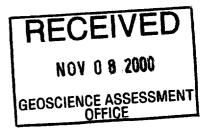


JANES

Jones SP015

41109NW2012 2.20691

010


2.20800

FINAL REPORT: 1998-99 OPAP

OPAP File No. OP98-179

FLOODWOOD CHUTES PROSPECT

Janes Township, District of Sudbury, Ontario

Prepared By: L. Scott Jobin-Bevans, M.Sc. Geology * Sudbury, Ontario, P3B 3C2, January 1999

JANES

41109NW2012 2.20691

010C

TABLE OF CONTENTS

ltem		<u>Page</u>
Table of Contents		1
Summary		2
Introduction		3
Location and Access		4
Claim Status		7
Geology & Mineralization		7
Exploration History		11
Work Completed		11
Results		13
Conclusions and Recommendations		22
References		24
Certificate of Qualification		25
APPENDIX A – Geophysical Survey Data		
APPENDIX B – Geophysical Instrumentation		
APPENDIX C – Assay Certificates		
Claim Map (G-2907) – location of claims	BACK POO	CKET
Property Map – Exploration Grid and Geology	BACK POO	CKET

SUMMARY

The *Floodwood Chutes Property* consists of 2 unpatented mining claim blocs, located in Janes Township, about 50 km east of the City of Sudbury, Ontario. The mining claims encompass 28 claim units, comprising 1 sixteen unit claim (1230296) and 1 twelve unit claim (1229831), with an aerial distribution of 448 ha.

Janes Township is underlain by metasedimentary rocks of the Huronian Supergroup which are intruded by generally northeast- to northwest-trending gabbro sills and(or) dykes of the Nipissing Diabase; both the Huronian and Nipissing rocks are then intruded by northwest-trending olivine diabase dykes. The Nipissing Diabase (Gabbro) consist primarily of tholeiitic to calc-alkaline rocks including melagabbro, gabbro, leucogabbro, granophyre and pegmatitic gabbro.

Previous geological work in the area and current examination of the geology, mineralization (primarily high Cu:Ni ratio) and structure of the Floodwood Chutes property, as well as the presence of several occurrences from surrounding prospects, suggests that the gabbroic rocks of the Nipissing Diabase are favourable hosts for economic Palladium-Platinum-Gold-Copper-Nickel (Pd-Pt-Au-Cu-Ni) sulphide deposits; also present are anomalous concentrations of silver (Ag). Until recently, the only comprehensive exploration program aimed at evaluating the Nipissing Diabase for their capacity to host economic Pd-Pt-Au-Cu-Ni sulphide deposits had been originated by Goldwright Explorations Inc., a private Sudbury based company.

Work was completed on the property between May 16, 1998 and February 1, 1999, in fulfillment of a 1998-99 OPAP grant. The OPAP applicant spent a total of **32 days** working on the east and west properties and **3 days** preparing reports and maps (35 days total). During this time the applicant completed and(or) supervised 18 km of line cutting, 18 km of grid geological mapping (1:1000 scale), lithogeochemical and humus sampling, 4 km of ground magnetometer and VLF-EM surveys, drilling and blasting and power washing and hand stripping.

Highest base metal values were >10,000 ppm Cu, 1006 ppm Ni (WR-01) and 9060 ppm Cu, 2278 ppm Ni (WR-06A), from samples at the Main Showing. These same samples returned disappointing precious metal values of 26 ppb Pd, 24 ppb Pt, 121 ppb Au (WR-01) and 13 ppb Pd, <10 ppb Pt, 124 ppb Au (WR-06A); the highest Pd value was 44 ppb (WR-03B).

In view of the current results from this project, it is suggested that this immediate area is not likely a good target for future exploration of Cu-Ni-Pd-Pt sulphide deposits associated with the Nipissing gabbro.

INTRODUCTION

An exploration program consisting of line cutting, prospecting, lithogeochemical and humus sampling, geological mapping, ground geophysics, stripping, and power washing was completed on two claim blocs in Janes Township, District of Sudbury, Ontario. The primary objective of this program was to define the extent of the sulphide mineralization at surface and correlate it with other sulphide prospects in the area; if initial results were promising, a packsack drill program was to test for mineralization at depth.

Goldwright Explorations Inc., a private Sudbury company, is exploring the most significant copper-nickel-palladium-platinum (Cu-Ni-Pd-Pt) prospect in the area. This prospect is located about 1.5 km west of the present project and has returned assay values that are extremely encouraging (Table 1). In addition, many of the known Cu-Ni-Pd-Pt occurrences in the area are either hosted by, or proximal to, the Nipissing Diabase but also coincident with northwesterly-trending olivine diabase dykes (Figure 1). This coincidence required further investigation as there may be a direct relationship (i.e. structural or geochemical) between the olivine diabase dykes and the Nipissing Diabase which resulted in the Pd-Pt-Au-Cu-Ni mineralization. Both Nipissing gabbro and olivine dyke occur within the current prospect and are coincident the Floodwood Chutes Cu-Ni showing.

Sample	Location** (Trench)	Rock Type	Pt (g/t)	Pd (g/t)	Au (g/t)	Ttl PM (g/t)	Ni (%)	Cu (%)
77304	T1 - Main	mafic gabbro	0.644	4.507	0.480	5.63	0.48	1.04
77305	T1 - Main	mafic gabbro	0.554	3.813	0.383	4.75	0.45	1.18
JB97-43A	T1 - Main	mafic gabbro	0.800	>7.00	0.460	>8.26	0.54	1.30
JB97-96	T1 - Main	mafic gabbro	0.345	7.14	0.404	9.64		e •
JB97-109	T4 - Wilson	gabbro	1.30	4.56	0.720	6.58	1.44	1.45
J6551	T4 - Wilson	gabbro	0.569	4.390	0.431	5.39	0.53	1.22
77317	T4 - Wilson	gabbro	0.710	4.834	0.567	6.11	0.67	1.14
77315	T4 - Wilson	gabbro	0.578	5.170	1.326	7.07	0.86	2.62

TABLE 1. Assay results from Goldwright's Janes Property (J. Rastall Prospect)

- no data available; total PM = Pt+Pd+Au; ** from Goldwright and are not referred to in this report

LOCATION AND ACCESS

The Floodwood Chutes Property is located centrally within Janes Township, about 50 road km northeast of Sudbury, and in the Sudbury Mining Division (Figures 1 & 2). The property can be located on NTS map sheet 41 I/9 with the approximate centre of the 2 claim blocs being located at about latitude 46° 41' and longitude of 81° 21'. Specifically, the Floodwood Chutes Property is about 5 km east of Murray and Lower Murray Lakes, and about 1.5 km south of the Floodwood Chutes, on the Sturgeon River.

Access to the property is obtained by vehicle from HWY. #17 east of Sudbury. Travel north from Hagar on HWY. #535 for about 22 km until reaching an abandoned railway bed. The **western part of the property** (claim 1230296, Floodwood Chutes West - west of the Sturgeon River) can be accessed by driving north from the railway bed for about 7 km along a gravel road. Crossing a permanent bridge over the Chiniguchi River provides access to the central part of claim 123096. Access to the **eastern part of the property** (claim 1230296 and 1229831, Floodwood Chutes East - east of the Sturgeon River) is made by turning east toward Glen Afton, on a gravel road that parallels an old railway bed for about 4.5 km. Travel north-northeast along a gravel road for about 6 km, past Sargesson Lake. The gravel road crosses the property and the showings can be reached by trail, about 100 m west from the gravel road. Alternatively, access to Floodwood Chutes East can be made by boat, about 400 m north (up stream) from the confluence of the Chiniguchi and Sturgeon Rivers.

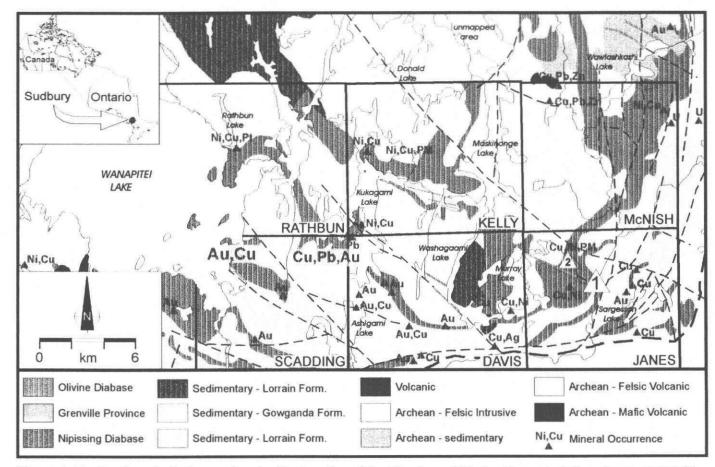


Figure 1. Regional geological map showing the location of the Floodwood Chutes Property (mineral occurrence #1 - white triangle) in Janes Township. Goldwright Explorations Ltd.'s Cu-Ni-Pd-Pt property is white triangle #2 (modified after OGS Map 2361).

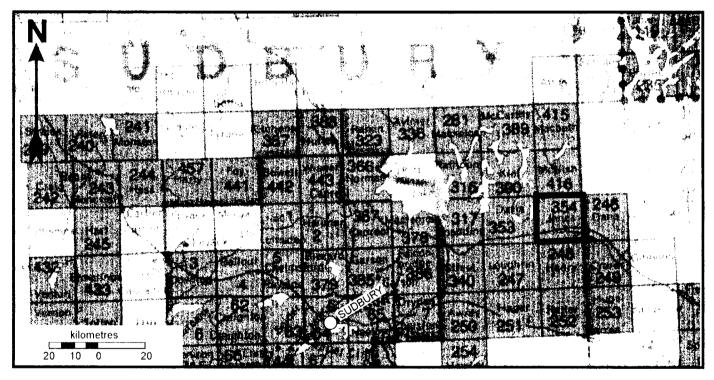


Figure 2. Location of Janes Township (outlined in red) in which the Floodwood Chutes OPAP project is located. Sudbury Mining District (map after GDIF Index map).

CLAIM STATUS

The claim ownership of 1229831 is divided equally between L. Scott Jobin-Bevans (50%) and Mike George Loney (50%) whereas claim 1230296 is divided equally between L. Scott Jobin-Bevans (50%) and Goldwright Explorations Inc. (50%). The mining claims have the following distribution:

Property	<u>Claim No.</u>	<u>No. Claim Units</u>	<u>Area (ha)</u>
Floodwood Chutes	1230296	16	256
	1229831	12	192
	тот	AL: 28	448

REGIONAL GEOLOGY AND MINERALIZATION

The geology of Janes Township was covered by Dressler (1979), in which the current Cu-Ni mineral occurrence (referred to as the Main Showing) is referenced as the *Ossington Explorations Ltd. and Triller Explorations Ltd. [1960]* property; herein referred to as the *Floodwood Chutes Property (East & West)*. The property is underlain by rocks of the Southern geological province of the Canadian Shield; the approximately east-west trending Grenville Front is located about 3 km south of the property (Figure 1). Several major structural trends through the area of the property are defined by northeast- to east-trending faults (Dressler, 1979).

The claim group is underlain by Huronian metasedimentary rocks of the Gowganda Formation (greywacke, quartz arenite/arkose) that have been intruded by generally northeast- to southwest-trending gabbroic rocks of the Nipissing Diabase (Figure 4). The Nipissing Diabase were emplaced into the sedimentary rock sequences as both sills and dykes (Hriskevich, 1968).

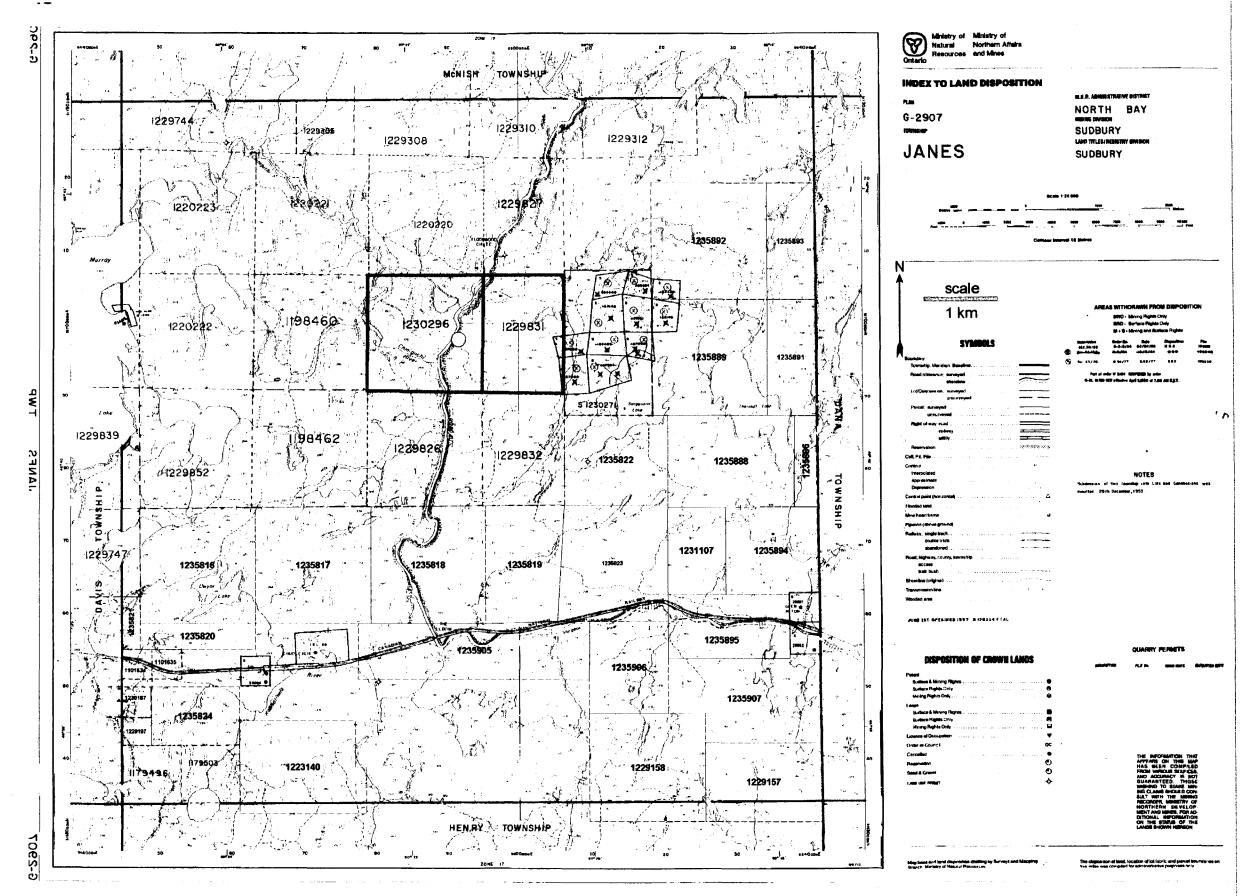


Figure 3. Claim map of Janes Township showing the location of the two claim blocs (outlined in red) and the location of the main Cu-Ni showing - yellow dot (claim map downloaded Jan. 22, 1999).

In general, Nipissing gabbros are not magnetic and therefore the northwest-trending magnetic highs that are observed through the property are attributed to olivine gabbro dykes that contain up to 20% magnetite and possibly chromite. These dykes are the youngest rocks in the area and cross-cut Huronian sedimentary rocks and Nipissing Diabase.

Gabbroic rocks in Janes Township are moderate- to well-exposed and may represent the southeastern extension of the Kukagami Lake intrusion; these gabbroic rocks may also be part of the same sill that hosts the mineralization (Rathbun Lake occurrence; Dressler, 1982) in the Wanapitei Lake intrusion. Conversely, the gabbroic rocks in this area may represent a lopolithic intrusion that may represent a deeper portion of the system that fed sills and dykes at higher crustal levels. The northwestern margin of the intrusive body dips at about 45° southeast with its southeastern contact apparently dipping northward at about 40°.

Regional mineralization within Janes Township is primarily concentrated either within gabbroic rocks of the Nipissing Diabase or is proximal to contacts between gabbroic rocks and surrounding metasedimentary rocks. Mineralization within the gabbroic rocks (hypersthene gabbro & quartz gabbro) occurs as disseminated, net-textured, bleb and semi-massive to massive magmatic sulphides (chalcopyrite + pyrrhotite + pentlandite >> pyrite). Re-mobilized sulphides are noted within shear zones that are proximal to contacts with the hosting sedimentary rocks and along joints and fractures that are within the gabbroic rocks themselves; sulphide abundance ranges from about 1% to >80%. Anomalous Ni, Cu, Pd, Pt, Au and Ag values have been reported from numerous occurrences in Janes Township.

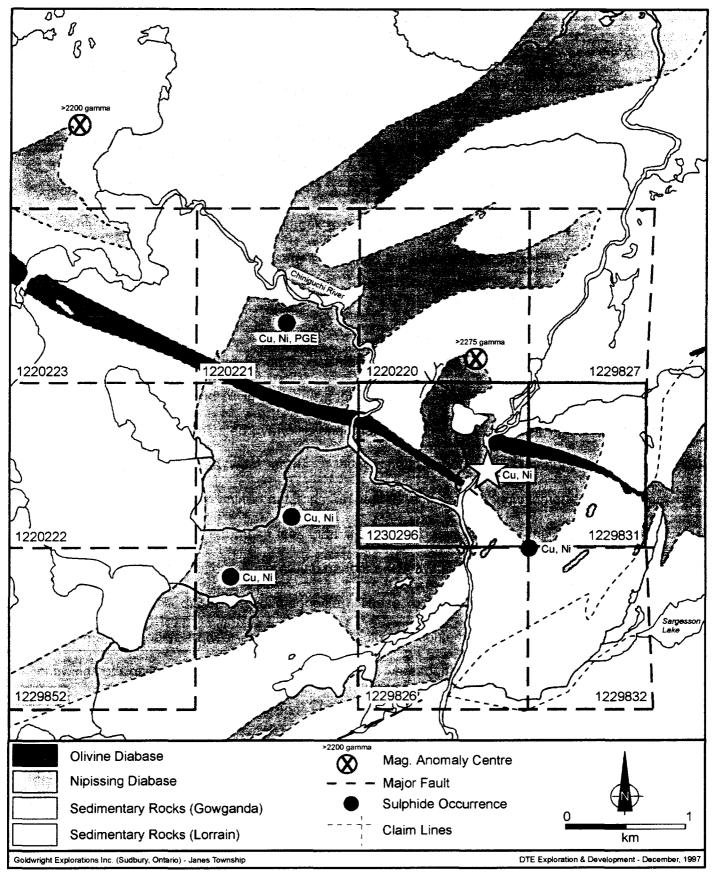


Figure 4. Location map showing the claim boundaries (red) for the 1998-99 OPAP project and the adjoining claims. Also shown are the major mineral occurrences in this area of Janes Township - the principal Cu-Ni showing of this project is represented by the white star.

EXPLORATION HISTORY

The earliest reported work on the *Floodwood Chutes Property* is from 1968-1969. As described by Dressler (1979), this work focused on exploration for base metal (Cu-Ni) deposits:

Ossington Explorations Ltd. and Triller Explorations Ltd. [1960] - 1968-69

Exploration work concentrated in the area of the confluence between the Sturgeon and Chiniguchi Rivers (Figure 4). A grab sample from a surface showing of chalcopyrite returned an assay of 2.45% Cu and 0.13% Ni. A follow-up diamond drill hole returned assays of 0.09% Cu and 0.19% Ni and intersected a >50 m wide granitic dyke which cut through the gabbroic rocks. Five diamond drill holes were also completed in order to test several east-trending EM anomalies but no assay data (base metal, PGE or Au) were reported.

WORK COMPLETED

Table 1 lists the work completed and estimated costs as applied to the property between May 16, 1998 and February 1, 1999, in fulfillment of a 1998-99 OPAP grant. The OPAP applicant spent a total of **32 days** working on the east and west properties and **3 days** preparing reports and maps (35 days total). As part of the 32 field days, line cutting was completed on two exploration grids (total of 18 line km and **10 days**) that cover the Floodwood Chutes east and west properties. Of the 18 km of exploration grid that was established over both areas, 4 km was contracted out while the remainder was completed by the applicant. Also completed was detailed geological mapping (1:1000 scale - see Property/Geological Maps in back pocket), lithogeochemical and humus sampling - concentrated in the region of the Main Showing, ground magnetometer and VLF-EM surveys (Appendix A), blasting of the old showing to expose fresh sulphide and power washing and hand stripping of the area around the Main Showing.

Work Type	Details	Applicant Days	Cost
Line Cutting	4 km cut and picketed	contract	\$1,000.00
Line Cutting	14 km cut and picketed by applicant	10	\$1,000.00
Geophysics	4 km: ground magnetometer; VLF-EM	3	\$300.00
Geological Mapping	1:1000 scale grid mapping and rock sampling	8	\$800.00
Humus Sampling	22 samples on grid	1	\$100.00
Field Assistant	contract assistance in geological mapping, power washing and geophysics	contract	\$1,000.00
Prospecting	reconnaissance work; locating old trenching/showings	7	\$700.00
Power Washing & Manual Stripping	washing and hand clearing area around Main Showing	3	\$300.00
Drilling & Blasting	area of main Cu-Ni showing	contract	\$1552.67
Sample Assay	submitted to Accurassay: 8 rock samples (Pt-Pd-Au, 28 element ICAP, whole rock)		\$273.49
Sample Assay	submitted to Accurassay: 22 humus samples (Pt-Pd-Au, 28 element ICAP)		\$587.67
Report Writing	geological/property report; drafting	3	\$300.00
Expenses	travel (2100 km at \$0.30/km)	anna ng mang mang mang mang mang mang ma	\$630.00
Expenses	water pump and hose rental		\$280.00
Expenses	sample shipping costs		\$ 12.47
	TOTAL:	35	\$8,836.30

TABLE 1. Summary of Work Completed on the Floodwood Chutes prospect - Janes Twp.

A total of 35 lithogeochemical samples were collected during the geological mapping program, however, only 8 were submitted for analysis to Accurassay Laboratories in Thunder Bay, Ontario (Appendix C). A total of 22 humus samples were collected in the region of the Main Showing to see if a geochemical fingerprint could be developed that might indicate areas of buried Cu-Ni mineralization. The humus samples were submitted for analysis to Accurassay Laboratories in Thunder Bay, Ontario (Appendix C).

A total of **3 days** were spent manually stripping and power washing an area approximately 40 m x 25 m in the area of the main Cu-Ni showing (*see* Property/Geological Map in back pocket). Power washing, hampered by extremely high relief in the area of the Main Showing - about 25 m vertical over a horizontal distance of <4 m – was not as effective as what was originally expected was therefore limited in its scope.

A 4 km ground magnetometer and VLF-EM survey was completed on the Floodwood Chutes east property. This survey took a total of **3 days** to complete. The results of these surveys are listed in Appendix A and shown as contour maps in Figures 5 and 6. The geometry of these surveys was designed to delineate the major contacts between the olivine dyke and gabbroic rocks and(or) the sedimentary rocks and to outline any strong localized conductors indicative of semi-massive to massive sulphide mineralization. Although the exploration grid was completed over the Floodwood Chutes West area, no VLF-EM or magnetometer surveys were done.

RESULTS

Prospecting and Geophysics

During the **7 days** spent prospecting, 3 of the old trenches (*ca.* 1968-69) were located, one about 400 m northeast of the Main Showing, and the other two about 730 m southeast of the Main Showing. Only one of the three trenches (the trench NE of the showing) had visible mineralization in a medium-grained gabbro, consisting of <1% finely disseminated pyrrhotite and no visible chalcopyrite. The other two trenches exposed no bedrock. No other areas of significant sulphide mineralization were encountered during the prospecting days. General prospecting failed to locate any of the old diamond drill set-up locations, although evidence of old access trails and bush roads was observed.

The ground magnetometer and VLF-EM surveys over the Floodwood Chutes East property failed to outline any significant targets that might be attributed to mineralization. However, these

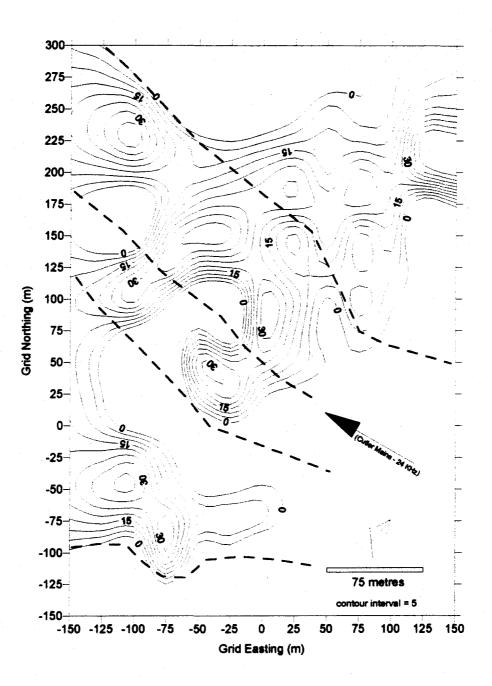


FIGURE 5. Fraser-filtered contour map of VLF-EM data - Floodwood Chutes East. Only the data highs are plotted. The highest responses correspond to Nipissing gabbros in the south and north, with the middle region representing an olivine gabbro dyke. Approximate location geological contacts are shown with dashed lines. Magnetic declination is 10 degrees west.

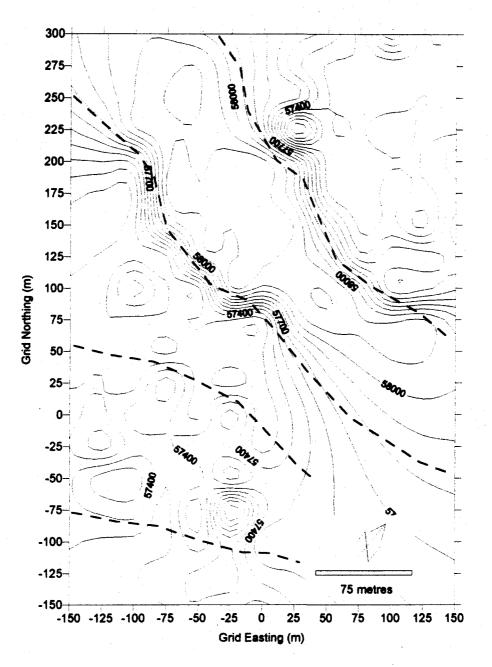


FIGURE 6. Ground magnetometer data (raw) contour map - Floodwood Chutes East. The highest responses correspond to an olivine gabbro dyke - magnetite bearing that crosscuts the property at about 290 degrees. The Nipissing gabbros produce a moderate magnetic expression, probably due to pyrrhotite. Approximate location of geological contacts are shown as dashed lines. Contour interval is 100; magnetic declination is 10 degrees west.

surveys did succeed in delineating the major northwest-trending contacts between the olivine dyke, gabbroic rocks and(or) sedimentary rocks and fingerprinting the magnetic expression of the olivine gabbro dyke and the Nipissing gabbro in the area.

Geological Mapping

In general, there is about 30% bedrock exposure at both the Floodwood Chutes East and West areas. Most of the best exposure is confined to higher elevations such as the high cliffs that border the southern area of the Floodwood Chutes East. For the most part bedrock is covered by about 1 m to 3 m of silt, clay and organics.

Geological mapping of the Floodwood Chutes East property included the examination of gabbroic, sedimentary and olivine-bearing gabbroic rocks. The gabbros are largely mediumgrained with <1% disseminated pyrrhotite and chalcopyrite. Occasional patches of pegmatitic gabbro were observed as were areas of hypersthene-gabbro. Sedimentary rocks were primarily greywackes with minor outcrops of argillite and pebble conglomerate; all of the sedimentary rocks contained much less than 1% disseminated sulphide, mainly as pyrite and pyrrhotite grains. Magnetite-bearing olivine gabbro occurs within the middle part of the property and has up to 20% disseminated magnetite. These rocks are mainly medium-grained but locally may be coarse to near-pegmatitic. No geological contacts were observed and no new showings of significant (>2%) sulphide mineralization were found.

Geological mapping of the Floodwood Chutes West property proved to have much the same lithology as the eastern part of the property, consisting of gabbroic, sedimentary and olivinebearing gabbroic rocks. The gabbros are largely medium-grained with <1% disseminated pyrrhotite and chalcopyrite with occasional patches of pegmatitic gabbro and hypersthenegabbro. Sedimentary rocks were primarily greywackes with minor outcrops of pebble conglomerate; all of the sedimentary rocks contained much less than 1% disseminated

sulphide, mainly as pyrite and pyrrhotite grains. Magnetite-bearing olivine gabbro occurs within the middle part of the property where it crops out as a major ridge. The olivine gabbros have up to 20% disseminated magnetite and generally <5% olivine that has undergone some alteration. The olivine gabbros are mainly medium-grained but locally may be coarse to near-pegmatitic. No geological contacts were observed and no new showings of significant (>2%) sulphide mineralization were found.

Drilling & Blasting

Two areas, one about 3 m x 2 m and the other about 4 m x 1.5 m, were drilled and blasted in order to expose a fresh face of sulphide mineralization in the area of the Main Showing. The blasts were not entirely effective due to the highly fractured and sheared nature of the mineralized gabbro. Nonetheless, the work did allow for the collection of very fresh mineralized gabbro samples.

Sampling – Llthogeochemical & Humus

Grab samples collected during the geological grid mapping (total of 35) consisted primarily of medium-grained gabbro to leucogabbro but also included samples from olivine gabbro dyke and surrounding sedimentary rocks (Table 2). Geochemical and assay results from 8 of these samples are listed in Table 3. All of the samples collected from the area of the Main Showing have anomalous Cu-Ni values but returned very poor Pt-Pd values. The highest base metal values were **>10,000 ppm Cu, 1006 ppm Ni** (WR-01) and 9060 ppm Cu, 2278 ppm Ni (WR-06A), from samples collected at the Main Showing.

OP98-WR-02 0+23W OP98-WR- 0+79W OP98-WR-04 1+19W OP98-WR-05 1+19W OP98-WR-05 1+19W OP98-WR-07 1+19W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-08 1+00W OP98-WR-09 0+98W OP98-WR-10 0+96W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-20 0+77E OP98-WR-21 0+77E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	N/0+79S N/0+79S N/0+79S N/0+79S N/0+16S N/0+16S N/1+52N S	gabbro quartz vein gabbro gabbro gabbro gabbro melagabbro melagabbro greywacke	mg; altered; moderately foliated; ~10% cpy, po, (pn) white bull quartz in sediments; 2% d.s. mg; moderately fractured; ~2% po>cpy, (pn) mg; massive; ~3% po>cpy, (pn) mg; altered; ~5% cpy, po, (pn) mg; ~10% cpy, po, (pn); smears of sulphide on mg; ~15% cpy, po, (pn); smears of sulphide on mg; ~10% cpy, po, (pn); smears of sulphide on mg; ~10% cpy, po, (pn); smears of sulphide on mg; ~10% cpy, po, (pn); smears of sulphide on massive; <1% d.s.; clasts up to 2 mm size
OP98-WR-02 0+23W OP98-WR- 0+79W OP98-WR-04 1+19W OP98-WR-05 1+19W OP98-WR-05 1+19W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-08 1+00W OP98-WR-09 0+98W OP98-WR-10 0+96W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-20 0+77E OP98-WR-21 0+77E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-25 1+25E	N/0+79S N/0+79S N/0+79S N/0+16S N/1+52N	quartz vein gabbro gabbro gabbro gabbro melagabbro melagabbro greywacke	white bull quartz in sediments; 2% d.s. mg; moderately fractured; ~2% po>cpy, (pn) mg; massive; ~3% po>cpy, (pn) mg; altered; ~5% cpy, po, (pn) mg; ~10% cpy, po, (pn); smears of sulphide on mg; ~15% cpy, po, (pn); smears of sulphide on mg; ~10% cpy, po, (pn); smears of sulphide on
OP98-WR- 0+79W OP98-WR- 0+79W OP98-WR-04 1+19W OP98-WR-05 1+19W OP98-WR-05 1+19W OP98-WR-05 1+19W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-08 1+00W OP98-WR-09 0+98W OP98-WR-09 0+98W OP98-WR-10 0+96W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-20 0+77E OP98-WR-21 0+77E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	N/0+79S N/0+79S N/0+79S N/0+16S N/0+16S N/1+07S N/1+07S N/0+68S N/1+52N N/1+52N	gabbro gabbro gabbro gabbro melagabbro melagabbro greywacke	mg; moderately fractured; ~2% po>cpy, (pn) mg; massive; ~3% po>cpy, (pn) mg; altered; ~5% cpy, po, (pn) mg; ~10% cpy, po, (pn); smears of sulphide on mg; ~15% cpy, po, (pn); smears of sulphide on mg; ~10% cpy, po, (pn); smears of sulphide on
OP98-WR- 0+79W OP98-WR-04 1+19W OP98-WR-05 1+19W OP98-WR- 1+19W OP98-WR- 1+19W OP98-WR- 1+19W OP98-WR- 0+97W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-09 0+98W OP98-WR-09 0+98W OP98-WR-10 0+96W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-20 0+77E OP98-WR-21 0+77E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-25 1+25E	N/0+79S I N/0+16S I N/1+07S I N/0+68S I N/1+52N I	gabbro gabbro gabbro melagabbro melagabbro greywacke	mg; massive; ~3% po>cpy, (pn) mg; altered; ~5% cpy, po, (pn) mg; ~10% cpy, po, (pn); smears of sulphide on mg; ~15% cpy, po, (pn); smears of sulphide on mg; ~10% cpy, po, (pn); smears of sulphide on
OP98-WR-04 1+19W OP98-WR-05 1+19W OP98-WR- 1+19W OP98-WR- 1+19W OP98-WR-07 0+97W OP98-WR-08 1+00W OP98-WR-09 0+98W OP98-WR-09 0+98W OP98-WR-10 0+96W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-19 0+52E OP98-WR-20 0+77E OP98-WR-21 0+71E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	W/0+16S M/0+16S W/0+16S M/0+16S N/0+16S M/0+16S N/0+16S M/0+16S N/0+16S M/0+16S N/0+16S M/0+16S N/0+16S M/1+07S N/0+68S M/1+52N	gabbro gabbro melagabbro melagabbro greywacke	mg; altered; ~5% cpy, po, (pn) mg; ~10% cpy, po, (pn); smears of sulphide on mg; ~15% cpy, po, (pn); smears of sulphide on mg; ~10% cpy, po, (pn); smears of sulphide on
OP98-WR-05 1+19W OP98-WR- 1+19W OP98-WR-07 0+97W OP98-WR-07 0+97W OP98-WR-08 1+00W OP98-WR-09 0+98W OP98-WR-09 0+98W OP98-WR-10 0+96W OP98-WR-10 0+96W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-19 0+52E OP98-WR-20 0+77E OP98-WR-21 0+71E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	N/0+16S 9 N/0+16S 9 N/0+16S 9 N/0+16S 9 N/0+16S 9 N/0+16S 9 N/1+07S 9 N/0+68S 9 N/1+52N 9	gabbro melagabbro melagabbro greywacke	mg; ~10% cpy, po, (pn); smears of sulphide on mg; ~15% cpy, po, (pn); smears of sulphide on mg; ~10% cpy, po, (pn); smears of sulphide on
OP98-WR- 1+19W OP98-WR- 1+19W OP98-WR-07 0+97W OP98-WR-08 1+00W OP98-WR-09 0+98W OP98-WR-09 0+98W OP98-WR-10 0+98W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-13 0+49W OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-19 0+52E OP98-WR-20 0+77E OP98-WR-21 0+71E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	N/0+16S N/0+16S N/1+07S N/0+68S N/1+52N	melagabbro melagabbro greywacke	mg; ~15% cpy, po, (pn); smears of sulphide on mg; ~10% cpy, po, (pn); smears of sulphide on
OP98-WR- 1+19W OP98-WR-07 0+97W OP98-WR-08 1+00W OP98-WR-09 0+98W OP98-WR-10 0+96W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-19 0+52E OP98-WR-20 0+77E OP98-WR-21 0+77E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	N/0+16S N/1+07S N/0+68S N/1+52N	melagabbro greywacke	mg; ~10% cpy, po, (pn); smears of sulphide on
OP98-WR-07 0+97W OP98-WR-08 1+00W OP98-WR-09 0+98W OP98-WR-10 0+98W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-12 0+26W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-19 0+52E OP98-WR-20 0+77E OP98-WR-21 0+71E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	N/1+07S (N/0+68S (N/1+52N (greywacke	
OP98-WR-08 1+00W OP98-WR-09 0+98W OP98-WR-10 0+96W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-13 0+49W OP98-WR-13 0+49W OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-20 0+77E OP98-WR-21 0+77E OP98-WR-22 0+73E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	N/0+68S		massive; <1% d.s.; clasts up to 2 mm size
OP98-WR-09 0+98V OP98-WR-10 0+96V OP98-WR-11 0+23V OP98-WR-12 0+26V OP98-WR-12 0+26V OP98-WR-13 0+49V OP98-WR-14 0+74V OP98-WR-15 0+75V OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-19 0+52E OP98-WR-20 0+77E OP98-WR-21 0+71E OP98-WR-23 1+22E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	N/1+52N (· · · · · · · · · · · · · · · · · · ·
OP98-WR-10 0+96W OP98-WR-11 0+23W OP98-WR-12 0+26W OP98-WR-13 0+49W OP98-WR-13 0+49W OP98-WR-13 0+74W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-19 0+52E OP98-WR-20 0+77E OP98-WR-21 0+71E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E		gabbro	mg; massive; <1% d.s., po
OP98-WR-11 0+23V OP98-WR-12 0+26V OP98-WR-13 0+49V OP98-WR-14 0+74V OP98-WR-15 0+75V OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-19 0+52E OP98-WR-20 0+77E OP98-WR-21 0+71E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	N/2+69N	greywacke	fractured; ~1% d.s., po, py
OP98-WR-120+26WOP98-WR-130+49WOP98-WR-140+74WOP98-WR-150+75WOP98-WR-160+02EOP98-WR-170+29EOP98-WR-180+52EOP98-WR-190+52EOP98-WR-200+77EOP98-WR-210+71EOP98-WR-220+73EOP98-WR-231+22EOP98-WR-241+22EOP98-WR-251+25E		olivine	mg; locally very coarse; ~15-20% magnetite; <1%
OP98-WR-13 0+49W OP98-WR-14 0+74W OP98-WR-15 0+75W OP98-WR-16 0+02E OP98-WR-17 0+29E OP98-WR-18 0+52E OP98-WR-19 0+52E OP98-WR-20 0+77E OP98-WR-21 0+71E OP98-WR-22 0+73E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	N/1+40N	olivine	mg; massive; ~10% magnetite; <`% d.s., po
OP98-WR-140+74WOP98-WR-150+75WOP98-WR-160+02EOP98-WR-170+29EOP98-WR-180+52EOP98-WR-190+52EOP98-WR-200+77EOP98-WR-210+71EOP98-WR-220+73EOP98-WR-231+22EOP98-WR-241+22EOP98-WR-251+25E	N/0+32S	gabbro	mg; massive; <1% d.s., po>>cpy
OP98-WR-150+75WOP98-WR-160+02EOP98-WR-170+29EOP98-WR-180+52EOP98-WR-200+77EOP98-WR-210+71EOP98-WR-220+73EOP98-WR-231+22EOP98-WR-241+22EOP98-WR-251+25E	N/0+37S	gabbro	mg; massive; <1% d.s., po>>cpy
OP98-WR-160+02EOP98-WR-170+29EOP98-WR-180+52EOP98-WR-190+52EOP98-WR-200+77EOP98-WR-210+71EOP98-WR-220+73EOP98-WR-231+22EOP98-WR-241+22EOP98-WR-251+25E	W/0+12S	gabbro	mg; massive; <1% d.s., po>>cpy
OP98-WR-170+29EOP98-WR-180+52EOP98-WR-190+52EOP98-WR-200+77EOP98-WR-210+71EOP98-WR-220+73EOP98-WR-231+22EOP98-WR-241+22EOP98-WR-251+25E	N/0+27N	gabbro	mg; weakly foliated; ~1% d.s., po>cpy
OP98-WR-180+52EOP98-WR-190+52EOP98-WR-200+77EOP98-WR-210+71EOP98-WR-220+73EOP98-WR-231+22EOP98-WR-241+22EOP98-WR-251+25E	E/0+65S g	gabbro	mg; massive; <1% d.s., po>>cpy
OP98-WR-190+52EOP98-WR-200+77EOP98-WR-210+71EOP98-WR-220+73EOP98-WR-231+22EOP98-WR-241+22EOP98-WR-251+25E	E/2+10N g	gabbro	mg; moderately foliated; ~1% d.s., po>cpy
OP98-WR-200+77EOP98-WR-210+71EOP98-WR-220+73EOP98-WR-231+22EOP98-WR-241+22EOP98-WR-251+25E	E/2+65N g	gabbro	mg; massive; <1% d.s., po>>cpy
OP98-WR-21 0+71E OP98-WR-22 0+73E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	E/0+91N	olivine	mg; massive; locally near-pegmatitic; 10% magnetite
OP98-WR-22 0+73E OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	E/1+04N	gabbro	mg; moderately foliated; ~1% d.s., po, cpy
OP98-WR-23 1+22E OP98-WR-24 1+22E OP98-WR-25 1+25E	E/2+-04N	gabbro	mg; massive; <1% d.s., po>cpy
OP98-WR-24 1+22E OP98-WR-25 1+25E		gabbro	mg; massive; ~1% d.s., po>cpy
OP98-WR-24 1+22E OP98-WR-25 1+25E		gabbro	mg; moderately foliated; vari-textured; ~1% d.s., po
OP98-WR-25 1+25E		gabbro	mg; altered; locally fine-grained; mafic dyke?
		gabbro	mg; massive; <1% d.s.
		gabbro	mg; massive; <1% d.s., po>cpy
OP98-WR-27 1+51E		gabbro	mg; massive; <1% d.s.
		gabbro	mg; moderately foliated; ~1% d.s., po, cpy
		gabbro	mg; strongly foliated/fractured; 1% d.s., po>cpy
		gabbro	mg; strongly foliated/altered; ~1% d.s., po, py
		gabbro	mg; moderately fractured; <1% d.s., po, cpy, py
		gabbro	mg; massive; 3% d.s., po>>cpy
OP98-WR-33 1+44V	V/0+18S (gabbro	mg; massive to weakly foliated; 3% d.s., po>>cpy

TABLE 2. Descriptions of the samples collected from the exploration grid - Floodwood Chutes East.

mg=medium-grained; cpy=chalcopyrite; po=pyrrhotite; pn=pentlandite; py=pyrite; d.s.= disseminated sulphide

These same samples returned disappointing precious metal values of 26 ppb Pd, 24 ppb Pt, 121 ppb Au (WR-01) and 13 ppb Pd, <10 ppb Pt, 124 ppb Au (WR-06A); the highest palladium value was 44 ppb (WR-03B). The precious metal values are at or near background values for Nipissing gabbros in the area of Janes Township, as established from other work by the applicant. One sample of gabbro (JB98-238), collected under the auspices of a separate regional project, came from a small reef in the Sturgeon River (normally underwater), about 500 m north (~350 AZ) from the Main Showing of Floodwood Chutes East. Although the sample had about 5% disseminated, bleb and veinlet chalcopyrite, it returned assay values of only 198 ppm Cu, 141 ppm Ni and below detection for Pt-Pd (Table 3), at or below background values for the gabbros.

A total of 22 humus samples were collected from the eastern exploration grid in the area proximal to the main Cu-Ni showing. The purpose of this survey was to test the humus for its potential use as a means to identify buried Cu-Ni-Pt-Pd mineralization. Descriptions and locations of the samples are listed in Table 4 and results of the assays are listed in Table 5. The results (Table 5) were very discouraging with all of the Pd-Pt values returning assays below detection limits (Pd = 10 ppb, Pt = 15 ppb). Ten of the 22 samples returned Au values that were greater than background (Au = 5 ppb) but none of these values could be correlated to anything of geological interest.

Cu and Ni values did offer some trends that may prove useful in future exploration. Both Cu and Ni values showed a very general increase heading toward the Main Showing with the highest values of 449 ppm Cu and 294 ppm Ni centered at L 0+75W/0+25S (HS-19), about 37 m east of the Main Showing. The second highest value was 314 ppm Cu and 152 ppm Ni, centered at L 1+25W/BL0 (HS-22), about 18 m north-northwest of the Main Showing.

Tag#	Sample#	Pd	Au	Pt	Cu	Ni	Čr	Со	V	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	TiO ₂
		(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(wt.%)	(wt.%)	(wt.%)	(wt.%)	(wt.%)
50459	*JB98-238	<10	10	<15	198	141	97	19	27					
50463	OP98-WR-01	26	121	24	>10,000	1006		39						
44558	OP98-WR-02				23	8	270	3	16					
44559	OP98-WR-03A	39	41		802	427	94	42	60					
44560	OP98-WR-03B	44	40		1046	671	68	76	60					
44561	OP98-WR-04		89		5832	680	27	38	124					
44562	OP98-WR-05		82		9359	1119	29	82	67	49.29	12.97	14.03	6.68	0.54
44563	OP98-WR-06A	13	124		9060	2278	45	119	62					
44564	OP98-WR-06B	11	113		8939	3000	36	148	57					

TABLE 3. Assay Results from Grab (Whole Rock) Samples – Floodwood Chutes East

*=results from different project; detection limits: Pd=10 ppb, Pt=15 ppb, Au=5 ppb; "---"=below detection limit; na=not analyzed

Grid Location	Description/Comments
L O/BL O	dark grey to black; 5 cm thick layer; on silty layer
L 0/0+25 S	black layer; 3 cm thick; on silty layer
L 0/0+50 S	black layer; 5 cm thick; on silty/sandy layer
L 0/0+75 S	black layer; 10 cm thick; on silty/sandy layer
L 0/1+00 S	black layer; 15 cm thick; on silty layer
L 25W/1+00 S	black layer; 15 cm thick; on silty layer
L 25W/0+75 S	black layer; <2 cm thick; poorly developed; on silty layer
L 25W/0+50 S	black layer; 3 cm thick; on silty layer
L 25W/0+25 S	black layer; 2 cm thick; on silty/sandy layer
L 25W/BL 0	black layer; 2 cm thick; on silty/sandy layer
L 50W/BL 0	black layer; 1 cm thick; on silty/sandy layer
L 50W/0+25 S	black layer; 1 cm thick; poorly developed; on silty layer
L 50W/0+50 S	black layer; 1 cm thick; poorly developed; on brown silty layer
L 50W/0+75 S	black layer; 1 cm thick; on silty/sandy layer
L 50W/1+12.5	black layer; 10-15 cm thick; on silty layer
L 75W/1+00 S	black layer; 2-4 cm thick; on silty layer
L 75W/0+75 S	black layer; 2 cm thick; on silty layer
L 75W/0+50 S	black layer; <2 cm thick; on silty layer
L 75W/0+25 S	black layer; 3 cm thick; on silty layer
L 75W/BL 0	black layer; 1 cm thick; on silty layer
L 100W/BL 0	black layer; 7 cm thick; on silty layer
L 125W/BL 0	black layer; 20 cm thick; on silty layer with many pebbles
	L 0/BL 0 L 0/0+25 S L 0/0+50 S L 0/0+75 S L 0/1+00 S L 25W/1+00 S L 25W/0+75 S L 25W/0+75 S L 25W/0+25 S L 25W/0+25 S L 50W/0+25 S L 50W/0+75 S L 50W/0+75 S L 50W/1+12.5 L 75W/1+00 S L 75W/0+75 S L 75W/0+50 S L 75W/0+25 S

TABLE 4. Descriptions of the humus samples from the exploration grid – Floodwood Chutes East.

Sample #	Pd	Au	Pt	Cu	Ni	As	Cd	Со	Cr	v
	(ppb)	(ppb)	(ppb)	(ppm)						
HS98-01				144	143	18	1.2	8	25	18
HS98-02				114	101	17	1.0	10	49	31
HS98-03				130	80	26	1.1	7	33	29
HS98-04				125	109	15	1.1	8	27	15
HS98-05				138	106	21	1.6	6	23	10
HS98-06				129	102	21	1.8	8	44	18
HS98-07				162	116	22	1.6	8	69	29
HS98-08				103	108	19	1.3	7	24	21
HS98-09				196	157	22	1.5	8	25	18
HS98-10		28		194	218	20	1.4	11	28	14
HS98-10*		9		na						
HS98-11				192	175	20	2.0	7	21	11
HS98-12		6		221	198	38	1.4	9	35	27
HS98-13				151	224	22	1.5	10	31	29
HS98-14				189	133	35	1.2	6	28	15
HS98-15				84	97	13	1.0	6	29	11
HS98-16		7		217	150	23	1.3	7	26	17
HS98-17		8		235	247	23	1.1	10	31	17
HS98-18		10		156	180	18	0.9	8	25	13
HS98-19		12		449	294	31	1.7	11	33	14
HS98-19*		9		na						
HS98-20		10		160	212	14	1.2	9	29	14
HS98-21		21		136	65	18	0.7	5	35	31
HS98-22				314	152	19	2.1	6	29	13

TABLE 5. Assay Results from Humus Sampling Program - Floodwood Chutes East

*=check; detection limits: Pd=10 ppb, Pt=15 ppb, Au=5 ppb; "---"=below detection limit; na=not analyzed

Power Washing & Manual Stripping

About 800 m² (40 x 20 m) was exposed to bedrock in an area that stretches from about 2 m southeast of the Main Showing to about 30 m north of the Main Showing. This part of the project exposed moderately to strongly sheared medium-grained gabbroic rocks. The foliation was oriented at about 340 to 355 AZ and appeared to be *turning* northward into the north-trending Floodwood Chutes Fault (this fault parallels the Sturgeon River). No new areas of heavy (>2%) sulphide mineralization were uncovered. Rust-stained, moderate to strongly foliated gabbro was uncovered to the southeast of the Main Showing. Chip samples showed no mineralization so the red staining can be attributed to Fe-oxide minerals in the rocks and Fe-alteration along foliation and joint planes.

None of the *felsic* rocks alluded to in the old assessment files could be found. However, coarse-grained to near-pegmatitic patches of feldspar-rich gabbro were observed within the darker medium-grained rocks in the area; these may be the rocks mentioned in the reports

CONCLUSIONS AND RECOMMENDATIONS

Although the *Floodwood Chutes Property – East and West* is underlain by gabbroic rocks of the Nipissing Diabase, which are known to host disseminated to massive Cu-Ni-Pd-Pt sulphides, this project has shown that this particular area is not likely a good target for future exploration. However, a more intense program inclusive of diamond drilling might be in order, so as to further evaluate the Floodwood Chutes Property. Therefore, it is recommended that the following programs be considered:

- (1) Grid soil sampling of the "B" soil horizon. Recent work in areas around the Sudbury Basin has shown that sampling of the "B" horizon may be of use to exploration for precious and base metals. In addition, the preliminary humus sampling that was completed on the east grid should be expanded over the entire east grid and onto the west grid, especially in light of the elevated Cu-Ni values proximal to the Main Showing.
- (2) <u>Lithogeochemical Sampling.</u> A program inclusive of the submission of the sample from the current grid mapping program as well as the collection of more samples from both grids and submission of reconnaissance samples in order to define any regional geochemical trends that may indicate regions of sulphide mineralization at or near surface.

- (3) A more <u>expansive trenching and stripping program</u> aimed at exposing the mineralized and non-mineralized regions, contacts between rock units and some of the old trenches *ca*. 1968-69.
- (5) <u>Diamond drilling program</u> aimed at testing the strike-length and depth of the Cu-Ni mineralization at the Main Showing, testing any anomalous geophysical targets (including some of the targets not drilled in 1968-69) and the possibility of unknown mineralization.

Minimum analyses for all samples should include base and precious metals (Ni, Cu, Au, Ag, Co), platinum group elements (Pt, Pd, Rh), sulphur (S) and selenium (Se).

REFERENCES

- Dressler, B.O., 1982. Geology of the Wanapitei Lake Area, District of Sudbury. Ontario Geological Survey, Report 213 (map 2450-51), 131 pp.
- Dressler, B.O., 1979. Geology of McNish and Janes Townships, District of Sudbury. Ontario Geological Survey, Report 191 (map 2425), 91 pp.
- Hriskevich, M.E. 1968. Petrology of the Nipissing Diabase Sill of the Cobalt Area, Ontario, Canada. Geological Society of America Bulletin, v. 79, p. 1387-1404.
- Lightfoot, P.C., De Souza, H.A.F., and Doherty, W., 1991. Mineral potential of the Nipissing Diabase: some geochemical considerations. *In* Summary of fieldwork and other activities. Ontario Geological Survey, Miscellaneous Paper 157, p. 237-246.
- Nicholls, P.R.J. and Pearson, W.N., 1995. Report on Mineral Exploration Properties in Ontario. Prepared for Kirkland-Wright Gold Ltd. by Pearson, Hofman & Associates Limited, 41 pp.

CERTIFICATE OF QUALIFICATION

- I, Scott Jobin-Bevans of 225 Ferndale Avenue, Sudbury, Ontario, do hereby certify that:
- 1. I am a consulting geologist with the mineral exploration company DTE Exploration & Development of Sudbury, Ontario.
- 2. I am a graduate of the University of Manitoba, Winnipeg, Manitoba with a B.Sc. (Hons.) Geology 1995, and M.Sc. Geology 1997.
- 3. I am a member of the Society of Economic Geologists and the Canadian Institute of Mining, Metallurgy and Petroleum.
- 4. I have been an exploration geologist and prospector for ten years.
- 5. I have an active prospector's license for the province of Ontario (# H14027).
- 6. This report is intended to be an overview of the potential of the properties with recommendations and conclusions that are based solely on the available data.

1. Job Boans

Scott Jobin-Bevans (B.Sc., M.Sc. Geology) Jan. 1999

APPENDIX A

Geophysical Survey Data

Ground Magnetometer: Geometrics G-826 Proton Precession Magnetometer

VLF-EM: Geonics EM-16

Magnetometer and VLF-EM Survey - Floodwood Chutes Property - East (4 line km grid)

S. Jobin-Bevans - November, 1998

Station: Cutler Maine (NAA 24.0 KHz; incident signal at 104 az)

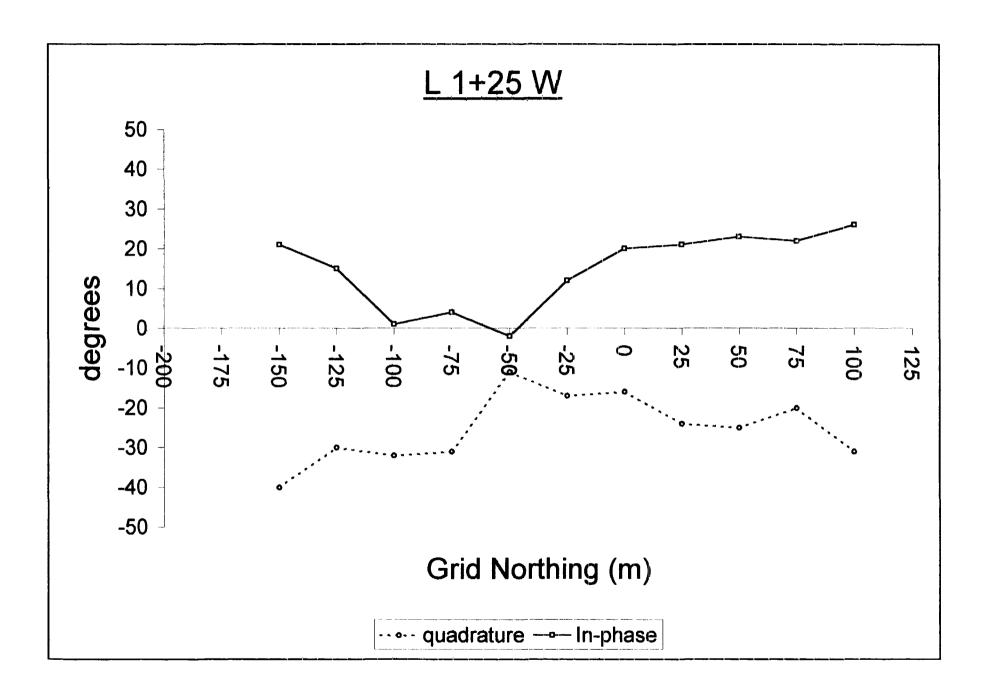
Facing: North

Magnetometer Corrections were calculated daily using averages from multiple station readings

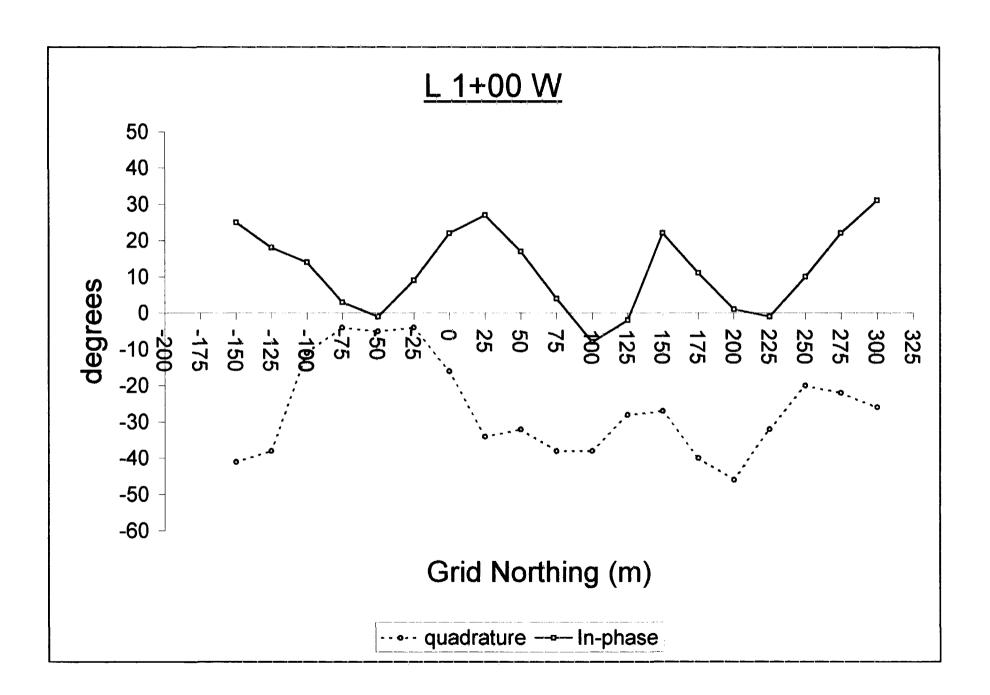
Floodwood Chutes - East

Date	Stat (Easting)	Line (Northing)	<u>in</u>	<u>Out</u>	Mag-Raw	Mag-Factor	Mag-Corr	<u>Comments</u>
11/9/98	-150	0	26	-41	57344	0.9997152	57328	west edge of o/c hill
	-150	50	22	-36	57276	0.9997152	57260	west edge of o/c hill toward river
	-125	-150	21	-40	57273	0.9997152	57257	river valley
	-125	-125	15	-30	57295	0.9997152	57279	river valley
	-125	-100	1	-32	57303	0.9997152	57287	edge of hill
	-125	-75	4	-31	57437	0.9997152	57421	top of ridge of o/c
	-125	-50	-2	-11	57559	0.9997152	57543	spruce/pine
	-125	-25	12	-17	57183	0.9997152	57167	spruce/pine - near showing
	-125	0	20	-16	57293	0.9997152	57277	spruce/pine - near showing
	-125	25	21	-24	57319	0.9997152	57303	spruce/pine
	-125	50	23	-25	57298	0.9997152	57282	spruce/pine - open area
	-125	75	22	-20	57315	0.9997152	57299	spruce/pine
	-125	100	26	-31	57275	0.9997152	57259	edge of hill going down to low area
	-100	-150	25	-41	57282	0.9997152	57266	river valley
	-100	-125	18	-38	57311	0.9997152	57295	river valley
	-100	-100	14	-11	57294	0.9997152	57278	edge of hill
	-100	-75	3	-4	57465	0.9997152	57 449	top of ridge of o/c
	-100	-50	-1	-5	57573	0.9997152	57557	spruce/pine
	-100	-25	9	-4	57366	0.9997152	57350	spruce/pine
	-100	0	22	-16	57 4 63	0.9997152	57447	spruce/pine
	-100	25	27	-34	57282	0.9997152	57266	spruce/pine
	-100	50	17	-32	57270	0.9997152	57254	spruce/pine - open area
	-100	75	4	-38	57290	0.9997152	57274	spruce/pine
	-100	100	-8	-38	57553	0.9997152	57537	alder valley by road
	-100	125	-2	-28	57290	0.9997152	57274	alders
	-100	150	22	-27	57306	0.9997152	57290	edge of o/c hill
	-100	175	11	-40	57255	0.9997152	57239	edge of o/c hill
	-100	200	1	-46	57467	0.9997152	57451	edge of o/c hill
	-100	225	-1	-32	58101	0.9997152	58084	edge of o/c hill
	-100	250	10	-20	58120	0.9997152	58103	edge of o/c hill
	-100	275	22	-22	58111	0.9997152	58094	edge of o/c hill
	-100	300	31	-26	58099	0.9997152	58082	edge of o/c hill - goes down to north
	-75	-150	17	-42	57318	0.9997152	57302	river valley
	-75	-125	2	-20	57353	0.9997152	57337	river valley
	-75	-100	-9	-19	57285	0.9997152	57269	edge of hill
	-75	-75	-1	-20	57282	0.9997152	57266	top of ridge of o/c
	-75	-50	21	-11	57333	0.9997152	57317	spruce/pine
	-75	-25	19	-20	57400	0.9997152	57384	spruce/pine
	-75	0	22	-15	57446	0.9997152	57430	spruce/pine
	-75	25	26	-18	57568	0.9997152	57552	spruce/pine
	-75	50	17	-11	571 9 2	0.9997152	57176	edge of alder valley by old road
	-75	75	6	-31	57302	0.9997152	57286	alder valley by road
	-75	100	1	-10	57328	0.9997152	57312	alders
	-75	125	-5	3	57307	0.9997152	57291	edge of o/c hill
	-75	150	-1	-2	57989	0.9997152	57972	edge of o/c hill
	-75	175	22	-30	58225	0.9997152	58208	top of o/c hill
	-75	200	26	-28	58197	0. 999 7152	58180	top of o/c hill
	-50	-150	11	-35	57320	0.9997152	57304	river valley

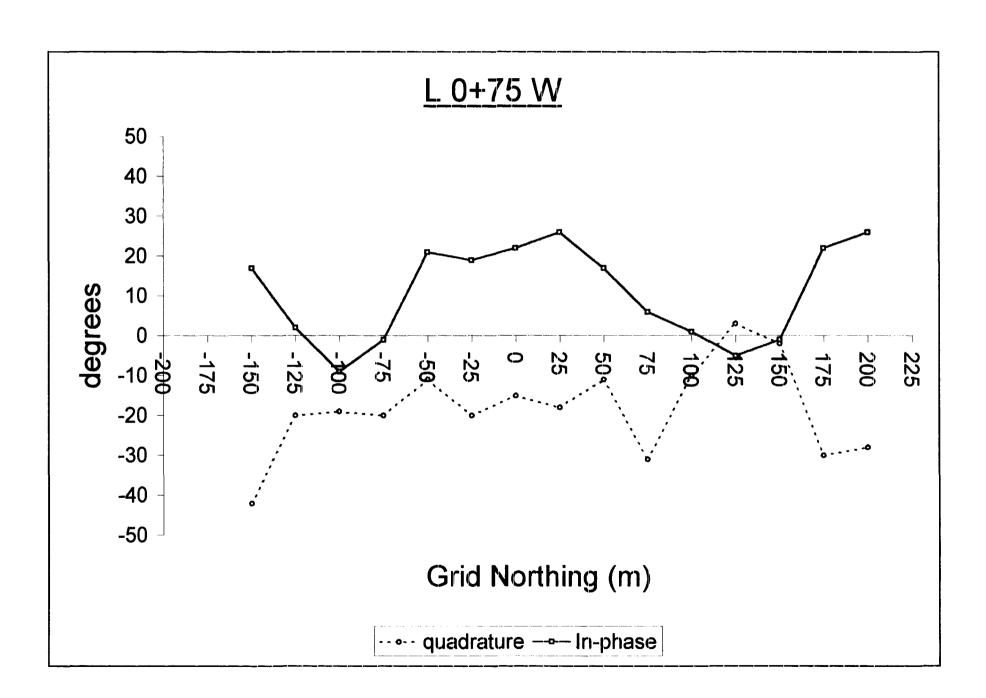
Date	<u>Stat (Easting)</u>	Line (Northing)	<u>In</u>	<u>Out</u>	<u>Mag-Raw</u>	Mag-Factor	Mag-Corr	Comments
	-50	-125	22	-30	57303	0.9997152	57287	river valley
	-50	-100	10	-22	57474	0.9997152	57458	edge of hill
	-50	-75	2	-10	57582	0.9997152	57 56 6	top of ridge of o/c
	-50	-50	2	-10	57375	0.9997152	57359	spruce/pine
	-50	-25	11	-10	57472	0.9997152	57 45 6	spruce/pine
	-50	0	1	-11	57291	0.9997152	57275	spruce/pine
	-50	25	-4	-2	57279	0.9997152	57263	alders
	-50	50	-7	-19	57299	0.9997152	57283	alders
	-50	75	-1	-22	57322	0.9997152	57306	alder valley by road
	-50	100	22	-31	57299	0.9997152	57283	edge of o/c hill
	-50	125	7	-31	58097	0.9997152	58080	edge of o/c hill
	-50	150	-3	-30	58200	0.9997152	58183	top of o/c hill
	-50	175	21	-33	58225	0.9997152	58208	top of o/c hill
	-50	200	24	-32	58197	0.9997152	58180	top of o/c hill
	-50	225	31	-33	58205	0.9997152	58188	top of o/c hill
	-50	250	30	-27	58223	0.9997152	58206	top of o/c hill
	-50	275	30	-27	58207	0.9997152	58190	top of o/c hill
	-50	300	31	-27	58025	0.9997152	58008	top of o/c hill - goes down to north
	-25	-150	21	-40	57346	0.9997152	57330	river valley
	-25	-125	15	-30	57278	0.9997152	57262	river valley
	-25	-100	1	-32	57275	0.9997152	57259	edge of hill
	-25	-75	4	-31	56829	0.9997152	56813	top of ridge of o/c
	-25	-50	1	-11	57636	0.9997152	57620	spruce/pine
	-25	-25	12	-17	57439	0.9997152	57423	spruce/pine
	-25	0	2	-16	57561	0.9997152	57545	edge of alder valley
	-25	25	-3	-24	57185	0.9997152	57169	alder valley by road
	-25	50	-2	-25	57295	0.9997152	57279	base of o/c hill in alders
	-25	75	22	-20	57321	0.9997152	57305	edge of o/c hill
	-25	100	11	-31	58200	0.9997152	58183	edge of o/c hill
	-25	125	2	-41	58204	0.9997152	58187	top of o/c hill
	-25	150	-7	-38	58220	0.9997152	58203	top of o/c hill
	-25	175	14	-11	58265	0.9997152	58248	top of o/c hill
	-25	200	26	-15	58270	0.9997152	58253	top of o/c hill
	0	-150	11	-35	57296	0.9997152	57280	river valley
	0	-125	22	-30	57467	0.9997152	57451	river valley
	0	-100	10	-22	57575	0.9997152	57559	edge of hill
	0	-75	2	-10	57368	0.9997152	57352	top of ridge of o/c
	0	-50	-2	-10	57465	0.9997152 0.9997152	57449	spruce/pine
	0	-25	11	-10	57284 57272		57268 57256	spruce/pine alders
	0	0	0	-11		0.9997152 0.9997152	57256	alders by road in valley
	0	25 50	-2	2 -13	57292 57315	0.9997152	57299	edge of o/c hill
	0 0	75	-2 -6	-15	57292	0.9997152	57276	edge of o/c hill
	0	100	-0 11	-41	58086	0.9997152	58069	edge of o/c hill
	0	125	17	-39	58232	0.9997152	58215	near top of o/c hill
	ő	150	31	-44	58240	0.9997152	58223	top of hill
	ŏ	175	31	-46	58245	0.9997152	58228	top of hill
	ő	200	30	-46	58240	0.9997152	58223	top of hill
11/ 10/98	25	75	10	-41	58010	0.9997152	57993	low area - alders
1110/30	25	100	1	-33	58187	0.9997152	58170	edge of hill
	25	125	2	-32	58167	0.9997152	58150	near top of o/c hill
	25	150	22	-32	58202	0.9997152	58185	top of o/c hill
	25	175	3	-30	58008	0.9997152	57991	top of o/c hill
	25	200	10	-37	57895	0.9997152	57879	shallow low area
	25	225	28	-38	56836	0.9997152	56820	top of o/c hill
	20							

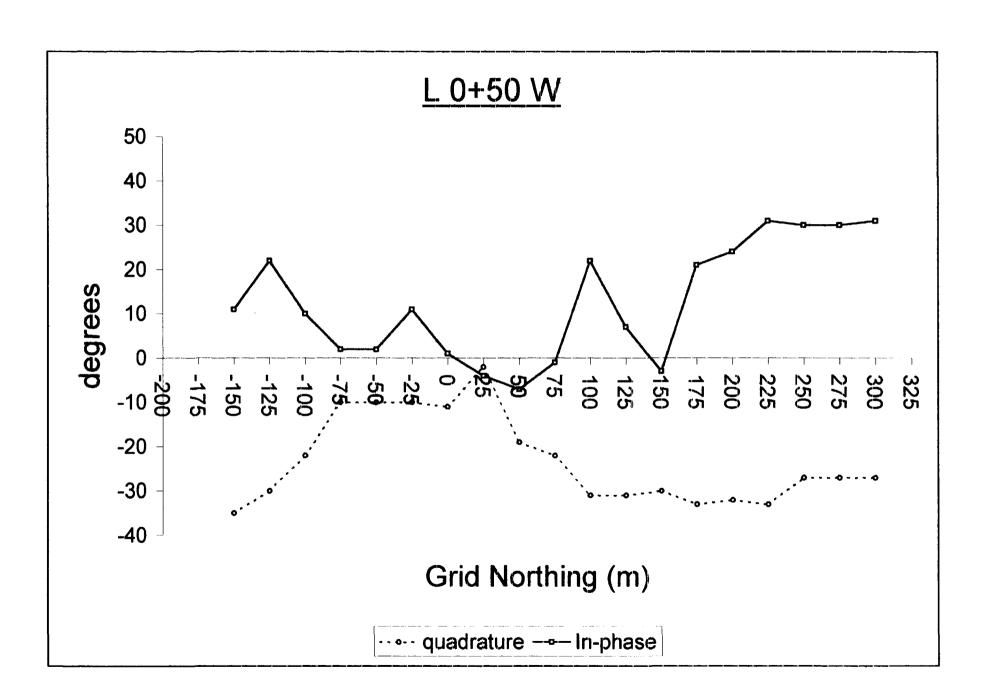

<u>Date</u>	Stat (Easting)	Line (Northing)	<u>In</u>	<u>Out</u>	<u>Mag-Raw</u>	Mag-Factor	Mag-Corr	Comments
	25	250	27	-40	57643	0.9997152	57627	top of o/c hill
	25	275	28	-40	57446	0.9997152	57430	top of o/c hill
	25	300	28	-40	57568	0.9997152	57552	top of o/c hill
	50	75	12	-33	58187	0.9997152	58170	edge of hill
	50	100	3	-33	58204	0.9997152	58187	top of o/c hill
	50	125	2	-25	57 9 67	0.9997152	57950	sprice/pine
	50	150	-1	-24	57668	0.9997152	57652	sprice/pine
	50	175	11	-26	57319	0.9997152	57303	low area - alders
	50	200	19	-24	57279	0.9997152	57263	top of o/c hill
	50	225	21	-29	572 94	0. 999 7152	57278	sprice/pine
	50	250	21	-31	57323	0. 99 97152	57307	sprice/pine
	50	275	27	-32	57306	0.9997152	57290	sprice/pine
	50	300	31	-36	57477	0.9997152	57461	sprice/pine
	75	75	10	-41	58123	0.9997152	58106	edge of hill
	75	100	3	-33	57986	0.9997152	57969	edge of o/c hill
	75	125	7	-32	57459	0.9997152	57443	near top of hill
	75	150	22	-32	57294	0.9997152	57278	top of hill
	75	175	5	-30	57267	0.9997152	57251	open area
	75	200	10	-37	57287 57310	0.9997152	57271	sprice/pine
	75	225	28 27	-38 -40	57310	0.9997152 0.9997152	57294	sprice/pine
	75 75	250 275	21 29	-40 -40	57303	0.9997152	57271 57287	sprice/pine sprice/pine
	75	300	29 29	-40 -40	57303	0.9997152	57251	sprice/pine
	100	75	17	-33	58095	0.9997152	58078	near top of o/c hill
	100	100	18	-29	57456	0.9997152	57440	top of hill
	100	125	16	-23	57567	0.9997152	57551	top of hill
	100	150	16	-29	57346	0.9997152	57330	alders
	100	175	21	-32	57344	0.9997152	57328	open swamp area
	100	200	28	-31	57313	0.9997152	57297	open swamp area
	100	225	32	-32	57352	0.9997152	57336	alders
	100	250	36	-31	57284	0.9997152	57268	spruce/pine
	100	275	35	-33	57281	0.9997152	57265	spruce/pine
	100	300	36	-41	56836	0.9997152	56820	spruce/pine
	125	75	21	-35	58121	0.9997152	58104	near top of o/c hill -
	125	100	22	-29	57489	0.9997152	57473	top of hill
	125	125	19	-28	57 568	0.9997152	57552	open o/c area
	125	150	18	-30	57192	0.9997152	57176	alders
	125	175	19	-30	57297	0.9997152	57281	open swamp area
	125	200	3	-19	57323	0.9997152	57307	open swamp area
	125	225	1	-32	57302	0.9997152	57286	alders
	125	250	33	-31	57319	0.9997152	57303	spruce/pine
	125	275	36	-33	57279	0.9997152	57263	spruce/pine
	125	300	36	-41	57294	0.9997152	57278	spruce/pine
	150	75	17	-33	57949	0.9997152	57932	edge of top of hill
	150	100	18	-29	57598	0.9997152	57582	top of hill
	150	125	16	-28	57477	0.9997152	57461	spruce/pine
	150	150	16	-29	57585	0.9997152	57569	pine/spruce
	150	175	10	-20	57378	0.9997152	57362	pine/spruce
	150	200	1	-14	57475 57204	0.9997152	57459 57278	alders swamp
	150	225 250	6 36	-19 -31	57294 57267	0.9997152	57278 57251	spruce/pine spruce/pine
	150 150	250 275	35 35	-31	57287	0.9997152	57251	spruce/pine
	150	300	36	-33 -41	57310	0.9997152	57294	spruce/pine
	,50	550	00	-71	0,010	0.0007102	01204	op. 200 pi 10

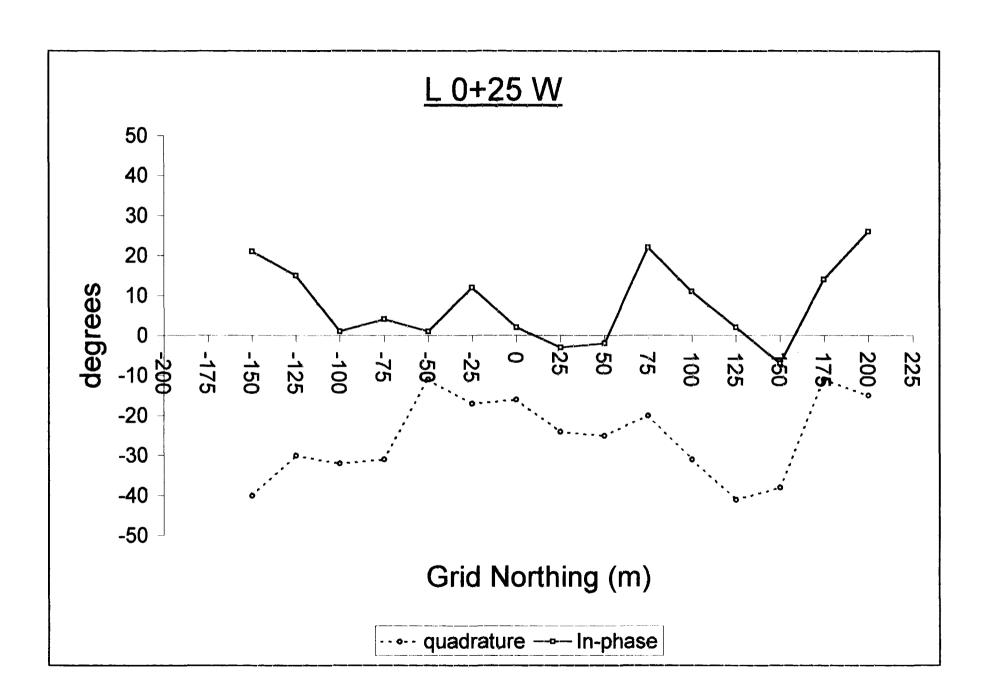
Station Easting	Line Northing	ln	<u>Out</u>	<u>m1+m2</u>	<u>Filtered Value (z)</u>	Plot Point (x)	Plot Point (y)
-125	-150	21	-40	36	-31	-125	-137.5
-125	-125	15	-30	16	-14	-125	-112.5
-125	-100	1	-32	5	5	-125	-87.5
-125	-75	4	-31	2	30	-125	-62.5
-125	-50	-2	-11	10	31	-125	-37.5
-125	-25	12	-17	32	12	-125	-12.5
-125	0	20	-16	41	4	-125	12.5
-125	25	21	-24	44	4	-125	37.5
-125	50	23	-25	45			
-125	75	22	-20	48			
-125	100	26	-31				
-100	-150	25	-41	43	-26	-100	-137.5
-100	-125	18	-38	32	-30	-100	-112.5
-100	-100	14	-11	17	-9	-100	-87.5
-100	-75	3	-4	2	29	-100	-62.5
-100	- 5 0	-1	-5	8	41	-100	-37.5
-100	-25	9	-4	31	13	-100	-12.5
-100	0	22	-16	49	-28	-100	12.5
-100	25	27	-34	44	-48	-100	37.5
-100	50	17	-32	21	-31	-100	62.5
-100	75	4	-38	-4	24	-100	87.5
-100	100	-8	-38	-10	43	-100	112.5
-100	125	-2	-28	20	-8	-100	137.5
-100	150	22	-27	33	-33	-100	162.5
-100	175	11	-40	12	-3	-100	187.5
-100	200	1	-46	0	32	-100	212.5
-100	225	-1	-32	9	-44	-100	237.5
-100	250	10	-20	32			
-100	275	22	-22	53			
-100 -75	300 -150	31 17	-26 -42				
-75 -75	-130	2	- 4 2 -20	-7	27	-75	-112.5
-75 -75	-125	-9	-20	-10	50	-75	-87.5
-75	-75	- 5 -1	-20	20	21	-75	-62.5
-75	-50	21	-11	40	8	-75	-37.5
-75	-25	19	-20	41	2	-75	-12.5
-75	0	22	-15	48	-25	-75	12.5
-75	25	26	-18	43	-36	-75	37.5
-75	50	17	-11	23	-27	-75	62.5
-75	75	6	-31	7	-13	-75	87.5
-75	100	1	-10	-4	25	-75	112.5
-75	125	-5	3	-6	54	-75	137.5
-75	150	-1	-2	21	-		
-75	175	22	-30	48			
-75	200	26	-28				
-50	-150	11	-35	33	-21	-50	-137.5
-50	-125	22	-30	32	-28	-50	-112.5
-50	-100	10	-22	12	1	-50	-87.5
-50	-75	2	-10	4	8	-50	-62.5

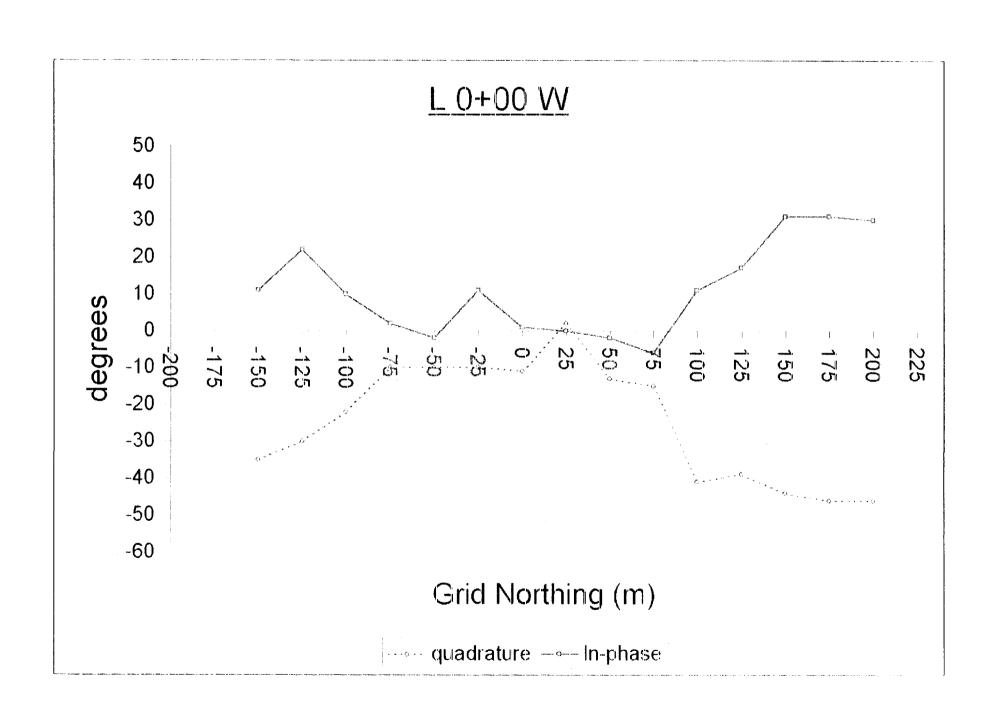

Station Easting	Line Northing	<u>In</u>	<u>Out</u>	<u>m1+m2</u>	Filtered Value (z)	Plot Point (x)	Plot Point (y)
-50	-50	2	-10	13	-16	-50	-37.5
-50	-25	11	-10	12	-23	-50	-12.5
-50	0	1	-11	-3	-5	-50	12.5
-50	25	-4	-2	-11	32	-50	37.5
-50	50	-7	-19	-8	37	-50	62.5
-50	75	-1	-22	21	-17	-50	87.5
-50	100	22	-31	29	-11	-50	112.5
-50	125	7	-31	4	41	-50	137.5
-50	150	-3	-30	18	37	-50	162.5
-50	175	21	-33	45	16	-50	187.5
-50	200	24	-32	55	5	-50	212.5
-50	225	31	-33	61	0	-50	237.5
-50	250	30	-27	60	-60	-50	262.5
-50 -50	275	30	-27	61			
-50 -25	300 -1 5 0	31 21	-27 -40	36	-31	-25	-137.5
-25	-125	15	-40 -30	16	-11	-25	-112.5
-25	-100	1	-32	5	8	-25	-87.5
-25	-75	4	-31	5	9	-25	-62.5
-25	-50	1	-11	13	-14	-25	-37.5
-25	-25	12	-17	14	-19	-25	-12.5
-25	0	2	-16	-1	21	-25	12.5
-25	25	-3	-24	-5	38	-25	37.5
-25	50	-2	-25	20	-7	-25	62.5
-25	75	22	-20	33	-38	-25	87.5
-25	100	11	-31	13	-6	-25	112.5
-25	125	2	-41	-5	45	-25	137.5
-25	150	-7	-38	7			
-25	175	14	-11	40			
-25	200	26	-15				
0	-150	11	-35	33	-21	0	-137.5
0	-125	22	-30	32	-32	0	-112.5
0	-100	10	-22	12	-3	. 0	-87.5
0	-75	2	-10	0	12	0	-62.5
0	-50	-2	-10	9	-8	0	-37.5
0	-25	11 1	-10 -11	12 1	-1 4 -9	0	-12.5 12.5
0	0 25	0	2	-2	-9	0	37.5
0	25 50	-2	-13	-8	36	0	62.5
0	75	-2 -6	-15	-0	43	0	87.5
o o	100	11	-41	28	34	0	112.5
0	125	17	-39	48	13	0	137.5
0	150	31	-44	62		·	
0	175	31	-46	61			
0	200	30	-46				
25	75	10	-41	11	13	25	87.5
25	100	1	-33	3	22	25	112.5
25	125	2	-32	24	-11	25	137.5
25	150	22	-32	25	13	25	162.5

Station Easting	Line Northing	<u>In</u>	<u>Out</u>	<u>m1+m2</u>	Filtered Value (z)	Plot Point (x)	Plot Point (y)
25	175	3	-30	13	42	25	187.5
25	200	10	-37	38	17	25	212.5
25	225	28	-38	55	1	25	237.5
25	250	27	-40	55			
25	275	28	-40	56			
25	300	28	-40				
5 0	75	12	-33	15	-14	50	87.5
50	100	3	-33	5	5	50	112.5
50	125	2	-25	1	29	50	137.5
50	150	-1	-24	10	30	50	162.5
50	175	11	-26	30	12	50	187.5
50	200	19	-24	40	8	50	212.5
50	225	21	-29	42	16	50	237.5
50	250	21	-31	48			
50	275	27	-32	58			
5 0 75	300 75	31 10	-36 -41	13	16	75	87.5
75	100	3	-33	10	17	75	112.5
75	125	7	-32	29	-14	75	137.5
75	150	22	-32	27	11	75	162.5
75	175	5	-30	15	40	75	187.5
75	200	10	-37	38	18	75	212.5
75	225	28	-38	55	3	75	237.5
75	250	27	-40	56			
75	275	29	-40	58			
75	300	29	-40				
100	75	17	-33	35	-3	100	87.5
100	100	18	-29	34	3	100	112.5
100	125	16	-28	32	17	100	137.5
100	150	16	-29	37	23	100	162.5
100	175	21	-32	49	19	100	187.5
100	200	28	-31	60	11	100	212.5
100	225	32	-32	68	3	100	237.5
100	250	36	-31	71			
100	275	35	-33	71			
100	300	36	-41	40	•	405	07.5
125	75	21	-35	43	-6	125	87.5
125	100 125	22 19	-29	41 37	-4 -15	125 125	112.5 137.5
125 125	125	19	-28 -30	37	-33	125	162.5
125	150	19	-30 -30	22	-35	125	187.5
125	200	3	-19	4	65	125	212.5
125	225	1	-32	34	38	125	237.5
125	250	33	-31	69		.20	207.0
125	275	36	-33	72			
125	300	36	-41				
150	75	17	-33	35	-3	150	87.5
150	100	18	-29	34	-8	150	112.5
150	125	16	-28	32	-21	150	137.5

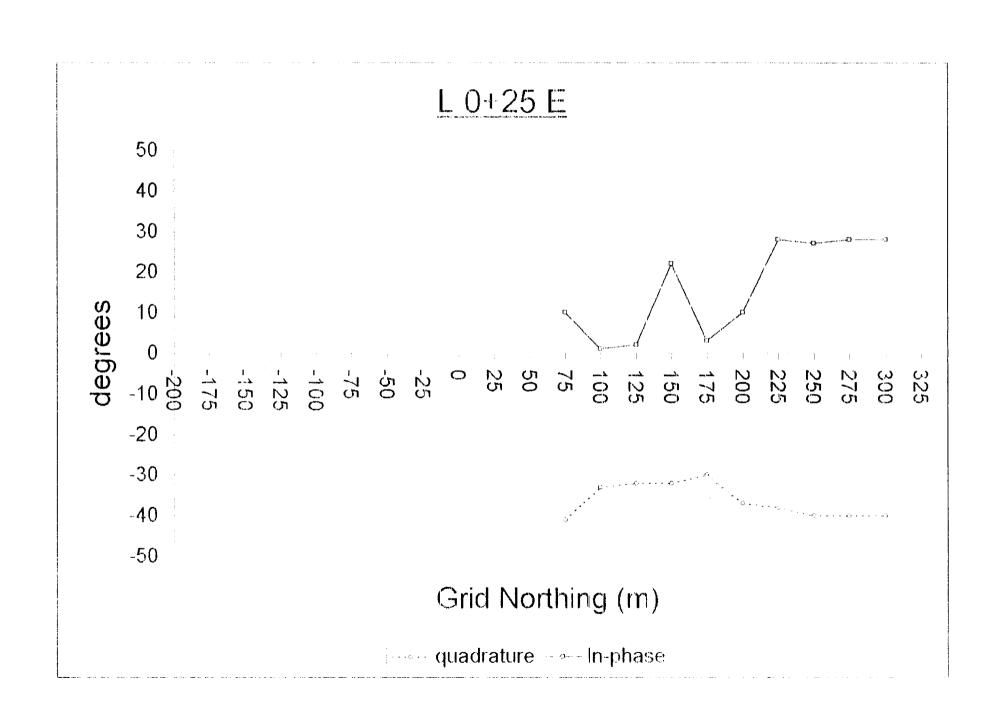

Station Easting	Line Northing	<u>In</u>	<u>Out</u>	<u>m1+m2</u>	Filtered Value (z)	Plot Point (x)	Plot Point (y)
150	150	16	-29	26	-19	150	162.5
150	175	10	-20	11	31	150	187.5
150	200	1	-14	7	64	150	212.5
150	225	6	-19	42	29	150	237.5
150	250	36	-31	71			
150	275	35	-33	71			
150	300	36	-41				

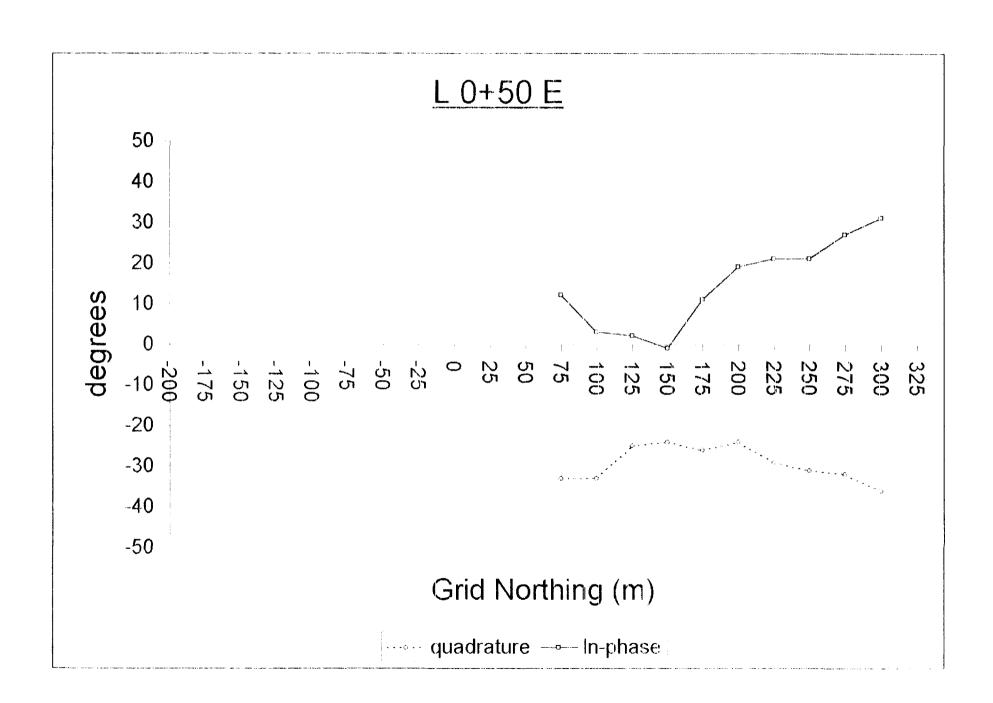


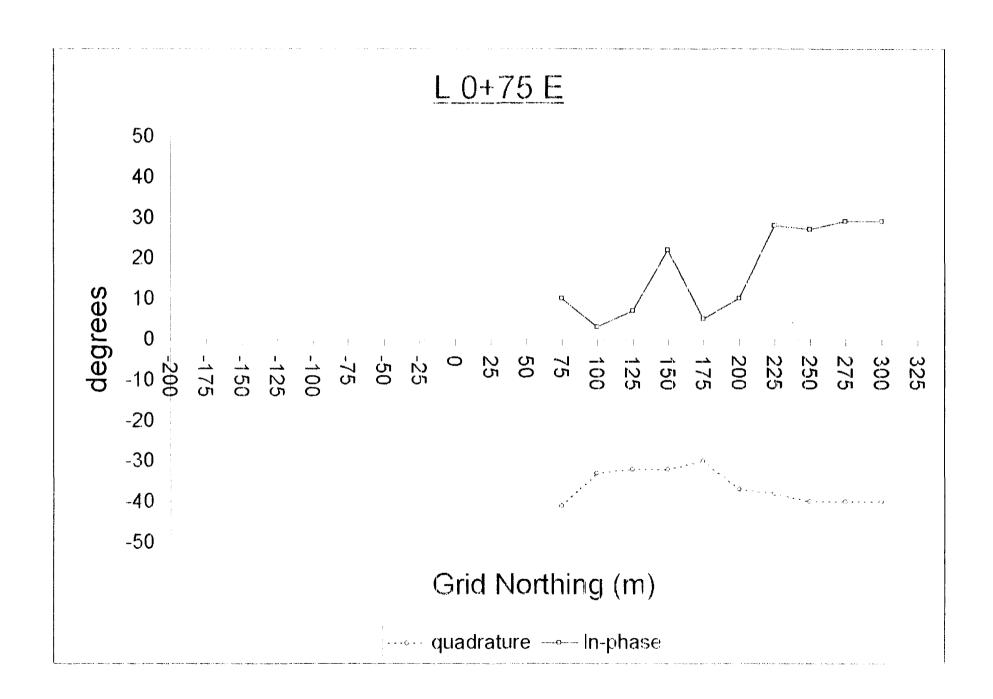

and the second second



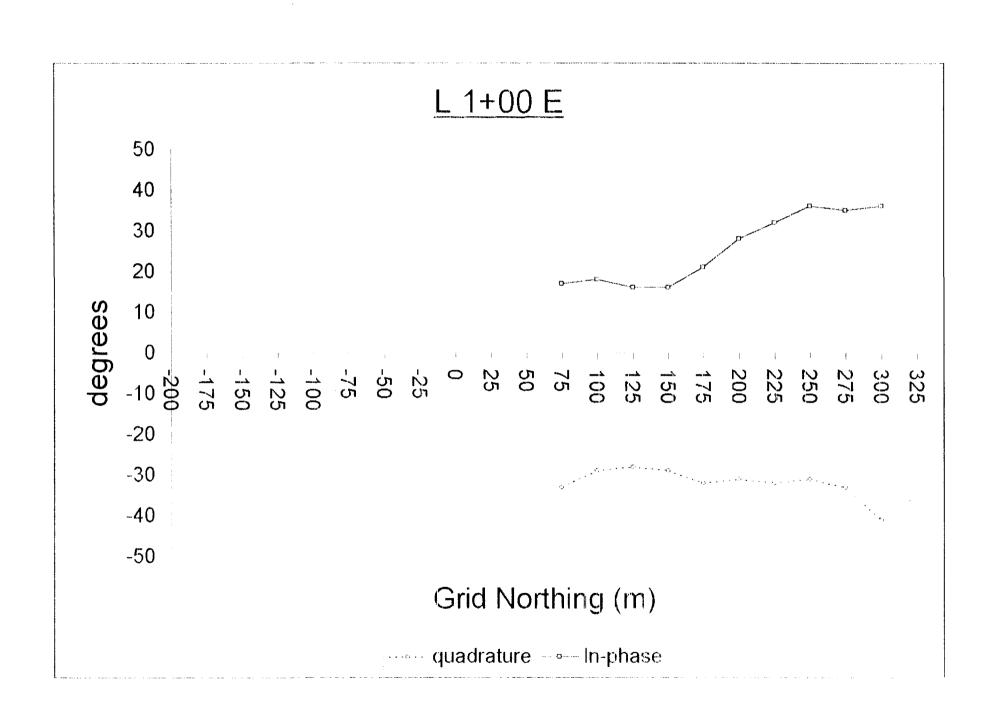
1 I I






ļ

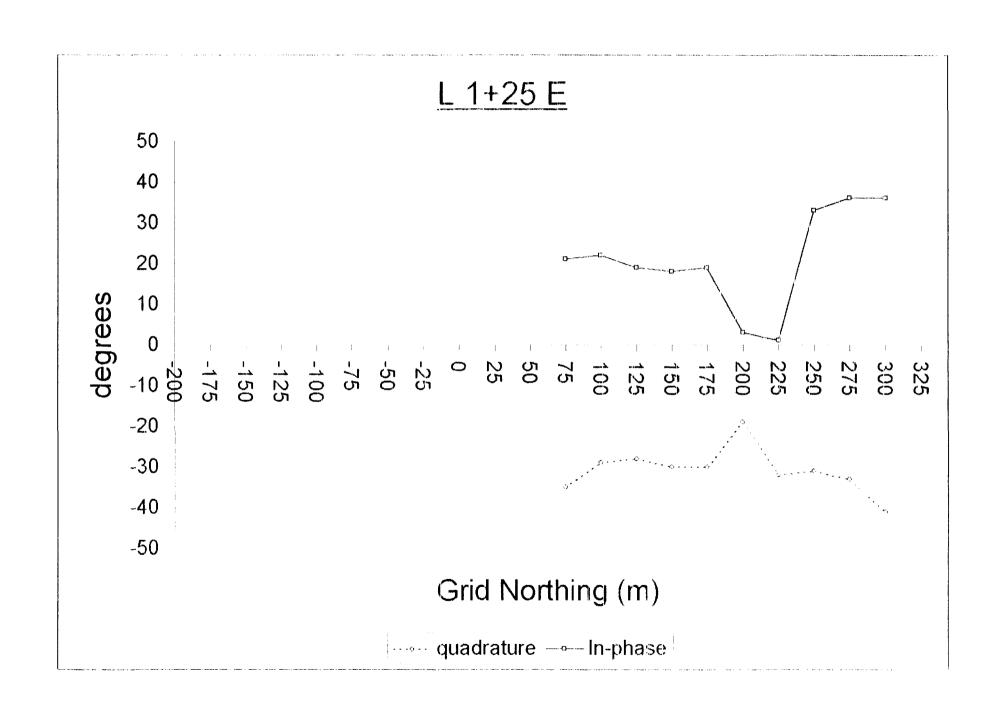
1

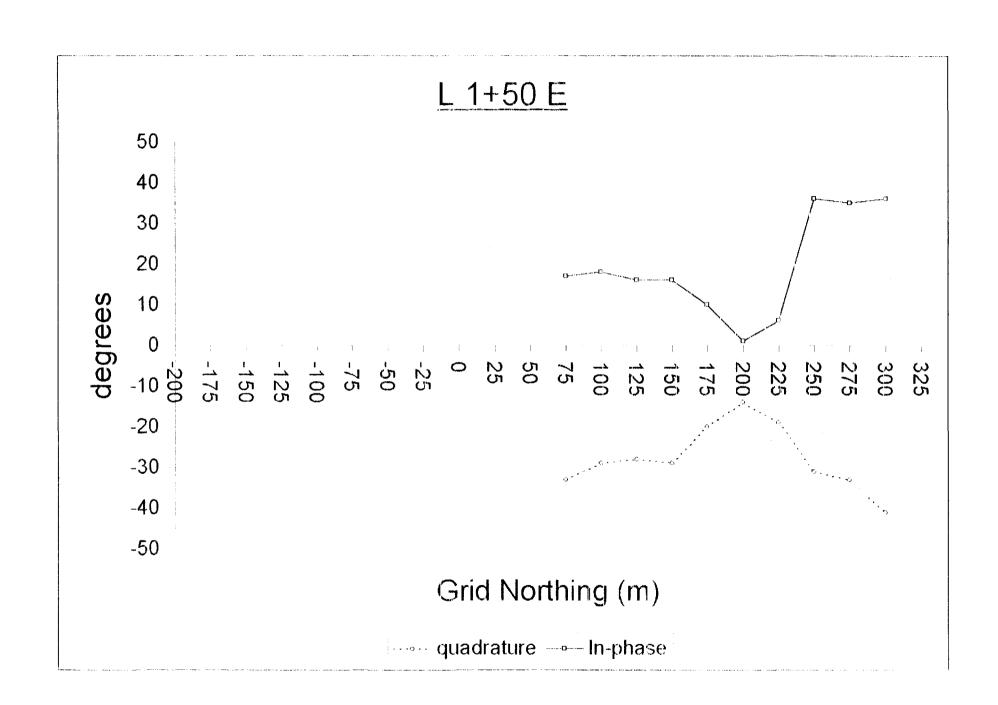

i

í

ţ

|




ł

Į.

}

1

ł

APPENDIX B

Technical Information relating to the Instrumentation

used in the Geophysical Surveys

Ground Magnetometer: Geometrics G-826 Proton Precession Magnetometer

VLF-EM: Geonics EM-16

EM16 SPECIFICATIONS

MEASURED QUANTITY

Inphase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticity).

SENSITIVITY

Inphase: ±150% Quad-phase: ± 40%

RESOLUTION

±1\$

OUTPUT Nulling by audio tone. Inphase indication from mechanical inclinometer and quad-phase from a graduated dial.

OPERATING FREQUENCY

15-25 kHz VLF Radio Band. Station selection done by means of plug-in units.

OPERATOR CONTROLS

ON/OFF switch, battery test push button, station selector switch, audio volume control, quadrature dial, inclinometer.

POWER SUPPLY

6 disposable 'AA' cells. 42 x 14 x 9cm

DIMENSIONS

WEIGHT

Instrument: 1.6 kg Shipping: 5.5 kg

PRINCIPLES OF OPERATION

GEONICS EM-16 (VLF)

The VLF-transmitting stations operating for communications with submarines have a vertical antenna. The Antenna current is thus vertical, creating a concentric horizontal magnetic field around them. When these magnetic fields meet conductive bodies in the ground, there will be secondary fields radiating from these bodies. (See Figures 3 & 4). This equipment measures the vertical components of these secondary fields.

The EM16 is simply a sensitive receiver covering the frequency band of the VLF-transmitting stations with means of measuring the vertical field components.

The receiver has two inputs, with two receiving coils built into the instrument. One coil has normally vertical axis and the other is horizontal.

The signal from one of the coils (vertical axis) is first minimized by tilting the instrument. The tilt-angle is calibrated in percentage. The remaining signal in this coil is finally balanced out by a measured percentage of a signal from the other coil, after being shifted by 90°. This coil is normally parallel to the primary field, (See instrument Block Diagram - Figure 2).

Thus, if the secondary signals are small compared to the primary horizontal field, the mechanical tilt-angle is an accurate measure of the vertical real-component, and the compensation 1/2-signal from the horizontal coil is a measure of the quadrature vertical signal.

Some of the properties of the VLF radio wave in the ground are outlined by Figures 4 thru 9.

ACCOMPANYING NOTES FOR FIGURES 2 - 9

FIGURE 2 is the block diagram of the EM16. The diagram is self-explanatory. Both the coils (reference and signal coil) are housed in the lower part of the handle. The directions of the axis of the coils are as follows: The reference coil axis is basically horizontal and is kept more or less parallel to the primary field during measurement. The signal coil is at right angles to the reference coil and its axis is, of course, vertical.

> The signal amplifier has the two inputs, one connected to the signal coil and one to the reference channel. By tilting the coils, the operator minimizes the signal from the signal (vertical axis) coil. Any remaining signal is reduced to zero by the quadrature control in the reference channel. The signal amplifier has zero output

1.0 GENERAL INFORMATION

I.I INTRODUCTION

The Model G-816 Portable Proton Magnetometer is a complete system designed for all man-carry field applications requiring simple operation and stable measurements of the total intensity of the earth's magnetic field. The G-816 is accurate and stable to within ±1 gamma over a range from 20,000 to 30,000 gammas. Since the instrument measures total field intensity, the accuracy of each measurement is independent of sensor leveling. Furthermore, the measurement is independent of sensor leveling. The independent of temperature, humidity, and sensor orientation. The inherent simplicity of the G-816 proton magnetometer allows rapid, accurate measurements to be obtained from a rugged, compart field instrument. This is a precision instrument and reasonable attention must be given to handling, battery condition, and magnetic environment.

1.2 MAGNETIC ENVIRONMENT

It is important that the earth's magnetic field is not obscured by allowing unwanted magnetic objects to come close to the sensor. Such objects include rings, keys, weiches, belt buckles, pocket knives, metal pencifs, sippers, some bats, etc. When the sensor is used on the staff, 1 gamma surveys are easily performed provided the sensor is kept at a distance of 3 feet from the operator. When the sensor is used in the backpack, certain articles of clothing and some types of batteries within the compole will cause a 5 to 10 gamma shift in readings. The G-816, however, still provides 1 gamma sensitivity and repeatability despite the presence of suck a base line shift. The backpack feature is recommended for use in difficult terrain where "hands free" operation is required.

Prior to survey use, objects that are suspected to be magnetic may be obscked in the following manner:

- 1. Attach sensor to <u>staff</u> and connect coiled signal cable to console. Sensor should not be moved or turned during the test, and the suspected article should be far away initially.
- Proton Gyromagnetic Ratio: (2.67513 ± 0.00002) x 10⁴ Radians/Gauss second.

- 2. Cycle the magnetometer a few times by depressing the READ instan--releasing--and waiting for a reading each cycle.
- Observe measurement readings. Each reading should repeat to ±1 gamma. (A slow shift may occur over several minutes due to a diurnal change in the earth's field.)
- 4. Place the suspected article at the distance from the sensor expected during actual survey operation.
- 5. Cycle magnetometer several times and note the readings.
- Remove the article and repeat steps 2 and 3 to check for diurnal shifts in the earth's field. If a diurnal shift is present, repeat entire test.
- If the readings obtained in step 5 differ by more than ±1 gamma (±ons count) from those obtained in steps 5 and 6, then the article is magnetic.

IF THE ARTICLE IS HIGHLY MAGNETIC, OR IF THE SENSOR IS INSIDE OR NEAR A BUILDING OR VEHICLE, THE PROTON PRE-CESSION SIGNAL WILL BE LOST, GIVING COMPLETELY ERRATIC READINGS AND LOSS OF A COUNT REPEATABILITY.

The magnetometer should not be operated in areas that are known sources of radio frequency energy, power line noise (transformers), in buildings or near highly magnetic objects. The sensor should always be placed on the staff above the ground, or in the "backpack". The sensor will NOT operate properly when placed directly on the ground,

1.3 SPECIFICATIONS

Sensitivity;	±1 gamma throughout range
Range:	20, 000 to 90, 000 gammas (worldwide)
Tuning:	Multi-position switch with signal ampli- tude indicator light on display
Gradient Tolerance;	Exceeds 800 gammas/ft
Sampling Rate:	Manual pushbutton, one reading each 5 seconds.

)persting Manual alodel G-616 Portable Proton Magnetometer

Output:	δ digit numeric display with readout directly in gammas
Power Requirements:	Twelve self-contained 1.5 volt "D" cell universally available flashlight-type batteries. Charge state or replacement signified by flashing indicator light on display.
Temperature Range:	Console and sensor: -40° to +85°C
	Battery pack: 0 ⁹ to +50 ⁹ C (limited use to -15 ⁹ C; lower temperature bettery belt operation optional)
Accuracy (Total Field):	± 1 gamma through 0^0 to $\pm 50^0$ C temperature range
Sensor:	High signal, noise cancelling, interchangesbly mousted on separate staff or attached to back pack
Size :	Console: 3.5 x 7 x 11 inches (9 x 18 x 28 cm) Sensor: 3.5 x 5 inches (9 x 13 cm) Staff: 1 inch diameter x 8 ft, length (3 cm x 2.5 m)
Weight:	Console (w/batteries):Lbs.Kgs.Sensor and signal cable:41.8Aluminum staff: $\frac{2}{11.5}$ $\frac{.9}{5.2}$

When received from the manufacturer, the G-816 magnetometer should include the following items:

1.	G-816 magnetometer console	1 es.ch
2.	Sensor	1 each
3.	Collapsible sensor staff	1 each
4.	Signal_cable-staff (long)	1 each
5.	Signal oable-backpack (short)	1 each
6.	Adjustable carrying barness	1 such

APPENDIX C

Assay Certificates

(Accurassay Assay Labs, Thunder Bay, Ontario)

ACCURASSAY LABORATORIES

DTE Exploration & Development 225 Femdale Ave. Sudbury, Ontario P3B 3C2 Fax (705) 522-2951 Att'n: Scott Jobin-Bevans

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P78 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

Dec 15, 1998

Job# 9841168

SAM	PLE#	Palladium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
_		<10	<5	<15
1	HS98-1		<5	<15
2	HS98-2	<10		<15
3	HS98-3	<10	<5	
4	HS98-4	<10	<5	<15
4 5 6	HS98-5	<10	<5	<15
6	HS98-6	<10	<5	<15
7	HS98-7	<10	<5	<15
8	HS98-8	<10	<5	<15
9	HS98-9	<10	<5	<15
10	HS98-10	<10	28	<15
	ck HS98-10	<10	9	<15
12	HS98-11	<10	<5	<15
13	HS98-12	<10	6	<15
14	HS98-13	<10	<5	<15
15	HS98-14	<10	<5	<15
16	HS98-15	<10	<5	<15
17	HS98-16	<10	7	<15
	HS98-17	<10	8	<15
18	HS98-18	<10	10	
19		<10	12	
20	HS98-19	<10	9	
	ck HS98-19	<10	10	
22	H\$98-20	<10	21	
23	HS98-21		<5	
24	H\$98-22	<10	~0	-10

Certified By:

UNIT 2 78 603 23-6820		;	DTE Explor 225 Fernde Nuthur: 0	LA AVE	Nachman	I				•	kn 22, 198	9					
N. N			Suib ury, () P 38 3 C2								t o #064 11	61					
		(Facx (705) 5	22-291													
M DRIVE TARIO (807) 5 (807) 5																	
PHONE (8	SAMPLE#	Ag	A	A	8	Be	5 e	8	Ca	Cđ	Co	Cr	Cu	Fa	ĸ	La	
I L L L		Indu	5	ppit	p <i>pm</i>	ppm	Man	opin	%	opm	jąpati	ppm	PPM	*	*	рра	
	S98-1	<.3	0.35	18	37	240	02	3	0.26	1.2	8	25	•44	0.84	0.04	7	
THUNDER	S98-2	<3	0.81	17	38	130	0.3	4	0.22	1.0	10	49	:14	1.79	0.05	ģ	
1~Z H	598-3	<.3	J.66	25	30	72	02	4	0.16	1.1	7	33	130	1.30	0.04	5	
H E H	S98-4	<.3	0.34	15	36	75	0.2	4	0.23	1.1	6	27	125	0.75	0.03	11	
	598-5	< 3	0.25	21	39	149	0.2	4	0.23	1.6	6	23	138	0.35	0.05	8	
	998-6	<.3	U.50	21	37	127	0.2	4	0.34	1.6	0	- 44	129	0.75	0.05	7	
	\$98-7	04	0.66	22	40	100	0.2	4	0.21	1.6	8	69	162	1.19	0.05	10	
	598-8 1598-9	<.3	0.38	19	46	111	0.2	ব	0.16	1.3	7	24	103	0.77	0.05	8	
	5 86-1 0	< 3 <.3	0. 42 0.33	22 22	34 38	108 165	02	4	0.15	1.5	8	25	198	0.95	0.06	6	
	S98-11	<.3	0.35 0.35	X	35	116	0.2 0.2	0 0	0.26 0.18	1.4 2.0	11 7	28 21	194 192	0.82 0.77	0.05 0.06	8	
	S98-12	<.3	0.60	35	26 26	72	0.2	3	0.19	1.4	9	21 35	, ær 221	1.43	0.05	6 6	
H	598-13	0.7	0.51	22	29	161	02	3	0.22	1.5	10	31	151	1.33	0.05	8	
	S98-14	<.3	J.64	32	37	34	0.2	<3	0.12	1.2	6	28	- 89	0.88	g.04	5	
H	S98-15	<.3	133	13	33	26	0.2	<3	0.17	1.0	6	29	84	0.59	Q.03	10	
H		Ng	Ma	Mc	No	Ni	₽	Pb	30	84	5	50	Sr.	FI	v	w	Zn
			ppm	Depit r	5	ppm	opm	april	pp m	opm	*	ppm	ppm	56	ppm	gem .	
								_				-				•••	
	IS98-1 IS98-2	0.10	198	4	0.02	143	334	117	<2	ব	0.05	<5	20	0.03	18	4	42
	596-2 596-3	0.31 0.1 6	273 108	2	0.02 0.02	101	617	91	2	4	0.04	<5	15	0.06	31	2	48
	596-4	0.08	97	2	0.02	80 109	9 89 471	59 87	2	থ থ	0.04 0.04	<5 <5	11	0.05	29	2	30
	598-5	0.04	36	ĩ	0.02	105	635	89	なな	ও	0.04	ে	15 22	0.03 0.01	15 10	22	32 49
	598-6	0.13	189	4	0.02	102	153	6 5	V V	<5	0.05	5 6	23	0.03	18	4	49 62
	\$98-7	0.30	154	2	0.02	116	289	104	<2	<5	0.04	5	13	0.02	29	Å	46
H	598-8	0.06	75	2	0.02	108	105	106	2	<5	0.04	<5	14	0.03	21	2	41
н	S98-9	0.06	78	3	0.02	157	605	132	ā	<5	0.04		13	0.03	18	<2	55
	S98-10	0.06	144	e	0.02	218	617	192	ą	<5	0.04	<5	20	0.02	14	<2	70
	S96-11	0.05	144	2	0.02	175	464	211	2	ব	0.05	<5	11	0.02	11	<2	46
	S98-12	0.F2	239	3	0.02	198	964	156	2	ব	0.04	ব	11	0.04	27	<2	68
	596-13	0.11	177	2	0.02	224	297	129	2	ব	0.04	ৰ্ণ	15	0.05	29	<2	59
	S98-14	0.07	74	1	0.02	133	931	83	2	<5	0.04	4	7	0.03	15	<2	30
н	\$98-15		46	1	0.02	97	601	69	<2	<5	0.03	<5	10	0.03	11	4	28
C	ertified By/_		2	-													
	1-	IND		Do													

)

										Page 2	2						
			DTE Explor		velapment	I											
UNIT 2 78 663 23-6448	5	:	225 Femdel	e Ave.							lan 22, 189	8					
Ê Q Ž		1	Budbury, Qi														
585.	n	I	P38 3C2							J	ab 1004 11	ee .					
ພີ່ເຜັບ	0	1	Feet (785) \$	22-2961													
	2																
<u>a</u> rge	3																
5202	SAMPLES	Aq		As	8	Be	Be	Bi	Ca	Cd	Co	Cr	Ċu	Fe	ĸ	La	
PHONE (307)	Ľ	spm	5	ppen	PPR	ppm	ppm.	<u>ppra</u>	%	ppm	pp m	ppm	pp m		*	ppm	
SSE .	10000 44							-			_				_		
રેટ્ર		<.3	0.37	23	33	87	0.2	ব	0.19	1.3	7	26	217	0.61	0.05	9	
28	HS96-17	<.3	0.47	23	30	101	0.2	4	0.22	1.1	10	31	235	1.00	Q. 05	7	
S	H\$98-18	<.3	0.38	18	33	107	0.2	4	0.13	0.9	8	25	156	0.70	0.09	8	
THUNDER	H\$98-19	<.3	0.44	31	32	178	0.2	4	0.21	1.7	11	33	449	1.03	0.09	10	
•	HS98-20	<.3	0.33	14	33	146	0.1	4	0,18	1.2	9	29	100	0.78	0.08	8	
	HS96-21	<.3	0.56	18	32	46	0.1	4	0.27	0.7	5	35	136	0.91	0.04	2	
	HS98-22	<.3	0.46	19	34	82	0.2	4	0.18	2.1	6	29	314	0.60	0.04	6	
		Ma	Min	Min	Ne		β	A		5	Si	5.	Ş.r	ħ	v	-	
		Mg %	Mn	Mic open	tia 5	jagi na	P	Pa	55 1691	Se pain	Si	Sn Bern	Sr	n M	V	W	
		16	ppm			ррго	P ppm	Pe Qem	Sb ppm	Se ppm		Sn ppm	Sr ppm	ה א	V 3¢m	W ppm	
	H S98-16	% 80.0	рет 58	ppm 1	% 0.02	ирито 150	pp m <10	ррт 105	ppm <2	pprn <5	% 0.03	pp m <5	99m 12	% 0.03		ppm <2	
	H\$98-17	% 0.08 0.08	ррлт 58 112	ярт 1 <1	• 0.02 0.02	ррио 150 247	99m <10 547	арт 105 161	ppm ♀ ♀	9997 (5	% 0.03 0.04	চ ়ন্দ ব্য ব্য	ррт 12 16	% 0.03 0.03	99m 17 17	ррт <2 <2	
	HS98-17 HS96-18	% 0.08 0.08 0.05	ррлт 58 112 115	ррт 1 <1 <1	% 0.02 0.02 0.02	ррпо 150 247 180	99m <10 547 904	ρρπ 105 161 †16	афи 7 7 7 7	ምጣ የ	% 0.03 0.04 0.04	ጸ ም የ የ የ የ	ррт 12 16 18	% 0.03 0.03 0.02	99m 17	y pm V V V V	
	HS98-17 HS96-18 HS98-19	% 0.08 0.05 0.07	50 112 115 129	ярт 1 <1 1 2	% 0.02 0.02 0.02 0.02 0.02	дрио 150 247 180 294	<10 547 904 1047	арт 105 161	AAAA AAAA	ያም ላላኋላ	% 0.03 0.04 0.04 0.03	ያ ይ ይ ይ ይ ይ	ppm 12 16 18 73	% 0.03 0.03	99m 17 17	8000 8000	
	HS98-17 HS98-18 HS98-19 HS98-20	% 0.08 0.05 0.07 0.06	50 112 115 129 127	مترم 1 1 1 1 2 2	• 0.02 0.02 0.02 0.02 0.02	ррию 150 247 180 294 212	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	ρρπ 105 161 †16	AAAA	ጅ የ ልቆልል	% 0.03 0.04 0.04	ድ ଦେବଦଦ	ррт 12 16 18	% 0.03 0.03 0.02	99m 17 17 13	00000 1	
	HS98-17 HS96-18 HS98-19	% 0.08 0.05 0.07	50 112 115 129	ярт 1 <1 1 2	% 0.02 0.02 0.02 0.02 0.02	дрио 150 247 180 294	<10 547 904 1047	ррт 105 161 116 169	AAAA AAAA	ያም ላላኋላ	% 0.03 0.04 0.04 0.03	ያ ይ ይ ይ ይ ይ	ppm 12 16 18 73	% 0.03 0.03 0.02 0.02	99m 17 17 13 14	8000 8000	

Certified By 0

ICA ITE PEN

ł

ł

ACCURASSAY LABS 13:21

JAN-28-1999

PAGE

63

1

6046882582

64/85/1994 81:84

97%

1070 LITHIUM DRIVE. UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820		225 Fe	rndale. ry, Onta 22	Ave. Irio	velopme	mt							Page 1 Jan 14, Job #98		
	AI2O3 %	BaO %	CeO %	Cr2O3 %	Fe2O3 %	к20 %	MgO ¥	MnO %	Na20 %	P2O5 %	SiO2 %	SrO %	Ti02 %	LOI %	Tot
44562 44565			7.71 10.12	0.008 0.045	14.03 9.85	0.35 0.21	6.68 14.39	0.175 0.200	1. 40 1.11	<.001 0.889	49.29 52.39	0.021 0.013	0.54 0.35	3.4 0.5	96.6 100.8
44562 44565															
	\bigwedge] -	2	E1											

ł

1

ł

-

PAGE 83

1

}

1070 LITHIUM DRIVE, UNIT 2 Page 1^{THUNDER BAY, ONTARIO P78 6G3 PHONE (807) 623-6448 FAX (807) 623-6820}

DTE Exploration & Development 225 Femdale Ave. Sudbury, Ontario P3B 3C2 Fax (705) 522-2951 Att'n: Scott Jobin-Bevans

Dec 15, 1998

Job# 9841167

SAM	PLE #	Palladium	Goid	Piatinum
Accurassay	Customer	ddd	рръ	ррь
1	44558	<10	<5	<15
2	44559	39	41	<15
3	44560	44	40	<15
4	44561	<10	89	<15
5	44562	<10	82	<15
6	44563	13	124	<15
7	44564	11	113	<15
.8	44565	14	12	<15
9 Chec		14	16	<15

Certified By:

									Page 1						
	C	DTE Explore	etion & De	velopmeni	t						•				
	2	225 Ferndal	e Ave.												
		Su dbury , Or	ntario							lan 14, 199	9				
		P3B 3C2													
	F	Fax (705) 53	22-2951							iob #98411	67				
SAMPLE #	Ag	A	As	8	Be	Be	Bi	Ce	Cd	Co	Cr	Cu	Fe	к	Le
	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	*	*	ppm
44558	<.3	0.68	<2	6	70	<.1	<3	0.12	<.5	3	270	23	1.32	0.15	<1
44559	<.3	2.05	25	<5	26	<.1	<3	0.81	<.5	42	94	802	3.80	0.06	<1
44560	0.7	2.04	9	7	23	<.1	<3	0.68	<.5	76	68	1046	4.47	0.05	<1
44561	0.9	2.01	6	8	21	0.1	<3	0.74	1.2	38	27	5832	4.84	0.04	<1
44562	0.9	1.82	<2	15	18	<,1	<3	0.67	1.1	82	28	9359	5.34	0.04	<1
44563	1.3	1.84	<2	15	19	0.1	<3	0.63	3.3	119	45	9060	7.06	0.05	<1
44584	0.9	1.70	<2	17	17	0.1	<3	0.63	2.1	148	36	8939	7.32	0.04	<1
44565	<.3	3.67	2	10	37	<.1	<3	2.21	<,5	9	58	318	1.11	0.09	<1
	Mg	Mn	Мо	Ne	Ni	P	Pb	Sb	Se	Si	ŝn	Sr	Ťi	v	w
	Mg %	Mn ppm	Мо ррт	Ne %	Ni ppm	P ppm	РЪ ррт	Sb ppm	Be ppin	Si %	Sn pipm	Sr ppm	Ti %	V Ppm	W ppm
44558							-							ppm	pp m
44559	%	ppn	þpm	%	ρpm	ppm	ppm	ppm	ppm	%	ррпэ	pp in	% <.01		ррт <2
44559 44560	% 0.45	ppm 554	۵ рт 1>	% 0.05	ppm B	ppm 1042	ppm 4	ppm <2	ppm <5	% 0.04	рртэ <5	ррип 5 41	*	ррт 16	ррт <2 <2
44559 44560 44561	% 0.45 1.41	ppm 554 494))ppm <1 1	% 0.05 0.06	ррт 8 427	ppm 1042 349	ррт 4 10	ppm <2 <2	ppm <5 <5	% 0.04 0.04	ррт <5 <5	ррип 5	% <.01 0.14 0.14	ppm 16 60	ppm <2 <2 <2
44559 44560	% 0.45 1.41 1.48	ppm 554 494 535	۵۹۶۳ ۲ ۲ 2	% 0.05 0.06 0.06	ррт 8 427 671	ppm 1042 349 1371	9pm 4 10 <2	ppm <2 <2 <2	99m <5 <5 <5	% 0.04 0.04 0.04	ррт <5 <5 <5	ррил 5 41 30 28	% <.01 0.14 0.14 0.23	ррт 16 60 60 124	ррт <2 <2 <2 <2
44559 44560 44561	% 0.45 1.41 1.48 1.18	ppm 554 494 535 448	۶pm 1 2 2	% 0.05 0.06 0.08 0.06	ррт 8 427 671 680	ppm 1042 349 1371 1017	4 10 2 3 2	ppm <2 <2 <2 <2 <2	ppm <5 <5 <5 <5	% 0.04 0.04 0.04 0.05 0.07	ррт <5 <5 <5 <5 <5 <5	ррт 5 41 30 26 26	% <.01 0.14 0.23 0.18	ррт 16 60 60 124 67	ррт <2 <2 <2 <2 <2 <2 <2 <2 <2
44559 44560 44561 44562	% 0.45 1.41 1.48 1.18 1.18 1.17	ppm 554 494 535 448 451	۶рт 1 2 2 3	% 0.05 0.06 0.06 0.06 0.06	ррт 8 427 671 680 1119	ppm 1042 349 1371 1017 1005	₽₽m 4 10 <2 3	ppm 2 2 2 2 2 2 2 2 2 2 2	ppm <5 <5 <5 <5 <5	% 0.04 0.04 0.04 0.04 0.05	ррт <5 <5 <5 <5	ррил 5 41 30 28	% <.01 0.14 0.14 0.23	ррт 16 60 60 124	ррт <2 <2 <2 <2

Certified By:

i

ACCURASSAY LABORATORIES A DIVISION OF ASSAY LABORATORY SERVICES INC.

1

PAGE

ł

1

ł

]

Ø2

R ACCURASSAY LABORATORIES

A DIVISION OF ASSAY LABORATORY SERVICES INC.

Goldwright Explorations RR #1 Markstay, Ontario POM 2G0 Fax (705) 522-2951 Att'n: C. Lilly 1070 LITHIUM DRIVE, UNIT 2 Page 2HUNDER BAY, ONTARIO P78 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

Oct. 15, 1998

Job# 9840799

SAMP	LE#	Palladium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
30	50441	26	17	34
31 Check	50441	28	18	29
32	50442	26	12	38
33	50443	34	13	<15
34	50444	<10	33	<15
35	50445	<10	<5	<15
36	50446	<10	<5	<15
37	50447	<10	6	<15
38	50448	<10	6	<15
39	50449	27	18	34
40	50450	12	<5	19
41 Check		13	<5	19
42	50451	44	7	40
43	50452	<10	<5	<15
44	50453	14	8	20
45	50454	22	10	18
46	50455	34	33	57
47	50456	<10	<5	<15
48	50457		1023	
49	50458		391	
50	50459	<10	10	<15
51 Check	50459	<10	7	17
52	50460	<10	5	<15
53	50461	43	11	36
54	50462	<10	6	16
55	50463	26	121	24

Bare Certified By:

X ACCURASSAY LABORATORIES

A DIVISION OF ASSAY LABORATORY SERVICES INC.

Goldwright Explorations RR #1 Markstay, Ontario POM 2G0 Fax (705) 522-2951 Att'n: C. Lilly 1070 LITHIUM DRIVE, UNIT 2 Page 2HUNDER BAY, ONTARIO P78 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

Oct. 15, 1998

Job# 9840799

SAM	PLE #	Copper	Nickel	Cobalt
Accurassay	Customer	ppm	ppm	ppm
30	50443	123	161	32
31	50444	151	43	15
32	50445	154	39	22
33	50446	139	32	17
34	50447	247	57	11
35	50448	285	88	19
36	50449	443	176	26
37	50450	125	40	11
38	50451	108	65	15
39	50452	136	49	22
40	50453	285	100	16
41	50454	598	263	30
42	50455	1371	381	37
43	50456	107	35	14
44	50457	>10,000	947	8
45	50463	>10,000	1006	39

Dee Certified By:

(D) Optorio Ministry of	Declaration of Assessment	Work	Transaction Number (office use)
Ontario Ministry of Northern De and Ministry	Performed on Mining Land		W0070.00219
	Mining Act, Subsection 65(2) and 66(3),	R.S.O. 1990	Assessment Files Research Imaging
	ie assesment work and co	and Mines	ning Act. Under section 8 of the Mining Act. the mining land holder. Questions about this <u>1 Eloor, 933</u> Ramsey Lake Road, Sudbury.
41109NW2012 2.20691 JANES	900	R	OVINCIAL RECORDING OFFICE - SUDBURY ECEIVED
Instructions: - For work performed - Please type or print 1. Recorded holder(s) (Attach a	The second se	(A.M.	0.NOV 0 8 2000 17:00 m p.m. 911011112111213141516
Name Gold WRYGHT	Exclorations lic	Client Numt	\$ 5 7 4
Address General D	elivers		-967-0216
Hagan On	+ -	Fax Number	als scar
Name		Client Numt	ber in the second se
Address	······	Telephone I	Number
		Fax Numbe	r
2. Type of work performed: Che	eck (✓) and report on only ONE of the followir	g groups for	
Geotechnical: prospecting, su assays and work under sectio			Rehabilitation s
			Office Use
Live culling	stripping Goophysics opting trepching	Commodit	у
sal sal sal	pling terpichurg	Total \$ Va Work Clair	
Dates Work Frein	rear 98 To Day 31 Month Year 99		
Performed Day 17 Month 05 Y Global Positioning System Data (if available)	Township/Area	Mining Div	ision Cardha Da
	Mor G-Plan Number	Resident (Beologist Sudburg
- complete ar - provide a m	per notice to surface rights holders before stand attach a Statement of Costs, form 0212; ap showing contiguous mining lands that are copies of your technical report.	•	ssigning work;
3. Person or companies who p	repared the technical report (Attach a list if	necessary)	
		Telephone	
Address DOC F	2 - Bevans ale Ave Sudbury	Fax Numbe	- 674- 5888
Name 225 FERNOL	ale Hue Judbury	705 Telephone	<u> </u>
Address		Fax Numbe	
Name			
·		Telephone	
Address		Fax Numbe	······································
4. Certification by Recorded Ho I,	bider or Agent <u> <u> </u> <u> </u> , do hereby certify that I have</u>	personal kn	owledge of the facts set forth in
this Declaration of Assessment Wo completion and, to the best of my k	rk having caused the work to be performed o nowledge, the annexed report is true.		the same during or after its
Signature of Recorded Holder or Agent Agent's Address	Bin Ward		Date NOV 7/00 Fax Number - 705-967-0598
(ENERAL DEL			- 705-967-0598
POM	RECE	IVED	ז
	NOV	8 2000	
	GEOSCIENCE		NT
	LY	الوب بجنوبية بمسالة بالمترجين	-

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

	•	WOUTO.O	2219	ົງ	9060	1
work work work work work work work work	g Claim Number. Or if was done on other eligible ig land, show in this in the location number ated on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	• Value of work assigned to other mining claims.	Barik. Value of work to be distributed at a future date
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
1	1230296	16	8412	6100		2012
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
	Column Totals					

1. BRIAN James	WRIGHT	, do hereby certify that the above work credits are eligible under
(Print Full Name)		

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing	Date	8/	2006
		<u> </u>	

6. Instruction for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- □ 3. Credits are to be cut back equally over all claims listed in this declaration; or
- **4**. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only			
Received Stamp		Deemed Approved Date	Date Notification Sent
		Date Approved	Total Value of Credit Approved
0241 (03/97)		Approved for Recording by Minin	ig Recorder (Signature)
0241 (03/97)	RECEIVED		
	NOV 0 8 2000		
	GEOSCIENCE ASSESSMENT		
	OFFICE		

Ministry of Northern Development and Mines

Statement of Costs for Assessment Credit

Transaction Number (office use)

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

	1	······	·····
Work Type	Units of Work Depending on the type of work, list the number of hours/days worked, metres of drilling, kilo- metres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
LINECUHING	13 Km	350/KM	6300
PROSPECTING	6 days	150/das	900
Geological Mapping	9 days	300/day	1300
Report @ MITING	3 day	300/day	900
Drilling + Rlusting	,		1552.67
Geological Assistant	10 days	150/day	1500.00
		.)	
Associated Costs (e.g. supplies,	mobilization and demobilization).		
Assays			861.16
Water pump and	hose pental		230.00
	P	OVINCIAL RECORDING)
	F	ECEIVED	
		NOV 0 8 2000	
Transp	ortation Costs ?[8	. /∂∶oo ≁~y. P.M. 9 0 1] 12 1 2 3 4 5 6	
2100 km	. (,		630.00
Food a	nd Lodging Costs		
12 days	at 60/day		2100
)		
	Total Value o	f Assessment Work	16824

Calculations of Filing Discounts:

- 1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work. 2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total
- Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	16829	× 0.50 =	8412	Total \$ value of worked claimed.
--------------------------------	-------	----------	------	-----------------------------------

Note:

- Work older than 5 years is not eligible for credit.

- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

I, BRIAN Jan (please print	full name)	certify, that the amounts shown	are as accurate as may
reasonably be determin	ed and the costs were incurred w	while conducting assessment worl	k on the lands indicated on
the accompanying Decl		RESIDENT holder, agent, or state company position with si	igning authority)
to make this certification	RECEIVED		
0212 (02/96)	NOV 0 8 2000 GEOSCIENCE ASSESSMENT	Signature Brow Vugle	Nov 8/00

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

December 22, 2000

Brian Wright GOLDWRIGHT EXPLORATIONS INC GENERAL DELIVERY HAGAR, ONTARIO P0M-1X0

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mismnpge.htm

Dear Sir or Madam:

Submission Number: 2.20691

Status

Subject: Transaction Number(s):

W0070.00219 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

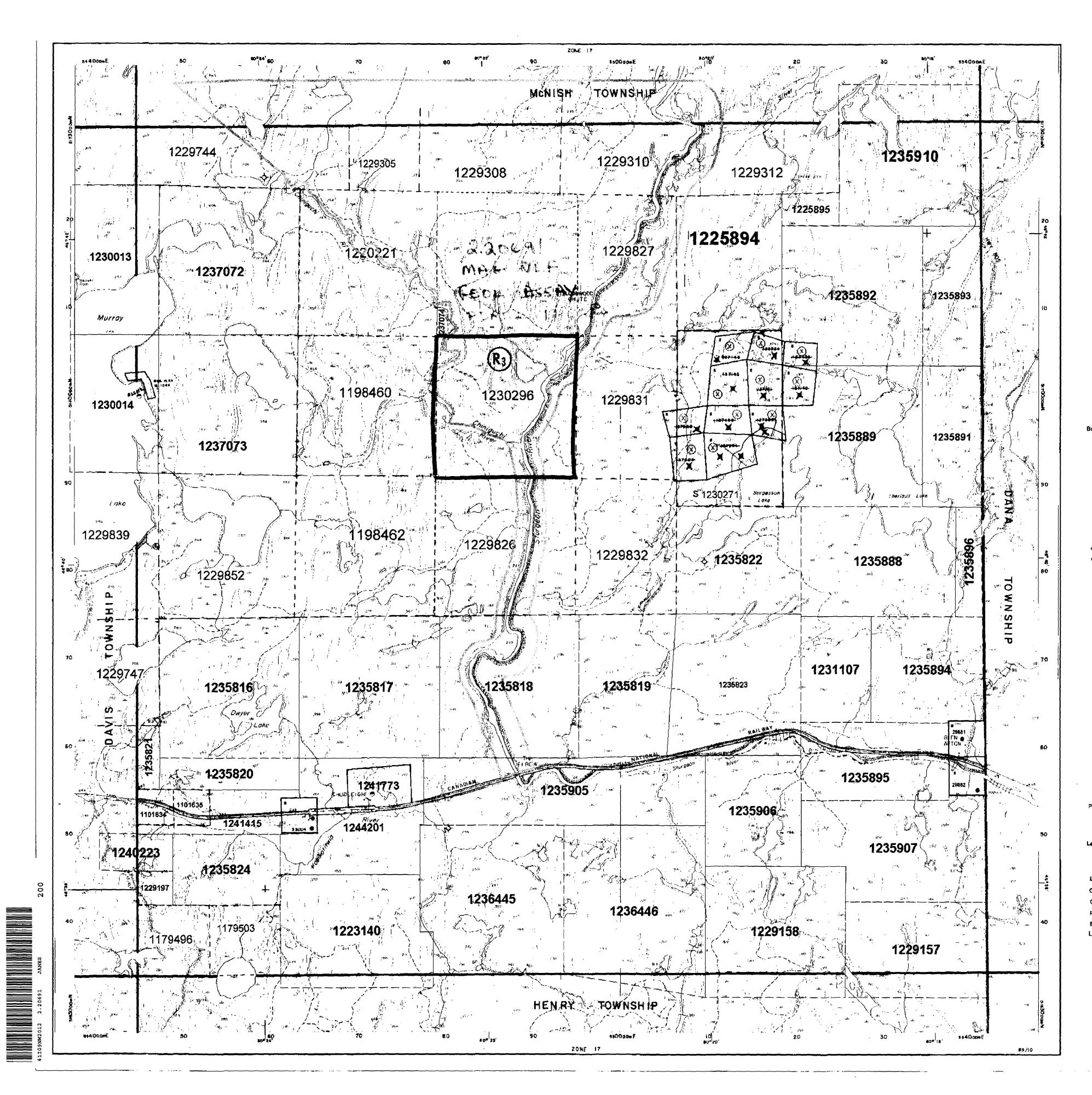
If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact JIM MCAULEY by e-mail at james.mcauley@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

fucille Jerome


ORIGINAL SIGNED BY Lucille Jerome Acting Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 15542 Copy for: Assessment Library

Work Report Assessment Results

Submission Num	iber: 2.20691			
Date Correspond	lence Sent: Decemi	ber 22, 2000	Assessor:JIM M	CAULEY
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date
W0070.00219	1230296	JANES	Approval	December 21, 2000
	- OSP AG LF	sessment work performed on the min	ing lands noted in this work re	eport may be subject to inspection and/or investigation
at any time.	4		Pasardad Uald	lar(a) and/or Acont(a);
Correspondence Resident Geologis Sudbury, ON			Brian Wright	ier(s) and/or Agent(s): EXPLORATIONS INC RIO

Assessment Files Library Sudbury, ON

P	Ministry of Natural
\mathbf{Y}	Resources
ntario	

Ministry of Northern Development and Mines

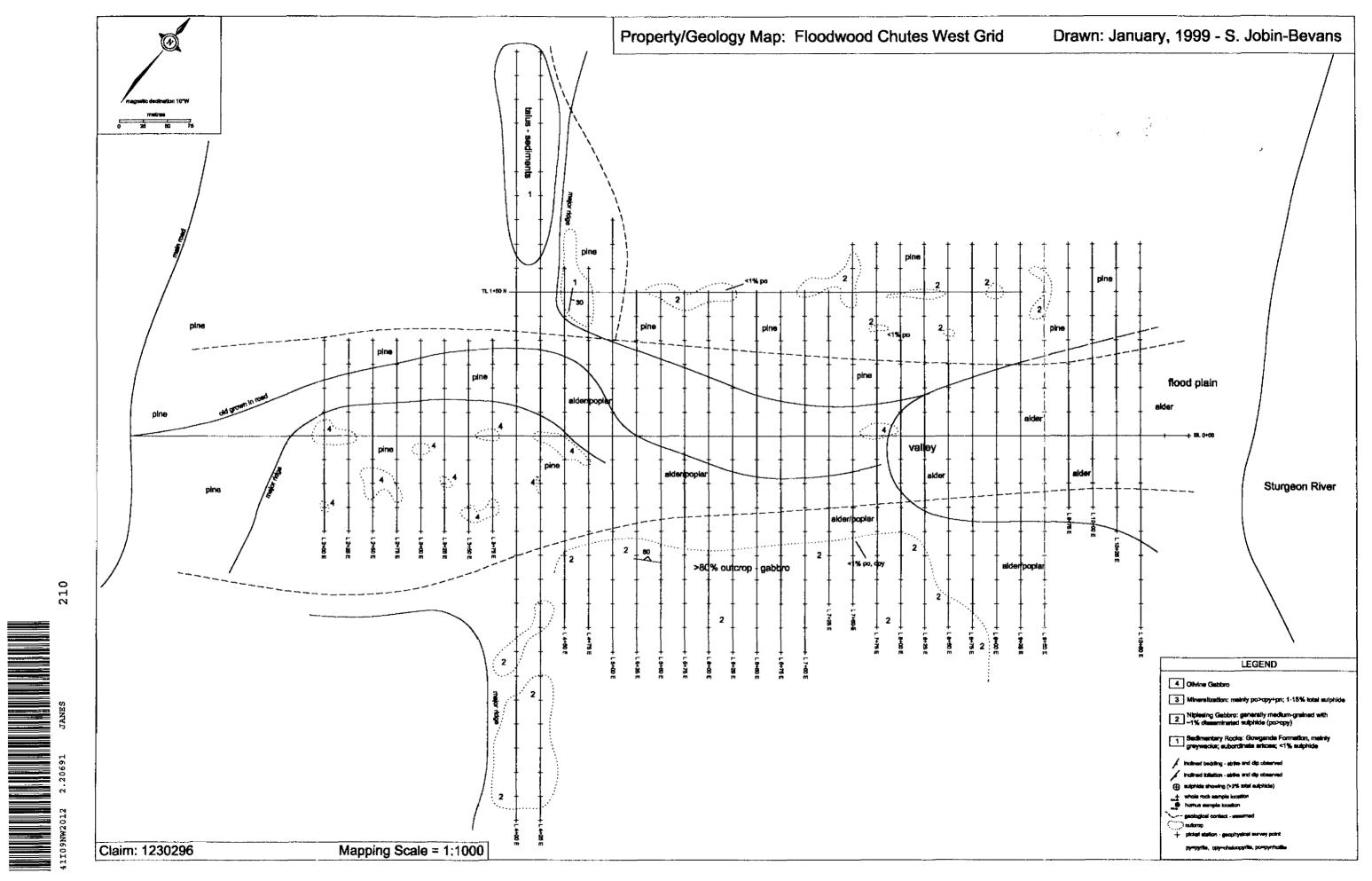
INDEX TO LAND DISPOSITION

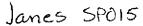
PLAN G-2907 TOWNSHIP

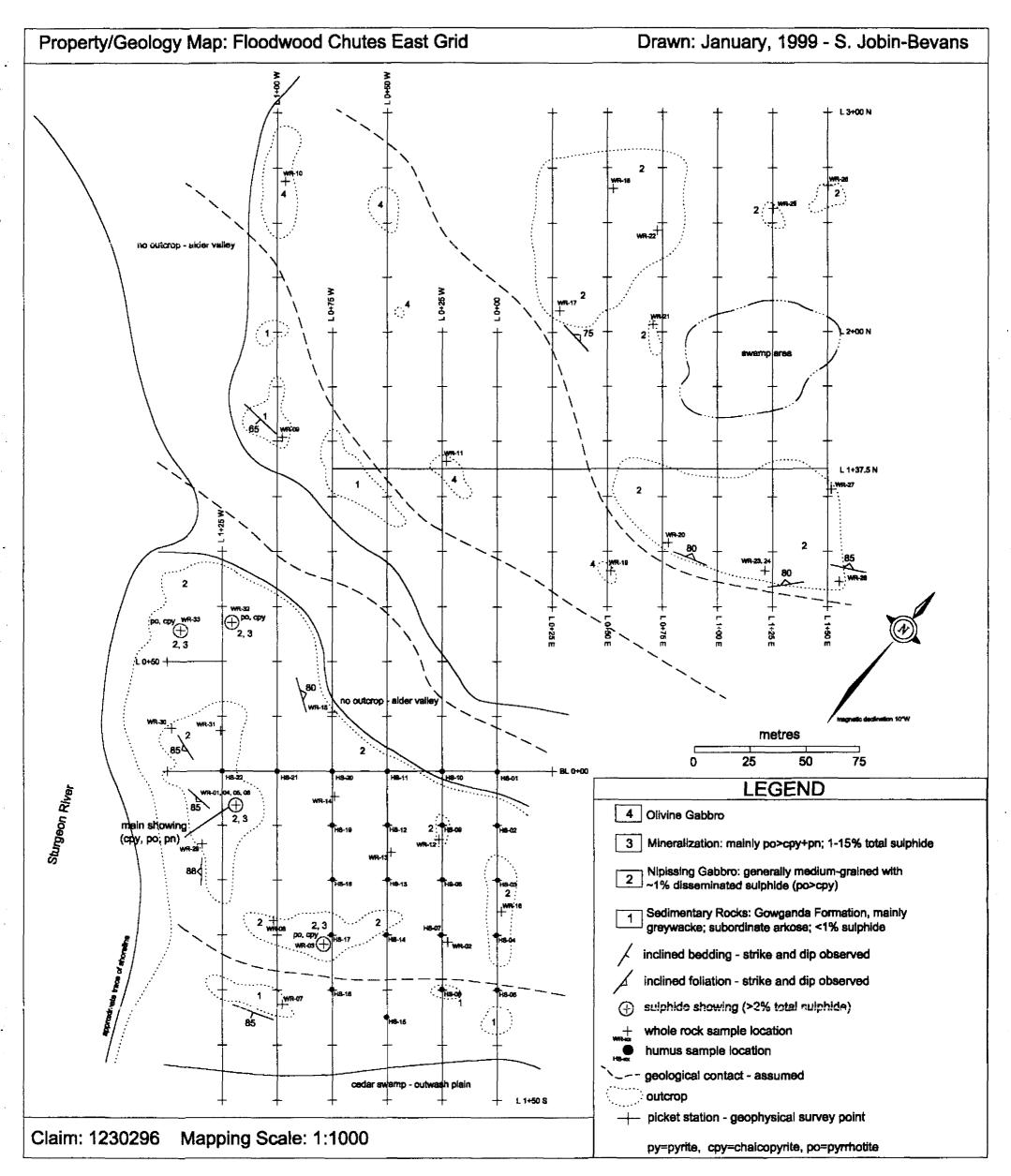
JANES

SYMBOLS

Boundary
Township, Meridian, Baseline
Road allowance; surveyed
shoroling
Lot/Concession; surveyed
unsurveyed
Parcel; surveyed
uneurveyed
Right-of-way; road
re(iway
utility
Reservation
Cliff, Pil, Pile
Contour
Interpolated
Approximete
Control point (horizontal)
Flooded land
Mine head frame
Pipeline (above ground)
Railway; single track
abandonad
Road; highway, county, township
access
Shoreline (original)
Transmission line
Wooded area


JUNE IST OPENINGS 1887 S.IPR334 FTAL


DISPOSITION OF CROWN LANDS


Patent
Surface & Mining Rights
Surface Rights Only
Mining Rights Only 🆕
Lense
Şurface & Mining Rights
Surface Righta Only
Mining Rights Only
Lisence of Occupation
Order-In-Council OC
Cancelled
Reservation
Sand & Graveí · · · · · · · · · · · · · · · · · · ·
LAND USE PERMIT

M.N.R. ADMININGTRATIVE DISTRICT NORTH BAY MINING DIVISION SUDBURY LIND TITLES/REGISTRY DIVISION SUDBURY 1:30 000 1:30 000 1:30 000 1:30 000 1:40 000 1:30 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 1:40 000 MIR.O. MINING RIGHTS ONLY N.S. MINING AND SURFACE RIGHTS ONLY N.S. MINING AND SURFACE RIGHTS ONLY 1:5 0:5 0:5 0:5 0:5 0:5 0:5 0:5 0:5 0:5 0
AND TITLEBY REGIBERAY DAYISHON SUDBURY 1:20 000 Image: Im
<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>
100 700 100 000 1000 array 000 700 100 000 1000 array 000 700 100 000 1000 array 100 700 100 000 1000 array 100 000 1000 1000 1000 array 100 0100 0100 0100 0100 MR.O MINING RIGHTS ONLY S.R.O SURFACE RIGHTS ONLY M.S.C MINING AND SURFACE RIGHTS 1000 1000 Statistical 0100 0100 0100 1000 MR.O MINING AND SURFACE RIGHTS 1000 1000 1000 Matrix 01000 0100 0100 0100 Matrix 01000 0100 0100 0100 Matrix 01000 0100 0
100 700 100 000 1000 array 000 700 100 000 1000 array 000 700 100 000 1000 array 100 700 100 000 1000 array 100 000 1000 1000 1000 array 100 0100 0100 0100 0100 MR.O MINING RIGHTS ONLY S.R.O SURFACE RIGHTS ONLY M.S.C MINING AND SURFACE RIGHTS 1000 1000 Statistical 0100 0100 0100 1000 MR.O MINING AND SURFACE RIGHTS 1000 1000 1000 Matrix 01000 0100 0100 0100 Matrix 01000 0100 0100 0100 Matrix 01000 0100 0
100 700 100 000 1000 array 000 700 100 000 1000 array 000 700 100 000 1000 array 100 700 100 000 1000 array 100 000 1000 1000 1000 array 100 0100 0100 0100 0100 MR.O MINING RIGHTS ONLY S.R.O SURFACE RIGHTS ONLY M.S.C MINING AND SURFACE RIGHTS 1000 1000 Statistical 0100 0100 0100 1000 MR.O MINING AND SURFACE RIGHTS 1000 1000 1000 Matrix 01000 0100 0100 0100 Matrix 01000 0100 0100 0100 Matrix 01000 0100 0
AREAS WITHDRAWN FROM DISPOSTION M.R.O MINING RIGHTS ONLY S.R.O SURFACE RIGHTS ONLY S.R.O SURFACE RIGHTS ONLY M.S.O MINING AND SURFACE RIGHTS M.S.O MINING AND SURFACE RIGHTS DESCRIPTION Of the No. Data Disposition File Statustion of this Township into Lots and Corcessions was
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
M.R.O MINING RIGHTS ONLY S.R.O SURFACE RIGHTS ONLY M.+S MINING AND SURFACE RIGHTS Description Order No. Dete Disposition File ESC. 355/450 0-6-5/55 0-6/64/55 N 64 100 ***********************************
M.R.O MINING RIGHTS ONLY S.R.O SURFACE RIGHTS ONLY M.+S MINING AND SURFACE RIGHTS Description Order No. Dete Disposition File ESC. 355/450 0-6-5/55 0-6/64/55 N 64 100 ***********************************
M.R.O MINING RIGHTS ONLY S.R.O SURFACE RIGHTS ONLY M.+S MINING AND SURFACE RIGHTS Description Order No. Dete Disposition File ESC. 355/450 0-6-5/55 0-6/64/55 N 64 100 ***********************************
S.R.O SURFACE RIGHTS ONLY M.+S MINING AND SURFACE RIGHTS Description Order No. Date Disposition File ************************************
Description Order No. Date Disposition File <u>REC. 35 (36)</u> <u>a-G-5 (58)</u> <u>b(15)</u> <u>b(15)</u> <u>b(4)</u> (15) <u>(15)</u> <u>(15)</u> <u>(15)</u> <u>(15)</u> <u>(15)</u> (15) <u>(15)</u> <u>(</u>
REC.NG/SG B-G-G/SE B-G/SG/SG H B A JBAG B Sec.35/SG H S/GA JS/SZ/SG H B A JS/SS B Sec.43/70 H S/A/77 S/SZ/77 JRO 10005300 Part of string W 2/SA H S/SZ/77 JRO 10005300 Part of string W 2/SA H S/SZ/77 JRO 10005300 Part of string W 2/SA H S/SPOB # 7.00 AM Egr. 10005 MER withouthy April 3,0000 # 7.00 AM Egr. ESEC. 35 W - LL - P173/99 ONT MAY 12/99 M+S Second B/SO MER W 12/99 M+S NOTES NOTES Subdivision of this Township into Lats and Concessions was HO
Put of artice W 2/64 MEOPENED by order O-ML CI/OS WER utionities and 3,0000 of 7,00 AM R.B.T. ESEC. 35 W - LL - P173/99 ONT MAY 12/99 M+S NOTES Subdivision of this Township into Lats and Concessions was
0-ML GI/BG NGR utfrautius and 3,000 at 7,00 AM 8,8.7. (E)SEC. 35 W - LL - P173/99 ONT MAY 12/99 M+S NOTES Subdivision of this Township into Lats and Concessions was
NOTES Subdivision of this Township into Lats and Concessions was
Subdivision of this Township into Lats and Concessions was
Subdivision of this Township into Lats and Concessions was
Subdivision of this Township into Lats and Concessions was
Subdivision of this Township into Lats and Concessions was
Subdivision of this Township into Lats and Concessions was
annulled 29th December,1953.
QUARRY PERMITS
DESCRIPTION PLE No. HALF DATE DEPARTOR DATE
THE INFORMATION THAT AFPEARS ON THIS MAP HAS BEEN COMPILED FROM VARIOUS SOURCES.
AND ACCURACY IS NOT GUARANTEED. THOSE
WISHING TO STAKE MINING
CLAIMS SHOULD CONSULT WITH THE MINING RECORDER MINISTRY OF NORTHERN
CLAIMS SHOULD CONSULT WITH THE MINING RECORDER

The disposition of land, location of lot fabric and parcel boundaries on this index was compiled for administrative purp

