on the property of
GOLD SHIELD sYNDICATE
Afes Wast of Sunday Lake
"West Group"
R. J. Bradshow, P. Eng., Consulting Geologist.

Magnetic and alectromagnetic aurvays have bean conductad on the Gold Shield Syndicate property, termed the ldest Group, in the area west of Sunday Lake, Onterio. The picket linab and burvay work were completed during the month of August, 1978.

Amoco Canada are currently undertaking faasibility atudias on their large gold-copper deposit, eight miles west of the ciaim group. The property wes staked as a gold prospect.

PROPERTY, LUCAIIIIN AND ACCESS

Staked in February, 1978, the contigudus 20 claim block is numbered P508560 to P508579 incluaive.

Situated a few mdes east of Happer Lake and 120 mdle nurtheset of Timming, Onterio, the property is preaently accesaible by float or aki-equipped aircraft to Hopper Lake. The Ontario government and Amoco, jointly, are tentetivaly planning a road from Cochrann to the Amoco site, a distance of about 85 miles.

PREVICOUS WORK
The urige is not aware of any previnus work which has besen conducted on te claim group.

GEOLOGY

Airborne magniqe plans 23696 and 2370G, published by the Ontario government, provi, the only government geologicel information for the arsa.

These maps, together with pravious work in the ares, indicate that the property is siturted on the nose of a major astward plunging syncline. A few miles to the east exposures of metamorphosed valcanic pyroclastics to the north are in contact with e granitoid intrusive to the south. There is no apparent rock exposure in the area of the claim group. The topographic pattern related to the magnetic pattarn indicates a dominant north-northwest irending fault system.

According to Amoco drill logs, the gold-copper mineralizetion is located in volcenic tuffe altered to chlorite and biotiterich zones with the quartz veining associated with charty horizons. Mineralization consists of visible gold, pyrriotita, chalcopyrits, and sphalerite in quartz stringers. These mineralized zones, characteristically are adjacent to talc-carbonats arpentinized racks.

MAGNE TOME TER SURVEY RESULTS AND INTERPRETATION
The magnetameter survey deta ia plottad and contoured on the accompanying plan at a scale of one inch to three hundred feat. The instrument and survey method are described in the Appendix to this report.

The magnetic background on the property is generally in the range of 300 to 700 gammas. The peak magnatic value is sbout 1700 gammas and there are no prominent depressions.

Lensoidal magnetic highs strike aither penarally north or esst with the north trending festures most prominent.

The lensoidal magnetic high slong the base line in the northeast sactor of the property may be caused by amphibolitization in an otherwise granitoid terrane; amphibolite mineralization accounts for nonconductive magnatic anamalies on surveyad areas to the sast. Less well defined lensoidal magnatic highs striking north or east may simply represent less intense amphibolitization.

The north-narthwest trending crask in the northeast sector of the property roughly colncidea with an intarruption of the iaomagnetics and, therefore, may represent ons of the typical faulte of the area.

ELECTRDMAGNETIC SURVEY RESULTS AND INTERPRETATION
The electramagnatic survey data is plotted and profiled on the accompanying plan at a ecele of one inch to thres hundred feet. The instrument and survey method are described in the Appendix to this report.

The wask conductive zones on the property atrike either east or northeest and none of the conductore colncldes with a magnetic high. Although the conductors are generelly of ilmited length, they most likely represent faults. Conductor A bhows the best definition but is not considered important because of the lack of magnetic correlation.

The apperent lack of rock exposure in the immediate area combined with a sebmingly complex magnetic pattern makes difficult a reasonable geological interpretation. At this atage it eppears that the magnetic highs are caused by amphibolitization perhape within a granitoid terrane.

None of the conductive zones appear atrong anough to represent sulphides.

A limited amount of prospecting in the vicinity of the magnetic highs is adviaeable to confirm or dieprove their interpretation.

Timmins, Untario,
October 6, 1978.

CERTIFICATE

I, Ronald J. Bradshaw, residing et 480 Howard Streat, Timming, Ontaria, a consulting geologist with office at 480 Howard Straet, Timmina, Ontario, do hereby certify that:

I attendad Quean'b Univaraity, Kingeton, Ontario, and graduated with en Honoura B.A. degres in Geological Sciences in 1958.

I am a Fallow of the Ceological Asbacetion of Canade, a Mamber of the Canadian Instituta of Mining and Matallurgy and of the Association of Professional Engineera of the Province of Dntario.

Shisld Beophyaics Limitad retains a ten par cent management interest in the Gold Shield Syndicate.

APPENDIX

SURVEY METHOD AND INSTRUMENT DATA
Electromagnetic Survey
A Ronka EM 16, number 36, was used for the survay.
This instrument is simply a sensitive recaivar covaring the frequency of the new VLF-transmitting atations with meane of measuring the vartical field componants. The VLF-transmitting stations operete for communications with submarines at frequencias between 17.8 and 24.0 Khz . The vertical antenne current of these transmitting stations creates a concentric horizontal mapnetic field around them. When thess magnatic fields mest conductive bodies in the ground, there will be secondary fleld radiating fram these bodies. This equipment measures the vartical components of these secondary fields.

The receiver has two inputs, with two receiving coile built into the instrument. Ona coll has a normally vertical axis and the other is horizontel.

The signal from the coll with vartical exis is first minimized by tilting the instrument. The tilt angle is calibrated in percentages. The ramaining aignal in thia coll ia finally balanced out by a measured percantage of aignal from tha othar cail.

After a suitable station is selected, at right angles to the direction of the survey lines, rasdinge are made of the in-phase and quadrature componaris where the aignal hes been minimized to its greatest degres. The VLF-tranamitting atation at Jim Crask, Washington, has been usal for this burvey.

The lower end of the handle will, as a rule, point towards the conductor and the instrument 18 so celibrated thet when approaching a conductor, the angles are pasitive to the in-pheae component.

As with any electromagnetic unit, the largest and beat conductors give the highest ratio of the in-phase and quadreture components.

Mannetometer Survey

A Sharpe M.F.-1 fluxgate magnetometer was used in the magnetic survey, This instrument maasures the varticel componant of the esrth's magnetic fiedu in ganmas. Bese stationa for datermining the magnetic diurnal varietions were established along the main base 1 ine at 400 foot intervals. Magnetic readinge were taken et 100 foot intervals, along the crass 11 nes.

MAGNETIC - ELECTROMAGNETIC GUFVEY on the GOLD SHIELD SYNDICATE PROPERTY Area west of Sunday Laka, Ontario

Timmina, tintaria,
August 15, 1978.
R. J. Bradahaw, P. Eng., Consulting Geolopist.

Magnetic and alectromagnetic burveys hava been conducted on the liold Shield Syndicate property of alght claime, termed the North Group, in the area west of Sunday Lake, Dnterio. The picket lines and aurvay work ware completed during the month of July, 1978.

An interpratation of the geology, particulariy with reapect to the potential of gold-copper minaralization on the property, is provided in the report and accompanying meps. Amoco Caneda ere currentiy undartaking feasibility studies on their large gold-copper deponit, four miles aset of the claim group.

PROPERTV, LOCATIUN AND ACCESS

Staked in February, 1978, the eight cleimb ere numberad P508552 to P508559 inclubive.

Situated two milas north of Hopper Lake and 122 miles northeast of Timmins, Ontario, the proparty is prasentiy accessible by float or aki-rquipped aircraft to naarby lakas. The Onterio government and Amoco, jointiy, are tantatively planning a road from Cochrane to the Amoco gite, a distance of obout 85 milas.

PREVIOUS HORK
Norande recently held the five wasternmost claime and completad magnetic and verticel loop electromsgnetic aurveys on these and adjacent claims. Ganarally wak to modarnte atrangth conductors ware detected flanking or coinciding with lenticular magnetic highs.

In 1974, Amoco Petroleum arilled a 350 foot hole on the north boundary of clasm P508552 apparently to inveatigate a magnetic-alactromagnetic anomaly. Approximately 50 feat of disseminated bulphides wera intarageted in intermediate valcanice. A 15 foot section averaged 30 par cant pyrita-pyrrhotite and within this section, 5 feat assayed 0.02 gz . gold and 0.04 per cent copper.

GEOLOGY
Airborne magnetic plans 23696 and 23700 publighad by the Onterio government provide the only gavernment geological information for the areb. Theas maps, however, together with numerous holes drilled by Amoco east of the property, enable a reasonable interpratation of tha regional gaology. Mareover, the airborne magnatic plan indicetes that the rock horizon hosting tha Amoco ore depasit underlis the claim group.

The claim group is situated on the north flank, near the nose of an isocilinal syncline which plunges eastwards at least 12 miles and beyond the map area. Drag folds releted to the syncilne and north-northwest trending faulte have further diarupted the rocke.

Along tha north flank of the eyncline, the rocke ara dominantly intermediate pyrociastics matamorphosed to the garnet atege and genarally achistosa to varying dagrase as indicated by the Amoco driliing to the asat, and scattersd rock axpoaura, canBidered unubual for the Jamas Bay Lowlands. Branite and amphibolite stringers and vains apparently irregular but tanding to follow the
follation and minor folding of the racks are common. A light grey granitoid intrusive occupias the core and axis of the syncline south of the clalm group at Hopper Lake.

According to Amoco drill logs, the goldmcappar minaralization is located in volcanic tuffe altered to chlorite and biotiterich zones with the quartz vaining associated with charty horizons. Minaralizetion consiats of viaible gold, pyrrhotite, chalcopyrita end sphalerita, in quartz stringers. Thase minaralized zones, characteriatically, are adjacent to talc earbonste aspentizíd. rocks. Feasibility studies on this 10 mililon ton orabody everaging 0.20 oz . gold per ton plus copper will be completed in the fall of 1978 when a production decision will be announced.

MAGNE TOME TER SUATVE Y RESULTG AND INTERPPETATION
The magnetometer survey dete is plotted and contourad on the accompanying plan at a acale of one inch to two hundred faet. The instrument and survey method are described in the Appandix to this report. Rock exposures found during the eurvey have bean plottad on the plan to assiat the interpretetion.

The isomagnetics trend ganerally eastanortheast corresponding to the follation of the exposures of intermediate tuffe which dip south. In general, eseries of lenticuler magnetie highs form a tight fold conceve asstwards with the nose located on cleim P508559. The magnetic horizon is disapted by north-northweat tranding faulta, the most significant apparantly between Linas BE and 12E; movement on the faults appears to be mostly vertical.

A travarge across the Amoco orill location Indicates peak magnetic value of 4900 gamma apparantly causad by havily dissemineted pyrrhotite. Othar magnetic anomalian to the wast coincident with conductivity ere interpreted to represent pyrrhotite minaralizetion perhapa associeted with chalcapyrite and gaid minerslization. These include anomalies A, B, C and D, approximataly $400,800,400$ and $B 00$ paet $20 n g$ respactively.

Anamaly E in the southeast sactor of P500552 peaking at 955 gammes corresponds to en outcrop of freeh bleck amphibolite with granita atringars.

GLECTROMAGNETIC SUIVUE BESLLTS AND INTERPBE TATION
The elactromegnetic aurvey data is plotted and profilad on the accompanying plan at acele of one inch to two hundrad feat. The ingtrument and aurvey method ara daecribed in the Appendix to this report.

Most zones of conductivity are associstad with the lenticular magnetic anomalias. A comparison of the vartical loop electromegnetic eurvey previousiy completed by Norande on the westernmost five clainis with the EM 16 data ensbles a clessification of the ralatlve atrength of conductivity. Generally the better conductivity corresponde to magnetic highe. Tha wall definad crossovar, indicated by the trevaras acrobs the Amoco drill location, shows the excelient definition of conductive zonea datacted by the CN 16 survey.

Four conductive zonse, corrasponding with magnetic highe designated A, B, C and D are interpreted to represent sulphides probably pyrrhotite and pyrite parhaps absociated with coppar and gold minarelization. The aignificance of the crose faulte cannot be ascartained at this time although a spatial relationship is obvious at lesst in the case of anomalies A, B and C.

CONCLUSIONS AND RECOMMENDATIONS
The shape and attitude of the mapnetic horizon corresponds to thet of the major fold described under Geology. Along the magnatic horipon concentrations of pyrrhotite sulphide minaralizetion are indicated by magnetic peaks corrasponding to conductive zones.

To determina whather this postulated minaralization ia esbociated with gold~copper mineralization as in the Amoco orebody to the east requires diamond drilling. Four hales asch approximataly 150 Paet in depth are proposad for the invaatigation of thase anomalies as ahown on the enclosed plen.

The presence of ahallow aandy overburden in thie area enables the use of a light weight orill which of couras will raduce costg. In conjunction with other drililng in the area an overall cost of $\$ 12$ par foot including transportation, buparvision and assaying mey be possible. At $\$ 12$ par foot a drill programme on this property would cost $\$ 7200$.

CERYLFICATE

1, Ronald J. Bradshaw, residing at 480 Howard Streat, Timmina, Onterio, with office at 480 Howard Streat, Timming, Ontario, do heraby certify that:

I attended Queen's University, Kingston, Untario, and graduated with an Honours B.A. degres in Geological Sciencas in 1958.

I am a Fallow of the Geological Association of Canada, a Mamber of the Canadian Inatitute of Mining and Matallurgy and of the Association of Professional Enginears of the Province of Onterio.

Shield Geophysics Limited rateins a ten per cent managamant interest in the holdings of the Gold Shield Syndicata.

APPENDIX

SURUEY METHOD AND INETRUMENT DATA
Electromannetic Survey
A Ronke EM 16, number 36, was uged for the survey.
This instrument is aimply a senaitiva raceivar covering the fraquancy of the new VL-F-transmitting stations with mana of mensuring the verticel field componante. The VLF-transmiting Etations opereta for communicetions with aubmarines at profuenciea between 17.8 and 24.0 Khz . Tha verticel antanns current of these tranamdting ctations creates a concentrio horizontal magnetic fleld around tham. When these magnetic fieldempet conductive badies in the ground, thera will be becondary fiald radisting from these bodies. This equipment measures the vertical components of these aecondery fields.

The receiver hes two inpute, with two raceiving colle built into the instrument. Ong coll has a normaliy vertical axis end the other is horizontal.

The signal from the coll with vertical axis is firat minimized by tiliting the instrument. The tilt angle is calibrated in percentages. The ramaining signal in thia coil is finaliy belenced out by messured percentage of signal from the ather call.

After \quad ouitable station is selected, at right angles to the direction of the survey lines, readings are made of the in-phase and quadrature componants whera the algnal has bean minimized to ite grastest dagres. The VLF-transmitting station at Jim Craek, Washington, has bean uaed for this survey.

The lower and of the handis will, a a rule, paint towarde the conductor and the ingtrument is so calibrated that whan approaching e conductor, the angles are positive to the in-phase componant.

Af with any alectromagnetic unit, tha largest and bast conductors give the highest ratio of the in-phase and quadreture components.

Mepnatomater Survey

A Sharpe M.F.-1 fluxgate magnatomatar was used in tha magnetic burvey. Thia instrument measuras the vartiaal componant of the esith's magnetic Piald in gammes. Bage stations for detarmining the magnetic diurnal variationa wera astablished along the main base 1 ine at 400 foot intervals. Magnatic raadings wara taken at 100 foot intervals, along the cross 11 nas.

MAGNE TOMETER - ELECTROMAGNETIC SURVEY on the

 GOLD SHIELD SYNDICATE PROPERTY

 GOLD SHIELD SYNDICATE PROPERTY
 Area West of Sunday Lake

SDUTH GROUP

Timmins, Dntario,	R. J. Bradahaw, P. Eng. .
August, 1978.	Consulting Geologist.

cac

INTRODUCTION

Magnetic and slactromagnetic surveys hava baen conducted on the Gold Shield Syndicate property of 48 cleime, termed the South Group, in the area weat of Sundey Lakg. Tha pickat 11 nes and geophyaical aurvey work were completed during the period mid-July to mid-August, 1978, on the lend portion of the property. A magnetic survey of the lakes within the property was complated in mid-March, 1978.

During the geophysical survey, rock exposure was examined to assiat an interpretation of the geophysical survay work particularly with respect to the potential of gold-copper mineralization. Amoco Canada are currently completing fasibility atudies on their lerge gold-copper deposit, four miles asst of the claim group. PROPERTY, LUCATIUN AND ACCESS

Staked in february, 1978, the 48 claims are numberad P508542 to P508551 inclusiva and P508580 to P508617 inclusive. Six claime, namely P508548, 508608, 508614, 508615, 508616 and 508617, were nat covered by the survey.

Situated along the northaset shore of Hopper Lake and 122 miles northaset of Timmins, Ontario, the proparty ia presentiy accessible by float or aki-equipped aircraft. The Onterio government and Amoco, jointly, are tentatively planning a raad from Cochrane to the Amoco aite, a distence of about 85 miles.

PREVIOUS WORK
Noranda recently held the thres claims on the northwest edge of the group and complated magnetic and vertical loop elactromagnetic surveys on thase and adjacent claims. Their magnatic aurvey indicated an area of high magnatic gradient. No other work has been reported on the claim group.

GEOLUGY
Alrborne magnetic plans 236G and 237G, published by the Ontario government, provide the only regional geological information for the area. These maps, however, together with numerous holes drilled by Amoco east of the property, anabla a reasonabla Interpretation of the geology. Moreover, the alrborns magnatic plans suggest that a faulted sagment of the rock horizon hosting the Amoco deposits underlie the claim group.

The claim group is situated on the north flank, naar the nose, of a major isoclinal ayncline which plunges eastward. Gensrally easterly trending rock horizons have been disrupted and modified by drag folds related to the synciline and north-northwest trending faults.

Along the north flank of the syncline the racke are daminantly intarmadiate pyroclastics, generally schistose and metamorphosed to the garnet stage as indicated by the Amoco drililing. The pyroclastics are amphitholitized and granitized to varying degrese.

Although amounting to less than 10 per cent, sufficient rock exposure is present in the survey ares to considerably asaist the interpretation of the geophysicel data. West of a creak almost bisecting the property in e north-narthwest direction, the odd outcrop related to the magnetic deta indicates this area to be underlain by a medium grained light gray grandtoid intrusive. East of the cresk a little more rock exposure is present. Most of the outcrop is a fissile to achistose matamorphosed pyroclastic which strikes north-northwest and dips west at 50 to 70 degrese. Nesr the boutheast shore of a laks on the northwest adge of the property, the rocks are highly amphibolitized with disseminated pyrite. A sample sasayed 0.18 per cent copper. Just north of the small lake in the south part of the property, outcrops of gabbroic rock injected with granite stringers are exposed.

According to Amoco drill loge, the gold-copper mineralization is located in volcanic tuffs altered to chlorite and biotiterich zones with the quertz vaining essociated with oharty horizons. Mineralization consists of visible gold, pyrrhotite, chblcopyrite and ephalerite in quartz btringars. Thebe mineralized zones, characteribtically, are adjacent to telc carbonata aerpantinized rocks. Feasibility studies on this 10 million ton orebody, avaraging D.20 oz. gold per ton plus copper, will be completed in the fell of 1978 when a development deciaion will be announced.

Tha magnetometer survey data is plotted and cantourad on two accompanying plans at a scels of one inch to thres hundred feet. The instrument and survey method are deacribed in the Appendix to this report. Rock exposure noted during the aurvey has been plotted on the plan to assiat the intarpratation.

In the west half of the property the magnatic valuss ars mostly within the 400 to 900 gamme range. A dominant trend of the isomagnetice is not epparent, except along the creak bisacting the property where the isamagnetice trend generally narth-northweat corresponding to the direction of the creek. The contact, thersfors, between the granite to the west and the mainly volcanic asamblage to the sast ia generally marked by a topographic low reprasented by the creak.

East of the creak the contoured magnetic values form a mare complex displey. To the northwest, whare the rocks atrike north to northwest, a series of lenticular magnatic highs and lows atrike generally northwest and abruptiy terminate along Line 24w. The magnetic characteriatice appear to be caused by amphiboilitizetion crosscutting the trend of the rocks.

In the northeast esctor of the property in the centre of the lake a prominent lenticular magnatic anomaly, almost 4000 feat long, strikes generally east corresponding to the regional trand. South of this fasture a series of magnetic highs strike genarally north. The mast prominent anomaly, crossing Line 12 E , at 17 N , is
apparently caused by emphibolite dykes and atringers. Dissaminated pyrite accurs in the adjacent slaty tuffs. Narrow quartz atringers are expased neer the peak of the anamaly. Further aduth the enomeLous highs, as a group, although offegt to the west, strike generally north. Northwest faulting in the vicinity of the base line apparantly accounts for the displacamant of this amphibolitized horizon.

ELECTAGMAGNETIC SURVEY RESULTS AND INTERPPRETATION

The electromagnetic survey data is plotted and profiled on the accompanying plans at a scala of one inch to thras hundred feet. The instrument and survey method are described in tha Appendix to this report.

There are two main zonse of conductivity on the property, termed A and B.

Conductor A is continuous across the property in a northwesterly direction for a length of more than two milea. It is interpreted to represent a fault with a right-hand diaplacament of sevaral hundrad fest. The displacement is ahown in the east half of the property where the prominent north trending magnetic fasture is offegt nesr the bess ling.

Conductor B, less wall defined end striking north-northusst, coincides with the contect betwean metavolcanics to the sast and granite to the west. Nase atation 17 N , Line 16w, an outcrop of brecciated and dragged metavolcanice indicates that conductor B represents the faulted granite-metevalcanic contact.

Nons of the other conductors on the property appear to be of particular significance, lacking aither good definition or coincidence with a magnetic high.

CONCLUSIONS AND RECOMME NDATIONS

A creak extending betwaen a lake to the narthweat and one to the south marks approximataly tha faulted contact betwean a gray granitoid intrusive to the west and metavolcanics to the east.

Based on the characteristics of the Amoco gold deposit the grenite is not an ettractive geological environment in the search for gold mineralization. However, with the preasnce of some rock exposurs in the vicinity of Hoppar Lake, prospecting is advisaable, particulerly to determine the type of minaralization associated with the conductive zones.

The meta-pyroclastice to the east of the oraek marit more attention particularly the magnetic highs which may be caused by pyrrhotite mineralization. The complex magnetic high in tha northwast sactar of the property is markad by a fair amount of rack axposure. A sample from Station 4 N on Ling 44 W with heavy pyrite dissamination, assayed 0.18 par cent copper. Similarly the magnatic features between Line 0 and $2 B E$ should be carafully prospacted.

CERTIFICATE

I, Roneld J. Bradshaw, 480 Howard 5treat, Timmins, Dntario, a conaulting geologist with office at 480 Howard Strast, Timmina, Ontario, do hereby certify that:

I attended Quesn's Univeristy, Kingston, Onterio, and graduated with an Honours B.A. degrea in Geological Sciences in 1958.

1 am a Fallow of the Geological Association of Canada, a Mamber of the Canadian Institute of Mining and Matallurgy and of tha Association of Professional Engineers of the Province of Ontario.

Shield Geophysice Limited reteins a ten per cent manegement interest In the holdings of the Gold Shield Syndicete.

Timmins, Onterio, August, 1978.

APPENDIX

SURVEY METHOD AND INSTRUMENT DATA

Electromagnetic Survay

A Ronke EM 16, number 36, was used for the aurvey.
This instrument is simply a senaitiva receiver covaring the frequency of the new ULF-transmitting stations with meane of measuring the vertical field componants. The VLF-tranamitting stations operete for communications with aubmarines at frequencias between 17.8 and 24.0 khz . The vertical antenna current of these transmitting atations creates a concentric horizontal magnatic field around them. Uhen these magnetic fields mest conductive bodies in the ground, there will be secondary field redisting from these bodies. This equipment measures the vertical components of these secondery fields.

The receiver hes two inputs, with two receiving poile built into the instrument. Dne coil has normaliy vertical axis and the other is horizontal.

The signal from the coll with vartical oxis is firet minimized by tilting the instrument. The tilt angle is calibrated in percentages. The remaining signal in this coil is finally balanced out by a meesured percentage of aignal from the othar coil.

After a suitable atation ia erlected, at right anglas to the direction of the survey lines, readinge are made of the in-phase and quadrature components where the aignal has bean minimized to its greatest degres. The VLF-tranamitting atation at Cutiar, Maine, has been used for this survay.

The lower end of the handle will, as a rula, point towerds the conductor and the instrument is so calibratad thet when approaching a conductor, the anglea are positiva to the in-phase component.

As with any alactromagnetic unit, tha largeat and bast conductors give the highest ratio of the in-phase and quadrature componente.

Mapnetometbr Survey
A Sharpe M.F.-1 fluxgete magnatametar was used in the magnetic survey. This instrument measures the vertical companant of the earth's magnetic field in gammas. Base stations for determining the magnetic diurnal variations wars astablishad slong the main busa line at 400 foot intervals. Magnetic raadings ware taken at 100 foot intervals along the crose linas.

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations	2046	Number of Readings 2400 approx.
Station interval	100^{\prime}	Line spacing
Profile scale	$1^{\prime \prime}=40 \%$	
Contour interval	100 gammas up to 1000 gammas; 1000 gammas_over 2000_gammas	

Instrument Sharpe M.F.-1 fluxgate
Accuracy - Scale constant + or - 10 gammas
Diurnal correction method
Base Station check-in interval (hours) less than 1 hour intervals
Base Station location and value along base line at 400 foot intervals

	Instrument Ronka EM 16			
	Coil configuration vertical			
	Coil separation infinite			
	Accuracy + or - 1\%			
	Method: \quad 区 Fixed transmitter	\square Shoot back	\square In line	\square Parallel line
	Frequency \qquad Cutler, Maine	$1.8 \mathrm{khz} .$ specify V.L..F. station)		

Instrument
Scale constant
Corrections made \qquad

Base station value and location

Elevation accuracy

Instrument
Method \square Time Domain
Frequency Domain
Parameters - On time Frequency

- Off time Range
\qquad
- Delay time
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode \qquad
\qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL

 technical data statementType of Survey(s) _ Magnetic \& Electromagnetic
Township or Area West of Sunday Lake Area
Claim Holder(s) \qquad Gold Shield Syndicate (Cluude Bertrend M20319)
Survey Company \qquad Shield Genphysics Limited
Author of Report __R. J. Bradshaw
Address of Author_P. U. Bux 630, Timmins, Ontario
Covering Dates of Survey July 1978
(linecutting to office)
Total Miles of Line Cut \qquad 9.49

SPECIAL PROVISIONS	
CREDITS REQUESTED	Geophysical
ENTER 40 days (includes	--Electromagnetic
line cutting) for first	
survey.	-Magnetometer
ENTER 20 days for each	
additional survey using same grid.	-Radiometric_-
	-Other

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric \qquad
(enter days per claim)
DATE: Aug. 18, 1978 SIGNATURE: Author of Report or Agent

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations	502	EM 560 approx.
Station interval	100^{\prime}	Number of Readings Mag 560 approx.
Profile scale	$1^{\prime \prime}=20 \%$	
Contour interval	100 gammas to 1500 gammas; 500 gammas thereafter	

Instrument Sharpe M.F. -1 fluxpate
Accuracy - Scale constant + or - 10 gammas
Diurnal correction method Estahlishment of base stations ea cross lines on base line
Base Station check-in interval (hours) less than 2 hour intervals
Base Station location and value Along base line at 400 intervals

Instrument
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument

Ministry of Natural Resources

\qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Total Miles of Line Cut _17.35

SPECIAL PROVISIONS		DAYs perclaim
CREDITS REQUESTED		

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Previous Surveys

Qualifications
Res. Geol. \qquad $\frac{231323}{\text { on the File }}$

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Instrument
Sherpe M.F.-1 fluxgate
Accuracy - Scalc constant + or - 10 gammes
Diurnal correction method \qquad
Base Station check-in interval (hours) check of base station at less than one hour intefvals Base Station location and value located at 400^{\prime} intervals along base line

Instrument \qquad Ronike EM 16

Coil configuration vertical

Coil separation infinite

Accuracy $+01-1 \%$
Method:
区 Fixed transmitterShoot backIn lineParallel line

Frequency_18.E Kinz Jim Ereek, Ulashington $\underset{\text { (specify V.L.F.station) }}{\text { 1. }}$
Parameters measured vertical field and quadrature components

Instrument
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain
[. Frequency Domain
Parameters - On time Frequency

- Off time Range
\qquad
- Dclay time
\qquad —__
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode \qquad

