

KELLY

41109NW2023 2.20776

2.20776

WORK REPORT: PHASE I EXPLORATION

DAVIS-KELLY Cu-Ni-Pd-Pt-Au PROPERTY

DAVIS & KELLY TOWNSHIPS, SUDBURY MINING DIVISION, ONTARIO

DECEMBER 1999

Prepared For:

Pacific North West Capital Corporation 626 West Pender Street, Mezzanine Floor Vancouver, British Columbia, Canada V6B 1V9

and

Consolidated Venturex Holdings Ltd. Suite 450, 999 West Hastings Vancouver, British Columbia, Canada V6C 2W2

S. Jobin-Bevans * JB Exploration & Development Inc. * 225 Ferndale Ave * Sudbury, Ontario, Canada, P3B 3C2 * (705) 524-8060

KELLY

TABLE OF CONTENTS

2.20776 41109NW2023

010C

	Page No
Table of Contents	1
Summary	2
Introduction	3
Location & Accessibility	3
Claim Status	6
Topography & Vegetation	6
Regional Geology	9
Property Geology	9
Mineralization	10
Property History	10
Exploration Program: Phase I	12
Reconnaissance & Grid Bedrock Mapping	12
Prospecting & Lithogeochemical Sampling	13
Analytical Techniques – Grab Samples	17
Independent Assay Checks – Grab Samples	17
Background Values	18
Platinum-Group & Base Metal Data	20
Statistical Analysis of Data	21
Orientation Induced Polarization Survey & Magnetometer Surveys	21
Diamond Drilling Program	22
Conclusions	24
Recommendations	25
Certificate of Qualification	26

APPENDICES

Appendix I – Sample Locations and Descriptions
Appendix II – Sample Assay Sheets & Certificates
Appendix III – Data Listing Used in Graphs & Statistics – Data Plots
Appendix IV – Statistical Analysis of PGM-Cu-Ni Data
Appendix V – Property Maps (11 x 17): DK99-01, 02 and 03

ТΔ	RI	FS

TABLES	Page No
Table 1 – claim status and distribution	6
Table 2 – selected assays from BP Resources Ltd. (1989)	11
Table 3 – selected assays from grab samples - PFN property evaluation	11
Table 4 assay re-checks	17
Table 5 - summary of assay results from 1999 exploration program	18
Table 6 - results of simple linear regression applied to PGM-Cu-Ni data	21
Table 7 – coverage of IP survey	22
Table 8 – coverage of magnetometer survey	22
Table 9 – summary of diamond drill hole parameters	23
Table 10 - summary of selected assay results, diamond drilling program	23

FIGURES

FIGURES	Page No
Figure 1 - Location of property in region	4
Figure 2 - Claim Map showing location of 2 claim blocs	5
Figure 3 - Location of 2 mining clams in Kelly Township - Kelly Claim Map	7
Figure 4 - Location of 2 mining claims in Davis Township - Davis Claim Map	8
Figure 5 - Location of exploration grid and 2 claim blocs	14
Figure 6 - Bedrock geology map – compilation based on mapping & prospecting	15
Figure 7 - Sample locations on exploration grid	16

SUMMARY

This report represents a summary of mineral exploration work completed on the **Davis-Kelly property** located in the Sudbury Mining Division of north-central Ontario, Canada. The property, a joint-venture between principal Pacific North West Capital Corporation (PFN) and partner Consolidated Venturex Holdings Ltd. (CVA), is an early-stage precious metal (platinum-palladium-gold) and base metal (copper-nickel) exploration project that occurs in the vicinity of several other highly prospective platinum-palladium properties.

The **Davis-Kelly property** is located about 76 road km (50 km direct) northeast of the City of Sudbury and straddles the township boundary between Davis and Kelly Townships. This prospect contains highly anomalous concentrations of platinum (Pt) and palladium (Pd), as well as anomalous concentrations of gold (Au), copper (Cu) and nickel (Ni). The metals are associated with disseminated sulphides that are hosted by Nipissing Diabase (gabbro).

The Davis-Kelly property is proximal to the highly prospective Janes and Kelly properties, which are currently being explored by Pacific North West Capital Corporation and their joint venture partner Anglo American Platinum Corporation Limited. PFN reported values up to **102.4** g/t Pt+Pd+Au over 0.4 m (channel sample) and **4.45** Pt+Pd+Au over 8.68m (drill intersection) on the Janes property, and up to **5.1** g/t Pt+Pd+Au (grab sample) on the Kelly property.

The Phase I exploration program included: (1) 35 km exploration grid; (2) grid/reconnaissance prospecting, bedrock mapping and sampling; (3) orientation induced polarization and magnetometer surveys; and, (4) a five hole (312 m/1024 ft) diamond drilling program. The surface program outlined a minimum of two mineralized zones; the main showing or zone 1 and a newly discovered zone 2, occurring about 700 m northeast of zone 1. Grab samples assayed up to 6.34 g/t Pt+Pd+Au, 0.29% Cu and 0.15% Ni from the main showing and up to 3.37 g/t Pt+Pd+Au, 0.32% Cu and 0.14% Ni from zone 2. In addition, several other areas of anomalous Pt-Pd sulphide mineralization were outlined that occurred as far as 600 m northwest and 600 m southwest of the main showing. In addition to several anomalous precious and base metal sulphide intersections (2.23 g/t Pt+Pd+Au over 3.33 m; 3.87 g/t Pt+Pd+Au over 4.4 m), the drilling program contributed to our understanding of the area geology.

These results confirm that this area is fertile in terms of its potential to host economic Pt-Pd mineralization. Moreover, excellent accessibility, a large land position, and proximity to mining related infrastructure – within about 60 km of the milling and smelting facilities of Falconbridge Ltd. and Inco. Ltd. - make this project worthy of further exploration.

INTRODUCTION

The Davis-Kelly property, centred at approximately 46°43'N latitude and 80°26'W longitude or 540035mE-5170035mN (NTS 411/NE), consists of two (2) unpatented mining claim blocs (28 claim units) covering 448 ha and straddling the boundary between Davis and Kelly Townships. The property is located in the Sudbury Mining Division, Ontario (Figure 1). The current exploration program is a joint venture between Pacific North West Capital Corp. (CDNX:PFN) and Consolidated Venturex Holdings Ltd. (CDNX:CVA), both of Vancouver, Canada.

The Davis-Kelly property lies within the Southern Geological Province of the Canadian Shield and has potential to host economic concentrations of Platinum-Group metals (PGM = Pt + Pd +Au), Cu and Ni in sulphides that are associated with gabbroic rocks of the Nipissing Diabase suite of intrusive rocks. Sporadic exploration work from the early 1950's to present has identified sulphide mineralization in the area that is of potential economic interest.

LOCATION & ACCESSIBILITY

The **Davis-Kelly property** straddles the boundary between Kelly and Davis Townships, is about 76 road km northeast of the City of Sudbury, and is road accessible (Figure 2). The property can be reached by travelling about 45 km east from Sudbury to Hagar along Highway 17. At Hagar, turn north (left) following secondary road 535 for about 22 km until reaching an abandoned railway bed. After crossing the railway bed, follow the left fork in the road for about 2 km then take a right fork and follow it for about 1.5 km to Pine Fall's Lodge, which is located at the southern inlet into Murray Lake. After crossing a small bridge/dam follow the main road for about 1.9 km then turn north (right) at the second main road. Follow this road for about 4 km at which point there is a clearing; this is close to the western claim line on unpatented mining claim bloc S-1230563 (Figure 2).

Figure 1. Location of the Davis-Kelly Pt-Pd-Cu-Ni property, Kelly & Davis Townships, Sudbury Mining Division, Ontario. The property is located about 76 road km northeast of the City of Sudbury (off the map).

Figure 2. Accessibility to the Davis-Kelly property located about 76 road km northeast of the City of Sudbury. The property can be reached by travelling about 45 km east from Sudbury to Hagar along Highway 17. At Hagar, turn north (left) and follow secondary road 535 for about 22 km until reaching an abandoned railway bed (access road on map). After crossing the railway bed, follow the left fork in the road for about 2 km then take a right fork and follow it for about 1.5 km to Pine Fall's Lodge, which is located at the southern inlet into Murray Lake. After crossing a small bridge/dam follow the main road for about 1.9 km then turn north (right) at the second main road. Follow this road for about 4 km at which point there is a clearing.

CLAIM STATUS

The Davis-Kelly property consists of two (2) unpatented mining claim blocs (28 claim units) covering 448 ha (Figures 3 and 4; Table 1; Map DK99-01).

Table 1. Distribution of	unpatented mining claims	on the Davis	-Keily property.
Claim	Township	Units	Hectares
S-1230563	Davis-Kelly	16	256
S-1229408	Kelly	12	192
	TOTALS:	28	448

Claim S-1229408 is held 100% by PFN whereas claim S-1230563 is on option by PFN from F. Racicot.

TOPOGRAPHY AND VEGETATION

Topography on the Davis-Kelly property characterised by generally north-south to northeast-southwest trending ridges of gabbroic rocks with gradual slopes punctuated by metre- to 10's of metres scale cliffs. The primary vegetation on the ridges is mixed forest consisting of spruce, pine, birch, poplar and oak with alders, cedars and spruce dominating the intervening low and swampy ground.

Outcrop exposure is limited to about 30% with the remaining areas covered mostly by a thin (<1 m) veneer of humus, poorly developed soils and glacial till, and low areas of cedar and spruce swamp. Thicker areas of overburden consist primarily of 1-2 m of silty sand, clay and poorly developed glacial till that can locally be >10 m thick.

Maskinonge Lake is located about 800 m northwest of the approximate centre of the Davis-Kelly property and several seasonal swamps and ponds occur throughout the property.

Figure 3. Location of the 2 mining claim blocs that comprise the Davis-Kelly property located in Kelly and Davis Townships, Sudbury Mining Division, Ontario (claim map G-3033 - Kelly Twp.).

Figure 4. Location of the 2 mining claim blocs that comprise the Davis-Kelly property located in Kelly and Davis Townships, Sudbury Mining Division, Ontario (claim map G-3182 - Davis Twp.).

REGIONAL GEOLOGY

The Huronian-Nipissing Magmatic Province (HNMP) consists of intrusive bodies such as the East Bull Lake, Agnew Lake and River Valley Intrusions (*ca.* 2.4 Ga) and younger intrusions (*ca.* 2.2 Ga) of Nipissing Diabase (Gabbro) that intruded into Paleoproterozoic sedimentary rocks of the Huronian Supergroup (*ca.* 2.45 Ga). Northwest-trending olivine gabbro dykes (*ca.* 1.2 Ga) of the Sudbury Swarm crosscut all of the older rock types. To date there are no known economic Cu-Ni-PGM sulphide deposits associated with Nipissing Gabbro. Nonetheless, numerous showings (>50 known) with anomalous PGM values (1-10 g/t PGM) are recorded throughout the HNMP.

Nipissing Diabase (gabbro) comprises >25% of the outcrop area in the HNMP and consists of dominantly tholeiitic to calc-alkaline rocks. The majority of Nipissing gabbros occur as near-horizontal sheets or undulating sills, consisting of basins and arches, and dykes that are generally less than 1000 m thick. In this form, disseminated to massive sulphide mineralization is concentrated within the basin or limb portions with pods of dominantly massive pyrrhotite occurring within the arches. Lopolithic forms outcrop as irregular-shaped intrusions and may represent deeper feeder systems to the stratigraphically higher sill and cone-shaped intrusions. In this form disseminated to semi-massive sulphides are hosted by hypersthene gabbro within tens of metres of the footwall sedimentary rocks and within irregular regions at the footwall contact. This form is characterised by the gabbroic intrusion at PFN's Janes property. Arcuate and open ring outcroppings of Nipissing Gabbro and structural features of surrounding sedimentary rocks suggest inward-dipping, cone-shaped intrusions in which disseminated sulphides hosted by hypersthene gabbro are within a few hundred metres of the basal contact. This form is typified by the gabbroic intrusion at PFN's Kelly property and CVA's Davis-Kelly property.

PROPERTY GEOLOGY

The **Davis-Kelly property** is located on the eastern margin or limb of what appears to be a cone-shaped intrusive body with an arcuate shaped outcrop pattern that spans Davis and Kelly Townships. The gabbroic rocks on the eastern limb dip westward with the eastern igneous contact (footwall) subparallel to the west-dipping basal sedimentary

rocks and western contact (hangingwall) subparallel to the east-dipping sedimentary rocks. In addition, the rock sequences show an increase in felsic to mafic mineral ratios and an increase in the percentage of granophyric and vari-textured gabbro from east to west.

The property is primarily underlain by rocks of the Nipissing Diabase suite, which in this area include hypersthene (mafic) gabbro, gabbro, leucogabbro, vari-textured gabbro, and pegmatitic gabbro. Also outcropping on this property are sedimentary rocks (argillite, greywacke and subordinate quartzite) of the Gowganda Formation, and magnetite-bearing olivine diabase dyke(s) of the Sudbury Swarm.

Metamorphic grade in the area of the Davis-Kelly property is between lower greenschist facies (chlorite zone) and lower amphibolite facies as indicated by the presence of chlorite and metamorphic amphibole (often pseudomorphing orthopyroxene) in the gabbroic rocks.

Mineralization

Sulphide mineralization occurs within about 50-100 m of the lower gabbrosedimentary contact and for the most part is hosted within medium-grained, hypersthene-bearing (5-10% orthopyroxene) gabbro. Subordinate sulphides also occur in vari-textured to coarse-grained gabbroic patches within hypersthene-bearing gabbro. Sulphide minerals include chalcopyrite, pyrrhotite and pentlandite and sulphide contents are typically 2-5%. There is no apparent correlation between percent sulphide and PGM values, although chalcopyrite appears to be an essential sulphide phase for anomalous PGM values. Sulphide textures and host gabbroic rocks are very similar to those observed at PFN's Kelly property to the northwest. It is likely that the Davis-Kelly property represents the southeastern extension of PFN's Kelly property and that both of these prospects occur within a similar (if not the same) mineralized horizon within the same gabbroic body.

PROPERTY HISTORY

The earliest recorded work on the Davis-Kelly property was in 1989 by BP Resources Limited. During their reconnaissance prospecting and sampling program numerous grab samples were collected and assayed for PGM and Cu-Ni. Assays

ranging from 2.0 to 3.9 g/t PGM were reported but locations for many of the samples are uncertain (Table 2). In 1990 a control grid was established to cover the anomalous areas. Of the 18 grab samples collected, 15 returned values of over 1.0 g/t total PGE and the best assay was 7.2 g/t Pt+Pd+Au, 1.51% Cu and 0.57% Ni. In 1994 F. Racicot completed limited sampling and prospecting as part of an Ontario Prospector Assistant Program grant. Several of the samples returned anomalous PGE values. No further follow-up exploration work was completed and there is no record of any of the work completed by BP Resources Ltd. ever being filed for assessment.

Sample	Pt(ppb)	Pd(ppb)	Au(ppb)	*PGM(ppb)	Pd:Pt	Ni(%)	Cu(%)	Cu:Ni
9612	1375	2830	978	5183	2.1	0.45	2.00	4.4
9613	798	2160	926	3884	2.7	0.45	1.78	4.0
9615	645	1557	744	2946	2.4	0.39	1.43	3.7
9618	452	2720	222	3394	6.0	0.18	0.35	1.9
9619	523	3470	370	4363	6.6	0.24	0.50	2.1
9620	426	1548	317	2291	3.6	0.19	0.52	2.7
9621	231	1693	114	2038	7.3	0.06	0.16	2.7
9623	1251	4860	1098	7209	3.9	0.57	1.51	2.6
9624	497	1523	457	2477	3.1	0.18	0.60	3.3
9626	181	1349	92	1622	7.5	0.09	0.22	2.4
9628	563	1515	460	2538	2.7	0.27	0.61	2.3

TABLE 2. Selected assays from BP Resources Ltd. (1989) - Davis-Kelly property.

*PGM=Pt+Pd+Au

In December 1998, a visit to the Davis-Kelly property by the author and Pacific North West Capital Corporation yielded results similar to those reported from earlier work (Table 3). All of the samples collected during the property visit were from the area around the main showing (zone 1 – Figure 6).

TABLE 3. Selected assay results from grab samples collected by PFN.

			<u> </u>							
Sample	Rock Type	VS	Pd	Au	Pt (nob)	*PGM	Pd:Pt	Cu	Ni	Cu:Ni
		(%)	<u>(php)</u>	(ppp)	(php)	<u>(pbp)</u>		(%)	(%)	
FR98-01	hypersthene gabbro	2	575	36	87	698	6.6	0.07	0.03	2.3
FR98-02	gabbro	1	58	5	26	89	2.2	0.01	0.01	1.0
FR98-03	vari-textured gabbro	2	576	269	290	1135	2.0	0.48	0.18	2.7
FR98-04	hypersthene gabbro	3	414	148	192	754	2.2	0.23	0.09	2.6
FR98-05	hypersthene gabbro	2	2001	271	363	2635	5.5	0.24	0.11	2.2
FR98-06	hypersthene gabbro	5	1443	136	278	1857	5.2	0.20	0.09	2.2
FR98-07	vari-textured gabbro	2	5445	294	603	6342	9.0	0.29	0.15	1.9
FR98-08	hypersthene gabbro	3	527	42	102	671	5.2	0.05	0.02	2.5
FR98-09	hypersthene gabbro	5	346	76	127	549	2.7	0.10	0.04	2.5

*PGM=Pt+Pd+Au; assays by Accurassay Laboratories, Thunder Bay, Ontario; VS = visible sulphides

EXPLORATION PROGRAM: PHASE I

The Phase I exploration began June 1st, 1999 and was completed by December 15th, 1999. During this time, the following work was completed:

(1) A 35 km exploration grid with a 2.3 km east-west base line and 35.7 km of north-south tie lines established at varying intervals, but generally every 50 m. The location of the current grid was as close as possible to the old exploration grid established in 1989 by BP Resources Limited (Figure 5; Map DK99-01).

(2) Reconnaissance & Grid Bedrock Mapping as part of the grid prospecting and sampling program (Figure 6; Map DK99-03).

(3) Prospecting and sampling on the exploration grid. A total of 72 grab samples were collected and assayed for PGM-Cu-Ni (Figure 7; Map DK99-02; Appendices I, II and III).

(3) A total of 3.5 km of orientation induced polarization survey and 7.7 km of orientation magnetometer survey (*summary below – see separate report*).

(4) A five hole (312 m/1024 ft) diamond drilling program aimed at testing the down-dip extension and local strike of sulphide mineralization at the main showing (*summary below – see separate report*).

Reconnaissance & Grid Bedrock Mapping

Geological bedrock mapping at a scale of 1:2500 was completed over most of the 35 km exploration grid. This mapping was combined with existing maps to produce a compilation map of the property (Figure 6; Map DK99-03).

Most of the property is underlain by gabbroic rocks of Nipissing Diabase that include chilled to very fine-grained gabbro, fine- to coarse grained gabbro, medium-grained hypersthene-bearing gabbro, medium- to coarse-grained vari-textured and/or granophyric gabbro and coarse-grained to pegmatitic gabbro. Chilled gabbro occurs

within 10-15 m of sedimentary contacts and generally contains <0.5% visible sulphide. Normal gabbro (30-60% felsic minerals) occurs throughout the property and can host up to 3% visible sulphide although in general it contains ≤1% visible sulphide. Mediumgrained hypersthene-bearing gabbro also occurs throughout the property and appears to be one of the dominant lithologies. This rock type contains from 1-10% hypersthene (orthopyroxene) phenocrysts in medium-grained gabbro and tends to be dark in colour. In most cases the hypersthene alters to talc-serpentine or is pseudomorphed by amphibole. Hypersthene-bearing gabbro (sometimes referred to as gabbronorite) is the dominant host rock to sulphide mineralization and commonly contains 1-2% visible Vari-textured and granophyric gabbro primarily occurs within more sulphide. fractionated and coarser-grained gabbroic rocks (higher % of felsic minerals) which occurs at higher intervals in the igneous stratigraphy. However, it is also found dispersed within hypersthene-bearing gabbro units. In both cases the vari-textured and coarse-grained gabbroic units can contain up to 5% visible sulphide. pegmatitic units are not common on the property and tend to occur as isolated patches within the more felsic gabbroic rocks; rare mafic pegmatitic gabbro (amphibole-rich patches) does occur within hypersthene-bearing gabbro units. Visible sulphide in the pegmatitic rocks is generally <1% and occurs mainly as blebs.

Prospecting & Lithogeochemical Sampling

The entire 35 km exploration grid was prospected at varying levels of detail. A total of 72 grab samples were collected for assay through Accurassay Laboratories, Thunder Bay, Ontario; one sample was assayed at XRAL Labs in Don Mills, Ontario. Results from the assays are listed in Table 5. A complete listing of the sample data including descriptions and grid locations is provided in Appendix I. Assay certificates are provided in Appendix II. Statistics and graphical distribution of the PGM-Cu-Ni data are provided in Appendix III.

Figure 5. Location of the exploration grid and two principal claim blocs (S-1230563, 1229408) on the Davis-Kelly property, overlain on a topographic map.

Figure 6. Bedrock geology map based on prospecting and grid mapping. The area of the 1999 diamond drilling program is indicated by the star. The two mineralized zones are indicated as zone 1 (main showing) and zone 2. Also shown are the locations of the two principal claim blocs (S-1230563, 1229408) on the Davis-Kelly property.

Figure 7. Sample locations on the Davis-Kelly property as they relate to the exploration grid and the two claim blocs (S-1230563, 1229408).

Analytical Techniques – Grab Samples

Assays for platinum, palladium and gold were completed by Accurassay Laboratories (Thunder Bay, Ontario) utilising 40.2 grams of pulverised sample, followed by fire assay fusion (lead collection) and analysis by Atomic Absorption (AA). Accurassay Laboratories performed re-check analysis on every 10th sample. Limits of detection for the analytical technique used are 15 ppb Pt, 10 ppb Pd, 5 ppb Au. Pulps were returned to the Sudbury field office and rejects stored on the premises of Accurassay Laboratories. Assays for copper and nickel were completed by Accurassay Laboratories using an aqua regia digest and analysed by Inductively Coupled Argon Plasma (ICAP). Details of all analytical techniques are available upon request.

Independent Assay Checks - Grab Samples

Pulps from samples that returned values ≥2.0 ppm combined Pt+Pd+Au were sent to XRAL Labs (Don Mills, Ontario) for an independent check using fire assay fusion and analysis by Inductively Coupled Plasma. A total of 3 grab samples were sent to XRAL Labs for re-assay and are summarised in Table 4.

	Acc	curassay	ay Laboratories XRAL Labs						
Sample	Pd	Au	Pt	PGM*	Pd	Au	Pt	PGM*	Percentage from Original PGM
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	v
	,								
KD99-48	2209	763	359	3331	2400	247	407	3054	9.1
KD99-62	2706	186	397	3289	2460	146	339	2945	11.7
KD99-69	1958	153	282	2393	1560	102	209	1871	27.9

Table 4. Summary of sample re-assays performed by XRAL Labs Ltd.

*PGM = Pt+Pd+Au

Re-check values range from 9.1-27.9% of the original values for Pt+Pd+Au which is an acceptable level of reproducibility. In general, the greatest variance is the result of mobilisation of gold which is more susceptible to re-distribution than Pt or Pd. However, in the case of sample KD99-69 the difference (28%) is the result of lower re-assay values for all three elements; the reason is not exactly known but it may be due to the *nugget effect*.

Background Values

Background values for Nipissing Diabase on the Davis-Kelly property were based on the background values determined on PFN's Janes Property. Using a weighted average from a total of 60 barren (<1% total visible sulphide) gabbroic rock samples, background values are estimated at 17 ppb Pt, 33 ppb Pd, 5 ppb Au (55 ppb PGM), 163 ppm Cu and 89 ppm Ni. On the basis of these samples background ratios are about 2:1 for both Pd:Pt and Cu:Ni.

Sample	Pd	Au	Pt	*PGM	Pd:Pt	Cu	Ni	Cu:Ni
	(ppb)	(ppb)	(ppb)	(ppb)		(ppm)	(ppm)	
KD99-01		10		10	-	991	253	3.9
KD99-02	161	122	105	388	1.5	2511	615	4.1
KD99-03	665	42	117	824	5.7	730	501	1.5
KD99-04		-	-			69	161	0.4
KD99-05	-	51		51	-	2672	521	5.1
KD99-06	20	25	20	65	1.0	1218	310	3.9
KD99-06A		8	-	8		225	70	3.2
KD99-07	18	33		51		1446	327	4.4
KD99-08		15	17	32		701	159	4.4
KD99-09 [†]	19	30	8	57	2.3	917	229	4.0
KD99-10	53	36	42	131	1.3	564	177	3.2
KD99-10A	44	33	40	117	1.1	421	135	3.1
KD99-15			-	-		60	13	4.6
KD99-16		44		44	-	2483	303	8.2
KD99-17 [†]		_	-			60	12	5.0
KD99-18	10	30		40		2998	800	3.7
KD99-19	-	16	-	16		1107	298	3.7
KD99-20	13	32	-	45		7917	1025	7.7
KD99-21	19	79		98		7025	1203	5.8
KD99-22	14	42		56		4480	662	6.8
KD99-23	-	38		38	-	6265	1044	6.0
KD99-24	61	23	59	143	1.0	285	108	2.6
KD99-25	120	43	44	207	2.7	763	262	2.9
KD99-26 [†]	12	11	9	32	1.3	464	109	4.3
KD99-27	331	61	71	463	4.7	440	152	2.9
KD99-28	188	13	26	227	7.2	255	131	1.9
KD99-29	-	-	-	-		4707	716	6.6
KD99-30	51	10	22	83	2.3	150	87	1.7
KD99-31	206	29	43	278	4.8	903	429	2.1
KD99-32	68	5	18	91	3.8	264	170	1.6
KD99-33	399	40	65	504	6.1	825	363	2.3
KD99-34	301	31	65	397	4.6	280	118	2.4

Table 5. Assays from samples collected during 1999 exploration program.

*PGM=Pt+Pd+Au; "—" = below detection limits; ¹ averaged from re-check and original value :samples KD99-28, 29, 34, 69, 70, KD99-41 to 48 and JB-01 are from zone 1

samples KD99-53 to 65 are from zone 2

Sample	Pd	Au	Pt	*PGM	Pd:Pt	Cu	Ni	Cu:Ni
	(ppb)	(ppb)	(ppb)	(ppb)		(ppm)	(p pm)	
KD99-35 [†]	92	158	94	343	1.0	2772	784	3.5
KD99-36	138	220	123	481	1.1	3854	1076	3.6
KD99-37	20	37	26	83	0.8	680	187	3.6
KD99-38	29	6	18	53	1.6	213	83	2.6
KD99-39	598	87	113	798	5.3	2382	543	4.4
KD99-39A	374	37	60	471	6.2	1076	470	2.3
KD99-40	39	37	40	116	1.0	613	165	3.7
KD99-41	408	50	78	536	5.2	602	253	2.4
KD99-42	51	54	42	147	1.2	841	285	3.0
KD99-43 [†]	91	10	26	126	3.6	114	58	2.0
KD99-44	444	277	228	949	1.9	2861	1049	2.7
KD99-45	804	348	516	1668	1.6	4868	1205	4.0
KD99-46	1357	111	220	1688	6.2	1196	689	1.7
KD99-47	345	29	51	425	6.8	347	144	2.4
KD99-48	2209	763	359	3331	6.2	2615	1005	2.6
JB99-01 [†]	179	11	30	219	6.1	207	210	1.0
KD99-53	136	12	27	175	5.0	338	133	2.5
KD99-54	92	12	25	129	3.7	139	52	2.7
KD99-55	216	21	44	281	4.9	220	88	2.5
KD99-56	727	71	113	911	6.4	1168	580	2.0
KD99-57	1335	101	208	1644	6.4	1728	508	3.4
KD99-58	422	32	66	520	6.4	57 9	313	1.8
KD99-59	316	49	79	444	4.0	400	156	2.6
KD99-60	599	45	102	746	5.9	672	298	2.3
KD99-61	622	50	142	814	4.4	658	364	1.8
KD99-62 [†]	2753	180	397	3330	6.9	3223	1416	2.3
KD99-63	886	295	447	1628	2.0	2256	439	5.1
KD99-64	299	19	56	374	5.3	435	164	2.7
KD99-65	890	62	129	1081	6.9	395	214	1.8
KD99-66	58	39	45	142	1.3	223	69	3.2
KD99-67						103	33	3.1
KD99-68		8				176	52	3.4
KD99-69	1958	153	282	2393	6.9	1697	779	2.2
KD99-70	881	62	132	1075	6.7	490	268	1.8
KD99-75 [†]	27		8	35	3.3	78	43	1.8
KD99-76						104	31	3.4
KD99-77	12		26	38	0.5	80	40	2.0
KD99-78	25		36	61	0.7	89	42	2.1
KD99-79	40		35	75	1.1	73	33	2.2
KD99-80			24	24		33	49	0.7

Table 5 (cont). Assays from samples collected during 1999 exploration program.

*PGM=Pt+Pd+Au; "—" = below detection limits; ^T averaged from re-check and original value :samples KD99-28, 29, 34, 69, 70, KD99-41 to 48 and JB-01 are from zone 1 :samples KD99-53 to 65 are from zone 2

Platinum Group & Base Metal Data

Using all 72 samples collected from the main exploration grid, weighted averages are: **309 ppb Pd, 61 ppb Au, 72 ppb Pt (442 ppb PGM), 3.6 Pd:Pt ratio, 0.13% Cu, 0.04% Ni, and 3.2 Cu:Ni ratio**. Of the 72 samples, 18 returned PGM values ≥500 ppb (0.5 g/t) and of these 18 samples, 9 returned values ≥1000 ppb (1.0 g/t). The two highest recorded PGM values are **3.33 g/t PGM (KD99-62) and 2.24 g/t PGM (KD99-69)**. Sample KD99-62, an averaged value from a re-check, is from zone 2 and is described as a medium-grained gabbro with up to 7% disseminated and bleb sulphide. Sample KD99-69 is from L11+60E/0+30S, about 25 m south of zone 1, and is described as a medium-grained gabbro with up to 3% disseminated and bleb sulphide.

The two highest recorded assays of combined Cu-Ni are 0.89% (KD99-20) and 0.82% (KD99-21). Sample KD99-20 is from L5+00E/2+25N, about 700m northwest of zone 1, and is described as a medium-grained gabbro with up to 1% disseminated sulphide. Sample KD99-21 is also from L5+00E/2+25N and is described as a medium-grained gabbro with up to 5% bleb sulphide. Although these samples have the highest base metal values their respective PGM values are amongst the lowest at 45 ppb PGM (KD99-20) and 98 ppb PGM (KD99-21).

It is important to note that, although in general terms the PGM values are not economic, they are anomalous with the majority from 3 to 61 times background PGM for Nipissing Diabase. In addition, the Cu-Ni values are anomalous with the majority from 4 to 49 times background for Cu and 6 to 16 times background for Ni. Of the 72 samples, **58.3% (42 samples) assayed between 416 and 833 ppb PGM**, 16.7% (12 samples) assayed between 833 and 1249 ppb PGM and 5.6% (4 samples) assayed between 1249 and 1666 ppb PGM. These anomalously high values are undoubtedly indicative of a fertile PGM environment.

Statistical Analysis of Data

Table 6 lists the results of simple linear regression as applied to the PGM and base metal data. Plots of the data are provided in Appendix III.

_Plot	X element	Y element	*R ²	Comments
1	% Visible Sulphide	PGM	0.20	moderate correlation; highest PGM with >3% sulphide
2	Cu	PGM	0.04	poor correlation; highest Cu has some of lowest PGM; two populations: 1 st PGM-rich and 2 nd PGM-poor
3	Ni	PGM	0.32	good correlation; strong overall positive trend
4	Cu+Ni	PGM	0.07	poor correlation; probably influenced by high Cu:Ni ratio; two populations: 1 st PGM-rich and 2 nd PGM-poor
5	Cu	Pd	0.02	poor correlation; highest Cu has some of lowest PGM; two populations: 1 st PGM-rich and 2 nd PGM-poor
6	Cu	Pt	0.06	poor correlation; highest Cu has some of lowest PGM; two populations: 1 st PGM-rich and 2 nd PGM-poor
7	Ni	Pd	0.25	moderate correlation; strong overall positive trend
8	Ni	Pt	0.31	good correlation; strong overall positive trend
9	Pd:Pt	Cu:Ni	0.20	moderate correlation; negative slope reflects correlation between increasing Ni and increasing Pt

Table 6. Results of simple linear regression as applied to the PGM-Cu-Ni data.

*refers to the coefficient of determination where 1=perfect correlation and 0=no correlation; refer to APPENDIX III for plots

Orientation Induced Polarization & Magnetometer Surveys

Geophysical surveys were completed by JVX Ltd. (Richmond Hill, Ontario) and supervised by JB Exploration & Development Inc. (Sudbury, Ontario); results are summarised below. Details of the surveys including a description of the equipment used and survey geometry are covered in a separate report.

A total of 3475 m (3.5 km) of induced polarization (IP) survey was completed over selected areas of the exploration grid (Table 7). The purpose of the survey was to: (1) determine if IP will be useful in detecting further disseminated sulphide mineralization targets; (2) determine the depth and strike of known disseminated sulphide mineralization at zones 1 and 2; and, (3) the possible correlation between the IP data and diamond drill core information at zone 1.

A 7.7 km (7738 m) orientation magnetometer survey was also completed (Table 8). This survey was designed to include the same area as the IP survey and to provide further information on a possible correlation between known sulphide mineralization and the IP survey results.

Line	From	То	Length (m)	Notes
BL0+00	6+00E	16+00E	1000	vicinity of zone 1
0+50N	8+00E	16+00E	800	vicinity of zone 1
7+00N	9+00E	17+25E	825	vicinity of zone 2
7+50N	9+00E	13+75E	425	vicinity of zone 2
8+00N	9+00E	13+25E	425	vicinity of zone 2
		Total:	3475 m	

Table 7. Orientation induced polarization survey, Davis-Kelly property.

Table 8. Orientation magnetometer survey, Davis-Kelly property.

Line	From	To	Length (m)	Notes
0+50S	6+00E	15+75E	975	vicinity of zone 1
BL0+00	6+00E	16+00E	1000	vicinity of zone 1
0+50N	6+00E	12+50E	650	vicinity of zone 1
1+00N	6+00E	12+50E	650	vicinity of zone 1
2+00N	6+00E	16+00E	1000	vicinity of zone 1
7+00N	7+50E	17+50E	1000	vicinity of zone 2
7 + 50N	9+00E	13+75E	475	vicinity of zone 2
8+00N	7+50E	17+25E	975	vicinity of zone 2
8+50N	7+50E	17+63E	1013	vicinity of zone 2
		Total:	7738 m	

Diamond Drilling Program – October 1999

Diamond drilling was provided by NDS Drilling (Timmins, Ontario) and supervised by JB Exploration & Development Inc. (Sudbury, Ontario); results of the program are summarised below. Details of the program including all plan and section maps are covered in a separate report.

The **Phase I drilling program**, completed between October 25th and October 28th, 1999, totalled 312 m (1024 ft) in 5 holes and was designed to test the down-dip extent of known surface sulphide mineralization (Tables 9 and 10).

DDH	Casing (m)	Length (m)	Az	Dip	Grid N	Grid E
DK99-01	2.0	96	90	-50	20	1125
DK99-02	1.0	56	0	-90	20	1125
DK99-03	2.0	41	90	-45	-5	1117
DK99-04	2.0	40	90	-45	-31.5	1101
DK99-05	1.0	79	0	-90	-31.5	1101
	TOTAL:	312 m				

Table 9. Summary of diamond drill hole parameters, Davis-Kelly property.

:note - elevations of all collars are approximately the same

Table 10. Summary of selected assay results, Davis-Kelly property.

DDH	From (m)	To (m)	Interval (m)	*PGM (g/t)	%Cu	%Ni	Cu+Ni (%)
DK99-01	20.00	29.50	9.50	0.55	0.04	0.03	0.07
	51.20	54.53	3.33	2.66	0.31	0.19	0.50
DK99-02	16.00	20.50	4.50	0.55	0.04	0.03	0.07
	26.25	31.00	4.75	1.26	0.09	0.06	0.15
including	28.50	30.00	1.50	2.46	0.18	0.11	0.29
	49.10	53.50	4.40	3.93	0.44	0.30	0.74
including	49.10	52.70	3.60	4.38	0.49	0.33	0.82
DK99-03	18.20	19.70	1.50	0.99	0.21	0.08	0.29
	31.85	35.60	3.75	1.25	0.12	0.08	0.20
DK99-05	28.00	37.30	9.30	0.16	0.03	0.03	0.06
	40.40	41.70	1.70	0.46	0.06	0.05	0.11

*PGM = Pt+Pd+Au

CONCLUSIONS

The Davis-Kelly property is proximal to the highly prospective Janes and Kelly properties, which are currently being explored by Pacific North West Capital Corporation and their joint-venture partners. PFN recently reported values up to **102.4 g/t Pt+Pd+Au** over **0.4 m** in a channel sample from the Janes property and up to **5.1 g/t Pt+Pd+Au** in a surface grab sample from the Kelly property.

The **Phase I exploration program** was successful in confirming the presence of anomalous PGM-Cu-Ni values on the Davis-Kelly property. In addition to expanding our knowledge about surface and sub-surface (drilling program and geophysics) mineralization at the main showing (zone 1), geological mapping, prospecting and sampling resulted in the discovery of a new PGM-Cu-Ni zone (zone 2). Highlights and conclusions from the 1999 exploration program are as follows:

(1) The Davis-Kelly property is underlain by Nipissing Diabase gabbroic rocks that are fertile in PGM-Cu-Ni sulphides.

(2) The Davis-Kelly property is located along a north-south trending gabbroic body that dips approximately 20-35° to the west.

(3) The gabbro in this area is probably a southeast extension of the Kukagami Lake intrusion (Kelly Township) that is currently being examined for its PGM-Cu-Ni potential; the Davis-Kelly property lies on the eastern limb of an inward (west)-dipping cone sheet.

(4) PGM-enriched sulphide mineralization is mainly hosted by a medium-grained, hypersthene(orthopyroxene)-bearing gabbro (high MgO); this fertile unit occurs along the base of the intrusion.

(5) Results from the diamond-drilling program and geophysical survey suggest that the disseminated sulphide mineralization (1-3%) occurs in a sheet-like unit (gabbro) that dips westward.

(6) At least two zones of mineralization occur on the property; the main showing or zone 1 and a newly discovered second zone (zone 2), located about 700 m northeast of zone 1. These zones were likely originally connected but have been offset by a northwest-trending fault zone (marked by valley).

(7) Sulphides occur as bleb and disseminated chalcopyrite, pyrrhotite and pentlandite.

(8) Most anomalous PGM-Cu-Ni assays were from rocks collected in the eastern part of the exploration grid. This reflects greater exposure of stratigraphically lower gabbroic rocks in the east or up-dip part of the intrusion.

(9) Maximum concentrations of PGM-Cu-Ni from grab samples collected during this exploration program are 3.33 g/t PGM, 0.26% Cu and 0.10% Ni (main showing - zone 1) and 3.37 g/t PGM, 0.32% Cu and 0.14% Ni (zone 2).

(10) There is moderate correlation between increased total percentage of visible sulphide mineralization and PGM-Cu-Ni concentration. However, a high proportion of visible sulphide does not necessarily mean that the PGM concentration will be highly anomalous. Moreover, areas with high concentrations of Cu-Ni were not necessarily enriched in PGM; some of the highest Cu values assayed background PGM.

(11) On the basis of the dip of the gabbroic body and on geological mapping, future prospecting should concentrate on the up-dip rock exposures along edges of high hills and outcrop areas. These areas offer the best exposure of the lower hypersthene-bearing gabbro unit and provide access to the mineralized unit that is proximal to the basal contact.

RECOMMENDATIONS

Results from the surface exploration program, coupled with encouraging diamond drilling results and several geophysical anomalies, require that further work be completed on the Davis-Kelly property. Moreover, similarities between the Davis-Kelly and Kelly properties, suggest that this area is highly prospective for Pt-Pd-Cu-Ni mineralization. Some recommendations (\$110,000) are as follows:

(1) Further prospecting in the eastern part of the exploration grid: (\$7,500) Follow-up prospecting and mapping is recommended for the immediate and surrounding areas at the main showing (zone 1) and zone 2.

(2) Ground-truthing of Geophysical Anomalies (IP and Mag.): (\$2,500)

Several n=1 induced polarization anomalies were indicated from the survey. These should be examined and sampled (if possible) to determine a source for the anomalies.

(3) Extension of exploration grid and further geophysical survey: (\$20,000)

Although subtle, the orientation IP survey did detect and outline areas of sub-surface disseminated mineralization that correspond to diamond drilling intersections. Further IP (and magnetometer) survey should be designed to test areas beyond known surface mineralization and survey the area between the two known zones of mineralization.

(4) Phase II diamond drilling in area of main showing (zone 1): (\$40,000)

A 500 m drilling program aimed at testing the north-south strike, and down-dip extension of the 2 mineralized zone intersected in Phase I [see Phase I diamond drilling report].

(5) Diamond drilling in area of zone 2 showing: (\$40,000)

A 500 m drilling program aimed at testing the sub-surface extent of known surface mineralization in this area [see Phase I diamond drilling report].

CERTIFICATE OF QUALIFICATION

I, Scott Jobin-Bevans of 225 Ferndale Avenue, Sudbury, Ontario, Canada, do hereby certify that:

- 1. I am a consulting geologist with the mineral exploration company JB Exploration & Development Inc. of Sudbury, Ontario.
- 2. I am a graduate of the University of Manitoba, Winnipeg, Manitoba with a B.Sc. (Hons.) Geology 1995, and M.Sc. Geology 1997.
- 3. I am a member of the Society of Economic Geologists and the Canadian Institute of Mining, Metallurgy and Petroleum.
- 4. I have been an exploration geologist and prospector for ten years.
- 5. I am a member of the Association of Geoscientists of Ontario.
- 6. I have an active prospector's license for the province of Ontario (# H14027).
- 7. I have not received any direct or indirect interest in Pacific North West Capital Corporation.
- 8. This report is intended to be an overview of the potential of the property or properties with recommendations and conclusions that are based solely on the available data.

1. John Borns

Scott Jobin-Bevans (B.Sc., M.Sc. Geology) December 1999

APPENDIX I

Sample Descriptions and Grid Locations

<u>Sample</u>	Grid East	Grid North	<u>%Mafic</u>	<u>%Felsic</u>	<u>Texture</u>	<u>Max. %S*</u>	<u>%сру</u>	<u>%po+pn</u>	<u>Notes</u>
KD99-01	305	195	45	55	mg	2.00	30	70	
KD99-02	395	300	45	55	mg	3.00	45	55	
KD99-03	395	350	45	55	mg	0.50	40	60	
KD99-04	100	-212	50	50	mg	0.50	0	0	mainly pyrite; weakly magnetic
KD99-05	250	185	50	50	mg	2.00	55	45	
KD99-06	895	-55	55	45	mg	0.50	50	50	
KD99-06A	898	-47	60	40	mg	0.10	50	50	mafic veinlets
KD99-07	845	-115	50	50	mg	3.00	4	96	
KD99-08	845	-115	50	50	mg	1.00	30	70	
KD99-09	845	-115	50	50	mg	1.00	30	70	
KD99-10	880	-138	50	50	mg	1.00	40	60	
KD99-10A	880	-138	50	50	mg	1.00	35	65	
KD99-15	258	187	40	60	cg	0.00	0	0	slightly rusty
KD99-16	305	183	60	40	mg	0.75	98	2	
KD99-17	505	337	60	40	cg	0.10	0	100	strongly magnetic; 1 grain of po
KD99-18	500	225	60	40	mg	2.00	95	5	
KD99-19	500	225	50	50	mg	3.00	5	95	
KD99-20	500	225	50	50	mg	1.00	95	5	
KD99-21	500	225	60	40	mg	5.00	50	50	
KD99-22	500	235	60	40	mg	4.00	60	40	
KD99-23	500	225	65	35	mg	4.00	85	15	local boulder?
KD99-24	850	350	65	35	mg	0.10	50	50	
KD99-25	740	285	60	40	mg	0.10	98	2	
KD99-26	955	155	60	40	mg	0.10	50	50	
KD99-27	1010	255	45	55	mg	0.10	50	50	
KD99-28	1175	12	55	45	mg	0.10	50	50	
KD99-29	1165	-15	60	40	mg	1.00	70	30	very rusty
KD99-30	917	-293	45	55	mg	0.25	15	85	
KD99-31	915	-303	45	55	mg	0.50	25	75	10m SW of KD99-30
KD99-32	912	-312	45	55	mg	0.25	40	60	
KD99-33	870	-350	40	60	mg	0.50	75	25	
KD99-34	1145	15	50	50	mg	0.25	30	70	
KD99-35	1000	-50	65	35	mg	1.00	95	5	
KD99-36	1000	-44	70	30	mg	4.00	95	5	close to 2468
KD99-37	1000	-44	50	50	mg	0.50	40	60	between KD99-35 & 36; close to 2467
KD99-38	998	-183	45	55	mg	1.00	80	20	
KD99-39	1002	-180	45	55	mg	4.00	95	5	1m from KD99-39A

Sample	Grid East	Grid North	%Mafic	%Felsic	Texture	Max. %S*	%сру	%po+pn	Notes
KD99-39A	1002	-180	45	55	mg	3.00	50	50	
KD99-40	1125	7	50	50	mg	0.50	98	2	slightly magnetic
KD99-41	1105	27	50	50	mg	0.10	75	25	
KD99-42	1130	-5	45	55	mg	0.50	50	50	close to 204320
KD99-43	1148	-7	40	60	mg	0.10	85	15	
KD99-44	1155	7	60	40	mg	1.50	95	5	
KD99-45	1155	7	55	45	mg	1.50	90	10	
KD99-46	1195	38	55	45	fg-mg	0.25	60	40	0.3m from KD99-48
KD99-47	1195	38	60	40	mg	0.10	50	50	
KD99-48	1195	38	55	45	fg-mg	3.00	80	20	
JB99-01	1190	100	55	45	mg	1.00	80	20	
KD99-53	1236	544	65	35	mg	0.10	35	65	one bleb grain 1-1.5cm diameter
KD99-54	1243	576	50	50	mg	0.20	40	60	bleb sulphide
KD99-55	1260	595	50	50	mg	0.20	45	55	bleb sulphide
KD99-56	1255	635	60	40	mg	1.00	40	60	bleb sulphide
KD99-57	1255	635	50	50	mg	0.50	70	30	very rusty
KD99-58	1255	635	50	50	mg	0.50	30	70	
KD99-59	1242	670	60	40	mg	0.25	40	60	bleb sulphide
KD99-60	1261	658	55	45	mg	0.50	60	40	
KD99-61	1271	730	60	40	mg	1.00	50	50	
KD99-62	1286	709	55	45	mg	7.00	75	25	10m east of KD99-61
KD99-63	1355	745	80	20	mg	6.00	90	10	bleb sulphide
KD99-64	1360	720	50	50	mg	0.50	60	40	
KD99-65	1400	835	50	50	mg	0.50	35	65	possible native copper grain?
KD99-66	1020	160	50	50	mg	0.50	80	20	about 60m NW of old sample 1204328
KD99-67	1000	-60	50	50	mg	0.10	80	20	
KD99-68	1015	-55	50	50	mg	0.10	80	20	
KD99-69	1160	-30	55	45	mg	3.00	60	40	about 25m south of BL and zone 1
KD99-70	1150	-40	60	40	mg	1.00	50	50	about 15m south of KD99-69
KD99-75	1400	400	50	50	mg	0.10	50	50	
KD99-76	1468	148	50	50	fg	0.50	0	0	mainly pyrite; local boulder?; very green
KD99-77	1465	115	50	50	mg	0.10	95	5	minor pyrite; local boulder?; slightly green
KD99-78	1500	414	50	50	mg	0.10	50	50	
KD99-79	1820	560	60	40	mg	1.00	95	5	sulphide related to mafic clots up to 1cm
KD99-80	1825	380	60	40	fg	0.00	0	0	minor pyrite; past line 1800E
*S=visible	sulphide								

APPENDIX II

Assay Certificates Accurassay Laboratories Thunder Bay, Ontario and Re-checks by XRAL Labs Don Mills, Ontario

1070 LITHIUM DRIVE. UNIT 2 **Page 1**THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

J.B. Exploration & Development 225 Ferndale Ave. Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

July 15, 1999

Job# 9940685

SAMPLE #		Palladium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
1	43516	<10	10	<15
2	43517	161	122	105
3	43518	665	42	117
4	43519	<10	<5	<15
5	43520	<10	51	<15
6	43521	20	25	20
7	43522	<10	8	<15
8	43523	18	33	<15
9	43524	<10	15	17
10	43525	16	26	<15
11 Check	43525	21	33	16
12	43526	53	36	42
13	43527	44	33	40
14	43528	22	5	17
15	43529	14	<5	<15
16	43530	16	7	16
17	43531	21	18	32
18	43532	<10	<5	<15
19	43533	<10	44	<15
20	43534	<10	<5	<15
21 Check	43534	<10	<5	<15
22	43535	10	30	<15
23	43536	<10	16	<15
24	43537	13	32	<15
25	43538	19	79	<15
26	43539	14	42	<15
27	43540	<10	38	<15
28	43541	61	23	59
29	43542	120	43	44

Certified By:

KE44-01 to KE22-48

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

J.B. Exploration & Development 225 Ferndale Ave. Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

July 15, 1999

Job# 9940685

SAMPLE #		Palladium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
30	43543	13	11	<15
31 Check	43543	11	10	18
32	43544	331	61	71
33	43545	188	13	26
34	43546	717	460	311
35	43547	51	10	22
36	43548	206	2 9	43
37	43549	68	5	18
38	43550	399	40	65
39	43636	301	31	65
40	43637	98	151	96
41 Check	43637	85	165	91
42	43638	138	220	123
43	43639	20	37	26
44	43640	29	6	18
45	43641	598	87	113
46	43642	374	37	60
47	43643	39	37	40
48	43644	408	50	78
49	43645	51	54	42
50	43646	90	11	28
51 Check	43646	92	8	23
52	43647	444	277	228
53	43648	804	348	516
54	43649	1357	111	220
55	43650	345	29	51
56	43651	2209	763	359

Certified By:

1070 LITHIUM DRIVE. UNIT 2 Page 1^{THUNDER} BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

J.B. Exploration & Development 225 Ferndale Ave. Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

July 15, 1999

Job# 9940685

SAMPL	E#	Copper	Nickel
Accurassay	Customer	ppm	ppm
	10510	004	252
1	43516	991	200
2	43517	2511	501
3	43518	/30	501
4	43519	69	161
5	43520	2672	521
6	43521	1218	310
7	43522	225	70
8	43523	1446	327
9	43524	701	159
10	43525	917	229
11	43526	564	177
12	43527	421	135
13	43528	100	46
14	43529	106	49
15	43530	716	159
16	43531	308	88
17	43532	60	13
18	43533	2483	303
19	43534	60	12
20	43535	2998	800
21	43536	1107	298
22	43537	7917	1025
23	43538	7025	1203
24	43539	4480	662
25	43540	6265	1044
26	43541	285	108
27	43542	763	262
28	43543	464	109
29	43544	440	152

Certified By:

1070 LITHIUM DRIVE, UNIT 2 **Page 2**THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

J.B. Exploration & Development 225 Ferndale Ave. Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

July 15, 1999

Job# 9940685

SAMPLE #		Copper	Nickel
Accurassay	Customer	ppm	ppm
30	43545	255	131
31	43546	4707	716
32	43547	150	87
33	43548	903	429
34	43549	264	170
35	43550	825	363
36	43636	280	118
37	43637	2772	784
38	43638	3854	1076
39	43639	680	187
40	43640	213	83
41	43641	2382	543
42	43642	1076	470
43	43643	613	165
44	43644	602	253
45	43645	841	285
46	43646	114	58
47	43647	2861	1049
48	43648	4868	1205
49	43649	1196	689
50	43650	347	144
51	43651	2615	1005

Zier Certified By:

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

Oct 18, 1999

Job# 9941046

SAMPLE #		Palladium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
1	KD99-FR53	136	12	27
2	KD99-FR54	92	12	25
3	KD99-FR55	216	21	44
4	KD99-FR56	727	71	113
5	KD99-FR57	1335	101	208
6	KD99-FR58	422	32	66
7	KD99-FR59	316	49	79
8	KD99-FR60	599	45	102
9	KD99-FR61	622	50	142
10	KD99-FR62	2706	186	397
11 Check	KD99-FR62	2800	174	396
12	KD99-FR63	886	295	447
13	KD99-FR64	299	19	56
14	KD99-FR65	890	62	129
15	KD99-FR66	58	39	45
16	KD99-FR67	<10	<5	<15
17	KD99-FR68	<10	8	<15
18	KD99-FR69	1958	153	282
19	KD99-FR70	881	62	132
20	KD99-FR75	26	<5	16
21 Check	KD99-FR75	27	<5	<15
22	KD99-FR76	<10	<5	<15
23	KD99-FR77	12	<5	26
24	KD99-FR78	25	<5	36
25	KD99-FR79	40	<5	35
26	KD99-FR80	<10	<5	24

Certified By:

KD99-53 to K99-30
		1	Pacific N	orth We	st Capita	I Corpor	ation										
		(c/o DTE	Explorat	ion & De	velopme	ent										
		2	225 Fern	dale Av	Ð.					C	Oct. 29, 199	99					
		:	Sudbury,	Ontario													
	83448 8200	1	P3B 3C2							J	ob #99410	46					
	N 9099	1	Fax (705) 521-06	53												
	53331 5331 5331 5331 5331																
	SAMPLE #	Ag	Ał	As	8	Ba	Be	Bi	Са	Cd	Co	Cr	Си	Fe	к	la	Ma
	01710 0770	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	mag	nom	%	94	nom	4
	(8(1) (8(1) (8(1) (8(1) (8(1))					.,	••	• •			FF		PP ¹		~	PP	~
	≦ <u>ຊ</u> ⊔≰ 099-FR53	<.3	5.11	9	7	42	0.3	<3	2.88	<.5	10	137	338	1.26	0.12	<1	0.48
	ੁੱ ੁੱਠ⊮ 099-FR54	<.3	4.73	<2	<5	36	0.3	<3	2.81	<.5	6	100	139	0.87	0.10	<1	0.40
	⊑≦ ±KD99-FR55	0.4	4.50	3	<5	35	0.3	<3	2.70	<.5	5	94	220	0.77	0.10	<1	0.27
	္င္တ္က KD99-FR56	<.3	4.56	<2	<5	36	0.3	<3	2 63	<.5	17	112	1168	1.38	0.10	<1	0.20
	6편 KD99-FR57	0.5	4.74	10	5	38	0.3	<3	2.72	<.5	13	111	1728	1.35	0.12	<1	0.40
	「Ż KD99-FR58	<.3	4.84	<2	5	38	0.3	<3	2 71	< 5	15	129	579	1 31	0.11	21	0.57
	⊋ KD99-FR5 9	0.5	3.38	<2	8	43	0.3	<3	2 16	< 5	10	144	400	1.57	0.14	~1	0.01
1	⊢ KD99-FR60	0.4	3.77	<2	<5	36	0.3	<3	2 47	< 5	11	151	672	1.52	0.10	-1	0.04
	KD99-FR61	0.4	4.27	<2	5	46	0.3	<3	2 46	< 5	14	87	658	1 38	0.12	~1	0.45
	KD99-FR62	0.8	4 31	3	<5	39	0.3	<3	2.40	0.6	21	80	2000	1.30	0.15	~1	0.55
	KD99-FR63	< 3	0.99	<2	<5	25	0.0	<3	0.76	< 5	20	102	2256	1.74	0.10	~1	0.33
Ċ	KD99-FR64	< 3	4 82	<2	<5	38	0.2	<3	2 08	< 5	20	07	425	0.00	0.04	~1	0.00
Ξ	KD99-FR65	04	4 77	<2	7	45	0.0	<3	2.30	< 5	11	122	305	1 60	0.11	~1	0.30
S	KD99-FR66	< 3	4 96	<2	<5	36	0.0	<3	2.70	~.5	7	86	390	0.05	0.10	~1	0.02
Ŋ	KD99-FR67	< 3	5.34	<2	<5	50	0.0	~3	2.90	~.5	, 0	27	102	1 59	0.10	-1	0.27
2			0.01		••	00	0.0	-0	2.31	0.7	0	57	103	1.50	0.13		0.40
SEF		Mn	Мо	Na	Ni	P	Dh	Sh	S-	с;	6 -	o-	 :			-	
5		000	0000	96	nnm	000		200		0/	on	31	N N	v	vv	Zn	
ЭR		ppm	PPI	~	ppin	ppn	ppm	ppm	ppm	70	ppm	ppm	70	ppm	ppm	ppm	
Ĕ	KD99-FR53	179	<1	0.56	133	439	۵	<2	~5	0.03	-5	62	0.05	25	-0	22	
RA	KD99-FR54	99	<1	0.50	52	278	5	~2	~5	0.03	~5	54	0.05	24	< <u>~</u>	22	
õ	KD99-FR55	93	<1	0.47	88	457	, 8	~2	~5	0.03	~5	50	0.04	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	
AE	KD99-FR56	135	<1	0.49	580	365	0	-2	~5	0.03	<5	40	0.03	20	<2	11	
, -	KD99-FR57	104	<1	0.40	508	103	11	~2	<5	0.03	\) ~=	49	0.04	25	<2	21	
F	KD99-FR58	159	<1	0.00	313	383	7	~2	~5	0.02	<5 ~5	50	0.04	24	~2	14	
SS	KD99-FR59	188	<1	0.45	156	538	12	~2	<0 <5	0.04	<5 <5	52 29	0.05	29	<2	18	
₹ L	KD99-FR60	185	<1	0.00	208	244	14	~2	 5 	0.03	<0 <5	30	0.07	- 04 - 40	<2	19	
õ	KD99-FR61	169	<1	0.00	364	216	0	~2	<0 <5	0.03	<0 <5	40	0.00	43	<2	22	
Z	KD99-FR62	128	<1	0.47	1416	408	24	~2	<0 <5	0.03	<5	49	0.05	41	<2	28	
Q	KD99-FR63	180	<1	0.44	1410	400	24	- 2	<0 25	0.04	<5	50	0.04	28	<2	30	
/IS	KD99-FR64	122	-1	0.10	459	720	(6	~2	<5 ~E	0.03	<0	0	0.07	32	<2	49	
3	KD99-FR65	172	~1	0.51	214	504	0	~2	<0 45	0.03	<5	55 57	0.04	21	<2	16	
ΑC	KD99-FR66	01	~1	0.00	214 60	550	Ö	<2	<5	0.03	<5	5/	0.05	54	<2	18	
×	KD99-FR67	91 150	-1	0.00	22	552	8	<2	<0	0.03	<5	60	0.05	42	<2	12	
		102	ŀ	0.00	33	003	Э	3	<5	0.02	<5	64	0.06	64	<2	19	

PRP Certified By

ACCURASSAY LABORATORIES A DIVISION OF ASSAY LABORATORY SERVICES INC.

	F	Pacific N	orth Wes	t Capital	Corpora	ation										
	0	VODIE	Explorati	on & De	velopme	nt			-							
	2 9	Sudhurv	Ontario	•					U	CL 29, 195	19					
28322	F	238 3C2	omano							ob #99410	46					
8 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F	ax (705) 521-06	53					Ū							
233-C		•	•													
SAMPLE #	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	La	Mg
1 DR [ARI(807 (807	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%
≥ Z uK 899-FR68	<.3	4.24	<2	5	39	0.3	<3	2.40	<.5	6	44	176	1.04	0.13	<1	0.37
Ξ Ξ Ξ 4 Đ99-FR69	0.8	4.24	<2	5	36	0.3	<3	2.46	<.5	18	108	1697	1.44	0.12	<1	0.52
⊑́≲҄ ЖD99-FR70	0.5	4.43	<2	7	31	0.3	<3	2.65	<.5	14	108	490	1.14	0.08	<1	0.62
့္က KD99-FR75	0.5	5.33	<2	<5	47	0.4	<3	3.24	<.5	9	73	78	1.31	0.14	<1	0.52
ିଲି KD99-FR76	0.4	2.57	<2	6	12	0.4	5	1.07	0.7	25	37	104	5.60	0.01	<1	1.42
ਿੱਟੂ KD99-FR77	0.4	2.41	4	6	16	0.3	4	1.25	<.5	13	51	80	1.67	0.03	<1	0.98
ਦ ਮD99-FR78	0.6	4.99	11	<5	31	0.4	<3	3.28	<.5	7	66	8 9	0.89	0.09	<1	0.40
⊢ KD99-FR79	<.3	5.14	<2	<5	28	0.3	<3	3.27	<.5	4	47	73	0.48	0.07	<1	0.19
KD99-FR80	<.3	2.09	<2	<5	33	0.4	3	0.66	<.5	14	120	33	3.82	0.08	13	1.15
	Mn	Мо	Na	Ni	P	Рb	Sb	Se	Si	Sn	Sr	Ti	v	w	Zn	
	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	p p m	
KD99-FR68	107	<1	0.49	52	334	7	<2	<5	0.02	<5	53	0.05	38	<2	14	
KD99-FR69	124	<1	0.43	779	530	12	6	<5	0.02	<5	48	0.04	28	<2	19	
KD99-FR70	160	<1	0.44	268	681	10	<2	<5	0.03	<5	54	0.04	21	<2	19	
KD99-FR75	179	<1	0.56	43	714	12	<2	<5	0.03	<5	66	0.06	43	<2	22	
KD99-FR76	855	<1	0.03	31	870	11	<2	<5	0.05	<5	10	0.43	111	<2	50	
KD99-FR77	371	<1	0.20	40	497	9	6	<5	0.03	<5	26	0.12	36	<2	22	
KD99-FR78	110	<1	0.49	42	570	13	<2	<5	0.03	<5	60	0.03	20	<2	10	
KD99-FR79	59	<1	0.49	33	536	10	<2	<5	0.03	<5	56	0.02	5	<2	9	
KD99-FR80	879	2	0.05	49	941	8	<2	<5	0.04	<5	45	0.18	43	<2	70	

êce, (2)Certified By:

ACCURASSAY LABORATORIES A DIVISION OF ASSAY LABORATORY SERVICES INC.

XRAL Laboratories A Division of SGS Canada Inc.

1885 Leslie Street Don Mills, Ontario Canada M3B 3J4 Telephone (416) 445-5755 Fax (416) 445-4152

CERTIFICATE OF ANALYSIS

Work Order: 056693

To: **Pacific Northwest Capital** Attn: Scott Jobin-Bevans

c/o 225 Ferndale Avenue SUDBURY ONTARIO, P3B 3C2

Copy 1 to :

Copy 2 to

P.O. No.	:	
Project No.	:	
No. of Samples	:	1 Rock
Date Submitted	:	08/09/99
Report Comprises	:	Cover Sheet plus
		Pages 1 to 1

:

Distribution of unused material: Discarded After 90 Days Unless Instructed!!! Pulps: Discarded After 90 Days Unless Instructed!!! **Rejects:**

Certified By

:

Date

:

23/09/99

Dr. Hugh de Souza, General Manager XRAL Laboratories

ISO 9002 REGISTERED

Report Footer:

- = Listed not received
 - = Not applicable

1.S. = Insufficient Sample = No result ---

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

SGS Member of the SGS Group (Société Générale de Surveillance)

L.N.R.

n.a.

Work Order:	056693		Date:	23/09	7/99
Element.	Au	Pt	Pd	Cu	Ni
Method.	FA301	FA301	FA301	A50_1	A50_1
Det.Lim.	1	10	1	10	10
Units.	ppb	ppb	ppb	ppm	ppm
JB-01	10	32	180	207	210
*Dup JB-01	11	27	178	213	212

FINAL

Page 1 of 1

XRAL LABS - ASSAY REPORT

Sample Ident	Au	Pt	Pd
Scheme Code	FA301	FA301	FA301
Analysis Unit	ppb	ppb	ppb
Detection Limit	·	1 10	1
KD99-FR48	24	7 407	2400
KD99-FR62	140	5 339	2460
KD99-FR69	10	2 209	1560
DUP-KD99-FR48	230) 382	2440

sample re-checks from pulps

DK99 058248 re-checks

XRAL LABS - ASSAY REPORT

DAVIS-KELLY PROJECT

APPENDIX III

Data Listing Used in Graphs & Statistics

PGM-Cu-Ni Assay Data Plots

<u>Sample</u>	Pd (ppb)	Au (ppb)	Pt (ppb)	PGM (ppb)	Pt+Pd (ppb)	Pd:Pt	Cu (ppm)	Ni (ppm)	Cu:Ni	<u>Cu+Ni (%)</u>
KD99-01	0	10	0	10	0		991	253	3.9	0.12
KD99-02	161	122	105	388	266	1.5	2511	615	4.1	0.31
KD99-03	665	42	117	824	782	5.7	730	501	1.5	0.12
KD99-04	0	0	0	0	0		69	161	0.4	0.02
KD99-05	0	51	0	51	0		2672	521	5.1	0.32
KD99-06	20	25	20	65	40	1.0	1218	310	3.9	0.15
KD99-06A	0	8	Ö	8	0		225	70	3.2	0.03
KD99-07	18	33	0	51	18		1446	327	4.4	0.18
KD99-08	0	15	17	32	17	0.0	701	159	4.4	0.09
KD99-09*	19	30	8	56	27	2.3	917	229	4.0	0.11
KD99-10	53	36	42	131	95	1.3	564	177	3.2	0.07
KD99-10A	44	33	40	117	84	1.1	421	135	3.1	0.06
KD99-15	0	0	0	0	0		60	13	4.6	0.01
KD99-16	0	44	0	44	0		2483	303	8.2	0.28
KD99-17*	0	0	0	0	0		60	12	5.0	0.01
KD99-18	10	30	0	40	10		2998	800	3.7	0.38
KD99-19	0	16	0	16	0		1107	298	3.7	0.14
KD99-20	13	32	0	45	13		7917	1025	7.7	0.89
KD99-21	19	79	0	98	19		7025	1203	5.8	0.82
KD99-22	14	42	0	56	14		4480	662	6.8	0.51
KD99-23	0	38	0	38	0		6265	1044	6.0	0.73
KD99-24	61	23	59	143	120	1.0	285	108	2.6	0.04
KD99-25	120	43	44	207	164	2.7	763	262	2.9	0.10
KD99-26*	12	11	9	32	21	1.3	464	109	4.3	0.06
KD99-27	331	61	71	463	402	4.7	440	152	2.9	0.06
KD99-28	188	13	26	227	214	7.2	255	131	1.9	0.04
KD99-29	0	0	0	0	0		4707	716	6.6	0.54
KD99-30	51	10	22	83	73	2.3	150	87	1.7	0.02
KD99-31	206	29	43	278	249	4.8	903	429	2.1	0.13
KD99-32	68	5	18	91	86	3.8	264	170	1.6	0.04
KD99-33	399	40	65	504	464	6.1	825	363	2.3	0.12
KD99-34	301	31	65	397	366	4.6	280	118	2.4	0.04
KD99-35*	92	158	94	343	185	1.0	2772	784	3.5	0.36
KD99-36	138	220	123	481	261	1.1	3854	1076	3.6	0.49
KD99-37	20	37	26	83	46	0.8	680	187	3.6	0.09
KD99-38	29	6	18	53	47	1.6	213	83	2.6	0.03
KD99-39	598	87	113	798	711	5.3	2382	543	4.4	0.29
KD99-39A	374	37	60	471	434	6.2	1076	470	2.3	0.15
KD99-40	39	37	40	116	79	1.0	613	165	3.7	0.08
KD99-41	408	50	78	536	486	5.2	602	253	2.4	0.09
KD99-42	51	54	42	147	93	1.2	841	285	3.0	0.11
KD99-43*	91	10	26	126	117	3.6	114	58	2.0	0.02
KD99-44	444	277	228	949	672	1.9	2861	1049	2.7	0.39
KD99-45	804	348	516	1668	1320	1.6	4868	1205	4.0	0.61
*averaged u	ising origir	al assay a	and re-che	ck values						

Sample	Pd (ppb)	Au (ppb)	Pt (ppb)	PGM (ppb)	Pt+Pd (ppb)	Pd:Pt	Cu (ppm)	Ni (ppm)	Cu:Ni	Cu+Ni (%)
KD99-46	1357	111	220	1688	1577	6.2	1196	689	1.7	0.19
KD99-47	345	29	51	425	396	6.8	347	144	2.4	0.05
KD99-48	2209	763	359	3331	2568	6.2	2615	1005	2.6	0.36
JB99-01*	179	11	30	219	209	6.1	210	211	1.0	0.04
KD99-53	136	12	27	175	163	5.0	338	133	2.5	0.05
KD99-54	92	12	25	129	117	3.7	139	52	2.7	0.02
KD99-55	216	21	44	281	260	4.9	220	88	2.5	0.03
KD99-56	727	71	113	911	840	6.4	1168	580	2.0	0.17
KD99-57	1335	101	208	1644	1543	6.4	1728	508	3.4	0.22
KD99-58	422	32	66	520	488	6.4	579	313	1.8	0.09
KD99-59	316	49	79	444	395	4.0	400	156	2.6	0.06
KD99-60	599	45	102	746	701	5.9	672	298	2.3	0.10
KD99-61	622	50	142	814	764	4.4	658	364	1.8	0.10
KD99-62*	2753	180	397	3330	3150	6.9	3223	1416	2.3	0.46
KD99-63	886	295	447	1628	1333	2.0	2256	439	5.1	0.27
KD99-64	299	19	56	374	355	5.3	435	164	2.7	0.06
KD99-65	890	62	129	1081	1019	6.9	395	214	1.8	0.06
KD99-66	58	39	45	142	103	1.3	223	69	3.2	0.03
KD99-67	0	0	0	0	0		103	33	3.1	0.01
KD99-68	0	8	0	8	0		176	52	3.4	0.02
KD99-69	1958	153	282	2393	2240	6.9	1697	779	2.2	0.25
KD99-70	881	62	132	1075	1013	6.7	490	268	1.8	0.08
KD99-75*	27	0	8	35	35	3.3	78	43	1.8	0.01
KD99-76	0	0	0	0	0		104	31	3.4	0.01
KD99-77	12	0	26	38	38	0.5	80	40	2.0	0.01
KD99-78	25	0	36	61	61	0.7	89	42	2.1	0.01
KD99-79	40	0	35	75	75	1.1	73	33	2.2	0.01
KD99-80	0	0	24	24	24	0.0	33	49	0.7	0.01
to verage -			and to the	ak values						
averaged t	ianiy ongli	iai assaly i		JUN VOIUES						

Shaded Contour Map Showing PGM (ppb) Distribution: Davis-Kelly property

Grid East

Shaded Contour Map Showing Cu+Ni(%) Distribution: Davis-Kelly property

APPENDIX IV

Statistical Analysis of PGM-Cu-Ni Data

APPENDIX V

Property Maps (11 x 17) DK99-01 = Exploration Grid, Claims and Topography DK99-02 = Exploration Grid with Grab Sample Locations DK99-03 = Compilation Bedrock Geology Map

2.205000

41I09NW2023 2.20776

KELLY

020

ADDENDUM TO

WORK REPORT: PHASE I EXPLORATION

DAVIS-KELLY Cu-Ni-Pd-Pt-Au PROPERTY

DAVIS & KELLY TOWNSHIPS, SUDBURY MINING DIVISION, ONTARIO

Original Submission: December 2000

Re-Submitted March 30, 2001

2.20776

Prepared For:

Pacific North West Capital Corp. 626 West Pender Street, Mezzanine Floor Vancouver, British Columbia, Canada V6B 1V9

and

Consolidated Venturex Holdings Ltd. Suite 450, 999 West Hastings Vancouver, British Columbia, Canada V6C 2W2

KELLY

41109NW2023 2.20776

020C

TABLE OF CONTENTS

	<u>Page No</u>
Table of Contents	1
Summary	2
Introduction	3
Location & Accessibility	3
Claim Status	6
Topography & Vegetation	6
Regional Geology	9
Property Geology	9
Mineralization	10
Exploration Program: Phase I	10
Reconnaissance & Grid Bedrock Mapping	11
Work Completed	12
Certificate of Qualification	13

APPENDICES

Appendix A – Rock types, lithologies and formations with their description	
TABLES	Page No
Table 1 – claim status and distribution	6

FIGURES

FIGURES	Page No
Figure 1 - Location of property in region	4
Figure 2 - Claim Map showing location of 2 claim blocs	5
Figure 3 - Location of 2 mining clams in Kelly Township - Kelly Claim Map	7
Figure 4 - Location of 2 mining claims in Davis Township - Davis Claim Map	8

SUMMARY

This report represents an addendum to accompany the original summary of mineral exploration work completed on the **Davis-Kelly property** located in the Sudbury Mining Division of north-central Ontario, Canada, filed in December 2000. This report is in compliance with the 45 Day Notice - transaction status W0070.00262. The property, a joint-venture between principal Pacific North West Capital Corporation (PFN) and partner Consolidated Venturex Holdings Ltd. (CVA), is an early-stage precious metal (platinum-palladium-gold) and base metal (copper-nickel) exploration project that occurs in the vicinity of several other highly prospective platinum-palladium properties.

The **Davis-Kelly property** is located about 76 road km (50 km direct) northeast of the City of Sudbury and straddles the township boundary between Davis and Kelly Townships. This prospect contains highly anomalous concentrations of platinum (Pt) and palladium (Pd), as well as anomalous concentrations of gold (Au), copper (Cu) and nickel (Ni). The metals are associated with disseminated sulphides that are hosted by Nipissing Diabase (gabbro).

The **Davis-Kelly property** is proximal to the highly prospective Janes and Kelly properties, which are currently being explored by Pacific North West Capital Corporation and their joint venture partner Anglo American Platinum Corporation Limited. PFN reported values up to **102.4 g/t Pt+Pd+Au over 0.4 m** (channel sample) and **4.45 Pt+Pd+Au over 8.68m** (drill intersection) on the Janes property, and up to **5.1 g/t Pt+Pd+Au** (grab sample) on the Kelly property.

The **Phase I** exploration program included: (1) 35 km exploration grid; (2) grid/reconnaissance prospecting, bedrock mapping and sampling; (3) orientation induced polarization and magnetometer surveys; and, (4) a five hole (312 m/1024 ft) diamond drilling program. The surface program outlined a minimum of two mineralized zones; the main showing or zone 1 and a newly discovered zone 2, occurring about 700 m northeast of zone 1. Grab samples assayed up to 6.34 g/t Pt+Pd+Au, 0.29% Cu and 0.15% Ni from the main showing and up to 3.37 g/t Pt+Pd+Au, 0.32% Cu and 0.14% Ni from zone 2. In addition, several other areas of anomalous Pt-Pd sulphide mineralization were outlined that occurred as far as 600 m northwest and 600 m southwest of the main showing. In addition to several anomalous precious and base metal sulphide intersections (2.23 g/t Pt+Pd+Au over 3.33 m; 3.87 g/t Pt+Pd+Au over 4.4 m), the drilling program contributed to our understanding of the area geology.

These results confirm that this area is fertile in terms of its potential to host economic Pt-Pd mineralization. Moreover, excellent accessibility, a large land position, and proximity to mining related infrastructure – within about 60 km of the milling and smelting facilities of Falconbridge Ltd. and Inco. Ltd. - make this project worthy of further exploration.

INTRODUCTION

The **Davis-Kelly property**, centred at approximately 46°43'N latitude and 80°26'W longitude or 540035mE-5170035mN (NTS 411/NE), consists of two (2) unpatented mining claim blocs (28 claim units) covering 448 ha and straddling the boundary between Davis and Kelly Townships. The property is located in the Sudbury Mining Division, Ontario (Figure 1). The current exploration program is a joint venture between Pacific North West Capital Corp. (CDNX:PFN) and Consolidated Venturex Holdings Ltd. (CDNX:CVA), both of Vancouver, Canada.

The Davis-Kelly property lies within the Southern Geological Province of the Canadian Shield and has potential to host economic concentrations of Platinum-Group metals (PGM = Pt + Pd+Au), Cu and Ni in sulphides that are associated with gabbroic rocks of the Nipissing Diabase suite of intrusive rocks. Sporadic exploration work from the early 1950's to present has identified sulphide mineralization in the area that is of potential economic interest.

LOCATION & ACCESSIBILITY

The **Davis-Kelly property** straddles the boundary between Kelly and Davis Townships, is about 76 road km northeast of the City of Sudbury, and is road accessible (Figure 2). The property can be reached by travelling about 45 km east from Sudbury to Hagar along Highway 17. At Hagar, turn north (left) following secondary road 535 for about 22 km until reaching an abandoned railway bed. After crossing the railway bed, follow the left fork in the road for about 2 km then take a right fork and follow it for about 1.5 km to Pine Fall's Lodge, which is located at the southern inlet into Murray Lake. After crossing a small bridge/dam follow the main road for about 1.9 km then turn north (right) at the second main road. Follow this road for about 4 km at which point there is a clearing; this is close to the western claim line on unpatented mining claim bloc S-1230563 (Figure 2).

Figure 1. Location of the Davis-Kelly Pt-Pd-Cu-Ni property, Kelly & Davis Townships, Sudbury Mining Division, Ontario. The property is located about 76 road km northeast of the City of Sudbury (off the map).

Figure 2. Accessibility to the Davis-Kelly property located about 76 road km northeast of the City of Sudbury. The property can be reached by travelling about 45 km east from Sudbury to Hagar along Highway 17. At Hagar, turn north (left) and follow secondary road 535 for about 22 km until reaching an abandoned railway bed (access road on map). After crossing the railway bed, follow the left fork in the road for about 2 km then take a right fork and follow it for about 1.5 km to Pine Fall's Lodge, which is located at the southern inlet into Murray Lake. After crossing a small bridge/dam follow the main road for about 1.9 km then turn north (right) at the second main road. Follow this road for about 4 km at which point there is a clearing.

The Davis-Kelly property consists of two (2) unpatented mining claim blocs (28 claim units) covering 448 ha (Figures 3 and 4; Table 1; Map DK99-01).

Claim	Township	Units	Hectares
S-1230563	Davis-Kelly	16	256
S-1229408	Kelly	12	192
	TOTALS:	28	448

Claim S-1229408 is held 100% by PFN whereas claim S-1230563 is on option by PFN from F. Racicot.

TOPOGRAPHY AND VEGETATION

Topography on the Davis-Kelly property characterised by generally north-south to northeastsouthwest trending ridges of gabbroic rocks with gradual slopes punctuated by metre- to 10's of metres scale cliffs. The primary vegetation on the ridges is mixed forest consisting of spruce, pine, birch, poplar and oak with alders, cedars and spruce dominating the intervening low and swampy ground.

Outcrop exposure is limited to about 30% with the remaining areas covered mostly by a thin (<1 m) veneer of humus, poorly developed soils and glacial till, and low areas of cedar and spruce swamp. Thicker areas of overburden consist primarily of 1-2 m of silty sand, clay and poorly developed glacial till that can locally be >10 m thick.

Maskinonge Lake is located about 800 m northwest of the approximate centre of the Davis-Kelly property and several seasonal swamps and ponds occur throughout the property.

Figure 3. Location of the 2 mining claim blocs that comprise the Davis-Kelly property located in Kelly and Davis Townships, Sudbury Mining Division, Ontario (claim map G-3033 - Kelly Twp.).

-1

Figure 4. Location of the 2 mining claim blocs that comprise the Davis-Kelly property located in Kelly and Davis Townships, Sudbury Mining Division, Ontario (claim map G-3182 - Davis Twp.).

œ

REGIONAL GEOLOGY

The Huronian-Nipissing Magmatic Province (HNMP) consists of intrusive bodies such as the East Bull Lake, Agnew Lake and River Valley Intrusions (*ca.* 2.4 Ga) and younger intrusions (*ca.* 2.2 Ga) of Nipissing Diabase (Gabbro) that intruded into Paleoproterozoic sedimentary rocks of the Huronian Supergroup (*ca.* 2.45 Ga). Northwest-trending olivine gabbro dykes (*ca.* 1.2 Ga) of the Sudbury Swarm crosscut all of the older rock types. To date there are no known economic Cu-Ni-PGM sulphide deposits associated with Nipissing Gabbro. Nonetheless, numerous showings (>50 known) with anomalous PGM values (1-10 g/t PGM) are recorded throughout the HNMP.

Nipissing Diabase (gabbro) comprises >25% of the outcrop area in the HNMP and consists of dominantly tholeiitic to calc-alkaline rocks. The majority of Nipissing gabbros occur as near-horizontal sheets or undulating sills, consisting of basins and arches, and dykes that are generally less than 1000 m thick. In this form, disseminated to massive sulphide mineralization is concentrated within the basin or limb portions with pods of dominantly massive pyrrhotite occurring within the arches. **Lopolithic forms** outcrop as irregular-shaped intrusions and may represent deeper feeder systems to the stratigraphically higher sill and cone-shaped intrusions. In this form disseminated to semi-massive sulphides are hosted by hypersthene gabbro within tens of metres of the footwall sedimentary rocks and within irregular regions at the footwall contact. This form is characterised by the gabbroic intrusion at PFN's Janes property. **Arcuate** and open ring outcroppings of Nipissing Gabbro and structural features of surrounding sedimentary rocks suggest inward-dipping, **cone-shaped intrusions** in which disseminated sulphides hosted by hypersthene gabbro are within a few hundred metres of the basal contact. This form is typified by the gabbroic intrusion at PFN's **Davis-Kelly property**.

PROPERTY GEOLOGY

The **Davis-Kelly property** is located on the eastern margin or limb of what appears to be a cone-shaped intrusive body with an arcuate shaped outcrop pattern that spans Davis and Kelly Townships. The gabbroic rocks on the eastern limb dip westward with the eastern igneous contact (footwall) subparallel to the west-dipping basal sedimentary rocks and western contact (hangingwall) subparallel to the east-dipping sedimentary rocks. In addition, the rock sequences

show an increase in felsic to mafic mineral ratios and an increase in the percentage of granophyric and vari-textured gabbro from east to west.

The property is primarily underlain by rocks of the Nipissing Diabase suite, which in this area include hypersthene (mafic) gabbro, gabbro, leucogabbro, vari-textured gabbro, and pegmatitic gabbro. Also outcropping on this property are sedimentary rocks (argillite, greywacke and subordinate quartzite) of the Gowganda Formation, and magnetite-bearing olivine diabase dyke(s) of the Sudbury Swarm.

Metamorphic grade in the area of the Davis-Kelly property is between lower greenschist facies (chlorite zone) and lower amphibolite facies as indicated by the presence of chlorite and metamorphic amphibole (often pseudomorphing orthopyroxene) in the gabbroic rocks.

Mineralization

Sulphide mineralization occurs within about 50-100 m of the lower gabbro-sedimentary contact and for the most part is hosted within medium-grained, hypersthene-bearing (5-10% orthopyroxene) gabbro. Subordinate sulphides also occur in vari-textured to coarse-grained gabbroic patches within hypersthene-bearing gabbro. Sulphide minerals include chalcopyrite, pyrrhotite and pentlandite and sulphide contents are typically 2-5%. There is no apparent correlation between percent sulphide and PGM values, although chalcopyrite appears to be an essential sulphide phase for anomalous PGM values. Sulphide textures and host gabbroic rocks are very similar to those observed at PFN's Kelly property to the northwest. It is likely that the Davis-Kelly property represents the southeastern extension of PFN's Kelly property and that both of these prospects occur within a similar (if not the same) mineralized horizon within the same gabbroic body.

EXPLORATION PROGRAM: PHASE I

The Phase I exploration began June 1st, 1999 and was completed by December 15th, 1999. During this time, the following work was completed:

(1) A 35 km exploration grid with a 2.3 km east-west base line and 35.7 km of north-south tie lines established at varying intervals, but generally every 50 m. The location of the current grid was as close as possible to the old exploration grid established in 1989 by BP Resources Limited.
(2) Reconnaissance & Grid Bedrock Mapping as part of the grid prospecting and sampling program.

(3) Prospecting and sampling on the exploration grid. A total of 72 grab samples were collected and assayed for PGM-Cu-Ni.

(3) A total of 3.5 km of orientation induced polarization survey and 7.7 km of orientation magnetometer survey.

(4) A five hole (312 m/1024 ft) diamond drilling program aimed at testing the down-dip extension and local strike of sulphide mineralization at the main showing.

Reconnaissance & Grid Bedrock Mapping

Geological bedrock mapping was completed over most of the 35 km exploration grid. This mapping was combined with existing maps to produce a compilation map of the property. Most of the property is underlain by gabbroic rocks of Nipissing Diabase that include chilled to very fine-grained gabbro, fine- to coarse grained gabbro, medium-grained hypersthene-bearing gabbro, medium- to coarse-grained vari-textured and/or granophyric gabbro and coarse-grained to pegmatitic gabbro. Chilled gabbro occurs within 10-15 m of sedimentary contacts and generally contains <0.5% visible sulphide. Normal gabbro (30-60% felsic minerals) occurs throughout the property and can host up to 3% visible sulphide although in general it contains $\leq 1\%$ visible sulphide. Medium-grained hypersthene-bearing gabbro also occurs throughout the property and appears to be one of the dominant lithologies. This rock type contains from 1-10% hypersthene (orthopyroxene) phenocrysts in medium-grained gabbro and tends to be dark in colour. In most cases the hyperstheme alters to talc-serpentine or is pseudomorphed by amphibole. Hypersthemebearing gabbro (sometimes referred to as gabbronorite) is the dominant host rock to sulphide mineralization and commonly contains 1-2% visible sulphide. Vari-textured and granophyric gabbro primarily occurs within more fractionated and coarser-grained gabbroic rocks (higher % of felsic minerals) which occurs at higher intervals in the igneous stratigraphy. However, it is also found dispersed within hypersthene-bearing gabbro units. In both cases the vari-textured and coarse-grained gabbroic units can contain up to 5% visible sulphide. pegmatitic units are not common on the property and tend to occur as isolated patches within the more felsic gabbroic

rocks; rare mafic pegmatitic gabbro (amphibole-rich patches) does occur within hypersthenebearing gabbro units. Visible sulphide in the pegmatitic rocks is generally <1% and occurs mainly as blebs.

WORK COMPLETED

The exploration program consisted of line cutting / brushing, geological mapping, prospecting and sampling. A 1:5000 compilation geological map of the property is included, along with 1:5000 regional and prospecting maps. The entire 35 km exploration grid was prospected at varying levels of detail. A total of 72 samples were collected during prospecting and geological mapping. All assays were completed at XRAL laboratories in Don Mills, Ontario.

Bedrock mapping and sampling (21 days) was completed across the exploration grid and a 1:5000 scale map was produced, which included outcrops, structural features, vegetation and the nature of the overburden. Areas of higher mineral potential were noted during mapping for later reconnaissance sampling during prospecting. A total of 7 days were spent prospecting as a follow up to the geological mapping, in the areas considered most prospective for sulphide mineralisation. All sample locations and prospecting traverses are shown on the attached 1:5000 scale map. A total of 14 days of geological consulting were spent during site evaluation, project planning, and management for the duration of the project.

CERTIFICATE OF QUALIFICATION

I, Scott Jobin-Bevans of 225 Ferndale Avenue, Sudbury, Ontario, Canada, do hereby certify that:

- 1. I am a consulting geologist with the mineral exploration company JB Exploration & Development Inc. of Sudbury, Ontario.
- 2. I am a graduate of the University of Manitoba, Winnipeg, Manitoba with a B.Sc. (Hons.) Geology 1995, and M.Sc. Geology 1997.
- 3. I am a member of the Society of Economic Geologists and the Canadian Institute of Mining, Metallurgy and Petroleum.
- 4. I have been an exploration geologist and prospector for ten years.
- 5. I am a member of the Association of Geoscientists of Ontario.
- 6. I have an active prospector's license for the province of Ontario (# H14027).
- 7. I have not received any direct or indirect interest in Pacific North West Capital Corporation.
- 8. This report is intended to be an overview of the potential of the property or properties with recommendations and conclusions that are based solely on the available data.

S. John Boans

Scott Jobin-Bevans (B.Sc., M.Sc. Geology) March 30, 2001

Appendix A

Rock Code	Formation	Rock Type	Description
1	Huronian Supergroup	sediments	unsubdivided
<u>la</u>	Lorrain	arenite	relatively well sorted sandstone
1b	Gowganda	conglomerate	sandstone to argilite with $> 25\%$ pebbles
lc	Gowganda	siltstone, argillite	highly indurated claystones
1d	Gowganda	wacke	poorly sorted sandstone >20% silt or clay matrix
2	Nipissing Diabase	gabbro	unsubdivided
2a		gabbro	fine to medium grained
2b		gabbro	medium to coarse grained
2c		gabbro	coarse to medium grained
2d		gabbro	vari-textured
2e		gabbro	hypersthene bearing
2f	· · · · · · · · · · · · · · · · · · ·	gabbro	mineralized, > 1% visible sulphides
2g		gabbro	mineralized, > 10% visible sulphides
2h		gabbro	mineralized, > 35% visible sulphides
2i	·	gabbro	magnetite (oxide) bearing
2ј		gabbro	altered (sericite, chlorite)
2k		gabbro	speckled
21		gabbro	very fine-grained to fine-grained
2ch		gabbro	chilled
3	Sudbury Diabase	gabbro	unsubdivided
			oxide and olivine bearing

Table A. Rock types, lithologies and formations with their description to accompany geological map

ت 0.	83 PAGE	85779207 1971-30 LK necer	IENLE HODEDON	ו דמפכהו פכמו ווקב	10 20510000	57:80 00	DEC 13 1
	🗑 Ontar	Ninistry of Northern Development and Mines	Declaration Performed (of Assessment on Mining Land stim 4(2) and 4(3), R.(Work	ansaction Number (office use) 1 00 7 0. 00 2.46 2. aatomurt Play Research Imaging	·
				in 65(2) and 68(3) ik and correspond is Minas, and Pisor) of the Mining Act with the mining lar , 833 Finnary Lefe	t, Under section 8 of the Mining Act, this nd helder. Quastions about this collection a Road, Sudbury, Ontario, P3E 998.	
41109NW2023	2.20776 KE	LLY	900	ing a claim, u	se form 0240.	dan in a bit w	×. •
	1. Recorded holde	n(s) (Altach a list if m	icessary) K	levised.	(J		
	FRANK	RACICOT			185390	2	
	1912 5	oringdale Cre	5		(705)5	25-5920	
	SUDDUN	JON. P3AS	51		(Same)		
	Nurve Paciti	z North V	lest Capi	tallog.	Cherk Humber	304294 h	4
	15. 2303	West 418	the		Telephone Nume	Y-685-1870 ~	
- 0	Vancou	Ver, BC 1	16M ZA3	8	Fac Haumone	4-688-2582	
	2. Type of work p	erformed: Check (√) :	and report on only	y ONE of the followin	ng groups for ti	his declaration.	
	Geotechnical:	prospecting, surveys, it under section 18 (re		Physical: drilling strip tranching and associ	ping, stod sees/s	Rehabilitation	
	Work Type	Day fin P	ale ale M			Office Use	
	Line Cutting,	Prospecting, C	REGIOCE MI	40.19	Commodity		
	Report		<u>v</u>	<u></u>	Work Claimed	37,245	
	Dates Work From O	06 1999	To 15	12 1999	NTS Reference	•	
	Global Positioning System Da	ta (if mailable) Tourship	Kelly +	Davis Tup.	Mining Divisio	" Sudburg	
		Megn G	n Humber J 3033 + G	- 3182	Resident Geol District	Colisi RECENSULU	. Ry
		 orcain a work perm provide proper notif complete and attact provide a map shot include two copies (to surface right a Statement of ring contiguous n of your technical	ts holders before star Costs, form 0212; nining lands that are report.	ting work;	BEDBENENCE ASSESSMENT	
	3. Person of com	panies who prepared	the technical n	eport (Attach a list if	necessary)	har	
	Nome Laurence	e Scott Jobi	1-Bevans		705-5	-24-8060	
	225 Fernda	le Art. Sido	m. P36	362	705-5	121-0653	
	Neme		01		Telephone Num	ber	
	Address				Fax Number		
	Name				Telephone Num		
	Address				Fax Number		
	4. Certification b I, <u>La unance</u> this Declaration of A completion and, to t	y Recorded Holder o Scott Jabin- peritient gesament Work havin he best of my knowled	Agent Sevens do here g caused the wo ge, the annexed	by certify that I have rk to be performed of report is true.	e personal know r witnessed the	wedge of the facts set forth in a same during or after its	
	Signature of Recorded	Molder of Adeni				Date Nov, 30/00	_
	Agent's Address	induleAve,	Sudbury 136	3CZ 705-52	y-8060	Fax Number 705-521-0653	-
	0241 (00/77)					*3919	
E00 🖗			NJA	1BEX&	2883	TUE 21:40 FAX 705674	2/12/00 1

(Print Name) this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder of Agent	Date Novr 30/00
Agent's Address Telephone Number 235 Ferndale Ave, Sudbury 1383(2) 705-524-8060	Fax Number 705-5-21-065-3
0241 (03/97)	

* 2919

Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining 5. land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form

	•	W007	0.00262	9	90 9 19	G
Minin work v minin colum indica	g Claim Number. Or if vas done on other eligible g land, show in this n the location number ated on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work • applied to this claim.	Variate of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
1	5-1230563	16	\$27,934	#0	#0	\$27,934
2	5-1229408	12	\$\$ 9,311	\$0	¥C)	\$\$9,311
3						
4						
5						
6						
7						
8	· · · · · · · · · · · · · · · · · · ·					
9						
10			1			
11		1				
12						· · · · · · · · · · · · · · · · · · ·
13						
 14						
15						
	Column Totals	28	\$37,245	40	\$0	\$37,245

1. Laurence Scott Jobin-Bergns

, do hereby certify that the above work credits are eligible under

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing	Date dian 2 / a	MES
ATT Ser	1001.50/00	1 "CE
1-3-3-3-		

Instruction for cutting back credits that are not approved. 6.

GEOSCIEM Some of the credits claimed in this declaration may be cut back. Please check (1) in the boxes below to ow you wish to SHENT prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only		
Received Stamp	Deemed Approved Date	Date Notification Sent
	Date Approved	Total Value of Credit Approved
0241 (03/97)	Approved for Recording by Minin	g Recorder (Signature)

DECO

Statement of Costs for Assessment Credit

Transaction Number (office use)

10070.00000

K

sonal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

		63 59 (1, 1, 1,	· · · · · · · · · · · · · · · · · · ·
Work Type	Units of work Depending on the type of work, list the number of hours/day worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
Line Cutting	35 km	#325	\$11,375
Line Brushing	10 days	\$ 200	\$2,000
Consulting Geologist	14 days	\$300	\$4,200
Geological Assistant	28 days	\$150	\$4,200
Bedrock Mapping Geo.	21 days	\$300	\$6,300
Prospecting	7 days	\$200	#1,400
Assays (PGM-CM-Ni)	1 72 original / 3 checks	\$20/\$10	\$1,470
Associated Costs (e.g. suppli	es, mobilization and demobilization).		
	Reports Drathng (7 days	\$\$300	\$2,100
	Shipping. Operating Supplies	₹8HB. —	\$1,750
	Friel	-	\$525
Transp	oortation Costs		
	Vehicle Rental (35 chys)	146 #55	\$1,925
Food an	d Lodging Costs		
	Total V	alue of Assessment Mo	#37,245
 Calculations of Filing Discounts: Work filed within two years of per If work is filed after two years and Value of Assessment Work. If this 	formance is claimed at 100% of the above To d up to five years after performance, it can on s situation applies to your claims, use the calc	DEC O GEOSCHERT In Value of Assessifiant by be claimed at 50% State sulation below:	VED Nork.
TOTAL VALUE OF ASSESSMENT	VORK x 0.50 =	Total \$ value	of worked claimed.
 Note: Work older than 5 years is not eli A recorded holder may be require request for verification and/or con Minister may reject all or part of t 	gible for credit. ed to verify expenditures claimed in this stater rection/clarification. If verification and/or corre he assessment work submitted.	nent of costs within 45 day ection/clarification is not m	/s of a hade, the

Certification verifying costs:

I, LAURING Scott Jobin-Best 415 do hereby certify, that the amounts shown are as accurate as may reasonably ase print full name) (P

be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying

AGENT (recorded holder, agent, or state company position with signing authority) I am authorized to make this certification. Declaration of Work form as

Date Signature Sto 8 NOV. 30/00

* 2910

0212 (03/97)

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

April 19, 2001

FRANK CHARLES RACICOT 1912 SPRINGDALE CRESCENT SUDBURY, Ontario P3Y-5J1

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Dear Sir or Madam:

Submission Number: 2.20776

Subject: Transaction Number(s):StatusW0070.00262Approval After Notice

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact JIM MCAULEY by e-mail at james.mcauley@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

fucille Jerome

ORIGINAL SIGNED BY Lucille Jerome Acting Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 15861 Copy for: Assessment Library

Work Report Assessment Results

Submission Number: 2.20776

Date Correspondence Sent: April 19, 2001			Assessor: JIM MCAULEY		
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W0070.00262	1230563	KELLY, DAVIS	Approval After Notice	April 12, 2001	
Section: 12 Geological GE 9 Prospecting PR	OL OSP				
The revisions out	lined in the Notice da	ated February 26, 2001 with regard to	the prospecting and geological map	ping have been corrected.	
The expenditure requested items it	verification provide e nave been allowed.	xpenditure details of a portion of the r	equested items. Only those expendit	ures that have been documented of the	
IN FUTURE, PLE WORK OF A GE	JTURE, PLEASE PROVIDE AN ACCURATE BREAKDOWN OF EXPENDITURES IN THE STATEMENT OF COSTS. ALSO, CLARIFY AND DETAIL RK OF A GEOLOGICAL NATURE (MAPPING) AND THAT RELATED TO PROSPECTING.				

Assessment work credit has been approved as outlined on the attached Distribution of Assessment Work Credit sheet.

The assessment credit is being reduced by \$2,210. The TOTAL VALUE of assessment credit that will be allowed, based on the information provided in this submission, is \$35,035.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

Correspondence to: Resident Geologist Sudbury, ON

Assessment Files Library Sudbury, ON Recorded Holder(s) and/or Agent(s): Laurence Scott Jobin-Bevans SUDBURY, ON, CAN

FRANK CHARLES RACICOT SUDBURY, Ontario

PACIFIC NORTH WEST CAPITAL CORP. VANCOUVER, BC

Distribution of Assessment Work Credit

The following credit distribution reflects the value of assessment work performed on the mining land(s).

Date: April 19, 2001

Submission Number: 2.20776

Transaction Number: V	V0070.00262	
Claim Number	Value	Of Work Performed
1230563		26,276.00
1229408		8,759.00
	Total: \$	35,035.00

Page: 1

200

41109NW2023 2.20776 KELLY

ADMINISTRATIVE DISTRICTS / DIVISIONS Sudbury Land Titles/Registry Division SUDBURY Ministry of Natural Resources District SUDBURY LAND TENURE Freehold Patent Surface And Mining Righ Surface Rights Only Mining Rights Only Leasehold Patent Surface And Mining Rigi Surface Rights Only E Mining Rights Only Licence of Occupation 3 Uses not Specified Ŧ Surface And Mining Rigi Surface Rights Only Mining Rights Only 1119, Land Use Permit DIC Order in Council A Water, Power, Lease Aggre Monument - Cadastral, Historical, Horiz. Control 1234587 Mining Cla LAND TENURE WIT 1284 7 Areas Withdrawn,from Mining Act Withdrawa Surface and Mining Ri Surface Rights Only.W Mining Rights Only.W Order, in Council, With Surface and Mining Ri Surface Rights Only, W Mining Rights Only, W ₩°sm W°s W°m IMPOR1 LAND TENURE WITHDRAWAL DESCRIPTIONS Description SEC. 35 W-LL-P 173/99 ONT MAY 12/99 M+S SEC 35 W-LL-P 174/99 ONT, NAY 13/99 M&S Sec. 35 W-LL-F 181/00 ON T_OCT.04/08 M+S Areas under, which special regulations, limitations or conditions exist that affect normal prospecting,

MINISTRY OF Northern.development

AND MINES

MINING LAND TENURE				
	WAF			
01	16-17h Eastern			
	PLAN			
	G-3033			
	/ISIONS			
	Sudbury			
trict	SUDBURY			
	ENURE			
Freehold Pate	nt			
	Surface And Mining Rights			
	Surface Rights Only			
L oscabald Dat	Mining Rights Only			
	Surface And Mining Rights			
	Surface Rights Only			
	Mining Rights Only			
Licence of Oc	cupation			
	Uses not Specified Surface And Mining Rights			
	Surface Rights Only			
	Mining Rights Only			
	und Use Permit			
• •	rder, in, Council Inter Power Leese Accreement			
	ENURE WITHDRAWALS			
	Areas Withdrawn, from. Disposition			
Wan	Mining Act Withdrawal, Types Surface and Mining Rights Withdrawn Surface Blatte Octo Withdrawn			
Wa	Surrace Rights Unly, Withdrawn Mining Rights Only, Withdrawn Order, in Council Withdrawal Types			
W°sm W°s W°m	i Surface and Mining Rights Withdrawn Surfaoe Rights Only,Withdrawn Mining Rights Only,Withdrawn			
	2.0 Km			
CRIPTION	s			
	-			
99 ONT., MAY 12/99 19 ONT, NAY 13/99) M+S M&S			
00 ONTOCT.04/0	0 M+S			
t that affect norma	l bt Aspecting.			
	, prospecing,			

