Westmin Resources Limited
Report on 1985 Exploration
Nash Creek Claims, Ontario.

N.T.S. 32 E/13
Latitude 49 54'N
Longitude 79 31'W

January 1986

Paul R. J. Nicholls, P.Eng.

Table of Contents

		Page
1.0	Summary	3
2.0	Recommendations	3
3.0	Introduction	3
3.2	Location and Access Claim Status Previous Work	3 3 7
4.0	1985 Program	8
Selected	Bibliography	10
Certific	ation	11
File: NA	SHEXPL	
	List of Figures	
	Location Map Claim Map X-Ray Drill Results	4 5 9
	List of Tables	
Table 1	Land Status	6
	List of Appendices	
Appendix		
Appendix	NCX-85-1 and 2 2 Geochemical Data for X-Ray Holes NCX-85-1 and 2	

1.0 Summary:

Two short drill holes tested the northernmost conductor on the Nash Creek claims. The hole intersected chalcopyrite and sphalerite associated with pyrrhotite in graphitic tuffs. The best values returned ranged up to 5700 ppm zinc and 660 ppm Cu (with 2.4 ppm Ag). The conductor was intersected but the horizon was not fully tested.

2.0 Recommendations:

Anomalous base and precious metal values associated with two conductive trends have been defined by the work to date. Diamond drilling along these two conductive horizons should be completed in the future.

3.0 Introduction:

The Nash Creek Claims were staked in 1979 as part of the Detour Gold Project. Geological mapping, ground geophysics and diamond drilling has identified two stratigraphic horizons with anomalous Au and base metal content. In February 1985, two short x-ray drill holes were completed to test the northern horizon and the claims were surveyed. The following report deals with 1985 work.

3.1 Location and Access:

The Nash Creek claims are located in the Detour Lake Area of northeastern Ontario (NTS: 32 E/13, Figure 1) approximately 135 kilometres north of Cochrane. The property is accessible via winter roads from the Detour Mine which is linked to Cochrane by an all-weather gravel road.

3.2 Claim Status:

At the completion of 1985 the sixteen claims (Table 1, Figure 2) within the Nash Creek claims block had received enough assessment credits to be taken to lease.

Figure 1 7. 23 81

Table 1 Claim Status

Nash Creek Project

Location:	Div	vision	etour Lake n, Ontario 32 E/13		a, Poi	rcupii	ne M:	ining
Property:	16	Minir	ng Claims;	Area	a of 2	256 h	а.	
Claim No.	Dat	te Red	corded	Wo	ork Di	ıe		ance Work (days)
P.553628	4	Jan.	1980	4	Jan.	1986		Nil
P.553629	4	Jan.	1980	4	Jan.	1986		Nil
P.553630	4	Jan.	1980	4	Jan.	1986	-	Nil
P.553631	4	Jan.	1980	4	Jan.	1986		Nil
P.553632	4	Jan.	1980	4	Jan.	1986		Nil
P.553633	4	Jan.	1980	4	Jan.	1986		Nil
P.553643	4	Jan.	1980	4	Jan.	1986	35	Nil
P.553644	4	Jan.	1980	4	Jan.	1986		Nil
P.553645	4	Jan.	1980	4	Jan.	1986		Nil
P.553646	4	Jan.	1980	4	Jan.	1986		Nil
P.553647	4	Jan.	1980	4	Jan.	1986		Nil
P.553648	4	Jan.	1980	4	Jan.	1986		Nil
P.553649	4	Jan.	1980	4	Jan.	1986		Nil
P.575669	21	July	1980	21	July	1986		Nil
P.575670	21	July	1980	21	July	1986		Nil
P.575671	21	July	1980	21	July	1986		Nil

3.3 Previous Work:

Since 1980 the Nash Creek claims have been covered by the following work:

- 1980: A Questor airborne Input electromagnetic and magnetic survey flown over the property identified two conductive trends with 4-6 channel anomalies. Geological mapping indicated that the property was underlain by predominantly mafic volcanic flows with some thin felsic horizons (Rockingham, 1980).
- 1981: Line-cutting was completed over the property with lines spaced at 100 metres (Rockingham, 1981).
- 1982: In 1982 a Max-Min survey located several conductors on the property. The northernmost conductive horizon was tested by one diamond drill hole NC-82-1 that intersected 0.46 g/ton Au over 3 metres. The gold intersection was contained within a sulphidic felsic tuff horizon (Rockingham, 1982).
- 1983: One drill hole (NC-83-2) tested a second conductive horizon and intersected 0.6 g/ton Au over 1.5 metres associated with a thin highly conductive band of pyrrhotite within the mafic flows (Rockingham, 1982).
- 1984: Limited Max-Min II coverage completed on the property to detail some of the Max-Min II anomalies.

1985 Program:

In February 1985, R. Kozy of Larder Lake, Ontario completed two short x-ray drill holes to test the northernmost conductor (Figure 3) under an outcrop where anomalous values of Au had been returned from surface sampling.

The drill holes (Appendix 1) intersected intermediate volcanic flows and tuffs, and graphitic tuffs. The graphitic rocks contained anomalous amounts of copper and zinc (up to 600 ppm and 5700 ppm respectively) (Appendix 2) but no significant values for Au were returned. The holes intersected the conductor but may not have completely tested the horizon.

Respectfully submitted:

Paul R. J. Nicholls, P. Eng.

P. R. J. NICHOLLS OF ONLY

Selected Bibliography

Rockingham, C.J. 1980: A Report on the Detour Gold Project, Northeastern Ontario,

N.T.S. 32 E/13, L/4

Rockingham, C.J. 1981: A Progress Report on the Detour

Gold Project, Northeastern Ontario, N.T.S. 32 E/13, L/4, Westmin Resources

Limited Private Report

Rockingham, C.J. 1982: Report on 1982 Field Work, Detour

Gold Project, Ontario, N.T.S. 32 E/13,

L/4, Westmin Resources Limited

Private Report

Rockingham, C.J. 1983: Report on the Nash Creek Claims

Detour Lake Area, Ontario, N.T.S. 32 E/13, Westmin Resources Limited

Private Report

Certification

I, Paul R. J. Nicholls, of 40 Albert Street South, Box 1605, Stouffville, Ontario, LOH 1LO, certify the following:

- 1) I have practised my profession for nine years.
- 2) I hold an Honours B.Sc., in Geological Engineering obtained from Queen's University, Kingston, Ontario, in 1976.
- 3) I am a Registered Professional Engineer in the Province of Ontario.
- 4) I am a member of the Canadian Institute of Mining and Metallurgy and Geological Association of Canada.
- 5) I have conducted work and reviewed all data presented.
- 6) I have no financial interests in the property covered by this report.

January 1986.

Paul R. J. Nicholls, P.Eng.

Appendix 1

Drill Logs of X-Ray Holes
NCX-85-1 and 2

Supraja Copped Suprited

NASH CREEK, ONTARIO PROPERTY PAGE 1 BEARING 000 6+30W 5+40N HOLE NO. NCX-85-1 LOGGED BY P. Nicholls ELEVATION DIP -50° FINAL DEPTH 31.09m (102') STARTED February 24, 1985 TESTS (CORRECTED) No Tests February 28, 1985 1.4m (pulled out) X-RAY DRILL CASING ___ CORE SIZE 2.22cm (7/8") DESCRIPTION FROM TO m 1.4 Overburden 1.4 9.4 Felsic Volcanic - light grey, fine grained, highly (Tuff or flow) siliceous rock, quartz eyes up to 2mm are common, massive to poorly foliated, feldspar amydules present @1.4 - 1.8m - rusty section - weathered sulphides along fractures - 0.5cm quartz vein at 45 to core 04.0 axis 9.4 15.2 Intermediate to felsic - fine grained, massive to poorly foliated tuff (Tuff) - 10-15% mafic content generally as chloritic wisps - foliation at 40° to core axis @13.2-13.4m - rusty section - no fresh sulphide minerals observed 15.2 23.5 Felsic Volcanic - light grey fine grained massive siliceous unit with quartz eyes,

and amydules

Graphitic Tuff - fined grained - medium to dark

Felsic Volcanic - light grey siliceous, quartz-eye

- 1-2cm rusty section

grey well laminated rock siliceous and graphitic bands alternate, bands of graphite up to 2cm, pyrrhotite rich bands are

common in section - banding at 40-50 to core axis

fined grained felsic volcanic

@21.9-22.1 - rusty section

@ 26.0m

23.5

24.7

24.7

26.5

T. 23 31

	PROPERTY	NASH CREEK, ONTA	RIO	PAGE 2
LOCATION	5+30W 5+40	ON	BEARING 000	HOLE NO. NCX-85-1
LOGGED BY_F	P. Nicholls	ELEVATION	DIP -500 FINAL DI	ертн 31.09m (102¹)
			TESTS (CORRECTED)	
FINISHED_F	ebruary 28	, 1985	18.	y ^{−67} ≪
CASING1	.4m (pulle	d out)	X-RAY DRILL	
	2.22cm (7/8			
FROM M	TO .	(20)	DESCRIPTION	
26.5	30.0	**	- fine grained, well similar to section massive graphite trace sphalerite	on 23.5-24.7m
30.0	31.09	Felsic Volcanic Tuff	- fine grained, mas tuff, minor graph common filling fr over section) whi various angles to	ite pyrrhotite actures (5-% ch are oriented at
31.09		END OF HOLE		
	8			
				·
				HOLE NO.

22.24

APPENDIX 2

Geochemical Data for X-Ray Holes $\label{eq:NCD-85-1} \mbox{NCD-85-1 and 2.}$

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T5_0130 DATE: 31/03/85 MATRIX: AQ REG

WESTMIN RES	DURCES	(P. NICHOLS	3)					NO NO: 85-0130	PAGE: 1
SAMPLE ID	FROM	ТО	AU PPB	AG PPM	CU PPM	ZN PPM	9)		
NCX-B1-1 NCX-B5-1 NCX-B5-1 NCX-B5-1 NCX-85-1	1.5 21.0 23.5 25.0 26.2	1.8 22.0 25.0 26.2 28.4	<5 <5 20 <5 15	<.2 <.2 <.2 <.3 <.3	47 39 180 35 83	120 120 280 140 5700			
NCX-85-1 NCX-85-1 NCX-85-2 NCX-85-2 NCX-85-2	28.4 29.6 18.0 20.0 24.6	29.6 31.09 19.8 20.6 26.5	<5 20 <5 <5 <5	.6 8 <.2 .2	220 390 22 210 82	730 940 135 100 220			
NCX-85-2 NCX-85-2 NCX-85-2	26.5 28.4 29.6	28.4 29.6 30.8	<5 <5 5	2.4 1.9	170 660 320	0750	2		

Westmin Resources Limited

Report on 1984 and 1985

Diamond Drill Programmes

Sunday Lake Claims

Detour Lake Gold Project, Ontario.

N.T.S. 32 E/13, L/4
Latitude 50°00'N
Longitude 79°35'W

Paul R. J. Nicholls, B.Sc., P.Eng.

February 1986.

Table of Contents

				Page
List	of Fi	gures		3
List	of Ta	bles		3
List	of Ap	pendice	S	3
1.0	Summ	ary and	Conclusions	4
2.0	Reco	mmendat	ions	5
3.0	Intr	oductio	n	6
	3.2	Proper	on, Access and Topography ty Status us Work rill Programme	6 6 10 11
4.0 5.0		onal Ge		11 12
	5.1	Result	S	12
			Geology Geochemistry	12 15
Selec	cted B	ibliogr	aphy	17
Certi	ificat	ion		18

File: DDSUNREP

List of Figures

		Page
Figure 1	Location Map	7
Figure 2	Sunday Lake Claim Map	9
Figure 3	Geophysics and Generalized Geology (Section)	13
Figure 4	Section 8+00E Geology	back pocket
Figure 5	Section 8+00E Geochemistry	0
Figure 6	Jensen-Cation Plot	16
	List of Tables	
Table 1	Land Status	8
Table 2	Summary of Lithologies 1984 Drilling	g 14
	List of Appendices	
Appendix 1	Drill Logs	
Appendix 2	Sample Record Sheets and Geochemic Values	al
Appendix 3	Lab Analysis Sheets	
Appendix 4	Whole Rock Analyses	

1.0 Summary and Conclusions:

Diamond drilling has shown that the Sunday Lake claims are underlain by stratigraphy similar to that at the Detour Lake Mine.

Thin basaltic komatiite horizons intersected near the bottom of Hole SL-84-5 are considered significant as they show that the ultramafic rocks intimately associated with the Detour Lake Mine are present on the Sunday Lake Claim Block. One sludge sample returned a value of 171 grams Ag from a cherty horizon immediately south of the komatiites. Core recovery from this section was less than 20 percent.

More drilling is required to test this zone as well as other targets on the property.

2.0 Recommendations:

The Sunday Lake claims cover geological units along strike from and similar to those at the Detour Lake Mine and should be more fully evaluated by diamond drilling.

To conduct this evaluation the following programme is recommended.

- 1) Two diamond drill holes 250 m deep on Line 11+00E, and 5+00E (1+40N) and 5+00E (1+40N) Az 180 dip -50 should test the conductor along strike from komatilitic rocks and anomalous Ag intersected in Hole SL-84-5.
- 2) A diamond drill hole 150 m deep on Line 32+00E at 3+00N Az 180 dip -50 should test the second discrete Max-Min II/I.P. anomaly.
- 3) The southern contact of the magnetic high should be tested by a 200 metre hole at Line 22+00E at 3+25N. This hole would test stratigraphy up-ice from an anomalous Au value (2635 ppb) obtained in the overburden drilling.
- 4) A fence of four 300 m holes should be completed north of the anomalous gold values obtained in overburden drill Hole DO-81-83. This series of holes should start at 13+00N on Line 56+00E or Line 52+00E (Az 180 -50) and test the magnetic high and weak Max-Min anomalies.
- 5) The discrete Max-Min conductor at Line 46+00E, 11+00N should be tested by a 200 metre drill hole.
- 6) An additional 150 metre hole should be wedged from SL-84-5 to intersect the komatiites and zone which returned the high Ag value. The hole will be extended to complete geologic section.

At the completion of this programme all of the claims in this block will be able to be taken to lease upon filing of the work and it is recommended that a perimeter survey covering the entire claim block be completed.

The cost of the programme including drilling (2,400 m), claim surveys, and supervision, overhead, assays, and report writing, etc., is estimated to be \$450,000.

3.0 Introduction:

Westmin Resources Limited initiated the Detour Lake Project in late 1979 to explore for a stratabound gold deposit similar to the Detour Lake Mine (Amoco-Campbell Red Lake). The properties acquired, including the Sunday Lake claims were projected to be underlain by stratigraphically equivalent rocks to those hosting the Detour Lake Mine on the basis of government aeromagnetic maps. This interpretation, has been refined by airborne and ground geophysical surveys, geologic mapping, overburden and diamond drilling completed between 1980 and 1984. Anomalous gold in basal till (up to 10,350 ppb Au) was found in three areas.

In December 1984, 474.7 metres of diamond drilling was completed in order to evaluate the westernmost anomaly and to gain geologic information. An additional 51.8 m was completed in February 1985. The following report deals with the 1984 and 1985 drilling programmes.

3.1 Location, Access and Topography:

The Sunday Lake claims are located in Northern Ontario (latitude 50°00'N, longitude 79°35'W, N.T.S. 32 L/4) approximately 140 kilometres north of the towns of Cochrane, Ontario and La Sarre, Quebec (Figure 1).

Access to the property is facilitated by an all-weather road from Cochrane to the Detour Lake Mine and by tractor road from the mine property.

Topographic relief on the property is generally less than 10 metres with much of the eastern part of the property covered by muskeg. The central portion of the property is traversed by two small rivers with drainage to the south. Mature forest of spruce and poplar cover the western part of the claim group.

3.2 Property Status:

The property consists of 78 claims (Figure 2) located in the Porcupine Mining District of Ontario (Claims Sheets M.3003 and M.2603). The 1984 drill program has given sufficient assessment credits to fulfill all assessment requirements for the claim group. The claims may be taken to lease in 1990-91 once they have been surveyed.

T 23 3 Figure 1

Table 1
Land Status

Claims		Anniver: Date		Assessment Days Filed		ension To
P.553740-759	incl.	Jan. 4	, 1986	200+	Jan.	2, 1987
P.553663-670	incl.	Jan. 4	, 1986	200+	Jan.	2, 1987
P.549852-891	incl.	Jan. 4	, 1986	200+	Jan.	2, 1987
P.576739-735	incl.	Dec.30	, 1986	200+		
P.609948-951	incl.	Mar.20	, 1987	200+		

Claims require legal survey to go to lease. All other assessment requirements have been fulfilled.

T 2 3F. 3 7 2

3.3 Previous Work:

Exploration conducted on the Sunday Lake claims prior to November 1984, is summarized below:

- 1) 1980: An airborne, magnetic and electromagnetic survey (Questor, 1980) located two four-channel anomalies on the south-eastern and south-central portions of the property. Geologic mapping in the area located no areas of outcrop.
- 2) 1981: A reverse circulation overburden drilling program consisting of 27 holes was conducted over the property to delineate any anomalous gold values in the till that were possibly related to an economic deposit and to aid in the definition of the bedrock stratigraphy. The program was successful in locating one strongly anomalous area on the eastern portion of the property (10,350 ppb Au in Hole SO-81-82) as well as several above background (900 1400 ppb Au) values and one anomalous (2,365 ppb Au) value on the western side of the property.
- 3) 1982: A program of line-cutting, ground magnetometer VLF-EM and Max-Min II surveys were conducted over the eastern portion of the property (Lines 42+00 to 64+00E) in the vicinity of the anomalous Au value (10,350 ppb Au) and INUT conductor. Several conductors were defined by the ground geophysics. Three diamond drill holes tested the strongest conductors and intersected graphitic zones associated with felsic volcanic and sedimentary rocks (Rockingham, 1982) that are stratigraphically below the mafic volcanics that host the Detour Lake Mine.
- 4) 1983: The program consisted of line-cutting, ground magnetometer, and VLF-EM, to extend geophysical coverage to most of the property area. Numerous VLF-EM conductors were located and an easterly trending magnetic high was traced across the property.
- 5) February-May 1984: The program consisted of line-cutting (10 kilometres) on the northeastern portion of the property (Lines 42+00E to 64+00E, 0+00N to 15+00N), VLF-EM (15 km), magnetometer survey (24 km), a Max-Min II survey coverage over most of the claim group and an induced polarization survey of selected lines (22 km) was completed.

3.4 1984-85 Drill Programme:

In December 1984 and February 1985, two BQ diamond drill holes (totalling 526.5 metres) were completed on the Sunday Lake property (Figure 3). Sludge samples were collected at intervals of 3.05 m or 6.1 metres. The core was logged with respect to lithology, structure and mineralization. All core and sludge samples were sent to Barringer Magenta (Toronto) to be analysed for Au and Ag.

4.0 Geology:

4.1 Regional Geology

The Detour Project Area is located in the northern part of the Archean Abitibi greenstone belt of the Superior Structural Province. This part of the greenstone belt is folded into a major east-west striking anticline. The core of the anticline is a thick sequence of turbiditic wackes. The northern limb of the anticline is composed primarily of basalts with two known sub-volcanic intrusives. While the southern limb appears to be more complex with two major volcanic units and minor units of volcanic conglomerate, graphitic sediments, and ultramafic rocks.

The Detour Lake Mine and the Sunday Lake claims are located on the northern limb of the anticline. Extensive drilling in the mine area has defined the volcanic stratigraphy of the northern limb (Jackson, 1980).

Arkosic sediments and felsic volcanics represent the basal sequence and are overlain by mafic tuffaceous rocks and minor sediments (300 metres). The mafic tuffs are overlain by a sequence of variolitic mafic volcanics (90 metres) and a second horizon of mafic tuffs (30 metres). A thin layer (3 - 90 metres) of ultramafic flows and tuffs overlies the mafic tuffs and is in turn overlain by a thin continuous cherty tuff horizon. The uppermost unit is a thick sequence of basalts. The Au deposit is centred on the cherty tuff horizon.

11

5.0 Diamond Drilling:

In December 1984 and February 1985 two diamond drill holes (SL84-4 and 5) totalling 526.5 metres were completed on the Sunday Lake claims. The purpose of the drill holes (Figure 4) was to test the following:

- A weak to moderate conductor (L8+00E, 0+10N) with magnetic correlation that was defined by Max-Min II and Induced Polarization surveys.
- A weak Induced Polarization chargeability anomaly (L8+00E, 3+75N).
- 3) The strong magnetic high that trends across the property.
- 4) The volcanic stratigraphy up ice from slightly anomalous basal till samples obtained in the 1981 overburden drill program in order to gain geologic information and possibly intersect an auriferous horizon with no geophysical signature (i.e. non-conductive).

5.1 Results

5.1.1 Geology:

The two drill holes (Figures 3 and 4) completed the southern portion of a fence of holes recommended in May 1984 (Rockingham and Nicholls) and intersected lithologies ranging from mafic volcanic flows in the north to basaltic komatiites, and felsic and mafic tuffs in the south (Table 2, Appendix 1 - drill logs.

Table 2 - Summary of Lithologies 1984-1985 Drilling

From	To	
SL-84-4 0	25.6	Overburden with some boulders.
25.6	165.2	Mafic volcanic flows, massive to
		pillowed, feldspar phyric, pyrite
		cubes, minor interflow sediment.
165.2	169.75	Intermediate to felsic volcanic tuffs
		and feldspar porphyry.
		Porphyry is brecciated with minor
		pyrite and chlorite in veins.
169.75	196.7	Mixed mafic flows and tuffs.
196.7	213.1	Mafic tuffs with three thin cherty
		horizons. Chert horizons can contain
		up to 2% pyrrhotite.
213.1	268.3	Mafic tuffs banded chloritic, minor
		biotite sections. Pyrrhotite rich
		chert horizon at 266.3 - 266.6 m.
268.3	304.87	Felsic crystal tuff and feldspar
		porphyry with minor mafic tuffs.
	304.87	End of hole.
SL-84-5 0	21.34	Overburden.
21.34	36.0	Felsic crystal tuff. Similar to that
		in bottom of SL-84-4.
36.0	47.25	Mafic tuff - fragments up to
		0.3 x 1.0 cm.
47.25	47.95	Mafic flow - calcite filled amygdales
47.95	87.9	Massive mafic volcanic - mottled rock
		with fine-grained matrix dark green
		elongate to oval shaped masses - fine
		grained banded tuff horizons present.
		May be similar to above fragmental or
		possibly coarse flow.
87.9	101.9	Banded mafic tuff finely laminated.
		Crystal tuffs and porphyries contain
		blue quartz eyes.
101.9	161.8	Mixed sequence of banded mafic tuffs,
		felsic crystal tuffs, and feldspar
		porphyries.
161.8	168.6	Graphitic tuffs (pyrrhotite).
168.6	169.9	Basaltic komatiite.
		40-50 percent calcite in matrix.
169.9	172.8	Mafic tuff. Well foliated with
		minor arsenopryite.
172.8	175.9	Chert (?). Only 18 percent core
		recovery. 171 /t Ag from sludge.
175.9	176.9	Carbonated komatiite. Similar to
		above.
176.9	221.6	Mafic tuffs with chert horizon.
		Well foliated to fragmental mafic

Stratigraphic tops indicators generally indicate that the stratigraphy faces north although one indicator in SL-84-5 gave a contradictory facing direction. Measured core angles and dip of conductor indicate that the rocks dip to the north at approximately 70 degrees. This correlates with stratigraphic interpretations put forward for the Detour Mine Area (Johns, 1982, Jackson, 1976).

The Sunday Lake property appears to be at the same general stratigraphic position as the Detour Lake mine which is marked by a transition from predominantly tuffacous rocks overlain by massive to pillowed mafic flows.

Whole rock geochemistry (Figure 5) has identified a basaltic komatiite horizon near the bottom of SL-84-5. The komatiitic rocks are carbonated and are associated with graphitic tuffs and felsic rocks. One felsic unit immediately below the komatiites gave very poor core recovery and returned a highly anomalous Ag value from a sample (171 g/t).

5.1.2 Geochemistry:

In general the geochemical results from sludge and core samples were discouraging. However a significant value for Ag (171 g/t) in a sludge sample was obtained from 169.8 m to 172.9 m in Hole SL-84-5. This value coincides with a section where only 20 percent of the core was recovered.

Respectfully submitted:

Paul R. J. Nicholls, P.Eng.

wholl

Legend Sample Location

Hole Number Depth (m)

5L-84-5 • 168 · 5L-84-4 ■

	Lake Claims
Cation	Plot
Work by PRIN	Scale
Date	NTS

Selected Bibliography

Jackson, A., 1980: Discovery - Case History of the Detour Lake Gold Deposit. Paper presented at the 1980 CIM Toronto.

Johns, G.W., 1982: Geology of the Burntbush-Detour Lake Area, District of Cochrane, Ontario. Geological Survey Report 199, 82 p. accompanied by Map 2453, Scale: 1:100,000.

Nicholls, P.R.J. 1983: Summary of Exploration for Sunday Lake Claims, Detour Lake Gold Project, Ontario. Westmin Resources Limited Private Report.

Nicholls, P.R.J. 1984: Summary of 1983 Exploration for Sunday Lake Claims, Detour Lake Gold Project, Ontario. Westmin Resources Limited Private Report.

Rockingham, C.J. and McMillan, R.H., 1979: Detour Project:

A Proposal to Acquire a Land Position
in a New Gold Mining Camp. Westmin
Resources Limited Private Report.

Rockingham, C.J. 1980: A Report on the Detour Gold Project
Northeastern Ontario, N.T.S. 32 E/13,
L/4. Westmin Resources Limited
Private Report.

Rockingham, C.J. 1981: A Progress Report on the Detour Gold
Project, Northeastern Ontario, N.T.S.
32 E/13, L/4. Westmin Resources
Limited Private Report.

Rockingham, C.J. and Nicholls, P.R.J. 1984: Summary of 1984

Geophysical Surveys for the Sunday Lake
Claims, Detour Lake Gold Project,
Ontario.

Questor, 1980: Airborne Electromagnetic Survey Detour Lake Area Project 22006. Westmin Resources Limited Private Report.

Certification

I, Paul R. J. Nicholls, of 40 Albert Street, South, Box 1605, Stouffville, Ontario, LOH 1LO, certify the following:

- 1) I have practised my profession for ten years.
- I hold an Honours B.Sc., in Geological Engineering obtained from Queen's University, Kingston, Ontario, in 1976.
- I am a Registered Professional Engineer in the Province of Ontario.
- I am a member of the Canadian Institute of Mining and Metallurgy and Geological Association of Canada.
- 5) I have conducted work and reviewed all data presented.
- 6) I have no financial interests in the property covered by this report.

February 1986.

Paul R. J. Nicholls, P.Eng.

PROFESSIONAL CLA

P. R. J. NICHOLLS

Appendix 1

Drill Logs

	SUNDAY LAKE	PAGE 1
LOCATION 8+00E 4+2	BN	BEARING 1800 HOLE NO. SL84-4
LOGGED BY P. Nicholls	ELEVATION	DIP -450 FINAL DEPTH 304.87m
TARTED December	1, 1984	TESTS (CORRECTED) Acid Tests
INISHED December 10), 1984	30.5m - 42° 46.4m - 38°
ASING		122.0m - 37
ORE SIZE BQ		213.0m - 37° 304.8m - 33°
FROM mTO		DESCRIPTION
0 25.6	Overburden	
25.6 27.43	Bedrock - tricone	ed - no core recovered
	basalts controunded mass in part) - calcite fill (45-50m) - generally ap 130m-150m - Interflow an observed at 27.43- 27.8 37.0 - 37.5 42.25m 41.4 - 42.2 51.7m	y dark grey green, medium grained aining feldspar irregular to ses up to lmm (may be gabbroic ed amydules locally present spears massive but pillowed between duffaceous horizons were self-intermediate to mafic composition, sharp contact with flow @ 60 to core axis fine grained mafic tuff with epidote in a vein thin band of epidotized interflow sediment @ 45 to core axis self-mafic tuff with minor disseminated pyrite locm band with bedding @ 70 to core axis intermediate composition

		SUNDAY LAKE	1000	PAGE 2 HOLE NO. SL84-4
	8+00E 4+2			
		S ELEVATION	DIP -450 FINAL DEP	TH_ 304.87m
STARTED	December	4, 1984	TESTS (CORRECTED)	Acid Tests
FINISHED	December 1	0, 1984	30.5m - 42 ⁰ 46.4m - 38 ⁰	
CASING			122.0m - 37° 213.0m - 37°	
CORE SIZE	BQ		304.8m - 33°	
FROM	TO M		DESCRIPTION	
27.43	165.2	159.1 - 159 - Fractures a - Calcite fil section - Quartz-calc observed at 33.9-34.9m, may be a la - Quartz + ca 39.22m 45.50m 55.3 - 56.8 63.9 - 64.1 74.28 - 74. 77.35 - 77. 85.6 - 85.9	.7 - silica rich seconderty - brecondisseminated properties as this sediment bedding @ 70 minor pyrite nd Veining: led fractures commodite-hematite filled 29.7-30.0m, 33.1-337.9-38.lm. Various te fracture system loite, chlorite veroce axis - minor quartz veroce axis - minor quartz veroce axis - barren white core axis	ciated - cyrite or h bands t - calcite along to core axis, on throughout d fractures 33.56m, cus orientations ins at ein @ 55° to veining quartz veins 70° calcite veins e veins parallel minor pyrite te, chlorite vein te veins calcite veins up minor
165.2	167.25	laminated t 60-70° to c locally vis - graded beds up the hole (calcite)	f - medium green for the following from the followi	aminations at ragments are indicate tops
			21	

		SUNDAY LAKE			PAGE 3	
LOCATION_	8+00E 4+2	3N	BEARING 1	800	_HOLE NO. SL84-4	
LOGGED BY P. NichollsELEVATION			DIP -45° FIN	AL DEPTH_	304.87m	
STARTED_	December	4, 1984	TESTS (CORRECTE	D) Ac	id Tests	
FINISHED_	December 1	0, 1984	30.5m - 46.4m -	420		
CASING			122.0m -	122.0m - 37° 213.0m - 37°		
CORE SIZE_	BQ		304.8m -	330		
FROM	m ^{TO}		DESCRIPTION			
167.25	169.75	light to generally tuffaceou	yry - intermediat medium green grey fine grained - i s - feldspars irr quartz chlorite 9.3	colou n part egular	looks (lmm) -	
169.75	172.7	Mafic Tuff - medium to dark grey green laminated to brecciated in appearance laminations at 70° to core axis				
171.1	171.6	Diabase - fine grained medium to dark grey intrusive - sharp contacts with surrounding rocks				
172.7	196.7	- Flow unit may be fix - tuffs are laminated - Flow unit up to 1cm with pyrrough 181.4-188 with numes @ 60-80 thin bands - Diabase lat 70-80	ows and Tuffs (+Ds are similar to ner grained generally fine g @ 70° to core ax sobserved - 172. 180. 173.8-175.1, 17 thick not well 1 notite at 177.2 (4 (tuff or breck rous calcite vein to core axis, pyrs in section 78.95-179.85 - po to core axis - 1 ne grained - irre	rained is 7-173.0 9-181.0 5.8-180 aminated 1cm) and iated is chotited ssible ight to	with feldspars and may be 8, 175.1-175.8, 4, 188.4-196.7 0.9 (fragments ed - chaotic nd 180.7), flow unit or quartz) e occurs in sill contacts o medium grey	
196.7	197.45	Cherty Horizon cherty (si appearance horizon at attitude con attitud	- dark grey fine lica rich) horiz with minor pyri upper and lower of 65 to core ax lcite vein (lcm)	graine on - ha te - tu contac is.	ed massive as a brecciated affaceous cts have	

	PROPERTY	SUNDAY LAKE		PAGE 4	
LOCATION_	8+00E 4+2	3N	BEARING 1800	HOLE NOSL84-4	
LOGGED BY_	P. Nicholl	SELEVATION	DIP -450 FINAL DEP	тн_ 304.87m	
STARTED	December	4, 1984	TESTS (CORRECTED)		
FINISHED	December 1	0, 1984	30.5m - 42° 46.4m - 38°		
CASING_			122.0m - 37°		
	BO		213.0m - 37° 304.8m - 33°		
CORE SIZE_	T				
FROM	TO M		DESCRIPTION		
197.45	198.75	Tuff - fine gr	ained laminated mafic	tuff.	
198.75	199.65	Diabase - fine flakes c contacts	e grained medium grey of biotite visible loc	rock with ally discordant	
199.65	202.4	Mafic Tuffs - fine grained medium green locally banded @ 80° to core axis			
202.4	203.9	Cherty Horizon - dark grey fine grained siliceous and massive. Po up to 1% in section and occurs in fine fractures at various attitudes			
203.9	212.7	dark gre sections - brecciat chlorite 206.4-20	ows and Tuffs - genered nassive rock with control of the control o	some laminated ctures common z, calcite and rhotite	
212.7	213.2	Cherty Horizon pyrrhoti	a - similar to above w te	ith only minor	
213.2	268.3	laminate at 70° t graded b minor fr biotite Minor py Flow uni up to lm Diabase calcite Cherty h 266.3-26 laminati of pyrrh	generally fine graine ed to massive mafic to core axis eds indicate tops up ragmental sections (25 rich bands are locall rite and pyrrhotite i ts observed at 251.8- m), 236-239.4, 243-24 Dykes - 224.65-225.3, 227.75-229 veins common orizon - well laminate 6.6 light grey to brow ons @ 75 to core axis otite at 266.45, pyrrl s fine laminations.	the hole 8-266.15) y present. n section. 254.1 (feldspars 6 (fine grained) 226.6-227.2, ed, fine grained wn grey chert - s - 1.5cm band	

	440000000000000000000000000000000000000	SUNDAY LAKE	1000	PAGE 5	
	8+00E 4+2			HOLE NO. SL84-4	
			DIP -450 FINAL D	EPTH304.8/M	
			TESTS (CORRECTED)		
FINISHED	December 1	0, 1984	30.5m - 42 46.4m - 38		
CASING		W	122.0m - 37 213.0m - 37		
CORE SIZE	BQ		304.8m - 33	0	
FROM	Ψ,		DESCRIPTION		
268.3	276.5	with fel feldspar show rec comprise - quartz "	yry - fine grained manager phenocrysts up sequenced for generally irregulations section to 20% of the receives may also be produced appropriately appropriat	o to 1mm, ar but do ions and may ock resent	
276.5	303.76	Intermediate Tuff - light to medium grey green fine grained tuff, sections can contain 5-feldspars similar to above - chlorite rich sections (banded) are common. Quartz vein with calcite in sections 280.15-280.4, 285.9-286, 294.1, 294.15			
303.76	304.5	Mafic Tuff - f	ine grained dark gre	een tuff	
304.5	304.87	Intermediate T	uff - fine grained	lighter green	
304.87		END OF HOLE			
				ſ	

PROPERTY SU	NDAY	LAKE
-------------	------	------

PAGE 1

LOCATION L8+00E	BEARING 1800 HOLE NO. SL-84-5
LOGGED BY P. Nicholls ELEVATION_	DIP -450 FINAL DEPTH 169.80 M
STARTED December 14, 1984	TESTS (CORRECTED)
FINISHED December 16, 1984	
CASING	

FROM	₩,	DESCRIPTION
0	21.34	Overburden
21.34	21.95	Bedrock - triconed no core recovered
21.95	36.00	Intermediate to Felsic Tuff - fine grained grey tuff, 5-10% feldspar crystals with subhedral to irregular shapes rock generally banded with bands oriented at 65-70° to core axis.
		- barren white quartz veins generally /cm at 22.4, 23.9, 26.22, 27.12, 28.4, 30.6
		- quartz chlorite veins with minor pyrrhotite at 35.67 - 36.0
36.00	47.25	Mafic Tuff - light to medium green rock with darker green fragments.
		 fragments are generally more mafic and range up to 0.3 x 1 cm in size.
		- some small sections are well laminated with bands at 65-70 to core axis.
47.25	47.95	Mafic Flow - dark green massive basalt, generally fine grained with rounded feldspars up to 6 mm in size (amydules).
47.95	87.9	Massive Mafic Tuff or Flow - medium green coloured matrix hosting dark green mafic fragments or stretched crystals
Just	Suprinter (4.9)	- mottled appearances - matrix generally fine grained with fragments?
Lig Brond	of John 169.8	- generally 2mm x 5mm - fragments? are mainly elongate but some have an oval appearance - matrix supported
B/		47.95 - 51.7 fragments comprise 20% of rock, minor laminated sections with banding at 65-70° to core axis

	PROPERTY	SUNDAY LAKE			PAGE 2
LOCATION_ I	8+00E 1-	-40N	BEARING	180°	HOLE NOSL-84-
LOGGED BY_P	. Nicholl	LSELEVATION	DIP45 ^C	FINAL DEPTH	169.80 m
STARTED December 14, 1984					
	ecember]				
CASING					
CORE SIZE			7		
FROM	то		DESCRIPT	ION	
47.95	87.9	51.7 - 81.4 fr	agments co	omprise u	p to 50% of
	- t	- th	thin felsic bands at 56.1 (chert, <3cm) 74.8 (5mm @ 70 to core axis)		
		su		71.1 - 7	(lcm, minor 1.3, 71.95 (3mm 4.7
		fr		19.4 - 69	uff with no .7 banded at
		81.4 - 87.9 ma	fic tuff w	ith 20 -	30% fragments.
87.9	101.9	Banded Mafic Tuffs tuffs banded to to core axis -	o massive	with ban	ding at 65-70
		- Intermediate to 90.64 - 91.25	m - lamina	ted fine	uff grained grey 10% feldspar
	- Intermediate to 92.05 - 94.10 m	n - grey-w graine	hite lam d rock w	tuff inated fine ith bands - 70° to core	
		- Pyritic Mafic (94.45 - 95.5)	to dark of	reen tuf	f - pyrite
		- Hematite found to core axis. - Pyrite cubes di	along joi	nt plane	s oriented @ 30
		- Pyrite cubes di	sseminate	d in sec	tion 99.2 - T 23 3 1

	PROPERTY	SUNDAY LAKE		PAGE 3
LOCATION	L8+00E 1-	-40N	BEARING 1800	HOLE NO. SL-84-5
LOGGED BY_	P. Nicholl	S_ELEVATION	DIP450 FINAL DEPTH	169.80 m
STARTEDI	December]	4, 1984	TESTS (CORRECTED)	
INISHEDI	December 1	6, 1984	_	
ASING			-	
ORE SIZE				
FROM III	TO M		DESCRIPTION	
101.9	109.9	Intermediate to fel - fine grained g feldspar cryst	rey siliceous rock	with 10 - 15%
		- blue quartz ey	es (lmm)	
		- generally band	ed @ 65 - 70° to co	ore axis
109.9	111.7	Banded Mafic Tuff - tuff	fine grained dark	green banded
			aotic banding, fold	ds soft sedi-
			ritic and biotite : - 15%)	rich (up to
111.7	116.3	Intermediate to Fel	sic Crystal Tuff	
			rey crystal tuff wi ith feldspar crysta	
		- disseminated p section 115.7	yrite and quartz ve - 116.3	eining in
116.3	119.5	Banded Mafic Tuffs		
		- fine grained m	edium to dark green	n mafic tuff
		- banded at 60 -	70° to core axis	
119.5	130.1	Feldspar Porphyry - feldspars up to	fined grained grey o 2mm	
		- feldspars are	subhedral to irreg	ılar in shape
		- minor mafic tu	ffs layers	

 contacts are irregular and discordant (probable intrusive)

	PROPERTY	SUNDAY LAKE			PAGE 4
LOCATION	L8+00E 1	+40N	BEARING	180°	HOLE NO SL-84-
LOGGED BY	P. Nichol	lselevation	DIP -45 0	FINAL DEPTH	169.80 m
STARTED	December	14, 1984	TESTS (CORRE	CTED)	
FINISHED	December :	16, 1984			
CASING					
CORE SIZE					
FROM M	TO M		DESCRIPTION	ON	
130.1	137.5	Mafic Tuff - fine dark green fr		ium green	n rock with some
		- generally mass	sive (may be	e in part	a flow unit)
137.5	145.4	Banded Mafic Tuff	- dark green	n banded	tuff
		- fine grained waxis	with banding	g at 60 -	- 70° to core
		137.5 - 140.7	- pyrite co	ubes up t I through	to 3mm are
		144.9 - 145.4	- pyrite as in quarts to core a	z vein or	up to 2mm and riented at 45°
145.4	148.4	Intermediate to fel	lsic laminat ds at 60° to	ed tuff	- fine grained
		145.65 - 145.8	30 - pyrrhot veins (5	tite in f	ractures and
148.8	157.0	Feldspar Porphyry - hedral feldspa	fined grain crystals	ned grey up to 2m	rock with sub-
		- discordant con	itacts at to	p and bo	ttom
157.0	160.7	Intermediate to fel massive to ban core axis	sic tuff - ded with ba	fine gra	ined grey 60 - 70° to
		157.4 - 157.6	- pyrite		
160.7	161.8	Intermediate to Fel dark grey poss	sic Tuff - ibly graphi	fine gra	ined massive
161.8	162.3	Massive Graphite -	black		
		28			

PROPERTY SUNDAY LAKE LOCATION_L8+00E 1+40N BEARING 180 HOLE NO. SL-84-5 LOGGED BY P. Nicholls ELEVATION DIP -45 FINAL DEPTH 169.80 M STARTED_December 14, 1984 FINISHED_December 16, 1984 CASING CORE SIZE FROM TO DESCRIPTION DESCRIPTION

168.3	Intermediate to Felsic Tuff - fine grained grey - Massive graphitic horizons at 162.9 - 162.95, and 163.3
	 Pyrrhotite and pyrite in veins and fractures (up to 10%) with graphite at 163.3 - 163.5 Brecciated rock with abundant quartz veining 164 - 165.2
168.6	Massive Graphite
169.8	Basaltic Komatiite - fine to medium grained massive light brown rock - granularappearance - heavily carbonated (calcite)
	END OF HOLE
	168.6

	PROPERTY	SUNDAY LAKE				PAGE 1
340000000000000000000000000000000000000	8+00E 1+					носе NO. <u>SL-84-5</u> (ext)
LOGGED BY	P. Nichol	LS_ELEVATION	-	DIP45	_FINAL DEPTH_	221.6
STARTED	February :	14, 1985		TESTS (CORR	ECTED)	
FINISHED	February :	15, 1985				
CASING	21.95m					
CORE SIZE	BQ					
FROM	TR			DESCRIPT	ПОИ	
169.8	169.9	Carbonated	med - gre	lium gre en rock	y - granula	ve - light to ar appearance - medium graine
169.9	172.8	Mafic Tuff	- med fel loc	lium gre	ers - rus possible :	e grained ock with minor ty appearance small xtal of
172.8	175.9	Chert				rich unit his section 189
175.9	176.9	Carbonated	gra		avily carl	ve medium bonated rock
176.9	189.6	Mafic Tuff	lam roc as - loc - qua at - whi com 181	minated ck - cal fine fr cally py artz vei 177m (te mass mon in 1.8-182. 3.4-184. 7.1-187. 3.3-188.	- medium cite commo actures ritic n with rullom) ive chert this unit 3 - qtz coveins 0 - less 4 - no ve 6 - no ve	alcite pyrite veining ining ining qtz-calcite

	PROPERTY	SUNDAY LAKE		PAGE 2
LOCATION	8+00E 1+4	10N	BEARING 1800	HOLE NO. SL-84-5
LOGGED BY_	P. Nichol	S_ELEVATION	DIP -450 FINAL DEPT	H_ 221.6 (ext)
STARTED	February :	14, 1985	TESTS (CORRECTED)	
FINISHED	February :	15, 1985		
CASING	21.95m			
CORE SIZE	во			
FROM	TO M		DESCRIPTION	
189.4	191.5	Mafic Fragment	al? - generally fined grey green rock wi - in upper section t to be fragmental i lower in section - appear more sedime fragmental and are rich.	th felsic layers the layers appear n nature - the layers entary than
191.5	191.6	Breccia	 a chaotic carbonate breccia with fragment to above unit fragments are subsubrounded and the orientation. (interpretation) 	angular to ere is no craformational
191.6	221.6	Mafic Tuffs	- fine grained media rock - well to poor calcite common in in fine veins - some small section phyric flows (feld other sections app as if reworked - cherty sections 20 208.1 minor qtz ca quartz vein (80cm) stains at 213.9	orly laminated laminations and laminations and laminations and laminated lam
221.6		END OF HOLE		
			- 0	

APPENDIX 2

Sample Record Sheets and Geochemical Values

PROPERTY_ SUNI	DAY LAK	E				L DAMELES		1 -HOLE NO.
SAMPLE	FROM	то	LENGTH		ASSA	YS	DE	CRIPTIONS
NO.	(m)	(m)	(m)	Au ppb	Ag ppm		DE:	CRIFITONS
SL-84-4-1	27.43	35.36		√ 5	1.6 1			
SL-84-4-2	35.36	41.46		< 5	.2			4
SL-84-4-3	41.46	47.56		4 5	1.3			
SL-84-4-4	45.52	50.91		< 5	.9			
SL-84-4-5	50.91	57.01		< 5	. 6			
SL-84-4-6	57.01	63.10		45	1.5			
SL-84-4-7	63.10	69.20		< 5	. 8			
SL-84-4-8	69.20	75.30	5	< 5	. 5			
SL-84-4-9	75.30	81.40		< 5	1.1			
SL-84-4-10	81.40	87.50		< 5	4.9			
SL-84-4-11	87.50	93.59		< 5	1.5			
SL-84-4-12	93.59	99.69		< 5	.9			
SL-84-4-13	99.69	105.79		< 5	.3			
SL-84-4-14	105.79	111.89		< 5	. 2			
SL-84-4-15	111.89	117.98		< 5	.7			
SL-84-4-16	117.98	124.08		< 5	. 3			
SL-84-4-17	124.08	130.18		< 5	.3			
SL-84-4-18	130.18	136.28		< 5	.2			
								T. 23 31

SAMPLE	FROM	TO.			ASSAYS	
NO.	FROM (m)	(m)	LENGTH (m)	Au ppb	Ag ppm	DESCRIPTIONS
8401	37.8	38.4	0.6	< 5	<.2	
8402	45.12	45.8	0.62	10	. 2	
8403	54.0	55.0	1.0	< 5	4.2	
8404	63.1	64.2	1.1	۷.5	۷۰2	
8405	77.0	77.8	0.8	۷ 5	< •2	
8406	85.4	86.4	1.0	< ⁵	<.2	
8407	88.2	89.2	1.0	< 5	<.2	
8408	89.2	90.2	1.0	4 5	<.2	
8409	121.8	122.8	1.0	< 5	< .2	
8410	122.8	123.8	1.0	< 5	<.2	
8411	123.8	124.8	1.0	< 5	< •2	
8412	155.6	156.6	1.0	< 5	< • 2	
8413	168.86	169.36	0.5	2 5	<.2	
8414	177.0	178.0	1.0	< 5	<.2	
8415	181.4	182.0	0.6	< ⁵	< ° 2	
8416	182.0	183.0	1.0	< ⁵	۲۰ ²	
8417	184.0	185.0	1.0	< ⁵	∠ ° 2	
8418	202.4	203.9	1.5	∠ 5	Z • 2	
						1.2331

PROPERTY- SUNDAY LAKE

SAMPLE	FROM		LENGTH			ASSAYS		Care California de Care de Car
NO.	from (m)	(m)	LENGTH (m)	Au ppb	Ag ppm			DESCRIPTIONS
8419	206.4	207.0	0.6	< 5	۷.2			
8420	266.2	266.7	0.5	4 5	۷.2			
					-			
								T. 23 31

SLU E SAMPLES

SL 1-5 -HOLE NO.

PRO TY- SUNI	DAY LAK	E				APIT DEB	1 -PAGE
SAMPLE	FROM	то	LENGTH		ASSAYS	DESCRI	PTIONS
NO.	(m)	(m)		Au (ppb)	Ag (ppm)	DESCRI	FITONS
SL-84-5-1	21.95	26.52		< 5	۷.2		
SL-84-5-2	26.52	32.62		۷ 5	۷.2		
SL-84-5-3	32.62	38.72		4 5	۷.2		
SL-84-5-4	38.72	44.82		۷ 5	۷.2	very little slud	ge
SL-84-5-5	44.82	50.91		Miss	sing	no sludge	
SL-84-5-6	50.91	57.01		۷ 5	۷.2		
SL-84-5-7	57.01	63.11		∠ 5	× .3		
SL-84-5-8	63.11	69.21		۷ 5	4.2		
SL-84-5-9	69.21	75.30		۷ 5	√ .2		
SL-84-5-10	75.30	81.40		۷ 5	۷.2		
SL-84-5-11	81.40	87.50		< ⁵	× .3	very little slude	ge
SL-84-5-12	87.50	93.60		< 5	× .4		
SL-84-5-13	93,60	99.70		< 5	1.6	very little slud	ge
SL-84-5-14	99.70	105.80		< 5	₹ .4		
SL-84-5-15	105.80	111.90		4 5	* .2	4	
SL-84-5-16	111.90	118.00		4 5	'r .6		
							1.2331

SAMPLE	17	200	100		ASSA	YS	
NO.	FROM (m)	то (m)	LENGTH	Au (ppb)	Ag (ppb)		DESCRIPTIONS
SL-84-5-17	118.00	124.10		< 5	⊀ .3		very little sludge
SL-84-5-18	124.10	130.18		< 5	۷.2		very little sludge
SL-84-5-19	130.18	136.28		45	₹ .2		very little sludge
SL-84-5-20	136.28	142.38		< 5	< .2		very little sludge
SL-84-5-21	142.38	148.48		150	۷.2		very little sludge
SL-84-5-22	148.48	154.47		< 5	× 2.0		very little sludge
SL-84-5-23	154.47	160.67		< 5	۷ . 2		very little sludge
SL-84-5-24	160.67	166.77		4 5	19.4		
SL-84-5-25	166.77	169.82		< 5	4.2		
	-						
							1.2331
							TA.

SAMPLE	50011	70			ASS	AYS		Additional Control
NO.	(m)	(m)	LENGTH (m)	Au ppb	Ag ppm			DESCRIPTIONS
8440	35.67	36.0	0.33	< -5	۷.2			
8441	55.32	55.57	0.29	4 5	۷.2			
8442	94.45	95.5	1.05	< 5	۷.2			
8443	109.6	111.1	1.5	2 5	∠.2			
8444	115.6	116.4	0.8	4 5	۷.2			
8445	144.9	145.9	1.0	ے 5	۷.2			3
8446	148.4	148.7	0.3	ح 5	۷.2			+1.
8447	163.1	163.8	0.7	45	۷.2			
8448	164.0	165.2	1.2	4 5	< .2			
8449	142.4	143.7	1.3	< 5	۷ • 2			
8450	143.7	144.9	1.2	< 5	۷.2			
8451	145.9	146.9	1.0	< 5	< .2			
8452	146.9	148.4	1.5	× 5	۷۰2			
8453	160.7	163.1	2.3	< 5	X . 2			
8454	163.5	164.0	0.5	< 5	<.2			
8455	165.2	166.7	1.5	< 5	<.2			
8456	166.7	168.1	1.4	< 5	<.2 €			=1
8457	168.1	169.1	1.5	< 5	<.2			
								1.2331

SAMPLE	50014				ASSAYS	
NO.	from (m)	(m)	LENGTH (m)	Au ppb	Ag ppm	DESCRIPTIONS
8458	170	171.5	1.5	< 5	Y .2	
8459	174.3	175.9	1.6	< 5	۷.2	*
8460	175.9	177.0	1.1	< 5	<.2	
8461	177.0	178.0	1.0	< 5	<.2	
8462	178.0	179.0	1.0	۷ 5	<.2	
8463	179.0	180.0	1.0	< 5	۷.2	
8464	180.0	181.0	1.0	25	۷.2	
8465	181.0	182.0	1.0	< 5	× .2	
8466	182.0	182.8	0.8	4 5	< .2	
8467	182.8	183.8	1.0	< 5	< .2	
8468	183.8	184.8	1.0	< 5	<.2	
8469	205.1	206.1	1.0	< 5	<.2	
8470	206.1	207.1	1.0	< 5	<.2	
8471	208.0	209.0	1.0	< 5	<.2	
8472	207.1	208.0	0.9	< 5	<.2	
						T. 233

APPENDIX 3

Lab Analysis Sheets

BÄRRIN ER MAGENTA

(416) 675-3870

CALG/....JERTA TZE 6V2 (403) 276-9701 DATE: 14/01/85 HATRIX: AQ REG.

WESTHIN RESO	URCES	(P. NICHOLS)	PROJ: SUNDAY LAKE		W	NO: 85-0007	PAGE: 1
SAMPLE ID	AU PPB	AG PPM		SAMPLE ID	AU	AG PPM	
8401 8402 8403 8404 8405	<5 10 <5 <5 <5	<.2 <.2 <.2 <.2 <.2		SL84-5-12 SL84-5-13 SL84-5-14 SL84-5-15 SL84-5-16	\$2 \$2 \$2 \$5 \$5 \$5	.4 .6 .4 .2 .6	
8406 8407 8408 8409 8410	\$5 \$5 \$5 \$5	<.2 <.2 <.2 <.2 <.2		SL84-5-17 SL84-5-18 SL84-5-19 SL84-5-20 SL84-5-21	<5 <5 <5 <5 150	.3 <.2 .2 <.2 <.2	
8411 8412 8413 8414 8415	\$5 \$5 \$5 \$5	<.2 <.2 <.2 <.2 <.2		SL84-5-22 SL84-5-23 SL84-5-24 SL84-5-25 SL84-4-1	<5 <5 <5 <5 <5	2.0 <.2 9.4 4.2 1.6	
8416 8417 8418 8419 8420	\$5 \$5 \$5 \$5 \$5	<.2 <.2 <.2 <.2 <.2		SL84-4-2 SL84-4-3 SL84-4-4 SL84-4-5 SL84-4-6	<5 <5 <5 <5 <5	1.3 .9 .6 1.5	
8421 8422 8423 8424 8425	\$5 \$5 \$5 \$5	<.2 <.2 <.2 <.2 <.2		SLB4-4-7 SLB4-4-B SLB4-4-9 SLB4-4-10 SLB4-4-11	<5 <5 <5 <5 <5	.8 .5 1.1 4.9 1.5	
8440 8441 8442 8443 8444	<5 <5 <5 <5 <5	<.2 <.2 <.2 <.2 <.2		SL84-4-12 SL84-4-13 SL84-4-14 SL84-4-15 SL84-4-16	<5 <5 <5 <5 <5	.9 .3 .2 .7 .3	
8445 8446 8447 8448 SL84-5-1	\$5 \$5 \$5 \$5 \$5	<.2 <.2 <.2 <.2 <.2		SL84-4-17 SL84-4-18 SL84-4-19 SL84-4-20	<5 <5 <5 <5	.3 .2 .2 .2	
SL84-5-2 SL84-5-3 SL84-5-4 SL84-5-5 SL84-5-6	<5 <5 <5 MISSING <5	<.2 <.2 <.2 MISSING <.2					
SL84-5-7 SL84-5-8 SL84-5-9 SL84-5-10 SL84-5-11	<5 <5 <5 <5 <5	<.2 <.2 <.2 <.3					T. 23 31

X X XX XX LL RRRRRR A RR RR AAA LL XX XX RR AA AA RR LL AA AA XXX RR RR LL XXX AAAAAAA RRRRRR LL XX XX RR RR AA AA LL XX RR RR AA AA LLLLLL XX LLLLLLL X X RR R AA AA

XRF - WHOLE ROCK ANALYSIS

WESTMIN RESOURCES LIMITED Attn: PAUL NICHOLLS 25 ADELAIDE STREET EAST, SUITE 1400 TORONTO, ONTARIO M5C 1Y2

CUSTOMER No.

DATE SUBMITTED 11-JAN-85

REPORT 23534 REF. FILE 19148 DATE REPORTED 31-JAN-85

XRF W. R. A. SUMS INCLUDE ALL ELEMENTS DETERMINED, FOR SUMMATION ELEMENTS ARE CALCULATED AS OXIDES.

X-RAY ASSAY LAB	ORATORIE	S	31-JAN-8	5	R	EPORT 23	534 RE	FERENCE I	FILE 191	48		PAGE 1		
SAMPLE	/ S102	3 AL203	70 CA0	MGO	// NA20	/Z- K20	# FE203	8 MNO	2 TI02	/3 P205	5 CR203	/4 LOI	SUM	
SL-84-4-36. 1M	66.8	14. 6	3. 99	1. 98	3. 83	1. 39	4. 99	0.06	0. 68	0. 19	⟨0. 01	1. 62	100. 3	
SL-84-4-72 2M	66.5	14. 6	3.77	2 21	3. 79	1. 49	5. 36	0.06	0. 68	0.18	CO. 01	1. 77	100.5	
SL-84-4-98. SM	67. 2	15. 2	3. 49	1. 28	4. 25	1. 98	4. 11	0. 05	0.76	0. 19	(0. 01	1. 47	100. 1	
SL-84-4-166. 1M	47. 9	11.7	9. 43	9. 10	2 83	0. 67	11.6	0. 20	0. 78	0, 20	0.06	5. 00	99. 5	_
SL-84-4-194. 4M	55. 1	14. 1	9. 21	3. 88	1. 96	0. 41	12.4	0. 20	1. 04	0. 11	0. 02	2 00	100.5	
SL-84-4-223. 2M	42.5	12.1	10.7	5. 45	0. 65	2 34	15. 8	0. 26	1. 10	0. 09	0. 02	8. 00	99. 0	
SL-84-4-256. 7M	46. 9	12.9	10.3	6. 27	1. 70	0.10	13.5	0. 24	1. 35	0. 12	0. 02	6. 54	100.0	
SL-84-5-36. 2M	47. 3	15. 4	9. 38	7. 89	1.83	0. 40	13. 6	0. 20	1. 27	0. 11	0. 01	3. 08	100.5	
SL-84-5-42 25M	48. 4	13. 2	9. 19	9. 61	3. 10	0. 61	9. 79	0. 17	0. 71	0. 23	0. 09	4. 39	99. 6	
SL-84-5-60. 2M	49. 4	15. 4	11. 2	5. 67	1. 96	0. 18	12.3	0. 17	1.30	0.10	0. 04	2 62	100. 4	*
SL-84-5-137. 4M	46. 2	12.2	12. 1	5. 33	1. 78	0. 22	12.5	0. 20	1. 18	0. 10	(0, 01	8. 54	100. 4	
SL-84-5-138, 3M	45. 7	12.4	7. 78	4. 92	2 26	0, 65	17. 0	0. 24	1, 99	0. 13	(0. 01	6.77	99. 9	
SL-84-5-160. 7M	59. 7	14. 2	4. 39	3. 96	4. 79	0. 14	6. 60	0. 10	0, 53	0. 12	0. 01	5. 54	100, 2	
SL-84-5-168, 8M	47. 5	10. 9	5. 61	14. 1	0. 08	0. 01	8. 56	0. 22	0. 34	0. 07	0. 17	12.6	100. 2	

7 9 Feo NiO.

	SAMPLE	RB	SR	Y	ZR	NB	
	SL-84-4-36. 1M	50	360	30	230	30	
	SL-84-4-72. 2M	50	390	20	220	20	
	SL-84-4-98. 8M	50	390	40	240	30	
	SL-84-4-166. 1M	20	140	10	30	30	
	SL-84-4-194. 4M	10	120	20	80	10	
	SL-84-4-223. 2M	70	120	20	30	20	
	SL-84-4-256. 7M	20	120	20	50	20	
	SL-84-5-36. 2M	10	120	20	60	10	
	SL-84-5-42. 25M	20	170	(10	80	10	
	SL-84-5-60. 2M	10	90	10	60	10	
,	SL-84-5-137. 4M	30	160	10	50	20	
•	SL-84-5-138. 3M	50	100	30	90	20	
	SL-84-5-160. 7M	10	230	(10	130	20	
	SL-84-5-168. 8M	10	10	30	10	C10	

X-RAY ASSAY LABCRATCRIES LIMITEC

1885 LESLIE STREET, CCN MILLS, CNTAFIC M3B 3J4

PHCNE 416-445-5755 TELEX C6-986947

CERTIFICATE CF ANALYSIS

TO: WESTMIN RESCURCES LIMITED ATTN: PALL NICHCLLS 25 ACELAICE STREET EAST, SLITE 14CC TCRCATC . CATARIC M5C 1Y2

CUSTOMER NO. 605

CATE SUBMITTED 20-MAR-85

REFERT 23572

. .

REF. FILE 19593-A5

& S.CCRES

WERE ANALYSED AS FOLLOWS:

WRMAJ 2 WENTY PAN

METHCC WR

CETECTICA LIMIT

C-C1C

KR

1C.CCC

DATE C8-APR-85

X-RAY ASSAY LABORATERIES, LYMITEC CERTIFIED BY

SAMPLES WITH LOW SUMS HAVE BEEN REPEATED WITH NO CHANGE

WE HAVE CHECKED FOR THE FOLLOWING ELEMENTS:

CU, ZN, NI, PB, CO, AS, U, MD

OF WHICH AS WAS FOUND
IN GREATER THAN TRACE/MINOR QUANTITIES

THE MATRIX CORRECTION PROGRAM DOES NOT ACCOUNT FOR THE PRESENCE OF THESE ELEMENTS

X A RRRRRR LL XX XX AAA RR RR LL XX XX RR RR AA AA LL XXX LL RR RR AA AA XXX AAAAAAA RRRRR LL RR RR XX XX AA AA LL XX XX RR RR AA AA LLLLLL AA X X .RR R AA LLLLLL

XRF - WHOLE ROCK ANALYSIS

WESTMIN RESOURCES LIMITED Attn: PAUL NICHOLLS 25 ADELAIDE STREET EAST, SUITE 1400 TORONTO, ONTARIO M5C 1Y2

CUSTOMER No. 605

DATE SUBMITTED 20-MAR-85

REPORT 23972 REF. FILE 19593

DATE REPORTED 08-APR-85

XRF W. R. A. SUMS INCLUDE ALL ELEMENTS DETERMINED. FOR SUMMATION ELEMENTS ARE CALCULATED AS OXIDES.

X-RAY ASSAY LAI	S	08-APR-85			REPORT 23972 REFERENCE FILE 19593					PAGE 1				
SAMPLE	S102	AL203	CAO	MGO	NA20	K20	FE203	MNO	7102	P205	CR203	LOI	STIM	
D-85-21-97. 8	39. 3	8. 81	14. 1	12 6	CO. 01	0. 02	8. 63	0. 26	0, 30	0. 09	0. 16	15. 0	99.3	
NEX-85-1-7. 9	50.6	13.3	6. 58	5. 20	1. 52	0. 99	9. 24	0. 19	0.82	0. 17	<0.01	11.1	99.7	
SL-84-5-173	60. 3	14. 2	4. 30	3. 42	4. 19	0. 94	6. 03	0. 07	0. 57	0. 17	0. 03	4. 54	93.8	
SL-84-5-176. 3	60. 5	15. 3	3. 53	2. 50	3. 15	1. 94	6. 81	0. 10	0. 65	0. 11	0. 01	3. 85	98. 5	
SL-84-5-182	56, 7	14. 5	5. 71	2 00	3. 10	2 38	6. 03	0. 12	0. 69	0. 03	0. 01	4. 31	95.7	
SL-84-5-218. 9	59.8	15. 0	2 64	3.30	2 78	2 12	8. 31	0. 07	0. 60	0. 17	0.02	3. 39	98.3	

									_
X-KAY ASSAY LABORATORIES			0	3-APR-85		REPORT 23972	REFERENCE FILE 19593	PAGE 2	2
	SAMPLE	RB	SR	Y	ZR	NB			
	D-85-21-37. 8	20	400	C10	20	20			
	NEX-85-1-7. 9	30	90	20	80	20			
	SL-84-5-173	30	380	10	130	20			
	SL-84-5-176. 3	60	330	20	100	C10			
	SL-84-5-182	80	210	20	90	10			
	SI -84-5-218 9	90	360	10	110	10			

Figure 5

Foliation, schistosity, bedding (core angle)

 Work by
 PRJN
 Scale
 1:500

 Date
 April 1985
 NTS
 32 E-13

FIGURE 14

