585911
P585912
P585913
P585914
P585915
p585916
P585917
P585918
P585919
P585920
P585921
P585922
P585923
P585924
P585925
P585926
P585927
P585930
P585931
P585932
P585933

P585934
P585935
P585936
P585937
P585938
P585939
P585943
P585944
P585945
P585946
P585947
P585948
P585949
P585950
P585951
P585952
P585953
P585954
P585955
P585956
P585957
p585961
P585962
P585963
P585964
P585965
P585966
P586353
P586354
P586518
P586519
P586520
P586521
P586522
P586523
P586524
P586525
P586526
P586526
P586528
P586529
P586530
P586531
P586532
P586533
P586534
P586535
P586536
P586537
P595003
P595004

P595005
P595006
P595008
P595009
P595010
P619058
P619059
P619060
P619061
P619062
P619063
P619064
P619065
P619067
P619068
P619069
P619070
P619071
P619072
P619073
P619074
P619075
P619076
P619077
P619141
P619142
P619143
P619144
P619145
P619146
P619147
P619148
P619149
P619150
P619151
P619152
P619153
P61.9154
P619155
P619156
P619157
P619158
P619159
P619160
P619161
P619162
P619163 P619164 P633244 P633245 P633246 P633247 P633248

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations \qquad Number of Readings
Station interval \qquad Line spacing
Profile scale
Contour interval

Instrument \qquad
Accuracy - Scale constant
Diurnal correction method \qquad
Base Station check-in interval (hours)
Base Station location and value \qquad
\qquad

Instrument Apex Parametric Maxmin II
Coil configuration horizontal co-planar
Coil separation $\quad 150 \mathrm{~m}$
Accuracy $\pm 1 / 2$ \%
Method: \square Fixed transmitter \square Shoot back $\quad \square$ In line Parallel line
Frequency
(specify V.L.F. station)
Parameters measured $\frac{\text { inphase }}{\text { EM field }}$ quadrature components of secondary

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument
Method \square Time Domain
Parameters - On time \qquad Frequency

- Off time \qquad Range
- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode

Ministry of Natural Resources

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL

 TECHNICAL DATA STATEMENT
TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Proton Magnetometer
Township or Area Atkinson Lake area
Claim Holder(s) Getty Canadian Metals, Limited
Survey Company MPH Consulting Limited
Author of Report W.E. Brereton, P.Eng.
Address of Author 706-141 Adelaide St.W., Toronto, Ont
Covering Dates of Survey Oct. $/ 81$-May $/ 82$
Total Miles of Line Cut 261

SPECIAL PROVISIONS	days
CREDITS REQUESTED	Geophysical per claim
ENTER 40 days (includes line cutting) for first survey.	--Electromagnetic
	-Magnetometer_20
	-Radiometric
ENTER 20 days for each additional survey using same grid.	-Other
	Geological
	Geochemical

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer

DATE: May 18,1982
Electromagnetic

Res. Geol. Qualifications

Previous Surveys		Date	Claim Holder
File No.	Type		
-			
-			
-			

P529162
P529163
P529164
P529165
P529166
P529167
P560161
P568293
P568294
P568295
P568296
P568297
P568300
P577564
P585180
P585181
P585182
P585183
P585184
P585185
P585186
P585187
P585188
P585189
P585190
P585191
P585202
P585203
P585204
P585205
P585206
P585207
P585208
P585225
P585226
P585227
P585228
P585244
P585245
P585246
P585247
P585248
P585249
P585602
P585603
P585604
P585605
P585606
P585607 P585608

P585609
P585610
P585611
P585612
P585613
P585614
P585615
P585616
P585617
P585618
P585619
P585620
P585626
P585653
P585654
P585655
P585656
P585657
P585899
P585900
P585901
P585902
P585903
P585904
P585905
P585906
P585907
P585908
P585909
P585910
P585911
P585912
P585913
P585914
P585915
P585916
P585917
P585918
P585919
P585920
P585921
P585922
P585923
P585924
P585925
P585926
P585927
P585930
P585931
P585932
P585933

P585934
P585935
P585936
P585937
P585938
P585939
P585943
P585944
P585945
P585946
P585947
P585948
P585949
P585950
P585951
P585952
P585953
P585954
P585955
p585956
P585957
P585961
P585962
P585963
P585964
P585965
P585966
P586353
P586354
P586518
P586519
P586520
P586521
P586522
P586523
P586524
P586525
P586526
P586526
P586528
P586529
P586530
P586531
P586532
P586533
P586534
P586535
P586536
P586537
P595003
P595004

P595005
P595006
P595008
P595009
P595010
P619058
P619059
P619060
P619061
P619062
P619063
P619064
P619065
P619067
P619068
P619069 P619070
P619071
P619072
P619073
P619074
P619075
P619076
P619077
P619141
P619142 P619143 P619144 P619145 P619146 P619147 P619148 P619149 P619150 P619151 P619152 P619153 P61.9154 P619155 P619156 P619157 P619158 P619159 P619160 P619161 P619162 P619163 P619164 P633244 P633245 P633246 P633247 P633248

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations Number of Rcadings
Station interval \qquad Line spacing

Profilc scale
Contour interval

Instrument Geometrics G-816 Proton Magnetometer
Accuracy - Scale constant 1 gamma
Diurnal correction method Base Station Recorder
Base Station check-in interval (hours)
Base Station location and value \qquad

Instrument
Coil configuration
Coil separation
Accuracy \qquad
Method: \square Fixed transmitter \square Shoot back \square In line Parallel line Frequency (specify V.L.F. station)
Parameters measured

Instrument
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain
Parameters - On time \qquad

- Off time \qquad
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode \qquad

APPENDIX II

Instrument Specifications

■ Five frequencies: 222, 444, 888, 1777 and 3555 Hz .

- Maximum coupled [horizontal-loop J operation with reference cable.

■ Minimum coupled operation with reference cable.
■ Vertical-loop operation without reference cable.

* Coilseparations: 25, 50, 100, 150, 200 and 250 m [with cable 〕 or 100,200,300,400,600 and BOD ft.
- Reliable data from depths of up to 180 m (GOD ft).
- Built-in voice communication circuitry with cable.
- Tilt meters to control coil orientation.

SPECIFICATIONS:

Frequencies:
Modes of Operation: MAX: Transmitter coil plane and receiver coil plane horizontal (Max-coupled; Horizontal-loop mode). Used with refer.cable.
MIN: Transmitter coil plane horizontal and receiver coil plane ver. tical (Min-coupled mode). Used with reference cable.
V.L. : Transmitter coilplane vertical and receiver coil plane horizontal (Vertical-loop mode). Used without reference cable, in parallel lines.

Coil Separations:

Parameters Read:
25.50,100,150,200 \& 250m (MMI) or $100,200,300,400,600$ and BOD ft. (MMIF).
Coil separations in V.L.mode not restricted to fixed values. In-Phase and Quadrature components of the secondary field in MAX and MIN modes.

- Tilt-angle of the total field in V.L. mode

Reedouts:

Scale Ranges:

Readability:

- Automatic, direct readout on 90 mm [3.5 "] edgewise meters in MAX and MIN modes. No nulling or compensation necessary.
- Tilt angle and null in 90 mm edgewise meters in V.L.mode.

In-Phese: $\pm 20 \%, \pm 100 \%$ by pushbutton switch.
Quadrature: $\pm 20 \%, \pm 100 \%$ by pushbutton switch.
Tilt: $\quad \pm 75 \%$ slope.
Null(V.L): Sensitivity adjustable by separation switch.

In-Phase and Quadrature : 0.25% to 0.5% : Tilt: 1%.

Repeatability:
$\pm 0.25 \%$ to $\pm 1 \%$ normally, depending on conditions, frequencies and coil beparation used.

Transmitter Output:- 2e2Hz :2eDAtme

- $444 H z$: 200 Atm²
- B8BHz:120Atme
- $1777 \mathrm{~Hz}: 60 A t m^{2}$
-3555 Hz : 30 Atme
Receiver Batteries: $9 \vee$ trans. radio type batteries (4). Life: approx. 35 hrs. continuous duty (alkaline, 0.5 Ah), less in cold weather.

Transmitter
Batteries:
12V 6Ah Gel-type rechargeable battery. [Charger supplied].

Peference Cable:

Voice Link:

Indicator Lights: Built-in signal and reference warning lights to indicete erroneous readings.

Temperature Range: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left\{-40^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right\}$.
Recelver Weight: 6kg (13 lbs.)
Transmitter Weight: 13 kg (29 lbs.)
Shipping Weight: Typically EOkg (135lbs.), depending on quantities of reference cable and batteries included. Shipped in two field/shipping cases.

Specificationa subject to change without notification.

PORTABLE PROTON MAGNETOMETER MODEL G-816/826

5

$\star 1$ gamma sensitivity and repeatability
\star Very small size and weight: less than 12 lbs complete with batteries and sensor
* Over 10,000 readings per set of alkaline "D" cell (flashlight) batteries
* Provision to attach sensor to carrying harness for use without staff
* Pushbutton operationnumeric display directly in gammas
* Total field measurementsindependent of orientation-no calibration-no leveling

The Model G-816 is a complete portable magnetometer for all man-carry field applications. As an accurate yet simple to operate instrument, it features an outstanding combination of one gamma sensitivity and repeatability, compact size and weight, operation on standard universally available flashlight batteries, ruggedized packaging and very low price.

The G-816 magnetometer allows precise mapping of very small or large amplitude anomalies for ground geophysical surveys, or for detail follow-up to aeromagnetic reconnaissance surveys. It is a rugged, lightweight, and versatile instrument, equally well suited for field studies in geophysics, research programs or other magnetic mapping application where low cost, dependable operation and accurate measurements are required.

For marine, airborne or ground recording systems consider GeoMetrics Models G-801, G-803, and G-826A.

"Hands-free" Back Pack Sensor

Based upon the principle of nuclear precession (proton) the G-816 offers absolute drift-free measurements of the total field directly in gammas. (The proton precession method is the officially recognized standard for measurement of the earth's magnetic field.) Operation is worldwide with one gamma sensitivity and repeatability maintained throughout the range. There is no temperature drift, no set-up or leveling required, and no adjustment for orientation, field polarity, or arbitrary reference levels. Operation is very simple with no prior training required. Only 6 seconds are required to obtain a measurement which is always correct to one gamma, regardless of operator experience. Only the Proton Magnetometer offers such repeatability-an important consideration even for 10 gamma survey resolution.

Complete Field Portable System

The Model G-816 comes complete, ready for portable field operation and consists of:

1. Electronics console with internally mounted and easily replaced "D" cell battery pack.
2. Proton sensor and signal cable for attachment to carrying harness or staff.
3. Adjustable carrying harness.
4. 8 foot collapsible aluminum staff.
5. Instruction manual, complete set of spare batteries, applications manual, and rugged field suitcase.

Price and lease rates on the G-816 magnetometer are available upon request.

SPECIFICATIONS

Senslitivly:	± 1 gamma throughout range
Range:	20,000 to 100,000 gammas (worldwide)
Tuning:	Multi-position switch with signal amplitude indicator light on display
Gradlent Tolerance:	Exceeds 800 gammas/ft
Sampling Rate:	Manual push-button, one reading each 6 seconds
Output:	5 digit numeric display with readout directly in gammas
Power Requirements:	Twelve self-contained 1.5 volt " D ' cell, universally available flashlight-type batteries. Charge state or replacement signified by flashing indi cator light on display.
	Battery Type Number of Readings
	Alkaline over 10,000
	Premium Carbon Zinc over $\quad 4,000$
	Standard Fashlight over 1,500

NOTE: Battery life decreases with low temperature operation.

Temperature \quad Console and sensor: -40° to $+85^{\circ} \mathrm{C}$ Range:

Battery Pack: $\quad 0^{\circ}$ to $+50^{\circ} \mathrm{C}$ (limited use to $-15^{\circ} \mathrm{C}$; lower temperature battery belt opera-tion-optional)
$\begin{array}{ll}\text { Accuracy } & \pm 1 \text { gamma through } 0^{\circ} \text { to }+50^{\circ} \mathrm{C} \text { temperature } \\ \text { (Total Fieid): } & \begin{array}{l}\text { range }\end{array}\end{array}$ (Total Fieid):

Sensor:

Size:
High signal, noise cancelling, interchangeably mounted on separate staff or attached to carrying harness

Console: $3.5 \times 7 \times 10.5$ inches ($9 \times 18 \times 27 \mathrm{~cm}$)
Sensor: 3.5×5 inches ($9 \times 13 \mathrm{~cm}$)
Staff: 1 inch diameter $\times 8$ ft length
($3 \mathrm{~cm} \times 2.44 \mathrm{~m}$)
Weight:

		Lbs.
	Kgs.	
Console (w/batteries):	5.5	2.5
Sensor \& signal cable:	4	1.8
Aluminum staff:	Total:	$\frac{2}{11.5}$
	$\frac{0.9}{5.2}$	

All magnetometers and parts are covered by a one year warranty beginning with the date of receipt but not to exceed fifteen months from the shipping date.

BASE STATION MAGNETOMETER Model BM-123

DESCRIPTION

The Barringer BM-123 magnetometer system uses the proton precession principle to measure the earth's total magnetic field intensity. There is no need for levelling or calibration of the sensor and it is unaffected by external influences such as temperature, etc.

FEATURES

- Magnetometer neatly combined with analog recorder in console measuring only $17^{\prime \prime} \times 12^{\prime \prime} \times 8^{\prime \prime}$ ($43.2 \mathrm{~cm} \times 30.5 \mathrm{~cm} \times 20.3 \mathrm{~cm}$)
- powered by mains AC or 24 Volts DC
- Full 1 gamma or 0.5 gamma sensitivity
- Fully adjustable cycling rate from 2 seconds to 99 minutes in 1 second stages
- BCD output readily adaptable to digital cassette or other magnetic type recording
- To save power chart recorder can be made to operate only when magnetometer cycles

APPLICATIONS

- Storm monitoring
- Diurnal variation monitoring

TYPICAL SYSTEM COMPONENTS

- Magnetometer console, including 5-inch chart recorder
- Toroidal sensor
- Observatory measurements including three component measurements with the use of Helmholtz coils
- Connecting cable
- Tripod
- Power supply (optional)

CONSOLE MODEL M-123-1

Sensltivity
Accuracy
Range
Cycle Rates:
Continuous Cycling
Automatic Cycling
Manual Cycling
External Cycling
Outputs:
Analog
Fiducial Marker
Visual
External Outputs:
Analog
Digital

Fiducial Mark Size

Weight
Operating Temperature
Power Requirements
Options

1 gamma throughout the range
± 1 gamma at 24 volts dc
20,000 to 100,000 gammas in 12 overlapping settings
$0.6,0.8,1.2$ and 1.9 seconds
2 seconds to 99 minutes in 1 second steps
pushbutton single cycling at 1.9 seconds
actuated by a 2.5 to 12 volt pulse longer than 1 millisecond
front panel select 0 to 99 gammas or 0 to 990 gammas internal selection of 1 second to 99 minutes in 1 second steps 5 digit numeric display directly in gammas

2 channels, 0 to 99 gammas and 0 to 990 gammas at 1 milliamp or 1 volt Full Scale Deflection
BCD 1, 2, 4, 8 code. TTL compatible
0 State - 0 to 0.5 volts
1 State -2.5 to 5 volts
Relay closure or open state selected internally from 1 second to 99 minutes $8^{\prime \prime} \times 12^{\prime \prime} \times 17^{\prime \prime}(20.3 \mathrm{~cm} \times 30.5 \mathrm{~cm} \times 43.2 \mathrm{~cm})$ (fits under a commercial airline seat)
$20 \mathrm{lbs}(9.1 \mathrm{~kg})$
$-28^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Magnetometer 12 to 30 volts dc 60 to 200 milliamps maximum
Recorder $\quad 12$ to 30 volts dc 0.5 to 0.9 amps maximum
Component Spares Kit - a selection of critical solid state components and fuses required for general console maintenance
Board Spares Kit - a complete selection of plug-in PC boards for maintenance of the console on longer term surveys
high sensitivity console model m-123-2
$\begin{array}{ll}\text { Sensitivity } & 0.5 \text { gammas at } 1.9 \text { seconds } \\ \text { Accuracy } & \pm 0.5 \text { gammas at } 1.9 \text { seconds }\end{array}$
All other specifications the same as Model M-123-1

MAGNETOMETER ELECTRONICS ONLY MODEL M-123-3
Size $\quad 6^{\prime \prime}$ high $\times 7^{\prime \prime}$ wide $\times 6^{\prime \prime}$ deep ($15.2 \mathrm{~cm} \times 17.8 \mathrm{~cm} \times 15.2 \mathrm{~cm}$) can fit a standard $19^{\prime \prime}$ (48.3 cm) rack
Weight
approximately $5 \mathrm{lbs}(2.3 \mathrm{~kg})$
Outputs
External Outputs

5 digit display in gammas
same as model M-123-1 above

CONSOLE OPTIONS

Digital Cassette Recording - various systems available, details on request
Hewlett-Packard Recorder Spares
Hewlett-Packard Recording Supplies - chart paper and disposable pens

Ninistryol
Natural
Resquines
Report of Work
(Geophysical, Geo logical,
Geochemical and Expenditures)

The Mining!

Credits Requested per Each Claim in Columns at right

Expenditures (excludes power stripping)
Type of Work Performed

Performed on Claim (s)

Calculation of Expenditure Days Credits
Total Expenditures

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Date
March 31, 198β
Recorded Holder or Agent (Signature)

Certification Verifying Report of Work
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

$192010 \cdot 1$

Report of Work
(Geophysical, Geological, Geochemical and Expenditures)

Instructions: - Please type or print.

- If number of mining claims traversed exceeds space on this form, attach a list.
Note: - Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns. - Do not use shaded areas below.

Type of Survey (s)
Claim Holder (s)
Address
Survey Company

Maxim II EM
Getty Canadian Metals, Limited
Atkinson Lake Area
Prospector's Licence No.
Suite 1200, 150 York Street, Toronto, Ontario M5H 3S5
Survey Company
MPH Consulting Limited
Name and Address of Author (of Geo-Technical report)
W.E. Brereton 706-141 Adelaide Street, West, Toronto, Ontario

Credits Requested per Each Claim in Columns at right

Expenditures (excludes power stripping)

Mining Claims Traversed (List in numerical sequence)

Certification Verifying Report of Work

[^0]Name and Postal Address of Person Certifying

Ministry of Natural

Report of Work.

(Geophysical, Geological, Instructions: - Please type or print.

- If number of mining claims traversed exceeds space on this form, attach a list.

Type of Survey (s)
Maximin II EM
Getty Canadian Metals, Limited
Claim Molder (s)

Suite 1200, 150 York Street, Toronto, Ontario M5H 3S5
Survey Company

MPH Consulting Limited

Date of Survey (from \& to $\left.\quad 8\right|^{\text {Total Miles of line Cut }}$

Name and Address of Author (of Geo-Technical report)
W.E. Brereton 706-141. Adelaide Street, West, Toronto, Ontario

Credits Requested per Each Claim in Columns at right

Special Provisions For first survey: Enter 40 days. (This includes line cutting)	Geophysical For each additional survey: using the same grid: Enter 20 days (for each)	- Mays per Claim

Expenditures (excludes power stripping).,

| Type of Work Performed | |
| :--- | :--- | :--- | :--- |
| Performed on Claim (s) | |
| | |

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at fight.

Mining Claims Traversed (List in numerical sequence)

Total number of mining claims covered by this report of work.

Certification Verifying Report of Work
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.
Name and Postal Address of Person Certifying

Report of Work
(Geophysical, Geological,
Geochemical and Expenditure

10 day were:
fume 3 ned
$1 / 544 \mathrm{~b}^{\circ}$ Instructions: - Please type or print.

- If number of mining claims traversed exceeds space on this form, attach a list.
Note: "Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns.
- Do not use shaded areas below.

Expenditures (excludes power stripping)

Type of Work Performed	
Performed on Claims)	
Calculation of Expenditure Days Credits Total Expenditures	Total Days Credits
$\$$	$\div 5$

Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected
in columns at right.

| Date | |
| :--- | :---: | :---: |
| March 22,1983 | Recorded Holder or Agent (Signature) |

Certification Verifying Report of Work

Mining Claims Traversed (List in numerical sequence)

[^1]Name and Postal Address of Person Certifying

Report of Work
(Geophysical, Geological,
Geochemical and Expenditures)

p-529159

- If numb type or print.
- If number of mining claims traversed exceeds space on this form, attach a list.
Note: - Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns.
- Do not use shaded areas below.

Name and Address of Author (of Geo-Technlcal report)
W.E.Brereton,P.Eng., 706-141 .Adelaide St. West, Toronto, Ontario. M5H 3L5

Special Provisions Credits Requested

[^2]P529159
P529162
P529163
P529164
P529165
P529166
P529167
P560161
P568293
P568294
P568295
P568296
P568297
P568300
P577564
P585180
P585181
P585182
P585183
P585185
P585186
P585187
P585188
P585189
P585190
P585191
P585202
P585203
P585204
P585205
P585206
P585207
P585208
P585225
P585226
P585227
P585228
P585244
P585245
P585246
P585247
P585248
P585249
P585602
P585603
P585604
P585605 P585606 P585607 P585608

P585609 P585610 P585611 P585612 P585613 P585614 P585615 P585616 P585617 P585618 P585619 P585620 P585626 P585653 P585654 P585655 P585656 P585657 P585899 p585901 P585902 P585903 P585904 P585905 P585906 P585907 p585908 P585909 P585910 P585911 P585912 P585913 P585914 P585915 P585916 P585917 P585918 P585919 P585920 P585921 P585922 P585923 P585924 P585925 P585926 P585927 P585930 p585931 P585932 P585933

P585934
P585935
P585936
P585937
P585938
P585939
p585943
P585944
P585945 P585946 P585947 P585948 P585949 P585950 P585951 P585952 P585953
P585954
P585955
P585956 P585957 P585961 P585963 P585964 P585965 P585966 P586353 P586354 P586518 P586519 P586520 P586521 P586522 P586523 P586524 P586525 P586526 P586527 P586528 P586529 P586530 P586531 P586532 P586533 P586534 P586535 P586536 P586537 P595003 P595004

P595005 P595006 P595008 P595009 P595010 P619058 P619059 P619060 P619061 P619062 P619063 P619064 P619065 P619067 P619068 P619069 P619070 P619071 P619072 P619073 P619074 P619075 P619077 P619141 P619142 P619143 P619144 P619145 P619146 P619147 P619148 P619149 P619150 P619151 p619152 P619153 P619154 P619155 P619156 P619157 P619158 P619159 P619160 P619161 P619162 P619163 P619164 P633244 P633245 P633246 P633247 P633248

[^3]

P529159
P529162 P529163 P529164 P529165 P529166 P529167 P5601.61- $529 / 6 /$ P568293
P568294 P568295 P568296 P568297 P568300 P577564 P585180 P585181 P585182 P585183 P585185 P585186 P585187 P585188 P585189 P585190 P585191 P585202 P585203 P585204 P585205 P585206 P585207 P585208 P585225 P585226 P585227 P585228 P585244 P585245 P585246 P585247 P585248 P585249 P585602 P585603 P585604 P585605 P585606 P585607 P585608

P585609 P585610 P585611 P585612 P585613 P585614 P585615 P585616 P585617 P585618 P585619 P585620 P585626 P585653 P585654 P585655 P585656 P585657 P585899 P585901 P585902 P585903 P585904 P585905 P585906 P585907 P585908 P585909 P585910 P585911 P585912 P585913 P585914 P585915
P585916 P585917 P585918 P585919
P585920
P585921
P585922
P585923
p585924
P585925
P585926
p585927
P585930
P585931
P585932
P585933

P585934
P585935
P585936 P585937 P585938 P585939 P585943 P585944 P585945 P585946 P585947 P585948 P585949 P585950 P585951 P585952 P585953 P585954 P585955 P585956 P585957 P585961 P585963 P585964 P585965 P585966 P586353 P586354 P586518 P586519
P586520
P586521
P586522
P586523
P586524
P586525
P586526
P586527
P586528
P586529
P586530
P586531
P586532
P586533
P586534
P586535
P586536
P586537
P595003
P595004

P595005 P595006 P595008 P595009 P595010 P619058 P619059 P619060 P619061 P619062
P619063 P619064 P619065 P619067
P619068
P619069
P619070
P619071
P619072
P619073
P619074
P619075
P619077.
P619141
P619142
P619143
P619144
P619145
P619146
P619147
P619148
P619149
P619150
P619151
P619152
P619153
P619154
P619155
P619156
P619157
P619158
P619159
P619160
P619161
P619162
P619163
P619164
P633244
P633245
P633246
P633247
P633248

July 29, 1983

Getty Canadian Metals Limited
Suite 1200
150 York Street
Toronto, Ontario
M5H 3S5
Dear Sir:
Enclosed is a copy of a Report of Work for Magnatometer and Electromagnetic assessment work credits that was recorded by the recorder on April 5, 1983 on Mining Claims P 585184 and P 585962 in the Area of Atkinson Lake.

We have no record that you provided the full reports and maps to the Minister within the sixty day period provided by Section 77 of the Mining Act.

Uniess you can provide evidence by August 15, 1983 that the reports and maps were submitted as required, the mining recorder will be directed to cancel the work credits recorded on April 5, 1983.

Yours very truly,
E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A IW3
Phone: (416)965-1380
P
A. Barr:mc
cc: $\begin{aligned} & \text { Mining Recorder } \\ & \text { Timmins, Ontario }\end{aligned}$

Mr. William L. Good
Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
P4N 257
Dear Sir:
RE: Geophysical (Electromagnetic and Magnetometer) Survey on Mining Claims P 529159 ot al in the Detour Lake Area

The Geophysical (Electromagnetic and Magnetometer) Survey assessment work credits as listed with my Notice of Intent dated July 6, 1983 have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours very truly,
E. F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: (416)965-1380
D. Kinvig:me
cc: Getty Canadian Metals, Limited Suite 1200 150 York Street Toronto, Ontario M5H 355
cc: Resident Geologist
Timmins, Ontario

Ministry of
Natural Resources

Technical Assessment
Work Credits

Recorded Holder	GETTY CANADIAN METALS LIMITED
Township or Area	ATKINSON LAKE AREA

Special credits under section $86 \times(18 \times 2 \times$ or the following mining claims

10 DAYS MAGNETOMETER

P 585653
585939
585961
585966

No credits have been allowed for the following mining claimsnot sufficiently covered by the survey
Insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 86(18)-60:

ATKINSON LAKE AREA

No credits have been allowed for the following mining claims
not sufficiently covered by the survey
Insufficient technical data filed

Geotechnical
Report
Approval

Mining Lands Comments

$\bigwedge_{\text {To: Geophysics }}$
Comments
\square
等

To: Geology - Expenditures

\square To: Geochemistry

Comments		
Approved	\square Wish to see again with corrections	Date

\square To: Mining Lands Section, Room 6462, Whitney Block.
(Tel: 5-1380)

Mr. Willtam L. Good
Mining Recorder
Ministry of Natural Resources 60 Wilson Avenue
Timmins, Ontario
PAN $2 S 7$

Dear Sir:

Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the other. In approximately fifteen days from the above date, a final letter of approval of these credits will be sent to you. On receipt of the approval letter, you may then change the work entries on the claim record sheets.

For further information, if required, please contact Mr. F.W. Matthews at 416/965-1380.

Yours very truly,

E.F. Anderson
Director
Land Management Branch

Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: 416/965-1316
D. Kinvig:mc

cc: Getty Canadian Metals Limited Toronto, Ontario

cc: Mr. G.H. Ferguson Mining \& Lands Commissioner Toronto, Ontario

Encls:

Ministry of
Natural Resources

Notice of Intent
for Technical Reports

An examination of your survey report indicates that the requirements of The Ontario Mining Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on his record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the 'Special Provision-Performance and Coverage" method and you are of the opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted direct to the Lands Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued.

April 5, 1983

Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
P4N 2S7

Attention: Mr. B. Hanley
Dear Bruce;

Re: Report of Geophysical Work
October ' 81 through May. ' 82
$\mathrm{P}-585900$ and $\mathrm{P}-619076$
Detour Lake (Atkinson Lake Property, Ontario
As follow up to our conversation of today, attached please find Getty Canadian Metals, Limited's Report of Work for P-585900 and P-619076. Under Getty's letter dated March 23, 1983, referencing the above claims, a Report of Work for P-585184 and P-585962 was inadvertently submitted in place of the attached. As the Report of Work for P-585184 and P-585962 has already been filed and accompanies the Relief of Forfeiture dated March 28, 1983 from the office of the Commssioner, kindly ensure that the attached Report of Work is correct?y filed with Getty's March $23 r d$ letter for approval of geophysical work credits. The technical report was submitted on May 20 , 2982 in Toronto by MPH Consulting Limited on behalf of Getty.

We trust you will find the foregoing to be in order.
Yours very truly
GETTY CANADIAN META.LS, LIMITED
G.C. Jarvis

Landman
GCJ / fw
Attchmt.

```
C.c. Mr. E.F. Anderson
    Director of Land Management Branch
    Room 6450, Whitney Block
    Queens Park, Toronto M7A lW3
```

March 23, 1983

Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
PAN 2S7
Attention: Mr. B. Manley
Dear Bruce;
Re: Report of Geophysical Work October ' 81 through May ' 82 P-585900 and P-619076 Detour Lake (Atkinson Lake) Property, Ontario

As follow up to our conversation of today, attached please find Getty Canadian Metals, Limited's Report of Work on P-585900 and P-619076. On May 20, 1982 MPH Consulting Limited on behalf of Getty, filed for 40 days geophysical work credits on 206 unpatented mining claims. A copy of said application is attached for your reference. Upon review of the schedule attached to the application it was found that only 202 of the 206 claims were listed. The four (4) claims which were inadvertently omitted from the schedule were:

$$
\begin{aligned}
& P-585184 \\
& P-585900 \\
& P-585964 \\
& P-619076
\end{aligned}
$$

As evidenced in the corresponding work report filed, work was definitely conducted across the subject claims. A copy of the title page of said report is attached for your reference. *

As P-585900 and P-619076 are currently in good standing Getty is taking this time to respectfully request that said 40 days credit for the geophysical EM and MAG surveys be applied to their account. According to your office the other two (2) claims (P-585184 and $\mathrm{p}-585962$) have been cancelled. A formal request for relief of forfeiture has been forward to the Commissioner's office.

We trust you will find the foregoing to be in order. If you require any additional information please do not hesitate to contact me at (416) 863-0487.

Yours very truly
GETTY CANADIAN METALS, LIMITED

G.C. Jarvis

Landman
GCJ/fw
Attchmt.
c.c. P.T. George/W. Evert

Mr. E.F. Anderson
Director of Land Management Branch
Room 6450, Whitney Block
Queens Park
Toronto, Ontario
M7A 1W3

* PS. Clemens note that the subject furr(4) claims are listed on the Trechicial Regret Schedule of claire hit not on the schedule withetheplication fr' Report of Work in the Mining Ceraders' office in Timmoins.

Mining Recorder
Miniatry of Natural Resourcea
60 Wilson Avenue
Timmins, Ont.
P4N 287

Dear sir:

We have received reports and maps for a Geophysical (Electromagnetic and Magnetometer) Survey submitted under special provisions (credit for Performance \& Coverage) on Mining Claims $P 529159$ et al in the Detour Lake kea.

This material will be examined and assessed and a statement of asessment work credits will be issued.

Youre very truly,

```
E.F. Anderson
Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: 416/965-1316
J. Skura/ame
cc Getty Canadian Metals, Limited
        Toronto, Ontario
ce: MPH Conaulting Limited
        Toronto, Ontario
```


RECEIVED

$$
\text { JUN - } 31882
$$

mining lands section

Mr. F.W. Mathews, Land Management Branch, Ministry of Natural Resources, Whitney Block, Room 6450,
Queen's Park,
Toronto, Ontario.
M7A 1 W3

Dear Mr. Mathews:
Please find enclosed two copies of the «Report on Magnetic and Electromagnetic Surveys, Detour Lake Area, Ontario» and accompanying Map Volumes.

Should there be any questions regarding the report, please feel free to call.

Yours very truly,
MPH CONSULTING LIMITED
jinW. for Wers.

W.E. Brereton, P.Eng.,

Vice President.
WEB/la
Encls.

（2）

[^0]: I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

[^1]: I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

[^2]: Certification Verifying Report of Work,

[^3]: Certification Verifying Report of Work

