

32E13SE0022 33 ATKINSON LAKE

010

Diamond Drilling

Area Atkinson Lake Report Nº 33

Work performed by:

Getty Canadian Metals, Ltd.

C	laim Nº	Hole NQ	Footage	Date	Note	
Ρ	618866	DL-82-18	148.lm	Oct/82	(1) (3)	
Ρ	619208	DL-83-21	152.7m	Mar/83	(1)	
Ρ	619203	DL-83-22	101.2m	Mar/83	(1)	
Ρ	619208	DL-83-34	125.Om	Mar/83	(1)	(4)
Ρ	619203	DL-83-35	100.6m	Mar/83	(1)	(4)
Ρ	585613-4	DL-82-09	154.2m	Aug/82	(2) (3)	
Ρ	585904-5	DL-82-10	123.lm	Sept/82	(2) (3)	
Ρ	585903/585655	DL-82-11	248.7m	Aug/82	(2) (3)	
Ρ	585615/585608	DL-82-13	230.4m	Aug/82	(2) (3)	
Ρ	585925	DL-82-15 ·	174.3m	Sept/82	(2) (3)	
Ρ	585947	DL-82-16 '	166.lm	Sept/82	(2) (3)	
Ρ	585909/585910	DL-83-08	144.5m	Mar/83	(2)	(4)
Ρ	585956	DL-83-23	139.3m	Mar/83	(2)	(4)
Ρ	585884	DL-83-26	242.9m	Apr/83	(2)	(4)
Ρ	585831	DL-83-27	111.9m	May/83	(2)	(4)
٠P	585857	DL-83-30	167.9m	Apr/83	(2)	(4)
Ρ	586577	DL-83-33	145.4m	Apr/83	(2)	(4)
						~ /

Notes:	(1)	#321 - 8	3
	101	1000	2

- (2) #323-83
 (3) OMEP Submittal: OM82-5-C-76
- (4) OMEP SUBMITTAL : OMB2-5-C-164

`.		GETTY MINES	, LIMITED	>			Н	ole Nur	nber	DL-83	3-08			
-		DR ILL HOI	LE LOG							Dip	Tests			
Property Location Grid Latitude, Departur	, DETOUR LA 	KE Core SizeBQ Core SizeBQ Elev. Collar Bearing340° Dip Length144.5 m Horiz. Trace108.5.m.	Core Size					Starting DateMARCH 6, 1983 Completion Date. MARCH 9, 1983 Date LoggedMARCH 8-10, 1983 Logged byRICHARD.SCRATCH						
FROM	то	DESCRIPTION	5	SAMPLE	MET	ERS	CORE		T · · · · · · ·	ASSAY	· · · · · · · · · · · · · · · · · · ·			
				NUMBER	FROM		LGTH.			_				
0.0 m	47.0 m	OVERBURDEN		· · · · · · · · · · ·	· ·									
47.0 m	58.5 m	MAFIC VOLCANIC ROCK												
		- highly altered, usually to medium to dark green		- <u> </u>				1						
		chlorite but also present are amphibole rich sectior	ns					1	1					
		and heavily carbonated zones (calcite)						1	1					
		- rock is medium grained with alteration banding						1	1	1	1	1		
		at 55° to c/a						1						
		- heavily carbonated (50%) sections with calcite chlc	orite						1					
		banding at:		·······					1		+			
		47.8 - 48.2 - this section contains 0.5 cm						1	+					
		porphyro blasts of anhedral												
		red brown mineral (garnet?)				1	•				1			
	· · · · · · · · · · · · · · · · · · ·	at 47.84-47.9						1						
	······	49.9 - 50.1 - as above withlesser garnet?							1			1		
	······	$51.5 - 51.6 - banding at 90^{\circ} to c/a$		·····	· • • • • • • • • • • • • • • • • • • •			+	1					
		51.73 - 51.88		· · · · · · · · · · · · · · · · · · ·		<u> </u>		1	1			1		
		- core badly ground at: 48.75-48.8, 49.6-49.8, 50.25-5	50.35,			1	-	1	1		-			
		51.97-52.25				2.1		1						
	<u>,</u>	- 53.8-54.77 - coarser grained mafic volcanic with					1	1	1		1			
		development of 15% anhedral white mineral (1mm)						1	1		1			

.

.

· .

.

Hole Number | DL-83-08

-

DRILL HOLE LOG

FROM	TO	DESCRIPTION	SAMPLE	МЕТ	ERS	CORE		ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH	 			
47.0 m	58.05 m	cont'd					 			
		(aluminosilicate?) and cut by qtz-chlorite calcite								
		veinlets			 					
		- 54.77 - 58.05 - as at 47.0 - 53.8 but with less					 			
		carbonate chlorite alteration					 			
		- upper contact is sharp at 60° to c/a					 			
		- very magnetic at 47.0-53.3 except where chlorite-carbonate		4 A.			 		· · ·	
		alteration most intense (see above)					 			
58.05 m	77.32 m	MAFIC TO INTERMEDIATE VOLCANIC ROCK					 			· · ·
		- intercalated coarser grained (altered slightly to					 			
		chlorite & calcite) amphibolitic units and fine grained					 			
		volcanic sections - pillows?			-		 		 	
		- some coarse grained sections contain po 2-5%					 			
		- this unit is more siliceous than preceeding one.	· · · · ·	· ·			 			
	<u> </u>	po @ 60.6, 70.15 (to py)	· · ·				 			
<u></u>		- fine grained section (tuff?) @ 68.2 - 69.3					 			
77.32 m	78.5 m	MAFIC TO INTERMEDIATE TUFF					 	· · · ·		
	1	- mixed volcanic-epiclastic rock								
	1	- banding at 60° to c/a					 · · · ·			
		- contains white flattened shards 10%								
		- contacts gradational								
				·					· ·]
	.I	1]

.

1. J. .

.

Hole Number DL-83-08

DUTINI HOUR HOO	DRILI	' HOLE	LOG
-----------------	-------	--------	-----

ED OI	TO		SAMPLE	МЕТ	ERS	CORE			ASSAY		
FROM		DESCRIPTION	NUMBER	FROM	TO	LGTH		ļ			
78.5 m	89.3 m · · ·	MAFIC TO INTERMEDIATE VOLCANIC ROCK					• • • •				
		- mostly medium grained massive green intermediate									
		volcanic rock but with short coarse grained amphibolitic									
		sections									
		- rock is very competent and contains few alteration stringers									
		- coarser grained sections contain 30% feldspar, 50% amphibole,									
		20% chlorite									
		- 18 disseminated py & po									
89.13 m	89.60 m	MAFIC TO INTERMEDIATE TUFF			· .						
		- as at 77.32 - 78.5									,
		- banding at 55° to c/a								L	
		- contacts gradational						1			
		- fine grained									
89.60 m	92.2 m	AMPHIBOLITE								1	
		- coarse grained mafic to intermediate volcanic						<u> </u>			
		rock similar to the shorter coarse grained sections									
		present at 78.5-89.13		<u> </u>							
		- ave.grain size 3 mm								ļ	ļ
		- rock shows intense green (chlorite) alteration at 91.1 - 90.8			·					· ·	
		- upper contact gradational lower contact abrupt	· · · · · · · · · · · · · · · · · · ·								
	·	oriented at 35° to c/a									
		a da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arrest						 			
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·		· · · ·					.	
								1		Ì	
	ll							L		<u> </u>	L

Page. .3

r

2 · · · ·

Hole Number DL-83-08

.

Page...4

DRILL HOLE LOG

EROM	TO	DESCRIDTION	SAMPLE	MET	ERS	CORE		AS	SAY		
FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Aq (ppm)	
92.2 m	· 92.37 m ·	MAFIC TO INTERMEDIATE TUFF									
		- as at 77.32 - 78.5		a a a a a a							
		- contacts upper and lower at 35° to c/a									
											l!
92.37 m	96.86 m	MAFIC TO INTERMEDIATE VOLCANIC ROCK									
		- mostly medium grained, green volcanic rock as at									
		78.5 - 89.13									ļ
96.86 m	122.5 m	METASEDIMENTARY_ROCK									
		- siliceous substance	D00001	121.5	122.0	0.5	Nil	Tr.	Tr.	Nil	
		- upper contact at 30° to c/a	D00002	122.0	122.5	0.5	2	Tr.	100	Nil	· · · ·
		- fine grained, grey-green siliceous rock									
		- minor tuffaceous component									
		- transected by occassional qtz-chlorite-calcite veinlets					<u> </u>		·		
		- ground core at 104.0-104.3, 112.9-113.1, 114.30-114.45,									
		115.0-115.2, 116.1-116.2, 116.9-117.0									
122.5 m	123.1 m	CONDUCTIVE ZONE	D00003	122.5	123.1	0.6	10	400	100	Tr	
		graphitic sulphide bearing cherty metasedimentary rock									
		- upper and lower contacts sheared and exact									İ
		width might extend to 123.35 but core is ground	[·]			
	 	- 60% graphite, 5% po, 10% py, 25% chert					l				
		- most of the pyrite is present in veins and as									
		altered product of po									
		- metasediments on both sides of this unit are			2.5						
		distinctly non sulphide bearing									

•

Hole Number | DL-83-08

	DR	\mathbf{ILL}	HC	DLE	LOG
--	----	----------------	----	-----	-----

FROM	то	DESCRIPTION	SAMPLE	MET	ERS	CORE		A	SSAY	r
			NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)
123.1 m	129.5 m	METASEDIMENTARY ROCK	D00004	123.1	123.6	0.5	Nil	Tr	400	Nil
			D00005	123.6	124.1	0.5	Tr.	100	200	Nil
		- siliceous greyish siltstone as at 96.86 - 122.5		- 1						
	·	- ground core at 124.4-124.55, 125.15-125.35, 127.6-128.0								
		- lower contact gradational and indistinct								
		- qtz vein at 124.4								
129.5 m	132.45 m	MAFIC TO INTERMEDIATE TUFF								
		- well bedded at 60° to core axis								
		- development of 15-20% 1 mm white clots which	D00006	131.45	131.95	0.5	Nil	Tr	400	Nil
		may be an aluminosilicate, similar to those	D00007	131,95	132.45	0,5	17	100	400	Nil
		described in rock at 53.8-54.77								
		- upper contact gradational, lower contact abrupt at								
		50° to c/a								
		- rock appears more sedimentary towards base								
		- 131.75 minor graphite								
132.45 m	132.88 m	GRAPHITE - PY - PO - CHERT ROCK	D00008	132.45	132.88	0.43	12	500	100	Tr
		- another conductor similar to that at 122.5-123.1								
		- banding at 60° to c/a .								
132.88 m	137.62 m	MAFIC TO INTERMEDIATE TUFF	D00009	132.88	133,38	0.5	Nil	100	200	Nil
			D00010	133.38	133.88	0.5	14	17	200	Nil
		- as at 129.5 - 132.45 with abundant							. ,	
		aluminosilicate? developed			· .					· · ·
		- banding at 60° to c/a								
		- appears more sedimentary at base where grades into metasediments								

Page...⁵....

Page. 6

•	-								Pa	ge	
•		GETTY MINES, LIMIT	ED			F	Hole Nu	mber	DL-83-	-08	
		DRILL HOLE LOG						L.			
FROM	то	DESCRIPTION	SAMPLE NUMBER	MET FROM	ERS TO	CORE		[ASSAY		
132.88 m	137.62 m	cont ¹ d		· · · · · ·			1				
		- garnet porphyroblasts appear at 137.20 - 137.62									
		135.67 - 136.7 - rock transected by gtz-chlorite									
		garnet veinlets	· · · · · · · · · · · · · · · · · · ·								
132.62 m	144.5 m	METASEDIMENTARY ROCK									
		- as at 96.86 - 122.5									
		- siliceous siltstone/argillite									
		- upper contact diffuse and gradational with						· ·	ļ		
		overlying tuff									
		- minor qtz carbonate veinlets									
		- garnet at 141.5 - 141.6									
		- abundant garnet & tuffaceous component increases									
		towards base of hole			_						
		- 1-2% at 144.4									
		- banding at 60° to c/a									
144.5		END OF HOLE									
						ļ	ļ				L
			1			1	1.		1	1 .	

unter unter seine seine					COME				inini jui	Nge	of	
DL-B3-08 From	To	Width	Au.	Cu.	Zn	Ag	<u> </u>		Mo	Date MARC	<u>4 183</u>	
DRILL HOLE NO. (m.)	(m.)	(m.)	(pth) NIL	(fom) TP	(epn) TP	(00m) NII	(ppm)	(pp.o)	(ppm)	(mga)		
<u>60002</u> 122.0	122.5	0.5	2	TR	100	NIL	10	<u> </u>	470	44.0		
00003 172.5	12.3.1	0.6	10	400	100	TR	10	6	210	39.0		
00004 123.1	12.3.6	0.5	NIL	TR	400	NIL				1.0		
00005 123.6	12.4.1	0.5	1 K	100	200	NIL	- 40		-120	2.0		
00006 131.45	131.95	0.5	NIL	TR	400	NIL						
00004 131.95	132.45	0.5	17	100	400	NIL	10	4.1	4110C	1.6		
00008 132.45	132.88	0.43	12	500	100	TR	×10	5	390	1.3		
00009 132.88	/33.38	0.50	NIL	100	200	NIL	ļ					
00010 133.38	133.88	0.50	14	TR.	200	NIL	10	<u> </u>	580	3.2		
· · · · · · · · · · · · · · · · · · ·												
	, [
	-											
	-											
	-				-			1				

Page 1		GETTY MINES, LIMITE	D			H	ole Nur	nber	DL-8	32-09	
Property Location Grid Latitude, Departur	y DETOL 142 k PROPE 2 + C re26 +	DR ILL HOLE LOG DR ILL HOLE LOG Core Size. BQ Core Size. BQ Bearing. 340 Bearing50 N Dip50 N Length. 154.2m Horiz. Trace. 94.5 m Vert. Trace. 120.5 m	. Start . Com . Date . Logg	ing Dat pletion Logged ed by	AUG Date. A AUG K.Ş W.D	GUST 15 UGUST 1 UST 18- SUTHE EWERT	20, 198 20, 198 RLAND	2.32.	Dip Depth Collar 36.6m 154.2m	Ang: Read 62 ⁰ 50 ⁰	$\frac{16}{-50^{\circ}}$
FROM	то	DESCRIPTION	SAMPLE NUMBER	MET FROM	ERS TO	CORE LGTH.		1	ASSAY	T	
0.0 m	35.70 m	OVERBURDEN - sand, gravel boulders						<u>.</u>			
35.70 m	59.90 m	SILICEDUS METASEDIMENIS (Greywacke, siliceous greywacke,									
		The unit is fine to medium grained, grey/brown in colour and									
		medium soft. Mineralogy consists of 30-40% biotite, 20-30% feld- spar and 20-25% quartz. Up to 3% pyrite/pyrrhotite is present						<u> </u>			
		as fine disseminations, <2mm blebs and ≤1mm wide stringers. Chalcopyrite is present, locally up to 2% as <1mm blebs + ≰1mm			 						
		stringers and appears to be closely associated with pyrrhotite. The unit is weakly magnetic throughout relative to the amount									
		of pyrrhotite present. There is a gradational change within the metasedimentary unit		 							
		from fine grained graded siltstone to a coarser, siliceous grey-							·		
		The unit is banded 80° to 90° to C/A as a result of possible			·			1			
		graded bedding over an area of < 5 cm. Tops appear to be down hole. The metascdiments are locally bleached. A graphite/		· · · ·	· · · · ·	· · ·					
·		sulphide rich horizon is intercalated within the siliceous meta- sedimentary unit containing 5-8% pyrite/pyrrhotite. Iess than									
I		2% quartz-carbonate veining is present throughout the unit.	L	l			ļ	<u> </u>			

Hole Number

Page....2.....

DL-82-09

DR	ILL HO	LE LO	G

ED OV		DECONDENSION	SAMPLE METERS C		CORE	CORE ASS		ASSAY	AY		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Aq (ppm)	
		The veins are generally ≤ 5 mm wide and are oriented 45° and 90°									
		to the C/A.									
		36.0 - A 4 cm wide zone of graded bedding, tops appear to be									
		down hole.									
		36.5 - 36.7 - Fracture zone, deeply weathered blocky core, friable									
	L	rock.	· · · · · ·								
·											
······		38.2 - Graded bedding oriented 90° to C/A	· · · · · · ·								
·······	L						ļ				
		39.0 - 39.9 - Numerous stringers of pyrrhotite/pyrite 3-5% with									
		<1% chalcopyrite locally as blebs (4 mm).									
		40.5 - Graded sillstone beds on a scale of a few milimeters				·					
·		oriented 85° to C/A, tops appear to be down hole, 1-2%					ļ				
		disseminated pyrrhotite weakly magnetic.	· · · · · · ·								
<i></i>		40.7 - 41.7 - Up to 5% 3 cm wide quartz + carbonate + chlorite									
		veins cross cutting the metasediments. Veins contain 3-5%									
······	 	disseminated pyrite/pyrrhotite. The sediments are leached									
		up to 5 nm from the veins.	 								
		41.7 - 42.8 - Coarser grained interval with biotite and lithic									
		fragments, to 10%, up to 5 mm in size.									
				42.5	44.0			070			·
	1	<u>1 43.5 - 44.0 - Sulphide bearing graphitic metasediment, 5-8%</u>	8153	43.5	44.0	0.5m	10	870	130	0.5	

Page....³

. :								_	I di	
, ,		GETTY MINES, LIMITI	ED			F	lole Nu	mber	DI-8	2-09
		DRILL HOLE LOG								
FROM	TO	DESCRIPTION SAMPLE METERS							ASSAY	
FROM	10			FROM	то	LGTH	Au (ppb)	Cu (ppm	m) Zn (ppm) Ag (p	
		pyrite/pyrrhotite (1:10) as blebs and stringers oriented	8154	44.0	44.5	0.5m	1	390	34	40.5
		90° to C/A. Approximately 30% graphite and <1% disseminated				İ				
		chalcopyrite. The sulphide stringers are up to 5 mm wide.				ļ				
				. 						
		49.6 - 49.9 - Feldspar porphyry. Contact is sharp 50° to C/A.				<u> </u>	- ·			
		1-2% pyrrhotite stringers are present with associated	r							
		chalcopyrite (<1%) blebs to 3 mm.							ļ	}
				· · ·		<u> </u>				ļ
		51.2 - 51.25 - Feldspar porphyry. Contact sharp 80° to C/A.				 			 	
		52.95 - 53.1 - Feldspar porphyry. Contact 70° to C/A 2% pyrite.				<u> </u>				
			-							
		53.65 - 53.8 - Thin graphitic sulphide bearing horizon with 20%	· · · · ·							
	 	graphite and up to 3% disseminated and stringer				<u> </u>				
		sulphide.				L				
					·					
		56.4 - A 4 cm wide chlorite rich vein with 5-8% pyrrhotite and								
		<l% chalcopyrite.<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l%>								
		59.8 - Quartz + carbonate 1 cm wide vein with 8-10% pyrrhotite								
•		and <1% chalcopyrite.								
59.9 m	64.5 m	FELDSPAR PORPHYRY - The rock unit is coarse grained light to dark								
		grey in colour, hard and non-magnetic. The rock consists of a			-					
		fine grained groundmass (60%) of quartz and biotite and 30-35%								

inequigranular phenocyrsts of feldspar up to 3 mm in size. The feldspar phenocrysts are anhedral to subhedral, grey/white and

•

.

· _ · ·

Hole Number

1

Page...4

ľ

DL-82-09	

DRILL HOLE LOG

FROM			SAMPLE METERS C		CORE	ORE			ŧΥ		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au(ppb)	Cu(ppm)	Zn (ppm)	Ag (ppn	
		and have a very weak preferred orientation 90° to the C/A. There			· · · · · ·						
		is some resorption of the feldspar crystals. Disseminated pyrite						·			
		up to 1%. The upper and lower contacts are sharp 70° to the C/A.									
						· .					
64.5 m	68.3 m	SILICEOUS METASEDIMENTS (siltstone, siliceous siltstone, siliceous									
		greywacke)									
		This unit is similar to the metasedimentry unit from 35.7 to 59.0.	••••••			·					
		The rock is fine grained, grey and medium hard. It is weakly	·		- 4 - 6 - 4 - 4 		· · · · · · · · · · · · · · · · · · ·				
		magnetic throughout due to the presence of pyrrhotite. Pyrite						4 A.			
		and pyrrhotite are present up to 2% throughout the rock as fine									
· · · · · · · · · · · · · · · · · · ·		disseminations and stringers. Chalcopyrite is present <1% and									
		appears to be associated with the pyrrhotite. Rock mineralogy									
	<u></u>	consists of biotite 30-40%, feldspar 25-35%, quartz 15-20% graded	and go and a								
		bedding on a scale of 3 to 5 cm is evident in some sections with			·						
· · · · · · · · · · · · · · · · · · ·	 	possible tops down the hole in minor q ¹ 2+carbonate + chlorite									
		veining.	· · · · · · · · · · · · · · · · · · ·	1999 - 1995 - 1905 - 19							
	1		• • • • • • • • •								
		62.25 - A 2 cm wide zone of graded bedding with possible tops									
		down the hole. Beds are oriented 90° to C/A.									
		65.98 - A 5 nm wide quartz + carbonate + chlorite vein with 48									
		pyrrhotite (disseminated and 1 mm blebs) and <1%									
		chalcopyrite. The vein is oriented 70° to C/A.									
		··· ··· ··· ···									
68.3 m	69.8 m	FELDSPAR PORPHYRY - A coarse grained, grey/white hard rock		а							
		consisting of a dark fine grained groundmass (biotite rich) with									
		\sim 60% feldspar phenocrysts. The feldspar crystals are white.									

GETTY MINES. LIMITED DRILL HOLE LOG

DL-82-09

Page.

Hole	Number	
------	--------	--

~ E	,~.	•	٠	٠	٠	٠	٠	٠	•	٠	٠	

FROM	ΤO	DESCRIPTION	SAMPLE	MET	ERS	CORE			ASSAY	
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu(ppn)	Zn (ppm)	Ag (ppm)
		anhedral to subhedral and up to 3 mm in size <1% pyrite. The			• • • •					
		upper and lower contacts are well defined. Minor quartz rich								
		veining within porphyry oriented 45° to C/A.								
					•					
69.8 m	70.8 m	SILICEOUS METASEDIMENT - (siltstone, siliceous siltstone)								
		The rock is fine grained, brown/grey and weakly magnetic. Weak								
		graded bedding is present over an interval of a few centimeters			_					
		and beds are oriented 90° to the C/A. Up to 2% disseminated and								
	<u> </u>	stringer pyrite/pyrrhotite.								
			· · · · · · · · · ·		· · · ·					
		70.1 - 70.2 - Feldspar porphyry.								
70.8 m	73.9 m	FELDSPAR PORPHYRY - The rock is coarse grained, hard, grey and								
		non-magnetic. The groundmass (40%) is fine grained and black								
		(biotite/amphibole). The feldspar phenocrysts (60%) are pink			· · ·					
		(K-rich) and white, anhedral to subhedral and up to 5 mm in size.								
		The phenocrysts show a subtle compositional change as defined by								
		mineralogy (biotite) fine to coarse over an interval of $\sim 10~{\rm cm}$							·	
		(72.1 m). 1% disseminated pyrite throughout. Minor fractures								
		parallel to the C/A. There is 1% 5 mm wide quartz + carbonate								
		veining cross cutting porphyry at 45 ⁰ to C/A. Upper and lower								
		contacts are distinct.								
73.9 m	86.2 m	SILICEOUS METASEDIMENTS - (siliceous siltstone, siltstone,								
	•	greywacke). The rock is fine grained, brown/grey and medium								
		hard. Mineralogy consists of biotite feldspar quartz and minor								
		chlorite. The unit is weakly magnetic and 1-2% disseminated and								į

GETTY MINES, LIMITED

.

•

Hole Number DL-82-09

.

Page...6

DRILL	HOLE	LOG

	m 0		SAMPLE	MET	ERS	CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au(ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)	
		and small blobs and stringers pyrite and pyrrhotite is present									
		throughout. Weak graded bedding (82.1) over an area of 4 cm is									
		apparent. Tops appear to be down hole. 1% 2 mm wide quartz +									
		carbonate veins cross cut the sediments 45° to C/A. Some									
		sections appear bleached and there is a gradational change in									
		mineral composition and grain size (siltstone - greywacke).									
		73.7 - 74.7 - Coarser grained section - greywacke with angular									
		lithic fragments to 2 mm.					[
		74.84 - A 1 cm wide vein (bleached zone) with 2 mm subrounded		· .							
		blebs of purite Incipient al						· ·			
		77.2 - A 1 cm wide quartz + carbonate + chlorite vein 80° to C/A									
		with 5-8% disseminated and blebby pyrrhote.									
		79.95 - Pyrite stringers oriented 85° to 90° to C/A.									
		80.0 - 81.5 - Feldspar porphyry. Sharp upper and lower contacts				}					
		45° to C/A. Cross cut by minor 5 mm wide pyrite veins									
		45° to C/A.									
		82.25 - A 2 cm wide graphite rich horizon with 15-20% graphite									
		and 1% pyrite/pyrrhotite.									
		83.17 - A graphite (10-20%) rich matrix within the siliceous									
		medasedimentary unit.									

.

.

Hole Number

Page....7......

per	DL-82-09

		DRILL HOLE LOG									
77.014	m .o		SAMPLE METERS COI				ORE ASSA				
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu(ppm)	Zn (ppm)	Ag (ppm	6
		83.30 - 86.2 - The rock is gradually becoming noticeably bleached.			2.0.00						
		It is lighter grey in colour, nottled (incipient alteration									
		of the feldspars). Pyrite and pyrrhotite are present up						1			
		to 2% as fine disseminations and stringers crosscutting									
		the metasediments at a shallow angle to C/A.									i
86.2 m	95.6 m	CONDUCTIVE ZONE - The horizon consists of a conductive graphite/	8155	86.1	86,6	0.5m	1	600	390	1.0	
		sulphide rich metasediment intercalated with a non-conductive	8156	86.6	87.4	0.8m	<u>~1</u>	210	140	0.5	
		siliceous metasediment. The sulphide bearing graphite metasedi-	8157_	87.4	87,9	0.5m	13	1100	1600	1.0	
		ment consists of 30-50% graphite and 15-20% pyrite/pyrrhotite	8158	87.9	88.4	0.5	4	520	1400	.1.0	
		(fine disseminations, stringers and massive blebs. There is up	8159	88.4	88.9	0.5	6	400	3100	1.0	
		to 3% chalcopyrite present. The conductive unit is finely	8160	88.9	89.4	0.5	5	180	770	0.5	
		laminated 60° to the C/A and consists of fine pyrite/pyrrhotite	8161	89.4	89,9	0,5	4	330	350	1.0	
		stringers, 1 mm wide quartz/feldspar and graphite.	8162	89.9	90.4	0.5	7	380	3200	1.0	
			8163	90,4	90.9	0.5	10	480	860	0.5	
			8164	90.9	91.7	0.8	8	190	100	0.5	
	·	87.4 - 25 cm wide zone of blebby semimassive pyrrhotite (in-	8165	91.7	92.4	0.7	5	740	130	1.5	
		filling for fragments).	8166	92.4	92.9	0.5	<u> </u>	350	120	0.5	
								ļ			
		87.5 - Laminated quartz/feldspar within graphite rich zone	8167	92.9	93.4	0.5	21	970	57		
	· · · · · · · · · · · · · · · · · · ·	oriented 45° to C/A	8168	93.4	93.9	0.5	45	730	86	_1.0_	
		87.7 - Pyrrhotite stringers oriented 70° to C/A with 1%	8169	93.9	94.4	0.5	3	260	100	0.5	
		chalcopyrite.	8170	94.4	95.1	0.7	6	450	720	0.5	
								<u> </u>			

Page....8

/		GETTY MINES, LIMITH	F	Hole Number						
		DRILL HOLE LOG								
FROM	то	DESCRIPTION	SAMPLE	MET	ERS	CORE			ASSAY	
			NUMBER	FROM		LGTH	Au(ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)
<u> </u>		88.2 - 91.75 - Siliceous metasediment - The rock is light grey,	8171	95.1	95.6	0.5	22	500	210	40.5
		fine grained and hard. The rock is non-conductive except	8172	95.6	96.3	0.7	2	140	51	< 0.5
		where graphite/sulphide rich horizons are present 1%	8173	96.3	96.8	0.5	6	450	42	1.0
		pyrite is finely disseminated throughout the sediment with								
		minor pyrite/pyrrhotite stringers 60° to C/A and minor							1	
		quartz rich veins 1-2 nm wide oriented 60° to C/A.								
									[
		91.2 - A 10 cm wide conductive interval of graphitic sulphide	·····			1				
		bearing metasediments within siliceous metasediment.					1			
	······································	Sharp contact 70° to C/A.								
								[
		92.0 - A 10 cm wide interval of semimassive pyrite with 2%								
		pyrrhotite and < 2% 1 mm blebs of chalcopyrite.				1				[
		92.40 - 92.80 - Siliceous metasediment - fine grained siltstone								
		with 1-2% disseminated and stringers pyrite/pyrrhotite.								
					[1				

92.8 - 94.26 - Sulphide bearing graphitic metasediments with

94.26 - 95.10 - Siliceous metasediment - ≤ 2% pyrite/pyrrhotite

stringers with 1% chalcopyrite.

20-30% graphite, 10-15% stringer and disseminated pyrite/pyrrhotite (1:5) with 1% chalcopyrite. Stringers are up to 2 nm wide and are oriented 65° to C/A. Sharp upper and lower contacts with siltstone 75° to C/A.

• • •

.

· · · ·

Hole

. 1

Number DI-82-09	Number	DI-82-09
-----------------	--------	----------

2201		DESCRIPTION	SAMPLE	MET	ERS	CORE			ASSAY		
ROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au(ppb)	Cu(ppm)	Zn (ppm)	Ag (ppm	<u> </u>
		95.10 - 95.6 - Sulphide bearing graphitic metasediments with									
		20-25% graphite, 10-15% pyrrhotite, 2-3% pyrite and 1%									Γ
		chalcopyrite. Sulphide stringers are oriented to 70 ⁰									
		to C/A,									
95.6m	104.2m	SILICEOUS METASEDIMENTS - (siliceous siltstone, greywacke)									L
		The rock is fine grained, grey, weakly magnetic and medium hard							•		L
		There is minor weakly graded bed tops undetermined. 2-3%									L
		disseminated and very fine stringer pyrite/pyrrhotite is present									L
		throughout - locally veins to 4 cm. Minor quartz + carbonate +									L
		chlorite veining is present.	· · · · · · · · · · · · · · · · · · ·								L
	·										
		96.4 - A 4 cm wide pyrite vein, vuggy with cubic pyrite crystals								!	
		and calcite rhombs. Vein is oriented 45° to C/A. A 2 mm									L
		wide pyrrhotite chalcopyrite vein parallels the pyrite									ļ
	L	vein.									
			· · ·								L
		98.6 - A gradual contact over a few centimetres to a coarser									L
		grained siliceous greywacke with < 5% angular lithic									L
		fragments to 2 nm.									L
	 										L
		100.1 - Pyrite stringers oriented 45° to C/A.									L
											L
		102.54 - A 2 cm wide quartz + chorite vein with 2-3% pyrrhotite	· · · · · · · · · · · · · · · · · · ·								L
		and <1% chalcopyrite associated.								l	Ļ
]							L
											ŧ –

٠.

.

11	$\cap I$	F	Τ.	00

		GETTY MINES, LIMITED					lole Nui	nber [DI-82-09		
		DRILL HOLE LOG	,					L.	مور		
ED ON	TO	DECOBIDITION	SAMPLE	MET	ERS	CORE			ASSAY	·	
FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu(ppm)	Zn (ppm)	-Ag (ppm)	
104.2 m	116.85 m	FELDSPAR PORPHYRY - The rock is coarse grained, hard, grey and									
		non-magnetic. It consists of a mafic fine grained groundmass							· .		
		(40%) and white anhedral to subhedral feldspar phenocrysts (60%)									
		up to 4 mm in size, <5% chlorite crystals to 3 mm.									
		There is a compositional differentiation reflected by grain size									
		changes over 5 cm at 105.65 and 110.9 m. 1% disseminated pyrite.	· · · ·								
		Upper and lower contacts well defined.									
					-						
		104.5 - A 1 cm wide quartz rich vein parallel to C/A.									
116.85 m	148.0 m	AMPHIBOLITE (Recrystallized Mafic Volcanic/Mafic tuff) The rock									
		is modium to coarse grained, green/grey, medium hard and locally									
		weakly magnetic. Mineralogy consists of 60% amphibole (green									
		anderhal, needle-like crystals to 4 mm) and 40% feldspar (white			_						
		crystals to 3*m). There is a preferred orientation of the									
		crystals 75° to 85° to C/A. Less than 1% sulphides. The mafic									
		unit is interrupted by a garnetiferous metasediment. Less than									
		5% veining throughout amphibolite.		· · · ·							
		128.55 - A 3 cm wide quartz + carbonate + chlorite vein with up									
		to 3% disseminated pyrrhotite and 2% chalcopyrite (blebs).									
		There is a dark green alteration rimning vein up to 5 mm									
		wide. Vein is oriented 45° to C/A.									
		140.44 - 141.2 - Garnetiferous interflow metasediment. The rock									
		is fine grained, green, medium soft and non-magnetic.									
		The garnets (10%) are pink, 2 mm in size and occur in									

• • • • . • . .

FROM

то

GETTY MINES, LIMITED

Page....11

Hole Number DL-82-09

DRILL HOLE LOG												
	SAMPLE	MET	ERS	CORE		ASSAY						
DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu(ppm)	Zn(ppm)	Ag (ppm	ì			
2 cm wide bands oriented 90° to C/A									l			
									1			
145.3 - 145.4 - Quartz vein, white, massive with no accessory												
mineralization. Sharp, jagged contact with host rock												
and is oriented parallel to the C/A.									l			
						1						
SILICEOUS METASEDIMENT - Interflow? siliceous greywacke. The									Ļ			
	1											

		145.3 - 145.4 - Quartz vein, white, massive with no accessory	·		ļ			 	
		mineralization. Sharp, jagged contact with host rock						 	
		and is oriented parallel to the C/A.							
							1		
148.0 m	152.2 m	SILICEOUS METASEDIMENT - Interflow? siliceous greywacke. The						 	
		rock is fine grained, grey/green medium hard and non-magnetic.				 			
		Contains 5-10% angular, green lithic fragments to 4 mm which				 		 	
		appear to have a preferred orientation 80° to C/A. The rock				 			
		appears weakly graded reflected by concentration of lithic				 		 	
		fragments and grain size. Well defined uppper and lower contacts				 	· ·		
		trace sulphides and no veining.			<u> </u>			 	
152 .2 m	154.2 m	MPHIBOLITE (Recrystallized mafic volcanic/mafic tuff) The rock		[
		is very similar to the amphibolite unit from 116.85 - 148.0, The				 	<u> </u>	 	
		rock is coarse grained, mafic and consists of 60% amphibole				 		 	
		crystals and 40% feldspar crystals which have a preferred							
		orientation 70° to 80° to C/A. There is a 1% quartz rich							
		veining and <1% suphides.				 		 	
154.2 m		END OF HOLE							

Page 1		GETTY MINES, LIMIT	ED			H	ole Nun	nber	DL	-82-10	
• •		DRILL HOLE LOG							Dip	Tests]
Propert Location	ty. DETOUR n. 144 km	Core Size ^{BQ} NORTH EAST COCHRANE, ONTARIO Elev. Collar	Starting Date. SEPTEMBER 10, 1982 Completion Date. SEPTEMBER 13, 1982						Depth	Ang Read	le Actual
Grid Latitude Departu	PROPERT - 2+255 1re 44+000 Hetturd	((WEST.'A')) ((WEST.'A')) Dip. Length. Horiz. Trace. 79.6 m. Vert. Trace. 93.5 m.	Date	Logged ed by	Şepi K.Ş.	TMBER 1 . SUTHERI	7. 1982. AND	• • •	Collar 50.0 m 123.1 m	-50° 57° 56°	50° 49° 48°
FROM	то	DESCRIPTION	SAMPLE NUMBER	MET FROM	ERS TO	CORE LGTH.	· · · · · · · · · · · · · · · · · · ·		ASSAY	T	
0.0 m	50.0 m	OVERBURDEN									
****				,	· · ·						1
50.0 m	64.1 m	AMPHIBOLITIZED MAFIC TUFFS/EPICLASTIC METASEDIMENTS									
		The rock is fine to medium grained, green/white nommagnetic									
		and medium soft. Mineralogy consists of 45-55% amphibole									
		(subhedral green elongate <1m-2mm) crystals and 45-55% feldspar									
		(white ≤1-2mm) crystals and ≤3% biotite. Trace disseminated									
		pyrite is present throughout with minor pyrite veins to 1 cm.			1						
		The rock is moderately foliated 80 ⁰ to C/A. The unit is cross-			,						
		cut by minor quartz rich veins up to 10 cm wide oriented									
	·	50-70° to C/A. Generally there is no accessory mineralization			· · ·			·			
		but locally there are minor graphite flakes (possibly moly?).		• • • •							
		The rock is also cross cut by a feldspar phorphyry. There is									
		weak banding at a high angle to the C/A throughout the unit,									
		minor biotite rich sections and some variation in grain size.	· · · · · · · · · ·	·							_
	· · · · · · · · · · · · · · · · · · ·										
		51.3 - 51.6 m - Feldspar Porphyry - grey, with 60% feldspar,	-								
		subhedral to euhedral crystals 1-3 mm in size, 40%									
		groundmass - fine grained, black. There is a weak	1				ļ			_	
		preferred orientation of the feldspar crystals at a		· · · ·							
		high angle to the C/A. Upper and lower contacts are									

and many many many many many many

GETTY MINES, LIMITED

Hole Number

Page.....

DL-82-10

¥

DR	ILL	HOLE	LOG

FROM	TO	DESCRIPTION	SAMPLE	MET	ERS	CORE			ASSAY		
FROM		DESCRIPTION	NUMBER	FROM	то	LGTH		ļ			
		well defined 45° to C/A - rimmed by minor biotite.			1.000						
		52.0 - 52.4 m - Feldspar porphyry - as from 51.3 to 51.6 m at							1	1	
		52.2 m - a 2 cm wide quartz vein with ≤1% pyrite and <1%							1	1	
		flakes of graphite (mo?) Contacts are sharp 70° to C/A.							· ·		
		Vein appears weakly layered.						1	1		1
									1	1	
		53.6 - 53.8 m - Coarser grained, biotite rich.									
				1			<u></u>		1	1	
		53.8 - 53.9 m - A quartz rich vein 5 2 1 mm blebs of graphite.	· · · · · · · ·							[
	****	Contacts are sharp 75 ⁰ to C/A.				11		1 .	1		11
											11
		54.0 m - Weak graded bedding defined by variation in mineral				11			1		
		composition and grain size over a few centimetres -						1			
		35° to C/A.					•				
	·····	55.0 m - 4 cm wide quartz rich vein - upper contact defined by				11		1		1	
		2 cm wide biotite rich band.									
		55.8 m - Graded bodding 85° to C/A over a few cm's.						1	{		
	·····	Compositional change as well as grain size.									
			· · · · ·					1			
		59.6 - 60.0 m - Possible coarse clastic sediment. Coarse grained	· · · ·								
		with quartz and feldspar clasts 1-3mm with a preferred						1			
		orientation $\sim 80^{\circ}$ to C/A. Biotite rich matrix with						1			
		≤1% disseminated pyrite, non-magnetic. Gradational									
		change in grain size over cm's giving banded appearance.						1			

• :

.

Hole Number DI.-82-10

DRILL HOLE LOG

	TO	то	TO DESCRIPTION SA	SAMPLE	E <u>METERS</u>		CORE	ASSAY				
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu(ppm)	Zn (ppm)	Aq (ppm)	لينسا	
	· .	Contacts are sharp 90° to C/A.										
		62.9 - 63.0 m - Two 4 cm wide quartz rich veins separated by a	8244	62.9	63.4	0.5 m	2	500	58	0.5		
		2 cm wide biotite rich band. Contacts are sharp, lower										
		contact 3 cm coarse clastic with 2% disseminated pyrite									L	
		in matrix 1-2% pyrite/pyrrhotite.										
		63.0 - 64.1 m - A finer grained section with an increase in										
		biotite content. Weak preferred orientation of feldspar										
		and amphibole crystals. Some compositional and grain size				İ	-					
		variations over 5-10 mm banded 85 ⁰ to C/A.						·				
	·											
64.1 m	66.7 m	Coarse clastic Sediment - Quartz pebble conglomerate/with some				l 						
		feldspar clasts). The rock is coarse grained, medium hard and										
		non-magnetic. Upper $(80^\circ$ to C/A) and lower $(50^\circ$ to C/A) contacts	 									
		are well defined. Clasts are rounded to subrounded 1-4 mm.									 	
		Generally appears to be matrix supported. Matrix consists of										
		biotite and minor chlorite. No visible sulphides. Variation is										
		grain size (and composition) over 10's of mm to 10's of cm's.										
		64.8 m-A 3 cm wide quartz vein.										
		$64.83 \text{ m} - \text{A } 10 \text{ cm}$ wide band - fine grained. Contacts are 80° to	····	·							ļ	
		С/Л.										
		65.3 - 65.4 m - Banded ~1 cm wide - compositional and grain										
		size variarions.									L	

									Pa	ige
		GETTY MINES, LIMIT.	ED			I	Hole Nu	mber	DI.	,-82-10
		DRILL HOLE LOG								
FROM	ΤO	DESCRIPTION	SAMPLE	MET	ERS	CORE			ASSAY	
			NUMBER	FROM	то	LGTH	Au (ppb))Cu(ppm)	Zn (ppm)	Ag (ppm)
		66.5 m - Quartz or silica rich vein 5 cm wide with 1-2%	8245	66.5	67.0	0.5 m	3	240	370	0.5
		disseminated and blebby pyrite/pyrrhotite. Contacts								
		jagged but sharp.			:					
66.7 m	69.5 m	CONDUCTIVE ZONE - This interval consists of sulphide bearing			· . 			_		
		graphite rich metasediments and siliceous metasediments with								
	· · · · · · · · · · · · · · · · · · ·	10-15% pyrite/pyrrhotite overall. The unit is well laminated						+		
		and banded $\sim 80^{\circ}$ to C/A. Graphite content is ≤ 10 %. Sulphides						+	1	
		occur as fine stringers to 2 nm veins. The unit is magnetic						1	1	1
		throughout due to the presence of pyrrhotite. Unit is locally						1	1	
· ·		bleached.								
	······							· ·		
		66.7 - 66.8 m - Siliceous metasediments, light green/brown	1							
		weakly banded 90° to C/A, 1-3% pyrite/pyrrhotite.								
							,			
		66.8 - 67.5 m - Sulphide bearing graphitic metasediments. Well								
		laminated 70° to C/A with ≤ 10% graphite 8-10% pyrite/								
	· · · · · · · · · · · · · · · · · · ·	pyrrhotite (1:5). Magnetic, medium soft with minor				L			· .	
	· · · · · · · · · · · · · · · · · · ·	feldspar/quartz rich bands.	8246	67.0	67.5	0.5 m	4	440	120	1.0
		67.5 - 67.6 m - Siliceous metasediments - bleached in part (may	8247	67.5	68.0	0.5 m	6	290	92	0.5
		be weakly silicified) 1-3% pyrite/pyrhotite. Minor 4 mm	8248	68.0	68.5	0.5 m	4	470	1100	0.5
		quartz vein, with pyrrhotite rimming, cross cuts 70° C/A.	8249	68.5	69.0	0.5 m	3	230	790	0.5
		Upper and lower contacts sharp 70° to C/A.	8250	69.0	69.5	0.5 m	7	230	1500	1.0
	· ·				•		[1	1	

67.6 - 68.2 m - Sulphide bearing graphitic metasediments with <10% graphite, 8-10% pyrite/pyrrhotite as stringers

FROM

·

то

Page....5

GETTY MINES, LIMIT	DL	-82-10						
DRILL HOLE LOG	• •							
	SAMPLE	METERS		CORE		ASSAY	!	
DESCRIPTION	NUMBER	FROM	то	LGTH				
to 2 mm. Well laminated 80° to C/A. Minor banding of								
siliceous metasediments. Gradational increase in %					· .			
pyrrhotite to 68.2 m.								
m - A 20 cm wide intervals with minor graphite 10-15%								
pyrrhotite, 3% pyrite in siliceous metasediments.								
Sulphides disseminated and blebs more so than stringers.								<u> </u>
- 68.9 m - Gradational change to very well banded section								
80° to C/A. Silica/graphite rich bands to 1 cm 3-5%			·					
sulphide stringers.								
						_		
- 69.5 m - Siliceous coarse grained metasediments (siliceous						}		ł

				L		 L		 	
		siliceous metasediments. Gradational increase in %							
		pyrrhotite to 68.2 m.							
		68.2 m - A 20 cm wide intervals with minor graphite 10-15%							
		pyrrhotite, 3% pyrite in siliceous metasediments.							
		Sulphides disseminated and blebs more so than stringers.							
		68.4 - 68.9 m - Gradational change to very well banded section							
		80° to C/A. Silica/graphite rich bands to 1 cm 3-5%			· ·				
		sulphide stringers.				 		 	
		68.9 - 69.5 m - Siliceous coarse grained metasediments (siliceous				 		 	
		greywacke?) minor quartz and felsic fragments with 1-3%				 		 	
		sulphides, non-magnetic, last 10 cm of section are graphite				 		 	
		rich sulphide bearing metasediments.				 		 	
					·	 		 	
69.5 m	74.0 m	SILICEOUS METASEDIMENTS-SILICEOUS SILTSTONE/SILICEOUS GREYWACKE				 			
		The rock is fine to coarse grained, medium hard and locally weakly						 	
		magnetic. Minor internal banding 70° to 80° to C/A.				 		 	
		69.5 - 69.8 m - Medium grained siliceous metasediment with trace				 			
		sulphides. Mineralogy consists of feldspar, biotite,				 		 	
		minor quartz. Non-magnetic. Upper and lower contacts				 		 	
	,	well defined 80° to C/A.						 	
	} 					 		 	
		l	·····			 l	L	 	

GETTY MINES, LIMITED DRILL HOLE LOG

,

DL-82-10

ASSAY

Hole Number

		DESCE IDEVON	SAMPLE	ME	TERS	CORE			ASSAY	
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb	Cu (ppm)	Zn (ppm) Ag (ppm)
		69.8 - 70.4 m - Coarse grained clastic metasediment, with								
		internal variation in grain size-fine to coarse.								
		Mineralogy consists of quartz and feldspar in a biotite								
		rich matrix. 40-60% clasts subrounded to subangular								
		up to 2mm. Weak preferred orientation of clasts at a						·		
		high angle to the C/A. Matrix supported. At 70.0 m								
		a 3 cm wide fine grained band - similar bands at 70.1								
		70.15 m.								
		70.4 - 71.5 m - Mafic Epiclastic Metasediment (Tuff?). The								
		rock is fine to medium grained, green/grey with strong								
		foliation 70 ⁰ to C/A. Soft with 30% quartz/feldspar and								
		minor biotite. Non-magnetic with minor fine pyrite veins								
		40° to C/A.								
		71.4 - 74.0 m - Siliceous Metasediments - (Siliceous siltstone/								
		greywacke) The rock is grey, fine to medium grained with								
		weak internal compositional banding on a scale of 10's of								
		mms. Mineralogy consists of feldspar (30%) biotite (20%)	·····							
		guartz (20%). Magnetic throughout with≤2% disseminated	· · · · · · · · · · · · · · · · · · ·							
		pyrite/pyrrhotite. Very minor graphite/sulphide veins								
		(71.9 m) 3 mm wide oriented to 70° to C/A. 72.2 m - A 1 cm								
		wide quartz rich band 70° to C/A.	8251	73.5	74.0	0.5 m	3	240	54	0.5
74.0 m	80.0 m '	CONDUCTIVE ZONE - The conductive zone consists of sulphide	8252	74.0	74.5	0.5 m	56	2300	3300	2.5
		bearing graphitic metasediments intercalated with siliceous	8253	74.5	75.0	0.5 m	3	920	1700	1.5
		siltstone/greywack and minor chert rich horizons. The sulphide	8254	75.0	75.5	0.5	5	810	12,200	1.0

		GETTY MINES, LIMITH	D			F	Hole Nu	mber	DL-8	32-10
		DRILL HOLE LOG								
FROM	TO	DECODIDITION	SAMPLE	MET	ERS	CORE			ASSAY	
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Aq (ppr
	· · · · ·	bearing graphitic metasediments consist of \leq 20% graphite and	8255	75.5	76.0	0.5 m	15	570	13,700	1.0
		5-20% pyrite/pyrrhotite as blebs and stringers. There is locally	8256	76.0	76.5	0.5 m	2	840	3900	1.0
		<pre>≤ 1% chalcopyrite and 3% overall - usually associated with the</pre>	8257	76.5	77.0	0.5 m	<u> </u>	700	3800	1.0
		pyrrhotite. The rock is laminated 80° to the C/A and locally	8258	77.0	77.5	0.5 m	3	520	1800	1.0
		contorted. There are minor (<5%) quartz/feldspar bands and	8259	77.5	78.0	0.5 m	4	960	1200	1.5
		locally a reddish stain associated which may be ankerite or	8260	78.0	78.5	0.5 m	11	2600	4000	2.0
		hematite. The siliceous metasediments are grey/green, fine to	B261	78.5	79,0	0.5 m	3	1100	2300	1.5
		medium grained and magnetic. Mineralogy consists of quartz/	8262	79.0	79.5	0.5 m	1	430	2400	1.0
		feldspar/biotite and minor chlorite. Weak internal banding due	8263	79.5	80.0	0.5 m	8	470	130	1.0
		to compositional variations (locally contorted) and minor cherty								
		horizons. There is 1-3% pyrite and 5-20% pyrrhotite. Contact								
		with graphitic sulphide metasediment is sharp 80° to C/A.								
								ļ		
		74.5 - 77.2 m - Graphite bearing sulphide rich metasediments								
		(74.6 m 18 chalcopyrite, 74.7 m <1% chalcopyrite, 74.8 m								l
	<u> </u>	a 2 cm band of siliceous metasediments). The unit is								
		weakly laminated 80 ⁰ to C/A with 3-5% sulphides and						1		l
		10-15% graphite. At 75.0 m - 10 cm band of siliceous								
		metasediments with 1-3% pyrite/pyrrhotite (75.1 m sulphide								İ
		veinlets to 2 mm). 75.3 m - 1 mm wide quartz rich vein.								
		75.5 m - Ankerite (hematite?) staining. 75.8 m - weak								í <u></u>
		brecciation (lom angular fragments) in 3 cm wide pyritte/								

pyrrhotite vein oriented 10° to 20° to C/A. 76.0 m - a 10 cm wide semi-massive pyrrhotite in quartz rich vein. 76.6 m - 1% chalcopyrite and rock is locally contorted. 76.7 - 77.0 m - Interval of ≤1 mm quartz or feldspar fragments oriented 60° to C/A. A semi-massive pyrrhotite

, , , , ,

GETTY MINES, LIMITED

Hole Number

Page...8

ber DI-82-10

_		DRILL HOLE LOG					`	-		
FROM	TO		SAMPLE	MET	ERS	CORE			ASSAY	
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH				
		vein containing ≤1 mm angular fragments of graphite rich								
		metasediments and felspar rich fragments. Very minor								
		chalcopyrite.								
•		77.0 m - locally contorted sulphide stringers, graphite								
		rich and siliccous metasediments 15-20% pyrite/pyrrhotite.							· ·	
										· .
		77.2 - 77.5 m - Medium grained siliceous metasediments - magnetic								
		≤1% sulphide, foliated 80° to C/A.							<u> </u>	
									<u> </u>	
		77.5 - 77.6 m - Sulphide bearing graphitic metasediments 8-10%								
-		pyrite/pyrrhotite.								
								·		
		77.6 - 77.8 m - Cherty siliceous metasediments 1-3% sulphide.								
		77.8 - 78.0 m - Siliceous metasediments.					,			
				·						
		78.0 - 78.2 m - Cherty/silicified metasediments with 1-3%		-						
	,	disseminated sulphides.								
		78.2 - 78.9 m - Sulphide bearing graphitic metasediments locally								
		contorted, 10-15% pyrite/pyrrhotite. 1% chalcopyrite at								
		78.4 m.								
		78.9 m - Coarse grained clastic metasediments (quartz feldspar			-					
		fragments, subrounded to 2mm. Internal graded bedding			•					
		85 ⁰ to C/A.								

FROM

80.0 m

81.4 m

то

81.4 m

123.1 m

non-magnetic. Mineralogy consists of amphibole (40-60%) feldspar (30-40%) biotite (5-8%) and possibly minor quartz. Locally the unit is garnetiferous. The rock exhibits internal layering (scale of cm's) mainly a compositional layering but grain size changes are also apparent. Trace sulphides present throughout. The rock is weakly foliated 70° to 80° to the C/A. Same orientation as internal layering. Minor quartz veining and biotite/chlorite veining + sulphides is present throughout the unit. Contacts

· · · · · · · · · · · · · · · · · · ·				· •			Pa	.ge9	
GETTY MINES, LIMITI			Ţ	Iole Nu	nher [DI			
DRILL HOLE LOG		•	1010 1141			32-10	······		
	SAMPLE	MET	ERS	CORE			ASSAY		
DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	
79.4 m - a 5 mm wide semi-massive pyrrhotite vein with									·
subangular inclusions/fragments of graphite									
and siliceous metasediments.									
79.4 - 80.0 m - Sulphide bearing graphitic metasediments									L
that are well laminated 80° to C/A. 5-8% sulphide							·		
stringers and \$10% graphite.									
								ļ	
SILICEOUS GARNET BEARING METASEDIMENTS - The rock is green, fine	8264	80.0	80.5	0.5 m	22	75	140	1.0	
to medium grained and weakly magnetic. It is well banded 80° to								ļ	
C/A. The bands are 0.5 cm to 1.5 cm wide and are locally garnet									
bearing. Garnets are pink brown and \$2 mm. 1% disseminated									
pyrite/pyrrhotite (minor stringers). Upper contact is sharp									
80° to C/A. Lower contact over a few cm's marked by decrease in									
banding density.									
					•				<u> </u> -
80.5 m - garnet bearing band 1 cm wide.									
	· · · · · · · · · · · · · · · · · · ·								
AMPHIBOLITIZED EPICLASTIC METASEDIMENTS AND TUFFS - The rock is									
fine to medium grained, dark to medium green, medium hard and									

.

GETTY MINES, LIMITED

.

,

Hole Number

Page.....

DL-82-10

DR	ILL	HOLE	LOG

			SAMPLE METERS			CORE			ASSAY		
FROM	то	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	
		from coarser to finer units are gradational over cm's.									
					·						
		83.9 m - Coarse grained internal with feldsbar fragments.	· · · · · · · · · · · · · · · · · · ·								
		internally banded.									
		87.2 m - Internal banding over 15 cm.									
		88.1 m - 0.5 cm quartz rich vein with 1% chlorite and 1%									
		pyrite/pyrrhotite associated.				<u> </u>					
·											
	<u> </u>	89.2 m - Internal banding over 20 cm.									
											ļl
		90.3 m - Quartz/biotite vein - sharp, irregular contact 50° to C/A.	8265	90.3			2	41	33	< 0.5	
		92.0 m - A 1 cm wide quartz/chlorite/pyrrhotite vein.	,								
		92.1 and 92.4 m - A 1.5 cm wide band of pink garnets 1 mm in									
		size. Band oriented 70 ⁰ to C/A.									
	·	97.9 - 98.4 m - Internal lighter colour (grey) contact									
		gradational. Minor quartz veining 70 ⁰ to C/A,									
	·	foliation 70° to C/A.									
		109.5 - 110.0 m - Coarser grained internal - upper and lower									
		contacts are gradational.									[]

......

GETTY MINES, LIMITED

Hole Number

Page. DI~82-10

DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE	MET	ERS	CORE	CORE ASSAY			 T]
		111.0 - 112.6 m - Finer (mained interval, unak analog hadding	HOMDIN	FROM	10	LGIH				}	
		at 112.3 m 1.5 cm uide grante Aistite unin aufaut 1								·	╂
		200								<u></u>	
	·	80° to C/A.							 -	<u> </u>	┢┤
				·					<u> </u>		┣
		112.6 - 115.8 m - Green colour, increase in amount of biotite.							<u> </u>	 	┝
		119 5 m - Quartz/hightte win								<u> </u>	
								1	1		
		119.7 m - Gradational contact to coarser grained rock to end	- <u>ho A </u>								11
		of hole.								1	
			· · · · ·				***************				
123.1 m		END OF HOLE.	· · · · · · ·					1	1		
_											
								ļ	<u> </u>		
			·								
								L			
								ļ			
										ļ	
	······································					·					
	•		· · · · · · · · · · · ·								
								 	 		┨━━━━━┥
								1		[

Page 1		GETTY MINES, LIMIT	ED			Н	ole Nun	nber	DL	-82-11]	
Proper Locatic Grid Latitud Departu	DETOUR DETOUR Property. 144 km NORTHEAST OF COCHRANE, Location. BQ ONTARIO Core Size. BQ Grid. WEST A GRID Contario Grid. 39+00W Dip. 45° North Departure. 2+00S Length. 248.7 m Horiz. Trace. 192.0 m Vert. Trace. 170.0 m DESCRIPTION SAMPLE METERS CORE CORE NUMBER FROM DESCRIPTION								Dip ' Depth Collar 48.7 248.7	Dip 'Tests Depth Angle Read Act Collar -45° -45 48.7 -57° -45 248.7 -47° -35		
FROM	то	DESCRIPTION	SAMPLE	MET FROM	ERS	CORE		I	ASSAY	<u> </u>		
		SUMMARY LOG					· · ·					
		0 - 48.8 Casing/overhurden								}	+{	
		48.8 - 61.8 Metasediments			-{						<u>+</u>	
	{	61.8 - 63.8 Quartz pebble conglomerate										
		63.8 - 66.6 Amphibolite										
		* 66.6 - 68.0 Sulphide bearing graphitic Metasediments (conductive)	· · · · · · · · · ·		<u> </u>						 	
		68.0 - 96.0 Amphibolitized mafic volcanic epiclastic			1			· ·				
		metasediments and tuffs										
		96.0 - 100.6 Siliceous metasediments		 			 				<u></u>	
		106.6 - 103.2 Quartz feldspar porphyry				.			_	ļ	- 	
		103.2 - 115.8 Amphibolitic siliceous metasediments								ļ	┥	
		*115.8 - 119.6 Sulphide bearing graphitic cherty metasediemits					<u> </u>				+	
		119.6 - 248.7 Amphibolite									<u>+</u>	
	}i		· · · · · · · ·	+	1	·		<u> </u>			+	
		*Split Sections		53.5	54.0							
,				66.5	68.0							
		·····		114.5	119.5							
				241.6	242.2		1			L		

.

									Pa	ge?	
		GETTY MINES, LIMITE	ED			Н	lole Nun	nber []	DL-82-11	
			SAMPLE	ME	TERS	CORE			ASSAY		
FROM	то	DESCRIPTION	NUMBER	FROM	ТО	LGTH					
		Split Sections (cont'd)		242.5	243.1	• •					
	<u> </u>			243.3	243.5				1		
0 m	48.8 m	CASING/OVERBURDEN (Sandy gravel and boulders)			1						
					1						
48.8 m	61.8 m	METASEDIMENTS/ Siliceous graywacke-graywacke-argillaceous									· .
		siltstone-psanmites.		· · ·							
			· · · · · · · · · · · · · · · · · · ·		-						
		- well layered sequence of variable metasediments generally									
		silty in nature and varying from med. grained psammites									
		to fine grained argillaceous siltstones.									
		- layering, on scale of a few cm's to several 10's of cm, is									
		defined by changes in both composition and grain size.									Ĺ
		- thin (5-10 cm) graphitic horizons with 1-2 mm chert									
		partings and locally containing 3-5% po py are occassion-									
	. <u></u>	ally intercalated with the more siliceous metaseds.	· ·								
		- Graywacke and siliceous graywacke units generally quite	· · ·								
	······	massive and thickly bedded $(1/2 - 1 \text{ meter})$ with the more									
		psammitic and argillaceous units often layered on a scale		<u> </u>							
		of a few mm's.			L						
		- compositional layering most easily discerned by variation									
		in biotite and/or quartz content of contrastings beds.									
	, 	- layering is locally contorted and cut by quartz stringers									
		to $1/2$ cm with undeformed sections giving core angles at									
		60° to CA.									
	<u></u>	- 1% disseminated py throughout.									
	<u></u>]					

GETTY MINES. LIMITED

.

,

Hole Number DL-82-11

Page...3

DRILL HOLE LOG

			SAMPLE	мет	ERS	CORE			ASSAY)
FROM	ТО	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	
		- non-magnetic and non-carbonated.			•						
		52.8 - 53.0 m - well layered argillaceous sequence with									
		bedding core angle of 60 ⁰ .									
		53.7 - 53.9 m - Sulphide bearing graphitic chert	8227	53.5	54.0	0.5 m	2	69	300	40.5	
		horizon - locally brecciated with 3-5 mm angular									
		graphitic fragments in a cherty matrix.						· · · · · · · · · · · · · · · · · · ·			
		5-8% ру ро									
		35-40% graphite									
		53.9 - 54.4 m - Very blocky core									
		55.0 m - Bedding at 70° to CA.			·						
	·····	61.0 - 61.3 m - Coarser grained horizon approaching									
,		a pebble conglomerate immature									
		- appears to be recrystallized and potassium									
		metasomatized; now somewhat pinkish in color									
		and almost granitoid in appearance.									
61.8 m	63.8 m	QUARTZ PEBBLE CONGLOMERATE									
		- internally layered (scale of a few cm's)									
		sequenced coarse grained pebbly conglomerate									
		with 35 - 40% subrounded guartz and feldspar									
		fragments, (10:1) up to 1 cm in a fine grained									
		to aphanitic amphibolitic siltstone matrix.									

•

. . . .

Hole Number

Page.....

umber DL-82-11

		DRILL HOLE LOG									
FROM	TO	DESCRIPTION	SAMPLE	MET	ERS	CORE			ASSAY	······································	
FROM		DESCRIPTION	NUMBER	FROM	то	LGTH					ļ!
		- unit consists of more conglomeratic horizons									
		2-3 cm wide interlayered with somewhat thicker									
		3-5 cm wide silty horizons;									
		- grading suggested with tops apparently downhold	•								
		- locally unit takes on a somewhat orange-pink									<u> </u>
		coloration possible due to hematite									
		or slight potassium metasomatism.								ļ	
			· ·					l		ļ	ļ!
		63.2 - 63.4m - very blocky and broken core.									
		63.4 - 63.8 m - Granitoid intrusion - well developed	· · ·							ļ	!
		equigranular mosaic texture.								ļ	L
· · · · · · · · · · · · · · · · · · ·			·····							<u> </u>	L
		63.8 - 64.1 m - blocky and broken core.						ļ			<u> </u>
								ļ			
63.8 m	66.6 m	AMPHIBOLITE (Calcareous-metasediment)						ļ		ļ	ļ
······		- fine to medium grained, dark green and massive to	- <u></u>					ļ		ļ	ļ
		slightly foliated-mode.								ļ	ļ
		45-50% feldspar						ļ		ļ	ļ
		44-60% amphibolite				·		ļ			ļ
								ļ		ļ	L
		- foliation defined by elongated amphibolite blades to						L			<u> </u>
		4mm.	· · · · · · · · · · · · · · · · · · ·					L		ļ	ļ
		- unit grades down hole into lighter grey more definitely	· · · ·							<u> </u>	
		metasedimentary material. Vague internal layering on a									
		scale of a few cm's noted locally throughout but more						ļ		ļ	
		prevalent in lower sections.						L			
		<u> </u>									

.

GETTY MINES, LIMITED

Hole Number

- Page.....

r	
DL-82-11	

DRILL	HOLE	LOG	

FROM	TO	DESCRIPTION	SAMPLE	METERS		CORE ASSA				AY		
FROM		DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppn		
		- 1-2% disseminated py with occassional occurrence of	· · · · · · · · ·		:		ł					
		massive py seams and stringers to 4mm especially in down										
		hole part of unit.										
		64.9 - 65.0 m - Quartz - feldspar porphyry										
		65.8 - 66.0 m - 5 - 8% pyrite as stringers and seams to 4 nm.										
66.6 m	68.0 m	SULPHIDE bearing graphitic metasediments (conductive)										
		- fine grained and compositionally layered (scale of										
		mm's to a few cm's) graphitic metasediments containing										
		5-8% ру						·				
		30-35% graphite										
		>1% cpy		_								
				4								
		- 2 generations of sulphides present with py occurring	8228	66.5	67.0	0.5	۷1	180	290	0.5		
		as both conformable bedded zones and contorted cross	8229	67.0	67.5	0.5	۷1	370	410	0.5		
	•	cutting stringers. Vein to 5 mm.	8230	67.5	68.0	0.5	5	540	390	0.5		
		- non-magnetic and no po noted			ĺ							
		- cherty layers to 1 cm locally dominant but overall quite										
		minor. Cherty layer often broken up and dispersed by										
		flowage in a graphitic/sulphide matrix										
		67.8 m - 1 cm bleb of cpy in a pyrite bearing chert lens.										
		66.8 m - bedding core axis @ 80 ⁰ .										
	L						L					

٦

والمتعادية والمعالمة والمستوحين والمستوحين والمتعالم والمتعالم والمتعالم والمستوح والمستوح والمعالم والمعالم والمعالم

Hole Number

-

DL-82-11

OBITI MINES, DIMIT	60			
DRILL HOLE LOG				
DESCRIPTION	SAMPLE NUMBER	MET FROM	ERS TO	
MAFIC VOLCANIC EPICLASTIC MEDASEDIMENTS/TUFFS				
lated sequence of fine grained to aphanitic mofic				
c tuffs and epiclastic metasediments.				

FROM	то	DESCRIPTION	SAMPLE	E METERS		CORE		T	ASSAY	T	ł
69 0 m	96.0 m			TROM	10	1011					╂┦
00.0 1	<u>90.0 m</u>	AMPHIBOLITIZED WIFIC VOICANIC EPICLASTIC MEDASEDIMENTS/TUFFS								 	┟{
·····		- intercalated sequence of fine grained to aphanitic mofic								<u>}</u>	┝┦
		volcanic tuffs and epiclastic metasediments.							 		
		- contacts gradational although individual units may									
		display internal layering.									<u> </u>
		- core angles generally at 65 ⁰ to CA.	· · · ·				·				
		- locally unit may becomes well layered on a scale of a few							<u> </u>		
		cm's over intervals of several 10's of cm.									
		- in zones where unit becomes gradational to more meta-									
		sedimentary material may contain up to 3-5% biotite.									
		- grain and color may vary from fine grained dark green									
		tuffs to lighter grey green medium grained amphibolitic									
		metaseds.									
		70.8 m - Core angle @ 65 ⁰					•				
		75.7 m - Core angle @ 75 ⁰									
								1	<u> </u>		
		87.2 - 87.9 m - Fine grained, dark green (chloritic) and well									
		layered mafic tuff horizon containing 3-5% disseminated									
		and stringer py. Locally 15-20% quartz stringers to 4 mm									
		wide contain 5-8% py (minor po) - weakly magnetic.									
96.0 m	100.6 m	SILICEOUS METASEDIMENTS (Siltstone, Psanmites)								1	
		- medium grained to fine grained and light grey-green in									
		color.	· · · ·		•				<u> </u>	1	
		- gradational from previous up hole unit by way of	· · · · · · · · · · · · · · · · · · ·								
		increasing quartz and biotite.						[1		
.

Hole Number

.

DI-82-11

DRILL	HOLE	LOG	

FROM	TO	DESCRIPTION	SAMPLE	MET	ERS	CORE	ORE ASSAY			
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	 			
		- compositional layering well developed on scale of a few			• • • • •					
		cm's to a few 10's cm and defined mainly by variations								
		in biotite content.								
		- Unit moderately magnetic with 3-5% disseminated and								
		stringer po (minor py).								
		- locally maybe quite amphibole rich but dominant mafic					 			
		mineral is usually biotite.					 			
		98.5 m - Core angle at 75 ⁰ to axis.					 			
							 L			
100.6 m	103.2 m	QUARTZ - feldspar porphyry					 · · · · · · · · · · · · · · · · · · ·			
	. <u> </u>	- unit contains 35-40% quartz and 5-10% feldspar phenocryst					 			
		to 1.5 cm in a biotite rich (10-15%) aphanitic matrix.					 		, 	
		- relative percentage of feldspar: Quartz increases down					 <u> </u>			
		hole.					 <u> </u>			
		- upper and lower contacts vague.						_		
		- equigranular mosaic texture imparts an intrusive aspect					 1			<u> </u>
		to unit although the vague and somewhat gradational					 <u> </u>			
		contacts suggest a hot gaseous crystal tuff type origin.								
		- non-magnetic.					 <u> </u>			
103.2 m	115.8 m	AMPHIBOLITIC, Siliceous Metasediments					 			
		- Intercalated sequence of impure siliceous graywackes					 			
		and siltstones.					 			
		- fine grained and well bedded (a few 10's of cm) sequence					 			ļ
		containing					 			
		30-35% quartz .					 			

		F	mber	DL-8	32-11	
- т	ERS	CORE			ASSAY	
ſ	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (pp

DRILL	HOLE	LOG	

FROM	70	SAMPLE		METERS		CORE	ASSAY					
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb))Cu(ppm)	Zn (ppm)	Ag (ppm)		
		20-25% feldspar						·				
		15-20% amphibole										
		10-15% biotite										
		- locally gradational into a few cm thick mafic tuff										
		horizons.										
		- moderately magnetic with 2-3% po disseminated throughout.									1	
		- layering generally at 75° to CA.										
		114.6 - 115.9 m - Unit becomes progressively bleached in	8231	114.5	115.0	0.5 m	3	230	420	1.0		
		appearance with 3-8 mm cherty layers abundant. Numerous	8232	115.0	115.5	0.5 m	2	330	390	1.0		
		py po stringers noted as down hole graphitic unit is		· · ·			~ ~ ~ ~ ~ ~ ~	<u> </u>				
	_	approached - maybe up to 8-10% po py locally.										
								<u> </u>				
115.8 m	119.6 m	SULPHIDE Bearing Graphite Cherty Metasediments										
		- interlayered sequence of sulphide rich (py po) graphitic						L				
		argillites and cherty chemical metasediment.										
		- sections of massive graphite may reach 1 meter in width						<u> </u>				
		and contain 10-15% associated po py as disseminations										
		and irregular blebs to 8 mm.										
		- occassional intervals to 20-30 cm of graphite free										
		bleached metasediments contain 5-8% disseminated and										
		stringer po py (minor blebs of cpy noted locally).										
		- bedding at 65 ⁰ to CA.										
		- contact gradational with both up and down hole units.			· .							
		- overall										
		Graphite 20-25%										
		po 10-15%										

GETTY MINES, LIMITED

Hole Number

DL-82-11

FROM	ΨO	DESCRIPTION		DESCRIPTION		METERS		CORE			ASSAY		
- FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)			
		ру 3-5%											
		cpy <1% locally 1%											
	·····	115.4 - 116.6 m - horizon of massive graphite with	8233	115.5	116.0	0.5 m	4	410	8400	1.0			
		10-15% po py	8234	116.0	116.5	0.5 m	6	860	710	1.0			
		116.6 - 117.5 m - bleached siliceous metasediments	8235	116.5	117.0	0.5 m	10	360	260	1.0			
		containing abundant disseminated and stringer	8236	117.0	117.5	0.5 m	41	74	140	0.5			
· · ·		sulphide								-	. <u></u>		
		overall 5 - 8% po py											
		<1% cpy									<u></u>		
		massive 1 cm stringers of po py noted											
		parallel to layering											
		117.3 - 117.5 m - 10 cm section of intrusive quartz											
		porphyry											
		117.5 - 118.0 m - Graphite argillite containing	8237	117.5	118.0	0.5 m	9	590	270	1.0			
		30-35% graphite					. 						
		5 - 8% po									_,		
		2 - 3% py											
		118.0 - 119.6 m - Graphite and sulphide bearing	8238	118.0	118.5	0.5 m	5	190	120	0.5			
		siliceous metasediments containing	8239	118.5	119.0	0.5 m	14	1200	110	1.0			
		8 - 10 po py	8240	119.0	119.5	0.5 m	14	320	59	1.0			
		10- 15% graphite											

. . . .

.

GETTY MINES, LIMITED

Hole Number

Page. 10

er	DI-82-11

FROM	ΤO	DESCRIPTION	SAMPLE	MET	METERS CORE ASSA		ASSAY]	
1 100.01	10		NUMBER	FROM	ΤO	LGTH	 		
119.6 m	248.7 m	AMPHIBOLITE (Mafic volcanic tuffs and epiclastic metasediments)							
		- unit varies from medium grained massive homogeneous							
		amphobolite to fine grained, well layered and/or foliated							
		amphibolite containing 5-10% accessory biotite.							
	•	- majority of unit appears to be more massive medium					 		
		grained material with well layered obviously meta-					 		
		sediments (tuffaceous horizons restricted to local					 		
		layers generally less than 2 meters thick).					 		
		- 1% disseminated py throughout.					 		 l
		- initial up hole portion of unit consists of garnetiferous					 		
		tuff possibly representing alteration under the overlying					 		 ļi
		sulphide bearing graphitic metasediments.					 		
		- occassional quartz stringers containing 3-5% associated					 		 L
		po py.					 		 I
		- coarser section locally contains possible pillow					 		
		selvages to 3 cm wide at 65° to CA.					 		 ļ
							 		 ļ
		Apart from possible pillowed areas unit is definitely					 		
		tuffaceous or metasedimentary in nature.					 		 ļi
		119.6 - 120.0 m - garnet bearing mafic tuffs poorly formed					 		
		purple-pink garnets to 1 cm in a well layered					 		 L
		(scaled cm's) chloritic tuff.					 		
		3-5% po py mainly as stringers					 Ì		
		168.4 m - possible pillow selvages					 		
	L						 		<u> </u>

· * : * *

GETTY MINES, LIMITED

.

Page....11

· · · · · · · · · · · · · · · · · · ·			F	Iole Nu	mber [DL-82-11					
DRILL HOLE LOG											
	SAMPLE	МЕЛ	ERS	CORE							
	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Aq (ppm)			
	· · · · ·										
			·								
po seam to 1 cm											
tuff						}					

FROM	TO	DESCRIPTION		METERS		CORE			A35A1	+	
INOM			NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu(ppm)	Zn (ppm	Ag (ppm)	
		173.1 m - possible pillow selvages	· · · · · · ·								
		177.1 m - 3 cm quartz stringer zone with po seam to 1 cm									
		188.8 m - 4 cm horizon of garnetiferous mafic tuff									
			· · · · ·								1
		198.6 - 198.9 m - Leucogranite dyke - white medium	· · ·								
		grained equigranular granit dyke with 5%			· .						
		15-20% quartz									
		60-70% feldspar									
		199.3 m - 5 cm - Leucogranite dyke.	- <u> </u>								
			·								i
		220.8 m - Core angle 60°									
		240.7 m - Core angle 65 ⁰									
		·									<u> </u>
		241.6 - 242.2 - quartz vein (milky quartz) containing 1-2% py -	8241	241.6	242.1	0.5 m	41	12	7.5	20.5	İ
		carbonated along fractures.									
		242.5 - 243.1 m - Milky quartz vein with <1% py	8242	242.5	243.0	0.5 m	41	51	8	20.5	
		- carbonated along fractures									
	<u></u>						1				
		243.4 - 243.8 m - Milky quartz veins - 1% py	8243	243.3	243,8	0.5 m	<u> </u>	50		<0.5	
248.7 m [I END OF HOLE		L							

1. 1. 2. DRILL HOLE LOG Dip Tests Starting Date....AUGUST 20, 1982 Core Size.....BQ DETOUR Angle Property. Depth Location. 142 KM NE OF COCHRANE, ONTARIO Completion Date. AUGUST 23, 1982 ... Read Actual Elev. Collar..... Collar ~45° Date Logged. AUGUST 21-24, 1982 Grid..... PROPERTY (WEST 'A') 53° - 44° 24.4 Logged by.....K.S. SUTHERLAND.... Latitude. 0 + 00 (BL) 52° -43° 137.2 Horiz. Trace. 168.5 m Departure 29 + 00 W W.D. EWERT 51° - 42.5° 230.4 Vert. Trace. 156.0 m CORE ASSAY SAMPLE METERS DESCRIPTION то FROM NUMBER FROM TO LGTH. 0.00 m 24.4 m OVERBURDEN - sand, gravel, boulders AMPHIBOLITE - (Recrystallized Mafic Volcanic/Mafic tuff) 24.4 m 36.0 m The rock is coarse grained, green/white, medium hard and non-magnetic. Mineralogy consists of 50-60% amphibole crystals (green, needle like up to 4 mm) 40-45% feldspar (white anhedral up to 2 mm) and 10% biotite (brown/black, up to 2 nm). There is 1-2% disseminated pyrite and trace pyrrhotite present throughout the unit. Less than 4% veining crosscuts the unit and veining generally consists of quartz and quartz + carbonate + chlorite ± pyrite, pyrrhotite chalcopyrite. Veins tend to be oriented at a high angle to the C/A. There is a weak preferred orientation of the amphibole (chloritized) crystals 60° to C/A. A 1 metre wide garnet bearing interflow (?) metasediment is present within the amphibolite unit. 26.40 - A 4 cm wide quartz + chlorite + carbonate vein with 3% pyrite/pyrrhotite, blebs up to 3 mm. 26.6-26.75 - A good garnetiferous metasediment with 3% disseminated and 1 mm blebs of pyrite/pyrrhotite

GETTY MINES, LIMITED

Hole Number

Page 2	l
--------	---

· · · · · ·

Hole Number DL-82-13

DRILL HOLE LOG

FROM	T O		SAMPLE	MET	ERS	CORE			ASSAY		
FROM		DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)				
24.4 m	36.0 m	cont'd		1. S. S. S.							
		and 1% chalcopyrite.									
		26.95-28.25 - Garnetiferous interflow metasediment.									
		The rock is fine grained, green, medium soft and weakly									
		magnetic. There are up to 3 cm wide bands oriented							ļ		
		90° to C/A containing 25% pink 2 mm garnets. Minor									
		quartz + carbonate + chlorite with 2-5% pyrite/pyrrhotite									
		and 1% chalcopyrite. The veins are up to 4 cm wide and									
		are oriented 90° to C/A. Upper and lower contacts with									
		amphibolite are sharp.									
	İ	28.6 - A 1 cm wide quartz rich vein oriented 45° to						· • • • • • • • • • • • • • • • • • • •	1		
		C/A. It is rimmed by pyrite (up to 2 mm wide on up									
		hole contact) and a 3 mm wide chalcopyrite rich vein									
		is an offshoot oriented 10° to C/A									
		30.70 - Finer grained, interval within amphibolitize/mafic									
		rock.									
		33.7 - A 7 cm wide massive quartz vein with 1%	8174	33.6			3				
		disseminated pyrite.									
		•									
36.0 m	39.1 m	FELDSPAR PORPHYRY - The rock is coarse grained hard and non-									
		magnetic. It consists of a mafic groundmass (60%) and							·		
		white subhedral feldspar phenocrysts up to 5 mm in size									
	•	(40%). There is a gradational change in grain size									
		• from coarseto fine (compositional change ?) within the									
		rock. Upper and lower contacts are sharp 80° to C/A.	1 x x x x x								
									I	L	

Page. .2

.•.

.*

GETTY MINES, LIMITED

Hole Number

	DRILL	HOLE	LOG
--	-------	------	-----

TRON	FO	DECONDEION	SAMPLE	MET	ERS	CORE	 ASSAY	r	
FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH	 		
39.1 m	71.1 m	AMPHIBOLITE - (Recrystalled Mafic Volcanic/Mafic Tuff)					 _ · [
		The rock is medium to coarse grained, green/white,							
		medium hard and locally weakly magnetic where pyrrhotite							
		is present. There is 1% disseminated pyrite throughout					 	1	
		the unit and locally 2-3% pyrite/pyrrhotite stringers.							
		Mineralogy consists of 60% amphibole crystals 40% feldspar							
		crystals and locally 15% biotite. There is a local sub-							
		parallel alignment of amphibole crystals, which are	· · · ·						
		chloritized, 50° to 60° to C/A. Locally there are							
-		garnet rich bands intersecting the amphibolite unit.			-				
		Minor quartz rich veining throughout the unit.	· ·						
		39.3 - A 1 cm wide quartz vein 30° to C/A.							
		43.5-44.4 - A zone with 2-3% pyrite as stringers and							
		fine disseminations, trace chalcopyrite.							
		50.3 - A sub parallel alignment of amphiboles 50° to C/A.							
		50.4 - A 5 cm wide breccia zone containing pyrite							
		stringers.							
		55.9 - Approximately 1 m wide biotite rich zone (15-20%)							
		• with an apparent lineation 55° to C/A.							
		63.5-64.5 - Approximately 1 m wide interval of garnet							
		bearing amphibolitized mafic epiclastic metasediments.							
		Garnets are pink, up to 3 mm in size and occur in bands							
		up to 3 cm wide.							
		. 70.3-71.1 - Brecciated section, highly chloritized,							
		quartz fragments.							
							-		

·, `.

GETTY MINES, LIMITED

Hole Number

Page....4

er DL-82-13

DRILL	HOLE	LOG
-------	------	-----

	mo	DDGOD IDHION	SAMPLE	MET	ERS	CORE		ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH				
71.1 m	'78.0 m	SILICEOUS METASEDIMENTS - (siliceous siltstone, greywacke)								
		The rock is fine to medium grained, grey/brown								
		weakly magnetic and medium hard. Graded bedding								
		is found within the unit over a scale of a few					·			
		centimetres. Garnet bearing intervals are found								
		locally. There is 2% pyrite/pyrrhotite finely								
		disseminated throughout and in fine stringers								
		71.9 - Graded bedding over 3 cm, tops possibly up the hole.								
		72.0-73.8 - Coarser grained interval, greywacke.								
		76.8-77.0 - Coarser grained interval.								
		77.0 - A 2 cm wide garnet rich band oriented 90°								
		to C/A. Garnets are pink and 42 mm in size.								
78.0 m	142.0 m	CONDUCTIVE ZONE - The conductive zone consists of siliceous								
		greywack/siltstone, silicified/cherty metasediments			·····			·		
		with intercalated sulphide bearing graphitic metasediments.								
		The siliceous metasedimentary rocks - siliceous siltstone								
		. (greywacke) are brown/green fine to medium grained,								
		medium hard and weakly magnetic throughout. Mineralogy								
•		consists of biotite/feldspar/quartz/chlorite with 2-3%								
		pyrite/pyrrhotite. They are banded 90° to C/A and graded								
		bedding over a few cm's is present locally within the								
		. unit. The rock is locally silicified over 10's of cm's								
		and is very hard, mottled with up to 5% disseminated								
		and stringer pyrite/pyrrhotite. The rock is interbedded							· · · ·	ļ
		with sulphide bearing graphitic metasedimentary rocks.								

.

GETTY MINES, LIMITED

.

Hole Number

DL-82-13

Page....5

TRON	The second		SAMPLE	ME	ERS	CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu(ppm)	Zn (ppm	Ag (ppm)	
78.0 m	142.0 m	cont'd	• • • • •								
		The highly conductive sulphide bearing graphitic meta-									
		sedimentary rocks are black, fine grained, medium soft									
		and highly magnetic throughout. Mineralogy consists of									
		20%-80% graphite, 10% quartz/feldspar and 2%-67% pyrite/									
		pyrrhotite and 1% chalcopyrite. The rock is well									
		laminated 60° to 90° to C/A but is locally contorted									
		and brecciated on a scale of 10's of cm's, 2-5%									
		45 mm wide quartz veining is present throughout-oriented									
-		60° to 90° to C/A. Pyrite/pyrrhotite occur as									
		disseminations stringers and massive veins to 30 cm									
		with 2-5% carbonate. Chalcopyrite is present as blebs									
		and fine stringers, locally 1-3%, usually associated									
		with pyrrhotite.									
		Cherty Silicified Metasedimentary rocks are fine grained,									
		grey, hard and magnetic. They have a mottled appearance									
		and are internal fractured. The fractures are filled							1		
		. with graphite and minor sulphide. Mineralogy consists									
		of chert with 5% graphite and 2-5% pyrite/pyrrhotite.									
		The rock is locally brecciated on a scale of 10's of cm's.									
		78.0-81.0 - Sulphide bearing graphitic metasedimentary	8175	78.0	78.5	0.5	4	480	1000	0.5	
		. rock, magnetic, very good conductor with 20-40% graphite,	8176	78.5	79.0	0.5	5	240	830	40.5	
		10-20% pyrrhotite, 10-15% pyrite and 1% chalcopyrite.	8177	79.0	79.5	0.5	2	520	1200	0.5	
		The rock is well laminated 60° to C/A. (locally contorted	8178	79.5	80.0	0.5	1	270	1700	0.5	
		79.6 m) and contains minor quartz rich veining 1 m to 1 cm	8179	80.0	80.5	0.5	5	540	3300	0.5	

GETTY MINES, LIMITED

.

Hole Number DL-82-13

r

E EC 133 1	m 🔿 🔰	DECONDENON	SUMLTR	MET	ERS	CORE					
		DE2CK1P110N	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)	
78.0 m	142.0 m	cont'd					а. — т.				
		wide 60° to C/A.	8180	80.5	81.0	0.5	5	400	1800	∠0.5	
		81.0-82.0 - Siliceous greywacke/siltstone. The rock	8181	81.0	81.5	0.5	2	510	85 0	0.5	
		is well layered, weakly magnetic with possible grading	8182	81.5	82.0	0.5	2	190	320	0.5	
		bedding over a few cm's and 2% pyrite/pyrrhotite	8183	82.0	82.5	0.5	6	340	1300	0.5	
			8184	82.5	83.0	0.5	6	990	470	0.5	
		82.0-82.75 - Sulphide bearing graphitic metasediment	8185	83.0	83.5	0.5	1	110	98	0.5	
		with 40-60% graphite, 15-30% pyrrhotite, 20% pyrite	8186	83.5	84.0	0.5	4	240	130	0.5	
		(as disseminations blebs and stringers) and 1% chalcopyrite	8187	84.0	84.5	0.5	5	560	1900	0.5	
_		(82.0). Sulphides not well laminated but weakly breccciated	•		_						
										1	
		82.75-84.0 - Crystal Tuff - The rock is silicified with									
		crystals up to 2 mm and a fine grained mafic biotitic									
		matrix. The rock is weakly magnetic with 1% disseminated									
		pyrite pyrrhotik. At 83.5 there is a 2 cm wide massive									
		seam of pyrite/pyrrhotite oriented 70° to C/A.	· .								
		84.0-85.2 - Sulphide bearing graphitic metasedimentary									
		rock with up to 60% graphite and up to 30% pyrite/									
		pyrrhotite. At 85.1 there is a 4 cm seam of pyrite/pyrrhoti	te								
		oriented 90° to C/A.	8188	84.5	85.0	0.5	4	1100	310	1.0	
		85.2-90.5 - Siliceous Metasedimentary rock (siltstone/	8189	85.0	86.0	1.0	2	110	71	0.5	
		greywacke). The rock is fine grained and weakly magnetic	8190	86.0	87.0	1.0	35	24	24	0.5	
		1% pyrite/pyrrhotite. Gradational contact around 88.9m	8191	87.0	88.0	1.0	5	23	34	0.5	
		over 10's of cm's to more siliceous and more magnetic rock	8192	88.0	88.5	0.5	1	73	38	0.5	
		with 3-5% pyrite/pyrrhotite lower contact is sharp.	8193	88.5	90.0	1.5	< 1	220	110	1.0	

••

.

.

DRILL HOLE LOG

TRAVI	T O	ητα ήρατιστι	SAMPLE	MET	ERS	CORE	ļ	r	ASSAY	·	
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Zg (ppm)	
78.0 m	142.0 m	cont'd									
		90.5-96.7 - Sulphide bearing graphitic metasedimentary rock	8194	90.0	90.5	0.5	5	180	150	0.5	
		containing up to 60% graphite and 10-70% pyrite/pyrrhotite	8195	90.5	91.0	0.5	21	280	3200	1.0	
		(1:5). The rock is well laminated but locally contorted and	8196	91.0	91.5	0.5	. 11	420	1900	1.0	
		brecciated at 91.8 m and 92.5 m.	8197	91.5	92.0	0.5	16	140	1300	0.5	
		93.0-93.3 - 1-5% graphite, pyrite/pyrrhotite stringers	8198	92.0	92.5	0.5	17	110	1800	0.5	
		93.3 - A 40 cm wide of pyrrhotite (60%) pyrite	8199	92.5	93.0	0.5	16	220	550	0.5	
		(25%) and 5% angular graphitic fragments to 1 cm.	8200	93.0	93.5	0.5	6	400	830	0.5	
		94.9 - A 20 cm wide of 50% pyrrhotite 15% pyrite and	8101	93.5	94.0	0.5	4	470	1600	1.0	
-		5-8% carbonate.	8102	94.0	94.5	0.5	6	840	2700	20.5	
		95.3 - 1% chalcopyrite - bleb to 1 cm associated	8103	94.5	95.0	0.5	16	660	1500	0.5	
		with pyrrhotite.	8104	95.0	95.5	0.5	10	1500	2500	0.5	
			8105	95.5	96.0	0.5	19	780	800	0.5	
		96.2-99.7 - Siliceous Greywacke/Siltstone - The rock is	8106	96.0	96.5	0.5	4	400	250	0.5	
		fine grained, weakly magnetic and locally garnetiferous	8107	96.5	97.5	1.0	۷٦	190	200	0.5	
		containing 2-3% disseminated pyrite/pyrrhotite and 1%	8108	97.5	98.5	1.0	<1	270	310	1.0	
		quartz veining 5 mm wide oriented parallel to C/A. The	8109	98.5	99.5	1.0	∠ 1	86	180	0.5	
		rock is mottled possibly due to silicification.	8110	99.5	100.0	0.5	9	500	1100	0.5	
		· 97.8-98.0 - A semi massive seam of pyrrhotite/pyrite						l			
		98.4 - Garnetiferous with pink garnets to 1 mm.									
		98.4-98.9 - Mottled section, possibly silicified									
		99.7-100.6 - Sulphide bearing graphitic metasedimentary									
		rock									
		100.1 - 60% graphite, 20-25% pyrrhotite/pyrite and 1%									
		chalcopyrite - blebs/stringers, weakly brecciated									

Page...?.....

r

Hole Number DL-82-13

FROM

78.0 m

GETTY MINES, LIMITED

Hole Number

	DRILL HOLE LOG						_		
mo		SAMPLE	MET	ERS	CORE	[ASSAY	
10	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	(mag) pA
142.0 m	cont'd								
	100.3 and 100.4 - 1-2% chalcopyrite 1 mm blebs								
	associated with pyrite/pyrrhotite stringers and with								
	blebs of carbonate (2-5%)								
	100.6-102.4 - Siliceous/Silicified Greywacke/siltstone -	8111	100.0	100.5	0.5	6	380	2600	0.5
	The rock is grey, mottled, hard magnetic with 1-3%	8112	100.5	101.5	1.0	21	87	160	∠ 0.5
	disseminated and stringer pyrite pyrrhotite.	8113	101.5	102.5	1.0	∠ 1	82	140	0.5

	Diebs of carbonate (2.5%)		1			1		1		
]	
	100.6-102.4 - Siliceous/Silicified Greywacke/siltstone -	8111	100.0	100.5	0.5	6	380	2600	0.5	
	The rock is grey, mottled, hard magnetic with 1-3%	8112	100.5	101.5	1.0	21	87	160	20.5	
	disseminated and stringer pyrite pyrrhotite.	8113	101.5	102.5	1.0	∠ 1	82	140	0.5	
									[
	102.4-109.0 - Sulphide bearing graphitic metasedimentary	8114	102.5	103.0	0.5	2	250	2000	0.5	
	rock containing up to 40% graphite and 15-20% disseminated	8115	103.0	103.5	0.5	5	620	1300	∠0.5	
	and stringer pyrite/pyrrhotite. The rock is laminated	8116	103.5	104.0	0.5	41	99	1100	20.5	
	60° to C/A but locally contorted and fragmented at 104.2	8117	104.0	104.5	0.5	4	91	300	20.5	
	and 107.5 (also ptygonoidal quartz veining).	8118	104.5	105.0	0.5	८ 1	190	570	20.5	
	105.0 1% chalcopyrite in 2 cm quartz vein 60° to C/A	8119	105.0	105.5	0.5	4	160	200	0.5	
	105.2 1% chalcopyrite associated with pyrite/pyrrhotite	8120	105.5	106.0	0.5	5	350	72	0.5	
	bleb.	8121	106.0	106.5	0.5	2	170	58	0.5	T
	105.3 - Green mica (1 mm bleb) in quartz vein	8122	106.5	107.0	0.5	2	120	83	0.5	
	. Boudinaged 1 cm wide quartz vein with pyrite/pyrrhotite	8123	107.0	107.5	0.5	21	240	57	20.5	
	in neck oriented 90° to C/A.	8124	107.5	108.0	0.5	۷1	200	24	< 0.5	
		8125	108.0	109.0	1.0	3	320	1100	0.5	
	108.0 - Well laminated 70° to C/A									Γ
•	108.7 - A 3 cm wide semi-massive pyrite/pyrrhotite vein									
	oriented 70° to C/A.									
	108.85-109.0 - A semi-massive pyrite/pyrrhotite (1:10)									
	vein with 2% carbonate.						_			
								1		

۰.

Hole Number | DL-82-13

DRILL HOLE LOG

FROM	TO	DESCRIPTION	SAMPLE	MET	ERS	CORE			ASSAY		
TROM			NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)	
78.0 m	142.0 m	cont'd	· · · · · ·								
		109.0-112.6 - Silicified Siliceous Metasedimentary rock	8126	109.0	110.0	1.0	<u>دا</u>	340	460	1.0]
		(siltstone/greywacke). The rock is fine to medium grained	8127	110.0	111.0	1.0	٤1	340	630	1.0	
		and contains 5-8% pyrite pyrrhotite. The rock is mottled	8128	111.0	112.0	1.0	۷1	330	490	0.5	
		throughout and is locally intersected by graphite rich	8129	112.0	113.0	1.0	۷1	260	320	0.5	
		sulphide bearing metasedimentary rock (up to 15 cm wide]
		and contains 50° to C/A). Graded bedding present 1 mm to									
		1 cm bands				r					
		109.0 - Mottled - silicified									
		110,6 - Brecciated fragments to 4 mm									
	·····	111.6 - Graded beeding over 1 cm - possible tops are up									
		the hole	· · ·								
		111.85-112.0 - Sulphide bearing graphitic interval									
		containing 10% grpahite, 5-8% sulphide						1			
		112.1-112.3 - Sulphide bearing graphitic interval									
		5-8% sulphide, laminated 70° to C/A									
	,	112.4-112.6 - Sulphide bearing graphitic horizon									
	······································	containing 5-10% graphite, 2-3% sulphide.									
		•									
		112.6-118.1 - Sulphide bearing graphitic metasedimentary	8130	113.0	114.0	1.0	۲1	360	260	0.5	
		rocks containing up to 50% graphite, 10 to 30% pyrite/	8131	114.0	115.0	1.0	1	200	190	0.5	
		pyrrhotite (1:10) and 1% chalcopyrite. The rock is									
		laminated 75° to 85° to the C/A but is locally preciated									
		• with angular fragments of graphite and sulphide 1 mm to									
		4 cm in a silica rich matrix (both matrix and fragment									
		supported) (Slump Breccia). There are 2-3% sulphides -									

Page...9

. . . .

GETTY MINES, LIMITED

Hole Number DL-82-13

DRILL HOLE LOG

	E		SAMPLE	MET	ERS	CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm	Zn (ppm)	Ag (ppm)	
78.0 m	142.0 m	cont'd					·				
		only present in graphite rich fragments.									
		112.6 - Well laminated 10-15% stringer sulphide									
		113.4 - A 3 cm wide zone of fragmented sulphide									l
		113.5-113.75 - Siliceous Metasedimentary rock with									
		10% graphite rich intervals. The rock is banded									
		70° to C/A and contains 2-3% disseminated sulphide									Ĺ
		113.9 - Breccia Zone - angular graphite/sulphide									
		fragments to 5 nm (40%) in a silica rich matrix (60%)						1			i
_		114.75-115.2 - Breccia Zone - matrix supported angular	8132	115.0	116.0	1.0	~1	110	340	20.5	L
		fragments of graphite with 2-3% banded sulphide up	8133	116.0	117.0	1.0	< 1	73	850	0.5	
		to 4 cm in fine grained silica rich matrix. No	8134	117.0	118.0	1.0	4	150	1300	1.0	
		visible sulphide in matrix									
		115.2-115.3 - Graphite rich interval with 5-8% sulphide									
		115.3-116.2 - Breccia zone - as from 114.75-115.2 m									
		116.2-117.0 - Silicified zone, mottled, weakly							•)
	· · · · · · · · · · · · · · · · · · ·	brecciated with 2% pyrite/pyrrhotite									
		118.1 - Contact with silicified metasediments	8135	118.0	119.0	1.0	41	140	1200	40.5	
	·	40° to C/A 1% sulphide.	8136	119.0	120.0	1.0	41	120	990	40.5	
			8137	120.0	121.0	1.0	1	130	1300	4.0.5	·
		118.1-125.1 - Silicified Cherty, Metasedimentary Rock -	8138	121.0	122.0	1.0	61	99	590	20.5	
		The rock is grey/white, mottled due to silicification and	8139	122.0	123.0	1.0	1	190	1100	< 0.5	·
		magnetic throughout. It is fractured internally and the	8140	123.0	124.0	1.0	1	460	970	0.5	
		· fractures are filled with graphite and sulphide (1 mm thick)	8141	124.0	125,0	1.0	1	340	460	0.5	
		There is 2-3% disseminated sulphide present and locally									
		horizons of sulphide bearing graphitic metasediments									
I		(10% graphite 2-3% sulphide, well laminated) 1% chalcopyrite	·			L			 		

Page. 10

r

Page...!!

GETTY MINES, LIMITED

...

۱___

Hole Number DL-82-13

		DESCRIPTION		MEI	ERS	COREL	 		1
ļ			NUMBER	FROM	TO	LGTH	 	1	ļ
78.0 m	142.0 m	cont'd					 	·	
		and 1% sphalerite visible in rock sample when split.					 		L
		120.5 - A 40 cm wide graphite rich (10-15%) interval					 		
		with 2-3% sulphide stringers and minor quartz veining							
		1 mm wide oriented 70° to C/A.							
		124.2-124.5 - Sulphide/Graphite horizon well laminated							1
		65° to C/A.							
		123.9 - A 2 cm wide breccia zone. Angular fragments							
		of graphite and sulphide to 1 cm fragment supported							
		124.0-124.2 - A semi-massive pyrite/pyrrhotite vein				•			
		(30-35° py/po 1:10) and 1% chalcopyrite.							1
		124.6 - A 1 cm wide pyrite/pyrrhotite oriented 60°							1
		to C/A with possible chalcopyrite.							-
		125.1-130.5 - Mafic Tuff - Upper and lower contacts weakly							
		brecciated with 1-2% sulphide. The rock is medium grained,							
		medium soft, magnetic with fragments to 2 mm and 1-3%							
		disseminated pyrite/pyrrhotite							
		127.0 - A 2 cm wide massive pyrrhotite/pyrite vein_							
		oriented 60° to C/A							
		130.5-142.0 - Sulphide bearing graphitic metasedimentary		а.					
		rock with intercalated siliceous/silicified greywacke/							
		siltstone.							
		130.5-131.0 - Siliceous greywacke/siltstone containing							
		1-2% disseminated pyrite/pyrrhotite and minor 1 cm							
		wide graphitic, lenses.					1	1	

Page. 12

Ϋ́.

GETTY MINES, LIMITED

٠.

.

٠.

Hole Number DL-82-13

ED OV	T O		SAMPLE	MET	ERS	CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)	
78.0 m	142.0 m	cont'd									
		131.0-133.5 - Sulphide bearing graphitic metasediment,	8142	131.0	131.5	0.5	۷1	140	1200	<u>۲۵.5</u>	
		weakly laminated 80° to C/A containing 2-5% disseminated	8143	131.5	132.0	0.5	1	120	790	< 0.5	
		and stringer pyrite/pyrrhotite. Containing 5 mm wide	8144	132.0	132.5	0.5	2	410	280	0.5	
		quartz rich vein oriented 20° to C/A with 1% green mica	8145	132.5	133.0	0.5	1	490	1400	0.5	
			8146	133.0	133.5	0.5	2	390	1300	0.5	
		At 131.2 - A 15 cm wide pyrite/pyrrhotite vein (1:5)	8147	133.5	134.0	0.5	4	350	1500	0.5	
		132.2-132.5 - Siliceous metasediments with 1% pyrite/									
		pyrrhotite									
		132.5-133.5 - Sulphide bearing graphitic metasediments,									
		weakly laminated 50° to C/A containing 10% graphite									
		and 10-15% disseminated and stringer pyrite/pyrrhotite									
		(1:10)									
		133.5-133.75 - A 25 cm wide weakly brecciated and						Í			
		contorted zone of sulphide and graphite, trace chalcopyr	ite								
		133.75-134.0 - Siliceous metasediments, banded 55° to									
		C/A containing 1-2% disseminated pyrite/pyrrhotite.									
		134.0-134.6 - Sulphide bearing graphitic metasediments	8148	134.0	134.5	0.5	5	660	3400	0.5	
		• well laminated 50° to C/A containing 10-20% graphite,	8149	134.5	135.5	1.0	10	270	190	0.5	
		10-20% pyrite/pyrrhotite and minor quartz veins	8150	135.5	136.5	0.5	10	53	100	0.5	
		134.6-135.0 - A semi-massive sulphide vein up to	8201	136.5	137.0	0.5	3	400	3200	1.0	
		35% pyrite/pyrrhotite (1:10) containing 10% carbonate	8202	137.0	137.5	0.5	3	320	3500	0.5	
		135.0-136.7 - Siliceous metasedimentary rock weakly	8203	137.5	138.0	0.5	2	540	1900	0.5	
		 silicified (mottled) fine grained magnetic with 1-3% 	8204	138.0	138.5	0.5	۷1	190	1900	0.5	
		sulphide and 1% quartz veining.	8205	138.5	139.0	0.5	1	190	850	۷٥.5	
			8206	139.0	139.5	0.5	3	270	1400	∠0.5	
			8207	139.5	140.0	0.5	4	150	240	0.5	

4.

۰.

Hole Number

er DL-82-14

Page. .13

TROM	T O		SAMPLE	MET	ERS	CORE			ASSAY		
	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)]
78.0 m	142.0 m	cont'da and a second a second a second a second a second a second a second a second a second a second a second									
		136.7 - 142.0 - Sulphide bearing graphitic	8208	140.0	140.5	0.5	1	250	680	0.5	
		metasediments well laminated 80° to C/A but locally	8209	140.5	141.0	0.5	۷1	270	1200	40.5	
		weakly contorted containing 10-15% graphite 10-15%	8210	141.0	141.5	0.5	. 4	390	650	0.5	
		disseminated stringer and veins to 5 mm pyrite/	8211	141.5	142.0	0.5	2	370	88	1.0	
		pyrrhotite. Upper contact marked by sulphide seam.	8212	142.0	142.5	0.5	4	130	49	1.0	
		At 137.4 a 10 cm wide interval of siliceous metasediment	3								
		1-2% sulphide, contact 80° to C/A. At 138.0 a 1.5 cm									
		wide quartz rich vein, 20 cm long oriented 20° to C/A]
		containg minor sulphide and 1% green mica. At 138.6									
		weakly contorted. At 139.5 a 3 cm wide quartz +									
		pyrite/pyrrhotite vein oriented 70° to C/A									
		139.8-140.35 - Siliceous metasediments containing 2-4%									
		disseminated sulphide					l				
		140.35-140.5 - A quartz vein oriented 80° to C/A that								_	
		is weakly fractured and fractures are filled with							·]
		graphite and 1% pyrite/pyrrhotite									
		140.6 - 20-25% pyrite/pyrrhotite contorted and									
		. weakly brecciated stringers									
		141.3-142.0 - 5% graphite 1-3% disseminated sulphide									
		2 cm wide quartz vein with 1% chalcopyrite									
		141.5 - A 2 cm with seam 30-40% pyrite/pyrrhotite									
	·····										
				in the second second second second second second second second second second second second second second second							

۹.

Hole Number DL-82-13

DRILL.	HOLE	LOG
*********		1100

TROM	TO	DESCRIDTION	SAMPLE	MET	ERS	CORE		ASSAY	
FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH			
142.0 m	154.4 m	MAFIC TUFF - The rock fine to medium grained with fragments to			· .				
		4 mm, dark grey/green, medium soft and non-magnetic. It							
		is weakly layered on a scale of cm's and contains trace							
		sulphide. The rock is sheared, blocky, poor core recovery	· · · · · · · · · · · · · · · · · · ·						
		in some sections. There is 10-15% quartz rich veining	· · · · · · · · · · · · · · · · · · ·						
		\pm sulphide \pm green mica which have variable orientations							
		and are locally fragmented.							
		145.6-148.0 - Poor core recovery, brecciated							
		with angular fragments to 5 mm in a grey/white	······································						
<u> </u>		siliceous mątrix							
		149.5 and 151.0 - Brecciated vein material sheared							
		151.2-154.2 - Poor core recovery							
		· · · · · · · · · · · · · · · · · · ·							
154.4 m	230.4 m	AMPHIBOLITE (RECRYSTALLIZED MAFIC VOLCANIC ROCK). The							
		rock is modium to coarse grained with minor intermittent							
		fine grained sections (which may be the edge of a flow)							
		medium soft and non-magnetic. There is 10% quartz veining							
		present. The veins are up to 20 cm wide, white with no							
		accessory mineralization and variable orientation.							
		Mineralogy of the rock consists of dark green amphibole	· · · · · · · · · · · · · · · · · · ·						
		crystals to 3 mm (50-60%) and white plagioclase crystals							
		to 2 mm (40-50%). Locally up to 8% biotite present in							
		some intervals. The minerals show a local preferred							
		· orientation 70° to C/A							
		154,4-165.5 - 10% quartz rich veining within mafic							
		volcanic 1 mm to 2 cm wide with general orientation							
		45° to C/A.							
							•		

Page....14

1

۲.

٠,

Hole Number

Page....15

FROM	то	DESCRIPTION	SAMPLE NUMBER	MET	ERS	CORE	 1	ASSAY]
154.4 m	230.4 m	cont'd		11.01		10111				
		160.2 - A 20 cm long 1 cm wide quartz vein oriented					 			
		20° to C/A. It offsets a 1 cm wide quartz vein								
		oriented 60° to C/A.								[]
		161.4-162.0 - Fine grained interval								
		165.0-166.0 - Fine grained interval 165.3 to 165.5								
		quartz rich vein								
		166.75-168.6 - Fine grained section with incipient								
		feldspar alteration.					 			
		178.4 - A 3 cm wide pyrite seam								
		173.5-174.0 - Fine grained section banded 3 mm to 1 cm 175.5 - Up to 2 cm wide biotitic (5%) section					 			
		upper and lower contacts are gradational		, i i i i i i i i i i i i i i i i i i i						
		177.2-178.2 - Banded section 70° to C/A								
		178.2-181.6 - Upper and lower contacts are gradational								
		over a few cm's. This section is more mafic and						·		
		coarser grained with 2% quartz rich veining and is								
		foliated 90° to C/A.								
		. 186.8-186.9 - Zone with 40% biotite, 30% chlorite +								
		quartz + plagioclase and 1% sulphide oriented 55° to								
		С/А.								
		187.2-187.5 - Finer grained interval								
		197.9-198.4 - Fine grained interval lighter green,								
		• 1 mm subrounded green lithic fragments to 5% of rock								
		190.8 - A 10 cm wide biotite/chlorite vein								

· · ·

GETTY MINES, LIMITED

Hole Number

Page. . . 16

DL-82-13

T201	T O		SAMPLE	MET	ERS	CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH					
154.4 m	230.4 m	cont'd									
		194.3-196.6 - Fine grained section									
		197.9 - A 20 cm wide massive quartz vein with no									
		accessory mineralization									
		202.7 - A 2 cm wide chlorite/biotite vein oriented									
		45° to C/A									ļ
		205.7 - A 3 cm wide quartz/chlorite/biotite vein						ļ			ļ
		oriented 45° to C/A. Quartz in centre of vein,									<u></u>
		surrounded by chlorite which is rimmed by biotite									L
		220.0-230.4 - Finer grained interval							ļ		ļ
		· · ·									
230.4 m		END OF HOLE									
			· · · · · · · · · · · · · · · · · · ·			Ì			}		Ì
			······································					ļ	 		<u> </u>
											ļ
		······································						ļ			
		· · · · · · · · · · · · · · · · · · ·						ļ			
		· · · · · · · · · · · · · · · · · · ·						ļ			
		•								ļ	
		· · · · · · · · · · · · · · · · · · · ·									
	·	······································						ļ	ļ		
			-+								<u> </u>
					·······						}
}+		***************************************									
L	I	***************************************	_1	LI			······································	l	[L	l

uge i		GETTY MINES, LIMITED Hole Number									-15	
			DRILL HOLE LOG							Dip		
Propert Location	y DETOUR n. 144 KM N	e cochrane, ontario	Core Size ^{BQ} Elev. Collar	Star Com	ting Dat pletion	e. SE Date. SE	PTEMBER PTEMBER	14, 198 17, 198	32 32	Depth	Ang Read	gle Acti
Grid Latitude Departu	PROPERTY 	West 'A' GRID	Bearing	Date	Logged ged by	SE	PTEMBER S. SUTHE	18-19, RLAND	1982	Collar 51.2 m 173.7 m	-50° -60° -63°	- <u>50</u> ° -51° -55°
A.m.	ream			SAMPLE	MET	ERS	CORE			ASSAY		
FROM	ТО	D	ESCRIPTION	NUMBER	FROM	то	LGTH.	Au	Cu	Zn	Ag	
0.0 m	51.2 m	OVERBURDEN										
					1					1		
51.2 m	174.3 m	MAFIC/ULTRAMAFIC METAVOLC	ANIC ROCK - The rock is dark green/				1				1	
	·····	black/blue in colour	, medium hard to medium soft, medium									
		to coarse grained an	strongly magnetic throughout.		1							
		Mineralogy consists	of pyrorene and plagioclase which have	· · ·								
		been altered to serp	entine and magnetite (10-20%). There									1
		is 1% disseminated a	nd fine veinlets of pyrite. Minor	·								
		veining is present t	roughout generally oriented at a									
		shallow angle to the	C/A. Veins consist of magnetite									
	···	± carbonate ± talc s	erpentine.									
											<u> </u>	1
		53.7 m - Magnetite s	eam 20° to C/A		ļ					·	ļ	
		71.4 m - Magnetite s	eam 34° to C/A									
		68.8 m - A 5 mm wide	talc/serpentine vein 10° to C/A				ļ					_
		85.5 m - A 5 nm talc	/carbonate vein 45° to C/A	8266	76.9	77.4	0.5	2	960	440	1.0	
	i	77.0 - Coarse magnet	ite crystals to 4 mm, red staining								1	
		apparent with	1-2% disseminated pyrite and									
		1% chalcopyr	ite stringer oriented 10° to C/A									
			·]	1		1					1

. . **.** .

CETTY MINES, LIMITED

,

Hole Number

Page...?.....

DR ILL H	OLE	LOG
----------	-----	-----

		DESCRIPTION	SAMPLE	MET	ERS	CORE			ASSAY		r
FROM	10	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au .	_Cu_	Zn	Ag	
51.2 m	174.3 m	cont'd									L
		87.9 m - A 3 cm wide magnetite/talc/serpentine oriented					·				
		18° to C/A									
		91.9 - Approximately 1.5 metre section that is lighter		·					l		
		blue/green coarse grained 97.1 a 3 cm wide magnetite									L
		serpentine vein oriented 42° to C/A			l						L
		97.4 - A 1 cm wide serpentine/carbonate/magnetite vein									ļ
		oriented 45° to C/A									ļ
		97.6 - Coarse magnetite crystals with 1% pyrite possible									
		chalcopyrite and red staining									
		119.8-120.3 - Coarse magnetite crystals to 3 mm 1-2%	8267	119.8	120.3	0.5	2	950	1200	0.5	
		pyrite and possible chalcopyrite concentrated									
		in nose of 4 cm wide vein oriented 20° to C/A							 		
		141.3 - A 70 m interval of fine serpentine filled fractures			ļ		 			 	
		oriented 35° to C/A									
	ļ	142.2-142.6 - Talc rich interval	·								
		145.1-151.4 - Contacts are gradational. Zone of fine									
		serpentine veins oriented 30° to 45° to C/A]		
		167.0 - Marks gradual change in rock to end of hole. Unit	<u> </u>	ļ							
		is finer grained concentration of veinlets is weaker			 						ļ
		1% disseminated sulphides and rock is lighter green			ļ						
	<u> </u>	in colour	· · · · · · · · · · · · · · · · · · ·						 		ļ
		170.7-171.3 - Poor Core Recovery - broken blocky core -									ļ
		possible weak shear, strong serpentinization		 	·'				i		ļ
		171.3 - Minor fine carbonate veinlets oriented 30° to 40° to		 							
		C/A									
174.3 m	1	END OF HOLE	l	L			L				

Page 1			GETTY MINES, LIMITE	D	1		Ho	le Number	DL-82	-16	
Propert Location Crid Latitude Departu	y. DETOUR 144 KM N PROPERTY 1.+.00. S. re. 161.+.00	e of cochrane, ontario West 'A' Grid	DR IILL HOLE LOG EQ Elev. Collar. Bearing. Dip. 166.1 m Horiz. Trace. 108,3 m Vert. Trace. 126.5 m	. Stari Com . Date . Logg	Dip Depth Collar 50.0 m 166.1 m	Pests Angl Read - 50° - 59° - 57°	e Actual •50° •49° •48°				
T POV	TO	DEC	CDIDTION	SAMPLE	METI	ERS	CORE		ASSAY		
FROM		DE3		NUMBER	FROM	то	LGTH.				<u> </u>]
0.0 m	50.0 m	OVERBURDEN									
	·									ļ	
50.0 m	94.8 m	MAFIC/ULTRAMAFIC METAVOLCAN	NC ROCK - The rock is dark green to								ļ
		green, medium to coars	e grained, medium soft and magnetic								ļ
		throughout. Mineraloc	y consists of pyroxene and							ļ	ļ
		plagiœlase (50-50) al	tered to serpentine and magnetite.							ļ	ļ
		There is 10% scrpenti	ne rich veins 1-4 mm wide oriented		ļ					<u> </u>	ļ
]		35° to 55° to C/A. No	preferred orientation of crystals		 						
		similar to ultramafic	unit in DL-82-15. Trace sulphides.								
		58.2 - A 3 nm wide ser	pentine rich vein 30° to C/A.		<u> </u>						ļ
		77.4 - Marks gradation	nal contact to finer grained section.								
				<u> </u>	<u> </u>						
		80.1 - Serpentine veir	n, 5 mm wide, oriented 35° to C/A						-		ļ
	<u> </u>	80.6 - Serpentine rich	n veins 60° to C/A, 2-3 mm wide and								
		1-2 cm apart.								ļ	
		89.6 m - Serpentine/p	rite vein oriented 60° to C/A								
1	·····	- finer grained host :	rock							<u></u>	
1		. 94.8 - Blocky core co	ntact marks change to non-magnetic							ļ	
		rock.								ļ	
				<u> </u>							

GETTY MINES, LIMITED

.

Hole Number

		DRILL HOLE LOG									
FROM	TO	DESCRIPTION	SAMPLE	мел	ERS	CORE			ASSAY	·	
FROM		DESCRIPTION	NUMBER	FROM	то	LGTH	·	_		ļ	
94.8 m	117.7 m	MAFIC METAVOLCANIC/TUFF - The rock is medium grained, green,				· · ·	İ				
		medium soft and non-magnetic. Mineralogy consists of									
		amphibole (60% subhedral crystals to 1 mm) and plagioclase									
		(40%) with minor biotite and 1% disseminated sulphide.									
		There is a weak preferred orientation of crystals fo first									
		metre of section. Possible internal layering (marked									
		by change in grain size) subtle over 1-5 cm's.									
		95.3 m - Biotite (3%) and weak preferred orientation of									
		crystals 45° to C/A.									
		99.2 m - Gradational change to finer grained rock									
		101.6 - Internal layering perpendicular to the C/A									
		over a few cm's.									
		108.7-109.1 - Internal of white felsic fragments (5%).									
		Upper and lower contacts well defined by chlorite/biotite/				 	ĺ				
		feldspar 45° to C/A				İ					
		113.5 - Internal layering, possible graded bedding over					ļ			1	
		20 cm oriented 60° to C/A and layers 0.5 cm - 1 cm									
		114.0 - Gradational contact over a few cm's to increase	8269	114.0	115.0	1.0	21	210	41	20.5	
		• in sulphide content (1-3%) disseminated and fine stringers	8270	115.0	116.0	1.0	1	280	32	20.5	
		orientated same as foliation. Rock is weakly magnetic	8271	116.0	117.0	1.0	21	560	44	0.5	
		(pyrrhotite + pyrite). Increase in sulphide content									
		downhole to conductive zone									
		117.2m - Sulphide vein 5 mm wide								ļ	
		· 117.6 m - A 3 cm wide pyrrhotite + pyrite vein 60° to C/A									
		· · · · · · · · · · · · · · · · · · ·									
		·		L		l		1		I]

.

2 1

Hole Number

DL-82-16

TO	DESCE IDTION	SAMPLE	MET	ERS	CORE			ASSAY	······	
	DESCRIFTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	
119.0 m	CONDUCTIVE ZONE - Cherty silicified metasediments tuffs.	8272	117.0	118.0	1.0	1.	670	69	0.5	
	Intercalated with sulphide bearing graphitic metasediments	8273	118.0	118.5	0.5	1	330	71	0.5	
	Upper and lower contacts well defined 55° to C/A.	8274	118.5	119.0	0.5	<u>۲۱</u>	950	170	0.5	
	117.7-118.0 - Cherty silicified metasediments weakly									
	banded with sulphide stringer and veins to 5 mm. 10-15%									
	pyrite/pyrrhotite (possible marcasite)									
	118.0-118.6 - 2-4% pyrite/pyrrhotite disseminated and									
	as stringers oriented 60° to C/A									
	118.6-119.0 - Sulphide bearing graphitic metasediments.									
	Well laminated 65° to the C/A containing 10-15% graphite,									
	15-20% pyrite/pyrrhotite (1:10) as stringers and veinlets]
	to 2 nm.									
	· · · · · · · · · · · · · · · · · · ·						}			
122.4 m	FELDSPAR PORPHYRY - The rock is coarse grained with subhedral									
	feldspar crystals to 5 nm. Groundmass is fine grained									
	(biotite/chlorite ?) 1% disseminated sulphide. No							-		
	preferred orientation of crystals. Sharp upper and lower									
	contacts and fine grained chill margin 20 cm wide. Lower									
	• contact pyrrhotite vein 65° to C/A									
							•		İ	
	TO 119.0 m 122.4 m	TO DESCRIPTION 119.0 m CONDUCTIVE ZONE - Cherty silicified metasediments tuffs. Intercalated with sulphide bearing graphitic metasediments. Upper and lower contacts well defined 55° to C/A. 117.7-118.0 - Cherty silicified metasediments weakly. banded with sulphide stringer and veins to 5 mm. 10-15% pyrite/pyrrhotite (possible marcasite) 118.0-118.6 - 2-4% pyrite/pyrrhotite disseminated and as stringers oriented 60° to C/A 118.6-119.0 - Sulphide bearing graphitic metasediments. Well laminated 55° to the C/A containing 10-15% graphite, 15-20% pyrite/pyrrhotite (1:10) as stringers and veinlets to 2 mm. 122.4 m FELDSPAR FORPHYRY - The rock is coarse grained with subhedral feldspar crystals to 5 mm. Groundmass is fine grained (biotite/chlorite ?) 1% disseminated sulphide. No preferred orientation of crystals. Sharp upper and lower contacts and fine grained chill margin 20 cm wide. Lower contact pyrrhotite vein 65° to C/A	TO DESCRIPTION SAMPLE NUMBER 119.0 m CONDUCTIVE ZONE - Cherty silicified metasediments tuffs. 8272 Intercalated with sulphide bearing graphitic metasediments 8273 Upper and lower contacts well defined 55° to C/A. 8274 117.7-118.0 - Cherty silicified metasediments weakly 8274 Diff.7-118.0 - Sulphide bearing graphitic metasediments. 8274 Mill.0-118.6 - 12-4% pyrite/pyrrhotite disseminated and 83 As stringers oriented 60° to C/A 118.6-119.0 - Sulphide bearing graphitic metasediments. Well laminated 65° to the C/A containing 10-15% graphite, 15-20% pyrite/pyrrhotite (1:10) as stringers and veinlets to 2 mm.	TO DESCRIPTION SAMPLE NUMBER MET NUMBER 119.0 m CONDUCTIVE ZONE - Cherty silicified metasediments tuffs. 8272 117.0 Intercalated with subhide bearing graphitic metasediments 8273 118.0 Upper and lower contacts well defined 55° to C/A. 8274 118.5 117.7-118.0 - Cherty silicified metasediments weakly	TO DESCRIPTION SAMPLE NUMBER METERS NUMBER 119.0 m CONDUCTIVE ZONE - Cherty silicified metasediments tuffs. 8272 117.0 118.0 Intercalated with sulphide bearing graphitic metasediments 8273 118.0 118.5 Upper and lower contacts well defined 55° to C/A. 8274 118.5 119.0 117.7-118.0 - Cherty silicified metasediments weakly 116.0 118.5 119.0 118.0-118.6 - 2-4% pyrite/pyrrhotite disseminated and 118.0 118.0 118.0-118.6 - 2-4% pyrite/pyrrhotite disseminated and 118.0 118.0 118.6-119.0 - Sulphide bearing graphitic metasediments. 110.0 118.6 118.6-119.0 - Sulphide bearing graphitic metasediments. 110.0 118.6 118.6-119.0 - Sulphide bearing graphitic metasediments. 110.0 118.0 118.6-119.0 - Sulphide bearing graphitic metasediments. 110.0 118.0 118.6-119.0 - Sulphide bearing graphite metasediments. 110.0 110.0 122.4 m </td <td>TO DESCRIPTION SAMPLE NUMBER PROM DESCRIPTION CORE LGTH 119.0 m CONDUCTIVE 20XE - Cherty silicified metasediments tuffs. 9272 117.0 118.0 1.0 Intercalated with subhide bearing graphitic metasediments 9273 118.0 118.5 1.5 Upper and lower contacts well defined 55° to C/A. 8274 118.5 119.0 0.5 117.7-118.0 - Cherty silicified metasediments weakly </td> <td>TO DESCRIPTION SAMPLE NUMBER FROM TO LGTH hu(ppb) 119.0 m CONDUCTIVE ZORE - Cherty silicified metasediments tuffs. \$273 110.0 1 0.10 1 Intercalated with subble bearing graphitic metasediments \$273 118.0 118.5 0.5 1 Upper and lower contacts well defined 55° to C/A. \$274 118.5 119.0 0.5 2.1 117.7-118.0 - Cherty silicified metasediments weakly </td> <td>TO DESCRIPTION SAMPLE NUMBER NUMBER DETERS FROM CORE 119.0 m CONDUCTIVE 200E - Cherty silicified metasediments tuffs. 8272 117.0 118.0 1.0 1 670 Intercalated with subhide bearing graphitic metasediments 8273 118.0 118.6 0.5 1 330 Upper and lower contacts well defined 55° to C/A. 8274 118.5 119.0 0.5 2.1 950 117.7-118.0 - Cherty silicified metasediments weakly </td> <td>TO DESCRIPTION SAMPLE NUMBER INFERS FROM CORF ASSAY 119.0 m CONDUCTIVE ZORE - Cherty silicified metasodiments tuffs. 8272 117.0 118.0 10 676 69 Interenlated with subhide bearing graphitic metasodiments 8273 118.0 118.5 0.5 1 330 71 Upper and lower contacts well, defined 55° to C/A. 8274 118.5 19.0 0.5 4.1 950 170 117.7-118.0 - Cherty silicified metasodiments weakly </td> <td>TO DESCRIPTION SAMPLE NUMBER NETRESS FROM CORE </td>	TO DESCRIPTION SAMPLE NUMBER PROM DESCRIPTION CORE LGTH 119.0 m CONDUCTIVE 20XE - Cherty silicified metasediments tuffs. 9272 117.0 118.0 1.0 Intercalated with subhide bearing graphitic metasediments 9273 118.0 118.5 1.5 Upper and lower contacts well defined 55° to C/A. 8274 118.5 119.0 0.5 117.7-118.0 - Cherty silicified metasediments weakly	TO DESCRIPTION SAMPLE NUMBER FROM TO LGTH hu(ppb) 119.0 m CONDUCTIVE ZORE - Cherty silicified metasediments tuffs. \$273 110.0 1 0.10 1 Intercalated with subble bearing graphitic metasediments \$273 118.0 118.5 0.5 1 Upper and lower contacts well defined 55° to C/A. \$274 118.5 119.0 0.5 2.1 117.7-118.0 - Cherty silicified metasediments weakly	TO DESCRIPTION SAMPLE NUMBER NUMBER DETERS FROM CORE 119.0 m CONDUCTIVE 200E - Cherty silicified metasediments tuffs. 8272 117.0 118.0 1.0 1 670 Intercalated with subhide bearing graphitic metasediments 8273 118.0 118.6 0.5 1 330 Upper and lower contacts well defined 55° to C/A. 8274 118.5 119.0 0.5 2.1 950 117.7-118.0 - Cherty silicified metasediments weakly	TO DESCRIPTION SAMPLE NUMBER INFERS FROM CORF ASSAY 119.0 m CONDUCTIVE ZORE - Cherty silicified metasodiments tuffs. 8272 117.0 118.0 10 676 69 Interenlated with subhide bearing graphitic metasodiments 8273 118.0 118.5 0.5 1 330 71 Upper and lower contacts well, defined 55° to C/A. 8274 118.5 19.0 0.5 4.1 950 170 117.7-118.0 - Cherty silicified metasodiments weakly	TO DESCRIPTION SAMPLE NUMBER NETRESS FROM CORE

•

.

.

Hole Number

G		

		DRILL HOLE LOG		•							
TROM	70		SAMPLE	MET	ERS	CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	
122.4 m	126.7 m	SILICIFIED/CHERIY METASEDIMENTARY ROCK - The rock is fine grained,									
	•	hard, magnetic (pyrrhotite). The unit is well banded 60° to									
		the C/A (quartz/feldspar/biotite/chlorite/sulphide) with									
		minor graphite rich horizons to 2 cm. It contains 10-20%									1
		pyrite/pyrrhotite as stringers and veins to 5 mm with									1
		locally 1% chalcopyrite (usually associated with quartz									
		veins and/or pyrrhotite. Well laminated 60° to C/A and									
		locally contorted.		•							
		122.6 - Locally contorted sulphide stringers									i
		122.9 - Marcasite/pyrite vein to 8 mm and weakly contorted	8275	122.5	123.0	0.5	5	1500	280	1.0	
-		123.4 - Quartz/feldspar (possibly lithic fragments with	8276	123.0	123.5	0.5	<u> </u>	2100	740	1.0	
		1-3% sulphides to 1 cm in size aero dynamic shape and	8277	123.5	124.0	0.5	1	890	460	0.5	
		hosted in biotite rich metasediments	8278	124.0	124.5	0.5	۷ ۱	1300	320	0.5	
		124.1-124.6 - Quartz rich section with 5-8% sulphides	8279	124.5	125.0	0.5	1	1100	170	0.5	j
		(some sulphides present in fractures in quartz)	8280	125.0	125.5	0.5	2	890	210	0.5	
		124.6-125.5 - Banded 60° to C/A with 8-10% sulphides	8281	125.5	126.0	0.5	1.	1200	620	1.0	
		3% actinotite in quartz rich section.	8282	126.0	126.5	0.5	1	750	400	1.0	
			8283	126.5	127.0	0.5	4	60	140	<0.5	
		125.5 - A 1.5 cm wide semi-massive pyrrhotite vein 50° to C/A									
		125.7 - A 2 cm wide quartz vein									
		126.2-126.7 - A quartz banded zone with 8-10% pyrite/pyrrhoti	te								
		stringers, graded bedding weak at 126.7. At 126.2 a 2									
		cm wide quartz rich vein 70° to C/A rimmed by pyrrhotite									
		and biotite. At 126.3 contorted pyrrhotite/pyrite									
		stringers amphibolitized.									

FROM

126.7 m

TO

166.1 m

GETTY MINES, LIMITED DRILL HOLE LOG

SAMPLE

NUMBER FROM

DL-82-16

LGTHAu (ppb) Cu (ppm) Zn (ppm) Ag (ppm)

ASSAY

27

20.5

Page....5.....

Hole Number

CORE

METERS

то

fine to medium grained, green, dark green and medium hard. Mineralogy consists of amphibole/feldspar/biotite with 1-3% pyrite/pyrrhotite disseminated and as fine stringers. The rock is moderately foliated 60° to C/A. Approximately 1-5% quartz rich veining throughout the unit. Minor lithic fragments (green/white) angular up to 3 mm long. 126.7-129.8 - Finer grained, with 1-3% sulphide 129.8-134.7 - Coarser grained with a slight increase in 8284 130.0 131.0 1.0 3 160 quartz veining. 131.4 chlorite/biotite rich band 3 cm wide, 50° to C/A 133.0 - Foliation 45° to C/A 134.7-136.2 - Finer grained, small lithic fragments, less veining. 135.8 - A 3 mm wide quartz vein 55° to C/A 136.2-142.0 - Coarse grained, increase in veining. Rock foliated 55° to C/A at 139.6 feldspar rich (pink) vein 5 cm wide. 142.2 - A 3 cm wide quartz rich vein with 1% sulphide oriented 15° to C/A 143.2-143.5 - Coarser grained stretched lithic fragments

DESCRIPTION

AMPHIBOLITIZED MAFIC TUFFS/EPICLASTIC METASEDIMENTS - Upper contact is gradational over a few cm's. The rock is

to 4 mm. Contact defined, 50° to C/A

not as stretched as 143.2-143.5.

144.3-145.3 - Coarser grained, somewhat biolitic, fragments

. . .

GETTY MINES, LIMITED

Page....6.....

Hole Number DL-82-16

DRILL HOLE LOG	
----------------	--

$1 \odot$ DESCRIPTION NUMBER FROM TO LCTIL hat proper butters To (perm) butters To (perm) butters To (perm) butters 126.7 m icon1d <th>TRONG</th> <th>TO</th> <th>DESCRIDTION</th> <th>SAMPLE</th> <th colspan="2">E <u>METERS</u> CO</th> <th>CORE</th> <th></th> <th></th> <th>ASSAY</th> <th></th> <th></th>	TRONG	TO	DESCRIDTION	SAMPLE	E <u>METERS</u> CO		CORE			ASSAY		
126.7 m 166.1 m cont'd	FROM		DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppm)	Cu (ppm)	Zn (ppm)	Aq (ppm)	
154.6-156.6 - Slightly coarser grained, locally biotitic - <td>126.7 m</td> <td>166.1 m</td> <td>cont'd</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	126.7 m	166.1 m	cont'd									
154.8 - A 3 cm wide quartz vein m			154.6-156.6 - Slightly coarser grained, locally biotitic									
160.8 - 161.3 - Coarser grainod, foliated 30° to C/A -			154,8 - A 3 cm wide quartz vein									
165,1-166,1 m - fine pyrrhotite rich stringers with 8285 165,1 166,1 1.0 2 100 46 0.5 5% quartz veining 3 mm - 1.5 cm wide 1			160.8 - 161.3 - Coarser grained, foliated 30° to C/A									
58 quartz veining 3 mm - 1.5 cm wide			165.1-166.1 m - fine pyrrhotite rich stringers with	8285	165.1	166.1	1.0	۲ ک	120	46	0.5	
166.1 m END OP HOLE I			5% quartz veining 3 mm - 1.5 cm wide									
166.1 m END OF HOLE Image: Constraint of the second o												
Image: A set of the set of t	166.1 m		END OF HOLE									
Image: A set of the set of t					<u> </u>	·						
Image: Sector of the sector	<u> </u>		·									
Image: state of the state				· · · · · · · · · · · · · · · · · · ·								
Image: series of the series					,							
Image: A set of the set of t												
Image: state in therest in the state in the state in the state in												
Image: state in the state												
Image: state in the state				· · · · · · · · · · · · · · · · · · ·								
Image: state stat										+		
Image: state stat			······································				·····			+		
Image: state stat												
Image: state stat												
										1		

Page 1	• • • · · · · · · · · · · · · · · · · ·	GETTY MINES, LIMITE	ĎD	nber [ber DL-82-18						
		DRILL HOLE LOG						ſ	Dip '	Fests	7
DETOUR SOUTHCore SizeBQStarting DateQCTOBER1982Location142 km NE OF QCCHRANE, ONTARIOElev. Collar.DomesticCompletion DateCOTOBER 24, 1982GridPROPERTY (WEST 'A')Dip45°Date Logged.OCTOBER 24-26, 1982Latitude1+75NLength.148.1 mLogged by.G.A. TREMBLAYDeparture99+00WHoriz. Trace.113.2 mLogged by.G.A. TREMBLAY								82 	Depth Collar 24.4m 148.1m	Angl Read -45° -53° -44°	e Actual -45 ⁰ -46 ⁰ -37 ⁰
FROM	то	DESCRIPTION	SAMPLE	METI	TO	CORE	Au(ppb)	Culture	ASSAY	h) hate	
	24.4 m	OMERRURDEN - sand, gravel boulders.	NOMDER	F IV O IVI	10			cutppi		W AG (P	
										<u> </u>	
24.4 m	25.5 m	FELDSPAR PORPHYRY - Medium to coarse grained. Greenish light	C-8286	24.4	25.5	1.1	1	220	51	0.5	
		grey to medium grey in colour. The rock consists of feldspar,		· · · · · · · · ·			[<u>+</u>		
		biotite and quartz; inequigranular, anhedral to subhedral,									
		phenocrysts of feldspar up to 2mm in size. The pistachio-green									
		colour is given by 2 minor alterations of feldspar to epidote.									
		Disseminated pyrite up to 1%. Lower contact at 40° to C/A.									
25.5 m	76.3 m	SILICEOUS METASEDIMENTS (siltstone, mudstone, grey-wacke) - Fine	C-8287	25.5	27.5	2.0	21.	22	72	0.5	
		to coarse grained. Light to dark grey in colour. The rock	C-8288	27.5	29.5	2.0	乙1	11	64	20.5	
		consists of biotite, quartz and feldspar. Well laminated and	C-8289	29.5	31.5	2.0	٢1	32	43	20.5	
		and banded $(40^{\circ}-45^{\circ}$ to C/A). Conglomeratic at 34.0, 53.3 and	C-8290	31.5	33.5	2.0	٢1	49	66	0.5	
		66.3 m. Occasional pegmatite sweats (34.0, 44.0 and 63.0 m).	C-8291	33.5	35.5	2.0	<u>د</u> ا	33	66	0.5	
		Drag folded at 32.0 and 42.6 m. Up to 2% finely disseminated	C-8292	35.5	37.5	2.0	<u>کا</u>	44	78	0.5	<u></u>
		pyrite/pyrrhotite with occasional blebs and very narrow stringers	C-8293	37.5	39.5	2.0	21	52	150	20.5	L
		parrallel to foliation. Minor small reddish pink garnets from	C-8294	39.5	41.5	2.0	1	57	140	0.5	ļ
		25.5 to 34.2 m, but pelitic and highly garnetiferous from 34.2	C-8295	41.5	43.5	2.0	21	87	140	1.0	
`	, 	to 61.0 m; garnets up to 5 mm in size. Greyish white quartz	C-8296	43.5	45.5	2.0	1	100	290	0.5	<u> </u>
		veinlets at 48.5, 54.7, 55.1 and 52.3 m. Occassionally very	C-8297	45.5	47.5	2.0	<u> 2 1</u>	54	130	0.5	
		minor chloritization (58.9m). From 73.9 to 74.2 m feldspar	C-8298	47.5	49.5	2.0	21	59	160	0.5	

•

.

GETTY MINES, LIMITED

Hole Number

.

Page...².....

		DRILL HOLE LOG	•								
FROM	TO		SAMPLE	MET	ERS	CORE			ASSAY		
FROM		DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)Ag (ppm)	
	·	porphyry. The highly siliceous (silicification?) medium grained	C-8299	49.5	51.5	2.0	<u>را</u>	59	160	0.5	
		magnetic-rich, slightly garnetiferous magnetite-rich rock from	C-8300	51.5	53.5	2.0	21	36	68	0.5	
		64.5 to 66.3 m may be a siliceous (cherty) iron formation. The	C-8301	53.5	55.5	2.0	1	41	82	0.5	
	<u> </u>	siliceous metasediments may contain some small sections of mafic	C-8302	55.5	57.5	2.0	21	45	80	0.5	
		to intermediate tuffs.	C-8303	57.5	59.5	2.0	21	56	100	0.5	
			C-8304	59.5	61.5	2.0	1	55	92	0.5	
		• • • • • • • • • • • • • • • • • • •	C-8305	61.5	63.5	2.0	<u>۲</u>	54	85	0.5	
			C-8306	63.5	65.5	2.0	<u>۲</u>	35	79	0.5	
			C-8307	65.5	67.5	2.0	1	59	79	0.5	
			C-8308	67.5	69.5	2.0	41	39	95	0.5	
·			C-8309	69.5	71.5	2.0	Z 1	18	120	0.5	<u></u>
			C-8310	71.5	73.5	2.0	L 1	14	86	< 0.5	
			C-8311	73.5	75.5	2.0	41	16	45	4 0.5	
			C-8312	75.5	76.3	1.8	1	13	58	< 0.5	
76.3 m	80.6 m	SILICEOUS METASEDIMENTS (siltstone, quartzite) - Fine to medium	C-8313	76.3	78.3	2.0	<u>۲۱</u>	15	74	20.5	
		grained, light greenish gray to dark gray in colour. Foliation	C-8314	78.3	80.6	2.3	۷1	15	110	10.5	
		at 40° - 45° to C/A. Fine muscovite (sericite) parallel to									
		foliation. At times, cherty and highly siliceous.									
80,6 m	83.4 m	METASEDIMINIS (garnet-amphibolite mudstone) - Fine to medium	C-8315	80.6	82.6	2.0		44		2.0	
		grained. Dark greenish grey in colour. Highly garnetiferous and	C-8316	82.6	83.4	0.8	21	43	32	< 0.5	
		slightly amphibolitized. Rock consists of biotite, quartz, feld-									
		spar, garnet, amphibole. Foliation $35-40^{\circ}$ to C/A. Non-magnetic.									
	·	Minor sulphides (py/po), mainly stringers parallel to foliation.									
		The rock is similar to a pelite.									

2.

GETTY MINES, LIMITED

Hale Number

Page...³

1.00

•		OBITT MINES, DIMIT		F	lole Nu	mber	DL-8	32-18	j		
		DRILL HOLE LOG						L			
	mo		SAMPLE	METERS		CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	
83.4 m	87.5 m	SILICEOUS METASEDIMENTS (siltstone, sandstone, greywacke) - Fine	C-8317	83.4	85.4	2.0	10	32	140	0.5	
		medium grained. Light greenish grey to dark greenish grey.	C-8318	85.4	86.9	1.5	1	99	240	1.5	
		Slightly garnetiferous and amphibolitized. Sulphides(py/po) 1-2%.	C-8319	86.9	87.2	0.3	1	89	250	1.0	
		Foliated at 35-40° to C/A. At times, cherty and highly siliceous	C-8320	87.2	87.5	0.3	L 1		70	1.0	
		Quartz feldspar porphyry (83.7-84.0, 84.3, 84.5 m). Quartz vein									
		(86.9-87.2); whitish grey in colour and containing 1-2% py in		}							
		fractures.									
87.5 m	91.5 m	QUARTZ FELDSPAR PORPHYRY - Medium to coarse grained. Light to	C-8321	87.5	89.5	2.0	۷1	13	56	40.5	
		medium grey in colour. Highly fractured from 87.5 to 89.7 m	C-8322	89.5	91.5	2,0	۷1	31	180	20.5	
•		sulphides (py) less than 1%.		• • •							
91.5 m	108.5 m	SILICEOUS (CHERTY) METASEDIMENTS (siltstone, greywacke) - Fine to	C-8323	91.5	93.5	2.0	2	32	120	20.5	
		medium grained. Light greenish-grey to dark grey in colour.	C-8324	93.5	95.5	2.0	<u>ک</u> ا	63	120	0.5	
		Foliation at 30-35 ⁰ to C/A. Muscovite (sericite) parallel to	C-8325	95.5	97.5	2.0	<1	63	83	40.5	
		foliation. Drag fold at 92.5 m. Sulphides (po/py) <1%. Quartz	C-8326	97.5	99.5	2.0	۷1	61	85	۲٥.5	
		feldspar porphyry from 103.2 to 104.2 m with a sharp contact at	C-8327	99.5	101.5	2.0	21	48	100	0.5	
		55° to C/A.	C-8328	101.5	103.2	1.7	1	7	43	20.5	
			C-8329	103.2	104.2	1.0	ζ1	6.5	42	<0.5	
			C-8330	104.2	106.2	2.0	2	12	170	۷۵.5	
			C-8331	106.2	108.5	2.3	1	13	75	۷۵.5	
108.5 m	115.2 m	CONDUCTIVE ZONE - Sulphide bearing silicified (cherty) metasedi-	C-8332	108.5	109.6	1.1	3	63	45	0.5	
		ments (siltstone, intermediate tuff?) with up to 30% pyrrhotite/	C-8333	109.6	110.6	1.0	۷۱	24	34	20.5	
	'	pyrite. Very fine to fine grained. Light greenish grey to dark	C-8334	110.6	111.1	0.5	2	81	37	40.5	
		grey in colour, Laminated and banded at 40-45° to C/A. Sulphides	C-8335	111.1	111.6	0.5	۷۱	35	34	40.5	
		are disseminated, banded and in blebs. Slightly graphitic at	C-8336	111.6	112.1	0.5	15	82	10	2.0	

•									Pa	age ⁴	• • • • •
•	ì	GETTY MINES, LIMIT	ED			I	Jole Nu	mber	DL-	82-18	
		DRILL HOLE LOG						L			
FROM	то	DESCRIPTION	SAMPLE	ME	<u>rers</u>	CORE			ASSAY	· · · · · · · · · · · · · · · · · · ·	
			NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)Ag (ppm)	<u> </u>
······	·	111.7 m. Minor garnets.	C-8337	112.1	112.6	0.5	18	110	730	2.5	
<u></u>		108.5 - 110.6 m - 5-10% po/py; silicified metasediments	<u> C-8338</u>	112.6	113.2	0.6	12	95	6.5	< 0.5	
			0.0240	113.2	114.2	1.0			71	20.5	
		110.6 - 111.6 m - 15-20% po/py; silicified metasediments	<u>C-8340</u>	114.2	115.2	1.0	<u>~1</u>	<u></u>	80	20.5	
		111.6 - 113.2 m - 25-30% po/py; one small fracture filled with chlorite.							· · · · · ·		
<u> </u>											
		113.2 - 115.2 m - U.5% po/py; silicitied metasediments similar to									
		108.5 - 110.8 m but with less sulphides.									
115.2 m	148.1 m	AMPHIBOLITIC SILICEOUS METASEDIMENTS (siltstone, greywacke, mafic	C-8341	115.2	117.2	2.0	21	80	40	20.5	
	· · · · · · · · · · · · · · · · · · ·	tuff) - Fine to medium grained. Light greenish grev to dark	C-8342	117.2	119.2	2.0	8	75	31	40.5	
		greenish grey in colour. Laminated and banded at 35-40° to C/A.	C-8343	119.2	121.2	2.0	1	65	35	< 0.5	
		118.95 - 119.15 m - Light grey guartzite	C-8344	121.2	123.2	2.0	۷ ا	81	26	LO.5	
·		119.20 - 119.25 m - pegmalite (sweat?)	C-8345	123.2	125.2	2.0	۷۱	73	47	40.5	
		119.90 - 119.93 m - pegmalite	C-8346	125.2	127.2	2.0	۷1	61	35	۷.5	
		120.40 - 120.60 m - Light grey quartzite	C-8347	127.2	129.2	2,0	۷1	46	45	<0.5	
		120.60 - 120.70 m - Microgranite (aplite?)	C-8348	129.2	131.1	1.9	1	25	39	<0.5	
										· · · ·	
	· ·	120.80 - 120.90 m - Microgranite(aplite?)	C-8349	131.1	136.1	5.0	1	57	43	۲0.5	
							<u> </u>				
							1				
								d e t			
	,							· .			
					-	_					

.

, · · · •

.

GETTY MINES, LIMITED

Hole Number

Page......

÷.

en an fein an de le grant de la de la de la de la desta de la desta de la desta de la desta de la desta de la d

DL-82-18

DRILI	L HOLE	LOG	
the state of the s	and the second se	the second second second second second second second second second second second second second second second s	and the second design of the s

TROM	70			METERS		CORE ASSAY					
FROM		DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	yd (bbw)	
			C-8350	136.1	138.1	2.0	21	53	39	20,5 [°]	
			C-8351	138.1	140.1	2.0	21	78	29	<0.5	
115.2 m	148.1 m	121.40 - 121.50 m - pegmatite	C-8352	140.1	142.1	2.0	۷1	68	31	40.5	
		129.20 - 131.10m-quartz feldspar porphyry	C-8353	142.1	144.1	2.0	41	50	43	40.5	
		NOTE: From 131.1 to 136.1 m core lost in transit (drill-camp);	C-8354	144.1	146.1	2.0	41	73	57	40.5	
		only 1.20 m recuperated. Luckily, it was logged at the	C-8355	146.1	148.1	2.0	1	120	29	20.5	
		drill site.		·							
-		136.1 - 142.7 m - Mafic tuff py <1%									
	,,							·			
		145.7 - 147.2 m - Amphibolite (recrystallized mafic tuff)									
148.1 m		END OF HOLE									
			· · · ·								
	[
			······································								
			· ·								
· ·											
					······································						

 $\frac{1}{2} (n + 1)$

1.1

				Dip	Dip Tests						
Property. DETOUR SQUTH. Location144 KM N.E. OF COCHRANE, ONTARIO GridC-4. Latitude					Starting Date MARCH.14/83. Completion Date. MARCH.16/83. Date LoggedMARCH.16-17/83 Logged byR.B. SCRATCH						le Actu -55° -50° -43°
1 Jul	Tellard		5	SAMPLE	METH	DC	CORE		ASSAY	7	
ROM	то	DESCRIP	PTION	NUMBER	FROM	TO	LGTH.				
0.0 m	32.0 m	OVERBURDEN									
32.0 m	107.1 m	METASEDIMENTARY ROCK									
		- dark green to black dirty silts	stone								
· · · · ·		- rock is massive and uniform		•							1
		- drilling down dip as the core a	angle								T
		varies between 0-15° to the	$e c/a$ to $0-5^{\circ}$					Í			
		(parallel) the average									
		- some beds 1 cm thick are extrem	nely biotite rich								
		50% biotite suggesting roch	< was originally								
		more pelitic									
		- very minor 1 cm thick beds of :	light green tuft		·						
		. (parallel to c/a)									
		- occasional barren gtz stringer	rs cut core								
		- 45.6, 45.8-46.1, 48.3-48.6 the	re is qtz-chlorite-				ļ				
		K feldspar pyrite veinlets	parallel to c/a		 					_	
	i	3-5 cm thick				·····	· · · · ·				
		- pyrite in gash fracture at 46.	5		 						
		43.6-44.2 - thick section biotite	e rich (50%) sedimentary rock								
		- rock has less than 1% pyrite the	hroughout		 		ļ				
1		- rock is distinctly non magnetic	B						1	1	

الكين المتزال التقلا الريين

Hole Number DL-83-21

DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE NUMBER	METERS		CORE			ASSAY		
				FROM	ТО	LGTH					
32.0 m	'107.1 m	cont'd									
		- rock becomes sandier (although still the same dirty									
		siltstone) and even more massive down hole									
		particularly between 66-77 m									
		- 105.7 - 105.9 - coarse grained qtz-K feldspar									
		veinlet oriented at 60° to c/a									
		- rock is monotonous and uniform throughout									
		- at 105 m bodding still closely parallels the c/a									
107.1 m	112.3 m	METASEDIMENTARY ROCK AND FELDSPAR CRYSTAL TUFF (?)									
		- the same biotite rich (30-60%) fine grained									۰.
۱۳۵۶ - ۲۰۰۰ میں بر ایس کی کر کر کر کر کر کر کر کر کر کر کر کر کر		pelitic metasedimentary rock as described			<u>.</u>						
		previously intercalated with grey to whitish									
		qtz foldspar crystal tuff? (this rock could				•					
<u> </u>		be a fairly clean arkosic wacke)									
		- feldspar Xtal tuff consists of 40% rounded to subhedral									
		white feldspar crystals (grains?) approx, 1-2 mm in									
		diameter to 15% biotite flakes disseminated through-									
		out set in a siliceous grey ground mass - 1% py						1			
		- the feldspar crystal tuff shows vague internal layering									
		but contacts well defined and parallel bedding in						1			
<u></u>		the pelite units. contacts and layering at 0-10°		-					\		
		to c/a						1	· · ·		<u></u>
		- feldspar crystal tuff located at 107.1-107.4, 110.0-112.3									
		- pelitic rock shows minor development of aluminosilicates.									
l]			
GETTY MINES, LIMITED

· · · ·

Hole Number DL-83-21

		DRILL HOLE LOG							
FROM	ΨO	DESCRIPTION	SAMPLE	MET	ERS	CORE		 ASSAY	
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	·····	 	
112.3 m	152.7 m	METASEDIMENTARY ROCK	· · ·					 	
		- similar f. gr. black biotite rich pelitic			· ·	н., с., с., с., с., с., с., с., с., с., с			
		metasedimentary rock as described at 32.0 - 107.1							
		intercalated with thin (2-5 cm) bands of light							
		green tuff and minor feldspar crystal tuff as							
		described at 107.1 - 112.3 m.							
		- bedding is oriented at 10-20° to c/a							
		- light green tuff bands make up 5% of section							
		- feldspar crystal tuff? (arkosic wacke?) located at	· ·	· ·					
		120.3 - 121.0 (contains 1% po)							
		- 123.6 - 123.8 - white chert to 15% biotite flakes							
		conformable to bedding in pelitic rocks							
		- white chert to biotite flakes at 125.2-125.3				· ·			
		- ground core at 129.8 - 130.1, 132.0 - 132.3, 137.3-137.5,							
		151.2-152.7							
		- qtz-feldspar-chlorite-biotite-py chemical sediment							
		at 144.3 and at 147.8 - both units are 2 cm							
		thick and conformable to bedding at 10° to c/a							
		- at base of hole bedding is at 5-10° to c/a							
		E.O.H. 152.7 m							
		NB - No samples taken							
		- conductor not explained - it would appear							
		that hole was drilled down the dip							
						• • •			
					· · · · · · · · · · ·				

Page 1	GETTY MINES, LIMITED Hole Number						DL-83	DL-83-22				
			DRILL HOLE LOG	i					Dip	Tests		
Property Location Grid Latitude, Departur	C-4 0+755 c. L2+00W	OF COCHRANE, ONTARIO	Core Size	Start Com Date Logg	MARCH 18, 1983 Completion Date. MARCH 21, 1983 Date Logged. MARCH 21-22, 1983 Logged by. R. SCRATCH				Depth Collar 29.6 101.2	Ang Read -61.5 -61	le Actua -55° -53° -52.5°	
Sit	torbund								l	<u> </u>	<u></u>	
FROM	то	 [DESCRIPTION	SAMPLE NUMBER	METI FROM	ERS TO	CORE LGTH.		ASSAY]		
0.0 m	29.8 m	OVERBURDEN/CASING									_	
29.8 m	60.9 m	METASEDIMENTARY ROCK - S	URSTONE:									
		- rock is extremely homo	genous and uniform throughout									
·		- consists of a grey-bro	wn quartz rich siltstone							1	1	
		which is usually	massive but does display		1							
		bedding oriented	at 10-15° to core axis							1	1	
		- approximate mineralogy	50% quartz, 50% chlorite +				1				1	
		biotite, 1% py			1		1					
		- rock distinctly non ma	gnetic				1			1		
		- rare qtz or qtz + chlo	rite + py veinlets cross cut core		1							
		- a large qtz-chlorite-p	y vein located at		1					1	T	
		41.35-41.70 with	contacts at 40° to c/a									
		- rock extremely compete	nt with no ground core -							T.		
		core recovery 100	8						·			
		- fine grained medium gr	een chlorite rich tuff									
		band at 50.5-51.0	, contacts at 10° to c/a									
										1		
No. of Concession, Name							terterindistication and the					
		· · · · · · · · ·			•							

•

Hole Number DL-83-22

	ma		SAMPLE	MET	ERS	CORE	ASSAY					
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH						
60.9 m	62.6 m	METASEDIMENTARY ROCK TO TUFF										
		- intercalated grey-brown siltstone (as at 29.8 - 60.9)										
		to dark green chlorite-biotite-quartz rock										
		(intermediate tuff) to 1% py										
		- contacts (bedding) at 5-10° to c/a										
		- tuff at 60.9-61.4, 61.8-62.3, 62.4-62.6										
62.6 m										ļ		
02.0 11	07.7 m	METASEDIMENTARY ROCK - STELISTONE										
		due to pr increase in chlorite t histitle at the								<u> </u>		
		aue to an increase in chiorite + plotite at the				<u> </u>		·		╂────┦	· ·	
		siltatore originally						<u> </u>		<u> </u>		
		- rock is non magnetic			· · · · · · · · · · · · · · · · · · ·							
		- bedding is at 5-10° to c/a								<u> </u>		
		- occasional 1 cm thick bands of chlorite-rich rock		<u> </u>		<u> </u>	1			łł	j	
		may indicate a tuffaceous component to sedimentation	<u> </u>							<u> </u>		
		- 75.1 - 75.2 - rock slightly bleached and silicified to				<u>}</u>				1		
		light green colour	· · ·							· · ·		
		- rare qtz and or qtz chlorite pyrite stringers cross cut core										
. <u></u>		- 70.5-70.7 - qtz clots										
										1	1	
											-	
										1		
										1		
	· · · · · · · · · · · · · · · · · · ·					[.	1		
•	•		<u>ا</u> ـــــــ	I		L	l	l	I	L	-	

南

· · ·

Hole Number DL-83-22

DRILL HOLE LOG

TRON(DESCRIDTION	SAMPLE METERS			SAMPLE METERS CORE			ASSAY		
FROM	10		NUMBER	FROM	то	LGTH					
87.2 m	88.3 m	SILTSTONE - METASEDIMENTARY ROCK									
		- as at 62.6 - 87.2 but with ≤1 cm									
		thick beds of slightly conductive									
		material running parallel to the c/a									
		- this is non magnetic				ļ		 			
		- conductivity due to a bed containing py + graphite,	·····								
		also pyrite veinlets cross cut core									
		- this unit is not responsible for the geophysical anomaly					ļ				
	l	- bedding at 0-5° to c/a							. 		
							ļ				
88.3	101.2 m	METASEDIMENTARY ROCK - SILITSTONE					 				·
ļ		- as above but non conductive	· · · · · · · · · · · · · · · · · · ·			ļ					
		- non magnetic					ļ				
		- grey green in colour		ļ							
		- containing 1-2% py disseminated and fracture controlled		<u> </u>		ļ	ļ	ļ			
		- more biotite than chlorite in matrix which constitutes				1					
	· · · · · · · · · · · · · · · · · · ·	65% of rock, qtz the remainder	 			ļ					
		E.O.H. 101.2 m									
	-										
		- bodding at 5-15° to c/a. Therefore hole drilled down dip									
		- conductor unexplained									
L		- rock extremely competent and uniform	· · · ·	1			ļ				
		- 100% core recovery				ļ					
L	L				·						
							ļ				
L	L	1				L	<u> </u>				
											+

Page. 3:

Ŭ,	GETTY MINES, LIMITED Hole Number								er [DI-83-23				
		DRIL	L HOLE LOG						5	Dip 1	Fests]		
Propert Location	y. DETOUR I	AKE Core Size		. Start . Com	ing Dat	MAI eM Date MAI	RCH 25, RCH 28,	1983 1983	De	pth	Angl Read	ie Actual		
	tran 11	Bearing	• • • • • • • • • • • • • • • •	•					C	ollar		~ 55°		
Grid Latitude Departu	WEST 'A BL 0+00 re. 0+50W	Dip55° Length139 Horiz. Trace	3.m. m. .5.m.	Date	Logged ed by	MAI K.: R.	RCH 28, S. SUTHE SCRATCH	1983 RLAND I	39 125	.6.m		<u>-55°</u> -46°		
J. Mar	rkind		······································	0.11.007.00			LCORP	·····		CAN				
FROM	TO .	DESCRIPTION		NUMBER	MET FROM	ERS TO	LGTH.			<u>55A Y</u>		<u> </u>		
0.0 m	40.9 m	OVERBURDEN												
40.9 m	63.4 m	ULTRAMAFIC ROCK												
		The rock is dark green, medium to coarse						.						
		grained, medium hard and magnetic through	ut.				1				ļ			
		Mineralogy consists of 30% coarse green									ļ	<u> </u>		
		serpentine crystals and 10-20% mag	netite								ļ	<u> </u>		
		crystals (alteration). The magnet	ite crystals								ļ			
		occur up to 5 mm in size (at 53.0 m). No	visible				· .	-			ļ	ļ		
		sulphides.					-					l		
		Carbonate +serpentine + magnetite + hemati	te								ļ	<u> </u>		
		veins, 1 mm to 1 cm wide occur throughout			 	<u> </u>		-			ļ			
		. 5% of the unit oriented 55° to c/a.						ļ			ļ	<u> </u>		
		Carbonate is generally in the centre of						-			ļ	ļ		
·		the vein 2 mm wide vein at 44.8 m and a 1	<u>cm</u>				- [ļ			ļ			
		wide vein with coarse calcite crystals at									 	_		
	·	47.9 m,					-	-			ļ			
		. Magnetite seams are present throughout 10%						<u> </u>				ļ		
	·	of the rock, 1 mm to 3 mm wide, oriented						<u> </u>			 	4		
		50° to 70° to c/a	· · · · · · · · · · · · · · · · · · ·					<u> </u>			<u> </u>	<u> </u>		
		Light green serpentine veins 2 mm to 5 mm							<u> </u>		1	1		

Page'l

,

r	DL-83-23

Hole Number

DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE METERS			SAMPLE METERS CORE			r	ASSAY				
			NUMBER	FROM	TO	LGTH					!			
					• • • • •				. 2		L			
		wide and oriented 50° to c/a axis are												
		present in 3% of the rock						·						
		Blocky core: 53.3 - 53.5 m, 62.5-62.7 m												
	ļ	The rock gradually becomes finer grained												
		down hole to 63.4 m. Lower contact marked				· · ·								
		by change in magnetism,												
63.4 m	69.7 m	METASEDIMENTARY ROCK (biotite rich siltstone)												
		The rock is green, medium soft medium to												
		coarse grained and non-magnetic.												
		Mineralogy consists of 40-50% biotite with												
		feldspar, chlorite, quartz. It is weakly												
		foliated 65° to 75° to c/a. Trace sulphides												
		are present and there is no apparent veining.												
		The rock becomes coarser grained in middle of		· · ·										
		section.												
		The core is very blocky from 65.7 to 69.7.												
		Two metres of core were lost from 64.7 to 72.4.												
		66.2 - 69.3 - A magnetic zone of mafic fine to												
		medium grained rock containing 1% pyrrhotite												
		and 1-3% magnetite. This unit may be contact												
		margin of ultramafic rock.							 					
											L			
				<u> </u>	L									

r

٠

.

Hole Number DI-83-23

FROM	ΤO	DESCRIDTION	SAMPLE	METERS		CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu(ppm)	Zn (ppn)Ag (ppm	þ
69.7 m	98.6 m	ULIRAMAFIC ROCK			• • •						
		The rock is very similar to rock from 40.9 m to 63.4 m									
		The rock is medium to coarse grained,									
		dark green, medium hard and magnetic throughout									L
		(magnetite)									
		Carbonate + serpentine + magnetite veins occur	• •								
		45° to C/A at 87.4 m (1 cm wide) and	D00089	71.9	72.2	0.3	1	17	650	< 0.5	
		88.2 m (1 cm wide) 1% sulphide sometimes									L
		associated fine magnetite seams are oriented									
		55° to 75° to c/a									
		Serpentine altered veins, rimmed by magnetite									
		crystals present 2% of rock (1 cm wide vein oriented									
		10°to C/A at 89.5 m).									
		Minor pyrite/pyrrhotite occurs on fracture surfaces									
		89.2 - 89.35 - Breccia zone consists of 2-3%									
		pyrite/pyrrhotite stringers rimming fragments									
		of !ost (ultramafic rock) and fragmented carbonate									
		serpentine veins (5%). Minor red hematite staining									
		rims some fragments.				<u> </u>					
		96.6 - 98.6 - Gradational change to finer grained							 		
		ultramafic rock lower contact defined by change								·	
		in magnetism									
							r l	2			
				1		•					i

Page. 3

.

,

Hole Number DL-83-23

DRILL HOLE LOG

FROM	ΤO	DESCRIPTION	SAMPLE	MET	ERS	CORE			ASSAY		
	+ ·		NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppn) Aq (ppm)	
98.6 m	109.4 m	METASEDIMENTARY ROCK - (biotite rich impure siltstone)	.								
		The rock is fine to medium grained, green, non-magnetic									
		and medium soft. The unit is very similar to 63.4-									
		69.7. The rock mineralogy consists of 40-50% biotite,									
		feldspar, quartz and chlorite. There are no visible									
		sulphides. The rock is weakly to strongly foliated,				·					
·····		45° to c/a with the foliation getting stronger down									
		hole. The unit also has gradational changes in grain									
		size:							·		
		98.6 - 99.7 - fine grained									
		99.7-102.0 - coarse grained biotite									
		102.0 - 109.5 - finer grained, 3% thin qtz veins									
		35° to 45° to c/a									
109.4 m	116.1	CONDUCTIVE ZONE									
		Siliceous cherty sulphide bearing metasedimentary rock.			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10						
		Rock mineralogy consists of quartz (chert), biotite,									
		minor chlorite and 15-40% pyrite/pyrrhotite. The	• • • • • •								
		rock is hard, fine to medium grained, brown/green									
		and magnetic throughout most of the unit (where	1. I. I. I. A.								
		pyrrhotite is present) The rock is strongly banded									
		45° to c/a (mainly quartz sulphide laminations) but	1								
		locally contorted and evidence of soft sediment									
		slumping. Sulphides occur as disseminations									
		veinlets and massive veins to 5 cm. Upper and									
		lower contacts are sharp									

Page...⁴.....

CETTY MINES, LIMITED

.

,

DL-83-23 Hole Number

<u>,</u>		DRILL HOLE LOG					-		· · · · · · · · · · · · · · · · · · ·	
FROM	TO	DESCRIDTION	SAMPLE	METERS	CORE	;		ASSAY	1	
TROM		DESCRIPTION	NUMBER	FROM T	D LGTH	Au (ppb)Cu (ppm)	Zn (ppn	Ag (ppm)	
		109.4-109.6 - fine pyrite/pyrrhotite stringers	D00090	109.4 109.	0.5	13	930	22	0.5	
		and quartz bands 45° to c/a	D00091	109.9 110.	4 0.5	7	1300	120	0.5	
			D00092	110.4 110.	0.5	16	1600	47	20.5	
		109.6-110.0 - chert/quartz fragments 1mm to 2 cm	D00093	110.9 111.	4 0.5	11	610	31	40.5	
		subangular, also occurs in bands	D00094	111.4 111.	0.5	21	670	37	10.5	
		15-40% pyrite/pyrrhotite, weakly contorted	D00095	111.9 112.	1 0.5	16	1900	52	0.5	
		laminations	D00096	112.4 112.	0.5	130	970	63	0.5	
			D00097	112.9 113.	1 0.5	11	330	25	40.5	
		110.0-110.7 - 25-40% sulphide, less quartz	D00098	113.4 113.	0.5	21	780	19	0.5	
		than 109.6-110.0	D00099	113.9 114,	1 0.5	50	1500	21	0.5	
			D00100	114.4 114.	0.5	8	1600	130	1.0	
		110.7-112.1 - 40% quartz as band to 2 cm wide,	D00101	114.9 115.	4 0.5	9	950	35	0.5	
		20-40% banded sulphide more pyrrhotite in this	D00102	115.4 116.	0.7	2	390	41	40.5	
		interval - strongly magnetic. Weakly contorted								
		and evidence of slumping from 111.4-111.6								
		112.1-112.6 - 20% quartz, 15-20% banded sulphide.								
		At 112.2 a 5 mm wide pyrite/pyrrhotite vein cross								
		cuts bedding with 3 mm offset of beds								ļ
										ļ
		112.6-116.1 - 25-30% quartz/chert as bands to						1		
		2 cm and as 1 nm - 5 nm subrounded fragments/grains								ļ
		enclosed by sulphide 10% to semi massive pyrite/pyrrhotite							· · · ·	
		weakly contorted laminations at 114.6 m.						<u> </u>		ļ
	,								1	
L			l			<u> </u>				L
							,			

1

٦ ____

... ·

Hole	Number	DL-83-23

	DRIL	l ho	LE I	LOG
--	------	------	------	-----

	-		SAMPLE	MET	ERS	CORE			ASSAY		
FROM	то	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppn	Ag (ppm)	
						 			· · · · ·		
		At 115.1 50% quartz as banding and interlocking grains.									
		There is a decrease in guartz content at 115.4 - 5-15%									
		sulphide. A 2 cm wide massive pyrite vein 'band' with									
		py crystals to 1 cm at 115.9									
116.1 m	122.35 m	METASEDIMENTARY ROCK (incure siltstone)	D00103	116.1	116.6		A	160	20	40.5	
		The rock is grow modium hard	D00104	116.6	117.1	0.5	1	66	15	60 5	
		fine to modium grained and non-magnetic	D00104	117 1	117.6	0.5	 	00	10	-0.5	
		It is finely handed 45° to C/A	D00106	117.6	118.1	0.5		62	<u>10</u>	40 5	
		Mineralogy consists of guartz biotite	D00107	118.1	118.6	0.5		04	27	40 E	- 'e ; '
		chlorite with 1-2% disseminated sulphide	D00108	118.6	119.1	0.5		76	20	40 5	
		and 103 quartz bands (45° to c/a, 1 mm to 5 mm wide)	D00109	119.1	119.6	0.5	5	120	25	0.5	
		containing 1-2% sulphide	D00110	119.6	120.1	0.5		98	27	0.5	
			D00111	120.1	120.6	0.5	9	130	30	0.5	
			D00112	120.6	121.1	0.5	8	100	16	40.5	
122.35 m	123.0 m	CONDUCTIVE ZONE	D00113	121.1	121.6	0.5	4	78	19	40.5	
		Siliceous cherty sulphide bearing metasedimentary	D00114	121.6	122.35	0.75	5	69	28	< 0.5	
		rock. Similar to previous conductive zone	D00115	122.35	123.0	0.65	5	360	53	40.5	
		109.4 to 116.1 but less quartz and sulphide.						<u> </u>	· · · · · · · · · · · · · · · · · · ·		
		It is banded 35° to c/a and locally weakly									
		contorted. Contains 10-20% pyrite/pyrrhotite									
		and is weakly magnetic where pyrrhotite is present								<u> </u>	
		at 122.6 1 cm wide sulphide band and at 122.7 a	1. 1. 4 . 1								
		5 nm wide massive pyrite vein cross cuts quartz									
		banding (oriented 10° to c/a)								1	

Page...6

.

•

. .

nber DL-83-23

DRILL HOLE LOG

Hole Number

FROM	τo	DESCRIDTION	SAMPLE METERS				ASSAY						
FROM		DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Aq (ppm)			
123.0 m	123.9 m '	METASEDIMENTARY ROCK (impure siltstone)	D00116	123.0	123.5	0.5	3		-59	40.5			
		As from 116.1 to 122.3 m. Contains 5%	D00117	123.5	124.2	0.7	3	200	43	40.5			
		quartz bands and 1-3% sulphide veinlets											
		(and disseminations) oriented 45° to c/a											
123 .9 m	124.0	CONDUCTIVE ZONE									· · · ·		
		A narrow width of 15-20% banded pyrite/pyrrhotite											
		and very minor quartz. Bands are oriented 45° to											
		C/A and are weakly contorted. The rock is moderately						·					
		magnetic due to pyrrhotite											
124.0 m	124.2 m	METASEDIMENTARY ROCK (impure siltstone)											
		As from 123.0 to 123.9 except contains											
		very minor sulphide (1-2%) and very minor											
		quartz bands (3%)											
124.7 m	124.8 m	CONDUCTIVE ZONE	D00118	124.2	124.8	0.6	9	1000	39	0.5			
		Siliceous cherty sulphide bearing metasedimentary											
		rock. Contains 10% quartz and 15-25% pyrite/											
		pyrrhotite. The rock is banded 45° to C/A (at											
		128.7 35°) but locally contorted and strongly											
		magnetic due to pyrrhotite.											
124.8 m	125.2 m	METASEDIMENTARY ROCK (impure siltstone)											
		The rock is fine grained, medium hard,											
		non-magnetic and black/green. It is		 									
		banded 45° to C/A and contains 1-2% sulphides and very minor	quartz ban	‡s.	l								

.

.

.

Hole Number DL-83-23

DRILL HOLE LOG	
	SAMPLE

FROM	TO	DESCRIDTION	SAMPLE	MET	ERS	CORE			ASSAY		
		DESCRIPTION	NUMBER	FROM	то	LGTH					
125.2 m	137.4 m	METASEDIMENTARY ROCK (impure siliceous siltstone)							· • • • •		
		The rock is grey/green, fine to medium grained,					•	,			
		medium hard and non-magnetic. Rock mineralogy									
		consists of quartz, biotite, chlorite.									
		It is banded 45° to c/a although locally									
		slump textures are evident (128.1). Much									
		of the quartz (20-40%) occurs in beds (to 3 cm wide)									
		and interlocking grains oriented 45° to c/a. 1-3%									
		sulphide (mainly pyrite) is present as fine			2						
		dissemination and very fine veinlets									
137.4 m	139.3 m	METASEDIMENTARY ROCK (impure siltstone)									
		The rock is fine grained, grey, medium hard									
		and non-magnetic. It is finely banded 45°									
		to C/A (locally weakly contorted). Upper									
		contact marked by change in grained size	s - co								
		and lack of quartz beds. Contains 1-2% disseminated						1 I			
		sulphide.				·					
	139.3 m	End of Hole									
						ļ					
			l	I]					

PROJECT ABUILD	<u></u>	<u>ne, vec</u>			PROPERTY _	<u>[1] [] [] [</u>	IC LAK	<u>e 17.V.</u>			Date MARCH	183	
DRILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Au (PPb)	Cu	Zers Lecross	Ag	ts (com:	11n Corini	110	(rs (ingg)		
P3 0000	74.9	72.2	0.3		17	650	<0.5	10	720	21	1.1		
				+2	93()	77	105						
00090	109.9	10.4	0.5	7	1800	120	0.5	130	120	2			
00092	110.9	110.9	0.5	16	1600	47	40.5						
00093	110,9	111.4	0.5	11	610	31	40.5	10	110	6	06		
00094	111.4-	111.9	0.5	2.1	670	37	40.5						
00035	111.9	112.4	0.5	16	1900	52	0.5	10	150	2	1.5		
00096	1174-	112.9	0.5	130	970	63	0.5						
00077	112.9	113.4	0.5		330	25	40.5	10	130	4.1	0.5		
00018	113.4	113.9	0.5	21	780	19	0.5						
00099	113.9	114.4	0.5	50	1500	21	0.5	10	94	5	0.8		
00100	1104.14	114.9	0.5	6	1600	1.30	10						<u></u>
00101	114.9	115.4	0.5	9	950	35	0.5	10	110	2	1.5		
00102	115.4	116.1	0.7	Z	390	41	40.5			·	, , , , , , , , , , , , , , , , , , ,		
00/03	116.1	116.6	0.5	4	160	20	40.5	10	130	1	0.4		
00104	115.6	117.1	0.5	3	66	15	40.5						
00105	113.1	117.6	0.5	6	44	16	40.5	10	130	1	0.2		
001	117.6	118.1	0.5	3	62	2.7	40.5						

29

35

40.5

20.5

20.5

44

75

120

0.5

0.5

<u>D.5</u>

118.6

119.1

119.6

118.1

118.6

119.1

00:07

00108

00109

5

2

5

БA

92

120

10

10

 ${\mathcal Z}$

2

0.2

0.1

of

						COME	MIGAT				ge "Inde	of	
PROJECT ABITIE	N YULC	ANIC	BEEL		PROPERTY _	DETCO	P LAKE				Date <u>MARC</u>	<u>H 183.</u>	
NC 88-23 DRILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Au	C(L (com)	Zn	AB	E (pom)	11n Coomi	110	ft. (pom)		
000110	119.6	17.0.1	0.5	2	68	27	2.5						
Dooli	120.	120.6	0.5	9	130	30	0.5	10	100	2	Ü.I		
00112	12.0.6	12].1	0.5	8	ICC	16	10.5						
00113	124.1	121.6	0.5	4	78	19	40.5	XID	120	21	0.2		
00114	121.6	12.2.35	0.75	5	69	28	20.5						
00115	112.35	123.0	0.65	5	રાષ્ટ	53	40.5	210	150	<1	0.2		
00116	123.0	123.5	0.5	3	140	59	< c.5						
001174	125.5	124.2	0.7	3	200	43	20.5	10	140	3	0.3		
00118	12年2	12.4.8	0.6	9	1000	39	0.5						
—													
				<u> </u>		<u> </u>							
	1	1	1	1	1	1	1		1	1	1	1	1

					DRIL	COPE	ASSAXS			P000	*****	
ROJECT _ ABILL	si Veleo	unic B	elt		PROPERTY _	Deteur	Lake			Date DOV.	38,198	<u>છે કે</u>
RILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Au.	an 1000	22	Acz (com)					
DK-83-23				1								
D03077	105,4	105,9	0.5	9	68	22	40.5					-
870	105.9	106.4	0,5	L <u>?</u>	100	07	20,5	,	 			
079	106.1	106.9	0.5	21	53	27	10.5		 			
୦୫୦	106.9	107.4	0.5	3	280	30	40.5		 			
180	107.4	107.9	0.5	2	150	-33	20.5					
<u> </u>	104.9	108.4	0.5	42.	190	31	10.5	•				
083	1084	108.9	0.5	42	230	141	10.5					
084	108.9	107.4	0.5	4.	314	સુર	0.5					
												Í
085	1:24.8	125.3	0.5	42	110	52	20.5					
086	195.3	125.8	0.5	L2	410	48	10.5	, 				
084-	125,8	126.3	0.5	12	84	08	4 (1,5		 			
880	126.3	126.8	0.5	12	-(-5	59	10,5					
089	126.8	127.3	0:5	12	57	54	40.5					
090	124.3	127.8	0.5	42	110	45	40.5					
091	1.274.8	128.3	0.5	-2	85	32	1.0					
092	1983	198.8	0.5	12	190	40	1.0					
9 13	128.8	129.3	0.5	12	170	43	C.5	••••••••••••••••••••••••••••••••••••••	 			
094	129.3	129.8	0.5	12	140	66	0.5		 			ļ
015	1098	130.3	0.5	12	110	57	1.0.5	****				
096	130.3	130,8	0.5	42	177	45	20.5					

Page 1			GETTY MINES, LIMITED						nber	DL-83-26			
	,		DRILL HOLE LOG						1	Dip '	Tests		
Property Location	,	LAKE J.V. NE OF COCHRANE, ONT	Core SizeBQ Elev. Collar	. Start . Com	ing Dat	e Aj Date. Aj	oril 17 aril 20	7/83)/83	••	Depth	Ang Read	le Actual	
Grid Latitude Departu: Y.Scatter	C=9 L2+001 re1+50E.	••••••••••••••••••••••••••••••••••••••	Bearing	Date Logg	Logged ged by	A)	pril 18 .BSca .S. Sut	atch herlar	3 nd	Collar 20.7 m 124.1 m 242.9 m	-54.6 -59° -60°	-50° -46° -50° -51°	
FROM	TO		ESCRIPTION	SAMPLE	METRI	ES_	CORE		1	ASSAY			
	21.1			NUMBER	FROM	10		Autopo		<u>1 2n (ppn</u>	Y Ag (ppr	ч <u> </u>	
21.1	31.3	GARNETIFEROUS PO-BEARING I	NTERMEDIATE TUFFITE	D00244	21.1	21.6	0.5	2	76	46	0.5		
		- well bedded at 70-80	° to core axis	D00245	21.6	22.1	0.5	1	59	36	40.5		
		- reddish, 1-5 mm anhe	dral garnets developed throughout	D00246	22.1	22.6	0.5	4	79	49	40.5		
	·····	particularly within	the more mafic beds - 3 to 5% garnet	D00247	22.6	23.1	0.5	4 1	110	40	40.5		
		erratically distribu	ited throughout	D00248	23.1	23.6	0.5	2	110	60	0.5		
		- contains 5% bedded r	o + minor py throughout but locally	_D00249	23.6	24_1	0.5	41	_56	43	20.5		
		po is abundant enouc	th to create conductive sections as at	000250	24.1	24.6	0.5	2	99	54	-0.5		
	·	27.5 - 28.0, 30.7 -	- 31.3 m.	D00251	24.6	25.1	0.5	6	140	52	0.5	~	
		- rock consists of 1-5	5 cm beds of intercalated mafic	D00252	25,1	25.6	0.5	2	140	36	1.0		
	·	chlorite + biotite 1	rich beds with more siliceous beds	D00253	25.6	26.1	0.5	2	170	31	0.5		
	····	dominated by guartz	and plaqioclase.	D00254	26.1	26.6	0.5	2	60	49	0.5		
	·····	- rock appears to be a	a mixture of sedimentary, chemical	D00255	26.6	27.1	0.5	2	25	46	0.5		
			faceous components - hence the term	D00256	27.1	27.6	0.5	2	43	53	0.5	_	
		tuffite.		D00257	27.6	28.1	0.5	7	230	33	1.5		
		- the conductive zone:	s within this unit are moderate strength	D00258	28.1	28.6	0.5	2	78	43	L 0.5		
1		but probably suffic:	ient to account for the observed max-	D00259	28.6	29.1	0.5	6	150	52	1.0	_	
		min + mag anomalies		D00260	29.1	29.6	0.5	8	140	64	1.0		
	·	- 21.1 - 24.3 is more	e massive than rest of section and	D00261	29.6	30.1	0.5	9	61	54	0.5		
·		contains less po an	d no garnet - this section of core is	D00262	30.1	30.6	0.5	1	72	63	0.5		
		mafic to intermedia	te tuff	D00263	30.6	31.3	0.7	16	210	49	1.5		

· •

ĸ.

•

Page....2.....

DL-83-26

DRILL HOLE LOG

FROM	TO	DECOLOTION	SAMPLE	METR	METRES		METRES			ASSAY			
FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH	lu (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)			
	·	- towards the base of this section the amount of blueish chert											
		component increases at the expense of the volcanic tuffaceou	s										
		components and the lower contact is gradational with the						ļ					
		underlying_unit			·····								
31 3	34 4	DO-BEADING CHEOTY THEE				<u> </u>							
		- chart comprises 70% of this unit with the remainder	D00264	31.3	31.8	1-0.5-		49		40.5			
		- chert comprises 70% of this unit with the remainder	D00265	31.8	32.3			35	22	40.5			
		tuffaceous component (10%) and hedded no (5%)	D00266	32.3	32.0	0.5	<u>ــــــــــــــــــــــــــــــــــــ</u>	12	12	-0.5			
	·	La l'accous component (10%) and beaded po (5%).	D00267	22.0	22.0		- <u>-</u>	1 12	13	-0.5			
		- bedding well preserved at /0° to 80° to core axis	D00268	22.0	21.0	0.5	<u>+</u>	44	27	20.5			
		- Not enough to present for this section to be conductive	D00209	33,0	34,4	0.0		45	<u> </u>	-U.J.			
		- garnet is present but sporadically developed in patches											
	·····	at 31.8, 33.5, 34.0, and 34.4 m.						1					
								1					
34.4	34.7	FELDSPAR PORPHYRY DYKE				}		1					
		- light green, medium to coarse grained feldspar porphyry											
		dyke, containing 50% 1-2 mm anhedral feldspar phenocrysts											
		sit in a fine grained grey siliceous matrix											
		- feldspars are slightly altered give the light green colour											
		- both contacts conformable to bedding so this maybe a sill		<u> </u>									
		or crystal tuff.	<u></u>										
		- weak foliation at 65° to core axis.				<u> </u>							
·				·									
54.7						<u> </u>							
		- modium green, fine grained, massive intermediate tuffaceous						+					
		rock											
		$\frac{1}{1-25} \text{ po } + \text{ py}$					<u> </u>						
		- panuliki poorly developed at 80° to core axis.					<u> </u>						
		- 37.6 - 38.1 m slightly coarser grained				1					· · · · · · · · · · · · · · · · · · ·		
		- lower contact sharp at 80° to core axis	[<u></u>	1		1					
		-		i		1							
								1					
							•						

GETTY MINES, LIMITED

· ·

с. Х. •

Hole Number

DL-83-26

DRILL HOLE LOG

			SAMPLE	METR	ES	CORE		 ASSAY		
FROM	то	DESCRIPTION	NUMBER	FROM	то	LGTH				
38.1	39.8	PO-BEARING CHERTY TUFF								
		- distinctly different from 31,3 - 34,4 m								
]	- very fine grained grey cherty rock with a mixed intermediate								
		tuff component as at 34.7 - 38.1 m.				ļ		 		· · · · · · · ·
		- contains 5% bedded po						 		
		- bedding is at 70° to core axis						 		
		- both contacts knife-sharp.								
39.8	45.3	INTERMEDIATE TUFF						 		
		- as at 34.7 - 38.1 m					,	 		
			·····			ļ		 		
45.3	47.3	PO-BEARING METASEDIMENTARY ROCK		·				 		
-		- extremely variable rock unit containing fine grained black				ļ		 		
		argillite 30%, light brown biotite bearing siliceous						 		
		siltstone 40% and 30% chert all interbedded with bedding						 		
		at 70-85° to core axis.						 	ļ	
		- contains 10% bedded po in all rock types and locally	·····					 		
		abundant enough to constitute short conductors as at						 		
		45.9 - 46.0, and $46.1 - 46.3$ m.						 		
			· · · · · · · · · · · · · · · · · · ·					 		
47,3	54.6	INTERMEDIATE THEF						 		
		- medium green, time grained massive to poorly banded inter-						 		
		modiate tuff	· · · · · · · · · · · · · · · · · · ·	<u> </u>				 		
		- shifting to 34.7 - 30.1 but less massive						 		
		- chlorite + biotite dominates rock with lesser atz +						 		
		plagioglase.				<u> </u>		 		
		- 1% py + po bedded and fracture controlled	·····			1		 		
		- 49.0 - 49.5 - altered to a light green colour						 ·		
		-54.3 - 54.5 - more felsic section				1		 		
			<u> </u>	†				 		
	+					1		 		
	,									

1

•

Page....4.....

DRILL HOLE LOG

	H	Iole Nu	mber	DL-83	-26	
	CORE			ASSAY		
`0	LGTH					

			SAMPLE	METRI	ES	CORE			ASSAY		
FROM	ТО	DESCRIPTION	NUMBER	FROM	ТО	LGTH					
54.6	55.9 m	GARNETIFEROUS INTERMEDIATE TUFF									
		- as from 34.7 - 38.1 - but garnet bearing.									
		- modium green fine grained, massive intermediate tuffaceous							 	ļ	
		rock.									
		- 1 - 2% sulphide									
		- Pink garnets to 5 mm.	. <u></u>]
								· .		l	!
55.9	62.4 M	FRAGMENTAL FLOW/PORPHYRY									ļ
		- The rock is brown/grey (with minor green bands) hard,	······································								
		fine to medium grained and weakly magnetic where pyrrhotite					·			ļ. <u></u>	
		is present. The rock consists of ~ 10-15% subhedral				ļ		Į		l	
		quartz eyes (locally coroded) and euhedral feldspar		·					ļ	ļ	
·····		crystals to 5 mm. Some crystals show a dominant orient-									
		ation 80° to core axis. There is <5% biotite and 1%							<u> </u>	·	
		sulphide (disseminated and fine veinlets). The rock is									
		weakly banded 80° to the core axis - the bands vary in			<u></u>	<u> </u>		<u> </u>			
		width 2 mm to 2 cm but average about 1 cm. They also									
		vary in colour - brown (biotite rich), green (alteration			(1.4				<u>-</u>		
		of feldspar ?) and white (quartz rich) 60.4 m, 61.8 m	D00270	60.4	61.4	1.0	<u>1</u>	18	54	40.5	
	<u> </u>	62.2 m respectively.	D00271	61.4	62.4	1.0	41	44	59	60.5	
		The rock is interupted by conformable horizons of mafic						<u> </u>			
		metascomentary rock/turi									
		57.2 - 57.3 m - (plotite rich)						<u> </u>		.	
		56.5 - 56.6 M - Igreen minor supprides)									
		Upper contact well defined 80° to core axis.	·							1	
		Lower contact well defined 80° to core axis - marked by									
		2 cm wide pv/pp									
	•										
				ļ		l	l	l		است. ا	
	and the same of the same in some										

Page.....⁵.....

DL-83-26

7

GETTY MINES, LIMITED

:

•

•

Hole Number

DRILL HOLE LOG

PROM TO LGTH 62.4 20,1 m MPEC EPIGLAPTIC MEMORY DOCK/NFF Image: Constraint of any history provides and non-momentic. Nineralogy consists of any history provides that have Image: Constraint of any history provides and non-momentic. Nineralogy consists of any history provides and non-momentic. Nineralogy consists of any history provides and non-momentic. Nineralogy consists of any history provides and non-momentic. Nineralogy consists of any history provides and non-momentic. Nineralogy consists of any history provides and non-momentic. Nineralogy consists of any history provides and non-momentic. Nineralogy consists of any history provides and non-momentic. Nineralogy consists of any history provides and non-momentic. Nineralogy consists of any history provides and non-momentic. Nineralogy consists of provides and non-momentic. Nineralogy consists of provides and non-momentic. Nineralogy consists of provides and non-momentic. Nineralogy consists of provides and non-momentic. Nineralogy consists of provides and non-momentic. Nineralogy consists of provides and non-momentic. Nineralogy consists of provide and non-momentic. Nineralogy consists of provide and non-momentic. Nineralogy consists of provide and non-momentic. Nineralogy consists of provide and non-momentic. Nineralogy consists of provide and non-momentic. Nineralogy consists of provide and non-momentic. Nineralogy consists of provide and non-momentic. Nineralogy consists of provide and non-momentic. Nineralogy consists of non-to-column provide and non-momentic. Nineralogy consists of provide and non-momentic. Nineralogy consists of non-to-column provide provide and non-momentic. Nineralogy consists of non-to-column provide provide and non-momentic. Nineralogy consists of non-to-column and momentic. Nineralogy consists of non-to-column and momentic. Nineralogy consists of non-to-column and momento-momentic. Nineralogy consists of non-				SAMPLE	METRI	ES	CORE			ASSAY	·	
62.4 70.1 m MAPPE DECLASTIC SPRAND/ARMAY ROCK/UFF	FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH					
	62.4	70.1 m	MAFIC EPICIASTIC METASEDIMENTARY ROCK/TUFF						ļ			
anomatic. Mineraloxy consists of amphibol/feldspar with trace			The rock is fine to medium grained, green, medium soft and non-									
subplides. The rock is moderately foliated in0° to core axis			magnetic. Mineralogy consists of amphibole/feldspar with trace									
and wakly banded (fine/coarse) 80° to core axis up to 1 cm			sulphides. The rock is moderately foliated 80° to core axis						ļ			
wide.			and weakly banded (fine/coarse) 80° to core axis up to 1 cm						ļ			
64.3 - 65.5 - Mudstore: very fine grained green, soft			wide,									I
Sedientary textures and banded 80° to core axis.			64.3 - 65.5 - Mudstone, very fine grained green soft									
69.7 - gtz + blebby py/po			and concertory find granded grand and a concertory									·
69.7 - gtz + blebby py/po Ideal zones of weakly magnetic rock beginning 66.2 m. 70.1 73.0 m SHLCKUS METASEDMINTARY ROCK/TUFF The rock is fire to medium grained grey/breem, hard and weakly magnetic througheat due to pyrrhotite. The rock minoralogy consists of quarts/chlorite/ho			sedimentary textures and banded of to core axis.									i{
Ideal zones of weakly magnetic rock beginning 66.2 m. Ideal zones of weakly magnetic rock beginning 66.2 m. 70.1 73.0 m SILICKOS METASEDIMENTANY ROCK/TUFF The rock is fine to medium grained grey/bream, hard and Ideal zones weakly nagnetic throughout due to pyrhotite. The rock Ideal zones minoralogy consists of guartz/chlorite/biotite with 2-33. Idiscominated, weinkle and blekby pyrite/pyrabetite. The rock is banded 80° to the core axis. At 70.7 m there is a 10 cm Ideal zones file sominated, weinkle to Probatite band (contacts 80° to core axis) Ideal zones file sominated pyrite/pyrabetic band (contacts 80° to core axis) Ideal zones file sominated pyrite/pyrabetic band (contacts 80° to core axis) Ideal zones file sominated pyrite/pyrabetic band (contacts 80° to core axis) Ideal zones file sominated pyrite/pyrabetic band (contacts 80° to core axis) Ideal zones file sominated pyrite and 2-38 mica flakes. Weakly banded 80° to Ideal zones form axis. At 72.8 a 1 cm wide graphite/pyr/po band Ideal zones			69.7 - gtz + blebby py/po						<u> </u>			
Ideal zones of weakly magnetic rock beginning 66.2 m. Ideal zones of weakly magnetic rock beginning 66.2 m. 70.1 73.0 m SHLCEOUS METASEDIMINTARY ROCK/TUFF The rock is fire to medium grained grey/bream, hard and Ideal zones of gravit/chlorite/biotite. The rock minoralogy consists of gravit/chlorite/biotite with 2-33. Ideal zones of weakly magnetic throughout due to pyrrhotite. The rock dissoninated, voilet and blekky pyrite/pyrrhotite. The rock Ideal zones of onder the rock and the roc						·····						{
70.1 73.0 m SILLCEOUS METASEDIMENTARY ROCK/TUFF			Local zones of weakly magnetic rock beginning 66.2 m.									
70.1 73.0 m SILLEDUS METASEDIMENTARY FOCK/TUFF										1		
The rock is fine to medium grained grey/brown, hard and	70.1	73.0 m	SILICEOUS METASEDIMENTARY ROCK/TUFF									
woakly nognetic throughout due to pyrrhotite. The rock			The rock is fire to medium grained grey/brown, hard and									i{
mineralogy consists of quartz/chlorite/biotite with 2=32.			weakly magnetic throughout due to pyrrhotite. The rock									
disseminated, voinlet and blebby pyrite/pyrhotite. The rock is banded 80° to the core axis. At 70.7 m there is a 10 cm			mineralogy_consists of quartz/chlorite/biotite_with 2-3%			~					-	
is banded 80° to the core axis. At 70.7 m there is a 10 cm			disseminated, veinlet and blebby pyrite/pyrrhotite. The rock-									
semi-mussive pyrite/pyrhotite band (contacts 80° to core axis)			is banded 80° to the core axis. At 70.7 m there is a 10 cm	··					}	+		
1 that is a wery, good conductor. 000272 72.0 72.5 0.5 <1			semi-mussive pyrite/pyrrhotite band (contacts 80° to core axis)									·
1 71.25 = 71.4 m, 72.15 = 72.40 m and 72.43 = 72.55 m = 500272 72.5 73.0 0.5 2 140 51 0.5 Intermediate to Felsic Dyke or cherty tuff = hard, grey, non- b00273 72.5 73.0 0.5 2 140 51 0.5 magnetic greenish alteration (of feldspar 2) with <1% diss-			that is a very good conductor.	D00272	72 0	72 5	0.5	.1	A1	52	105	
Intermediate to Felsic Dyke or cherty tult - naro, grey, non-			71.25 - 71.4 m, $72.15 - 72.40$ m and $72.43 - 72.55$ m =	D00272	72.5	73.0	0.5	2	140	51	0.5	
eminated pyrite and 2-3% mica flakes. Weakly banded 80° to			magnetic groupish alteration (of feldspar 2) with <1% diss-									
Core axis.			eminated pyrite and 2-3% mica flakes. Weakly banded 80° to									
At 72.8 a 1 cm wide graphite/py/po band			Core axis.									
Image: state stat			At 72.8 a 1 cm wide graphite/py/po band		·					ļ		
									 			
		·							<u> </u>			
]i				<u> </u>	
		· · · · · · · · · · · · · · · · · · ·					1			l		

Hole Number

Page....6.....

DL-83-26

DRILL HOLE LOG

.

:

ς.

•

•

			SAMPLE	METRI	ES	CORE			ASSAY		
FROM	ТО	DESCRIPTION	NUMBER	FROM	то] LCTH	Au (ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)	
73.0	75.0	CONDUCTIVE ZONE (WEAK)									
		- The rock consists of 5% graphite with 5-8% banded py/po									
		intercalated with siliceous metasedimentary rock. The									
		rock is fine grained and weakly magnetic and is banded				ļ					
		(1 mm to 1 cm) 80° to the core axis. Soft sedimentary				L					
		deformation textures are apparent.	•								
		Individual bands of graphite and sulphide are weakly							l	ļ	
		conductive.				1					
		73.0 - 73.6 m - Graphitic sulphide bearing rock 5-8%	D00274	73.0	73.7	0.7	_ 3	93	100	0.5	
		py/po	D00275	73.7	74.1	0.4	4 '	140	270	0.5	
		73.6 - 73.7 m - Siliceous Metasediemtary Rock 1-3% py/po	D00276	74.1	74.6	0.5	6	110	520	0.5	
		banded.	D00277	74.6	75.2	0.6	4	190	570	0.5	
		73.7 - 75.0 - Sulphide bearing graphitic metasedimentary									
		rock banded 80° to core axis with 5% graphite and 5-7%				<u> </u>					
		sulphide. Minor quartz or chert horizons to 3 cm. At					 				
		74.6 m quartz with blebby pyrrhotite (fracture filling).				l					
		At 73.7 soft sedimentary slumping, boudimage of individ-									
		ual bands, pyrite in pressure shadow of guartz lenses.									
				<u>`</u>							
. 75.0	<u>80.8 m</u>	FRAGMENTAL FLOW/PORPHYRY				\					
		- The rock is grey/brown, hard, medium grained and non-	00278	75.2	76.2	1.0	<u>K1</u>		140	0.5	
		magnetic. Rock mineralogy consists of 15-20% 1 mm to 5 mm			·····						
		subhedral to anhedral white feldspar phenocrysts and 10%									
		2 nm to 5 nm quartz (some coroded) eyes in a fine grained		·							
		siliccous groundmass. There is 3% muscovite biotite							·		
		(flakes to 5 mm 76.0 m). The majority of feldspar									
		phenocrysts are stretched 80° to core axis (unit appears									
		banded 80° to core axis). There is some bleaching									
		associated with minor quartz veining is unit (75.6.m).									
		At-80.6 80.8 lighter grey, bleached phenocrysts not									
	<u> </u>	distinct.					}				
		Upper contact gradational over 3 cm's and lower contact				{					
		sharp 80° to core axis.				<u> </u>					{
				<u> </u>			<u> </u>	<u> </u>			
	<u> </u> _	line and the second second second second second second second second second second second second second second		Į		1	l	[

.

. . . •

Hole Number

DL-83-26

4	DR	TT.T.	HOLE	1.00
	DI	ستدسلت	TODE:	

	T O		SAMPLE	METR	ES	CORE			ASSAY		
FROM		DESCRIPTION	NUMBER	FROM	ТО	LGTH					
80.8	84.7	SILICEOUS SILTSTONE/ARGILLITE									
		- The rock is grey, fine to medium grained medium hard and									
		locally magnetic where pyrrhotite is present. The rock									
		is banded 80° to the core axis. There is 1-2% sulphide							ļ		<u> </u>
		as disseminations, fine layers 80° to core axis and in							ļ		ļ
		pressure shadows of minor quartz lenses.					·				
		80.8 - 81.0 - Sulphide bearing graphitic metasedimentary	D00280	80.8	81.8	1.0	1	120	150	40.5	
		rock.	D00281	81.8	82.4	0.6	3	270	29	0.5	ļ
		84.5 - 84.7 - Cherty. Siliceous banded metasedimentary				ļ				· · · · ·	
		rock.					·		<u> </u>	ļ	
								_			
84.7	82.8 m	CONDUCTIVE, ZONE,								· 	
		- Sulphide bearing graphitic metasedimentary rock. The		84,5	85.0	0.5	4		22	40.5	ļ
		rock is black, fine grained and weakly magnetic with							}		
		3-5% bodded py/po and 5% graphite. The rock is banded	D00283	85.0	85.8	8_0_	41		680	0.5	
		R0° to the core axis.							<u> </u>		
85.8	86.6 m	FRAGMENTAL FLOW/PORPHYRY									<u> </u>
		- as 75.0 - 80.8	D00284	85.8	86.3	0.5	L 1	33	32	K0.5	
		- grey, hard fine grained with minor magnetite seams				1				1	
		oriented 45° to the core axis.							ļ		
							·			·	
86.6	92.1 m	GRAPHITIC ARGILLITE									
		 The rock is black(grey fine grained medium soft and 				ł		╸┤┯╍╌╌	<u> </u>		{
		weakly magnetic where pyrrhotite is present. The rock									
		the second secon				+					{
		29 9 - 20 1 - Somi-massive purite vain with minor	D00285	89 0	90.0	1.0	5	1100	130	1.5	
		00,0 - 07,1 - 00000000 pyrice very with million									
		89.1 - 89.6 - Silicous metasedimentary rock 3-59	D00396	01 2	92 3	1 0	0	220	2000	1 0	
		sulphide.		1 2402-				_ <u></u>			
		90.3 - 90.4 - cherty tuff - weakly magnetic 1% sulphide					[
	1										
										<u> </u>	·

Page....⁸.....

F

GETTY MINES, LIMITED

. .

Hole Number

DL-83-26

DI. 112 1. 0 0 0 0 0 0 0 0 0	-DR	ILL	HOLE	LOG
------------------------------	-----	-----	------	-----

			SAMPLE	METR	ES	CORE			ASSAY		
FROM	то	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	
92.1	96.0 m	SILICEOUS METASEDIMENTARY ROCK/CHERTY TUFF									******
		- The rock is hard, fine to medium grained with 1% blebby									
		py/po. Sharp upper contact. Minor quartz rich lenses									
		92.4 - 92.5 - semi- massive pyrrhotite band									
		92.9 - 93.1 - graphitic argillite with 1-3% sulphide									
96-0	110.5 m	CONDUCTIVE ZONE (WEAK)				l					
		- Graphitic argillite (fine grained, black, weakly									
		magnetic with 3-5% sulphide) intercalated with cherty								İ	
		tuff metasedimentary rock/cherty tuff (weakly magnetic					•				
		1-2% disseminated sulphide).	D00287	96.0	97.0	1.0	5	200	990	1.5	
		97.7 m - A 2 cm wide pyrite lens, quartz rich lenses to									
-		5 nm with sulphide in pressure shadow.	D00288	97.7	98.7	1.0	2	350	430	1.0	
		98.0 - Laminatod 75° to core axis	D00289	98.8	99.0	0.2	6	820	1100	1.5	
		98.5 - 98.7 - Semi-massive pyrrhotite band with minor									
		pyrite.	D00290	100.1	100.6	0.5	6	690	2100	1.0	
		98.7 - 100.1 m - Siliceous metasedimentary rock - non-									
		magnetic, trace sulphides.									
		100.1 - 100.2 - Semi-massive py/po band					ļ				
		100.2 - 101.1 - Graphitic argillite		Ì							
		101.1 - 103.7 - Siliceous metasedimentary rock 101.1 to	D00291	101.1	101.2	0.10	2	580		<0.5	
		101.3 - Quartz + pyrite vein oriented 5° to core axis.	· · · · · · · · · · · · · · · · · · ·			ļ					
		At 103.2 m a quartz lens with minor pyrite.		[<u> </u>		·]				
		103.7 - 105.9 - Graphitic argillite - locally very weakly	D00292	103.3	104.3	1.0	3	59	240	<0.5	
		magnetic (1% po) 3-5% pyrite as fine bands, round and	00203	107 0	105 0				610	205	
		elongate concretions. Pyrite as two colours (dark/light	2)2	104.9							
		in concretions.	D00204	106 4	106 0	0.5		100	70	0.5	
		<u>105.9 - 107.4 - Siliceous metasedimentary rock with 1-38</u>	D00294	100.4	106.9	0.5		190	70	0.5	
		sulphide.		100.0	100 7			100	1000	0.5	
		107.4 - 108.4 - Graphitic argillite. From 108.2 to 108.4	D00295	108.2	108.7	0.5		180	1900	0.5	
		- 10% banded sulphide, no concretions. Bands are the									
		same thickness as previous section but are closer together				}					
		108.4 - 109.2 - Siliceous metasedimentary rock with				Į					
		1-3% disseminated and blebby po/py.	D00206	100 2	100 7	105	+	1-170	1600	0.5	
		109.2 - 109.8 - Sulphide bearing graphitic metasedimentary	000296	103.2	109.7	1.0.5	1_10	1	1000		

Page....9.....

DL-83-26

1

GETTY MINES, LIMITED

.

•,

•

•

.

Hole Number

imber

DRILL HOLE LOG

FROM		DECCE IDTION	SAMPLE	METR	ES	CORE	ļ		ASSAY	·	
FROM	10	DF2CK1L110N	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Aq (ppm)	
		rock with 5% graphite. 3% po. 20% py - locally rock shows	D00297	109.7	110.6	0.9	6	140	1800	40.5	
		soft sedimentary slumping.	D00298	110.6	111.1	0.5	1	120	170	0.5	
		109.8 - 110.5 - Graphitic argillite with 10 cm wide bands									
		of sulphide banded 70° to core axis (3-20% py/po 5:1)									
110.5	121.1 m	SILICEOUS FELSIC TUFF									
		- The rock is grey white, medium hard, fine to medium grained	~ <u></u>					· ·			
		and magnetic throughout. The rock is weakly banded 75° to									
		core axis and contains 3-5% pyrite/pyrrhotite as dissemin-				1					
		ations, blebs and minor veins. At 114.1 - a 10 cm wide					•				
		band with 5-8% sulphide. At 114.2 - Non-magnetic, 1%									
		sulphide, 5% mica.									
		116.3 - 117.3 - Coarser lithic fragments									
		117.3 - 118.2 - Mafic to intermediate tuff with 2 mm									
		stretched lithic fragments with 1-3% py/po. Minor pyrite									
		veins and fractures 20° to core axis.									
101						<u> </u>	<u> </u>			1	
121.1	146.6 m	CONDUCTIVE ZONE (good conductor)				l					
		Graphitic argillite. The rock is black, fine grained,									
		medium hard and non-magnetic. The rock is banded 60° to		<u></u>		ļ <u>.</u>	ļ				
		70° to core axis with 5-10% pyrite as fine disseminations				ļ				ļ	
		and laminations and concretions to 3 cm.				ļ					
		Upper contact is sharp									
		121.5 - 121.8 - Network of fine white guartz (fracture	D00299	123.1	121.8	0.7	4	100	620	40.5	
		121.6-121.65 - 3% po, contacts 70° to core axis.				1				<u> </u>	
		124.3 - laminations 60° to core axis	00300	122 3	123 3	10	2	72	860	60.5	
		124.5 - semi-massive pyrite lens	<u>D000001</u>	100 0	104 0	1 1 0	1		C 4 0		
		124.6 - 124.8 - Felsic tuff	D00301	124.3	124.6	0.3	< 1	210	930	0.5	
		125.4 - 125.8 - Intermediate porphyry with 30% phenocrysts.	D00303	124.8	125.4	0.6	3	190	330	0.5	
		bleached margins to 1 cm contacts are conformable 60° to		1		1	1				
		core axis.						-			
		125.8 - 126.1 - Cherty zone with 3-5% py and weak quartz	D00304	125.8	126.8	1.0	6	150	1300	40.5	
		(fracture filled)	D00305	126.8	127.8	1.0	7	720	2300	0.5	
		126.1 - 126.6 m - finely laminated pyrite in graphitic	D00306	127.8	128.8	1.0	5	320	2200	0.5	

Hole Number DL-83-26

Page.... 10....

DRIFT HOFF FOO	DRILL	HOLE	LOG	
----------------	-------	------	-----	--

. .

•

TACA Description NUMBER FROM TO LGCTH Lographic participation Langer 126.6 - 130.7 - Subpide bearing graphitic metanodimentary 120.8 1.0. 11 210 1300 0.5 rock - 5-258 pr as infultibula bods and connectionentary 120.8 1.0. 11 210 1300 0.5 to 2 cr. Some concretions coalesce and the pyrite is dark 120.8 130.6 0.8 1 220.0 0.5 dard boothinged) and have pyrite in pressure shadows, M 120.1 1	TRON	ΤO		SAMPLE	METR	ES	CORE			ASSAY		
arcclilite_bandel 60° to core axis. nonant 128.6 129.8 1.0 11 210 1300 6.5 126.6 130.7 splitche hearing graphtic metasodimentary nonant 129.8 130.6 0.8 9 100 200 6.5 100 200 5.5 100 200 6.5 100 200 6.5 101 110 110 110 110 110 200 6.5 102 110	FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH	(daa) u	Cu (ppm)	Zn (ppm	Aa (ppm)	
126.6 - 130.7 - Sulpide bearing graphitic metasodimentary 000308 128.8 130.6 0.8 9 100 2200 - 0.5 it to 2 can. Some concretions concletions conlesse and the puritie is dark			argillite, banded 60° to core axis.	D00307	128.8	129.8	1.0		210	1300	0.5	
mock - 5-255 py as individual bods and concretions (framinoids) mod light (hesp phases of py). Quartz lenges are structored and the prite is dark mod light (hesp phases of py). Quartz lenges are structored and how prite in pressure shadows. At the phases of prite in pressure shadows. At the phases of prite in pressure shadows. mod light (hesp phases of py). Quartz lenges are structored prite in pressure shadows. 122.0 - Stord-massive graphice. Prom 128.7 - 129.1 and the pressure shadows. mod light (hesp phases) mod light (hesp phases) 132.7 - 129.9 - scord-massive prite and stretched pyrite and and and and and and and and and and			126.6 - 130.7 - Sulphide bearing graphitic metasedimentary	D00308	129.8	130.6	0.8	9		2200	0.5	
 to 2 cm. Some concretions colleage and the pyrite is dark and light (two phases of pw). Contral lenses are stratched light (two phases of pw). Contral lenses are stratched light (two phases of pw). Contral lenses are stratched light (two phases of pw). Contral lenses are stratched light (two phases of pw). Contral lenses are stratched light (two phases) and have pyrite and stretched pyrite framboids 80° to core axis. light (two phases) and two phases of pw). Core axis. light (two phases) and two phases of pw). Core axis. light (two phases) and two phases of pw). Core axis. light (two phases) and two phases of pw). Core axis. light (two phases) and two phases of pw). Core axis. light (two phases) and phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases of pw). Core axis. light (two phases) and pwo phases and phase pw). Incot p			rock - 5-25% py as individual beds and concretions(framboids)									
and light (two phases of py). Curtz lenses are stretched			to 2 cm. Some concretions coalesce and the pyrite is dark									
(and boxlinged) and have pyrite in pressure shadows, At			and light (two phases of py). Quartz lenses are stretched									
127.0 - Somi-mussive graphite. From 128.7 - 129.1 and. 129.7 - 129.9 - semi-massive pyrite and stretched pyrite 1 </td <td></td> <td></td> <td>(and boudinaged) and have pyrite in pressure shadows. At</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			(and boudinaged) and have pyrite in pressure shadows. At									
129.7 - 129.9 - scol-messive pyrite and stretched pyrite			127.0 - Semi-massive graphite. From 128.7 - 129.1 and									
Image: state of the state			129.7 - 129.9 - semi-massive pyrite and stretched pyrite									
130.7 - 131.5 - Felsic Tuff - sharp contacts 80° to core axis. 132.0 - 132.2 - and 132.7 - 132.8 - semi-massive py and 132.0 - 132.2 - and 132.7 - 132.8 - semi-massive py and py ldxs to 4 cm 80°-90° to core axis. D00310 132.5 1.0 11 200 1000 0.5 py ldxs to 4 cm 80°-90° to core axis. D00310 132.5 133.5 1.0 5 110 570 0.5 134.3 - 134.5 m - Finely laminated 80° to 90° to core axis with 18 disseminated sulphide. D00312 134.5 135.5 1.0 1 100 510 600 0.5 135.1 - 136.0 m - Minor quartz lobes with 10-158 py is pressure shadows. D00316 138.5 1.0 1 180 180 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with siliceous siltstone (weak conductor). Three is 58 D00312 134.5 1.0 1 120 700 0.5 136.6 - 144.1 m - Graphitic argillite intercalated with siliceous as ilterone (weak conductor). Three is 58 D00312 134.5 1.0 1 120 700 0.5 136.6 - 144.1 m - Graphitic argillite intercalated with from cock is banded 85° to core axis. Prom 140.1 to 141.3 m D003120 142.5 1.0			frankoids 80° to core axis.									
130.7 - 131.5 - Folsic Tuff - sharp contacts 80° to core axis.								•				
axis.			130.7 - 131.5 - Felsic Tuff - sharp contacts 80° to core									
132.0 - 132.2 - and 132.7 - 132.8 - semi-massive py and D00309 131.5 132.5 1.0 11 200 1000 50.5 py ldxs to 4 cm 80°-90° to core axis. D00310 132.5 133.5 1.0 2 280 1600 0.5 134.3 - 134.5 m Finely laminated 80° to 90° to core D00312 134.5 1.0 5 110 57.0 40.5 axis with 1% disseminated sulphide. D00313 135.5 1.0 1 80° 40.5 135.1 - 136.0 m - Minor quartz lobes with 10-15% py is D00314 136.5 1.0 1 80° 40.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 1.0 1 82 910 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 1.0 1 82 910 0.5 136.0 - 144.1 m - Graphitic argillite intercalated pyrite D00319 141.5 1.0 1 120 700 0.5 136.0 - 144.4 m - Graphitic argillite intercalated pyrite D00319 141.5 1.0 1 120 700 0.5 130 130 52<			axis.									
py laces to 4 cm 60°-90° to core axis. D00310 132.5 133.5 1.0 2 280 1600 0.5 134.3 - 134.5 m - Finely laminated 80° to 90° to core D00311 133.5 134.5 1.0 5 110 57n 6.5 axis with 1% disseminated sulphide. D00313 135.5 136.5 1.0 1 87 680 -0.5 135.1 136.0 m - Minor quartz lobes with 10-15% py is D00316 138.5 136.5 1.0 1 87 680 -0.5 135.1 136.0 n - Minor quartz lobes with 10-15% py is D00316 138.5 139.5 1.0 1 82 910 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 1.0 1 120 780 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 1.0 1 120 780 0.5 136.0 - 144.1 m - Graphitic argillite			132.0 - 132.2 - and 132.7 - 132.8 - semi-massive py and	D00309	131.5	132.5	1.0	11	200	1000	40.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			py lobes to 4 cm 80°-90° to core axis.	D00310	132.5	133.5	1.0	2	280	1600	0.5	
134.3 - 134.5 m - Finely laminated 80° to 90° to core D0312 134.5 15.5 1.0 1 100 510 - 60.5 axis with 1% disseminated sulphide. D00313 135.5 136.5 1.0 1 800 - 0.5 D00314 135.5 136.5 1.0 1 800 - 0.5 135.1 - 136.0 m - Minor guartz lobas with 10-153 py is D00315 137.5 138.5 1.0 3 100 790 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 140.5 1.0 1 120 700 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 140.5 1.0 1 120 700 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00318 140.5 1.0 1 120 780 0.5 136.0 - 144.1 m - Graphitic and 8.5% to conce axis. From 140.1 to 14.3 m D00319 141.5 140.5 1.0 1 120 780 0.5 136.0 - 144.1 m - 6raphitic and 8.5% to conce axis. From 140.1 to 14.3 m D00321 142.5 143.5 1.0 2 77 350				D00311	133.5	134.5	1.0	5	110	570	0.5	
axis with 1% disseminated sulphide. D00313 135.5 1.0 1 87 680 -0.5 D00314 136.5 137.5 136.0 1 180 100 -5 135.1 -136.0 m - Minor quartz lobes with 10-15% py is D00315 137.5 138.5 1.0 1 180 20.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 138.5 1.0 1 120 700 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 1.0 1 120 700 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 1.0 1 120 700 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 1.0 41.5 1.0 1 120 700 0.5 - 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 140.5 1.0 2 77 350 0.5 - 14			134.3 - 134.5 m - Finely laminated 80° to 90° to core	D00312	134.5	135.5	1.0	1	100	510	0.5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			axis with 1% disseminated sulphide.	D00313	135.5	136.5	1.0	1	87	680	0.5	
135.1 - 136.0 m - Minor quartz lobes with 10-15% py is D00315 137.5 138.5 1.0 3 100 790 0.5 pressure shadows. D00316 138.5 139.5 1.0 1 82 910 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 140.5 1.0 1 120 700 0.5 siliceous siltstone (weak conductor). There is 5% D00318 140.5 141.5 1.0 1 120 700 0.5 graphite and 3-5% disseminated and finely laminated pyrite. D00319 141.5 142.5 1.0 2 100 380 0.5 The rock is banded 85° to core axis. From 140.1 to 141.3 m D00320 142.5 143.5 140.5 1.0 2 780 0.5 144.1 - 144.3 - increase in chert content, 20% py. D00321 143.5 145.5 1.0 2 290 1200 0.5 144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 120 1200 0.5 144.3 - 146.6 - Conductive zone - finely lami				D00314	136.5	137.5	1.0	1	180	180	0.5	
pressure shadows. D00316 138.5 139.5 1.0 1 82 910 0.5 136.0 - 144.1 m - Graphitic argillite intercalated with siliceous siltstone (weak conductor). There is 5% D00317 139.5 140.5 1.0 1 120 700 0.5 graphite and 3-5% disseminated and finely laminated pyrite stiliceous and slump textures 140.4 D00317 141.5 1.0 1 120 780 0.5 141.5 1.0 1 100 380 0.5 1.0 1 120 780 0.5 1100 38.5 to core axis. From 140.1 to 141.3 m D00320 142.5 1.0 3 72 280 0.5 1144.1 - 144.3 - increase in chert content, 20% py. D00321 143.5 144.5 1.0 2 77 350 0.5 144.1 - 144.3 - increase in chert content, 20% py. D00323 145.5 146.5 1.0 4 120 1200 0.5 144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 120 1200 0.5 144.3 - 146.6 - Conductive zone - fin			135.1 - 136.0 m - Minor quartz lobes with 10-15% pv is	D00315	137,5	138.5	1,0	3	100	790	0.5	
Image: state of the state			pressure shadows.	D00316	138.5	139.5	1.0	1	82	910	0.5	
136.0 - 144.1 m - Graphitic argillite intercalated with D00317 139.5 140.5 1.0 1 120 700 0.5 siliceous siltstone (weak conductor). There is 5% D00318 140.5 141.5 1.0 1 120 780 0.5 graphite and 3-5% disseminated and finely laminated pyrite D00319 141.5 142.5 1.0 1 120 780 0.5 The rock is banded 85° to core axis. From 140.1 to 141.3 m D00320 142.5 143.5 1.0 3 72 280 0.5 siliceous and slump textures 140.4 -58% py D00321 143.5 144.5 1.0 2 77 350 0.5 144.1 -144.3 -increase in chert content, 20% py. D00322 144.5 145.5 1.0 2 290 1200 0.5 144.3 -146.6 -Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 120 1200 0.5 144.3 -146.6 -Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 120 1200 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
siliceous siltstone (weak conductor). There is 5% D00318 140.5 141.5 1.0 1 120 780 0.5 graphite and 3-5% disseminated and finely laminated pyrite. D00319 141.5 142.5 1.0 4 100 380 0.5 The rock is banded 85° to core axis. From 140.1 to 141.3 m D00320 142.5 143.5 1.0 3 72 280 0.5 siliceous and slump textures 140.4 -5-8% py D00321 143.5 144.5 1.0 2 77 350 0.5 144.1 - 144.3 - increase in chert content, 20% py. D00322 144.5 146.5 1.0 2 290 1200 0.5 144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 120 1200 0.5 144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 120 1200 0.5 144.5 - 145.4 - weakly magnetic (po). Sharp lower			136.0 - 144.1 m - Graphitic argillite intercalated with	D00317	139.5	140.5	1.0	1	_120		0.5	
graphite and 3-5% disseminated and finely laminated pyrite. D00319 141.5 142.5 1.0 4.1 100 380 0.5 The rock is banded 85° to core axis. From 140.1 to 141.3 m D00320 142.5 143.5 1.0 3 72 280 0.5 siliceous and slump textures 140.4 - 5-8% py D00321 143.5 144.5 1.0 2 77 350 0.5 144.1 - 144.3 - increase in chert content, 20% py. D00322 144.5 145.5 1.0 2 290 1200 0.5 144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 1200 0.5 144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 1200 0.5 144.5 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 1200 0.5 140.5 - 146.6 - Conductive zone axis. There are minor quartz - - - - <			siliceous siltstone (weak conductor). There is 5%	D00318	140.5	141.5	1.0	1	120	780	0.5	
Image: barded 85° to core axis. From 140.1 to 141.3 m _ D00320 142.5 143.5 1.0 3 72 280 0.5 siliceous and slump textures 140.4 - 5-8% py D00321 143.5 144.5 1.0 2 77 350 0.5 144.1 - 144.3 - increase in chert content, 20% py. D00322 144.5 145.5 1.0 2 290 1200 0.5 144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 120 1200 0.5 bearing graphitic metasedimentary rock with 30% graphite			graphite and 3-5% disseminated and finely laminated pyrite	D00319	141.5	142.5	1.0	د1	100	380	K0.5	
siliceous and slump textures 140.4 - 5-8% py D00321 143.5 144.5 1.0 2 77 350 0.5 144.1 - 144.3 - increase in chert content, 20% py. D00322 144.5 145.5 1.0 2 290 1200 0.5 144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 120 0.5 bearing graphitic metasedimentary rock with 30% graphite -			The rock is banded 85° to core axis. From 140.1 to 141.3 m	D00320	142.5	143.5	1.0	3	72	280	0.5	
144.1 - 144.3 - increase in chert content, 20% py. D00322 144.5 145.5 1.0 2 290 1200 0.5 144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 146.5 1.0 4 120 1200 0.5 bearing graphitic metasedimentary rock with 30% graphite			siliceous and slump textures 140.4 - 5-8% py	D00321	143.5	144.5	1.0	2	77	350	0.5	
144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 1.0 4 120 1200 0.5 bearing graphitic metasedimentary rock with 30% graphite -			144.1 - 144.3 - increase in chert content, 20% py.	D00322	144.5	145.5	1.0	2	_290	1200	0.5	
144.3 - 146.6 - Conductive zone - finely laminated sulphide D00323 145.5 1.0 4 120 1200 0.5 bearing graphitic metasedimentary rock with 30% graphite 3-5% pyrite banded 80° to core axis. There are minor quartz - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td>												
bearing graphitic metasedimentary rock with 30% graphite			144.3 - 146.6 - Conductive zone - finely laminated sulphide	D00323	145.5	146.5	1.0	4	120	1200	0.5	
3-5% pyrite banded 80° to core axis. There are minor quartz			bearing graphitic metasedimentary rock with 30% graphite									
lenses 145.3 - 145.4 - weakly magnetic (po). Sharp lower			3-5% pyrite banded 80° to core axis. There are minor quartz		ļ							
. . <td></td> <td></td> <td>lenses 145.3 - 145.4 - weakly magnetic (po). Sharp lower</td> <td><u></u></td> <td> </td> <td></td> <td>ļ</td> <td> </td> <td> </td> <td></td> <td> </td> <td></td>			lenses 145.3 - 145.4 - weakly magnetic (po). Sharp lower	<u></u>			ļ					
			contact.		L						-	
							<u> </u>					
							1		L]

Hole	Number
11010	1.00.0

Page.....11...

DL-83-26

DRILL	HOLE	LOG

.

			SAMPLE	METRI	S	CORE			ASSAY		
FROM	то	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	
146.6	173.3 m	SILTSTONE/ARGILLITE	D00324	146.5	147.5	1.0	1	34	140	0.5	
		The rock is grey, fine grained, locally weakly magnetic and									
		finely bedded 70° to 80° to core axis. Rock mineralogy consists									
		quartz/biotite/chlorite with brown biotitic bands to 1 cm.									
		Slump fractures at 167.5 m.]
		From 165.2 - 167.3 m - coarser grained brown biotitic bands	D00325	172.8	173.3	0.5	2	_20	- 89	Ka s	
		(80° to core axis) to 5 cm. Contacts gradational. Lower					_				
		contact sharp - marked by py/po lens.									Ì
73.3	197.2 m	CONDUCTIVE ZONE					,				
		Cherty sulphide bearing rock. The rock is grey, hard, chine									
		grained and magnetic. It is moderately banded (quartz/sulphide/									
-		chlorite) 80° to core axis but locally contorted. The rock									
		contains 15-25% pyrrhotite and 5% pyrite with minor graphitic									
		horizons.	······································								
		173.3 - 173.65 - and 174.9 - 175.2 - Somi-maccing purchasista	- 00006	170.0	172 0		11	70	- 00	0.5	
		175.5 = 175.05 = and 174.5 = 175.2 = bdad habsive pythoetee	D00326	1/3.3	1/3.8	0.5	11	70	90	1 5	
		lens with angular cherty fragments to 1 cm.	D00327	173.8	1/4.3	0.5	64		580	-1.0 -7.F	
		125 5 175 0 m should much horizon non-momentia		174.3	$\frac{174.8}{175.2}$	0.5	13	6/	310	1.5	
-		1/5.5 - 1/5.9 M - Cherty/quartz fich horizon, hon-magnetic	D00329	175 2	175.3	0.5	<u> </u>	- 77	740	-0.5	
		with 1-3% sulphide	D00330	175.8	176 3	0.5	- 27	72	21	-1.0	
		175 9 - 176 5 m - 20-25% po 5% pv, irregular orientation	D00331	176.3	176.8	0.5	-11	26	27	0.5	{
		of hode	000333	176.8	177.3	0.5	3	28	23	1.0	
		UI Deus.	D00334	177 3	177 8	0.5	6	40	13	1.0	{
		176.5 - 178.9 m - Cherty/siliceous rock - coarse grained	D00334	177.8	178.3	0.5	5.	17	6	0.5	
		quartz (re-crystallized ?) banded 80° to core axis but local	D00336	178.3	178.8	0.5	2	9	4	L0.5	
		deformed and beds offset. Contains 3-5% py/po	D00337	178.8	179.3	0.5	2	7.5	2.5	20.5	
			D00338	179.3	179.8	0.5	7	13	4	L 0.5	{
	· · · · · · · · · · · · · · · · · · ·	178.9 - 179.9 m - Coarse quartz (interlocking crystals)	D00339	179.8	180.3	0.5	2	5.5	3.0	LO.5	·{
		with 1-3% sulphide. Contains a 30 cm long yuggy pyrite vein	D00340	180.3	180.8	0.5	26	62	7.5	2.5	
		oriented 10° to core exis	D00341	180.8	181.3	0.5	2	13	4.5	20.5	
			D00342	181.3	181.8	0.5	5	19	7.5	0.5	
			D00343	181.8	182.3	0.5	2	20	6	0.5	
			D00344	182.3	182.8	0.5	2	11	7.5	-0.5	
											and the second second

_

. .

Χ.

Page...12.....

GETTY MINES, LIMITED

. .

Hole Number

DL-83-26

DR	ILL	HC	DLE	LOG

			SAMPLE	METRES	3	CORE	[ASSAY		
FROM	ТО	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppm)	Cu (ppm)	Zn (ppm	Ag (ppm)	
		179.9 - 190.3 m - Cherty/Siliceous rock with 8-10% py/	D00345	182.8 1	83.3	0.5	4	19	6.5	1.0	
		po as fine beds and disseminated. The rock is banded _	D00346	183.3 1	83.8	0.5	2	10	5.5	40.5	
		quartz 1 cm - 3 cm, chlorite <5 mm and sulphide <3 mm.	D00347	183.8 1	84.3	0.5	2	9.5	3.5	<0.5	
······································		Minor garnets present throughout unit	D00348	184.3 1	84.8	0.5	2	14	5	0.5	[·]
		Vuggy pyrite vein 180.1 - 180.2 m and 180.5 - 180.6 m.	D00349	184.8 1	85.3	0.5	7	32	12	1.0	
			D00350	185.3 1	85.8	0.5	1	9.5	3	0.5	
		190.3 - 191.4 m - Fragmental Flow/Porphyry - The	D00351	185.8 1	86.3	0.5	3	12	3.5	0.5	
		rock is grey, hard with 15% phenocrysts. Upper contact	D00352	186.3 1	86.8	0.5	8	9.5	5	1.0	
		is garnetiferous. Trace sulphides.	D00353	186.8 1	87,3	0.5	31	44		4.0	
			D00354	187.3 1	87.8	0.5	24 '	41	14	1.5	
		191.4 - 197.2 m - Garnetiferous Cherty Metasedimentary	D00355	187.8 1	88.3	0.5	2	29	24	1.5	
		Rock. The rock is green.grey, medium soft chine to medium	D00356	188.3 1	88.8	0.5		13	9.5	K0.5	
		grained and magnetic. It contains 10-15% pink 1 mm to 8mm	D00357	188.8 1	89.3	0.5	2	9.5	11	LO.5	
		garnets that locally coalesce. There is 10-15% py/po	D00358	189.3 1	89.8	0.5	2	7	4.5	40.5	
		(1:10) as lenses to 2 cm. From 191.4 - 191.8 - garnet	D00372	189.8 1	90.3	0.5	9	22	15	1.0	
		vein, ptygmoidal to 2 cm wide oriented parallel to the	D00359	190.3 1	91.3	1.0	44	12	32	-0.5	
		core axis. The rock is strongly magnetic from 191.4 -	D00360	191.3 1	91.8	<u>p.5</u>	1	9.5	32	1.0	
		196.2 m. At 196.2 - less sulphides, rock is grey.	D00361	191.8 1	92.3	0.5	47	28	11	0.5	
			D00362	192,3 1	92.8	0 <u>,5</u>	12	54	15	0.5	
	242.9_m	FELSIC TUFF	D00363	192.8. 1	93.3_	p, <u>5 </u>	_2		15	-0.5	
		The rock is grey/white, medium hard to medium soft, fine	D00364	193.3 1	93-8	p . 5	6	- 24	21	0.5	
		to coarse grained and non-magnetic (except locally	D00365	-193-8-1	94-3	p ~5	1	-22		-0.5	
		within garnet bearing horizons). The rock is banded	D00366	194.3 1	94.8	p . 5				0.5	
		/0° to core axis and individual bands cary in hardness,	D00367	194:8 1	95.3	p <u>.</u> 5	8	12		- 0-5 -	
		width (1 mm to 1 cm) and colour/grey/white), Good	<u>D00368</u>		95.8	p. <u>5</u>	4	13	79	-0.5	{
		examples of flammer are present with quartz eyes telsic	<u>D00369</u>	196 3 1	96 B	μ <u>.</u>	29	ι <u></u>	60	0.5	
		There is 5° pink <2 mm cost throughout the rest -	00370	190.5 1	50.0			°	09	V •2	{
		uplies in unconformable carnetiforous berigens with up		100 0 1	07.0			10			
		to 60% garnets. There is minor sericitic alteration		-730*8-1 <u>1</u>	⋽┼╻╬┈╌	u₊u ¦	/	<u> 10</u>		-0.5	
		locally and minor quartz lens. There is 41% sulphide	<u> </u>								
		throughout the unit.									
	1	Garnet bearing horizons - pink garnets to 8 mm locally									
		stretch is green (chloritic) rock that is weakly magnetic									
		with 1-2% py/po.				l					l

. . ..

۰.

.

.

.

Hole Number DL-83-26

Page...13.....

						г	iore ivu	moer [
	•	DRILL HOLE LOG									
FROM	TO	DECONDENS	SAMPLE	METR	ES	CORE	L		ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)	
		208.8 - 209.2 m, 209.3 - 209.9 m, 210.1 - 210.6 m, 211.2 -									
	• 	211.5m, 221.0 - 221.6 m, 222.4 - 222.6 m							ļ!		
										├	
		217.5 - 217.7 - White quartz lens, no accessory mineraliz-								·	
		ation.	<u>D00373</u>	-217.4	_217.6_		!	4	10-1	-0-5-	
		217.7 - 219.7 - Good example of Felsic Tuff - soft									
		sericitized, white, mica, quartz and mafic fragments,									
		contacts are gradational									
							,				
		219.7 - 220.7 - fine grained, grey with 5% garnets and									
		minor quartz rich banding									
		210 6 242 4 Motio Duko 2 Modion and another			· · · · · · · · · · · · · · · · · · ·					├ ┨	
		240.6 - 242.4 - Maile Dyke ? Medium grained, grey rock,							┟┦		
		Ton-magnetic with 1% sulphide, <u>Contains</u> 30% (quartz)									
		Leidspar and bu-bu% mailc minerals.								Í	
		242.4 - 249.2 - Felsic Tuff - weakly magnetic							i		
. 242.9 m		END OF HOLE		l							
									·		
				·							
										i	
										T	
										ił	
										 	
	1					1				ıl	

IN. 1

inter second se										and an area of the second				
ROJECT <u>Abitibi</u>	Volcanie	belt.		1	PROPERTY _	Det	bur. Late	<u>J.V.</u>			Dote	ay 183		
DL 83-26. RILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Ди (ррб)	Си (ррт)	Zn (ppm)	Ag (ppm)	B. (opin)	Han (ppm)	140 (ppm)	EA (mga)			
00244	21.1	21.6	0.5	2	76	પર	0.5							
	21.6	22.1	0.5	{	59	Bes	20.5	10	420	<1	0.4			
00246	22.1	22.6	0.5	나	79	49	40.5	Ì						
00247	22.6	23.1	0.5	21	110	40	20,5	25	440	. 41	0.4			
00248	ス3.1	23.6	0.5	.2	110	60	0.5							
00249	23.6	z4.1	0.5	L-1	56	43	20.5	25	520	41	0.4			
00250	24.1	24.6	0.5	Z.	99	54-	20.5							
00251	24.6	25,1	0.5	6	140	52	0.5	10	490	C	0,4			
00252	25./	257.6	0.5	Z	140	36	1.0							
00253	25.6	26.1	0.5	2	170	31	0.5	25	420	61	0,4			
00254	26.1	26.6.	0.5	2-	60	49	0,5							
00255	26.6	27.1	0.5	Z_	. 25	46	0.5	25	650	41	0.6			
00356	27./	27.6	0.5	Ζ.	43	53	0.5							
00257	27.6	28.1	0.5	7-	230	33	1.5	10	460	· <i>L</i>]	0.4			
٥0258	28.1	28.6	0.5	2	78	43	40.5							
00259	28.6	29.1	0.5	6	150	52	1.0	10	220	٤)	0.4			
00260	29.1	29.6	0.5	છ	140	64	1.0							
00261	29.6	30,1	0.5	q	61	54	0.5	16	310	()	0.6			
0 62	30.1	30.6	Dis		72	63	0.5							
00263	30,6	31.3	1.3	16	210	49	1.5	10	470)	09			
00264	31.3	.31.8	0.5		49	35	40.5							
00365-	31.8.	32.3.	0.5-	1	35	22.	405	<10	610	2.1	OFT			

					UNICE	CONE	ROORT	5			1.040 sugar	8	
ROJECT Abilib	i Volcan	ie belt			PROPERTY _		Detour.	Lates		inter and	Dote 2	May 182	
DL-83-26 RILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Au	Cu (ppin)	(860) (860)	(2000) (2000)	B (ppim)	14 n (pp:n)	Ma (ppm)	eth (mag)		
00246	32.3	ર્ડે.ર. ૪	0.5	6	47	16	20.5						
· CC 26 7	32.8	33.3	<u>ن، 5</u>	21	12	13	40.5	10	540	41	0.7		
00268	33.3	33.8	0.5		44	27	40.5	·					
00269	33,8	34.4	0.65	2	45	41	20.5	<u></u>	570	. 1	0.9		
06279	59.8	59.9	0.10	1	78	54	40.5	50	.360	< 1	0.6		
00270	60.4	61.4	1.0	41	44	59	40.5						
00271	61.4	62.4	1.0	41	41	52	20.5	50	330	< 1	0.9		
	-		-										
00272	72.0	12.5	0.5	Z	140	51	0.5				_		
06273	72.5	73.0	0.5	3	. 93	100	0.5	25	200	1	5.1		
00274	73.0	73.7	0.7	4	140	270	0.5						
00275	73,7	* 74.1	0.4	6	lio	520	0.5	50	530	3	2.1		
00276	74.1	74.6	0.5	<u> </u>	190	570	0,5			•			
00277	74.6	75.2	0.6	41	37	140	40.5	370	420	6	41.3		
00278	7.5,2	76.2	1.0	3	20	65	20.5						
00280	80.8	81.8	1.0)	120	150	40.5						
60281	81.8	82.4	0.6	3	270	29	0.5	25	140	6	1.2		4
L 628 2	84.5	85.0	. (.5	4	140	22	40.5						-
			-1			+	- <u> </u>						·

			_		DRILL	CONT.	NUONI	0	,		З.	8
ROJECT <u>Abitibi</u>	Volcan	ie Bet			PROPERTY		etour. 9	na J.v.			Dote May	783
01-03-26 RILL HOLE NO.	From (m.)	To (m.)	Width (m.)	(55P) 90	C (0 (000)	2 m (f 2 m)	(1997) (1997)	(pr.m) P	11 n - (0.000)	(10)	175 (spin)	
.00283	85.3	85.8	0.5	21	150	680	0.5	50	66	4	8.9	
00284	85,8	86.3	0.5	<i>L</i> 1	33	32	20.5					
60285	89.0	90,0	1.0	5	1100	130	1.5	×10	340	3	110.D	
00286	91.3	92,3	1.0	9	230	2000	1.0	-				
00287	96.0	97.0	1.0	5	200	990	1.5	50	380	a.	25.0	
00288	97.7	98.7	1.0	-Z_	350	430	1.0					
00289	98.8	99. U	0.12	6	820	1100	1.5	<10	FLOD	,	1.5	
00290	100,1	100,6	0.5	6	690	2100	1.0					
06291	101,1	101.2	0.1	2	580	18	20.5	<10	92.	<)	560.0	
	103,3	104.3	1.0	3	59	240	40.5					
০০২৭૩	104.9	105.9	1.0	4	80	610	40.5	10	- 280	3	100.0	
••••••••••••••••••••••••••••••••••••••		· ·									_	

					DRILL	CORE	ASSAT	S			1000	л <u></u> К	
ROJECT <u>ALitib</u>	Velca	rie to			PROPERTY _	Det	our La	J.V			Dole Ma	4. 18.3	
DL -83-26 RILL HOLE NO.	From (m.)	To (m.)	Width (m.)	au (ppb)	Co (ppm)	Zn (ppn)	(29 (09m)	B (pprn)	tin (gum)	مدا (سروم)	<i>с</i> Л (тq4)		
00294	104.4	106.9	0.5	1	190	70	0.5						
00295	108.2	108.7	.0.5	5	180	, TNO	0.5	< 10	25 D	. 3	200.0		
00296	109,2	109, 7	<u>ن</u> .5	10	170	1600	20.5		 				
00297	109,9	110,6	0.7	6	140	1800	20.5	10	390	3	150.0		
00298	110.6	(11.7	0.5		120	170	0.5	-					
06299.	121.1	121.8	0.7	4	100	620	20,5	1D	270	11	130.0		
00300	122.3	/23,3	1.0	3	72	860	20.5						
0030/	123,3	124.3	1.0	4	50	640	40.5	10	310	9	13000		
७०३०२	124.3	124.6	0.3	61	210	930	0.5		-				
००३०३	124.8	125,4	Oik	3	190	330	0.5	10	320	3	7.200		تىرىن بىرىم
00204	1258	126.8	7.0	6	150	1300	20.5						
00305-	126.8	127,8	1.0	7	720	2300	0.5	L10	320	22	14000		
00306	127.8	128.8	1.0	5	320	2.200	0.5						
00307.	128.8	129.8	1.C.	11	210	1300	40.5	210	140	8	430.0		
	•		•	<u>.</u>	1	1	1	1	1	1	1	4 1	

					UNILL	CONE	HOOHL	5		-	1/008	۰۰ <u></u> ۲۰	
OJECT ALALIS	Velca	rie to	1t		PROPERTY _	Det	our La	re J.V,			Dolo	4 18.3	I
DL -83.26 ILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Ац (ррь)	Cu (ppm)	Zn (ppm)	Ag (ppm)	B (g.p.m)	A.h. (ppm)	01.5 (alaq)	n.s (ppp)	}	
00308	129.8	130.6	18	9	100	2200	40.5						
						~							
00309	131.5	132,5	1.0		200	10.00	20.5	210	.260	7	360.0		
00 3/0	132.5	133,5	, 1.0	2	280	1600	0.5						
00311	133.5	134.5	1.0	5	110	570	40.5	21D	280	5	2000t		
. 00312	134.5-	135.5	1.0		100	510	40.5						
00313	135.5	135,6	÷10	1	87	600.	20,5	25	260	7	130.0		
60314	135.6	137.5	.9	1	180	180	20.5						ĺ
00315	137.5	138.5	1.0	3	100	790	0.5	25	320	s,	130.0		
00316	138,5	139.5-	1.0	1	82	910	40.5						
00317	139.5	146.5	1.0		120	700	0.5	50	340	5	130.0		
00318	140.5	141.5	1.0		.120	780	0.5					L	
203.19	141.5	142.5	1.0	21	100	380	40.5	75	190	8.	85.0		
00320	142.5	143,5-	1.0	3	72	285	40.5						
00321	143.5	144.5	1.0	2	77	5147	20.5	25	200	7.	180.0	•	
00322	144.5	145.5	1.0	2	290	1202	0.5						
100323	145-15	146.5	1.0	4	120	12.00	0.5	25	320.	12.	12.0.0		
00324	144.5	147.5	1.0		34	140	10.5						
	•		, 								_		
00325	172.8	173,3	15	2	20	89	10.5	100	150	/	14.0		
00 326	173.3	173,8	15		78	98	0.5					•	
00327	173.8	174:3	15	64	77	580	1.5	200	210	6	23.0		ł

									1		6 8		
OJECT	Volca	rie to	lt.		PROPERTY _	Det	our la	G J.V.				4 18.3	
DL -83-26 ILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Аи (ррь)	Cu (ppm)	Zn (ppm)	Ag (ppm)	B	Min (som)	Ma	n3 Comp)	<i>.</i>	
00 328.	174.3	174.8	0.5	13	67	310	1.5						
००३२१	17.4.8	175.3	C) IS	14	94	140	0.5	<10	100)	8.5		
00330	175.3	175,8	0.5	4	27	35	0.5						
00331	175.8	176.3	0.5	27	72	21	1.D	10	400	. 3	2.7	•	
SEEOO	176.3	17.6.8	0.5	11	Z6	2.7	0.5						
००३३३	176 18	177.3	0.5	3	28	23	1.0	25	440	3	43.0		
००३३४	177.3	177.8	0.5	6	40	13	1.0		1				
00335-	177.8	178.3	0.5	5	17	6.	0.5	.50	140	2.1	2.0		
00336	178.3	178.8	0.5	2	9.	4	20.5			-			
00337	178.8	179.3	0.5	2	7.5	2.5	. 20.5	25	100	< 1	(∂_{i})		
00338	179.3	17.9.8	0.5	7	13	4	40.5						
00339	179.8	180,3	0.5	2	. 5.5	3	20.5	50	86	K.)	1.9		
00340	180.3	180.8	0.5	26	62	7.5	2.5	·					
00341	180.8	181.3	05	2	13	4.5	20.5	25	350	61	2.4		,
003 X2	181.3	181.8	0.5	5	19	7.5	0.5			<u> </u>			
00343	181.8	182.3	0.5	2	20	6.0	0.5	25	330)	3.2		
00344	1823	182.8	0.5	2	11	7.5	40.5				,		
00345	182.8	183.3	0.5	4	19	6.5	1.0	25	400	41	3, 2		
C 4 6	183.3	/83,8	0.5	2	10	5.5	40.5						
00347	183,8	184.3	0.5	2	9.5	3.5	20.5	25	160	4.1	a. 1		
00348	184.3	.184.8	0.5	2	14	50	0.5		•				
00349	184.8	185.3	[C.S	7	32	12.	1.0	10	550	1	2,4		

					UNILL CONE ASSATS						F008 01			
OJECT Abitibi	Velca	nie te	1t		PROPERTY	Detour Lake J.V.					Dole <u>May 18.3</u>			
DL -83-26 ILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Au ppbj	Cu Ippm)	Zn (ppm)	Ag (ppm)	B (auto)	Min (conoc)	okt (mag)	AS (nom)	<u> </u>		
00350	185.3	185.8	0.5	1	9.5	3	0.5							
00351	185.8	186.3	0.5	3	12	3.5	0.5	10	460	1	2.7			
00352	186:3	186,8	0.5	8	9.5	5	1.0			- <u></u>				
00353	186.8	187.3	0.5	31	44	9	4.0	10	STD	, 7-	4.8			
00354	187.3	187,8	0.5	24	41	14	1.5							
00355	187.8	188,3	0.5	2	29	24	1.5	10	820	6	1.3			
00356	188.3	188,8	0.5	13	13	9.5	40.5		•					
00357	188.8	189.3	0.5	2	9.5	11.	20.5	10	560	3	1.3			
७७३५-४	189.3	189.8	0.5	Z	7	4.5	20.5							
60372,	189.8	190.3	0.5	4-	12	32	0.5	÷	,					
00359	190.3	191,3	1.0	1	9.5	32	1.D	25	1700.0	C. [6.3			
00360	191.3	191.8	0.5	47	.28	11	0.5	,						
00361	191.8	192.3	0.5	12	54	15	0.5	610	990	् <u>र</u> ्	4.8			
00362	192.3	192.8	0.5	2	28	15	<i>0.5</i>		1	•			,	
ల0363	19.2.8	193,3	0.5	6	24	21	0.5	410	9,20	·2.	2.4			
00364	193,3	193.8	0.5	21	22	19	0.5							
00365	193,8	194.3	0.5	10	10	34-	<i>0.5</i>	<10	91D.	3	3.7			
00366	194.3	194,8	0.5	8	12	55	0.5							
<u>د م</u> رون	194.8	195,3	0.5	4	13	.79	Û.5	<10	1200	2	1.9			
00368	195.3	195.8	0.5	29	13	120	05							
00369.	195-18	. 196.3	0.5	3	8	69	0.5	10	. 100D	2	1.1	<u>x</u>	-	
00370	196,3	196:8.	0.5	7	10	49	0.5							

					DRILL	CORE	ASSAY	S			Poge 8	of&.	
JECT Abili	bi Volca	nie be	. <u></u>		PROPERTY _	Detour Lille J.V.				Dole <u>May 183</u>			
DL-83-26 LL HOLE NO.	From (m.)	To (m.)	Width (m.)	Ац Іррь)	Cu (ppm)	Zn (ppm)	Ag (ppm)	B (opu)	Min (control)	140 (ppip)	(15)		
00371	196,8	197.3	,5	CI	22	15	1.0	50	920	11.D	Q.Ĵ		
00373	217.4	217.6	·2	<u> </u>	4-	10	40.5	<u>95</u>	64	<u> </u>	0.0		
00374	236,9	237.0		1	12	18	20.5			······································			
							-						
			-				-						
	-		-										
					-								
													· ·
			-										
		 	-										
·			_										
					-								
9	<u> </u>												
*													
												' `	
			1									1	}
Page 1		GETTY MINES, LIMITE	D			н	ole Nur	nber	DL-	-83-27			
--	-------------------------------	--	---------------------------------------	----------	------------------------	---	---------------------------------------	-------	-------------------------------------	----------------------------------	---		
		DRILL HOLE LOG							Dip 1	Fests]		
Propert Location Grid Latitude Departu	рЕТОЦЯ n144.Кп C-10 	R LAKE J.V. Core Size. BQ a.NE. QE.COCHRANE, ONT. Elev. Collar. 270° Bearing. 270° Dip. J. Length. 111.9 m. Horiz. Trace. 70.6 m. Vert. Trace.	. Start . Com . Date . Logg	Logged	e. Ma Date Ma K.	y.3, 19 y.7, 19 y.6, 19 S.Suth	983 983 983 97 1 and	• • •	Depth Collar 17.5 m 1119.m	Angl Read -59° - -59°	e Actual -50° -50,5° -50,5°		
FROM	то	DESCR IPT ION	SAMPLE	MET	ERS	CORE		·	ASSAY	τ			
			NUMBER	TROM	10		<u> </u>			<u> </u>	╂┦┃		
0.0	47.3 m	OVERBURDEN - large boulders, boulders, sand	· · · · · · · · · ·		· ·	-	· · · · · · · · · · · · · · · · · · ·				i		
			· · · · · · · · · · · · · · · · · · ·							1	┿╍╍╍╌┤╿		
47.3	<u>62.1 m</u>	INTERMEDIATE TO FELSIC TUFF	· · · · · · · · · · · · · · · · · · ·								┼────┤ ╎		
		The rock is grey, fine to medium grained hard and				· [├ ───┤│		
		non-magnetic. It contains 15-25% fragments from								·			
		1 mm to 3 mm that are stretched 80°-90° to core		<u> </u>			<u> </u>			<u> </u>			
		axis (quartz feldspar). The rock is banded 1 mm									 		
		to 2 cm wide; alternating dark and light bands											
		There is there submide						+			<u> </u>		
		The rock is locally blooched or silicified					}			}	<u> </u>		
		(61.7 - 62.0 m) with a group colouration (alteratio								<u>}</u>	┼╌╌╌┦╽		
		(01.7 - 02.0 m) with a green colouration (alteration)						+		}	+		
		bleached veins are present throughout 1-3% of the	· · · · · · · · · · · · · · · · · · ·							i	<u> </u>		
		rock oriented 20° to 40° to the core axis - local											
	·	bleaching of veins is apparent.						+		.	I		
	·	Mafic Tuff/Epiclastic Metasedimentary Rock from					<u> </u>	1			<u>├</u> ───┤		
		48.9-49.4 m and 50.4-50.8 m. The rock is dark					t				<u>†</u>		
		non-magnetic weakly banded 90° to core axis.							1		<u> </u>		
										<u> </u>	<u>├</u> ──┤		
								+	-		 		
	La		L.,	L			ł		-l	ł	L		

y state state state state state state state and state state

•

•

, ·

,

Hole Number

:

DL-83-27

DRILL HOLE LOG

DD OV	m 0		SAMPLE.	METI	RES	CORE			ASSAY		
FROM		DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	(mag) pA	
		. Upper and lower contacts are well defined. A 5 mm									
		wide garnetiferous band with pink 2 mm garnets is									
		located at 60.9 m.	D00553	61.1	_62.1_	1.0	1	26	67	-0-5-	
								l			
62.1	65.7 m	CONDUCTIVE ZONE									
		Sulphide-bearing siliceous metasedimentary rock.	·								
		The rock is grey/green medium hard fine to									
		medium_grained_and_strongly_magneticRock									
		mineralogy consists of guartz/chlorite/biotite/									
		sulphide and minor carbonate. There is 15-25%									
		pyrite/pyrrhotite as disseminations and				· .	[[
		laminations (locally contorted) with 20% guartz.						<u> </u>			
		The rock is weakly banded 80-90° to core axis but									
		sulphide bands are oriented 45° to core axis at									
		62.9 m. (Fold ?). A drag fold is present in		. 							
		laminations at 62.9 m Semi-massive		<u> </u>		<u> </u>					
		pyrrhotite at 63.6 contains host rock, fragments									;
		and minor carbonate. Upper contact is sharp 85° to				<u></u>					
		core axis and lower contacts defined 80° to core ax	is								
·		The strongest part of the conductor is 63.1-63.9 m									
		due to the higher percentage of sulphide (20% py/po	<u>_</u>		<u> </u>						
		1;5)									·
				. <u> </u>							
		62.1 - 63.9 m - Sulphide bearing siliceous meta-	D00554	62.1	62.6	0.5	7	59	9.5	1.0	
		sedimentary rock with 20(-25% locally) py/po. 1:5	_D00555	62.6	63.1	0.5-		72			
			_D00556	63-1	63.6	-0-5-	19				
		63.9 - 64.2 m - Garnet bearing horizons - non-	_D00557	63.6	64.1	0.5		64	45	1-0	
		conductive very weakly magnetic with 5-8° 1 mm-2 mm		-							
		pink garnets, the rock is banded 85° to core axis						-			'
			DATES								
	ļ	64.2 - 64.4 m - Felsic Tuff	000558	04.1	04.0	0.5	2	45	94	<0.5	
	l	64.4 - 64.5 m Laminated py/po 80° to core axis-	D00559	64.6	65.1	0.5	.	44	47	40.5	·
	<u> </u>		D00560	65.1	65.7	0.6		69	100	1.0.	
ا 	l .		ļ	<u> </u>		1					

•

••

ς.

.

.

• *

•

Hole Number

٤.

er | I

DL-83-27

DR	ILL	HOLE	LOG

	TO		SAMPLE	MET	RES	CORE					
FROM		DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	(mag) pA	
		. 64.5 - 65.7 m - Siliceous sulphide bearing meta	-								
		sedimentary rock. The rock contains 30-50%									
		quartz/chert and 10-15% disseminated laminated									
		and veined (to 5 mm) pyrite/pyrrhotite (5:1).									
		Banded 80° to core axis at 65.0 m - 8 mm wide									
		pyrrhotite vein oriented 50° to core axis.	•								
		At 65.3 m - a pyrite with minor pyrrhotite vein									
		4 1 cm wide oriented 45° to the core axis and									
		contains quartz fragments to 3 mm. At 65.6 a	•								
		3 cm wide pyrite/pyrrhotite lens					•				
65,7	67,8	INTERMEDIATE TO FELSIC TUFF]
-		as from 47.3 to 62.1 m	D00561	65.7	66.7	1.0	2	14	43	<0.5	
		- the rock is banded 80° to core axis									
		- trace sulphide									
		- 66.9 to 67.5 m - cherty silicified, white				<u></u>					
		pale pink in colour, hard, non-magnetic trace									
		sulphide. Upper and lower contacts are									
		gradational over 1 or 2 cm's.									
		``````````````````````````````````````				1					
67.8	72.8 m	SILTSTONE/SILICEOUS SILTSTONE									
		The rock is grey/brown, fine to medium grained									
		and locally very weakly magnetic. Rock minerolo	ах				ļ				
		consists of biotite/feldspar/quartz/chlorite.		<u> </u>							
		The rock is banded 1 mm to 5 mm wide bands					ļ				
		oriented 80° to the core axis. Locally soft		· .	 						
		sediment deformation textures are apparent 72.2	•								
		Graded bedding is present in some beds but no					ļ				
		top determination could be made. There is 5-8%									
		<pre>&lt;1 mm to 1 mm pink garnets present throughout</pre>									
		the unit.				<u> </u>	<u> </u>				
		69.2 - 69.4 - Quartz vein oriented parallel to t	ne	ļ							
		core axis but contains no accessory mineralizati	pn.			·					
				<u> </u>		l	l	<u> </u>			]

.

• '

•

Hole Number

¢.

. •

DL-83-27

#### DRILL HOLE LOG

. .

5501	mo		SAMPLE	MET	RES	CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb	Cu (ppm	)Zn(pp	m) Ag (p	pm)
72.8	104_0	MAFIC VOLCANIC ROCK (RECRYSTALLIZED ?)									
		The rock is green, medium hard, medium to coarse	D00562	104.5	105.5	1.0	1	120	44	0.5	
		grained and non-magnetic. There is trace sulphide									
		and the upper contact is well defined 90° to the									
		core axis. Mineralogy consists of 60% green									
		subhedral amphibole crystals to 8 mm in size.	•					ļ			
		There is very minor 45 mm guartz rich veining									
		throughout the rock.									
1010										ļ	
104.0	105.5	FELDSPAR PORPHYRY					·	<u> </u>			
		The rock is grey/black, hard, and locally weakly									
		magnetic. Rock mineralogy consists of 30% white								ļ	
-		anhedral to subhedral white feldspar phenocrysts								 	i
		in a fine grained black groundmass. There is									
		trace disseminated sulphide (py/po) and minor		ļ		·····					
		quartz/feldspar ? veins 2 mm - 5 mm wide oriented		ļ							
		40° to 50° to the core axis. The vein contacts				L					
		are not distinct and appear bleached.									
105.5	109.2	MAFIC VOLCANIC ROCK (Recrystallized)									
		The rock is green, medium grained, medium hard								ļ	
		and non-magnetic. There is trace sulphides throug	h <b>-</b>								
		out and no apparent veining. Coarse amphibole									
		(green) crystals constitute 60% of the rock with									
······································		40% plagioclase.								ļ	
		The upper contact is well defined 90° to the core	·····					ļ			
		axis.									
		(as from 72.8 0 104.0 m)				ļ					
100.0	111 0									}	
109.2	111.9	METASEDIMENTARY ROCK	D00563	100 1	100 6			100	200	1.0	
		The rock is fine grained, grey-green medium soft	000503	1103.1	109.0	0.5		190	390	1.0	
		The rock is slightly porcus and there is no	D00564	109.6	110_1_	-0-5	4	_240	600	1.0	
	<u> </u>	apparent banding. Approximately 2-3% pyrite and	D00565	110.1	110.6	0.5	- <u> </u>	48	160	0.5	
		1% pyrrbotite are present in the rock. The	<u>00566</u>	110.6		0.5	3	69	70	-1-0	
·	I	- 10 pyrinoutce are present in the rock. The	000567	11111	<u>111.9</u>	0.5	L <u>2</u>	/4	40	1.0	J

1.1

### Page....⁵.....

# GETTY MINES, LIMITED

• • • • •

•

Hole Number

5

.1

DL-83-27

FROM	τO	DECOBIDITION	SAMPLE	METR	ES	CORE			ASSAY		
FAUM	10	DESCRIPTION	NUMBER	FROM	ТО	LGTH					
		. pyrrhotite occurs as fine stringers oriented									
		35° to 45° to the core axis. A red mineral									
		(hematite ?) is present up to 1% as +2 mm blebs.						1			
		The upper contact is well defined 80° to the									
		core axis.									
			•								
111.9		END OF HOLE.									
							•				
		· · · · · · · · · · · · · · · · · · ·		·	·						
							·····				
						· · · ·					
	·····										
						1					
1											
	·							•			

		ii jin					AND AY	ân jama			pge	•	-
ROJECT DENT	$\frac{1}{\sqrt{2}}$	Cunc	Bal	1	PROPERTY _	Dear	e La	e JV			Date Mou	183	
DI 83 DY RILL HOLE NO.	From (m.)	To (m.)	Width (m.)	(16D) (16D)	(850) (	20 (PP.0)	09 (2007)	E (ppm)	the (mg.r.)	P.L.n.	AS Maxim	,	
C. 6553	61.1	62.1	6.0	1	26	67	0.5	35	~1	490	41.9		
· () () 5 5 4	6.5.1	62.6	0.5	7	59	9.5	10						
<u>~~555</u>	606	631	Cas	7	72	13	1.0	<+0	<u> </u>	.2900	0.9		
0.0.556	63.6	63.6	0.5	19	59	11	1.0		-				
00557	63.0	61.1	0.5	8	64	45	1.0	210	4.1	3700	0.3		
00558	61.1	64.6	6.5	2	45	94	40.5					 	
00359	01.6	65.1	· C.5	3	44	47	20.5	25	1	240	13.0		
00560	65.1	65.7	0.6	7	69	100	1.0						
04561	65.7	66.1	1.0	2	14	43	20.5	25	41	1440	à.)		 
00562	104.5	1055	1.0	1	120	<u> </u>	0.5						
00563	109.1	109.6	8.5	3	190	390	1.0	10	2.1	020	0.2		
05.564	109.6	110.1	6.5	4	240	600	1.0			ļ			
00565	110.1	110.6	6.5	1	48	160	0.5	10	~ 1	41500	0.0		
C (5) 66	110-6-	111.1	0.5	3	69	70	1.0				 		
00567	111.1	1((9	0.8	2	74	40	1.0	10	~ /	480	0.6		
7													
		<u> </u>										 	
	1												1

2	Pagel		GETTY MINES, LIM	IITED		. *		Н	ole Numb	er [	DL-83	-30	
			DRILL HOLE LO	G						ſ	Din '	Fests	}
Ya	Property Location Grid Latitude Departur	y DETOUR L 144 KM N 13 L2+00W re. 0+25S	AKE J.V. E. OF COCHRANE, ONT, E. OF COCHRANE, ONT, Elev. Collar. Bearing	·····	Start Com Date Logg	ing Dat pletion Logged ed by	e. Apri Date Al Al	il 11/83 pril 13/ pril 11- .B. Scra	83 13/83 tch		Depth Collar 15.2m 130.1m 167.6m	Angl Read -57.6 -58 -57.25	e Actual -50 -49 -49.5 -48.5
T	ROM	то	DESCRIPTION	SAMP	LE EB	MET	ERS TO	CORE			ASSAY	1	
	0.0 m	15.0 m	OVERBURDEN/CASING			1 1.01.1							<b> </b>
		· · · · · · · · · · · · · · · · · · ·						1					<u> </u>
1	5.0 m	20.4 m	INFERMEDIATE VOLCANIC ROCK				- <b></b>			·····			
			- medium green, fine to medium grained, massive intermediate					+					<b> </b>
			metavolcanic rock							•			
			- in short sections 1-2 mm size amphibole crystals		4.1.1								
			have formed										
	ŀ		- 1% po disseminated and fracture controlled makes rock										
			slightly magnetic										
			- crosscut by occassional qtz-chlorite veinlet										
			- rock has no internal structure										
			- core ground at 15.7-15.9 m										
		·····	- 10% brown biotite at 19.4-19.6 m									ĺ	
						. ,							
												[	
		,											

.....

G. J. I.

.

•

Hole Number DL-83-30

#### DRILL HOLE LOG

ED OV			SAMPLE	MET	ERS	CORE	E AS				
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH					
20.4 m	· 22.1 m	MAFIC TO INTERMEDIATE TUFF			•						
		- light green to brown, fine grained, well bedded									
		mafic to intermediate tuff									
		- bedding oriented at 65° to c/a									
		- 21.7-22.0 - irregular qtz-calcite fractures									
		-21.6-21.8 - 5% blotchy garnet developed									·
22.1 m	24.5 m	FELDSPAR PORPHVRY DYKE									
		- COarse grained grey feldspar porphyry dyke									
		- upper contact at 70° to c/a									
		- lower contact at 45° to c/a	•								
		- contains 40% white, 1-2 mm anhedral									
		feldspar crystals in a fine grained grey						1		]	
		matrix of qtz feld., 15% biotite									
		- short sections of mafic to intermediate as									
		above at 22.5-22.7									
		23.8-24.15 contains 15% - 1 mm									
		sized alumino silicate mineral									
24.5 m	29.3 m	MAFIC TO INTERMEDIATE THEF			· · · · · · · · · · · · · · · · · · · ·						
		- as at 20.4-22.1 m			······································						
		-25.5-27.4 contains 5% sporadic development of 2.5 mm									[
		sized anhedral garnet		} }					1	1	
		- 1% py+po disseminated through core							1		
		- bedding at 65° to c/a									
						!					
	1										1 -

Page....²

•

. . .

.

.

Hole Number

DL-83-30

-	** *		* ~ ~
DR	ILL	HOLE	LOG

T2014	70	DECENTENTON	SAMPLE	MET	ERS	CORE			ASSAT		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH					
29.3 m	31.75 m	FELDSPAR PORPHYRY DYKE									]
	1	- as at 22.1-24.5 m								1	Ì
		- lower contact irregular with heavy development								1	ł
		of actinolite-chlorite-po (chilled margin)								1	Ī
		- short section of mafic to intermediate tuff as								1	1
		above at 31.2-31.45 m	· · ·					****		1	
	i		· · · · · · · · · · · · · · · · · · ·					~~~~		1	
31.75 m	55:2 m	MAFIC TO INTERMEDIATE TUFF			•					1	Ī
		- as at 20.4-22.1 m				·					
		- heavy po at 31.75-31.85, 33.9, 34.5, 34.7, 35.8									
	1	- in some sections the presence of brown biotite						•			
		suggests a sedimentary component									
	1	- rock is magnetic and contains 3% po throughout							•		ļ
	1	- bedding is at 65° to c/a					}				
		- 30% calcite is irregular veinlets crosscutting									
		core at 36.6-41.1									
		- po more abundant higher in this section than towards base									
55.2	58.05	INTERMEDIATE IAPILLI TUFF	-				ĺ				
		- dark green, fine grained intermediate tuff						_			
		containing grey siliceous angular to subrounded									
		fragments of more felsic materials									
		- fragments range in size 2 mm - 2 cm and some appear									
		to have been squashed suggesting that originally									
••••••••••	$\rightarrow$	the material may have been pumice.									
		- white aluminosilicate developed at 56.9-57.3									
	1	- 1% py+po									

.

.

• • • • • •

.

. . .

.

. .

Page....

DR	ILT.	HOLE	LOG
			100

TROM	<b>T</b> O	DECORIDATION	SAMPLE	MET	ERS	CORE		ASSAY		
TROM	10	DESCRIPTION	NUMBER	FROM	ТО	LGTH				
		· · · · · · · · · · · · · · · · · · ·						_		•
		- bedding at 65° to c/a								
		- 5% garnet at 57.7-57.9 m		· · · · · · · · · · · · · · · · · · ·					<u> </u>	
58.05 m	84.5 m	INTERMEDIATE TUFF								
	, 	- medium green fine grained intermediate tuff								
		- rock bedded but not as distinct as previous								
	· · · · · · · · · · · · · · · · · · ·	tuffaceous sections owning to uniform composition			 					
		- contains 3% po, minor py as beds, blebs, disseminations							<u> </u>	
		and occassionally as sulphide fragments								
		- short felsic section at 65.0-65.5 m								
		- bedding at 80° to c/a				<u> </u>				
		- aluminosilicate development at 65.8-68.3 m								
		<ul> <li>reddish garnet developed at 70.2-70.7 m</li> </ul>								!
		- this rock throughout consists of alternations of			<b>.</b>					
		medium green tuff with lighter green material	•••		·					
		presumably more felsic - these bands are irregular					1			
		in shape but principally controlled by bedding								
84.5	85.9	BANDED FELSIC TUFF								
	•	- well banded light green to cream coloured fine					<u> </u>	· ·		
•		grained Felsic Tuff gradational upwards into								
		overlying unit							Į	
		- this section has a few 1-2 mm bands of black argillite								
		- bedding is at 75° to c/a							·	
		- 1% po+py			,					

5)

.

Hole Number DL-83-30

Page.....

DRILL	HOLE	LOG
-------	------	-----

•

			SAMPLE	E <u>METERS</u>		RS CORE		ASSAY				
FROM	ТО	DESCRIPTION	NUMBER	FROM	TO	LGTH	Cu	Zn	Au	Ag		
85.9 m	104.7 m	BLACK ARGILLITE INFERBEDDED WITH FELSIC ASH TUFF										
	-	- contains very fine grained black argillite interbedded									T	
		with 1 cm abundant fine grained grey siliceous felsic									1	
		ash tuff		· •								
	1	- rock well bedded a 80° to ca									1	
		- approx. 70% black argillite, 30% felsic ash tuff									1	
	·	- contains 3% py + po (iii) bedded and disseminated										
		throughout	· ·.							Ţ	T	
	T	- sedimentary structures well preserved indicating							1			
		some units (usually felsic ash tuff rich) have							1	1		
		slumped - top not recognized						· ·	1		1	
	· · · · · · · · · · · · · · · · · · ·	- some sulphide also fracture controlled							1	1	T	
		- core badly ground between 86.2-87.4 with minor									1	
		graphite present in seams - poorly to non-conductive									1	
		as a unit						_	1	1		
	1	- qtz vein at 92.5 m							1	1	1	
	1	- after 94.7 m downhole there is no more felsic ash tuff						1	1	1		
		- light green siliceous siltstone, massive, interbedded with									1	
		black argillite at 98.2-98.6 m and 100.7-101.3 m										
	1	- 104.2-104.7 rock averages 7-10% po+py (5:1) mostly							1	1		
		bedded but some fracture controlled						1		1	1	
•		- conducts moderately at 104.3-104.4 (20% po)								1	1	
							· · · · · · · · · · · · · · · · · · ·					
										1	Ţ	
											1	
										1		
									1	1	1	

<1

÷

Page. .....

_____

_____

٠.

•									Fa	ge. •
•		GEIII MINES, LIMII.	БD			F	lole Nu	mber	DL-83-	-30
		DRILL HOLE LOG						-		
TROV			SAMPLE	MET	TERS	CORE			ASSAT	
FROM	10	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	zn(ppm)	Aq (ppm)
104.7 m	_ 110.8 m	SILICEOUS SILTSTONE	D00229	104.7	105.0	0.3	46	420	72	2.5
•		- well banded brown biotite rich siltstone and			· ·					
		light to medium green chloritic rich siltstone								
		- both units siliceous								
		- 50:50 brown and green bands		÷ .						
		- banding at 70-80° to c/a								
	· ·	- two po rich moderate <u>conductors</u> at		· ·						
		104.7-104.8 and 104.9-105.0 m both						}		
		short sections contain 40% po and				•				
		very little py.								
		•								
110.8 m	116.5 m	INTERMEDIATE VOLCANIC ROCK	a a serie							
	1	- medium green, fine to medium grained, massive								
		· intermediate metavolcanic rock						}		
		- rock shows fracture controlled light green			14					
		siliceous alteration in patches throughout	, .					1		
		this section						]		
[		at 111.8-111.9 30% po and poorly conductive								
		- short section of banded brown and green siliceous		••						
		siltstone as above at 112.0-112.2 m								
		- 1% po throughout						1	1.	

····

. .

.

. . . .

• •

j .

- minor development of greenish amphibole in patches

•

Page.....

•								,	Pá	ige'	• • • • •
		GETTY MINES, LIMITI	ED			I	Jole Nu	mber			
		DRILL HOLE LOG						L			
5201	<b>TO</b>	DESCRIDITION	SAMPLE	MET	TERS	CORE		·····	ASSAY		
FROM		DESCRIPTION	NUMBER	FROM	то	LGTH		1		ļļ	
116.5 m	120.1 m	INTERMEDIATE TUFFACEOUS ROCK - LAPILLISTONE		• • • • •							
	· ·	- fine grained biotite rich matrix supporting									
		intermediate volcanic rock frags which vary									
		in size from 0.5-10 cm									
		- fragments are fine grained, light green, massive	· · · · · · ·								<u></u>
		and sometimes display grey siliceous alteration									
		- excellent banding at 70° to c/a									
	· · · · · · · · · · · · · · · · · · ·	- 120.0-120.1 contact with underlying unit is	• • • •								
		observed by a short section of felsic intrusive (?) rock.									
120.1	139.1	MAFIC TO INTERMEDIATE VOLCANIC ROCK						·			
		- massive green intermediate metavolanic rock									
		as at 110.8-116.5 m									
		- 120.5-124.4 m - a short amphibolite section with									
		30% - 2 mm long dark green amphibole needles		•	·				<u> </u>		
		- gouge fracture filled by calcite at 135.6-135.8 m						1			
	•		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -								
139.1	141.3	METASEDIMENTARY ROCK - SILTSTONE									
		- medium green to grey siltstone		· . ·							
		- massive, bedding indistinct									
		- not as siliceous as 104.7-110.8 m									
	1	- no sulphide									
		- 140.9-144.3 light grey coloured qtz-feldspar									
		porphyry dyke, lower contract at							1		

...**)**.

. . . . . . . .

۰.

45° to ca, upper contact obscured

(core ground)

#### Page.

DL-83-30

Hole Number

### GETTY MINES, LIMITED

· · . . •

•

. . . . .

•

. . .

. .

## DRILL HOLE LOG

			SAMPLE	MET	ERS	CORE		ASSAT		
FROM	то	DESCRIPTION	NUMBER	FROM	TO	LGTH				T
141.3	143.9	MAFIC TO INTERMEDIATE VOLCANIC ROCK	, <b>, , ,</b> , , , ,		n an an an an an an an an an an an an an					
		- as at 120.1-139.1 m								1
		- dark green, medium grained massive mafic								
		to intermediate volcanic rock								
	1	- amphibole crystals developed 1-2 mm in size				· ·				1
143.9	152.3 .	SILICEOUS SILTSTONE								<u> </u>
		- dark green to grey banded fine grained siliceous siltstone	•							
		- banding at 45-75° to c/a								
		-<0.5% py + po								
			<b>.</b> .							
152.3	158.7	MAFIC TO INFERMEDIATE VOLCANIC ROCK								
		- as at 120.1 - 139.1, 141.3-143.9 m but								!
		somewhat finer grained	,							
		- massive, dark green volcanic rock			<b>1</b> .5					
							 <u> </u>	<u> </u>	<u> </u>	
158.7	163.7	SILTSTONE AND BLACK ARGIILITE					 1			
		- intercalated dark grey siltstone with fine						· ·		1
		grained black argillite								
		158.7-159.5 - 15% aluminosilicate and garnet developed								
		161.2-161.6 - 10% pyrite bedded in black argillite								
•		- banding at 60° to c/a							1	
		162.4 - 163.0 - much siliceous alteration	· •							
	·									1

.

Г

Hole	Number	DL-83-30
	ى. ت <i>لىدا دا د</i> ا ما ۹ م	

	DRILL HOLE LOG													
FROM	то	DESCRIPTION	SAMPLE	METERS	CORE	A	SSAY							
100.0	10		NUMBER	FROM TO	LGTH	 								
163.7	167.9	MAFIC TO INTERMEDIATE VOLCANIC ROCK				· .	·							
		- as at 152.3-158.7 m												
		E.O.H. 167.9 m												
		- conductor not intersected												
		- geophysical anomaly not explained												
-														
						1								
<u> </u>														
						1								
·····	······································													
				· · · · · · · · · · · · · · · · · · ·										
			1		-	⁻								
			<u> </u>			1								
		- <u> </u>												
	1	╡╺╛ [┿] ╍╔┙╄┙╀ ^{┿╋} ┥╔╝╄╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪		<u>+</u>										
<u> </u>						-								
			**************************************	*			·,,,,,							

					DRI	CODE	ASSAY				age	° <b>inn /</b>	-
PROJECT ACITICI	VOLCI	ANIC B	ELT		PROPERTY _	DETOU	R LAKE	5.V.			Date MAY	83	
DL-83-30 DRILL HOLE NO.	From (m.)	To (m.)	Width (m.)	ДЦ (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	2 <b>,</b>	tin (com)	o. (pon)	ns (rom)		
D 00 229	104.7	105.0	0.3	46	420	72	2.5	10	<u> </u>	<i>i</i> , i	0.7		
							•						
		<u>}</u>											
<u> </u>													
<u> </u>													
و این بر این بر این است است و این بر این این این این این این این این این این							·						
<u> </u>													
·													
<u></u>			<u> </u>				·						
						 						· · · · · · · · · · · · · · · · · · ·	······································
		·	· · · · · · · · · · · · · · · · · · ·		1								
•													
	T									1			

-					DRIL	CODE	ASSAXS	à ma		Page	1.3 M	
PROJECT AOUT	101 10	olcani	c Bel	T	PROPERTY _	DETO	UR LO	ake		Dois DOVE	moest 1	163
DRILL HOLE NO.	From (m.)	To (m.)	Width (m.)	(PPG) (PU)	(98m) Cu	Zn (FPm)	Ag (ppm)					
DK-83-30												
DOOYD6	99.7	100.2	0.5	5	160	270	1.0					
7.24	100.0	100.7	0.5	8	140	110	1.C		 			
<u> 798</u>	100.7	101.2	0.5	5	230	300	1.0		 			
PGF	101.2	101.7	0.5	4	140	74	0.5		 			
7 30	101,7	102.2	0.5	7-	120	58	0.5		 			l
731	103.3	10.2.7	0.5	3	120	140	1.0		 			
732	10:2.4	103.2	0.5	Ц	97	2.00	0.5					
733	103.5	103.7	0.5	42.	32	110	0.5		 		·····	
734	103.7	104.2	0.5	3	120	160	0.5		 		• <del></del>	
735	104.2	104.7	0.5	7	300	320	10		 			
736	105.0	1055	05	3	310	85	j.0 ·		 			
<u> </u>	105.5	105.0	0.5	42.	77	67	0.5		 	-		
738	106.0	106.5	0.5	22	100	64	1.0					
					,							
739	111.5	112.0	0.5	4	480	31	0.5					
740	112.0	112.5	0.5	2	140	28	0.5					
<b>•</b> ••••	112.5	1130	0.5	42	270	26	0.5					
- <b>7</b> 40	113.0	113.5	0.5	42	8	18	20.5					
利3	113.5	11.0	0.5	2	B	18	0.5					

-MANNE - MANNE - MA					DRI	CODE	ASSAX		, <b></b> (		Posena ?	<b>11</b>	<b></b>
PROJECT (PODITIBI	Volean	nic Be	217	-	PROPERTY _	DETOUR	r Lake	)			Dolo DOVIE	nBer, 191	<u>83</u>
DRILL HOLE NO.	From (m.)	To (m.)	Width (m.)	AU (PPb)	(PPM)	Zn (PPM)	(199)						
DL-83-30									·				
Dec 744	160.1	160.6	0.5	42	16	80	0.5						
745	160.6	161.6	0.5	42	.50	81	0.5						 
7-46	161.1	161.6	0.5	5	300	64	1.0				-	 	
	1												
ㅋ৸구	26.5	0.76	0.5	12	1.3	64	0.5						 
7-48	0.40	24,5	0.5	7-	180	31	0.5						
749	24.5	28.0	0.5	2	120	35	0,5						
7.50	28.0	28.5	0.5	3.	240	29	0.5						
101	28.5	29.0	0.5	42	73	42	<i>0</i> .5						
7:57_	29.0	29.5	0,5	42	92	38	0.5			-			
75.3	29.5	30.0	0.5	42	21	61	0.5						
754	30.0	30.5	0.5	42	21	54	0.5			,			
শৃওত	30.5	31.0	0.5	42	21	59	0.5						
7-56	31.0	31.5	0.5	7	28	49	0.5						
7-57	31.5	32.0	0.5	9	140	44	0.5						
458	32.0	30.5	0.5	1.3	120	54	0.5						
759	32.5	33.0	0.5	2	300	45	1.0						
14160	33.0	33.5	0.5	42	BO	64	0.5						
461	33.5	34.0	0.5	7	180	43	0.5						
760	34.0	34.5	0.5	.5	240	34.	1.0						
763	34.5	35.0	0.5	2	45D	49	1.D						

						CODE	ASSAX			Pogen 3-	<u>, 3</u>	
PROJECT _ PBIT	1821 VC	Jean	C Be	71	PROPERTY .	DETOL	or Lak	e		Dote Dave	mber, 19	<u>14</u> .3
DRILL HOLE NO.	From (m.)	To (m.)	Width (m.)	<i>(</i> РР b)	(ppm)	Zn (ppm)	(19 (1990),					
DL-83-30												
D00764	35.0	35.5	0.5	3	4.30	36	10					
765	35.5	36.0	0.5	3	720	25	1.0			 		
766	36.0	36.5	0.5	-7	360	43	1.0			 		
767	36.5	34.0	0.5	<u> </u>	790	44	10			 -		
-168	37.0	34.5	0.5	5	1100	37	1.0			 ·		
769	34.5	38.0	0.5	4-	340	73	1.0			 		
470	38.0	38.5	0.5	22	290	57	1.0					
441	38.5	39.0	0.5	2	240	120	1.0			 		
ヨヨシ	39.0	:39.5	0.5	5	270	49	. 1.5					
773	:39.5	40.0	0.5	5	1.30	30	0.5					
====	40.0	40.5	0.5	2	200	44	1.0			 		
775	40.5	41.0	0.5	5	400	30	1.0	·		 		
776	41.0	41.5	0.5	42.	180	29	0.5			 		
		<u> </u>										
·										 		
			_	-						 		
			· · ·				·   ····			 		
, 						_				 		
										 } 		ļi
	ſ	1	1	1	1		1		ł			

Pațe I	•	GETTY MINES, LIN	AITE	D			Ho	le Number	DL-83	-33	
		DRILL HOLE LO	DG						Dip	Tests	
Property Location Grid Latitude Departu	y. DETOUR, h. 144. km 	LAKE J.V		Date	ing Dat pletion Logged ed by	eApı Datapı 3Apı	il.22/8 il.24/8 il.24,. SSuth	3 3 1983 erland	Depth Collar 29.3m 145.5m	Angl Read / -57° - -55° -	e Actual 50° 48° 46°
FROM	то	DESCRIPTION		SAMPLE	METR	ES_	CORE		ASSAY		·
				NUMBER	FROM	10		·		· [	£
0.0	28.4 m	OVERBURDEN - boulders		· · · · · · · · · ·							<u></u>
28.4	29.6 m	QUARTZ EYE PORPHYRY		·							
		The rock is green/brown, medium to coarse graine	eα,								
		medium soit and non-magnetic. Mineralogy consis	505								
		of 20% blue quartz eyes (1 mm to 3 mm), 10% white									
		feldspar phenocrysts in a biotite/chlorite fich		·							!
		matrix. No visible sulphides. Lower contact					•				┥╾╌╌┤
·	· · · · · · · · · · · · · · · · · · ·	Well defined. Weakly laminated and stretching of	10	<u></u>							i
		phenocrysts 70° to core axis.									
29.6		MARIC VOLCANIC ROCK		**************************************							
		The rock is fine to medium grained, green, mediu	um					·		-	
		hard/soft and locally yery weakly magnetic (fin	alv			1.	-			-	- <del>   </del>
		disseminated po). Rock mineralogy consists of	<u></u>	· · · · · ·		-					
	· · · · · · · · · · · · · · · · · · ·	green amphibole, (chlorite), white plagioclase								-	
		with 1-2% pyrite (fine veins and disseminated).					-			-	
		Vesicles and vesicular horizons to 20 cm, brecc	ia	· · · · · · · · · · · · · · · · · · ·							
·		zones (flow top breccia ?) and coarse grained									
		intervals (centre of flow ?) are present through	h-		1	1					
		out the unit. Quartz and quartz plus carbonate		· · · · · · · · · · · · · · · · · · ·		1					

. .

1 . **1** . .

Page....?.....

DL-83-33

Hole Number

DRIL	L HOL	E LOG

FROM	70		SAMPLE	·MET	RES	CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	
		+ sulphide veins present throughout 20% the rock - generally									
		oriented 5° to 45° to core axis and $\leq 5$ mm in width.									
		Conjugate fractures (45°) present throughout unit.									
		33.1 - 33.2 - Breccia zone (Flow top ?) - quartz fragments,	D00375	31.1	32.1	1.0 m	3	170	35	0.5	
		sulphide (py) fragments to 1 mm, carbonate fragments,					ļ				
		mafic volcanic fragments.									
		34.3 - 35.3 - Amygdular zone- 10% white amygdules,	D00376	37.1	38.1	1.0 m		110	59	0.5	
		subrounded to 5 mm				<u> </u>	ļ	ļ			
				ļ			L				
		37.4 - 37.7 m - Breccia zone - po fragments to 1 cm.	D00377	38.6	39.4	0.8 m	2	92	47	0.5	
		38.7 - 38.9 m - Breccia zone, - sulphide fragments 2 mm -							ļ		
		5 mm - host rock, carbonate fragments, subangular.	D00378	40.5	41.0	0.5 m	4	97	23	0.5	
		33.6 - Breccia zone - Po fragments, 2 cm long.	D00379	43.2	43.7	0.5 m	31	49	29	0.5	
								ļ			
		37.7 - 38.0 - coarse grained section	D00380	49.1	49.6	0.5 m	1	110	41	<b>&lt;0.</b> 5	
		38.0 - 38.2 - Brecciated									
		43.5 - qtz/carbonate - weakly brecciated.	·			ļ					
··		46.5 m - 47.9 m - Intermediate Dyke				ļ		ļ	ļ		
	·	- grey, fine-medium grained, non-magnetic					 				
		and conformable upper and lower contacts	·····						ļ		
		py on fracture surfaces.									
		50.5 - 50.7 - coarse grained 50.4 - 50.5 fine grained				<u> </u>					
		50.7 - 50.8 - fine grained 50.3 - 50.4 amygdular				ļ		ļ			
		50.8 - 50.9 - Brecciated									
L	1			L	L		[			İ	

Page...3.....

# GETTY MINES, LIMITED

• '

٠

•

Hole Number

5

1 B .

DL-83-33

#### DRILL HOLE LOG

7701	mo		SAMPLE	METI	RES	CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)	
		, $\sim$ 51.3 - rock generally medium to coarse grained mafic									
	,	volcanic (coarser centre of flow or recrystallized	D00381	53.1	53.6	0.5 m	2	78	64	40.5	
		mafic volcanic). Minor coarse grained horizons to 30									
	·	cm and minor interflow sediment to 20 cm wide - banding									
		in sediment 45° to core axis. Volcanic rock appears									
		massive - no pillow veins appear evident. Breccia	•								
		. zone less amygdules 1-2% disseminated sulphide through-									
		out unit. Quartz + carbonate veins appears to carry									
		no accessory mineralization,									
		Alternating fine to coarse intervals.					•				
		54.0 outphide blobs									
		54.0 -  sulphide blebs									{
-		54.3 - 54.5 - coarse grained									
		$\frac{66.3 - 2 \text{ cm wide quartz rich vein with 2-3% sulphide}}{70.5 - 71.1 - Interflex Materialization Pack$	_D00382	66.3	66.8	10.5 m_	<b>1</b>		31	40.5	
		brown fine grained weakly handed 70° to core avia	000383	71 0	71 5	0.5 m	3	920	21	1.0	
	• • • •	about, into dianta, weakly banded to W COLE AKIS,		· · · · · ·	1. + + +						ii
		71.1 - 75.9 - Interflow metasediment/interflow breccia									
		- medium soft, green/grey, locally 1-2% sulphide									
		blebs, <5% carbonate veins 40° to core axis.									
		medium grained mafic volcanic rock (and diabase)									
75.9	80.5 m	DIARASE DYKE		<u> </u>							
		- dark grey/green, medium grained, non-magnetic medium				<b> </b>					
1		hard, - amplibole (50-60%) feldenar (40%) minor biotite and									
					<u> </u>						
		trace sulphides.									{
		- upper and lower contacts conformable (45° to core axis)			<b> </b>	·[			<u></u>		
	· · · · · · · · · · · · · · · · · · ·	and ~10 cm wide finer grained chill margin									
		30-40° to core avis									
		- amphibala lathe to 5 mm lang									{
·	•	- augumone lains to plum long									
						<u> </u>					
				1							
			·		· · · · · · · · · · · · · · · · · · ·	ł	L	·			

· 4

•

.

Page...4......

DL-83-33

.,

1.00

Hole Number

### DRILL HOLE LOG

			SAMPLE	METH	RES	CORE			ASSAY		
FROM	ТО	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)	
80.5	88,5	MAFIC VOLCANIC ROCK									
		- Green, fine to medium grained, medium hard, non-magnetic,									
		- 5% carbonate veins, 45-35° to core axis									
		- 1% sulphide disseminated and blebs to 5 mm.									
		- Locally interflow breccia zones to 20 cm.									
		wide-carbonate & mafic fragments, 2-3% sulphide blebs from	•								
		<u>85.5 - 85.6 m</u>									
		- locally amyqdular (10 cm) white subrounded amygdules (top									
		of flow ?) at 82.0 m.									
	· · · · · · · · · · · · · · · · · · ·	- Minor interflow sediment, brown/green weakly banded 45° to									
		core axis 84.5 - 84.9 m	_D00384	84.9	85.9	1-0-m	-3	-190	-22	0.5	
		86.3 - 86.55 - Quartz + carbonate zone, trace sulphides.									
						<u> </u>					
88.5	91.4	DEBRTS FLOW									
		- fine to coarse fragments in a fine grained chloritic matrix									
		- green, non-magnetic, medium soft									
		- fragments 1 mm to 1 cm, subangular to subrounded, weakly				1					
		stretched ~70° to core axis				1					
		- Fragments consist of carbonate, quartz + carbonate, mafic									
		volcanic rock (some fragments show weathered/bleached rims)					 				
		pyrite (1-2%)									
		- upper contact gradational over a few cm's		89:4	90.4	1.0 m		120	110	0.5	
	 	- 89.4 - 91.41 m 2% sulphide clasts	00387	90.4	91.4	1.0 m	4	91	160	0.5	
91.4	<u>102.2 m</u>	CONDUCTIVE ZONE									
		- sulphide-bearing graphitic debris flow					<u> </u>				
	ļ	- black, grey, soft, fine to coarse grained non-magnetic		}							
		- similar to debris flow 88.5 - 91.4 m but contains more									
	<u> </u>	of graphitic mid									
		or graphitic mud.				+		{ {			{
	<u> </u>					+					
! <u></u>	!						·				

 $\sum_{i=1}^{n}$ 

1.1

P

Hole Number

ξ.

. •

Page.5.....

5

DL-83-33

		DRILL HOLE LOG						-			
			SAMPLE	METI	RES	CORE			ASSAY	,	·····)
FROM	то	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au (ppb	Cu (ppr	DZn (pp	(mag) p/m	
		91.4 - 91.5 - Good conductor, 25% graphite, 8-10% pyrite.	D00384	91.9	92.4	0.5 m	1	68	94	1.0	
		disseminated and blebs. Exhibits slump/flow textures (50°	D00390	92.4	92.9	0.5 m	1	170	70	1.0	
		to core axis), 10% mafic volcanic fragments.	D00391	92.9	93.4	0.5 m	2	190	670	1.5	
			D00392	93.4	93.9	0.5 m	4	110	400	1.5	
		91.5 - 93.6 - Weakly conductive, minor graphite.	D00393	93.9	94,4	0.5 m	10	41	57	0.5	
		Debris flow - mafic volcanic fragments quartz + carbonate	D00394	94.4	96.4	2.0 m	16	65	40	1.0	
		fragments, sulphide fragments (3-5%) subangular to sub-	D00395	96.4	97.4	1.0 m	12	120	220	1.5	
		rounded <1 mm to 1 cm in fine grained chloritic matrix.	D00396	97.4	98.4	1.0 m	5	160	320	1.0	
			D00397	98.4	98.9	0.5 m	7	460	160	1.5	
		93.6 - 102.2 - Good conductor - 25-35% graphite	D00398	98.9	99.4	0.5 m	3.	170	250	1.0	
		10-15% pyrite - blebs disseminated and minor contorted	D00399	99.4	99.9	0.5 m	10	240	260	1.5	
		laminations.	D00400	99.9	100.4	0.5 m	9	220	240	1.5	
-		Poor core recovery. Fragments (sulphide, mafic volcanic,	D00401	100.4	100.9	0.5 m	10	340	380	1.0	
		quartz/carbonate) to 5 cm in chlorite/graphite rich matrix	D00402	100.9	101.4	0.5 m	6	160	570	1.0	
			D00403	101.4	101.9	0.5 m	11	180	1000	1.5	
		98.1 and 98.4 m - Contorted and offset laminations	D00404	101.9	102.4	0.5 m	31	170	2800	1.0	
		97.5 - 98.0 m - Weak conductors - less graphite and									
		and sulphides (debris flow)									
		98.0 - 102.2 - Weak to moderately laminated. Laminations									
		have been contorted and brecciated (quartz/graphite/sulphide						1	-	1	
		bands) $10-15\%$ sulphide (locally 20% over 4 cm - 100.6 m)									
		101.1 - 101.3 m - Quartz rich band, non-conductive -									
		101.3 - 102.2  m - increase in quartz banding (5 mm to 2 cm)									
		orighted 70° to 80° to core axis. 2-3% sulphide.									
								<u> </u>			
102.2	104.3 m	BRECCIA ZONE	· · · · · · · · · · · · · · · · · · ·								
		Rock is dark grey/green, medium hard to hard and non-magnetic	D00405	102.4	103-4-	1.0 m		170	570-	1-1-0-1	
		moderately brecciated - quartz rich clasts 1 cm to 4 cm in						ļ		<u> </u>	
		size (103.8) - subangular to subrounded clasts Mafic	-					<u> </u>			
		volcanic clasts subangular to subrounded in a carbonate rich						+	ļ	ļ	
		matrix 5 mm to 1 cm in size. (103.1 - 103.6)							<u> </u>	-	
		- Minor slumping and offset at 102.9 m.						<u> </u>	ļ	<u>↓</u> ↓	]
		- Fine grained mafic matrix overall.						ļ		<u>∤</u> ∤-	
		- Upper and lower contacts are gradational	l			i		L	L		]

. !.

. .

____

____

• :

٩.

•

Hole Number

DL-83-33

DRILL HOLE LOG

FROM	τO	DESCRIPTION	SAMPLE	METRE	S	CORE			ASSAY	 ·····
11.0.11			NUMBER	FROM	TO	LGTH				
104.3	112.6	MAFIC VOLCANIC ROCK								
		The rock is green (locally green/brown) fine to				]				 l
		medium grained, medium soft to medium hard and								 I
		non-magnetic. Locally brecciated (carbonate								 
	· · · · · · · · · · · · · · · · · · ·	rich matrix 109.2 - 109.4) with subangular host	·			-			l	
		rock fragments to 1 cm.	•							
		Contains 5-8% carbonate rich veining (< 5 mm, 45°				1				
		to core axis) and trace sulphides.								
		Locally bleached (brown/grey, medium soft) in firs	t							]
		metre of interval (105.0 - 105.7)					,			
		(105.7 - 105.9) and amygdular flow top or pillow								 
		rim 104.6 m.	************************							 
		Locally brown colouring (natchy) - softer						••••••••••••••••••••••••••••••••••••••		 1
		$\rightarrow$ biotite alteration 2 (107.0 - 109.3 m)					****		1	1
										1
		112.3 - 112.6 - Amvadular - 5% white amvadules								
		2 mm to 5 mm in size								
112.6	113.9	INTERFLOW SILICEOUS METASEDIMENT								
		- Upper contact 40° to core axis								
		- The rock is grey/green, fine to medium grained.								
		medium hard and non-magnetic								
		- Mineralogy consists of guartz/carbonate/chlorite.								
		trace sulphides								I
		- Banded 45° to core axis, bands are 1 mm to 3 cm								 
		wide but locally contorted, slumped and brecciate	1							 
		- Fine band (2 mm) of chlorite with 5% pink garnets								 
		( <u>≤1 mm) 113.2 m</u>								 
		- Contorted 113.2 m								 
		- Breccia - 112.9 m, 113.7 m								
		- Banded 113.1 m								
		- Slump 113 4 m								 
	1	- Lower contact 45° to core axis								 

1.1

,

Γ

 $\vdash$ 

F

· · ·

.

Hole Number

Page....7.....

DL-83-33

DRILL HOLE LOG

			SAMPLE	METRI	ES	CORE			ASSAY		
FROM		DESCRIPTION 44	NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Ag (ppm)	
113.9	118.0	ALTERED FRAGMENTAL FLOW/PORPHYRY									
		The rock is brown/grey, medium soft and non-									
		magnetic. Mineralogy consists of guartz,									
		feldspar and mafic subangular to subrounded									
		fragments 1 mm to 1 cm in size within a biotite/									
		carbonate matrix.									
		trace sulphide									
		<u>- 5% pink garnets from 117.0 - 118.0 m 1 mm</u>								l	
		(117.0 m) to 5 mm (118.0 m) in size.									
		113.9 - 114.1 - green, 2% fine garnets.					•				
118.0	120.7	MAFIC VOLCANIC ROCK/DEBRIS FLOW									
·		- The rock is fine grained, green, hard and magnetic									
		throughout (magnetite ?). Upper contact marked	D00406	117.7	118.7	1.0 m	1	10	47	0.5	
		by magnetism and 20 cm zone of amygdules ?.	D00407	118.7	119.7	1.0 m	<b>~</b> 1	6	45	1.0	
		Mafic volcanic to 119.0 - contact gradational	_D00408	119.7	120.7	1_0_m	4	28	120	1.0	
		over a few cm's carbonate to debris flow, mafic								j	]
		fragments in fine grained matrix, minor carbonate	•								]
		- Fine to coarse grained intervals 120.1-120.7 m -									
		coarser fragments									
		- 1-2% sulphide (py/po ?)									
		- 2% magnetite fragments (?) fine <1 mm to 2 mm								·	
										·ł	
120.7	121.8	CONDUCTIVE ZONE	··								
		- graphitic sulphide debris flow - non-magnetic									
		- 40% graphite, 5-8% pyrite (disseminated, rounded	D00409	120.7	121.2	0.5 m	23	130	280	1.5	
		fragments to 8 mm and veinlets)	D00410	121.2	121.7	0.5 m	7	64	640	1.5	
		- locally brecciated - 120.0 m									
		<ul> <li>Upper contact marked by pyrite vein oriented 40°</li> </ul>									
		to core axis - contorted 5-8 mm wide.									
		- Lower contact - pyrite 'vein' 40° to core axis									
			*								
1		conductive, 1% disseminated sulphide.									

35

.

·· , · ·

ς.΄

•

Hole Number

Page.....⁸.....

DL-83-33

111111111111111111111111111111111111111	DRILL	HOLE	LOG
-----------------------------------------	-------	------	-----

			SAMPLE	METR	ES	CORE			ASSAY		
FROM	TO	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au(ppb)	(norm)	Zn (ppm)		
121.8	126.5	DEBRIS FLOW							11	<i>3-11</i>	
		Fine to coarse mafic fragments in a fine green									
		chloritic muddy matrix. Poor core recovery.		<u> </u>							
		10% carbonate		ļ					ļ		
		Magnetic - 121.0 - 124.2 m - (magnetite 2-3% ?	D00411	121.7	122.2	0.5 m	-13		130	2.5	
		Non-magnetic 124.2 - 126.5 m	D00412	122.2	123.5	<u>1.3 m</u>	1	4	77	0.5	
		Soft green, subangular to subrounded mafio	D00413	123.5	124.5	1.0 m	1	5	91	-0-5	
		fragments. Locally garnetiferous. There is a	_D00414	124.5	125.7	1-2-m	3	27	130	1.5	
		weak preferred alignment of fragments 45° to	D00415	125.7	126.7	1.0 m	4		210	1.5	
		core axis.					· · · · · ·				
126.5	127.4	CONDUCTIVE ZONE									
		Sulphide-bearing_graphitic_rock_with ~40°						·			
		graphite, 5-10% pyrite as discominations,		·							
		clasts to 5 mm and fine veinlets and 5%							ł		
		carbonate veinlets (fracture filling)									
		Veinlets contorted but general orientation									
	·····	45° to core axis.									
		by presence of weakits		+					+		
		by presence of graphice.									
127.4	128.1	DEBRIS FLOW									
		- as 121.8 to 126.5 except not as soft	D00418	127.7	128.7	1.0 1	1 1	13	120	15	
		- chlorite rich muddy matrix with mafic angular		ļ <u>,</u>							
		fragments									
		- 2-3% pink garnets 1 mm - 3 mm									
		- Magnetite = $127.6 = 128.1 \text{ magnetite } 2$									
128.1	129.3	BRECCIA ZONE									
		Fine to coarse (1 mm to 4 cm) angular green		·			l	ļ			·
		matic volcanic rock fragments in white carbonate		<u> </u>			·				
		rich matrix.		<u> </u>				<b> </b>			
	· · · · · · · · · · · · · · · · · · ·	- 16 disseminated Sulphide			ļ			<b> </b>			
		- Upper and lower contacts gradational over 10's									{
		OI HUH S.		ļ	L <u></u>	l	I	I			

£1

•

Hole Number

Page....9.....

ber DL-83-33

DRILL HOLE LOG

55.014			SAMPLE	METR	ES	CORE			ASSAY		
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH					
		- 1% garnets in mafic fragments (and at lower									
		contact),									
		· · · · · · · · · · · · · · · · · · ·								ļ	
129.3	145.4	MAFIC VOLCANIC ROCK									
		The rock is fine grained, green, medium hard								<u> </u>	
		and non-magnetic.	•						ļ		
		Contains 10% carbonate, carbonate + quartz							<b> </b>	ļ	
		veining 5 mm generally oriented 40° to 50° to							ļ	l	
_ <u>+</u>		core axis. No accessory mineralization									
	· · · · · · · · · · · · · · · · · · ·	Locally the rock is amygdular and brecciated.							}		
								<u> </u>			ļ
		Minor brown patches (biotite = interstial rock)									ļ
· · · ·		at 136.1 m 136.7 m									
		Amygdules at 136.3 m and 141.7 m		}				<u> </u>			<b> </b>
											<u> </u>
		Progainted at 135 3 m and 136.9 m									(
		- Carbonate + quartz zone. 137.2 - 137.5 m						<u> </u>			
		(no accessory mineralization) = 138 5 = 138 9 m	D00419	138 5	138 9	0.4 m	1	17	40	1 5	
				130.3	130.5		·	<u> '</u>		<u> </u>	
· · · · · · · · · · · · · · · · · · ·											
145.4 n	h	END OF HOLE.								1	
	ļ				1			1			
										L	
	1				L			ļ			
										ļ	
								ļ		ļ	
	ļ			ļ							<b>  </b>
			<u> </u>							<b> </b>	`
	·							l			
						<u> </u>		<u> </u>		<u> </u>	
	<u>]</u>			<b> </b>	l	1		L	l		لبسب

+ 3 -

1,7

_	וומם	രവം		100	Λ١	ve.
			. /	P P	A	

ROJECT Abitiby	Notcante	belt.			PROPERTY _	Det	our Lake	· JV.			Dote <u>71</u>	Joy 183	
DL 83-33 RILL HOLE NO.	From ( m.)	To (m.)	Width (m.)	Ац (дрь)	Cu (ppm)	Zn (ppm)	Ag (ppm)	(P)	ALC (ppms)	nkf (mgg)	い (ppm)		
00375	31.1	3.2, /	1.0	3	170	35	0.5	· 0	~1	630	1.2		
eu 376	37.1	38,1	1.0	3	110	59	40.5	· · · · · · · · · · · · · · · · · · ·					
66377	38,6	39.4	. 8	2	92	47	0.5	210	~1	1000	9.5		
00378	40.5	41.5	1.0	4	97	23	0.5						
06379	43.2	43,7	. 5	31	49	29	0.5	410	~ 1	1300	3.2.		
00380	49.1	49.6	15-	1	110	41	40.5						
రిలన్రె 8/	5-3.1	53.6	, 5	Z	78	64	20.5		21	540	2.0		
00382	66.3	66,3	. 5-	1	150	31	4.0.5		-	· · · · ·			
00383	71.0	71.5	.5	3	920	31	1.0	570	2	590	1.1		
c 84	84.9.	85.9	. 0	3	190	22	0.5						
00385	86.4	.86.7	, 3	2	78	21	1.0	×10		12.00	2.)		

					RIL	CODE	ASSAY	ño 1000				°	
ROJECT <u>Abilib</u>	, Jolean	ie belt	·	,	PROPERTY _	Deto	ur Late	J.V.			Dote	ay 183.	
DL-83-33 RILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Ац (рры)	Cu (ppm)	Zn (ppm)	Ay (ppin)	B	Adres (p.p. 15)	Ato (pons)	ns Coord		
00386	89.4	90.4	1.0	Z	120	HO	0.5		-				
. 00387	90.4	91.4	1.0	4	91	160	0.5	~10	21	2.200	180		
0038B	91.4	91.9	0.5-	8	210	320	1.0						
60389	91,9	9.2.4	0.5	1	68	94	1.0	IU	۷ ا	2500	310		
00390	92.4	92.9	0.5	1	170	70	1. <i>0</i>		. <b>.</b>				
00391	92.9	93.4	0.5	2	190	670	15	<10	21	241000	180	( - 91 P. M.	Ma
00.39.2	93.4	93.9	0.5	4	110	400	1.5						
00 393	93.9	94.4	0.5-	10	41	57	0.5	25	5	310	46.0		
00394	944	96.4	2.0	16	65	40	1.0		<b>-</b> 117		-		
00 395	74.4	97.4	1.0	12	120	220	1.5	10	2	3400	74.0		
QU I 94	97.4	98.4	1.0	5	160	320	1.0						
00397	78.4	98.9	0,5-	7	460	160	1.5	10	2	960	19.0		
00398	18.9	99.4	0.5	3	170	250	1.0						
00 399	99.4	99.4	0.5-	10.	240	260	1.5	10	~(	3600	44.0		
00 400	79.9	100.4	0.5-	9	220	240	1.5		- ·	- · ·			
00 401	100.4	100.9	0.5-	10	340	380	1.0	10	41	9720	16.0		
00402	100.9	101.4	0.5	6	160	570	1.0				-		
00 403	101.4	101.7	0.5-	11	180	1000	1.5	100	3	1000	170		
004	101.9	102.4	0.5	31	170	2800	1.0						
00 405-	102.4	103,4	1.0	17	170	570	1.0	×10	<1	>u/iac	51.3	Cleneye	P.A.S.
05406	117.7	119.7	1.0 .	1	10	47	0.5						

NAME NAME NAME NAME NAME NAME NAME NAME	
ROJECT Abitibi Valcanie helt PROPERTY Detaire Lake J.V. Dote	May 183
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	>
00407 1187 1197 1.0 LI 6 45 1.0 LIO LI DULUO 7.	1 (1.303) 10
· 00408 /19.7 1.0 4 28 120 10	
00409 120.7 121.2 0.5 23 130 280 15 230 2 1300 281	1
. 00410 121.2 121.7 0,5 7 64 640 1.5 -	
00411 121.7 122.2 0.5 13 160 130 2.5 10 1 1600 -	
00412 122.2 123.5 1.3 1 4 77 0.5 - 19.	
00413 123.5 124.5 1.0 1 5 91 0.5 × 10 ×11 19100 -	
00414 124.5 125.7 0.8 3 27 130 15 - 14.1	2
00415 125.7 126.7 1.0 4 48 210 1.5 KID LI 1900 -	
00416 126.7 127.2 0.5 21 100 39 15 - 80.1	<u> </u>
00417 107.2 107.7 0.5 12 BO 110 1.5 <10 3 1300 -	
00418. 127.7 128.7 1.0 1 13 120 1.5 - 418	.0
00419 138.5 138,9 0.4 1 17 40 15 410 41 3900 2.2	).

Page 1		GETTY MINES, LIMIT	LIMITED Hole Num					r DL-83-34			
•		DRILL HOLE LOG						Dip	Tests		
Propert Location	DETOUR S	SOUTH Core Size. BQ NE.of. COCHRANE, ONT. Elev. Collar.	Star	ting Dat pletion	e. M7 Date. ^{M7}	ARCH 29 ARCH 30	, 1983 , 1983	Depth	Ang Read	le Actual	
Grid Latitude Departu	4	Bearing	Date	e Logged ged by	MZ R	ARCH 30	, 1983 АТСН	Collar		-50°	
FROM	то,	DESCRIPTION	SAMPLE	MET	ERS	CORE		ASSAY	1		
0.0	25.5 m	OVERBURDEN/CASING	NUMBER	FROM	10	<u>12011.</u>					
25.5	112.9	METASEDIMENTARY ROCK - SILTSTONE		<u> </u>	]						
		- fine to medium grained grey siltstone						_			
		- ave. grain size 1 mm									
		- rock extremely uniform throughout									
		- bedding well developed oriented at 70-80° to c/a									
		- rock contains 50% white sugary quartz, often	1		1						
		arranged in quartz rich beds as well as		1	1						
		interstitial to the remaining 50% of the			1						
		rock consisting of chlorite+biotite		1	1				1		
		- bedding usually 1 mm thick but some quartz	1		1	1				1	
		rich beds are up to 5 mm thick			1						
		- sulphide very rare to absent			1						
		- rock is non-magnetic throughout			1				_	1	
		- very rare quartz and quartz + chlorite veinlets									
		transect core		1	1						
		- 5 cm wide guartz veins at 90° to c/a at		1		1					
		37.85, 41.7									
		- light to medium green intermediate tuff to tuffite		1							
		bands located at 28.55-28.6, 29.1-29.15, 34.4-34.6		1	1	1			1	1	

# Page...?......

#### GETTY MINES, LIMITED

Hole Number DL-83-34

DRILL	HOLE	LOG
-------	------	-----

FROM	<b>T</b> O		SAMPLE	MET	ERS	CORE	ASSAY					
FROM	10	DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)	Aq (ppm)		
		36.9-37.4 (slightly altered), 39.3-39.35, 48.1-48.3										
		- quartz veins at 67.15-67.20, 70.0, 92.45-92.48										
		- small section of feldspar porphyry at 72.7-72.75										
		- crystal tuff or feldspar porphyry in contacts										
		conformable to bedding at 82.45-82.50, 85.34-85.45									•	
		contacts @ 70° to c/a										
		- qtz-chlorite amphibole vein at 95.80-95.83										
		- medium green tuff bands at 96.2-96.4, 108.0-108.05										
		- feldspar crystal tuff at 107.8-107.9										
112.9	114.1	Conductor Pyrite bearing graphitic metasedimentary rock										
		- well bedded at 70° to c/a										
		- from 113.1-113.4 70% graphite - 10% pyrite	D00119	112.9	113.5	0.6	1	130	240	1.5		
		- vuggy pyrite at 113.4	D00120	113.5	114.1	0.6	<1	150	200	1.5		
		- core ground 113.5-114.0	·									
		- average 35-40% graphite, 5% pyrite throughout										
		- remainder of rock a siliceous light green tuffite										
		.										
<u></u>										· ·		
	1	L	L	l	l	<u> </u>		I				

.

Hole Number	DL-83-34
-------------	----------

3 Pag**e....** 

1

(	DRILL HOLE LOG												
FROM	то	DESCRIPTION		SAMPLE NUMBER	MET	ERS	CORE			ASSAY			
114.1	125.0	TUFFITE											
		- well bedded at 70° to c/a											
		- intercalated 1-5 cm bands of fine grained dark		· · ·									
		green to black siltstone/sandstone with 1-3 cm		<u></u>									
		bands of medium green intermediate tuff											
		- both components appear to be mixtures of sediment											
		and tuff											
		- 1-2% py + po disseminated throughout											
		- 115.8-116.0 feldspar crystal tuff											
		- minor qtz-calcite-chlorite-py veinlets											
		throughout											
		- healed 1 cm wide fracture parallel to core axis											
		at 123.4-123.8											
		E.O.H. 125.0											
	,												
								_					
		1											
		· · · · · · · · · · · · · · · · · · ·											

E ....

						CODE	ASSAY					°	
PROJECT BISITIES	Not c Ja	MC BI	<u>EL.Y</u>	-	PROPERTY _	DETOUR	Sout	14			Date MAL	183	
DL-83-34 RILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Ац (ррь)	(ppm)	Zn (ppm)	Ag (ppm)	B	Mu (mum)	Mn	AS (DOM)		
D 00119	112.9	113.5	0.6	1	130	240	1.5	25	5	340	1.5		
. 00120	113.5	114.1	0.6	61	150	200	1.5						
	-				-								
						·			•				
		•											
								· ·					
								-		{ 			
		-{								{			
	-			-									
			-										
<del></del>													
			-										<u> </u>
									{	{			
									· · ·				
				<u> </u>		<u></u>				<u> </u>			<u> </u>

• Pa <b>\$</b> 2 1		H	ole Numbe	r DL	-83-35							
,			DRILL HOLE LOG						D	ip Tests	}	
Propert Location Grid Latitude Departu	y. DETOUR SO 	uții OF. Cochrane, Ontario	Core Size						Dept Coll 36.1	Angle           Depth         Read         Actual           Collar         -50°           36.6         -59.4         -51°           100.6         -55.3         -46.1		
FROM	то	DESC	CRIPTION	SAMPLE	MET	RS	CORE		ASS	AY		
0.0 m	37.7 m	OVERBURDEN/CASING		NOMBER	FROM	10						
<u> </u>	52.1	MAFIC TUFF										
		- dark green to black fine of	grained mafic tuff									
		with rare 1-2 cm bands	of light green									
		intermediate tuffaceo	ous rock	·····			<b>_</b>	ļ. <b></b>				
		- bedding well developed at	70° to c/a									
		- rock is essentially a bio	tite-chlorite	· · · · · · · · · · · · · · · · · · ·								
		rock with approximate	e proportion 60:40	· · · · · · · · · · · · · · · · · · ·								
		but occasional section	ons have visible									
		qtz up to 25% suggest	ting a sedimentary origin				ļ					
		45.0 - 49.0 - sporadic deve	elopment of black amphibole	······								
		in places up to 40%										
		- heavy pyrite at 48.8										
		-42.8 - 42.9 - white quartz	vein at 90% c/a									
		- rock non magnetic through	Dut									
						·						

1 . C

- î
ê.*

Hole Number DL-83-35

|--|

			SAMPLE	MET	ERS	CORE	:		ASSAY		
FROM		DESCRIPTION	NUMBER	FROM	ТО	LGTH	hu (ppb)	Cu(ppm)	Zn (ppm	Ag (ppm)	
52.1 m	52.3 m	FELDSPAR PORPHYRY			•						,
		- coarse grained grey-white feldspar	D00037	52.1	52.3	0.2	1	42	46	< 0.5	
		porphyry consisting of 50% white									
		1-2 mm anhedral feldspar phenocrysts .							1		
		in a fine grained grey siliceous matrix									
		which contains 20% biotite and 1-2% po									
		- contacts conform to bedding and are oriented at 60° to c/a									
	52.0 m										
52.5 10	53.9 m	PAPIC INTERCEDIATE TUFF	D00038	52.3	52.8	0.5	37	280	25	0.5	
		- fine grained black mafic tuff intercalated	D00039	52.8	53.3	0.5	2	100	22	< 0.5	······································
<del></del>		with medium green intermediate tuff which	D00040	53.3	53.9	0.6	5	110	28	0.5	,
		constitutes up to 20% of this section. These					1		1		
		intermediate tuff bands contain po which									
······································		varies up to 10%					1				
		- 54.0 - 54.2 mostly intermediate green tuff but									
		with 20% garnet, 20% chert and 10% po bedding									
		is distinct at 60° to c/a									
		- 53.65-53.75 - soft sediment slump structure and									
		truncated bedding appear to indicate that					]				
		stratigraphic top is uphole (to the north)				Ì	L	l			
			· · · · · · · · · · · · · · · · · · ·	ļ				·			
<u></u>			·		ļ		ļ	ļ	ļ	ļ	
							ļ				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	}						<u> </u>			<u> </u>	
	<b>I</b>		- I	ليسببها	L	L	L	I	I	II	

-

.

.

·

Hole Number DL-83-35

3 Page.....

		DRILL HOLE LOG												
FROM	<b>TO</b>		SAMPLE	MET	ERS	CORE			ASSAY					
FROM		DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Aq (ppm)				
53 <b>.</b> 9 m	55.4 m	MAFIC TUFF	D00041	53.9	54.4	0.5		120_	18	<0.5				
			D00042	54.4	54,9	0,5	3	120	15	k0.5				
		- as at 45.0 - 49.0 with development of	D00043	54.9	55.4	0.5		120	38	K0.5				
		black amphibole in an otherwise fine												
		grained dark green-black mafic tuff												
		- lack of guartz suggests that sedimentary				·								
		component is minimal												
		- bedding is at 70° to c/a					 							
55.4 m	55.55 m	FELDSPAR PORPHYRY												
			D00044	55.4	55.5	0.15	2	66_	64	k0.5				
		- as at 52.1-52.3												
		- contacts conformable at 70° to c/a												
55.55 m	56.4 m	MAFIC TUFF												
			D00045	55.55	56.0	0.45	4	73	27	K0.5				
		- as at 53.9 - 55.4	D00046	56.0	56.4	0.40	2	69	22	10.5				
										<u> </u>				
56.4 m	56.6 m	LAMINATED CHERTY - PY - PO ROCK												
		- well bedded cherty chemical sediment	D00047	56.4	56.6	0.2	1	240	_36	1.0				
		with laminations on the order at 1-5 mm												
		consisting of alternating barren chert with												
		sulphide rich chert												
		- entire unit is not conductive but individual beds are												
		- contains 20% py + po												
		- bedding at 65° to c/a												

[1,1]

CORE

. .

Hole Number DL-83-35

		DRILL HOLE LOG						-			
FROM	TO	DESCRIDTION	SAMPLE	MET	ERS	CORE			ASSAY		
- FROM			NUMBER	FROM	TO	LGTH	Au (ppb)	Cu (ppm)	Zn (ppn	Ag (ppm)	
56.6 m	60.9 m	MAFIC - INTERMEDIATE TUFF	D00048	56.6	57.1	0.5	2	85	26	0.5	
			D00049	57.1	57.6	0.5	2	100	19	<0.5	
		- fine grained black mafic tuff intercalated	D00050	57.6	58.1	0.5	1	60	21	<0.5	
		with 30% medium green intermediate	D00051	58.1	58.6	0.5	2	120	23	0.5	
		tuff bands which contain up to 10%	D00052	58.6	59.1	0,5	1	150	27	0.5	
		po, averaging 1-2% and 10% pyrite,	D00053	59.1	59.6	0.5	4	98	14	<b>&lt; 0.5</b>	
		averaging 1%	D00054	59.6	60.1	0.5	2	110	18	< 0.5	
		- very similar to 52.3-52.9	D00055	60.1	60.6	0.5	2	84	19	<0.5	
		- bedding at 70° to c/a	D00056	60.6	60.9	0.3	2	120	40	0.5	
		- garnet - po at 57.9									
		- 58.85 - 58.90 - 10% pyrite, 5% po									
60.9 m	61.1 m	CONDUCTOR - LAMINATED CHERT-PO-PY ROCK	D00057	60.9	61.1	0.2	<1	340	76	1.0	
		- rock is similar to 56.4 - 56.6 except that there									
		is enough sulphide material to make the entire unit									
		moderately conductive									
		- in addition 10-15% of this unit consists of						· · ·			
		intermediate tuffaceous material									
		- contains 30% bedded and disseminated po+py. Po									
		predominates up hole and py downhole									
		- contacts conformable and bedding at 70° to c/a									
		- chert makes up 50% of rock									
		- laminations 2-5 mm thick									
	······································		*			- 1 - 1					
					· · · · · · · · · · · · · · · · · · ·						
										****	

÷ι

5

Page....4

.'

Hole Number DL-83-35

		DRILL HOLE LOG						L.			
FROM	DRILL HOLE   FROM TO DESCRIPTION   61.1 m 64.5 m MAFIC VOLCANIC ROCK   - - massive amphibole bearing dark green mafic volcanic rock   - - massive amphibole bearing dark green mafic volcanic rock   - - similar to sections previously encountered at   - - similar to sections previously encountered at   - - at 45.0-49.0, 53.9-55.4   - - upper contact sharp at 70° to c/a   - - probably a flow?   - - non magnetic   - - ground core at 63.3 - 63.7   - - 1% sulphide throughout   - - -   - - -   - - -   - - -   - - -   - - -   - - -   - - -   - - -   - - -   - - -		SAMPLE	MET	TERS	CORE			ASSAY		
FROM		DESCRIPTION	NUMBER	FROM	то	LGTH	Au (ppb).	Gu (ppm)	Zn (ppm	Ag (ppm)	
61,1 m	64.5 m	MAFIC VOLCANIC ROCK									
			D00058	61.1	61.6	0.5	2	51	75	0.5	
		- massive amphibole bearing dark green mafic volcanic rock	D00059	61.6	62.1	0.5	<1	48	29	\$0.5	
			D00060	62.1	62.6	0.5	4	53	14	\$0.5	
		- similar to sections previously encountered at	D00061	62.6	63.1	0,5	4	42	17	< 0.5	
		at 45.0-49.0, 53.9-55.4	D00062	63.1	63.6	0.5	2	53	16	<b>\$0.5</b>	
		- upper contact sharp at 70° to c/a	D00063	63.6	64.1	0.5	2	83	65	1.0	
		lower contact gradational	D00064	64.1	64.6	0.5-	3	82	110	1.0	
		- probably a flow?									
		- non magnetic									
		- ground core at 63.3 - 63.7									
		- 1% sulphide throughout									
64.5 m	66.4 m	METASEDIMENTARY ROCK TO MAFIC TUFF	D00065	64.6	65.1	0.5	2	160	220	0.5	
			D00066	65.1	65.6	0.5	<1	79	35	0.5	
		- intercalated grey black siltstone containing 50%	D00067	65.6	66.1	0.5	3	51	52	<b>&lt;</b> 0.5	
		qtz + feldspar grains with black fine grained	D00068	66,1	66.6	0.5	17	56	24	< 0.5	
		mafic tuff as at 37.7 - 52.1									
		- bedding is at 70° to c/a									
		- consists of 50% siltstone and 50% mafic tuff									
		- 65.9-66.3 contains quartz veinlets with chlorite									
		rich alteration salvages									
		- rock is non magnetic								[	
		-64.60 - 64.63 - 10% py + po						l			
		- 66.27 - 66.30 - 5% po + py									
						1					

1:

1 !

GETTY MINES, Low

13 Churcha

• • •

FROM

66.4 m

то

·72.0 m

Hole Number DL-83-35

	DRILL HOLE LOG						~~~	
	DESCRIPTION	SAMPLE	MET	ERS	CORE			ASSAY
-	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm)
	MAFIC VOLCANIC ROCK							
		D00069	_ 66 .6	67.1	0.5	1	35	12
	- massive to weakly banded, medium grained	D00070	67.1	67.6	0.5	2	22	10
	dark green volcanic rock - flow?	D00071	67.6	68.1	0.5	6	41	12
	- contains 40% amphibole, 30% feldspar and	D00072	68.1	68.6	0.5	2	55	14
	30% biotite & chlorite	D00073	68.6	69.l	0.5	3	49	13
	- foliation parallel to bedding at 70° to c/a	D00074	69.1	69.6	0.5	<b>&lt;</b> 1	77	50
	- contains 1% py + po disseminated throughout	D00075	69.6	70.1	0.5	1	53	40
	- 71.8 - 72.0 contact gradational and rock	D00076	70.1	70.6	0.5	3	55	190
	appears sedimentary or tuffaceous in nature	D00077	70.6	71.1	0.5	1	84	51
		D00078	71.1	71.6	0.5	2	90	100
		D00079	71.6	72.0	0.4	<1	55	150
	CONDUCTOR - GRAPHITE - PY ROCK							
_	- excellent conductor	D00080	72.0	72.5	0.5	3	940	1900
	- rock contains wariable graphite - my content	000001	72 6	72 0	0.2		1	

		- 71.8 - 72.0 contact gradational and rock	D00076	70.1	70.6	0.5	3	55	190	< 0.5	
		appears sedimentary or tuffaceous in nature	D00077	70.6	71.1	0.5	1	84	51	<0.5	
		•	D00078	71.1	71.6	0.5	2	90	100	<0.5	<u> </u>
			D00079	71.6	72.0	0.4	<1	55	150	٥.5	
72.0 m	72.8 m	CONDUCTOR - GRAPHITE - PY ROCK									
		- excellent conductor	D00080	72.0	72.5	0.5	3	940	1900	2.0	
		- rock contains variable graphite - py content	D00081	72.5	72.8	0.3	3	300	190	1.0	
		and grades from an intermediate to felsic									
		tuff with 10% graphite + py at 72.0-72.2 into									
		a rock containing 70% graphite, 20% pyrite,									
		10% chert at 72.2-72.6 back into the same rock						1			
		as at 72.0-72.2					1				
		- banding at 70° to c/a									
}		- rock is magnetic		1				1		1	
							1	1		1	
			<u> </u>	<u> </u>						1	
				1						1	
			· · · · ·		A	ł <u></u>	1, <u>.</u>			4	<b></b>

1

' ŀ.



Page. . 6. . . . . . .

Zn (ppm) hg (ppm)

12 40.5 10 < 0.5 12 < 0.5

-0.5

<0.5

40.5

0.5

• • •

.....

•••---

•

•

#### DL-83-35 Hole Number

	DRILL	HOLE LOG	
--	-------	----------	--

FROM	τo		SAMPLE	MET	ERS	S CORE ASSAY					
FROM		DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au (ppb)	Cu (ppm)	Zn (ppm	Ag (ppm)	
72.8 m	76.2	INTERMEDIATE TUFF (TUFFITE?)					[				
			D00082	72.8	73.3	0.5	1	72	22	۷٥.5	_
		- fine grained, medium green, well bedded	D00083	73.3	73.8	0.5	3	120	23	40.5	
		intermediate tuff - this rock appears	D00084	73.8	74.3	0.5	<1	100	110	<u>&lt;0.5</u>	
		to have a substantial sedimentary component	D00085	74.3	74.8	0.5	8	120	19	0.5	
		and hence maybe a tuffite?	D00086	74.8	75.3	0.5	3	130	31	0.5	
		- bedding at 70° to c/a	D00087	75.3	75.8	0.5	3	57	24	40.5	
		- graphite conductive zones at 74.25 - 74.3,	D00088	75.8	76.2	0.4	3	100	88	<b>&lt; 0.</b> 5	
		75.15 - 75.20									
		- lower contact gradational									
		- chlorite dominates over biotite									
		- felsic ash band at 73.94 - 73.97									
76.2 m	78.5 m	MAFIC VOLCANIC ROCK									
		-as at 66.4 - 72.0									
76.2 m	93.6 m	INTERMEDIATE TUFFITE									
		- as at 72.8 - 76.2									
		- may be even more sedimentary but tuffaceous component									
		definitely present									
		- bedding at 70° to c/a									
		1					ļ				
									<u></u>	<u> </u>	

16 , 7 Page.....

r

. . ....

Hole Number DL-83-35

Page....⁸.....

#### DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE	METERS		CORE	 	ASSAY		
		DESCRIPTION	NUMBER	FROM	то	LGTH	 			
93.6 m	100.6 m	METASEDIMENTARY ROCK - SILTSTONE							· · · · · ·	
		- fine grained grey siltstone	······································				 			
		- bedding at 70° to c/a								<b>—</b>
		- core badly ground at 93.8-97.2		1						
	·	- contains 5-10% disseminated euhedral pyrite		1					1	
		at 93.8-95.0 - but core badly ground								
			· · ·				 			
		E.O.H 100.6	•	1			 •			
									· ·	
		- 100% core recovery	· · ·							
		- conductor explained	· · · · · · · · · · · · · · · · · · ·							
			······································							
								1		1
								-		
		and the second second second second second second second second second second second second second second second					 			
					 		 <u> </u>			<u> </u>
								·		<u></u>
····							 		L	-
				<u> </u>			 	<u> </u>	ļ	<u> </u>
- 1				1			 	<u> </u>		ļ
							 	ļ		ļ
	1		1	1	1	1	1	4	1	1

J

G1

						COME					ge <b>. In t</b>	of	
PROJECT ABITICI	- Vicit-CA	NUC BY	<u>UT</u>	. 1	PROPERTY _	DE TOU	(P. SYNT	<u>H</u>			Date MARC	н 183	
DL-83-35 DRILL HOLE NO.	From (m.)	To (m.)	Width (m.)	(+1 (pob)	(u (ppm)	Zn (ppm)	(nem)	B (ppm)	<b>n</b> k f (	NO (npm)	As (ppm)		
D 00081	72.5	72.8	0.3	3	300	190	1.0	10	4/30	8	1.0		
00082	:12.8	73.3	0.5	1	72	7.2	10.5	]					
00083	73.3	73.8	0.5	3	120	23	40.5	10	260	2.	3.2		
193000	73.8	74.3	0.5	<u> </u>	100	110	20.5						- <b>C</b>
00085	74.3	74.8	0.5	8	120	19	0.5	10	140	1	1.1		
00086	74.8	75.3	0.5	3	130	31	0.5						
00087	75.3	75.8	0.5	3	57	24	20.5	10	230	~1	0.4		
00088	75.8	76.2	0.4	3	100	88	20.5						
· ·													
<u></u>	]												
		1		1	1		1	1	1	1	1		1

											ande Tarran	01	
PROJECT ABITIC	L MULC	ANIC F	ELT		PROPERTY _	DETOU	<u>C Edur</u>	Г.Н			Date MARCH	<u>+ 183</u>	
DURS3-35 DRILL HOLE NO.	From (m.)	To (m.)	Width (m.)	(10) Au	(u (fpm)	Zri (ppm)	(Ag (ppm)	K (vom)	Mn (app (0)	Mo (aua)	As (DDIN)		
D00059	61.6	62.1	0.5	۷۱	48	zg	20.5	10	110		0.3		
00060	62.1	62.6	0.5	4	53	14	20.5						
0006	62.6	63.1	0.5	4	42	17	20.5	12	160	4	0.2		
00862	63,1	63.6	0.5	2	53	16	20.5						
00063	63.6	64.1	0.5	2	83	65	1.0	10	150	<1	0.4		
000 64	69.1	64.6	0.5	3	8Z	110	1.0						
00065	64.6	65.1	0.5	2	160	220	0.5	10	220	2	0.2		
00066	65.1	65.6	0.5	۷1	79	35	0.5						
00067	65.6	66.1	0.5	3	51	52	20.5	10	190	1	0.2		
00068	66.1	66.6	0.5	17	56	2.4-	40.5						
00069	66.6	67.1	0.5	1	35	12	20.5	10	1~10	1	0.2		
00070	67.1	67.6	0.5	Z	22	10	20.5						
00071	67.6	68.1	0.5	6	41	12.	20.5	10	160	21	0.3		
00072	68.1	68.6	0.5	2	55	14-	20.5						
00073	68.6	67.1	0.5	3	49	13	20.5	10	150	5.	0.2		
00074	69.1	69.6	0.5	<u> </u>	77	50	1-0.5						
00075	69.6	70.1	0.5	1	53	40	0.5	10	180	3	0.2		
000-16	70.1	70.6	0.5	3	55	190	20.5	]					
0007	10.6	71.1	0.5	1	84	51	20.5	10	170		0.2		
000 48	71.1	71.6	0.5	2	90	100	2.0.5			ļ			ļ
000 79	71.6	72.0	0.4	4	55	150	20.5	0	230	15	0.3		
00080	72.0	72.5	0.5	3	940	1900	2.0				<u> </u>	 	\
					-	-	_	-	-	-	-	-	

PROJECT <u>ABITIES</u>	NOLCA	DIC B	ELT	,	PROPERTY _	DETOU	IC TOU				Date <u>MARCI</u>	1 183	
DE 85-35 DRILL HOLE NO.	From (m.)	To (m.)	Width (m.)	Are (ppb)	Cu. (ppm)	Zn (ppm)	they (eem)	B (ppm)	11n Copm	140 (2000)	fis (pom)		
D00034	52.1	52.3	0.2_	1	42	46	<0.5	.25	370	6.)	0.6		
00038	52.3	52.8	0.5	37	280	25	0.5		-				
00039	52.8	53.3	0.5	2	100	2.2.	40.5	10	230	21	0.2		
00040	<u>53.3</u>	53.9	0.6	5	110	2.8	0.5		-				
00041	53.9	54.4	0.5	5	120	18	40.5	10	200	<1	0.2		
00042	54.4	54.9	0.5	3	120	15	10.5	-	-				
00043	54.9	55.4	0.5	1	120	38	40.5	10	180	<u> </u>	0.1		
000 44	55.4-	<u>55.55</u>	0.15	2	66	64	40.5	-	_				
00045	55.55	56.0	0.55	4	73	27	20.5	10	190	2	0.2		
00046	56.0	56.4	0.4	2	69	22	. 20.5	-	_		-		
00047	56.4	56.6	0.2	1	240	36	1.0	25	350	.5	0.3		
00048	56.6	57.1	0.5	Z	85	2.6	0.5	-	-	~			
000 4-9	57.1	57.6	0.5	2	100	19	20.5	10	600	3	0.2	<u> </u>	
00050	57.6	58.1	0.5	1	60	21	40.5	-		-			
00051	58.1	58.6	0.5	2	120	23	0.5	10	580	6.	0.4		
00052-	58.6	59.1	0.5	1	150	27:	0.5	-	-		-		
00053	59.1	59.6	0.5	4	98	14-	40.5	10	160	<u> </u>	0.2		
00054	59.6	60.1	0.5	2	110	18	20.5						
0 <b>m</b> 55	(0.)	60.6	0.5	2	84	19	40.5	10	260	2	0.1		
00055	60.6	0.0.9	0.3	2	120	40	0.5		_				
00057	60.9	61.1	0.2	L1	340	76	1.0	10	.300	5	0.3		
00058	61.)	61.6	0.5	2	51	71	0.5	-	-	_			

6A

F

C

R I

of

ae _

















• •

- 1

585834 585884 585885 585873 DL-83-26 585883 300 D 2-5-1-1-C-MC for a gradient stand and metres

G	DRAWN BY: K.S	DATE: OCT B3
	NTS: 32 E 13	SCALE 1: 5. DOD
	Getty Canad	lian Metals, Ltd.









عيوير والتعارين المرام والإلار

	Getty Canadia	an Metals, Ltd.		
14/2	NTS: 32 E /13	SCALE: 1:5000		
	CHECK'D BY:	DRAW'G No:		
	CITATION DI.	10/11-3CP 1 1 1 2 3		



Ministry of Re Natural Resources of	work H 321	<b>83</b> The Mir					
Name : Ital Address of R GETTY CANADI	ecorded Holder AN METALS, LIMITED	AtK:	32E135E0022 33 /	ATKINSON LAKE	T-890		900
1200-150 YOR	K STREET, TORONTO, O	NTARIO M5H	385	-pirua	Wf3	<i>u</i> 6	321
Summary of Work Perform	ance and Distribution of Credi	ts				ž	
2059	Mining Claim Prefix Number	Work Days Cr. Pref	Mining Claim ix Number	Work Days Cr. P	Mining Prefix	Claim Number	Work Days Cr.
for Performance of the followi work. (Check one only)	ng						
Manuał Work							
Shaft Sinking Drifting or							
Other Lateral Work.							
Power driven or mechanical equip,							
Power Stripping							
Diamond or other Core drilling	See attached	list (B)				**************************************	
Land Survey			(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)				
All the work was performed o	n Mining Claim(s): See a	attached 1	ist (A)			<u></u>	
Required Information eq:	type of equipment, Names, Ad	dresses, etc. (	See Table Below)				
PORCUPINE MINING DIVISION RECEIVED OCT 25 1983 * A.M. 718191011112111218141516 Date of Report Cotober 18, 1983 * Millicht Moder of Agent (Signature)							
I hereby certify that I have	a personal and intimate knowledge	of the facts set f	orth in the Report of	f Work annexed h	iereto, having	performed t	he work
Name and Postal Address of Pr Karen Sutherland	erson Certifying L, C/O Getty Canadia	n Metals,	Limited	210	1	anature)	
1200-150 York St	reet, Toronto, Ontar.	io M5H 3S5	October 18	1983	Sutio	Vand	
Table of Information/Atta	chments Required by the Minit	ng Recorder			· · · · · · · · · · · · · · · · · · ·	ſ	
Type of Work	Specific information per	type	Other information (	Common to 2 or	more types)	Attach	iments
Manual Work	Nil						
Shaft Sinking, Drifting or other Lateral Work			Names and address manual work/oper with dates and hou	es of men who pe ated equipment, irs of employmen	ertormed together t.	Work Sket are require the locatio	ch: these ad to show on and
Compressed air, other power driven or mechanical equip.	Type of equipment					extent of relation to nearest cla	
Power Stripping	Type of equipment and amount of	expended.	Names and addresses of owner or operator				work in the tim post.
	within 30 days of recording.	be submitted	Names and address together with dates	es of owner or op s when drilling/st	perator ripping		work in the tim post.
Diamond or other core drilling	Note: Proof of actual cost must r within 30 days of recording. Signed core log showing; footage core, number and angles of holes.	, diameter of	Names and address together with dates done.	es of owner or op s when drilling/st	perator ripping	Work Ske above) in	work in o the tim post. tch (as duplicate

#### ATTACHMENTS REQUIRED BY MINING RECORDER

FOR

DIAMOND DRILLING

#### Submitted by

Getty Canadian Metals, Limited

Drill logs and drill hole location maps are submitted for the following five drill holes: DL-82-18, DL-83-21, DL-83-22, DL-83-34 and DL-83-35.

Total metreage for the five holes drilled is 627.6 m (2059 ft) for total work days credit of 2059 days.

A list of claims to which the drill credits are to be applied is attached.

Karen Sutherland Geologist

October, 1983 Toronto, Ontario (A)

### DETOUR LAKE

### DRILL HOLE LOCATION TABLE

•

#### ATTACHMENT FOR THE REPORT

#### OF WORK

.

<u>Claim No</u> .	Drill Hole No.	Metreage
618866	DL-82-18	148.1
619208	DL-83-21	152.7
619203	DL-83-22	101.2
619208	DL-83-34	125.0
619203	DL-83-35	100.6

627.6 m or 2059 ft.

(B)

40 DAYS DIAMOND DRILLING ASSESSMENT

P619058	P619141
P619059	P619142
P619060	P619 143
P619061	P619144
P619062	P619145
P619063	P619146
P619064	P619147
P619065	P619148
P619066	P619 149
P619067	P619150
P619068	P619151
P619069	P619152
P619070	P619153
P619071	P619154
P619072	P619 155
P619073	P619 156
P619074	P619157
P619075	P619 ₁₅₈
P619076	P619 159
P619077	P619 160
	P619 161
	P619 162
	P619 163
	P619 164

44 claims.

rage

1  $\mathbf{O}$ 

#### 60 DAYS DIAMOND DRILLING ASSESSMENT

•.

#### 59 DAYS DIAMOND DRILLING ASSESSMENT

P633244

5 claims

Ontario Ministry of Natural Resources of V	Nork . += 32	3 Instructions - Supply re type of type of Work ( Expendit	quired data on a work to be recon echnical work use Geological, Geoph Ires)".	separate form for e rded (see table belo form no. 1362 "Rep hysical, Geochemical
Name and Address of Re Getty Canadian	Corded Holder n Metals, Limited	N SONLAR	rospector's Lice T-89	ence No. O
Suite 1200-150	) York Street, Toronto, Ontari	o M5H 3S5	WP7	06 713
Summary of Work Performa	nce and Distribution of Credits		***	
7828	Mining Claim Work Prefix Number Days Cr. Prefi	Mining Claim Work x Number Days Cr.	Mining ( Prefix N	Claim Wor Number Days
for Performance of the followir work. (Check one only)	19	<u>A</u>		
Manual Work				
Shaft Sinking Drifting or other Lateral Work.				
Compressed Air, other Power driven or mechanical equip.				
Power Stripping		/i		
Diamond or other Core		X		
Land Survey	See attached List (#			
All the work was performed on	Mining Claim(s): See attached List	(A)		
Required Information eg: 1	type of equipment, Names, Addresses, etc. (	See Table Below)		
$\begin{array}{c} \text{RESEARCH OXFICE} \\ \text{NOV 2.2 1983} \\ \text{R E C E I V E D} \\ \hline \\ \text{R E C E I V E D} \\ \text{OCT 2.5 1983} \\ \text{A.M.} \\ 7_{1819,10,111,12,11,213141510} \\ \text{SK} \\ \end{array}$				
		October 18,1983 🤇	NUTTE	run
Certification Verifying Rep	ort of Work	forth in the Penert of Mark ac-	ad barato baute-	parformed the week
or witnessed same during an	d/or after its completion and the annexed report is	true.	eo nereto, naving	portormed the work
Karen Sutherland	, Getty Canadian Metals, Limit	ed	)	
1200-150 York St	reet, Toronto, Ontario M5H 3S5	Date Certified October 18,1983	Cottified by ISig	ineture)
Table of Information/Attac	chments Required by the Mining Recorder			<u>∽∽∨∔%∕</u>
Type of Work	Specific information per type	Other information (Common to 2	2 or more types)	Attachments
Manual Work	Nil			
Shaft Sinking, Drifting or other Lateral Work		Names and addresses of men wh manual work / operated equipme with dates and hours of employ	o performed ent, together ment.	Work Sketch: thes are required to sho the location and
Compressed air, other power driven or mechanical equip.	Type of equipment			extent of work in relation to the
Power Stripping	Type of equipment and amount expended. Note: Proof of actual cost must be submitted within 30 days of recording.	Names and addresses of owner o together with dates when drillin	or operator g/stripping	
Diamond or other core orilling	Signed core log showing; footage, diameter of core, number and angles of holes.	done.		Work Sketch (as above) in duplicate
Land Survey	Name and address of Ontario land surveyer.	Nil		Nil

### ATTACHMENTS REQUIRED BY MINING RECORDER FOR DIAMOND DRILLING

#### Submitted by

#### Getty Canadian Metals, Limited

Drill logs and drill hole location maps are submitted for the following fourteen drill holes: DL-82-09, DL-82-10, DL-82-11, DL-82-13, DL-82-15, DL-82-16, DL-83-08, DL-83-23, DL-83-26, DL-83-27, DL-83-28, DL-83-30, DL-83-31 and DL-83-33.

Total metreage for the fourteen holes drilled is 2386.1 m (7828 ft) for total work days credit of 7828 days.

A list of claims to which the drill credits are to be applied is attached.

K.S. Sutherland Geologist

October, 1983 Toronto, Ontario.

### DRILL HOLE LOCATION TABLE

### ATTACHMENT FOR REPORT OF WORK

Ī

CLAIM NO.	DRILL HOLE NO.	METREAGE
585614/585613	DL-82-09	154.2
585905/585904	DL-82-10	123,1
585903/585655	DL-82-11	248.7
585615/585608	DL-82-13	230.4
585925	DL-82-15	174.3
585947	DL-82-16	166.1
585909/585910	DL-83-08	144.5
585956	DL-83-23	139.3
585884	DL-83-26	242.9
585831 -	DL-83-27	111.9
(585577-) LOWLE DI	Tour DL-83-28	106.7
585857	DL-83-30	167.9
(585852) LOWLR DF	70UR (DL-83-31)	230.7
586577	DL-83-33	145.4

### 2386.1 m

or 7828 ft.

•

•.

20	DAYS	DIAMOND	DRILLING	ASSESSMENT
~ ~		D T T T T T T T T T T T		

P585608	P585964	
585609	585965	
585610		
585611	P586354	
585613	586355	
585614		29 claims
585615		
585899		
585900		
585908		
585909		
585918		
585922		•
585923		
585935		
585936		
585945		
585946		
585947		
585948		
585953		
585954		
585955		
585956		
585957		

...

### 40 DAYS DIAMOND DRILLING ASSESSMENT

	P586527	P585920	P585966
	586528	585907	585951
	586531	585917	585952
	586532	585606	585949
42 claims		585605	585950
		585604	585656
		585603	585654
		585602	585617
•		585247	585655
		585248	585904
		585914	585913
		585901	585924
			585925
			585915
			585912
			585905
,			585903
			585616
			585607
			585902
			585906
			585911
			585916
			585921
			585926
			585930

62 claims

# DETOUR LAKE

•

# 60 DAYS DIAMOND DRILLING ASSESSMENT

P585304	P585821	P585856
586356	585822	585857
586357	585825	585858
	585829	585873
585562	585830	585874
585563	585831	585875
	585832	585876
585565	585833	585879
585566	585834	585880
585567	585835	585881
585568	585836	585882
585569	585837	585883
585570	585838	585884
585571	585839	. 585885
585573	585840	
585574	585841	585910
585575	585842	
558576	585843	
585577	585845	
585578	585846	
•	585848	
585772	585851	
585773	585852	
585774	585853	
	585854	
	585855	

Page 4 of 5

## DETOUR LAKE

I

.

### 80 DAYS DIAMOND DRILLING ASSESSMENT

P585780	
585781	
585785	
585792	
585797	
P586508	
586509	
586510	
586513	
586514	
586515	
586516	
586517	
586575	
586576	
586577	
586578	
586579	
586580	
586581	
586590	
586591	

22 claims
.

...

## DETOUR LAKE

## 88 DAYS DIAMOND DRILLING ASSESSMENT

P585564

1 claim



Getty Canadian Metals, Limited Suite 1200, 150 York Street, Toronto, Ontario M5H 3S5 • (416) 863-0487

October 26, 1983.

Mining Recorder 60 Wilson Avenue Timmins, Ontario P4N 2S7

Attention: Mr. W. Good

Dear Mr. Good,

Re: Reports of Work
i) P585608 et al (7828 days)
ii) P619058 et al (2059 days)
iii) P585579 et al (341 days)
Detour Lake Property, Ontario

Enclosed please find the required attachments for the Reports of Work for diamond drilling noted above.

I trust you will find the enclosed to be in order.

Please acknowledge receipt of these reports.

Yours/very truly,

Karen Sutherland Geologist

c.c. Greg Jarvis.

Attach: