

5SE2022 2.28034 HYMAN

REPORT ON THE

010

2003 SUMMER MAPPING PROGRAM

ON THE HYMAN PROPERTY

HYMAN/NAIRN TOWNSHIPS

SUDBURY, ONTARIO

FOR

MUSTANCE MINERALS (ORP.

TABLE OF CONTENTS

1.	SUM	IMARY1
2.	INT	RODUCTION
	2.1	GENERAL 2
	2.2	SOURCES OF INFORMATION 2
	2.3	UNITS AND CURRENCY 2
3.	PRO	PERTY DESCRIPTION AND LOCATION
	3.1	PROPERTY LOCATION
	3.2	PROPERTY DESCRIPTION AND OWNERSHIP
4.	ACC	CESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND
	P	HYSIOGRAPHY8
	4.1	ACCESS
	4.2	CLIMATE
	4.3	LOCAL RESOURCES AND INFRASTRUCTURE
	4.4	PHYSIOGRAPHY
5.	Н	ISTORY10
6.	GEC	DLOGICAL SETTING
	6.1	REGIONAL GEOLOGY
	6.2	PROPERTY GEOLOGY14
7.	MIN	JERALIZATION17
8.	ЕХР	LORATION
	8.1	PREVIOUS WORK
	8.2	2003 MAPPING PROGRAM
9.	DRI	LLING
11	. SAI	MPLE PREPARATION AND SECURITY25
12	. AD	JACENT PROPERTIES26
13	. IN7	TERPRETATION AND CONCLUSIONS 27

14. RECOMMENDATIONS	
CERTIFICATE	
REFERENCES	

LIST OF TABLES

Table 1:	Hyman Property Claim Identity	7
Table 2:	Parcels Comprising the Hyman Property	7
Table 3:	Hyman 2003 drill hole locations2	3

LIST OF FIGURES

Figure 1:	Hyman Property Location Map	5
Figure 2:	Hyman Property Claim Location Map	6
Figure 3:	Regional Geology Map, Sudbury Area	.14
Figure 4:	Property Location, Geology and Showings	.17
Figure 5:	Coarse-grained, vari-textured gabbro	.21
Figure 6:	Mineralized Sudbury Breccia	.22
Figure 7:	Hyman Property, Drill Hole Location Map	.24

LIST OF APPENDICES

- Hyman Property Sample Details and Assay Data Summary Hyman Property Assay Certificates 1.
- 2.
- Field Crew 3.

Map 1: Bedrock Geology and Sample Locations, 1:2,500 (back pocket)

Map 2: Cu+Ni Assay Bubble Plot, 1:2,500 (back pocket)

Map 3: PGM Assay Bubble Plot, 1:2,500 (back pocket)

1. SUMMARY

The Hyman Property was acquired by Mustang Minerals Corp. ("Mustang") because of its exploration potential for disseminated Cu-Ni-PGM mineralization. This style of mineralization is currently being explored for by Ursa Major Minerals at its Shakespeare Property in Shakespeare Township.

The Hyman property is located in southern Hyman and northern Nairn Townships approximately 55 km southwest of the city of Sudbury and 17 km west of Nairn Centre on Highway #17. The Hyman Property consists of 8 unpatented mining claims covering 960 hectares.

Mapping indicates that the Hyman extension grid is underlain by an argillaceous greywacke that have been conformably intruded by Nipissing gabbro sills.

Mineralization on the property is associated with and hosted by Nipissing gabbroic rocks and consists predominantly of chalcopyrite, pyrrhotite and pyrite. The sulphides occur as heavy disseminations, blebs, irregular patches and as stringers and veinlets in shear and fracture zones. In mineralized areas sulphide contents vary from trace up to 10%. However, the mineralization is generally erratic and lacks continuity.

Mineralization also appears to be associated with Sudbury Breccia on the property.

Nickel, copper and PGM concentrations are generally low, with the best assay results from the mapping program being 1.09% Cu and 0.22% Ni.

Exploration work that has been completed to date includes linecutting, magnetometer and IP surveys, geological mapping and sampling followed by a small reconnaissance diamond drill program. No significant mineralized zones of Cu-Ni-PGM were discovered during this program. In light of the current results no further work is recommended at this time.

-1-

2. INTRODUCTION

2.1 GENERAL

The Hyman Property was acquired by Mustang Minerals Corp. ("Mustang") because of its exploration potential for disseminated Cu-Ni-PGE mineralization. This style of mineralization is currently being explored for by Ursa Major Minerals at its Shakespeare Property in Shakespeare Township approximately 10 km west of the property.

2.2 SOURCES OF INFORMATION

In preparing this report the author carried out a review of all the available data on the property. This report also borrows heavily from reports by Lapierre (2002) and Watts, Grifffis and McOuat Limited (2002).

The author has visited the Hyman Property on numerous occasions with the date of the last field visit being August 2003.

A complete list of the material reviewed is provided at the end of this report.

2.3 UNITS AND CURRENCY

Metric units are generally used throughout this report. Copper, nickel and cobalt grades are reported as percent ("%"). Platinum, palladium, gold and silver grades are reported in grams per tonne ("g Pt/t", "g Pd/t", or "g Au/t") or parts per billion ("ppb"). Measurements in metres are reflected as "m".

All dollar amounts are expressed in Canadian funds, unless otherwise stated.

3. PROPERTY DESCRIPTION AND LOCATION

3.1 PROPERTY LOCATION

The Hyman property is located in southern Hyman and northern Nairn Townships approximately 55 km southwest of the city of Sudbury and 17 km west of Nairn Centre on Highway #17 (Figures 1 and 2).

3.2 PROPERTY DESCRIPTION AND OWNERSHIP

The Hyman Property consists of 8 unpatented mining claims covering 960 hectares (Figure 2). The mining claims comprising the property (Table 1) were acquired from local prospectors either by purchase or option agreements. The various Option Agreements (Table 2) require that Mustang make combinations of cash payments, stock issuances and in one instance fulfil work commitments. The agreements also require that the Company keep the property in good standing, and that the claims are in good standing if they are returned to the Optionor.

Mustang can earn a 100% undivided interest in all of the mining claims comprising the Hyman Property.

Figure 1: Hyman Property Location Map

Figure 2: Hyman Property Claim Location Map

ż

Claim #	Units	Township	Due dates
3002789	8	Hyman	Sept. 27, 2006
3002749	8	Hyman	Sept. 27, 2006
3010331	12	Nairn	Sept. 27, 2006
1218042	8	Hyman	Nov. 2, 2006
1214579	8	Hyman	Nov. 2, 2006
1229698	8	Nairn	May 5, 2006
1229597	4	Nairn	June 25, 2006
3003205	4	Nairn	Sept. 6, 2006

 Table 1: Hyman Property Claim Identity

Table 2 summarizes the Agreements under which the mining claims were acquired.

Table 2: Parcels Comprising the Hyman Property										
Township	Agreement Date	Claim Owners	Claims	Claim Units	Hectares					
Nairn/Hyman	September 9, 2002	Dan Patrie Exploration & Sons	5	32	512					
Nairn/Hyman Total	October 25, 2002	Norwin Geological Ltd.	3 8	<u>28</u> 60	<u>448</u> 960					

Under the Option Agreement transaction dated September 9, 2002 with Dan Patrie Exploration & Sons, Mustang can earn a 100% undivided interest in 5 mining claims comprising 32 mining claim units. The claims are located in Hyman and Nairn Townships. By making the following cash payments and issuances of common stock Mustang can earn its interest subject only to an underlying net smelter royalty of 3%. Mustang can buy back 2% of the royalty by paying \$1 million.

Cash payments are:	Paid on closing -	\$20,000
	On or before the 1 st Anniversary -	\$40,000
	On or before the 2 nd Anniversary -	\$60,000
	On or before the 3 rd Anniversary -	\$80,000

Mustang issued 100,000 shares to the Vendors on closing.

Mustang has also agreed to keep the property claims in good standing.

Under the Option Agreement transaction dated October 25, 2002 with Norwin Geological Ltd. Mustang has earned a 100% undivided interest in 3 mining claims (28 units) by paying \$5,000 and issuing 100,000 shares to the Vendors.

The Optionor will retain a 2% Net Smelter Royalty on the property. Mustang also has the Option to buyback up to 1% of the Royalty for \$500,000 for each 0.5% that is purchased.

Mustang is required to keep the claims in good standing during the term of the agreement.

4. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

4.1 ACCESS

To access the property one travels west from Sudbury on Highway 17 to its intersection with the Sand Bay road. The Sand Bay road continues north from Highway #17 for a distance of ~ 6 km to the western part of the property. Access to other parts of the property is by numerous logging roads, ATV trails and waterways (Agnew Lake).

4.2 CLIMATE

The area has a moderate climate with temperatures averaging about 24°C in summer and -9°C in winter. Extreme temperatures are greater than 30°C in summer and less than -40°C in winter. Annual precipitation consists of about 60 cm of rain and 240 cm of snow.

4.3 LOCAL RESOURCES AND INFRASTRUCTURE

The property is immediately north of Highway #17, which is the Trans Canada Highway.

Services and supplies to support exploration are readily available in the local towns of Nairn, and Espanola.

The full range of equipment, supplies and services required for any mining development is available in Sudbury, a distance of 60 km from the property by road.

The city of Sudbury is a major centre with a population of about 90,000 (164,000 in the Regional Municipality of Sudbury). As home to both Inco Limited and Falconbridge

-8-

Limited, the Sudbury area is the western world's largest producer of nickel and the location of the largest fully integrated mining, milling, smelting and refining complex in the world. Over 300 companies involved in mining related activities offer expertise covering all areas of underground hardrock mining and environmental rehabilitation.

Abundant water resources are present in the lakes, rivers, creeks, and beaver ponds on the property.

4.4 PHYSIOGRAPHY

The major topographic feature of the area is Agnew Lake which is located along the north part of the property (Figure 1). The property itself has rocky, east-northeast trending ridges separated by valleys filled with glacial material, swamps and streams.

Vegetation is typical for the Sudbury area with mixed second growth forest of spruce, pine, poplar, birch, oak and maple. The swampy low lying areas contain abundant tag alders.

5. HISTORY

Historical work has centred on two main areas of mineralization on the present claim block.

1. KEBA Prospect (present claim # 1229698)

The property was located in lots 9 and 10, Concession VI, on the boundary in Hyman Township. It was held by Spanish Basin Mines Syndicate in 1928. The property was then re-staked and optioned to Falconbridge who carried out geological and geophysical exploration in 1953. Two small east-west trending, south dipping sulphide showings are separated by 550 m of drift cover. The largest of the showing was exposed for 160 m and had widths up to 3.5 m (Ginn, 1965). Moore (1929) reported values of sulphide-bearing rock to contain 0.68% nickel and no gold.

Sudnor Mining Company, in 1970, drilled three holes and carried out trenching in the NW ¼, N1/2 lot 9 Conc.VI. No assays were reported.

2. KORDOL Exploration Limited (present claim # 1214579)

In 1959, exploration consisted of geological mapping, magnetometer survey, surface trenching and sampling and diamond drilling. The main showings were associated with a large body of metagabbro and consisted of pockets of disseminated or massive pyrrhotite, pyrite and chalcopyrite. A chip sample yielded 5.2 m @ 1.03% copper, 0.45% nickel, 0.12% cobalt and trace palladium. Shallow drilling intersected 1.5 m to 3.65 m averaging 1-1.5% combined copper and nickel.

In 1975 and 1979, a large regional program conducted by Consolidated Morrison and covering the present property consisted of geological mapping and airborne and radiometric surveys.

-10-

In 1999, Dan Patrie and Associates carried out line cutting, prospecting, and magnetometer and induced polarization (pole-dipole) geophysical surveys on the property. The surveys were conducted along the Nairn-Hyman boundary on current claim #'s 1218042 and 1229698. The program outlined an apparent zone of low resistivity and high chargeability associated with anomalous nickel-copper values over a strike length of 900 m (the extent of the survey). The horizon had a northeast strike and appeared to be associated with the gabbro sill located on the property.

Mustang optioned the Hyman Property in the fall of 2002.

6. GEOLOGICAL SETTING

6.1 **REGIONAL GEOLOGY**

The Hyman property lies along the southern margin of the Archean aged Superior Province proximal to where it is overlapped by 2.5 to 2.2 Ga sedimentary rocks of the Huronian Supergroup (Figure 2).

The Archean rocks of the Superior Province are dominated by plutons and gneisses with lesser amounts of greenstone, which date at about 2,700 Ma. Late Archean tectonometamorphism (2,640 Ma) produced the Levack Gneiss Complex and the associated anatectic granitoid rocks. The area was then intruded by the northwest trending Matachewan dyke swarm about 2,450 Ma.

With the onset of extensional tectonics the area was intruded by gabbroic intrusions of the East Bull Lake Suite ("EBLS") at about 2,490 - 2,450. These intrusions are believed to be cogenetic with the lowermost volcanics of the Huronian Supergroup.

Huronian sedimentation and volcanism continued to about 2,200 Ma. The sediments were derived from the Archean Superior Province to the north. All of the rocks were intruded by the extensive Nipissing Gabbro/Diabase sill-dyke system about 2,200 Ma.

The Sudbury Meteorite Impact event (1,850 Ma) affected a large area both inside and outside the current limits of the Sudbury Basin, which is located just to the northeast of the property. The impact resulted in the emplacement of the Sudbury Igneous Complex and the formation of a radial and concentric pattern of offset dykes and zones of pseudotachylyte ("Sudbury Breccia") within the surrounding Archean and Proterozoic rocks.

Figure 3: Regional Geology Map, Sudbury Area

-13-

The area was then affected by compressional tectonics during the Penokean orogeny, variously dated at between 1,700 – 1,900 Ma. Northwesterly directed thrusting during this orogenic event is responsible for the current northeast-southwest geologic fabric.

Both the mafic East Bull Lake Suite intrusions and the Nipissing Gabbro/Diabase sills are known to host Cu-Ni-PGE mineralization.

Mineralization associated with the dyke to sill-like mafic intrusions of the Nipissing magmatic event in the Sudbury area are numerous and can be categorized as follows:

- 1. Disseminated to interstitial primary magmatic sulphides containing Cu-Ni-Co-PGE.
- 2. Massive Cu-Ni-Co-PGE bearing sulphides associated with interstitial sulphides.
- 3. Massive pyrrhotite-rich sulphides.
- 4. Fracture-controlled sulphides containing Cu-Ni-Co-PGE.
- 5. Massive sulphides in vein systems containing Cu-Ni-Co-PGE.
- 6. Massive sulphides as irregular segregations or pods containing Cu-Ni-Co-PGE.
- 7. Pyrrhotite-rich barren sulphides as matrix in fracture/brecciated environments.
- 8. Sulphides associated with siliceous lenses containing Cu-Ni-Co-PGE.
- 9. Carbonate altered disseminated Au-bearing pyrite.
- 10. Disseminated Au-bearing sulphides in mafic skarn proximal to gabbro/calcareous metasediments.

It can be concluded that on a regional scale the gabbro sills in the Sudbury area are dominated by Cu-Ni-Co-PGE type of mineralization (Peredery, 2001).

6.2 PROPERTY GEOLOGY

The geology of the property is dominated by several large Nipissing gabbro sills. These have intruded metasedimentary rocks of the Huronian Elliot Lake Group. These range

from polymictic conglomerates and metapelites on the northeastern part of the property to predominantly quartzites on the southwestern part.

The rocks on the northern part of the property trend northeasterly and dip steeply south. Rock units on the southern part of the property have been folded about the Baldwin Anticline and have variable strikes and dips.

Late stage olivine diabase dykes cross-cut all rocks of the claim group.

Several north-east trending lineaments occur on the property. One such fault, the Fairbank Lake Fault, crosscuts the centre part of the property.

Several parallel faults are located to the north and south of the Fairbank Lake Fault.

Mineralization observed on the Hyman property is associated with the gabbro sill as fracture-controlled and primary segregations. Sulphide minerals consist of a pyrrhotite-pentlandite-chalcopyrite-pyrite assemblage.

-16-

7. MINERALIZATION

Several of the mineralized occurrences were located and sampled by Mustang. Mineralization on the property is associated with and hosted by Nipissing gabbroic rocks and consists predominantly of chalcopyrite, pyrrhotite, pyrite and pentlandite and pyrite. The sulphides occur as heavy disseminations, irregular patches and as stringers and veinlets in shear and fracture zones. Winter (2000) reported the presence of a small mineralized breccia in a structure associated with the mineralization on the property and Ginn (1965) reported mineralized inclusions of sedimentary rocks within the gabbro on the Keba showing. Winter (2000) also suggested the possibility of Sudbury Breccias in the area that may have some relationship to the mineralization.

To date, the mineralization on the property has been erratic, occurring as small, irregular patches to pods and disseminations, within the gabbro and commonly close to the contact with the sediments.

8. EXPLORATION

8.1 PREVIOUS WORK

Upon acquiring the Hyman property, Mustang conducted a preliminary geological survey in the fall of 2002. The purpose of the program was to locate historical pits, trenches and shafts on the property, to sample any zones of mineralization, to identify the host rock to the mineralization and to determine if the zones on the property warrant further exploration.

All of the historic showings were located were found to be hosted by a northeast trending Nipissing gabbro sill which strikes across the property for a distance of 4.5km. A discrete sulphide horizon comprised of erratic disseminated to locally semi-massive sulphides was also observed in outcrop and appeared to be associated with an IP chargeability anomaly within the gabbro sill. The continuity and extent of the sulphide mineralization was not established at this time. The mineralization was confirmed as being composed of chalcopyrite, pentlandite, pyrrhotite and pyrite with best assays from grab samples of 0.92% nickel and 1.11% copper. Platinum group metal assays were typically below 200ppb (Lapierre, 2002).

In early 2003, Mustang completed 13km of line cutting and chaining extending the preexisting grid to the east. The base line was extended for an additional 700m. Grid lines were cut every 100m, and picketed every 25m. Garmin GPS receivers were utilized for locating grid end points and intersection points, grab samples and claim posts. All UTM coordinates were recorded in NAD27, Zone 17T.

The previous IP data set was also reprocessed and examined by Geodigit-Ex, Mustang's geophysical consultant. It was reported that the data were too noisy due to electrode contact problems and consequently the interpreted anomalies were likely unreliable (R.

Tykajlo, pers. comm., 2003). The grid extension was then covered with total field magnetometer and pole-dipole induced polarization surveys (Patrie, 2003a and 2003b). For this IP survey Patrie used a higher powered generator and also tried to achieve the best electrode contacts wherever possible. The resultant data were much cleaner and defined a single, northeast-trending, chargeability anomaly on lines 1200E, 1300E and 1400E in the vicinity of the baseline. Examination of the previous geological data for this area indicated a gabbro-sediment contact, which on the old grid to the west, is commonly mineralized.

8.2 2003 MAPPING PROGRAM

Between July 14 and August 14, 2003, geological mapping and sampling were completed on the Hyman grid extension. Sampling was of a reconnaissance nature with 1-3kg grab samples obtained from outcrop where sulphide mineralization was encountered. Samples were also collected from unmineralized exposures to document the background nickel, copper and PGM concentrations in different rock units along the traverse lines. A total of 153 samples were collected, and approximately 13 line km of grid were mapped. The mapped outcrops, sample locations and numbers, and interpreted geology are shown on Map 1 (back pocket).

Mapping indicates that the Hyman extension grid is underlain by an argillaceous greywacke that have been conformably intruded by Nipissing gabbro sills. Most of the Nipissing gabbro on the property exhibits very little differentiation and consists of a highly uniform, fine- to medium-grained massive quartz diabase. Rare pegmatitic gabbro pods, vari-textured gabbro and pyroxenite were also observed (e.g. L1150E/265N) (Figure 5).

The Nipissing gabbro sill is bounded to the north and south by a fine- to medium-grained, bedded argillaceous greywacke of the McKim Formation. This unit typically contains trace sulphides but locally can contain up to 5% finely disseminated and fracture-related pyrite. This sulphide concentration could cause an IP chargeability anomaly.

Sulphide minerals in the gabbro typically range from trace to 2% and consist of chalcopyrite and pyrrhotite with minor pyrite and pentlandite that are primarily disseminated to blebby within the gabbro. Locally, and adjacent to the gabbro-sediment contacts, semi-massive sulphides are exposed as small, irregular, pod-like bodies and associated with joints and fractures. In mineralized areas sulphide contents vary from trace up to 5%. Interestingly, a breccia was observed at a rusty, mineralized outcrop at L850E/430S where rounded gabbro inclusions are surrounded by a very fine-grained, rusty matrix (Figure 6). This is interpreted to be Sudbury Breccia and was also noted by Ginn (1965) and Winter (2000).

Figure 5: Coarse-grained, vari-textured gabbro

Figure 6: Mineralized Sudbury Breccia

A total of 153 samples were collected from the Hyman extension grid during the mapping program and submitted to Expert Laboratories in Rouyn-Noranda, Quebec, for determination of Au, Pt, Pd, Cu and Ni. Sample descriptions, locations and results are provided in Appendix 1. Assay certificates can be found in Appendix 2. Assay results are also represented graphically with bubble plots for Cu+Ni and combined PGM, on Maps 2 and 3, respectively. The best assays were obtained from sample 45110 which contained 3-5% disseminated to blebby chalcopyrite and pyrrhotite. This sample was collected in the vicinity of the historic showings on L800E and L850E at approximately 430S and is associated with Sudbury Breccia. The sample returned 1.09% Cu, 0.22% Ni, 206 ppb Pd, 80 ppb Pt and 68 ppb Au.

9. DRILLING

In follow up to the mapping and IP program, Mustang drilled three reconnaissance NQ drill holes for a total of 623m during September, 2003. The drill logs, sections and assay results have already been submitted for assessment under a separate report. The holes were drilled to test the continuity of the anomalous Cu-Ni mineralization that was encountered at the historic showings and also test the chargeability anomaly that was defined in the IP survey. The locations of the holes are tabulated in Table 3 and shown on Figure 7 and Maps 1, 2 and 3.

Table 3: Hyman 2003 drill hole locations

Hole #	UTM	UTM North	Azimuth	Dip	Length (m)	Target
	East					
MBH03-01	449893	5134656	130	-45	119	Test under showing
MBH03-02	450371	5315147	180	-45	292	Test IP chargeability anomaly
MBH03-03	449814	5314673	180	-55	212	Test IP anomaly west of
						showing

The drill results were generally disappointing and no significant mineralized zones were defined. Hole MBH03-01 intersected a mineralized gabbro contact with 5-7% and locally up to 15% disseminated to blebby pyrrhotite, chalcopyrite and minor pyrite. Best assays were 0.11% Ni, 0.16% Cu, 1.14 g Au/t, 43 ppb Pt and 77 ppb Pt.

Hole MBH03-02 intersected 280m of argillaceous greywacke with trace to 1% and locally up to 3-5% disseminated, seams and fracture filling pyrite and pyrrhotite. These sulphides were likely the cause of the IP chargeability anomaly.

Finally, hole MBH03-03 was drilled to the west of hole MBH03-01 to test a possible chargeability anomaly that was defined in the 1999 IP survey. This hole also intersected a mineralized gabbro contact with trace to 2% and locally up to 10% disseminated to blebby

-23-

10. SAMPLING METHOD AND APPROACH

Rock sampling was carried out during the geological mapping program. Two to three kilogram rock samples were collected at most of the outcrops that were visited at an average density of approximately one grab sample every 50m. The goal of the sample program is to determine the presence of elevated Ni-Cu-PGM values and/or determine the character of observed sulphide mineralization. During this phase of sampling, priority was given to confirming the presence and character of the mineralization. However, samples were also collected from unmineralized exposures to document the background nickel, copper and PGM concentrations in different rock units along the traverse lines.

11. SAMPLE PREPARATION AND SECURITY

No sample preparation was carried out by Mustang. Assaying was completed at Expert Laboratories in Rouyn-Noranda Quebec. Copper, nickel and cobalt concentrations were determined by total digestion atomic absorption on a 0.50 g sample. The detection limit is 2 ppm for Cu, Ni and Co. Gold, platinum and palladium were determined by fire assay-geochem whereby a 29.166 g sample is weighed into a crucible that has been previously charged with approximately 130 g of flux. The sample is then mixed and 1mg of silver nitrate is added. The sample is then fused at 1800 F for approximately 45 minutes. The sample is then poured in a conical mould and allowed to cool; after cooling, the slag is broken off and the lead button weighing 25-30 g is recovered. This lead button is then cupelled at 1600 F until all the lead is oxidized. After cooling, the doré bead is placed in a 13 x 100 mm test tube. The beads are then digested and Au, Pt, Pd concentrations are determined by ICP-MS. The detection limits are 2 ppb for Au, 5 ppb for Pt and 4 ppb for Pd.

12. ADJACENT PROPERTIES

The potential of the property to host economic concentrations of nickel-copper-cobalt and PGEs is demonstrated by the recent discovery on a nearby property. Numerous small showings of nickel-copper-PGE mineralization have long been documented from Nipissing gabbro sills. Until recently however, no mineralization of sufficient grade and continuity had been located to be of economic interest. However, recent shallow surface drilling on the Shakespeare gabbro sill approximately 10 km west of the property by Ursa Major Minerals has yielded wide intersections of combined nickel, copper and PGE near an existing deposit. The Shakespeare deposit was originally acquired by Ursa from Falconbridge Limited. The new discovery is located northeast of the Shakespeare deposit where there is a previously reported near-surface, Inferred Resource of 1.9 million tonnes grading 0.36% nickel, 0.42% copper 0.44 g Pd/t, 0.40 g Pt/t and 0.23 g Au/t. More recently, Ursa Major reported an indicated resource for the Shakespeare deposit of 12.0 million tonnes at 0.35% nickel, 0.36% copper, 0.34 g Pd/t, 0.38g Pt/t and 0.19g Au/t (Ursa Major Press Release, April 15, 2004). The discovery of wider intercepts near the Shakespeare deposit has confirmed that the gabbro sills to the west of Sudbury have the potential to host significant metal concentrations.

13. INTERPRETATION AND CONCLUSIONS

Mapping has confirmed that the Hyman extension grid is underlain by an argillaceous greywacke that have been conformably intruded by Nipissing gabbro sills. Most of the Nipissing gabbro on the property exhibits very little differentiation and consists of a highly uniform, fine- to medium-grained massive quartz diabase.

Sulphide minerals in the gabbro typically range from trace to 2% and consist of chalcopyrite and pyrrhotite with minor pyrite and pentlandite that are primarily disseminated to blebby within the gabbro. Locally, and adjacent to the gabbro-sediment contacts, semi-massive sulphides are exposed as small, irregular, pod-like bodies and associated with joints and fractures. In mineralized areas sulphide contents vary from trace up to 10%. However, the mineralization is generally erratic and lacks continuity.

Mineralization also appears to be associated with Sudbury Breccia on the property.

Nickel, copper and PGM concentrations are generally low, with the best assay results from the mapping program being 1.09% Cu and 0.22% Ni.

In light of the current results no further work is recommended at this time.

14. RECOMMENDATIONS

Mustang has conducted a systematic exploration program consisting of linecutting, magnetometer and IP surveys, geological mapping and sampling followed by reconnaissance diamond drilling. No significant mineralized zones of Cu-Ni-PGM were discovered during this program. Consequently, based on the foregoing results, no further exploration work is warranted at this time.

CERTIFICATE

To Accompany the Report titled "Report on the 2003 Mapping Program on the Hyman Property, Hyman/Nairn Townships, Sudbury, Ontario for Mustang Minerals Corp." dated May 29, 2004

I, Peter C. Wood, of the city of Sudbury, Province of Ontario, Canada, do hereby certify that:

- 1. I am a practising consulting geologist with Geodigital Mapping Systems Inc., with an office at 618 Telstar Avenue, Sudbury, Ontario, and a mailing address of Plaza 69 P.O., Box 21026, Sudbury, Ontario, P3E 6G6;
- 2. I am a graduate of the University of Toronto, Ontario with an Honours Bachelor of Applied Science Degree (1983) in Geological Engineering and Applied Earth Sciences (Exploration Option), and a Master of Science Degree (1987) in Geology;
- 3. I have been practising my profession as a geologist in Ontario, Quebec and the Northwest Territories since 1987;
- 4. I have pending applications for membership in the Association of Professional Geoscientists of Ontario and the Professional Engineers Ontario;
- 5. The information contained in this report and accompanying maps is based on personal observations and direct supervision of the field work;
- 6. I have visited the Hyman Property on numerous occasions, and that my last visit to the Hyman Property was on September 20, 2003; and,
- 7. I have no direct interest in the claims mentioned in this report; however, I do beneficially hold shares and stock options for shares of Mustang Minerals Corp.

Dated this 29th day of May, 2004, Sudbury, Ontario

Peter C. Wood, B.A.Sc., M.Sc.

REFERENCES

Card, K.D.	
1976	Geology of the Espanola-Whitesfish Falls Area, District of Sudbury,
	Ontario. Ontario Geological Survey, Report 131, 70 pp.
Ginn, R.M.	
1965	Nairn and Lorne Townships. Ontario Department of Mines, Report
	35 (map 2062), 46 pp.
Lapierre, K.J.	
2003	Assessment Report on the Hyman Property, Hyman/Nairn
	Townships, Sudbury, Ontario for Mustang Minerals Corp.
Patrie, D.	
2003a	Total Field Magnetometer Report on the Hyman Township Property,
	District of Sudbury for Mustang Minerals Corp., 6pp plus two maps.
Patrie, D.	
2003b	Induced Polarization Report on the Hyman/Nairn Boundary Property,
	District of Sudbury for Mustang Minerals Corp., 6pp plus 1 base
	map and 13 pseudosections.
Peredery, W.V.	
2001	An Outline and Potential of Barry-Burns Properties in Baldwin and
	Nairn Townships, Sudbury District, Ontario, Unpublished report.

Watts, Griffis and McOuat Limited

2003 Report on the Hyman Property, Hyman/Nairn Townships, Sudbury, Ontario *for* Mustang Minerals Corp., 35pp.

Winter, L.D.S.

2000 Geological Report on the Agnew Lake property, Hyman and Nairn townships, District of Sudbury Ontario *for* Goldwright Explorations Inc., 15pp.

APPENDIX 1: HYMAN PROPERTY - SAMPLE DETAILS AND ASSAY DATA SUMMARY

Appendix 1: Hyman Property Sample Details and Assay Data Summary

Sample #	Grid coo	ordinates	U	гм	Rock	Texture /	Grain	Structure	Mag.	Sulphides	Au	Pt	Pd	Cu	Ni
	Easting	Northing	Easting	Northing	Type	Alteration	Size		Sus.	•	daa	daa	daa	ppm	ppm
45051	1050	-351	450140	5134727	GAB (DIKE2)	bio-m p mag-s	ma		29.30	no visible sutph	6	<5	<4	58	39
45052	1048	-289	450130	5134784	GAB/SED?	mass sil?	ma		0.32	no visible sulph	9	<5	<4	32	53
45053	1050	-278	450135	5134788	GAB	mass sil?	fa-ma			1%no-blb	<2	<5	<4	34	40
45054	1050	-206	450134	5134853	GAB	mass chl-m p	ma		0.37	no visible sulph	7	7	<4	20	46
45055	1046	-156	450122	5134894	GAB	massion-mp	lfa-ma		0.36	no visible sulph	7	11	5	41	40
45055	1050	-100	450122	5134926	GAB	mass	Ima		0.00	no visible sulph	3	20	10	4	0.0
45057	1050	-50	450129	5135002	GAB	mass	Ima		0.44	no visible sulph	3	<5	5	25	21
45058	1050	112	450123	5135153	GAB	mass chl-m/s	lfa-ma		0.50	no visible sulph	5	12	5	45	75
45059	1030	150	450127	5135185	GAB	mass bio-w/m n	lfa-ma		0.38	no visible sulph	11	8	<4		65
45060	1053	182	450127	5135215	GAB	mass.chLm/s	Ifa-ma		0.00	no visible sulph	3	11	< <u>-</u>	30	70
45060	1055	211	450133	5135244	GAB	mass.chLm/s	lfa-ma		0.40	no visible sulph	- <u> </u>	10	4	65	67
45062	1050	239	450142	5135275	GAB	mass.chl-w	Ima		0.57	no visible sulph	<2	10	8	27	36
45063	1053	275	450128	5135314	GAB	mass chl-m/s	fa-ma		0.44	no visible sulph	3	10	<4	25	56
45064	1000	317	450114	5135340	GAB	mass chl-w n	fa-ma		0.51	no visible sulph	3	9	8	38	30
45065	1050	336	450123	5135372	ISED	mass	lfa		0.01	no visible sulph	3	<5	<4	29	41
45066	1051	378	450113	5135409	SED	hdoo	lfa	bd fol	0.28	no visible sulph	7	<5	<4	14	45
45067	1100	450	450176	5135471	GAB	mass-fol	fa-ma	mass-fol	0.59	po-tr dis	<2	<5	<4	33	21
45068	1103	398	450176	5135422	SED		fa	fol @ 060/-65	0.00	no visible sulnh	5	<5	<u>د</u> 4	38	56
45069	1100	360	450174	5135392	SED		lfa	fol	0.26	no visible sulph	7	<5	<u>د</u> 4	10	42
45070	1100	349	450174	5135379	GAB	mass	ma		0.48	no visible sulph	<2	11	10	73	26
45071	1100	317	450175	5135348	GAB	mass chl-m	ma			no visible sulph	6	13	7	34	49
45072	1098	292	450168	5135328	GAB	mass chl-m	ma		0.43	no visible sulph	5	23	12	17	43
45073	1100	249	450172	5135281	GAB	mass chl-w	Ima			no visible sulph	<2	15	9	21	45
45074	1099	206	450171	5135242	IGAB	mass chl-s	Img		0.42	no visible sulph	<2	13	6	20	63
45075	1100	183	450170	5135219	GAB	mass.chl-m/s	Ima	1		no visible sulph	3	9	<4	16	61
45076	850	-229	449947	5134811	GAB	mass	Ima —		0.46	no visible sulph	<2	9	8	25	55
45077	857	-271	449956	5134785	GAB	mass	Ima		0.39	no visible sulph	2	12	23	30	28
45078	853	-309	449954	5134744	GAB	mass	Ima		0.71	no visible sulph		16	17	139	61
45079	848	-348	449949	5134714	GAB	mass.chl-w/m	Ima	1	0.59	blb.1%po. 0.5%cp	10	18	29	245	360
45080	854	-376	449952	5134683	GAB	mass.chl-w/m	lfa-ma	1	0.47	no visible sulph	10	22	28	78	126
45081	850	-387	449950	5134674	GAB	mass	Ima			no visible sulph	96	138	134	204	110
45082	850	-446	449954	5134649	GAB	mass-bx	Ima	mass-bx	6.57	blb.2%cp.3-4%po	71	191	187	1406	834
45083	853	-435	449947	5134636	GAB	mass-bx	ma	mass-bx	2.12	3%po.cp-tr.dis	95	77	134	750	740
45084	861	-447	449959	5134656	GAB	mass-bx	Ima	mass-bx	1.08	2-3%cp.tr.po.dis	132	130	129	9500	198
45085	850	152	449927	5135206	GAB	mass	lfa		0.57	no visible sulph	52	10	10	72	42
45086	849	184	449924	5135231	GAB	mass	fa		0.75	no visible sulph	<2	<5	<4	69	24
45087	851	209	449927	5135254	GAB	mass	lfa-ma		0.44	no visible sulph	3	81	67	17	240
45088	847	236	449925	5135284	GAB	mass	Ima		0.59	no visible sulph	<2	10	9	95	30
45089	962	211	450040	5135249	SED	mass-fol	fa	mass-fol	0.36	no visible sulph	2	<5	<4	5	53
45090	955	126	450032	5135166	GAB	mass	mg		0.52	no visible sulph	3	10	7	71	65
45091	953	96	450031	5135139	GAB	mass,chl-w/m	ma	l	0.46	no visible sulph	5	11	5	21	54
45092	947	32	450024	5135071	GAB	mass,chl-w/m	mg		0.40	no visible sulph	15	10	4	40	63
45093	952	-13	450028	5135037	GAB	mass,chl-m	mg		0.41	no visible sulph	5	13	6	22	66
45094	953	-34	450033	5135016	GAB	mass	fa-ma		0.47	no visible sulph	3	12	6	13	67
45095	954	-186	450039	5134866	GAB	mass	fg-ma		0.77	no visible sulph	5	10	5	44	58
45096	955	-210	450035	5134836	GAB	mass	fa		0.33	no visible sulph	3	<5	5	25	19
45097	956	-241	450040	5134806	GAB	mass	lma	†	0.36	no visible sulph	9	7	11	53	39
45098	967	-281	450051	5134764	GAB	mass	Ima	t	0.60	tr-0.5%cp.1-2%po	21	29	55	389	172
45099	963	-280	450049	5134768	GAB	mass	ima	1	0.71	0.5%cp.1-2%po	38	30	64	421	346
45100	961	-281	450047	5134764	GAB	mass	Ima	1	0.75	0.5-1%cp	46	42	85	898	383
45101	964	-277	450050	5134771	GAB	mass	Ima	-	0.68	3%cp-blb	46	67	78	1356	304
45102	949	-316	450034	5134739	GAB (DIKE?)	mass.mag-s	Ima	·	33,40	no visible sulph	5	<5	<4	50	39
45103	950	-328	450036	5134718	IGAB	mass	ma	·	0.51	no visible sulnh	10	6	7	67	30
45104	951	-361	450036	5134690	IGAB	mass	lma	t	0.47	no visible sulph	3	<5	6	47	23
					A	1 TT	1.12	1				<u> </u>		14	

Appendix 1: H	yman Property Samp	le Details and Assa	y Data Summary
· · · · · · · · · · · · · · · · · · ·			, <u> </u>

Sample #	Grid coo	rdinates	UT	M	Rock	Texture /	Grain	Structure	Mag.	Sulphides	Au	Pt	Pd	Cu	Ni
	Easting	Northing	Easting	Northing	Туре	Alteration	Size		Sus.		ppb	ppb	ppb	ppm	ppm
45105	951	-496	450046	5134552	GAB	mass	fg-mg		0.43	no visible sulph	10	9	11	6	32
45106	954	-548	450046	5134516	GAB	mass,chl-w	mg		0.34	no visible sulph	9	7	15	41	22
45107	942	-593	450038	5134468	GAB	mass,qtz-carb-ff	fg-mg		0.38	no visible sulph	8	5	5	5	19
45108	942	-591	450034	5134457	GAB	ser-m/s		fol @ 320/-75		no visible sulph	5	<5	16	97	85
45109	1026	2	450097	5135049	GAB	mass	mg		0.39	no visible sulph	2	<5	5	47	25
45110	850	-428	449950	5134639	GAB	chl-s	fg			3-5%cpy+po,dis-blb	68	80	206	10850	2195
45111	852	-428	449955	5134638	GAB ?	chl-p,+/-ser	fg			1-2%po+/-cpy,fg,dis	72	105	191	852	1066
45112	854	-428	449955	5134639	GAB ?	chl-p,+/-ser	fg			2-3%cpy+po,blb-dis	84	69	102	1128	692
45113	855	-429	449956	5134640	GAB-QGAB	chl-p	fg	fol		1-2%po+cpy,dis-blb	95	197	187	524	610
45114	862	-420	449965	5134648	GAB-QGAB?	chl-s,p	vfg			2-3%cpy+po,dis-blb	72	154	166	8220	416
45115	860	420	449962	5134648	GAB ?	chl-p	fg			1-2%po+cpy,blb-dis	40	39	92	926	368
45116	860	-418	449961	5134648	GAB	chl-s,p	fg			1-2%po+cpy,dis	29	28	64	505	359
45117	1152	185	450228	5135238	GAB/PYXT?	chl/serp?-p	fg		0.45	no visible sulph	3	8	<4	13	53
45118	1146	260	450221	5135300	PYXT?	serp-p	fg-mg		0.58	no visible sulph	3	18	24	26	89
45119	1154	279	450227	5135318	PYXT	rusty	mg-cg		0.45	no visible sulph	<2	6	4	27	35
45120	1130	300	450209	5135343	MGAB	chl-w	fg		0.52	no visible sulph	<2	10	8	22	38
45121	1152	330	450219	5135376	GAB	ichl-p	ltg		0.54	no visible sulph	4	10	10	34	38
98219	756	324	449824	5135333	SED	bd,ser-w/m	fg	bd @E-W,dip low	0.33	no visible sulph	31	<5	<4	29	52
98220	740	282	449815	5135305	GAB	mass	mg		0.49	no visible sulph	10	9	8	51	50
98221	/56	260	449827	5135275	ISED	mass,sil,ser-w	tg.		0.31	no visible sulph	15	<5	<4	14	44
98222	/55	222	449824	5135242	GAB	mass	tg-mg		0.53	no visible sulph	5	14	11	13	38
98223	/5/	201	449833	5135221	IGAB	mass,chl-m/s,bio-w/m	mg-cg		0.56	no visible sulph	22	17	15	34	40
98224	/43	1/4	449816	5135199	ISED	Dd,sii	19	ba @2/0/-80		no visible sulph	g	<5	<4	5	31
98225	/50	154	449827	5135176	GAB	mass-tol	10	mass-tol	0.66	0.5%po,dis-bib	2		<4	218	57
98226	760	128	449834	5135155	GAB	mass-tol,bio-m	ig-mg	mass-tol	0.60	no visible sulph	5	<5	<4	39	25
98227	/51	-301	449852	5134743	GAB	mass	ing fa ma		0.47	U.5-1%Cp,0IS-DID	28		8/	/34	209
98228	750	-343	449847	5134704	GAB	mass	ig-mg		0.54	no visible sulph	24	6	- 8	91	3/
98229	/50	-435	449000	5134624		mass,cm-m,pio-w	frage star	ach fol @052/62	0.40	no visible sulph	1	6		4	69
90230	1206	-555	4499339	5135112	SED OTE	Sel/DIO-S	fa	SCII-IOI (2032/-03		no visible sulph	- 14	<5		21	42
90231	1300	52	450388	5135004	IGAB	mass fol bio w/m	lig Ifa	mass fol	0.54	no visible sulpri		~5	11	<u> 21</u> 50	13
90232	1200	107	450377	5134955	GAB	mass-101,bio-w/m	fa ma	mass fol	0.04	no visible sulph	14	10		42	42
08234	1302	-155	450372	5134903	GAB	mass hin_w/m	fa	111233-101			14	10	<u> </u>	40	4J 52
98235	1302	-100	450381	5134870	GAB	mass	lfa-ma			no visible sulph	17	14	<4	6	47
98236	1286	-227	450361	5134826	GAB	mass	ma			no visible sulph	12	13	10	36	36
98237	1250	-215	450325	5134837	GAB	ser+bio-m/s	ima	shrd/fol @310/-40	0.25	no visible sulph	19	6	7	46	56
98238	1401	-149	450484	5134908	GAB	mass chl-m	ma		0.41	no visible sulph	8	12	<4	29	55
98239	1397	-89	450477	5134972	GAB	mass	ma		0.53	cp-tr.dis	10	15	37	153	42
98240	1397	-72	450476	5134985	SED	mass.sil	fa		0.10	cp-tr.dis	3	<5	<4	32	37
98241	1395	-51	450473	5135006	GAB	mass	ma		0.47	no visible sulph	3	7	7	47	21
98242	1404	0	450475	5135056	GAB	mass,bio-m/s	fg-mg		0.53	no visible sulph	12	<5	<4	68	40
98243	1400	20	450477	5135079	SED	bd,bio+ser-m	fg	bd/fol @091/-85	0.29	no visible sulph	16	<5	<4	33	29
98244	1399	214	450471	5135285	GAB	mass,chl-w	mg	Ť	0.48	no visible sulph	14	5	8	47	29
98245	1399	264	450469	5135304	GAB	mass	mg			no visible sulph	9	<5	6	31	21
98246	1400	368	450464	5135405	GAB	mass,chl-w/m	mg			no visible sulph	<2	9	<4	11	59
98247	1298	397	450364	5135448	GAB	mass,chl-w	mg			no visible sulph	5	13	5	9	39
98248	1297	467	450368	5135417	GAB	mass,chl-m/s	mg		0.45	no visible sulph	12	15	7	31	52
98249	1300	328	450370	5135386	GAB	mass,chl-m/s,bio-m	mg			no visible sulph	2	12	6	10	49
98250	1299	277	450374	5135238	GAB	mass,chl-m/s	fg-mg		0.56	no visible sulph	5	17	4	31	77
98251	1499	349	450550	5135391	GAB	mass,chl-m/s	fg-mg			no visible sulph	8	6	5	21	22
98252	1496	319	450551	5135363	GAB	chl-s,bio-m	mg	fol	0.51	no visible sulph	10	28	31	69	163
98253	1499	293	450555	5135338	GAB	mass	mg			no visible sulph	3	<5	14	30	27
98254	1500	273	450557	5135322	GAB	mass	fg-mg			no visible sulph	2	<5	7	11	22
98255	1489	244	450545	5135296	GAB	mass	mg		0.39	no visible sulph	3	5	7	42	29

Sample #	Grid coo	rdinates	U	ſM	Rock	Texture /	Grain	Structure	Mag.	Sulphides	Au	Pt	Pd	Сц	Ni
	Easting	Northing	Easting	Northing	Type	Alteration	Size		Sus.		daa	daa	ppb	ppm	DDM
09255	1406	65	450564	5135120		hd higtogra	fa	hd/fol @073/ 95	0.26	no viciblo culph	0			21	29
96250	1490	24	450560	5135120	GAB	fol	fa	fol	0.20	no visible sulph	9	< <u>5</u>		21	30
30237	1457	24	450566	5135050	GAB	mass fol	fa ma	mass fol		no visible sulph		12	14		35
90230	1493		450588	513/006	GAB	mass fol ohl s	fa ma	mass-iui	0.42	no visible sulph	10	12	66	15	- 34 71
30233	1504	-02	450668	5135330	GAB	mass-ibi,cii-s	ig-ing ma	111035-101	0.42	no visible sulph	7		6	10	42
96200	1507	200	450663	5135350	GAB	mass	ma		0,42	no visible sulph		10 10 10 10 10 10 10 10 10 10 10 10 10 1	5	40	43
90201	1567	307	450637	5135050	GAB	mass	fa ma	· · · · · · · · · · · · · · · · · · ·	0.46	no visible sulph		10		29	26
90202	1559		450531	5135050	GAB	mass	Igenig		0.40	no visible sulph	255	10	10	80	30
90203	1338	12	450331	5135032	GAB	mass chl w/m	mg		0.44	no visible sulph	235	11	22		52
90204	13/4	-12	450337	5135043	SED/GAR2	hd fol sorthig m/s	fa ma	hd fol	0.54	noton tr	122	- 11	52		
96203	1203	<u> </u>	450307	5135034		mass siltatz un	lig-ing	DU-101	0.04	no visiblo culph	5	<5	5	- 69	15
98200	1226	225	450307	5135049		mass shi m/s	ig-ing ma		0.10	no visible sulph		12	- 4 E	10	15
90207	1203	233	450276	5135281		mass,chi-fivs	mg	-	0.47	no visible sulph	12	0	5		64
90200	1100	202	450273	5135235		mass,chi-nys	mg			no visible sulph	7	0	6		60
96209	1199	285	450274	5135324	GAB	mass.chi-m/s	mg		0.48	no visible sulph	10	12	6	- 33	64
90270	1201	407	450274	5135501	GAB	mass,chi-nys	mg	mage fol	0.40	no visible sulpri	10		5	- 19	05
90271	1201	497	450200	513/865	GAB	ntass-ior	fama	fol obrd @038/ 59	0.30	py/cp-ti		10	10	- 39	24
90272	1101	-203	450280	5134834	GAB	chithia m	fa ma	fol	0.43	no visible sulph			7	72	05 70
90273	1105	-230	450281	5134034		cont bio c	ig-ing	fol	0.33	no visible sulph			- 1	11	
3027 4 09275	1200	-270	450282	5134733	GAB	mass fol	mg	mass fol	0.22	no visible sulph		12			50
90275	1200	-340	450305	5134742	GAB	mass-loi	ma	mass-fol	0.41	no visible sulph		14	9		00
90270	1100	-380	450303	5134640	GAB (DIKE2)	mass man s	ma	11/255-101	27.00	no visible sulph	- 10	- 14	20	43	20
90277	1199	-437	450294	5134622	GAB (DIKE?)	mass man-s	ma		24.00	no visible sulph	9	<5		44	29
08270	1107	-457	450297	5134596	GAB	mass_fol	fa-ma	mass-fot	0.47	no visible sulph	0	12		16	53 67
98280	1149	-502	450257	5134520	GAB	mass chl-m/s	ma	111233-101	0.58	no visible sulph	10	38	20		75
98281	1150	-486	450251	5134547	GAB	fol-mass chl-s	fa-ma	fol-mass	0.00	no visible sulph		10	29		73
98282	1150	-400	450249	5134613	GAB	mass	ma	101-111833	0.44	no visible sulph	7	6		27	32
98283	1148	-420	450237	5134711	GAB	fol	ma	fol	0.54	no visible sulph	10	36	61	21	<u> </u>
98284	1151	-299	450252	5134745	GAB	fol	Ima	fol	0.04	co-tr dis+ff	5	8	13	243	100
98285	1150	-233	450244	5134768	SED	fol chl+ser-m/s	lfa-ma	fol	0.00	no visible sulph	6	<5	5	13	28
98286	1149	-272	450235	5134810	GAB	mass	ma	101	0.25	no visible sulph	5	-5	7	56	48
98287	1158	-174	450247	5134862	SED	111255	fa	fol-bd	0.00	ino visible sulph	3	ح5	e A		50
98288	1097	-172	450180	5134880	SED (GAB2)	mass	fa-ma		0.10	no visible sulph	10	11	5	22	50
98289	1100	-215	450187	5134832	GAB	mass	fa-ma		0.41	no visible sulph	12	<5	6	50	23
98290	1115	-262	450197	5134784	SED	-	fa	bd @ 055/-71	0.25	no noibio cuipit	7	<5	<4	6	33
98291	1101	-329	450180	5134724	GAB (SED?)	mass sil-m/s	fa		0.27	no visible sutob	<u> </u>	<5	4	16	76
98292	1101	-341	450186	5134714	GAB	mass sil-m	ma		0.49	1%po-dis cp-tr dis	3	6	10	153	110
98293	1100	-393	450190	5134666	GAB (DIKE?)	mass mag-s	ma		24.50	no visible sulph	2	<5	<4	50	45
98294	1103	-451	450185	5134607	MV/GAB	mass-fol.chi-m	vfa-fa	mass-fol	0.58	no visible sulph	2	<5	<4		21
98295	1103	-455	450189	5134610	GAB	mass	ma		0.38	no visible sulph	5	7	11	47	34
98296	1096	-518	450188	5134550	GAB	mas-fol chl-s bio-m	fa-ma	mass-fol	0.41	no visible sulph	2	9	<4	4	65
98297	1097	-566	450191	5134512	GAB	mass.chl-s.bin-m	ma-ca			no visible sulnh		18	11	27	71
98298	1050	_490	450142	5134603	GAB	mass-fol.chl-s	ma	mass-fol	0.45	no visible sulnh	5	12	10	20	108
98299	1050	-467	450140	5134636	GAB-LGAB	mass-fol	ma-ca	mass-fol	0.23	cp-tr.dis	8	21	11	86	56
98300	1050	-390	450141	5134693	GAB	sil?-m.p	ma	fol	0.48	no visible sulph	2	<5	<4		47
	1000		,00111	1 0.04000											
					L	1.		L							

APPENDIX 2: HYMAN PROPERTY- ASSAY CERTIFICATES

<u>*** Certificate of analysis ***</u>

Client :	Mustang	g Minerals Corpo	oration							
Addressee :	Ken Lap 1351E, Ke Unit 8 Sudbury Ontario Canada	sierre elly Lake Road P3E 5P5	Tel.: (705) 523-8220 Fax.: (705) 523-1194		Folder : 434 Your order number : Project : Hyman Number of samples: 99					
<u></u>		Au FA-GEO ppb 2	Au-Dup FA-GEO ppb 2	Pt FA-GEO ppb 5	Pt-Dup FA-GEO ppb 5	Pd FA-GEO ppb 4	Pd-Dup FA-GEO ppb 4	Cu AAT-7 ppm 2	Cu-Dup AAT-7 ppm 2	Ni AAT-7 ppm 2
Designation			=================	*********		**********				. =======================
45051		6		< 5		< 4		58		39
45052		9		<5		<4		32		53
45053		<2		< 5		<4		34		40
45054		7		7		< 4		20		46
45055		7		11		5		41		63
45056		3		20		19		4		81
45057		ć.		< 5		5		25		21
45058		5		12		5		45		75
45059		12	10	8	8	< 4	<4	6	6	63
45060		3		11		<4		39		79
45061		9		10		4		65		67
45062		<2		12		8		27		36
45063		3		10		<4		25		56
45064		3		9		8		38		39
45065		3		<5		<4		29		41
45066		7		<5		<4		14		45
45067		<2		<5		<4		33		21
45068		5		<5		<4		38		56
45069		7		<5		<4		10		42
45070		<2		11		10		73		26
45071		7	5	13	12	7	6	34	. 33	48
45072		5		23		12		17		43
45073		<2		15		9		21		45
45074		< 2		13		6		20		63
45075		3		9		<4		16		61
45076		< 2		9		8		25		55

Noe Landers, Manager

*** Certificate of analysis ***

Client :	Mustang Minerals Cor	rporation							
Addressee :	Ken Lapierre 1351E, Kelly Lake Road Unit 8 Sudbury Ontario Canada P3E 5P5	Tel.: (705) 523 Fax.: (705) 523	-8220 -1194	Folder : 434 Your order number : Project : Project : Hyman Number of samples: 99					
	Au FA-GEO ppb 2	Au-Dup FA-GEO ppb 2	Pt FA-GEO ppb 5	Pt-Dup FA-GEO ppb 5	Pd FA-GEO ppb 4	Pd-Dup FA-GEO ppb 4	Cu AAT-7 ppm 2	Cu-Dup AAT-7 ppm 2	Ni AAT-7 ppm 2
Designation									
45077	2		12		23		30		28
45078	9		16		17		139		61
45079	10		18		29		245		360
45080	10		22		28		78		126
45081	96		138		134		204		110
45082	1 (0.0	191	74	187	140	1406	746	834
45083	191	98	79	/4	127	140	754	746	744
45084	134		1.50		129		3500		198
45085	-2		-5		10		72 69		42
45087	3		دع #1		67		17		24
45087	-2		10		9		95		30
45088	2		<5		<4		5		53
45089	3		10		7		71		65
45090	5		11		5		21		54
45007	15		10		4		40		63
45092	5		13		6		22		66
45095	3		12		6		13		67
45005	3	7	11	8	5	<4	44	43	59
45095	3	,	<5	5	5		25	45	19
45090	9		7		11		53		39
45098	21		29		55		389		172
45090			30		64		421		346
45100	46		42		85		898		383
45101	46		67		78		1356		304
45102	5		<5		<4		50		39

Toe Landers, Manager

*** Certificate of analysis ***

Client :	Mustang	Minerals Corp	oration		:					
Addressee :	Ken Lapi 1351E, Kel Unit 8 Sudbury Ontario Canada	Ken Lapierre 1351E, Kelly Lake Road Unit 8 Sudbury Ontario Tel.: Canada P3E 5P5 Fax.: (705) 523-8220				434 : : Hyman : 99				
		Au FA-GEO ppb	Au-Du FA-GE ppb	p Pt O FA-GEO ppb	Pt-Dup FA-GEO ppb	Pd FA-GEO ppb	Pd-Dup FA-GEO ppb	Cu AAT-7 ppm	Cu-Dup AAT-7 ppm	Ni AAT-7 ppm
Designation	-	2		, 	,	4	4	2		
45103		10		6		7		67		30
45104		3		<5		6		47		23
45105		10		9		11		6		32
45106		9		7		15		41		22
45107		7	9	5	<5	5	5	5	5	18
45108		5		<5		16		97		85
45109		2		<5		5		47		25
98261		5	3	<5	<5	6	4	28	30	32
98262		9		10		20		80		36
98263		255		8		10		86		32
98264		9		11		32		44		65
98265		122		<5		5		89		58
98266		5		<5		<4		10		15
98267		8		12		5		19		64
98268		12		8		<4		9		66
98269		7		12		6		33		64
98270		10		12		5		19		65
98271		3		<5		<4		39		24
98272		3		10		10		7		85
98273		7	12	6	<5	8	5	73	73	73
98274		5		<5		<4		11		50
98275		26		12		9		32		68
98276		10		14		26		43		86
98277		9		<5		<4		60		29
98278		10		<5		<4		44		39
98279		9		12		6		16		67

Joe Landers, Manager

*** Certificate of analysis ***

Client :	Mustang Minerals C	Corporation							
Addressee :	Ken Lapierre 1351E, Kelly Lake Road Unit 8 Sudbury Ontario	I Tel.: (705) 52	3-8220	Folder : 434 Your order number : Project : Hyman					
	Canada P3E 5P	5 Fax.: (705) 52	3-1194	Number of samples:	99				
	Au FA-GEO ppb 2	Au-Dup FA-GEO ppb 2	Pt FA-GEO ppb 5	Pt-Dup FA-GEO ppb 5	Pd FA-GEO ppb 4	Pd-Dup FA-GEO ppb 4	Cu AAT-7 ppm 2	Cu-Dup AAT-7 ppm 2	Ni AAT-7 ppm 2
Designation	********				=========	============		*********	*********
98280	10		38		29		9		75
98281	9		10		5		8		71
98282	7		6		9		27		32
98283	10		36		61		3		69
98284	5	7	8	.5	13	-	243	10	100
98285	5	/	< 3	< 3	<4 7	5	14	12	29
90200 08787	3		-5		< 4		9		50
98288	10		11		5		22		53
98289	12		<5		6		50		23
98290	7		<5		<4		6		33
98291	9		< 5		4		16		76
98292	3		6		10		153		110
98293	2		<5		<4		50		45
98294	2		<5		<4		59		21
98295	5		7		11		47		34
98296	2		9		<4		4		65
98297	3	5	18	17	11	11	27	27	72
98298	5		12		10		20		108
98299	8		21		11		86		56
98300	2		<5		< 4		18		47

Joe Landers, Manager

*** Certificate of analysis ***

Date : 2003/08/15 Page : 5 of 8

Client :	Mustang Minerals Corporation					
Addressee :	Ken Lapierre 1351E, Kelly Lake Road Unit 8 Sudbury Ontario Tel.: Canada P3E 5P5 Fax.:	(705) 523-8220 (705) 523-1194	Folder : 434 Your order number : Project : Hyman Number of samples: 99			
Designation 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064	Ni-Đup AAT-7 ppm 2 =========					
45065 45066 45067 45068 45069 45070 45071 45072 45073 45074 45075 45076	49					

Joe Landers, Manager

*** Certificate of analysis ***

Date : 2003/08/15 Page : 6 of 8

127, Boulevard Industriel Rouyn-Noranda, OC, J9X 6P2 Tel.: (819) 762-7100 Fax.: (819) 762-7510

Client :	Mustang !	Minerals Corj	ooration				
Addressee :	Ken Lapie 1351E, Kell Unit 8 Sudbury Ontario Canada	erre ly Lake Road P3E SPS	Tel.: (705) 523-8220 Fax.: (705) 523-1194		Folder : 43 Your order number : Project : Hy Number of samples:	4 man 	
		Ni Du-	<u></u>				
		AAT-7					
		ppm					
Designation		2					
Jesignation	=						
5078							
5079							
5080							
5081							
5082							
5083		736					
5084							
5086							
5087							
5088							
5089							
5090							
5091							
5092							
5093 5004							
5094		57					
5096							
15097							

Joe Landers, Manager

*** Certificate of analysis ***

Date : 2003/08/15 7 of 8 Page :

Laboratoire Expert Inc 127, Boulevard Industriel Rouyn-Noranda, OC, J9X 6P2 Tel.: (819) 762-7100 Fax.: (819) 762-7510

Client :	Mustang N	linerals Cor	oration					
Addressee :	Ken Lapierre 1351E, Kelly Lake Road Unit 8 Sudbury Ontario Canada P3E 5P5		Tel.: (705) 523-8220 Fax.: (705) 523-1194		Folder : 434 Your order number : Project : Hyman Number of samples: 99			
		Ni-Dup			_			
		AAT-7						
		ppm						
Designation	= =	2						
45103								
45104								
45105								
45106								
45107		19						
45108								
45109								
98261		30						
08262								
98263								
98264								
98205								
98267								
98268								
98269								
98270								
98271								
98272								
98273		70						
98274								
98275								
98276								
98277								
98278								
98279								

Joe Landers, Manager

*** Certificate of analysis ***

Date : 2003/08/15 Page : 8 of 8

Client :	Mustang Minerals	Corporation					
Addressee :	Ken Lapierre 1351E, Kelly Lake Roa Unit 8 Sudbury Ontario Canada P3E 5	1d Tel.: P5 Fax.:	(705) 523-8220 (705) 523-1194	Folder : 43 Your order number : Project : Hy Number of samples:	94 1 man 		
	Ni-Du AAT-7 ppm			k			
Designation	2						
8280							
8281							
8282							
8283							
8785	27						
8286	2.7						
8287							
8288							
8289							
8290							
8291							
8292							
8293							
8294							
8295							
8296							
8297	70						
8298							
18299							

Joe Landers, Manager

....

*** Certificate of analysis ***

Date : 2003/08/15 Page : 1 of 4

Client :	JML Resources Ltd.	Mustang 1 Corp.	Mineris						
Addressee :	Ken Lapierre 1351E, Kelly Lake Road Unit 8 Sudbury Ontario	Tel.: (705) 523	3-8220	Folder Your order number Project	: 397 : : Hyman				
	Canada P3E 5P5	Fax.: (705) 523	3-1194	Number of samples	.: 42				
<u> </u>	Au FA-GEO ppb 2	Au-Dup FA-GEO ppb 2	Pt FA-GEO ppb 5	Pt-Dup FA-GEO ppb 5	Pd FA-GEO ppb 4	Pd-Dup FA-GEO ppb 4	Cu AAT-7 ppm 2	Cu-Dup AAT-7 ppm 2	Ni AAT-7 ppm 2
Designation		* **********							********
98219	29	33	<5	<5	<4	<4	29	29	50
98220	10		9		8		51		50
98221	5		14		11		14		**
98773	22		17		15		34		40
98224	9		<5		<4		5		31
98225	2		<5		<4		218		57
98226	5		<5		<4		39		25
98227	28		33		87		734		209
98228	24		6		8		91		37
98229	7		6		7		4		69
98230	14		<5		<4		21		42
98231	8	5	<5	<5	<4	<4	28	26	14
98232	6		9		11		59		33
98233	14		10		5		43		43
98234	14		9		<4		40		52
98235	12		14		<4		6		47
98236	13		13		10		36		36
98237	19		6		7		46		56
98238	8		12		<4		29		55
98239	10		15		37		153		42
98240	3		< 5		<4		32		37
98241	3		7		7		47		21
98242	12		<5		<4		68		40
98243	17	14	< 5	<5	<4	<4	34	32	30
98244	14		5		8		47		29

Joe Landers, Manager

*** Certificate of analysis ***

Date : 2003/08/15 Page : 2 of 4

Client :	JML Res	ources Ltd.								
Addressee :	Ken Lapi 1351E, Kel Unit 8 Sudbury Ontario Canada	Ken Lapierre 1351E, Kelly Lake Road Unit 8 Sudbury Ontario Tel.: Canada P3E 5P5 Fax.: (705) 523-1194				Folder : 397 Your order number : Project : Project : Hyman Number of samples: 42				
		Au FA-GEO ppb	Au-Dup FA-GEO ppb	Pt FA-GEO ppb	Pt-Dup FA-GEO ppb	Pd FA-GEO ppb	Pd-Dup FA-GEO ppb	Cu AAT-7 ppm	Cu-Dup AAT-7 ppm	Ni AAT-7 ppm 2
Designation	=		2 References:	, 	, , , ,	7 ============	- 	2 32223222232	2 ==========	
98245		9		<5		6		31		21
98246		<2		9		<4		11		59
98247		5		13		5		9		39
98248		12		15		7		31		52
98249		2		12		6		10		49
98250		5		17		4		31		77
98251		8		6		5		21		22
98252		10		28		31		69		163
98253		3		<5		14		30		27
98254		2		<5		7		11		22
98255		3	2	<5	5	7	7	41	42	28
98256		9		<5		<4		21		38
98257		5		<5		<4		31		39
98258		10		12		14		62		34
98259		10		96		66		15		71
98260		7		<5		6		46		43

Joe Landers, Manager

*** Certificate of analysis ***

2003/08/15 Date : 3 of 4 Page :

Client :	JML Resources Ltd.			
Addressee :	Ken Lapierre 1351E, Kelly Lake Road Unit 8 Sudbury Ontario Canada P3E 5P5	Tel.: (705) 523-8220 Fax.: (705) 523-1194	Folder : 397 Your order number : Project : Hym Number of samples:	an 42
	Ni D			· · · · · · · · · · · · · · · · · · ·
	NI-Dup A A T-7			
	DDM			
	2			
Designation				
8219	53			
8220				
8221				
8222				
8223				
8224				
8225				
8226				
8227				
8228				
8229				
8230				
8231	12			
8232				
8233				
8234				
8235				
8236				
8237				
8238				
8239				
8240				
8241				
8242				
8243	28			
8244				

Joe Landers, Manager

*** Certificate of analysis ***

Date : 2003/08/15 Page : 4 of 4

127, Boulevard Industriel Rouyn-Noranda, QC, J9X 6P2 Tel.: (819) 762-7100 Fax.: (819) 762-7510

98258 98259 98260

•

erre ly Lake Road Tu	(705) 523-8220	Folder : 397 Your order number : Project : Hyman
P3E 5P5 Fa	: (705) 523-1194	Number of samples: 42
NI-Dup AAT-7 ppm 2		
30		
	30	30

Joe Landers, Manager

*** Certificate of analysis ***

Client :	Mustang Minerals Corporation			}						
Addressee :	Ken Lapi 1351E, Ke Unit 8 Sudbury Ontario Canada	ierre lly Lake Road P3F 5P5	rre y Lake Road Tel.: (705) 523-8220		Folder : Your order number : Project : Number of samples:	473 Hyman 7				
		Au	Au-Dun	Pt	Pt-Dup	 Pd	Pd-Dup		Ni	Ni-Dun
		FA-GEO	FA-GEO	FA-GEO	FA-GEO	FA-GEO	FA-GEO	Cu AAT-7	AAT-7	AAT-7
		ppb	ppb	ppb	ррb	ppb	ppb	ppm	ppm	ppm
D i d		2	2	5	5	4	4	2	2	2
Designation	:	=======================================	========== 70	83		22222222222 712	==#2==#==#= 199			2180
45111		72	70	205	/0	191	155	852	1066	2100
45117		84		69		102		1128	692	
45113		95		197		187		524	610	
45114		72		154		166		8220	416	
45115		40		39		92		926	368	
45116		29		28		64		505	359	
		Cu	Cu-Dup							
		AAT-8	AAT-8							
		% 01	%							
Designation		.01	.01							
45110		1.110	1.060							
45111										
45112										
45113										
45114										
45115										
45116										

Joe Landers, Manager

*** Certificate of analysis ***

Date : 2003/09/05 Page : 1 of 1

Client :	Mustang Minerals Corporation									
Addressee :	Ken Lapierre 1351E, Kelly Lake Road Unit 8 Sudbury Ontario Tel.: (705) 523-8220 Canada P3E 5P5 Fax.: (705) 523-1194		Folder : 500 Your order number : Project : Hyman Number of samples: 5							
		An	Au-Du		Pt-Dup	Pd	Pd-Dun		Ըս-քար	Ni
		FA-GEO	FA-GE	O FA-GEO	FA-GEO	FA-GEO	FA-GEO	Cu AAT-7	AAT-7	AAT-7
		рръ	ppb	ppb	рръ	ppb	ррь	ppm	ppm	ppm
		2	2	5	5	4	4	2	2	2
Designation	=	***********	=======				#========= -^			
45117		3	<2	8	9	<4	<4	13	13	54
45110		-2		10		24 A		20		35
45170		<2		10		1		27		38
45121		4		10		10		34		38
		Ni-Dup								
		AAT-7								
		ppm								
Designation	=	4								
45117		52								
45118										
45119										
45120										
45121										

Joe Landers, Manager

APPENDIX 3: FIELD CREW

Peter Wood, Geologist Joerg Kleinboeck, Geologist Clayton Kennedy, Geological Assistant

Work Report Summary

Tra	ansaction No:	W0470.	01059		Sta	atus:	APPI	ROVED			
Recording Date:		2004-JUL-02			Work Done from:		2003	-JUL-14			
Ap	proval Date:	2004-Jl	JL-08			to:	2003	-AUG-14			
Cli	ent(s):										
	30368	32 D	AN PATRIE E	XPLORATIO	ON LTD.						
Su	rvey Type(s):										
			ASSAY		GEOL						
w	ork Report Det	ails:	· · · ·								
CI	aim#	Perform	Perform Approve	Applied	Applied Approve	Ass	ign	Assign Approve	Reserve	Reserve Approve	Due Date
s	1218042	\$23,002	\$23,002	\$0	\$0		\$0	0	\$23,002	\$23,002	2006-NOV-02
s	1229597	\$2,717	\$2,717	\$0	\$0		\$0	0	\$2,717	\$2,717	2006-JUN-25
s	1229698	\$1,992	\$1,992	\$0	\$0		\$0	0	\$1,992	\$1,992	2006-MAY-05
	_	\$27,711	\$27,711	\$0	\$0		\$0	\$0	\$27,711	\$27,711	
Ex	ternal Credits:		\$0								
Re	eserve:	\$	27,711 Res	erve of Worl	< Report#: W04	70.01	059				
		\$	27,711 Tota	I Remaining							
			Status	s of claim is I	based on inforn	nation	curre	ently on record	d.		

1105021011

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

DAN PATRIE EXPLORATION LTD. 190, HWY 17 WEST MASSEY, ONTARIO POP 1P0 CANADA Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.28034 Transaction Number(s): W0470.01059

Dear Sir or Madam

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

If you have any question regarding this correspondence, please contact BRUCE GATES by email at bruce.gates@ndm.gov.on.ca or by phone at (705) 670-5856.

Yours Sincerely,

Rom C Gashingh.

Ron.C. Gashinski Senior Manager, Mining Lands Section

Cc: Resident Geologist

Dan Patrie Exploration Ltd. (Claim Holder) Assessment File Library

Dan Patrie Exploration Ltd. (Assessment Office)

200

â

LEGEND

DIA	Olivine Diabase Dike
GAB	Gabbro (Nipissing)
PYXT	Pyroxenite (Nipissing)
SED	Sediment – Greywacke Argillite (Huonian)

ABBREVIATIONS

BXA	breccia
G	geophysically inferred
SX	sulphides
cpy	chalcopyrite
mt	magnetite
po	pyrrhotite
py	pyrite

SYMBOLS

_		
	×	Outcrop, outcrop area; small outcrop
-	65	Foliation
/		Contact (defined, inferred)
1		Fault (geophysically inferred)
		Sulphide/Mineral ocurrence
		Claim post (located, inferred)
		Claim line
	*	Swamp
	\bigcirc	Pond with Beaver dam
	-	Road
		Trail
-		Creek
	Cu+N	i ASSAYS
	Combined	Cu+Ni (ppm)
	>	10,000 ppm
	>	5000-10,000 ppm
	• >	1000-5000 ppm
	• >	500-1000 ppm
/	>	100-500 ppm
	• 0	-100 ppm
		S 2 2 2 2 2 4
	MUST	ANGS MINERALS (ORP.
11		HYMAN PROPERTY
1	MAP 2:	
	0	I Ni Accou Dubble Dist
		I + INI ASSAY BUDDIE PIOT
	Drawn:	Mapped: Province: NTS:

	GMSI	JK & PCW		Ontario	41-1/05		
9:	Jan., 2004	Revised: May, 2004	Scale:	1:2,500	Drawing: Hyman_CuNi		
	0	50	100	150	200m		
				The	A		

HEE