

TANES

010

41109NW2024

FINAL WORK REPORT: PHASES I & II

SARGESSON LAKE PROPERTY

JANES TOWNSHIP, SUDBURY MINING DIVISION, ONTARIO

December 30th, 1999

Prepared For:

Pacific North West Capital Corp. 626 West Pender Street, Mezzanine Floor Vancouver, British Columbia, Canada V6B 1V9

and

Consolidated Venturex Holdings Ltd. Suite 450, 999 West Hastings Vancouver, British Columbia, Canada V6C 2W2

S. Jobin-Bevans, M.Sc. * Consulting Geologist * 225 Ferndale Avenue * Sudbury, Ontario, Canada, P3B 3C2 * (705) 524-8060

TABLE OF CONTENTS

41109NW2024 2.20783

JANES

010C

	Page No
Table of Contents	1
Summary	2
Introduction	3
Location & Accessibility	3
Claim Status	6
Topography & Vegetation	6
Regional Geology	8
Property Geology	9
Mineralization	9
Property History	10
Exploration Program: Phases I & II	13
Phase I	13
Phase II	13
Bedrock Geological Mapping	14
Prospecting & Lithogeochemical Sampling	16
Analytical Techniques	16
Background Values	17
Platinum-Group & Base Metal Data	17
Diamond Drilling Program	23
Conclusions	24
Recommendations	25
Certificate of Qualification	27

APPENDICES

ALLENDIGEO	
I - Sample Locations and Descriptions	
II – Sample Assay Sheets & Certificates	
III - Element Distribution Plots	
IV – Statistical Analysis of Data	
V – Property Maps	

TABLES

TABLES	Page No
1 – Distribution of Claims	6
2 - Drill core assays from 1965/1968 drilling program	11
3 - Assay data from samples collected on north grid	19
4 - Assay data from samples collected on south grid	21
5 - Summary of diamond drill hole parameters - October 1999 program	23
6 - Summary of assay results from drill core samples - October 1999 program	23

FIGURES	Page No
1 – Regional Location Map	4
2 - 1:1000000 scale Regional Road Map	5
3 - Claim map G-2907	7
4 - Plan map of 1960's drill holes and current drill hole program	12
5 - Location of exploration grids and surface PGM-Cu-Ni showings	15
6 - Map of north grid with sample locations and current drill holes	18

Map Pocket: SL99-NG-01 – north grid geological map SL99-SG-01 – south grid geological map

SUMMARY

This report represents a summary of mineral exploration work (Phases I and II) completed on the **Sargesson Lake** property, located in the Sudbury Mining Division of north-central Ontario, Canada. The property, located about 105 road km northeast of the City of Sudbury, in the northeast quadrant of Janes Township, is an early-stage precious metal (platinum-palladium-gold) and base metal (copper-nickel) exploration target that is proximal to the prospective Janes property; reported diamond drill intersections from Janes include 3.1 g/t Pt+Pd+Au, 1.08% Cu and 0.27% Ni over an approximate true width of 15.05 m. The Sargesson Lake exploration program is a joint venture between Pacific North West Capital Corp. and Consolidated Venturex Holdings Ltd., both of Vancouver, Canada.

At the Sargesson Lake property, the platinum-group metals (PGM=Pt+Pd+Au) and Cu-Ni sulphides (chalcopyrite, pyrrhotite and pentlandite) occur primarily as disseminations and blebs within medium-grained, relatively homogenous gabbroic rocks of the Nipissing Diabase. Sulphide mineralization is exposed intermittently at surface by a series of old trenches and pits that occur over a northeast-southwest strike length of about 500 m on the north grid. This mineralization has been drill-confirmed to extend 55 m down-dip of surface exposures.

The **Phase I exploration program** included: (1) a 2.2 km exploration grid (north grid: ~300m x 650m) covering surface sulphide mineralization; (2) prospecting and sampling on the north grid; (3) general geological mapping and sampling on the north grid; and, (4) reconnaissance geological mapping and sampling in the southwest area of the claim bloc. A total of 68 samples (65 on north grid and 3 on south grid) were collected for geochemical analysis (whole rock and sulphur) and assay (Pt-Pd-Au-Cu-Ni).

The Phase II exploration program included: (1) a 10.5 km exploration grid (south grid: ~450m x 1150m) covering the southwest extension of the gabbroic body and north grid mineralization; (2) prospecting and sampling on the south grid; and, (3) general geological mapping and sampling on the south grid. A total of 46 samples were collected for assay (Pt-Pd-Au-Cu-Ni). In addition, a **Phase I diamond drilling program** (320 m (1050 ft) in 6 holes) was completed on the north grid in order to test the subsurface extent of known surface mineralization.

Assays from grab samples are maximum **2.1g/t PGM**, **0.76%Cu and 0.32%** Ni from the north grid and **2.8 g/t PGM**, 731 ppm Cu, 369 ppm Ni from the south grid. These values and the potential for further discoveries in this area are significant enough to warrant implementation of a third phase of exploration.

INTRODUCTION

The Sargesson Lake property, centred at 46°40'24"N latitude/80°19'58"W or 551025mE-5169075mN (NTS 411/NE), consists of one (1) unpatented mining claim bloc (15 claim units) covering 240 ha in Janes Township, Sudbury Mining Division, Ontario (Figures 1 and 2). This property is one of several projects in the area that is currently under option by Pacific North West Capital Corp. (PFN) and their joint venture partners, Consolidated Venturex Holdings Ltd. (CVA); both companies are from Vancouver, Canada.

The Sargesson Lake property lies within the Southern Geological Province of the Canadian Shield and is one of several properties in the area that has potential to host economic concentrations of platinum-group metals, copper and nickel that is spatially associated with Nipissing Diabase (gabbro) intrusive rocks. Sporadic exploration work from the early 1950's to present, including ongoing exploration work in the immediate area by Goldwright Explorations Inc. and Pacific North West Capital Corp., and regional geological mapping by the Ontario Geological Survey has identified sulphide mineralization in the area that is of potential economic interest.

LOCATION & ACCESSIBILITY

The **Sargesson Lake property**, located immediately east of PFN's Janes property and within the northeast quadrant of Janes Township, is about 105 road km (53 km direct) northeast of the City of Sudbury, and is road accessible (Figures 1 and 2). The property can be reached by travelling about 51 km east from Sudbury to Warren along Highway 17. At Warren, turn north (left) following secondary road 539 toward the town of River Valley, a distance of about 36 km. Continue on route 539 for about 10.45km heading toward the old railway stop of Glen Afton. Follow a dirt track road, leading west and paralleling the old railway bed from Glen Afton, for about 750m to where the road crosses the railway bed. Immediately after the crossing, turn north (left) and follow the old logging road for about 6.8km to the north end of the claim bloc; the last 2 km of this road is negotiable only by 4-wheel drive truck or ATV.

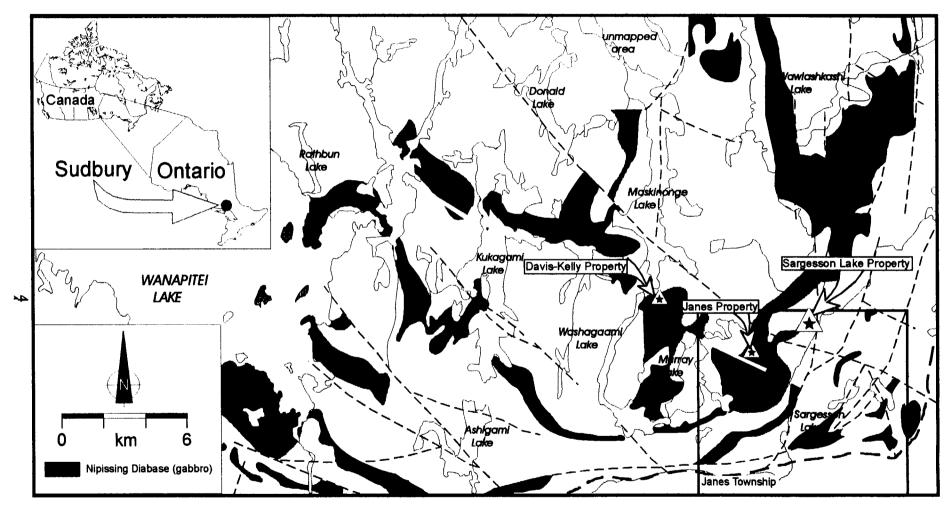


Figure 1. Location of the Sargesson Lake Pt-Pd-Cu-Ni property, Janes Township, Sudbury Mining Division, Ontario. The property is located about 86 road km northeast of the City of Sudbury (Sudbury is off the map). Also shown is the location of the Janes property and the Davis-Kelly property.

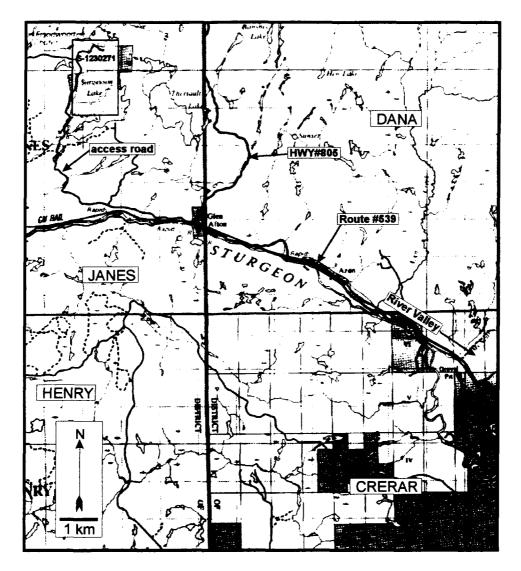


Figure 2. Accessibility to the Sargesson Lake property, located about 105 road km northeast of the City of Sudbury, Ontario. See text for complete description of travel directions.

CLAIM STATUS

The Sargesson Lake property consists of one (1), 15 claim unit unpatented mining claim bloc comprising 240 hectares and centred at approximately 46°40'24"N latitude/80°19'58"W longitude (551025mE-5169075mN: NTS 41I/NE) in Janes Township (Table 1; Figure 3). Claim S-1230271 is on option by PFN from F. Racicot.

Claim	Township	Units	Hectares	Due Date	Work \$
1230271	Janes	15	240	June 29/00	\$6,000
	TOTALS:	15	240	-	

Table 1. Distribution of Mining Claims for the Sargesson Lake Property.

In accordance with assessment requirements, \$7,887 worth of exploration assessment work was filed against the mining claim on June 29th, 1999 (see work summary: Phase I). The total amount applied to the mining claim was \$6,000 and the remaining \$1,877 was put in reserve for application at a future date. Exploration work not yet filed against the mining claim includes Phase II surface exploration and October 1999 diamond drilling program.

TOPOGRAPHY AND VEGETATION

Topography on the Sargesson Lake property is characterised by generally north-south to northeast-southwest trending ridges of gabbroic rocks with gradual slopes and local metre- to 10's of metres scale cliffs. The primary vegetation on the ridges is mixed forest consisting of spruce, pine, birch and poplar, with alders, cedars, and poplar dominating the intervening low and swampy ground. Overburden consists primarily of 1-2 m of silty sand, clay and poorly developed glacial till; locally overburden may be >10m thick.

Several large unnamed lakes and Sargesson Lake itself are located within about 600 m of the approximate centre of the Sargesson Lake property.



Figure 3. Location of the mining claim bloc for the Sargesson Lake property, Janes Township, Sudbury Mining Division, Ontario (claim map G-2907).

7

REGIONAL GEOLOGY

The Huronian-Nipissing Magmatic Province (HNMP) includes intrusive bodies such as the East Bull Lake, Agnew Lake and River Valley Intrusions (*ca.* 2.4 Ga) and younger intrusions (*ca.* 2.2 Ga) of Nipissing Diabase (Gabbro); both intrusive suites are spatially associated with and intrude Early Proterozoic sedimentary rocks of the Huronian Supergroup (*ca.* 2.45 Ga). Northwest-trending olivine gabbro dykes (*ca.* 1.2 Ga) of the Sudbury Swarm crosscut all of the older rock types. To date there are no known economic Ni-Cu-Pt-Pd-Au sulphide deposits associated with Nipissing Diabase. Nonetheless, numerous showings (>50 known) with anomalous PGM values (1-10 g/t PGM) are recorded throughout the HNMP.

Nipissing Diabase (gabbro) comprises >25% of the outcrop area in the HNMP and consists of dominantly tholeiitic to calc-alkaline rocks. The majority of Nipissing Diabase occurs as near-horizontal sheets or undulating sills, consisting of basins and arches, and dykes that are generally less than 1000 m thick. In this form, disseminated to massive sulphide mineralization is concentrated within the basin or limb portions with pods of dominantly massive pyrrhotite occurring within the arches. Lopolithic forms outcrop as irregular-shaped intrusions and may represent deeper feeder systems to the stratigraphically higher sill and cone-shaped intrusions. In this form disseminated to semi-massive sulphides are hosted by hypersthene gabbro within tens of metres of the footwall sedimentary rocks and within irregular regions at the footwall contact. This form is characterised by the gabbroic intrusion at PFN's Janes property. Arcuate and open ring outcroppings of Nipissing Diabase and structural features of surrounding sedimentary rocks suggest inward-dipping, cone-shaped intrusions in which disseminated sulphides hosted by hypersthene gabbro are within a few hundred metres of the basal contact. This form is typified by the gabbroic intrusion at PFN's Kelly property and CVA's Davis-Kelly property.

PROPERTY GEOLOGY

A steeply southeast dipping gabbroic body of the Nipissing Diabase suite underlies the most prospective area of the **Sargesson Lake property**. The gabbro is bound to the north, south and east by rocks of the Lorrain Formation (quartz arenite/arkose) and to the west by rocks of the Gowganda Formation; the most western contact is represented by the Floodwood Chutes Fault. Gabbroic rock sequences show a subtle increase in felsic to mafic mineral ratios and an increase in the percentage of granophyric to vari-textured gabbro from the north to south contacts on the north grid. This suggests that the northern contact represents the basal portion of the sill.

The property is primarily underlain by rocks of the Nipissing Diabase suite, which include hypersthene (mafic) gabbro, gabbro, leucogabbro, vari-textured gabbro, and pegmatitic gabbro. Outcroppings of magnetite-bearing olivine diabase dyke (Sudbury Dyke Swarm) are exposed toward and beyond the most eastern edge of the property.

Lorrain Formation stratigraphically overlies the Gowganda Formation, and it would appear that the Floodwood Chutes Fault represents a normal fault along which the gabbroic body to the west (Janes property) was uplifted relative to the Sargesson Lake gabbro. This faulting does not preclude the likelihood that the Sargesson Lake gabbroic body is a dyke-like extension emanating from the larger gabbroic body that outcrops further to the west on PFN's Janes property.

The Sargesson Lake property is within several kilometres northwest and north of the Grenville Front Tectonic Zone (GFTZ). The GFTZ represents a complex zone that is several kilometres wide and consists of generally southeast-dipping imbricate thrust faults.

Metamorphic grade ranges from low greenschist (chlorite zone) to upper greenschist facies (biotite-chlorite zone) as characterised by the presence of metamorphic biotite in the gabbroic rocks. It is important to note that the Sargesson Lake property is proximal to the GFTZ and as such would have been subjected to a higher grade of metamorphism than other prospective properties in the area (i.e. Janes property).

Mineralization

On the **north grid**, surface sulphide mineralization is intermittently exposed by a series of old trenches and pits that occur over a northeast-southwest strike length of about 500 m (Figures 5 and 6). The main area of sulphide mineralization occurs within

9

about 10-50 m of the basal gabbro-sedimentary contact and is mainly hosted by massive, medium-grained, hypersthene-bearing (<10% orthopyroxene) gabbro. Subordinate sulphides also occur in vari-textured to pegmatitic gabbro and fine- to medium-grained gabbro. Platinum-group metals are associated with Cu-Ni sulphides (chalcopyrite, pyrrhotite and pentlandite) that are primarily disseminated but can locally develop bleb textures (individual blebs up to 1.2 cm diameter).

On the **south grid**, sulphide mineralization was discovered in a medium-grained gabbro outcrop that is approximately 125 m north of old pits (Figures 5 and Map SL99-SG-01); the old pits were excavated into a quartz-carbonate vein system and were probably aimed at a gold target. The new sulphide showing is within about 25 m of the northwestern contact (extension of northern contact – north grid) and consists of scattered bleb and very-finely disseminated sulphide (~0.5% total visible sulphide).

PROPERTY HISTORY

The earliest recorded work on the **Sargesson Lake property** was in 1964 when several chalcopyrite and pyrrhotite occurrences were discovered by a prospector. Several trenches and pits exposed the mineralization for several hundred metres and in a northeast strike direction (Figure 6).

In 1965 and 1968, Pan Central Explorations Limited conducted a magnetometer survey followed by a diamond drilling program that included 8 holes, totalling 527 m in length (Table 2 and Figure 4). Drilling intercepted a mineralized zone that is described as being several hundred metres in length and parallel to a gabbro-sediment contact; the zone is apparently confined to within 30 m of this contact. In 1965, Pan Central Explorations Limited reported drill intercept values that ranged from 0.08-0.80% Cu (averaged 0.36% Cu) and 0.07-0.74% Ni (averaged 0.19% Ni). No assay values were reported from the 1968 drilling program and no assays for platinum or palladium were reported from either 1965 or 1968.

DDH No.	Hole Length (feet)	From (feet)	To (feet)	Length (feet)	Au (oz/t)	Cu (%)	Ni (%)
J-1	278.0	169.5	171.3	1.8		0.26	0.07
J-2	150.0	91.4	94 .1	2.7	0.18	0.11	0.74
J-3	223.0	114.1	117.7	3.6		0.46	0.19
		134.4	139.0	5.0	-	0.78	0.28
		139.0	144.0	5.0	0.035	0.74	0.34
		144.0	149.0	5.0	_	0.80	0.23
J-5	160.00	43.2	47.0	3.8		0.45	0.27

TABLE 2. Drill core assays - Pan Central Explorations Ltd. (1965/68) - Sargesson Lake property.

"---" = not reported

In 1997, F. Racicot (prospector) collected 17 grab samples from rubble around old trenches and pits. Eleven of the 17 samples reportedly returned assay values of 38-175 ppb Pt, 44-250 ppb Pd and 80-289 ppb Au. The highest reported value was 705 ppb PGM and Pd:Pt ratios averaged 1.4:1.

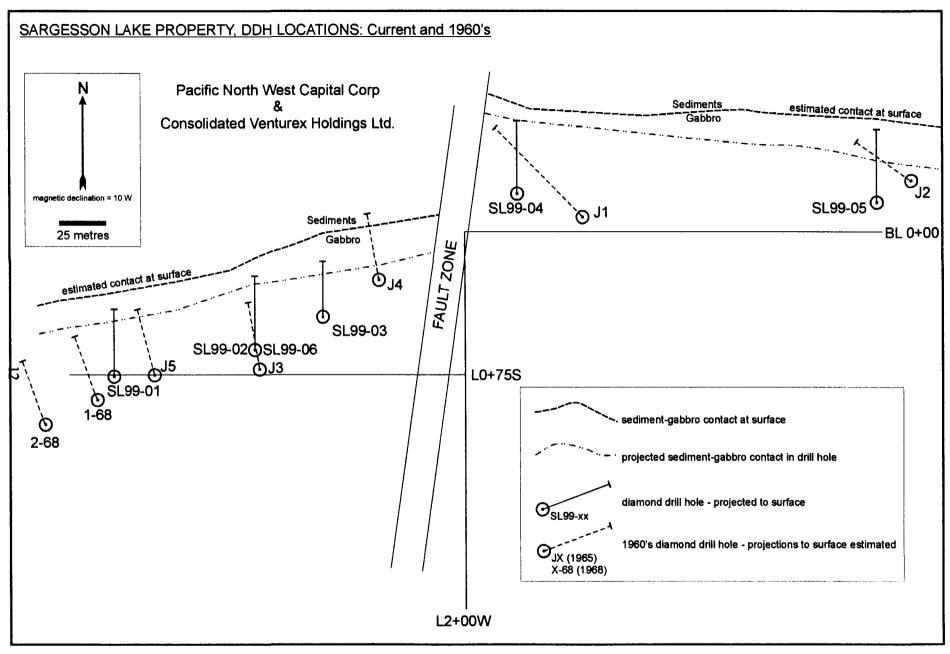


Figure 4. Main components of the current exploration grid with location of the 6 drill holes (SL99-xx) from current drilling program and location of 7 drill holes ca. 1965-1968; Sargesson Lake property, Janes Township, Ontario.

EXPLORATION PROGRAM: PHASES I & II

Phase I

The first phase of surface exploration began May 25th, 1999 and was completed by June 28th, 1999. During this time the following work was completed:

(1) A 2.2 km exploration grid (~300m x 650m) over the main area (north grid) of surface sulphide mineralization (Figure 5).

(2) Prospecting and sampling over the north grid area. A total of 68 samples (65 on north grid and 3 from reconnaissance) were collected for geochemical analysis (whole rock and sulphur) and assay (Pt-Pd-Au-Cu-Ni) through Accurassay Laboratories (Thunder Bay, Ontario).

(3) General geological mapping and sampling over the north grid area (Figure 6 and Map SL99-NG-01).

(4) Reconnaissance geological mapping and sampling in the southwest area (south grid) of the claim bloc (Map SL99-SG-01).

Results of the Phase I program are discussed briefly below; for complete information, see Phase I summary Report dated June 29th, 1999.

Phase II

The second phase of surface exploration began July 10th, 1999 and was completed by December 30th, 1999. During this time the following work was completed:

(1) A 10.5 km exploration grid (\sim 450m x 1150m) over the southwest extension of the gabbroic body (south grid), along strike of north grid mineralization (Figure 5).

(2) Approximately 1259 m of additional grid line was added to the north grid, including a 1000 m tie line at 1+25S.

(3) Prospecting and sampling over the south grid area. A total of 46 samples were collected for assay (Pt-Pd-Au-Cu-Ni) through Accurassay Laboratories (Thunder Bay, Ontario).

(4) General geological mapping and sampling over the south grid area (see Map SL99-SG-01).

(5) A diamond drilling program, totalling 320 m (1050 ft) in 6 holes, was completed on the north grid, in order to test the down-dip and strike extent of known surface mineralization.

Results of the Phase II surface exploration program are discussed below. Phase I diamond drilling results are summarised below; for a complete description, see Phase I Diamond Drilling Report dated December 30th, 1999.

Bedrock Geological Mapping

Geological bedrock mapping at a scale of 1:2500 was completed over the north and south exploration grids (Maps SL99-NG-01 and SL99-SG-01). Most of the property is underlain by gabbroic rocks of Nipissing Diabase that include chilled to very-fine-grained gabbro, fine- to coarse-grained gabbro, medium-grained, hypersthene-bearing gabbro, medium- to coarse-grained vari-textured and/or granophyric gabbro and coarse-grained to pegmatitic gabbro. For the most part, all the gabbroic rocks are massive with some localised shear and foliation that is best developed toward igneous contacts.

Chilled and very fine-grained gabbro occurs within about 10 m of sedimentary contacts and generally contains <0.25% visible sulphide and rare pyrite. *Normal* gabbro (30-60% felsic minerals) occurs throughout the property and can host up to 5% visible sulphide, although it generally contains about 0.5% total sulphide.

Hypersthene-bearing gabbro occurs throughout the property but exposures are less common than *normal* gabbro. Hypersthene-bearing gabbro contains up to 10% orthopyroxene phenocrysts in a medium-grained gabbro that is generally distinctively dark in colour and weathered. This rock unit contains up to 10% disseminated and bleb sulphide and is the most common host to PGM sulphide mineralization in Nipissing Diabase intrusives.

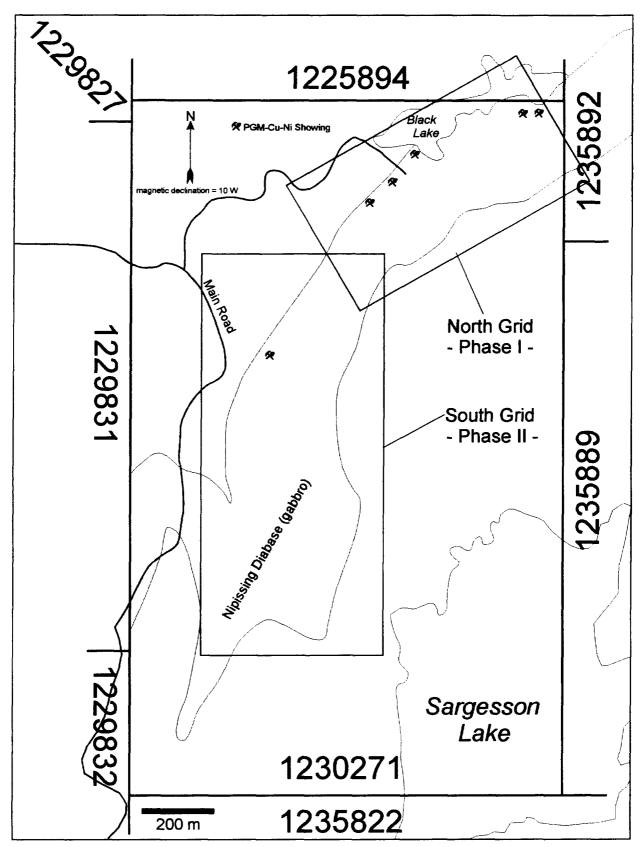


Figure 5. Location of the north (Phase I) and south (Phase II) exploration grids, Sargesson Lake property, Janes Township, Ontario.

Vari-textured gabbro and patches of pegmatitic gabbro occur more frequently along the southern part of the gabbro sill in the north than in any other area of the property; this may be indicative of upper level intrusive stratigraphy toward the south (i.e. a southfacing intrusion). This being the case, the northern gabbro-sediment contact would represent the footwall and the south, the hangingwall. These vari-textured and pegmatitic units can have up to 2% bleb and disseminated sulphide that is very localised and patchy.

The south grid contains several exposures of gabbro-sedimentary breccia in which centimetre to decimetre-scale blocks of sediment are enveloped within gabbroic rocks. These patches of breccia occur within about 25m of the contact but do not contain any significant visible sulphide.

Prospecting & Lithogeochemical Sampling

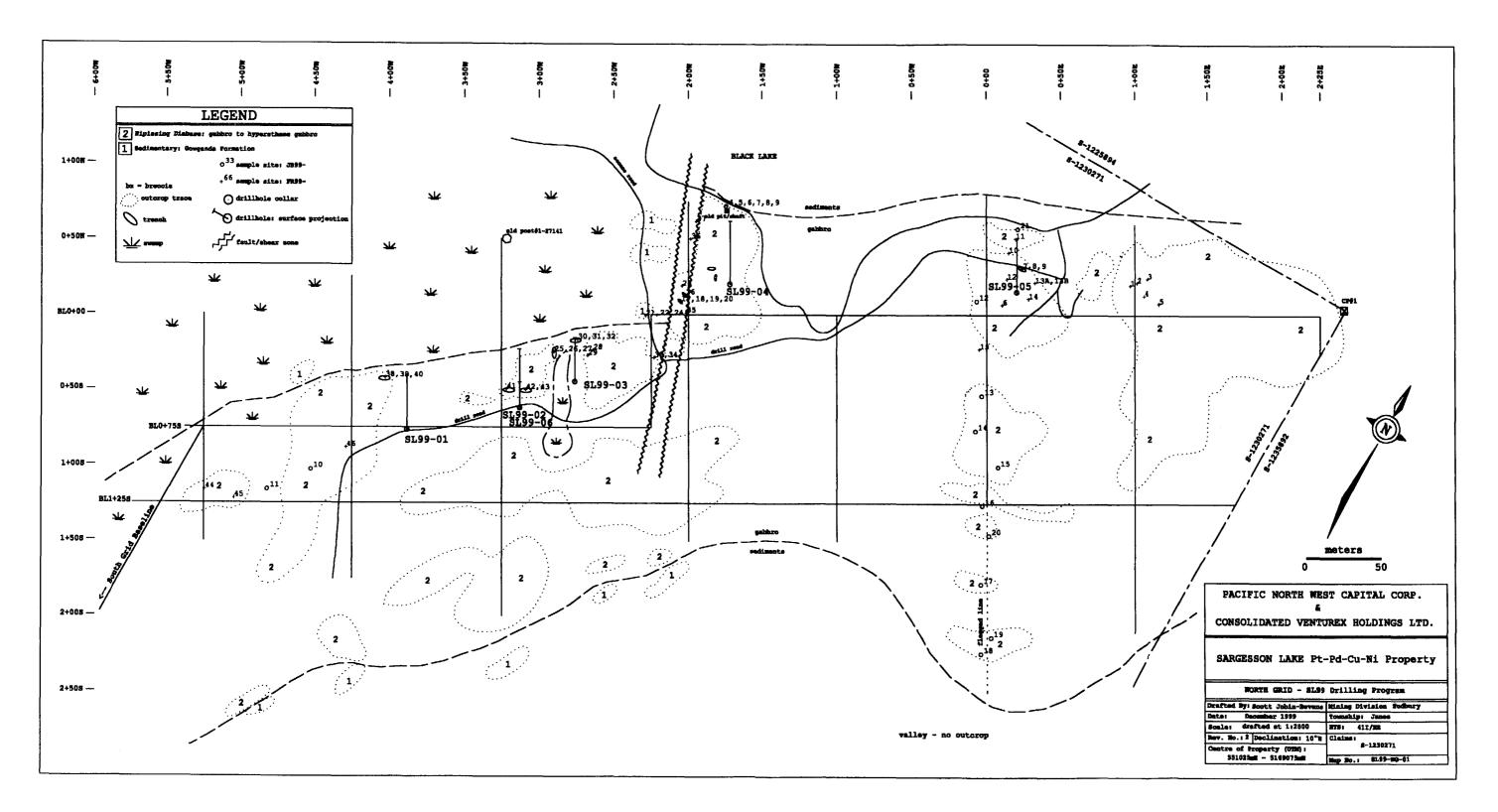
Prospecting over the 12.7 km exploration grid confirmed the presence of magmatic sulphide mineralization on the north grid and led to the discovery of a new sulphide showing on the south grid (Figure 5). A total of 65 samples were collected on the north grid (Figure 6) and 49 samples were collected on the south grid (Map SL99-SG-01); rocks were assayed for Pt-Pd-Au-Cu-Ni at Accurassay Laboratories, Thunder Bay, Ontario. Results from the north grid assays are listed in Table 3 and results from the south grid locations is provided in Appendix I. Assay certificates are provided in Appendix II. Statistical and graphical distribution of the PGM-Cu-Ni data are provided in Appendices III and IV. Sample locations are shown on Maps SL99-NG-01 and SL99-SG-01 in Appendix V.

Analytical Techniques

Assays for platinum, palladium and gold were completed by Accurassay Laboratories (Thunder Bay, Ontario) utilising 40.2 grams of pulverised sample, followed by fire assay fusion (lead collection) and analysis by Atomic Absorption (AA). Accurassay Laboratories performed re-check analysis on every 10th sample. Limits of detection for the analytical technique used are 15 ppb Pt, 10 ppb Pd, 5 ppb Au. Pulps were returned to the Sudbury field office and rejects stored on the premises of Accurassay

Laboratories. Assays for copper and nickel were completed by Accurassay Laboratories using an aqua regia digest and analysed by Inductively Coupled Argon Plasma (ICAP). Details of all analytical techniques are available upon request.

Background Values


Background values for Pt-Pd-Au-Cu-Ni in Nipissing Diabase on the Sargesson Lake property were determined from weighted averages of 32 samples that contained no visible sulphide and <300 ppm Cu (a good indication of low sulphide content). **Background values are estimated at 6 ppb Pt, 10 ppb Pd, 5 ppb Au (31 ppb PGM), 129 ppm Cu and 63 ppm Ni.** On the basis of these samples, background ratios are about 1.2 for Pd/Pt and 2.5 for Cu/Ni. In comparison to a *normal* mafic rock (background: 5 ppb Pt, 5 ppb Pd, 1 ppb Au, 50 ppm Cu, 110 ppm Ni) the gabbroic rocks on the property slightly elevated in Pt, about 2x Pd, 5x Au, 2.5x Cu and about 0.5x Ni. Highly anomalous PGM values from assays aside, the elevated background Pd value is a good indication that the source magmas were indeed fertile in PGM.

Platinum Group & Base Metal Data

Weighted averages for all gabbroic rock samples collected on both the north and south grids (n=109) are: 54 ppb Pt, 128 ppb Pd, 85 ppb Au (268 ppb PGM), 1.8 Pd/Pt, 1354 ppm Cu, 486 ppm Ni and 4.2 Cu/Ni. Of the 109 samples 18 assayed \geq 500 ppb (0.5 g/t) PGM and of these, 7 assayed \geq 1000 ppb (1.0 g/t) PGM. Weighted averages for gabbroic rocks collected on the **north grid** are (n=65): 72 ppb Pt, 162 ppb Pd, 121 ppb Au (356 ppb PGM), 1.9 Pd/Pt, 1947 ppm Cu, 685 ppm Ni and 2.9 Cu/Ni. Weighted averages for gabbroic rocks collected on the **south grid** are (n=44): 28 ppb Pt, 72 ppb Pd, 33 ppb Au (138 ppb PGM), 1.7 Pd/Pt, 477 ppm Cu, 192 ppm Ni and 6.2 Cu/Ni.

The **three highest PGM** assays are: **2.8 g/t PGM**, 731 ppm Cu, 369 ppm Ni [FR99-58: south grid], **2.1 g/t PGM**, 7594 ppm Cu, 3215 ppm Ni [FR99-32: north grid] and **1.6 g/t PGM**, 1844 ppm Cu, 809 ppm Ni [JB99-04: north grid]. The **three highest Cu+Ni** assays are: 10809 ppm [FR99-32], 7685 ppm [FR-12] and 7259 ppm [FR-38]. All of the samples are from the north grid and all three contained >0.5 g/t PGM.

It is important to note that, although in general terms the PGM values are not economic, they are anomalous with the majority of samples having at least 3x background PGM (>93 ppb) and 3x background Cu+Ni (>576 ppm).

Table 3. Assa	y results from	samples collected	on the north e	exploration grid.

Sample	Tag	Easting	Northing	Pd	Au	Pt	PGM	Cu	Ni	Pt+Pd	Pd:Pt	Cu:Ni
(SL99-)		(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppb)		
FR-01	43551	96.4	19.3	176	169	144	489	2030	1172	320	1.2	1.7
FR-02	43552	101.5	21.2	227	289	169	685	4005	1378	396	1.3	2.9
	43553	109.3	23.9	718	185	109	1012	889	557	827	6.6	1.6
	43554	106.9	12.5	182	160	100	442	2464	966	282	1.8	2.6
FR-05	43555	117.1	7.3	0	7	0	7	132	94	0		1.4
	43556	10.6	6.4	0	20	0	20	303	97	0		3.1
FR-07	43557	21.4	36.2	248	257	160	665	4628	1542	408	1.6	3.0
FR-08		21.4	36.2	242	264	171	677	4778	1207	413	1.4	4.0
FR-09		21.4	36.2	117	127	95	339	2771	882	212	1.2	3.1
FR-10		15.0	41.0	148	159	101	408	2620	946	249	1.5	2.8
chk FR-10		15.0	41.0	149	167	96	412			245	1.6	
avg FR-10		15.0	41.0	148.5	163	98.5	410			247	1.5	
FR-11		19.7	52.7	1078	134	146	1358	1586	575	1224	7.4	2.8
FR-12		13.8	23.5	305	323	229	857	5754	1931	534	1.3	3.0
FR-13A		32.8	21.0	16	144	17	177	444	182	33	0.9	2.4
FR-13B		32.8	21.0	12	11	0	23	107	50	12		2.1
FR-14		28.4	10.4	83	84	45	212	1081	369	128	1.8	2.9
FR-15		-4.9	-22.9	0	5	0	5	192	63	0		3.0
FR-16		-203.6	17.7	60	159	57	276	1676	615	117	1.1	2.7
FR-17		-208.0	13.6	91	106	73	270	3799	1178	164	1.2	3.2
FR-18		-208.0	13.6	34	47	27	108	1809	528	61	1.3	3.4
chk FR-18		-208.0	13.6	40	53	26	119			66	1.5	
avg FR-18		-208.0	13.6	37	50	26.5	113.5			63.5	1.4	
FR-19		-208.0	13.6	74	117	47	238	3045	720	121	1.6	4.2
FR-20		-208.0	13.6	102	121	82	305	3254	852	184	1.2	3.8
FR-21		-210.1	9.3	47	95	40	182	1003	447	87	1.2	2.2
FR-22		-210.1	9.3	42	74	28	144	1794	495	70	1.5	3.6
FR-23		-208.1	24.6	68	92	45	205	2293	511	113	1.5	4.5
FR-24		-210.1	9.3	13	19	0	32	436	158	13		2.8
FR-25		-274.6	-0.8	126	132	86	344	2563	597	212	1.5	4.3
FR-26		-274.6	-0.8	136	131	94	361	2542	879	230	1.4	2.9
FR-27		-274.6	-0.8	70	78	53	201	2064	446	123	1.3	4.6
chk FR-27			-0.8	73	73	5 9	205			132	1.2	
avg FR-27		-274.6	-0.8	71.5	75.5	56	203			127.5	1.3	
FR-28		-246.0	2.2	48	59	46	153	1625	409	94	1.0	4.0
FR-29		-249.0	1.0	29	29	19	77	284	183	48	1.5	1.6
FR-30		-266.0	9.8	345	199	106	650	2653	858	451	3.3	3.1
FR-31		-266.0	9.8	220	161	93	474	1215	622	313	2.4	2.0
FR-32		-266.0	9.8	857	824	392	2073	7594	3215	1249	2.2	2.4
FR-33		-221.0	-14.1	66	53	47	166	1218	467	113	1.4	2.6
FR-34		-221.0	-14.1	68	111	35	214	1574	476	103	1.9	3.3
FR-35	43586	-203.3	0.4	10	16	0	26	496	182	10		2.7

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario

l able 3(c Sample	Tag		Northing	Pd	Au	Pt	PGM	Cu	n expr Ni			Cu:Ni
(SL99-)	9	(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)		(ppb)		•••
	43587		29.0	0	10	0	10	321	108	0		3.0
chk FR-36			29.0	0	12	Ő	12	521	100	0		0.0
avg FR-36			29.0	Ő	11	Ő	11			0		
-	43588		57.1	29	11	21	61	253	166	50	1.4	1.5
FR-38			-18.0	324	368	183	875	5719	1540	507	1.8	3.7
FR-39			-18.0	349	293	186	828	5137	1707	535	1.9	3.0
FR-40			-18.0	239	202	165	606	3631	1591	404	1.4	2.3
FR-41			-25.1	117	147	95	359	5040	1390	212	1.2	3.6
FR-42			-25.8	99	178	85	362	4070	1255	184	1.2	3.2
FR-43			-25.8	49	60	48	157	2207	697	97	1.0	3.2
FR-44	43595	-525.0	-91.2	98	79	62	239	1318	384	160	1.6	3.4
FR-45	43596	-504.3	-96.3	121	151	86	358	2706	749	207	1.4	3.6
chk FR-45	43596	-504.3	-96.3	110	142	91	343			201	1.2	
avg FR-45	43596	-504.3	-96.3	115.5	146.5	88.5	350.5			204	1.3	
FR-46	43597	-415.4	-61.4	20	68	25	113	763	231	45	0.8	3.3
JB-04	43601	-172.2	59.7	1271	102	173	1546	1844	809	1444	7.3	2.3
JB-05	43602	-171.2	58.5	652	274	249	1175	3671	2700	901	2.6	1.4
	43603		57.5	494	485	201	1180	4452	2145	695	2.5	2.1
	43604		54.0	46	46	0	92	966	333	46		2.9
	43605		54.0	218	179	134	531	1697	763	352	1.6	2.2
chk JB-08			54.0	212	171	145	528			357	1.5	
avg JB-08			54.0	215	175	139.5	529.5			354.5	1.5	
	43606		55.3	309	205	119	633	4118	1433	428	2.6	2.9
	43607		-73.9	0	7	0	7	122	52	0		2.3
	43608		-89.4	0	13	0	13	284	114	0		2.5
	43609		13.3	0	7	0	7	177	60	0		3.0
	43610		-53.7	0	0	0	0	151	44	0		3.4
JB-14		-7.8	-77.0	0	0	0	0	36	42	0		0.9
	43612		-101.0	0	0	0	0	138	34	0		4.1
	43613		-126.6	0	0	0	0	124	34	0		3.6
	43614		-178.6	0	11	0	11	363	93	0		3.9
chk JB-17			-178.6	0	11	0	11			0		
avg JB-17			-178.6	0	11	0	11			0		
	43615		-224.7	13	0	0	13	47	59	13		0.8
JB-19		2.6	-213.9	32	0	0	32	109	41	32		2.7
JB-20		1.1	-146.4	0	0	0	0	133	43	0	4 3	3.1 2.7
JB-21	43618	19.3	63.4	23	15	18	56	216	79	41	1.3	2.1

Table 3(cont.). Assay results from samples collected on the north exploration grid.

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario

Table 4. A								_				
Sample	Tag	Easting	Northing	Pd	Au	Pt	PGM	Cu	Ni	Pt+Pd	Pd:Pt	Cu:Ni
(SL99-)		(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppb)		
FR-47	43701	-69	-198	31	18	41	90	492	254	72	0.8	1.9
FR-48	43702	-30	-198	0	0	0	0	165	91	0		1.8
FR-49	43703	-65	-249	35	38	39	112	632	256	74	0.9	2.5
FR-50	43704	-64	-266	41	47	43	131	933	292	84	1.0	3.2
FR-51	43715	-70	-302	13	19	24	56	820	295	37	0.5	2.8
FR-52	43716	-70	-315	13	24	21	58	1129	352	34	0.6	3.2
FR-53	43705	-65	-322	0	13	0	13	511	199	0		2.6
FR-54	43706	-64	-327	0	21	0	21	493	154	0		3.2
FR-55	43707	-77	-246	29	25	35	89	362	170	64	0.8	2.1
FR-56	43708	-107	-281	61	91	29	181	981	607	90	2.1	1.6
FR-57	43709	-107	-287	165	56	34	255	960	453	199	4.9	2.1
FR-58	43710	-145	-329	1883	132	238	2253	731	369	2121	7.9	2.0
chk FR-58	43710			2313	149	346	2808			2659	6.7	
avg FR-58	43710			2098	140.5	292	2530.5			2390	7.2	
FR-59	43711	-128	-393	84	79	108	271	1093	492	192	0.8	2.2
FR-60	43712	-134	-362	87	70	82	239	1662	622	169	1.1	2.7
FR-61	43713	-67	-494	0	15	0	15	473	68	0		7.0
FR-62	na	25	-747	25	60	0	85	325	94	25		3.5
FR-62A	43714	-250	-801	15	13	31	59	527	352	46	0.5	1.5
FR-63	na	-139	-315	29	46	30	105	489	210	59	1.0	2.3
FR-64	na	-128	-400	28	36	16	80	384	133	44	1.8	2.9
FR-65	na	-72	-448	0	0	0	0	125	34	0		3.7
FR-66	na	-110	-437	0	0	0	0	25	147	0		0.2
FR-67	na	27	-441	0	72	0	72	680	102	0		6.7
FR-68	na	-139	-933	109	77	35	221	511	223	144	3.1	2.3
FR-68A	na	29	-419	0	0	0	0	118	39	0		3.0
FR-69	na	-77	-949	0	0	0	0	81	14	0		5.8
¹ FR-70	na	-222	-900	0	27	0	27	369	10	0		36.9
¹ FR-71	na	-330	-831	0	0	0	0	44	10	0		4.4
¹ FR-72	na	-262	-843	0	0	0	0	140	66	0		2.1
¹ FR-73	na	-199	-851	0	0	0	0	54	78	0		0.7
FR-74	na	-174	-1135	0	20	0	20	941	6	0		156.8
FR-75	na	-150	-322	0	0	0	0	111	35	0	. 7	3.2
FR-76	na	-134	-328	20	19	30	6 9	194	98 70	50	0.7	2.0
FR-77	na	-136	-356	19	17	34	70	132	78	53	0.6	1.7
chk FR-77	na			22	14	28	64			50	0.8	
avg FR-77	na	407	440	20.5	15.5	31	67 100	500	045	51.5	0.7	~ ~
FR-78	na	-137	-412	39	45	38	122	500	215	77	1.0	2.3
FR-79	na	-135	-382	83	77 67	74 50	234	711	355	157	1.1	2.0
FR-80	na	-140	-350	69	67	50	186	850	339	119	1.4	2.5
FR-81	na	-111	-269	16	0	24	40	96	65 80	40	0.7	1.5
FR-82	na	1	-182	0	0	0	0	137	80 50	0		1.7
FR-83	na	-16	-163	18	0	0	18	64	56	18		1.1

Table 4. Assay results from samples collected on the south exploration grid.

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario; ¹sedimentary rock

Table 4(cont.). Assay results from samples collected on the south exploration grid	Table 4(cont.). Assa	y results from samples	s collected on the	south exploration grid.
---	----------------------	------------------------	--------------------	-------------------------

Sample	Tag	Easting	Northing	Pd	Au	Pt	PGM	Cu	Ni	Pt+Pd	Pd:Pt	Cu:Ni
(SL99-)		(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppb)		
FR-84	na	-32	-85	382	216	116	714	1770	739	498	3.3	2.4
FR-85	na	-30	-93	68	29	26	123	145	89	94	2.6	1.6
FR-86	na	25	-293	0	5	0	5	117	45	0		2.6
FR-87	na	-279	-1144	0	0	0	0	0	6	0		0.0
FR-88	па	-13	-897	14	0	22	36	91	20	36	0.6	4.6
chk FR-88	na			14	0	0	14			14		
avg FR-88	na			14	0	11	25			25	0.6	
FR-89	na	-71	-898	20	0	0	20	124	51	20		2.4
¹ FR-90	na	55	-848	0	0	0	0	31	71	0		0.4
JB-01	43598	-93	-984	0	0	0	0	98	3	0		32.7
JB-02	43599	-36	-958	0	0	0	0	245	30	0		8.2
JB-03	43600	-31	-906	0	0	0	0	43	38	0		1.1

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario; ¹sedimentary rock

Diamond Drilling Program – October 1999

Diamond drilling was provided by NDS Drilling (Timmins, Ontario) and was supervised by JB Exploration & Development Inc. (Sudbury, Ontario) – geologists Scott Jobin-Bevans and Scot Halladay. Results of the program are summarised below. Details of the program including all plan and section maps are covered in a separate drill report (December 30th, 1999).

The Phase I drilling program, completed between October 19th and October 23rd, 1999, totalled 320 m (1050 ft) in 6 holes and was designed to test the down-dip and strike potential of known surface sulphide mineralization (Figure 6 and Tables 5 and 6).

DDH	Casing (m)	Length (m)	Az	Dip	Grid N	Grid E
SL99-01	4.0	50	330	-45	-76	-388
SL99-02	2.0	55	330	-45	-62	-312.5
SL99-03	2.0	41	330	-45	-44.7	-276
SL99-04	4.0	59	330	-45	20	-172
SL99-05	2.0	50	330	-45	15.4	20.5
SL99-06	1.0	65	330	-75	-62	-312.5
	TOTAL:	320 m				

Table 5. Summary of diamond drill hole parameters, Sargesson Lake property.

note - elevations of all collars are estimated

Table 6. Si	ummary of as	say result	s from drill co	re samples,	Sargesso	on Lake	property.
- DDH	Erom (m)	$T_0(m)$	Interval (m)	*PGM (a/t)	%Cu	%Ni	Cu+Ni (%)

DDH	From (m)	To (m)	Interval (m)	*PGM (g/t)	%Cu	%Ni	Cu+Ni (%)
SL99-01	15.10	17.00	1.90	0.37	0.34	0.12	0.46
	30.00	31.20	1.20	1.34	0.19	0.13	0.32
SL99-02	25.00	28.70	3.70	0.41	0.31	0.11	0.42
	31.25	39.30	8.05	0.33	0.26	0.09	0.35
	41.45	44.00	2.55	0.66	0.21	0.13	0.34
SL99-03	23.00	26.55	3.55	0.31	0.05	0.03	0.08
SL99-04	8.00	9.50	1.50	0.30	0.03	0.02	0.05
	48.60	51.50	2.90	0.71	0.10	0.06	0.16
SL99-05	13.50	21.00	7.50	0.58	0.33	0.14	0.47
including	14.00	17.50	3.50	0.71	0.43	0.18	0.61
	22.65	25.95	3.30	0.41	0.18	0.08	0.26
SL99-06	36.95	37.15	0.20	0.45	0.14	0.11	0.25
	44.30	55.25	10.95	0.74	0.47	0.21	0.68
including	45.00	53.00	8.00	0.88	0.61	0.26	0.87
	56.00	58.47	2.47	0.27	0.02	0.06	0.08

*PGM = Pt+Pd+Au

CONCLUSIONS

The Sargesson Lake property is within several kilometres of the highly prospective Janes property, which is currently being explored by Pacific North West Capital Corp. and their joint-venture partners. PFN reported values from their Janes property option that included up to 102.4 g/t PGM over 0.4 m from a surface channel sample and a 13.63 m drill core intersection of 3.2 g/t PGM, 1.12% Cu and 0.27% Ni. These values are very encouraging and demonstrate the potential for Nipissing Diabase rocks to host economic PGM-Cu-Ni deposits. It is very likely that the magmas that produced the high PGM contents at the Janes property also fed the sill that is currently covered by the Sargesson Lake property.

The Phase I and II exploration program was successful in confirming the presence of anomalous PGM-Cu-Ni values on the Sargesson Lake property. In addition to expanding our knowledge about the surface and sub-surface (drilling program) mineralization on the north grid, geological mapping and prospecting also led to the discovery of a new PGM-Cu-Ni showing on the south grid. Highlights and conclusions from the 1999 exploration program are as follows:

(2) The gabbro sill that underlies the Sargesson Lake property is located immediately east of the apparently lopolithic or dyke-like Janes property gabbro intrusion and was probably physically connected to the Janes intrusion and fed by the same magmatic system.

(3) A series of surface sulphide showings now extend for nearly 1000 m along the northern contact region; potential for further showings is open to the east and southwest.

(4) Maximum concentrations of PGM-Cu-Ni from grab samples are: **2.8 g/t PGM**, 731 ppm Cu, 369 ppm Ni from sample FR99-58 on the south grid and **2.1 g/t PGM**, 7594 ppm Cu, 3215 ppm Ni from sample FR99-32 on the north grid.

(5) PGM-enriched sulphide mineralization is mainly hosted by at least one thick (up to 50m), massive, medium-grained, hypersthene-bearing gabbro (high MgO) unit that occurs along the northern contact of the sill; this northern contact is considered to be the basal portion of the sill. Subordinate host rocks include massive, fine- to medium-grained, *normal* gabbro that is associated with the hypersthene-bearing gabbro unit(s).

(6) Results from the diamond drilling program suggest that disseminated sulphide mineralization (0.5-10% total sulphide) occurs 10-30 m above the footwall contact and is

⁽¹⁾ The Sargesson Lake property is underlain by a southeast-dipping (60°) gabbroic body of the Nipissing Diabase suite that contains highly anomalous concentrations of PGM-Cu-Ni sulphides.

contained within 2 zones that are separated by as much as 10 m (not intersected in all 6 holes).

(7) Surface mineralization is traceable down-dip to about 55 m (drill hole SL99-06) and is open at depth.

(8) Sulphides occur as both bleb and disseminated chalcopyrite, pyrrhotite and pentlandite.

(9) There is general correlation between increasing total percentage of visible sulphide mineralization and PGM-Cu-Ni concentration. However, a high proportion of visible sulphide does not necessarily mean that the PGM concentration will be highly anomalous.

(10) On the basis of geological mapping and prospecting, future prospecting should concentrate on the northern contact of the intrusion. Particular attention should be given to the area around the new sulphide showing on the south grid.

RECOMMENDATIONS

Results from the surface exploration program, coupled with encouraging diamond drilling results, require that further work be completed on the Sargesson Lake property. Moreover, similarities between the Sargesson Lake and Janes properties, suggest that this area is highly prospective for Pt-Pd-Au-Cu-Ni mineralization. It is recommended that the following programs, totalling **\$95,500**, be implemented:

(1) Further prospecting-examination of new showing on the south grid: (\$7,500)

Follow-up prospecting and mapping is recommended for the area immediately surrounding, and along strike of the new showing. Minimal clearing, blasting and trenching of this area should also be considered.

(2) Induced Polarization-Ground Magnetometer Survey: (\$18,000)

Geophysical surveys should be designed to test the extent of disseminated sulphides and possibility for semi-massive to massive sulphides on the north grid and to correlate any responses with diamond drilling results. In addition, an orientation survey should be conducted on the south grid in the area of the new mineralized zone. These surveys will assist in developing further drill targets.

(2) Phase II diamond drilling in north grid area: (\$50,000)

A 500 m drill program should be aimed at further testing the northeast-southwest strike and down-dip extension of the known mineralized zones. In particular, the area between drill holes SL99-04 and 05 should be examined, as should the down-dip potential of mineralization under dill holes SL99-01 and 06. Drill hole centres should be placed at a maximum separation of 50 m and intersections with the

footwall contact should be made whenever feasible. Any significant sub-surface IP-Mag anomalies should be drill-tested.

(3) Diamond Drilling in area of south grid showing: (\$20,000)

Encouraging PGM assay results (2.8 g/t PGM) from a limited prospecting program on the south grid, about 500 m southwest of the north grid showings, suggests a second zone of mineralization; perhaps a southwestern extension from the north grid. Should follow-up work surface expand the original showing area, a drilling program, consisting of approximately 200 m, should be aimed at testing the subsurface extent of mineralization in this area. The design of the drill program should follow any recommendations made after the follow-up prospecting and orientation induced polarisation surveys are completed.

Specifics of the drilling programs should be based on the results of the prospecting and geophysical programs. In addition to surface and possibly sub-surface exploration on the south grid, the possibility of acquiring the mineral claim (S-1235892) immediately to the northeast should be considered so that prospecting can be initiated on the northeast extension of the gabbroic intrusion.

CERTIFICATE OF QUALIFICATION

I, Scott Jobin-Bevans of 225 Ferndale Avenue, Sudbury, Ontario, Canada, do hereby certify that:

- 1. I am a consulting geologist with the mineral exploration company JB Exploration & Development Inc. of Sudbury, Ontario.
- 2. I am a graduate of the University of Manitoba, Winnipeg, Manitoba with a B.Sc. (Hons.) Geology 1995, and M.Sc. Geology 1997.
- 3. I am a member of the Society of Economic Geologists and the Canadian Institute of Mining, Metallurgy and Petroleum.
- 4. I have been an exploration geologist and prospector for eleven years.
- 5. I am a member of the Association of Geoscientists of Ontario.
- 6. I have an active prospector's license for the province of Ontario (# H14027).
- 7. I have not received any direct or indirect interest in either Pacific North West Capital Corporation or Consolidated Venturex Holdings Ltd..
- 8. This report is intended to be an overview of the potential of the property or properties with recommendations and conclusions that are based solely on the available data.

S. John Boans

Scott Jobin-Bevans (B.Sc., M.Sc. Geology) December 1999 Association of Geoscientists of Ontario, Member

APPENDIX I

Sample Locations and Descriptions

<u>Abbreviations</u>: fg=fine-grained; mg=medium-grained; cg=coarse-grained

ds=disseminated sulphide; bs=bleb sulphide; cpy=chalcopyrite po=pyrrhotite; pn=pentlandite; py=pyrite

	Grid	Easting	Northing	%Mafic	%Felsic	Texture*	%VS	%po+pn	%сру	Notes	
(SL99-)							(max.)				
FR-01	N	96.0	19.0	60	40	fg	0.5	50		ds in dark gabbro	
FR-02	Ν	102.0	21.0	55	45	mg	3.0	45		ds in grey gabbro; >1% quartz	
FR-03	N	109.0	24.0	60	40	fg-mg	0.5	60	40	ds in green gabbro; minor biotite	
FR-04	Ν	107.0	13.0	60	40	fg-mg	4.0	60	40	finely ds in green gabbro	
FR-05	Ν	117.0	7.0	40	60	mg	0.5	98	2	light grey gabbro	
FR-06	Ν	11.0	6.0	nr	nr	cg	0.5	98	2	blebs up to 1cm; grey gabbro	
FR-07	Ν	24.0	31.0	60	40	fg-mg	5.0	20	80	trench on road	
FR-08	Ν	24.0	31.0	50	50	fg-mg	3.0	15	85	trench on road	
FR-09	Ν	24.0	31.0	nr	nr	mg	3.0	50	50	trench on road	
FR-10	Ν	15.0	41.0	nr	nr	mg	3.0	50	50	trench on road	
FR-11	Ν	20.0	50.0	65	35	fg-mg	1.0	80	20	ds to bs; minor hematite	
FR-12	Ν	14.0	24.0	nr	nr	fg-mg	5.0	60	40	ds to bs	
FR-13A	Ν	33.0	21.0	50	50	mg	0.5	70	30	very rusty; 5% biotite; 5% quartz	
FR-13B	Ν	33.0	21.0	nr	nr	mg	0.0	0	0		
FR-14	Ν	28.0	10.0	45	55	mg	1.0	70	30	ds and bs; small aplitic veins	
FR-15	Ν	-5.0	-23.0	nr	nr	mg	0.1	96	4	ds	
FR-16	N	-202.0	13.0	40	60	mg	4.0	80	20	ds and bs; cpy mainly on fractures	
FR-17	Ν	-205.0	8.0	nr	nr	mg	7.0	5	95	trench rubble on 2+00W	
FR-18	N	-205.0	8.0	60	40	fg-mg	3.0	35	65	ds and bs; trench on 2+00W	
FR-19	N	-205.0	8.0	40	60	mg	3.0	20	80	ds and bs; cpy on fractures	
FR-20	N	-205.0	8.0	40	60	mg	4.0	30	70	ds and bs; trench on 2+00W	
FR-21	N	-229.0	-1.0	55	45	mg	1.0	80	20	ds and bs; trench on 2+00W	
FR-22	Ν	-229.0	-1.0	50	50	mg	3.0	25	75	ds and bs; frequent on fractures	
FR-23	Ν	-204.0	19.0	60	40	mg	4.0	5	95	ds and bs; trench on 2+00W	
FR-24	N	-229.0	-1.0	40	60	mg	0.1	80	20	bs; calcite veinlets with cpy	
FR-25	N	-290.0	-25.0	65	35	mg	4.0	20	80	very rusty; old trench	
FR-26	N	-290.0	-25.0	55	45	mg	4.0	45	55	ds and bs; old trench	
FR-27	N	-290.0	-25.0	60	40	mg	0.5	70	30	ds and bs; old trench	
FR-28	N	-264.0	-24.0	60	40	mg	0.5-1	2	98	ds in dark gabbro	
FR-29	N	-267.0	-28.0	50	50	mg	0.5	50	50	ds	
FR-30	N	-274.0	-17.0	nr	nr	fg-mg	3.0	40	60	ds and bs	
FR-31	N	-274.0	-17.0	55	45	mg	1-1.5	70	30	ds and bs; slightly sheared	
FR-32	N	-274.0	-17.0	60	40	mg	12.0	60	40	ds and bs; trench rubble	
FR-33	N	-223.0	-29.0	40	60	mg	3.0	70	30	ds cpy and bs po; blebs >1cm	

Sample	Grid	Easting	Northing	%Mafic	%Felsic	Texture*	%VS	%po+pn	%сру	Notes
(SL99-)							(max.)			
FR-34	Ν	-223.0	-29.0	40	60	mg	2.0	40	60	ds>bs
FR-35	Ν	-201.0	1.0	55	45	mg	0.1	90	10	ds
FR-36	Ν	-198.0	50.0	60	40	fg-mg	0.1	95	5	ds
FR-37	Ν	-195.0	62.0	70	30	fg	0.1	60	40	ds
FR-38	Ν	-403.0	-42.0	50	50	mg	5.0	5	95	ds; trench rubble
FR-39	Ν	-403.0	-42.0	50	40	mg	5.0	20	80	ds; trench rubble
FR-40	Ν	-403.0	-42.0	55	45	mg	2.0	40	60	ds; minor graphite; trench wall
FR-41	N	-322.0	-50.0	55	45	mg	6.0	40	60	ds and bs; trench wall
FR-42	Ν	-309.0	-50.0	60	40	mg	5.0	50	50	bs and ds; trench wall
FR-43	N	-309.0	-50.0	50	50	mg	1.5	50	50	bs and ds; trench rubble
FR-44	N	-524.0	-117.0	nr	nr	mg	0.5	50	50	ds and bs; local rubble
FR-45	Ν	-505.0	-122.0	55	45	mg	3.0	60	40	ds and bs
FR-46	N	-429.0	-89.0	55	45	mg	0.5	80	20	ds; on road
JB-04	N	-175.0	72.0	50	50	fg	5.0	60	40	ds and bs; up to 5mm blebs
JB-05	N	-175.0	72.0	60	40	mg	3.0	50	50	ds and bs
JB-06	Ν	-175.0	72.0	55	45	fg-mg	5.0	70	30	bs and ds
JB-07	N	-175.0	72.0	45	55	mg	3.0	40	60	ds and bs; 3% quartz
JB-08	Ν	-175.0	72.0	55	45	fg-mg	5.0	60	40	bs and ds; cpy smears on fracture
JB-09	Ν	-175.0	72.0	60	40	mg	3.0	65	35	ds and bs; smears of po/cpy
JB-10	N	-453.0	-103.0	60	40	mg	1.0	98	2	ds; weakly magnetic
JB-11	N	-482.0	-116.0	45	55	mg	1.0	97	3	ds
JB-12	N	-7.0	9.0	60	40	mg	0.1	0	0	ds
JB-13	N	-4.0	-54.0	60	40	mg	0.1	0	0	ds
JB-14	N	-8.0	-77.0	55	45	mg	0.1	0	0	ds; locally sheared
JB-15	N	7.0	-101.0	50	50	mg	0.1	Ō	0	ds
JB-16	N	-3.0	-127.0	60	40	mg	0.0	0	0	
JB-17	N	-4.0	-179.0	60	40	mg	1.0	99	1	ds and bs; po>>cpy
JB-18	N	-4.0	-225.0	40	60	mg	0.0	0	0	
JB-19	Ν	3.0	-214.0	55	45	mg	0.1	0	0	
JB-20	N	1.0	-146.0	50	50	mg	0.1	0	0	1 bleb of po
JB-21	Ν	21.0	57.0	50	5	fg	0.1	0	0	ds; rusty on weathered surface
FR-47	S	-69	-198	60	40	fg-mg	0.3	90	10	rubble from on line
FR-48	S	-30	-198	60	40	fg	0.0	0	0	
FR-49	S	-65	-249	60	40	fg-mg	0.1	96	4	localized subcrop

Sample	Grid	Easting	Northing	%Mafic	%Felsic	Texture*	%VS	%po+pn	%сру	Notes
(SL99-)							(max.)			
FR-50	S	-64	-266	60	40	mg	0.5	50	50	
FR-51	S	-70	-302	50	50	mg	0.5	70	30	localized subcrop
FR-52	S	-70	-315	50	50	fg-mg	0.8	45	55	localized subcrop
FR-53	S	-65	-322	50	50	fg-mg	0.8	50	50	
FR-54	S	-64	-327	50	50	fg-mg	0.8	40	60	
FR-55	S	-77	-246	55	45	mg	0.3	95	5	
FR-56	S	-107	-281	40	60	mg	0.5	85	15	
FR-57	S	-107	-287	50	50	mg	1.0	98	2	sulphide mainly fracture controlled
FR-58	S	-145	-329	50	50	mg	0.5	95	5	appears siliceous - "klinky"
FR-59	S	-128	-393	40	60	mg	0.5	70	30	angular boulder
FR-60	S	-134	-362	40	60	mg	0.5	10	90	angular boulder
FR-61	S	-67	-494	30	70	mg	0.1	70	30	minor malachite stain
FR-62	S	25	-747	55	45	mg	0.1	20	80	rusty
FR-62A	S	-250	-801	60	40	mg _	0.1	70	30	sulphide mainly along fractures
FR-63	S	-139	-315	55	45	fg	0.1	80	20	subcrop
FR-64	S	-128	-400	50	50	mg	0.1	50	50	subcrop
FR-65	S	-72	-448	50	50	mg	0.0	0	0	rusty and weathered
FR-66	S	-110	-437	50	50	fg	1.0	20	80	rusty calcite vein in gabbro
FR-67	S	27	-441	50	50	fg-mg	0.5	5	95	sheared
FR-68	S	-139	-933	50	50	mg	0.1	5	95	
FR-68A	S	29	-419	na		na	na			not described
FR-69	S	-77	-949	50	50	fg-mg	0.1	90	10	
FR-70	S	-222	-900			fg	0.1			sediment
FR-71	S	-330	-831			fg	0.1			sediment
FR-72	S	-262	-843			fg	0.1			sediment
FR-73	S	-199	-851		-	fg	0.1			sediment; sheared
FR-74	S	-174	-1135	50	50	fg	0.1	50	50	pink albitic grains
FR-75	S	-150	-322	55	45	fg-mg	0.1	90	10	
FR-76	S	-134	-328	50	50	fg-mg	0.1	90	10	
FR-77	S	-136	-356	50	50	mg	0.2	50	50	
FR-78	S	-137	-412	50	50	mg	0.2	50	50	subcrop
FR-79	S	-135	-382	50	50	mg	0.2	50	50	subcrop
FR-80	S	-140	-350	50	50	fg-mg	0.1			sheared
FR-81	S	-111	-269	55	45	mg	0.1			

Sample	Grid	Easting	Northing	%Mafic	%Felsic	Texture*	%VS	%po+pn	%сру	Notes
(SL99-)							(max.)			
FR-82	S	1	-182	50	50	mg	0.1			
FR-83	S	-16	-163	50	50	mg	0.1			very hard and siliceous
FR-84	S	-32	-85	40	60	fg-mg	0.5			
FR-85	S	-30	-93	55	45	mg	0.1			
FR-86	S	25	-293	55	45	mg	0.1			subcrop
FR-87	S	-279	-1144	50	50	mg-cg	0.1			pink rock with 25% white-green patches
FR-88	S	-13	-897	50	50	mg-cg	0.1			rusty patches
FR-89	S	-71	-898	50	50	fg-mg	0.1			
FR-90	S	55	-848			fg	0.1			sediment; pyrite
JB-01	S	-93	-984			mg	1.0	2	98	cataclastic-10-15% oxides; possibly quartz monzonite
JB-02	S	-36	-958	40	60	mg-cg	2.0	60	40	ds; 10-15% oxide
JB-03	S	-31	-906	20	80	mg	1.0	1	99	ds; py and cpy; 10% oxide

APPENDIX II

Sample Assay Sheets & Certificates

Accurassay Laboratories Thunder Bay, Ontario Pt-Pd-Au by fire assay with NA finish Cu-Ni by ICAP

1070 LITHIUM DRIVE. UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820 Page 1

Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

June 10, 1999

Job# 9940492

SAMPL	.E #	Palladium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
			400	
1	43551	176	169	144
2 3	43552	227	289	169
3	43553	718	185	109
4	43554	182	160	100
5	43555	<10	7	<15
6	43556	<10	20	<15
7	43557	248	257	160
8	43558	242	264	171
9	43559	117	127	95
10	43560	148	159	101
11 Check	43560	149	167	96
12	43561	1078	134	146
13	43562	305	323	229
14	43563	16	144	17
15	43564	12	11	<15
16	43565	83	84	45
17	43566	<10	5	<15
18	43567	60	159	57
19	43568	91	106	73
20	43569	34	47	27
21 Check	43569	40	53	26
22	43570	74	117	47
23	43571	102	121	82
24	43572	47	95	40
25	43573	42	74	28
26	43574	68	92	45
27	43575	13	19	<15
28	43576	126	132	86
29	43577	136	131	94
LJ	40077	150	101	04

Certified By:

1070 LITHIUM DRIVE. UNIT 2 Page 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

June 10, 1999

Job# 9940492

SAMPL	E#	Palladium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
30	43578	70	78	53
31 Check	43578	73	73	59
32	43579	48	59	46
33	43580	29	29	19
34	43581	345	199	106
35	43582	220	161	93
36	43583	857	824	392
37	43584	66	53	47
38	43585	68	111	35
39	43586	10	16	<15
40	43587	<10	10	<15
41 Check	43587	<10	12	<15
42	43588	29	11	21
43	43589	324	368	183
44	43590	349	293	186
45	43591	239	202	165
46	43592	117	147	95
47	43593	99	178	85
48	43594	49	60	48
49	43595	98	79	62
50	43596	121	151	86
51 Check	43596	110	142	91
52	43597	20	68	25
53	43598	<10	<5	<15
54	43599	<10	<5	<15
55	43600	<10	<5	<15
56	43601	1271	102	173
57	43602	652	274	249
58	43603	494	485	201
59	43604	46	46	<15

Certified By

1070 LITHIUM DRIVE, UNIT 2 Page 3 THUNDER BAY, ONTARIO P78 6G3 PHONE (807) 523-6448 FAX (807) 623-6820

Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

June 10, 1999

Job# 9940492

SAMPL	E#	Palladium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
60	43605	218	179	134
61 Check	43605	212	171	145
62	43606	309	205	119
63	43607	<10	7	<15
64	43608	<10	13	<15
65	43609	<10	7	<15
66	43610	<10	<5	<15
67	43611	<10	<5	<15
68	43612	<10	<5	<15
69	43613	<10	<5	<15
70	43614	<10	11	<15
71 Check	43614	<10	11	<15
72	43615	13	<5	<15
73	43616	32	<5	<15
74	43617	<10	<5	<15
75	43618	23	15	18

Certified By:

VE. UNIT 2 0 P78 6G3 623-6428 623-6820	 	0 2 5 F		Explora dale Av Ontario	0						une 22, 19 ob #99404						
PHONE (807)	SAMPLE #	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	La ppm	Mg %
LIT BAY PH(10554		0.04						4 00					2.05	0.00		4.04
	40001	2.2	2.61	10	<5 <5	25	0.4	12	1.23	<.5	90 79	87	2030	3.65	0.08	8	1.31
	43552 43553	1.8 <.3	2.68 2.04	5 65	<5 <5	21	0.3 0.3	9 <3	1.28 0.74	0.6	78 87	117 128	4005 889	4.18 3.45	0.07 0.03	7	1.24 1.39
1070 THUNDER	43553	<.3 1.9	2.04	65 16	<5 <5	11 15	0.3	<3 11	0.74 1.18	<.5 <.5	55	32	2464	3.45 3.07	0.03	<1 5	1.39
⊢	43555	<.3	1.04	<2	<5 <5	75	0.3	<3	0.72	<.5 <.5	28	111	132	2.19	0.34	18	0.72
	43556	<.3	1.36	3	<5 <5	15	0.4	<3	0.72	<.5	25	199	303	2.13	0.02	10	0.72
	43557	1.2	2.82	7	<5 <5	31	0.3	11	1.39	<.5 <.5	68	59	4628	3.75	0.02	7	0.95
	43558	1.7	2.74	21	<5	36	0.3	14	1.36	0.8	55	37	4778	3.35	0.11	5	0.94
	43559	0.5	2.86	7	<5	43	0.3	9	1.40	<.5	51	62	2771	3.15	0.17	4	0.97
	43560	0.7	3.11	<2	<5	31	0.3	8	1.70	0.9	53	32	2620	2.91	0.09	7	0.85
	43561	<.3	2.86	<2	<5	20	0.3	7	1.53	0.6	32	50	1586	1.96	0.06	5	0.96
	43562	2.1	2.29	8	<5	24	0.3	10	0.98	1.2	85	83	5754	4.04	0.10	6	1.27
	43563	<.3	2.89	3	<5	62	0.3	<3	0.18	<.5	38	285	444	4.70	0.37	8	2.97
	43564	0.7	3.00	10	<5	31	0.4	8	1.71	<.5	17	73	107	1.87	0.15	5	1.10
	43565	<.3	2.77	<2	<5	25	0.3	<3	1.32	<.5	35	74	1081	2.37	0.09	4	0.92
		Min	Мо	Na	Ni	P	Pb	Sb	Se	Si	Sn	Sr	Ti	v	w	Zn	
		ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	
	43551	339	3	0.16	1172	413	49	6	n/a	0.05	n/a	31	0.07	63	<2	68	
	43552	400	3	0.19	1378	418	25	<2	n/a	0.05	n/a	34	0.10	56	<2	72	
	43553	338	2	0.06	557	186	19	<2	n/a	0.05	n/a	33	0.11	49	3	38	
	43554	295	2	0.17	966	313	27	<2	n/a	0.04	n/a	34	0.06	32	<2	72	
	43555	196	2	0.06	94	565	25	<2	n/a	0.04	n/a	23	0.30	81	9	21	
	43556	229	3	0.08	97	307	25	6	n/a	0.06	n/a	30	0.14	49	<2	26	
	43557	303	3	0.26	1542	553	21	<2	n/a	0.04	n/a	37	0.09	59	<2	72	
	43558	272	2	0.26	1207	443	23	3	n/a	0.03	n/a	36	0.08	68 05	<2	60	
	43559	285	2	0.26	882	394	17	<2	n/a	0.04	n/a	37	0.08	65	<2	48	
	43560	251	<1	0.33	946 575	383	19	<2	n/a	0.04	n/a	44	0.07	47	<2	65 20	
	43561 43562	236 339	2	0.27 0.13	575 1931	422 566	8 22	<2	n/a n/a	0.04 0.05	n/a n/a	39 27	0.05 0.09	27 37	<2	39 00	
	43562	539 546	3	0.13	182	370	22 11	<2 <2	n/a n/a	0.05	n/a n/a	13	0.09	61	<2 <2	99 61	
	43564	316	े व	0.01	50	344	15	<2	n/a	0.05	n/a	38	0.12	36	~2 5	29	
	43565	247	2	0.22	369	222	10	<2	n/a	0.03	n/a	39	0.00	37	<2	29 30	
(Certified By: /			, 20 C	2			-	=						-		

ž novie Z nove		S	Sudbury,			·	nent			ıL	une 22, 199	99					
Ω S S S S S S S S S S S S S S S S S S S			P3B 3C2 Fax (705		653					١Ļ	ob #99404!	92					
HUM UKI AY, ONTARIC HONE (807) FAX (807)	SAMPLE #	Ag	AI %	As	В	Ba	Be	Bi	Ca	Cđ	Co	Cr	Cu	Fe	ĸ	La	1
PHO.		ppm	76	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	
	43566	<.3	2.78	<2	<5	50	0.4	<3	1.66	<.5	20	62	192	2.28	0.16	6	1.0
	43567	1.0	2.50	21	<5	11	0.3	<3	1.14	<.5	47	152	1676	3.91	0.04	1	2.
	43568	1.4	1.72	40	<5	16	0.3	6	0.37	1.0	75	57	3799	3.73	0.05	5	1
	43569	0.9	2.14	16	<5	22	0.3	12	0.87	<.5	46	83	1809	3.59	0.08	5	1
	43570	1.4	2.16	6	<5	21	0.3	7	0.40	0.9	45	65	3045	4.03	0.07	2	1
	43571 43572	1.3 0.7	1.45 2.64	12 <2	<5 <5	16	0.3	<3 3	0.35 0.50	0.6	60 46	31 129	3254 1003	3.07	0.05	3	1 2
	43572	0.7	2.04	18	<5 <5	14 22	0.4 0.3	10	0.50	<.5 <.5	46 54	129	1794	4.45 3.70	0.04 0.02	5 5	1
	43574	1.3	2.13	6	<5 <5	30	0.3	9	0.55	<.5 <.5	49	80	2293	4.49	0.02	4	1
	43575	1.1	2.01	12	<5	19	0.3	9	1.12	<.5	28	54	436	3.00	0.08	4	1
	43576	0.4	4.04	3	<5	50	0.4	<3	2.21	<.5	28	34	2563	2.19	0.14	1	Ċ
	43577	1.0	3.17	<2	<5	32	0.4	11	1.96	0.8	42	38	2542	2.27	0.09	4	C
	43578	0.9	3.56	<2	<5	54	0.4	<3	2.03	0.6	30	53	2064	2.80	0.16	6	(
	43579	1.9	2.22	13	<5	33	0.4	<3	1.22	0.8	39	49	1625	3.78	0.11	7	
	43580	0.7	2.52	10	<5	22	0.4	4	0.90	0.9	40	84	284	3.77	0.06	7	2
		Mn	Мо	Na	Ni	Р	Pb	Sb	Se	Si	Sn	Sr	Ti	v	w	Zn	
		ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	
	43566	334	3	0.28	63	416	8	<2	n/a	0.04	n/a	41	0.10	54	<2	29	
	43567	588	1	0.10	615	325	20	<2	n/a	0.05	n/a	28	0.07	57	3	93	
	43568 43569	355 492	1 2	0.03 0.07	1178 528	415 238	21 16	<2 <2	n/a n/a	0.05 0.05	n/a	20 24	0.07 0.09	31 39	<2 4	100 68	
	43509	492 453	2 1	0.07	526 720	230 335	10	~2 4	n/a	0.05	n/a n/a	24	0.09	59 44	4 <2	71	
	43571	307	2	0.03	852	356	21	<2	n/a	0.03	n/a	19	0.05	26	<2	76	
	43572	553	2	0.03	447	416	16	<2	n/a	0.06	n/a	27	0.15	68	3	81	
	43573	446	1	0.03	495	376	3	3	n/a	0.05	n/a	27	0.10	59	<2	89	
	43574	508	2	0.02	511	423	15	5	n/a	0.06	n/a	30	0.10	88	<2	92	
	43575	515	2	0.08	158	489	20	<2	n/a	0.05	n/a	25	0.11	41	<2	60	
	43576	124	<1	0.49	597	602	18	<2	n/a	0.04	n/a	59	0.04	58	<2	28	
	43577	186	2	0.35	879	326	20	<2	n/a	0.04	n/a	50	0.04	33	4	54	
	43578	235	2	0.40	446	290	17	<2	n/a	0.04	n/a	54	0.06	86	<2	56 50	
	43579 43580	442 5 95	2	0.13 0.08	409 183	512 356	27 31	4 <2	n/a n/a	0.05 0.05	n/a n/a	28 22	0.20 0.09	131 52	7 <2	59 91	

all total

-6820		c 2 5	/o DTE 25 Fern Sudbury,	Explora Idale Av , Ontaric						Page 3 Ji	une 22, 199	99					
07) 623-			23B 3C2 ax (705		653					ıl.	ob #99404	92					
FAX (80	SAMPLE #	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	La	M
u.		ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	
	43581	0.8	2.64	10	<5	38	0.4	5	1.60	1.4	43	45	2653	3.23	0.15	5	1.1
	43582	1.0	2.88	10	<5	25	0.4	8	1.22	1.7	56	102	1215	3.95	0.08	6	2.
	43583	2.9	2.31	9	<5	37	0.4	25	1.04	1.5	126	64	7594	5.42	0.13	7	0.
	43584	2.1	2.90	17	<5	52	0.4	20	0.70	<.5	57	121	1218	5.03	0.39	8	2.
	43585	0.5	2.12	<2	<5	95	0.4	7	0.67	0.7	53	66	1574	3.62	0.66	6	1.
	43586	<.3	1.92	11	<5	35	0.3	8	0.75	1.0	36	59	496	2.84	0.08	6	1.
	43587	0.7	3.38	<2	<5	63	0.5	<3	3.44	<.5	24	76	321	2.71	0.22	4	1.
	43588	<.3	2.35	13	<5	42	0.3	6	0.89	<.5	33	123	253	3.28	0.16	5	1.
	43589	2.3	1.97	4	<5	15	0.3	14	0.53	0.6	84	59	5719	4.47	0.04	6	1.
	43590	1.6	1.79	<2	<5	15	0.3	17	0.46	<.5	89	49	5137	4.25	0.04	5	1
	43591	1.1	2.00	53	<5	14	0.4	8	0.66	0.6	93	67	3631	3.99	0. 04	5	1
	43592	1.3	3.87	3	<5	46	0.4	6	2.17	0.6	59	70	5040	2.98	0.15	3	0
	43593	1.6	4.12	9	<5	43	0.4	13	2.57	0.7	61	78	4070	3.03	0.15	3	0
	43594	0.8	4.10	6	<5	52	0.4	<3	2.55	0.6	32	72	2207	2.12	0.17	3	0
	43595	0.8	3.31	16	<5	24	0.4	9	1.81	0.9	32	43	1318	2.59	0.06	6	1
		Mn	Мо	Na	Ni	Р	Pb	Sb	Se	Si	Sn	Sr	Ti	v	w	Zn	
		ppm	ррт	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	
	43581	356	2	0.22	858	623	23	<2	n/a	0.04	n/a	37	0.08	63	<2	63	
	43582	495	2	0.17	622	535	82	10	n/a	0.05	n/a	35	0.09	80	6	167	
	43583	349	2	0.17	3215	483	42	<2	n/a	0.05	n/a	35	0.12	69	<2	112	
	43584	595	2	0.02	467	804	18	10	n/a	0.06	n/a	29	0.13	92	6	108	
	43585	388	2	0.03	476	416	15	<2	n/a	0.05	n/a	34	0.14	63	<2	89	
	43586	404	1	0.10	182	445	11	<2	n/a	0.05	n/a	28	0.08	50	<2	62	
	43587	652	<1	0.36	108	342	21	4	n/a	0.04	n/a	54	0.06	79	15	40	
	43588	513	2	0.09	166	369	17	<2	n/a	0.05	n/a	28	0.10	66	7	65	
	43589	429	1	0.02	1540	651	24	<2	n/a	0.05	n/a	24	0.10	46	<2	96 00	
	43590	394	7	0.02	1707	424	27	<2	n/a	0.05	n/a	23	0.08	43	<2	99	
	43591	396	4	0.04	1591	152	23	6	n/a	0.05	n/a	24	0.08	-35	<2	80 52	
	43592	137	<1	0.47	1390	526	9	<2	n/a	0.04	n/a	60	0.05	50	7	53	
	43593 43594	186	4	0.45	1255	434	22	4	n/a	0.04	n/a	63	0.04	52 56	2	55 26	
	43594 43595	146 298	1	0.52 0.26	697 384	472 377	8 15	<2 8	n/a	0.04 0.04	n/a n/a	64 42	0.05 0.06	56 38	4 6	26 45	
	43395		2	0.20	304	3/1	15	o	n/a	0.04	n/a	42	0.00	30	0	40	
Се	rtified By:	ľ	-		•												
	-1-	TC	1	DU K	. 7	-											

		S F	25 Fem Sudbury 23B 3C2	, Ontario 2)					ال	une 22, 19	99				
		F	⁻ ax (705	5) 521-0	653					J	ob #9 9404	92				
5	SAMPLE#	Ag	AI	As	в	Ba	Be	Bi	Ca	Cđ	Co	Cr	Cu	Fe	к	La
		ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	43596	1.0	2.64	5	<5	21	0.4	8	1.46	1.1	48	45	2706	2.89	0.05	5
	43597	<.3	1.64	4	<5	15	0.3	5	0.60	0.9	28	107	763	2.45	0.03	3
	43598	3.3	3.61	28	<5	1299	1.4	5	0.62	<.5	28	45	98	9.84	2.53	40
	43599	1.5	2.34	17	<5	376	0.6	<3	0.77	1.4	40	217	245	7.61	0.64	19
	43600	1.1	2.16	19	<5	459	0.7	<3	1.14	<.5	30	51	43	5.53	0.77	28
	43601	0.6	1.57	33	<5	17	0.3	7	0.71	0.8	47	112	1844	2.02	0.04	2
	43602	1.4	1.86	184	<5	10	0.3	13	0.41	<.5	155	82	3671	4.77	0.02	9
	43603	1.9	1.80	87	<5	14	0.4	14	0.53	1.0	131	89	4452	4.47	0.04	5
	43604	<.3	1.31	8	<5	15	0.4	<3	0.78	<.5	31	74	966	2.53	0.04	7
	43605	0.5	1.46	22	<5	10	0.4	5	0.66	1.1	62	130	1697	3.44	0.02	4
	43606	1.4	2.47	85	<5	15	0.4	17	0.77	<.5	80	98	4118	4.16	0.05	6
	43607	<.3	3.00	4	<5	46	0.4	<3	1.79	1.7	16	55	122	1.78	0.12	5
	43608	<.3	2.17	13	<5	21	0.4	<3	1.07	0.7	29	65	284	2.51	0.06	3
	43609	<.3	3.07	<2	<5	31	0.4	<3	1.81	<.5	17	56	177	1.79	0.09	6
	43610	0.4	3.91	9	<5	60	0.5	6	2.25	1.5	19	35	151	2.12	0.20	5
		Mn	Мо	Na	Ni	P	РЬ	Sb	Se	Si	Sn	Sr	Ti	v	w	Zn
		ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	43596	277	3	0.23	749	441	24	<2	n/a	0.04	n/a	36	0.06	27	<2	47
	43597	289	2	80.0	231	238	28	<2	n/a	0.04	n/a	23	0.07	40	<2	42
	43598	1970	3	0.03	3	2709	25	20	n/a	0.05	n/a	24	0.46	7	7	209
	43599 43600	933 676	3	0.05	30	1285	39	<2	n/a	0.05	n/a	30 31	0.33	212	<2 <2	161
	43600	230	2 2	0.07 0.11	38 809	2535 171	9	<2 <2	n/a	0.04 0.05	n/a	29	0.28 0.07	80 26	<2	110 53
	43601	230 380	2	0.02	2700	384	11 24	<2	n/a n/a	0.05	n/a n/a	29	0.07	20 35	<2	92
	43603	363	3	0.02	2145	521	23	9	n/a	0.05	n/a	23	0.08	35	<2	85
	43604	276	2	0.04	333	218	13	3	n/a	0.03	n/a	23	0.00	60	<2	37
	43605	309	1	0.04	763	443	23	<2	n/a	0.04	n/a	20	0.13	61	<2	66
	43606	379	2	0.15	1433	344	41	<2	n/a	0.05	n/a	48	0.07	46	<2	86
	43607	260	2	0.31	52	223	16	<2	n/a	0.04	n/a	46	0.08	31	4	23
	43608	313	3	0.21	114	395	16	5	n/a	0.04	n/a	27	0.08	39	8	47
	43609	286	1	0.30	60	187	12	5	n/a	0.04	n/a	46	0.09	36	<2	35
	43610	283	2	0.47	44	657	14	3	n/a	0.04	n/a	62	0.08	47	11	29
		<u> </u>	_		•••			•	1							

Ą

	c 2 5 F	Pacific N 20 DTE 225 Fern Sudbury, P3B 3C2 Fax (705	Explorat dale Ave Ontario	ion & De enue						une 22, 199 bb #994049						
SAMPLE #	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	La ppm	Mg %
43611	1.2	1.98	14	<5	29	0.4	3	1.42	<.5	25	47	36	2.90	0.10	8	1.36
43612	0.3	2.73	<2	<5	39	0.4	<3	1.67	<.5	20	31	138	2.21	0.11	3	0.79
43613	<.3	2.87	2	<5	80	0.4	<3	1.78	0.8	19	41	124	2.34	0.25	6	0.72
43614	0.7	1.81	24	<5	71	0.4	<3	0.97	0.6	31	42	363	2.83	0.22	4	0.96
43615	<.3	1.45	<2	<5	17	0.3	4	0.48	0.7	17	161	47	1.79	0.06	<1	1.22
43616	0.4	3.17	<2	<5	41	0.4	<3	1.86	<.5	14	35	109	1.53	0.18	3	0.68
43617 43618	0.8 0.9	2.05 2.89	14 16	<5 <5	24 50	0.4 0.5	<3 <3	1.26 1.42	<.5 0.6	25 30	41 92	133 216	2.53 3.74	0.07 0.31	3 5	1.22 1.87
	Mn	Мо	Na	Ni	P	РЪ	Sb	Se	Si	Sn	Sr	Tì	v	w	Zn	
	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Zn ppm	
43611	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	
43611 4361 2	ppm 408	ppm 3	% 0.14	ppm 42	ррт 4 70	ppm 25	ppm <2	ppm n/a	% 0.04	ppm n/a	ppm 23	% 0.11	ppm 44	ppm 2	ppm 47	
43612	ррт 408 304	ррт 3 <1	% 0.14 0.30	_{ррт} 42 34	ррт 470 485	_{ррт} 25 63	ррт <2 <2	_{ppm} n/a n/a	% 0.04 0.03	ppm n/a n/a	ррт 23 42	% 0.11 0.08	ppm 44 60	ppm 2 <2	ррт 47 45	
43612 43613	ppm 408 304 321	ррт 3 <1 3	% 0.14 0.30 0.34	ppm 42 34 34	ррт 470 485 456	ррт 25 63 8	ppm <2 <2 <2	ppm n/a n/a n/a	% 0.04 0.03 0.04	ppm n/a n/a n/a	ppm 23 42 45	% 0.11 0.08 0.10	ppm 44 60 74	ppm 2 <2 5	ppm 47 45 29	
43612 43613 43614	408 304 321 375	ррт 3 <1 3 3	% 0.14 0.30 0.34 0.15	ppm 42 34 34 93	ррт 470 485 456 514	ррт 25 63 8 27	ppm <2 <2 <2 <2 5	ppm n/a n/a n/a n/a	% 0.04 0.03 0.04 0.04	ppm n/a n/a n/a n/a	23 42 45 26	% 0.11 0.08 0.10 0.10	ppm 44 60 74 74	ppm 2 <2 5 <2	47 45 29 49	
43612 43613 43614 43615	ppm 408 304 321 375 272	ррт 3 <1 3 3 2	% 0.14 0.30 0.34 0.15 <.01	42 34 34 93 59	ppm 470 485 456 514 471	ррт 25 63 8 27 12	ррт <2 <2 <2 5 3	ppm n/a n/a n/a n/a	% 0.04 0.03 0.04 0.04 0.04	ppm n/a n/a n/a n/a	23 42 45 26 25	% 0.11 0.08 0.10 0.10 0.08	ppm 44 60 74 74 31	ррт 2 <2 5 <2 <2 <2	ррт 47 45 29 49 42	
43612 43613 43614	408 304 321 375	ррт 3 <1 3 3	% 0.14 0.30 0.34 0.15	ppm 42 34 34 93	ррт 470 485 456 514	ррт 25 63 8 27	ppm <2 <2 <2 <2 5	ppm n/a n/a n/a n/a	% 0.04 0.03 0.04 0.04	ppm n/a n/a n/a n/a	23 42 45 26	% 0.11 0.08 0.10 0.10	ppm 44 60 74 74	ppm 2 <2 5 <2	47 45 29 49	

1 PC PI Certified By:

Cer

	0000						pital Cor	•							June 22	, 1999			
	IVE. UNIT 2 0 P7B 6G3) 623-6448) 623-6820			225 Fei Sudbur P3B 30	ndale / y, Onta 2	Avenue Irio	nd Deve	iopmer	11						Job #99	40440			
	1 DR TARI (807 (807			Fax (70	5) 521	-0653													
	LITHIU AV. ON HONE	le #	A12O3 %	BaO %	CaO %	Cr2O3 %	Fe2O3 %	K2O %	MgO %	MnO %	Na2O %	P2O5 %	SiO2 %	SrO %	TiO2 %	LOI %	Total %	S %	
	THUNDER																		
		43553		0.014	11.73	0.071	10.11	0.17	7.76	0.166	1.49	0.382		0.036	0.53	3.0	96.89	0.84	
	THC	43557	13.35	0.018	10.88	0.082	11.87	0.29	8.03	0.192	1.60	0.581	47.48	0.028	0.58	2.5	97.48	1.29	
		43561	13.81	0.015	12.89	0.100	9.02	0.39		0.183	1.30	0.758		0.029	0.44	2.5	99.54	0.34	
		43566 43569	12.61 14.05	0.020 0.021	11.89 10.77	0.039 0.052	10.15 10.38	0.38 0.57	9.00	0.210	1.51 1.55	0.258 0.518	49.82 48.97	0.030	0.65 0.55	2.0 3.4	98.56 99.61	0.06 0.49	
		43590		0.021	11.08		10.30	0.31		0.175	1.55	0.509	48.80		0.55	3.4 3.5	100.82	1.29	
از		43594		0.017			12.17	<.01	9.34	0.193	1.48	0.903	50.30		0.56	0.9	100.82	0.62	
1		43596			13.03		11.19	<.01	10.19	0.208	1.27	0.583	48.52	0.037	0.49	2.5	100.76	0.73	
Ĵ		43609	14.32	0.019	12.81	0.066	9.40	0.56	9.59	0.214	1.43	0.624	51.05		0.52	2.0	102.65	0.06	
5		43610			12.39		9.45	0.41	7.47	0.199	1.61	0.193	48.44	0.035	0.53	1.3	97.15	0.04	
		43611	13.09	0.015	10.42		10.60	0.23	8.09	0.185	2.34	0.555	49.16	0.037	0.57	3.4	98.74	<.01	
-1		43612	14.88	0.021	10.99	0.028	10.27	0.50	6.84	0.206	1.74	0.892	49.41	0.035	0.61	1.8	98.23	0.05	
5		43613	14.76	0.023	11.10	0.002	10.60	0.58	6.53	0.210	1.72	1.016	49.94	0.036	0.74	1.4	98.66	0.05	
		43614	12.89	0.019	11.09	<.001	12.84	0.46	7.86	0.250	1.78	1.101	51.00	0.035	0.78	1.7	101.81	0.18	
Ŕ		43615	16.29	0.022	13.25		8.45	0.56	8.61	0.159	1.57	0.597	49.64		0.51	2.7	102.48	0.03	
ñ		43616	16.20		14.28		8.75	0.75	8.43	0.187	1.51	0.327		0.039	0.51	1.9	103.06	0.04	
Ì		43617	14.78		11.88		10.35	0.39	7.49	0.194	1.74		47.97	0.043	0.51	2.4	98.46	0.05	
イナシックト		43618	14.42	0.022	10.89	0.036	10.53	0.66	7.44	0.192	1.39	0.887	49.45	0.047	0.73	3.2	99.90	0.10	

(2)Pi

Page 1

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

Aug 23, 1999

Job# 9940868

SAMPL	E#	Palladium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
1	43701	31	18	41
2	43702	<10	<5	<15
3	43703	35	38	39
4	43704	41	47	43
5	43705	<10	13	<15
6	43706	<10	21	<15
7	43707	29	25	35
8	43708	61	91	29
9	43709	165	56	34
10	43710	1883	132	238
11 Check	43710	2313	149	346
12	43711	84	79	108
13	43712	87	70	82
14	43713	<10	15	<15
15	43714	15	13	31
16	43715	13	19	24
17	43716	13	24	21

Certified By:

-7-0 000 23-6448 -23-6820		2 S F	25 Ferno Sudbury, 23B 3C2	Exploratik Jale Ave. Ontario 521-065		relopmer	nt				ep 2, 1999 ob #994084	58						
07) 6 07) 6	SAMPLE #	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Си ррт	Fe %	к %	La ppm	Mg %	
Σω								_								_		
FAX	43701	0.8	3.06	<2	10	40	0.3	<3	2.08	0.6	28	123	492	2.65	0.11	3	1.59	
-	43702	0.9	3.61	<2	9	93	0.3	8	2.52	0.8	21	73	165	2.63	0,18	4	1.64	
	43703	<.3	4.11	<2	10	59	0.3	<3	2.44	0.5	27	118	632	2.74	0.15	2	1.54	
	43704	0.9	3.52	4	8	34	0.3	<3	2.18	0.9	32	215	933	3.47	0.09	2	2.64	
	43705	0.5	3.79	<2	8	40	0.3	<3	2.36	<.5	25	87	511	2.66	0.09	2	1.71	
	43706	0.8	3.87	<2	9	43	0.3	<3	2.29	0.8	20	84	493	2.48	0.12	3	1.69	
	43707	0.6	3.79	3	10	36	0.3	<3	2.21	<.5	21	97	382	2.42	0.09	<1	1.55	
	43708	0.7	3.60	13	7	74	0.3	<3	1.77	1.1	60	114	981	4.27	0.28	2	1.24	
	43709	0.7	3.26	<2	6	74	0.3	<3	1.75	<.5	45	112	660	3.15	0.34	<1	1.22	
	43710	<.3	2.75	<2	6	28	0.2	<3	1.91	0.8	19	62	731	1.53	0.08	<1	0.59	
	43711	8.0	1.31	3	<5	16	0.1	<3	0.64	<.5	29	120	1093	1.93	0.04	<1	1.18	
	43712	1.0	2.65	10	<5	49	0.2	<3	1.14	0.9	39	169	1662	3.26	0.12	3	2.14	
	43713	0.5	1.83	4	6	13	0.3	<3	2.13	0.5	15	78	473	2.07	0.03	3	1.23	
	43714	0.7	2.30	<2	<5	17	0.3	<3	0.95	<.5	37	171	527	3.49	0.03	3	2.04	
	43715	0.5	3.28	12	7	49	0.3	<3	1.84	0.9	32	142	820	2.71	0.13	<1	1.53	
	43716	0.4	3.95	10	5	74	0.3	<3	2.10	0.7	29	97	1129	2.74	0.18	2	1.47	
		Mn	Мо	Na	Ni	Ρ	Pb	Sb	Se	Si	Sn	Sr	Ti	v	w	Zn		
		ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm		
	43701	446	2	0.27	254	551	14	<2	<5	0.03	<5	40	0.10	46	<2	48		
	43702	473	1	0.31	91	666	24	4	<5	0.03	<5	54	0.09	48	<2	67		
	43703	410	<1	0.36	256	569	14	<2	<5	0.04	<5	57	0.10	48	<2	46		
	43704	561	<1	0.22	292	604	25	<2	<5	0.05	<5	61	0.12	52	<2	88		
	43705	483	<1	0.33	199	493	19	<2	<5	0.03	<5	58	0.11	41	<2	52		
	43706	420	<1	0.36	154	367	16	<2	<5	0.04	<5	55	0.11	43	<2	35		
	43707	418	<1	0.33	170	691	12	<2	<5	0.04	<5	51	0.10	44	<2	35		
	43708	371	2	0.28	607	562	14	<2	<5	0.04	<5	47	0.11	49	<2	45		
	43709	369	1	0.26	453	484	15	<2	<5	0.03	<5	44	0.10	36	<2	40		
	43710	222	<1	0.23	369	561	17	<2	<5	0.02	<5	39	0.05	27	<2	33		
	43711	261	<1	0.07	492	280	11	<2	<5	0.03	<5	12	0.07	23	<2	37		
	43712	474	2	0.13	622	437	13	<2	<5	0.05	<5	24	0.11	47	<2	74		
	43713	363	1	0.11	68	408	14	<2	<5	0.04	<5	33	0.11	39	<2	34		
	43714	514	<1	0.09	352	601	25	<2	<5	0.04	<5	21	0.16	61	<2	49		
	43715	446	2	0.27	295	791	18	<2	<5	0.03	<5	41	0.10	39	<2	49		
	43716	406	2	0.34	352	710	16	<2	<5	0.03	<5	56	0.10	36	<2	49		

Page 1

ACCURASSAY LABORATORIES A DIVISION OF ASSAY LABORATORY SERVICES INC.

Ð

Certified By:

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

Sep 27, 1999

Job# 9940976

SAMPL	E#	Palladium	Gold	Platinum
Accurassay	Customer	ррb	ppb	ppb
1	SL99-FR-62	25	60	<15
2	SL99-FR-63	29	46	30
3	SL99-FR-64	28	36	16
4	SL99-FR-65	<10	<5	<15
5	SL99-FR-66	<10	<5	<15
6	SL99-FR-67	<10	72	<15
7	SL99-FR-68	109	77	35
8	SL99-FR-75	<10	<5	<15
9	SL99-FR-76	20	19	30
10	SL99-FR-77	19	17	34
11 Check	SL99-FR-77	22	14	28
12	SL99-FR-78	39	45	38
13	SL99-FR-79	83	77	74
14	SL99-FR-80	69	67	50
15	SL99-FR-82	<10	<5	<15
16	SL99-FR-83	18	<5	<15
17	SL99-FR-84	382	216	116
18	SL99-FR-85	68	29	26
19	SL99-FR-86	<10	5	<15

Certified By:

									raya i							
			orth Wes													
			Explorati		velopme	nt										
	2	225 Fem	dale Ave	nue					0	ct 5, 1999)					
11m000	5	Sudbury,	Ontario													
		P3B 3C2							Je	ob #99409	76					
UNIT 78 66 23-682 23-682 23-682	F	ax (705)) 521-06	53												
≥O() SAMPLE #	Ag	A	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	La	Mg
2027) 2027) 2027) 2027) 2027) 2027) 2027]	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%
	*****			FF	FF	FF			PP	F.F	PP				FF	
2100 2100 200 200 200 200 200 200	0.9	1.12	12	11	15	<.1	<3	0.56	<.5	15	269	325	1.92	<.01	1	0.98
± 39199FR-63	<.3	2.78	12	12	47	0.2	<3	1.67	<.5	25	337	489	2.61	0.11	2	1.91
SL99FR-64	<.3	2.48	<2	12	42	0.2	<3	1.31	<.5	21	268	384	2.19	0.11	4	1.54
SL99FR-65	<.3	3.43	<2	10	43	0.2	<3	2.19	<.5		350	125	0.83	0.11	5	0.28
SL99FR-66	<.3	4.84	6	<5	19	0.2	<3	0.23	<.5	49	427	25	6.02	0.03	<1	5.63
SL99FR-67	<,3	1.70	15	8	20	0.2	<3	1.80	0.8	39	307	680	2.32	0.05	3	1.32
OLUBIC SL99FR-65 SL99FR-66 N SL99FR-67 SL99FR-68	<.3	2.65	12	11	41	0.2	<3	1.88	<.5	23	234	511	2.34	0.08	2	1.31
SL99FR-75	<.3	1.92	<2	8	57	<.1	<3	1.19	<.5	19	379	111	2.09	0.16	<1	0.75
SL99FR-76	<.3	2.51	13	10	24	0.1	<3	1.30	<.5	26	362	194	2.79	0.04	2	2.06
SL99FR-77	<.3	2.63	<2	12	39	0.1	<3	1.55	<.5	20	287	132	2.09	0.04	2	1.47
SL99FR-78	<.3	2.03	-2	8	39 17	0.2	<3 <3	0.83	<.5 <.5	20	207	500	2.09	0.09	2 1	2.09
SL99FR-78	<.s 0.6	2.09	21	9	24	0.1	<3	0.69	<.5 0.6	20 35	299 406	711	2.69	0.02	2	1.81
SL99FR-80				9 7			-					850				
SL99FR-82	<.3	2.91	5	7	17	0.3	<3 <3	2.89	<.5	37	460		3.45	0.04	<1	3.02
SL99FR-82 SL99FR-83	<.3	2.69	10	7	46	0.3		2.98	<.5	26	279	137	3.14	0.10	4	2.16
3L99FK-03	<.3	1.80	22	'	73	0.2	<3	0.51	<.5	23	373	64	2.84	0.22	4	1.58
	Mn	Мо	Na	Ni	P	Pb	Sb	Se	Si	Sn	Sr	Ti	v	w	Zn	
	ppm	ppm	%	ppm	ppm	ррт	ppm	ppm	%	ррт	ppm	%	ppm	ppm	ppm	
SL99FR-62	233	<1	0.02	94	27	11	<2	<5	0.04	<5	28	0.05	39	<2	30	
SL99FR-63	497	<1	0.19	210	456	20	<2	<5	0.04	<5	44	0.05	45	<2	57	
SL99FR-64	384	<1	0.20	133	561	11	<2	<5	0.04	<5	43	0.05	36	<2	41	
SL99FR-65	115	<1	0.44	34	335	11	<2	<5	0.03	<5	73	0.02	20	<2	12	
SL99FR-66	851	<1	<.01	147	537	19	<2	<5	0.04	<5	11	0.04	152	<2	118	
SL99FR-67	489	<1	0.11	102	443	12	<2	<5	0.03	<5	32	0.04	38	<2	58	
SL99FR-68	368	1	0.28	223	402	20	<2	<5	0.04	<5	47	0.05	42	<2	62	
SL99FR-75	302	<1	0.21	35	202	13	<2	<5	0.02	<5	38	0.05	51	<2	37	
SL99FR-76	435	<1	0.18	98	341	11	<2	<5	0.04	<5	29	0.05	43	<2	45	
SL99FR-77	389	<1	0.21	78	322	9	<2	<5	0.04	<5	40	0.06	35	<2	34	
SL99FR-78	416	<1	0.07	215	202	9	<2	<5	0.04	<5	21	0.05	42	<2	47	
SL99FR-79	369	<1	0.10	355	483	16	<2	<5	0.04	<5	24	0.05	38	<2	42	
SL99FR-80	603	<1	0.11	339	410	6	<2	<5	0.04	<5	20	0.05	63	<2	68	
SL99FR-82	708	<1	0.20	80	590	28	<2	<5	0.04	<5	49	0.05	77	<2	94	
SL99FR-83	441	<1	0.01	56	227	10	<2	<5	0.04	<5	30	0.08	50	<2	77	
		•	0.01	~~~			~~	- V	0.04	-•		0.00		- 4		
1	\frown															

6 Del Certified By: _

Page 1

								Page 2							
F	Pacific N	orth Wes	it Capital	Corpora	ation										
				•				0	ct. 5, 1999)					
									•						
								. 14	nh #99409	76					
			53						00 #00403						
f) 52 1-003	55												
Ag	AI	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	Le	Mg
ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%
••				••		••					••				
0.5	2.20	5	7	24	0.2	4	1.34	<.5	54	432	1770	3.87	0.05	4	2.11
<.3	1.97		6			<3			24		145	2.90	0.03		1.67
															0.83
		•	•			•						2.20	v . - (•	0.00
Mn	Мо	Na	Ni	Р	РЬ	Sb	Se	Si	Sn	Sr	Ti	v	w	Zn	
μμ	Ppm	~~	φ μ ιτη.	Pbui	ppm	pp	ppin	70	φ ρ ιπ	μμιπ.	~	phin	μφin	ppin	
				400	E	<2	<5	0.04	<5	17	0.06	60	<2	70	
587	<1	0.04	739	463											
587 462	<1 <1	0.04	739 89	463 392	5 9										
587 462 337	<1 <1 1	0.04 0.04 0.30	739 89 45	463 392 323	9 9	<2 <2 <2	<5 <5	0.04	<5 <5	22 48	0.09	43 51	<2 <2	45 51	
	Ag ppm 0.5	C/O DTE 1 225 Fem Sudbury, P3B 3C2 Fax (705) Ag Al ppm % 0.5 2.20 <.3 1.97 <.3 2.46	c/o DTE Explorati 225 Femdale Ave Sudbury, Ontario P3B 3C2 Fax (705) 521-065 Ag A Ag A ppm % 0.5 2.20 5 <.3	c/o DTE Exploration & Dev 225 Femdale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 Ag Al Ag Al Ag Al Ag Al Ppm % Ppm % 0.5 2.20 5 <.3	c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 Ag Al Ag Ppm % ppm 0.5 2.20 5 7 24 <.3	Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 Ag Al As B Ba Be ppm % ppm ppm ppm ppm 0.5 2.20 5 7 24 0.2 <.3	c/o DTE Exploration & Development 225 Femdale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 Ag Al As B Ba Be Bi ppm % ppm ppm ppm ppm ppm ppm 0.5 2.20 5 7 24 0.2 4 <.3	C/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 Ag Al As B Ba Be Bi Ca ppm % ppm ppm ppm ppm ppm % 0.5 2.20 5 7 24 0.2 4 1.34 <.3	Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653OAgAlAsBBaBeBiCaCdAgAlAsBBaBeBiCaCdppm%ppmppmppmppm%ppm0.52.2057240.241.34<.5	Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 Oct. 5, 1999 Job #99409 Ag Ai As B Ba Be Bi Ca Cd Co Ag Ai As B Ba Be Bi Ca Cd Co ppm % ppm ppm ppm ppm % ppm ppm 0.5 2.20 5 7 24 0.2 4 1.34 <.5	Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 Oct 5, 1999 Ag Al As B Ba Be Bi Ca Cd Co Cr ppm % ppm ppm ppm ppm ppm % ppm ppm ppm ppm % ppm ppm ppm ppm % ppm ppm ppm % ppm ppm ppm state state	Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Femdale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 Oct. 5, 1999 Ag Al As B Ba Be Bi Ca Cd Co Cr Cu ppm ½ ppm ppm ppm ppm Ppm ppm % ppm ppm ppm ppm ppm % ppm ppm ppm ppm % ppm ppm ppm ppm ppm % ppm 1.55 S 2.0 2.17 117 117 117<	Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 Oct. 5, 1999 Ag A As B Ba Be Bi Ca Cd Co Cr Cu Fe ppm % ppm ppm ppm ppm ppm % ppm ppm ppm % 0.5 2.20 5 7 24 0.2 4 1.34 <.5	Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Femdale Avenue Oct. 5, 1999 Sudbury, Onterio P3B 3C2 Fax (705) 521-0653 Job #9940976 Ag Ai As B Ba Be Bi Ca Cd Co Cr Cu Fe K ppm % ppm ppm ppm ppm % ppm ppm % % 0.5 2.20 5 7 24 0.2 4 1.34 <.5	Pacific North West Capital Corporation c'o DTE Exploration & Development 225 Ferndale Avenue Oct 5, 1999 Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 Job #9940976 Ag A As B Ba Be Bi Ca Cd Co Cr Cu Fe K La ppm % ppm ppm ppm ppm % ppm ppm % ppm 0.5 2.20 5 7 24 0.2 4 1.34 <.5

Certified By:

ACCURASSAY LABORATORIES

Page 2

1070 LITHIUM DRIVE. UNIT 2 THUNDER BAY. ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820

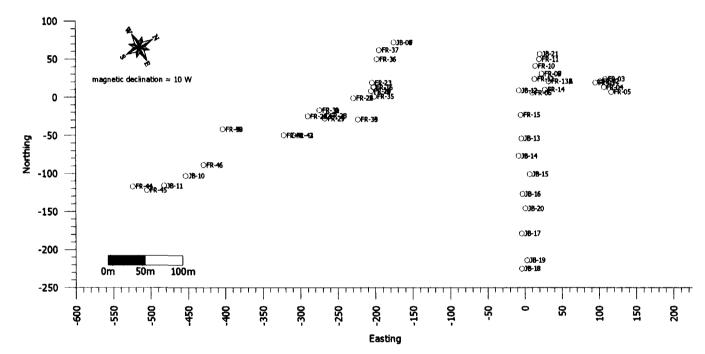
Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P3B 3C2 Fax (705) 521-0653

Oct 5, 1999

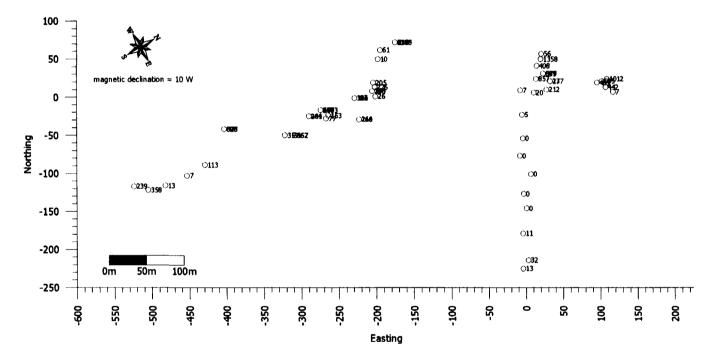
Job# 9941001

SAMPL	E#	Palladium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
1	SL99-FR-68	<10	<5	<15
2	SL99-FR-69	<10	<5	<15
3	SL99-FR-70	<10	27	<15
4	SL99-FR-71	<10	<5	<15
5	SL99-FR-72	<10	<5	<15
6	SL99-FR-73	<10	<5	<15
7	SL99-FR-74	<10	20	<15
8	SL99-FR-81	16	<5	24
9	SL99-FR-87	<10	<5	<15
10	SL99-FR-88	14	<5	22
11 Check	SL99-FR-88	14	<5	<15
12	SL99-FR-89	20	<5	<15
13	SL99-FR-90	<10	<5	<15

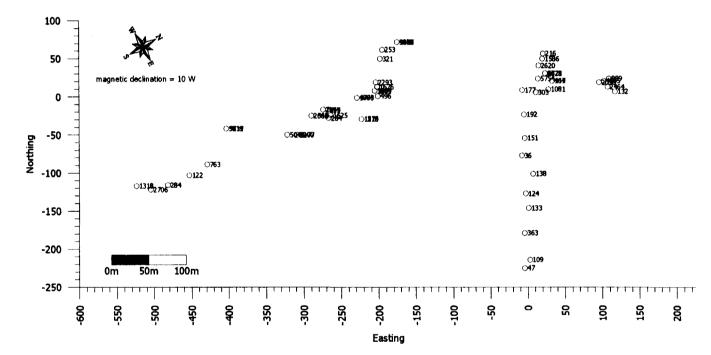
Certified By:

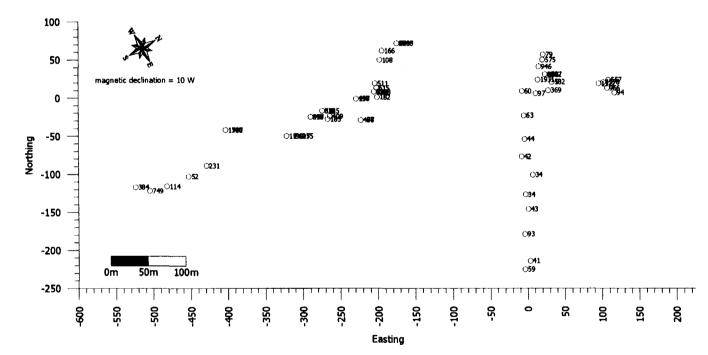

	c	/o DTE l		on & De	l Corpora velopme				-	oct. 21, 199	0					
		Sudbury,		•						AGL 21, 195	0					
11 2 66G3 8200 820	F	P3B 3C2							J	ob #99410	01					
UNIT 78 60 3-642 3-682	F	⁻ ax (705)) 521-06	53												
	Ag	Ai	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	La	Mg
201208 201200 201200 201200 201200 201200 201200 201200 201200 201000 201000 20100000000	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%
₩L 10 10 10 10 10 10 10 10 10 10	1.0	3.39	<2	<5	52	0.5	<3	2.82	<.5	21	63	118	3.50	0.22	4	0.92
.⊒્ટ્રે કોર્ટ9 9-FR-69	1.4	3.48	<2	9	585	1.3	<3	1.09	<.5	36	59	81	11.55	1.45	20	2.24
່⊐ຂີ້ສ SL99-FR-7 0	0.8	1.50	9	<5	271	0.6	<3	1.43	<.5	19	300	369	5.03	1.22	40	0.85
O SI 90 FR.71	0.7	1.31	9	<5	180	0.6	<3	0.30	<.5	10	145	44	2.79	1.09	26	0.68
осозанити 1013 SL99-FR-72 1 N SL99-FR-73 Н SL99-FR-74	1.2	2.56	<2	6	344	0.9	<3	0.73	<.5	34	96	140	9.76	0.95	34	2.06
ਿੱਟ SL99-FR-73	1.8	1.85	9	5	112	0.5	<3	1.04	0.7	18	188	54	3.46	0.75	20	1.20
	0.6	1.18	6	<5	136	0.4	<3	0.43	<.5	7	116	941	2.94	0.88	23	0.71
SL99-FR-81	1.0	2.56	9	<5	20	0.3	<3	1.45	1.3	18	187	96	2.71	0.06	1	1.42
SL99-FR-87	1.1	1.26	2	<5	103	0.3	<3	1.43	<.5	3	41	<1	0.81	0.18	<1	0.30
SL99-FR-88	0.9	2.36	<2	<5	120	0.4	<3	1.45	0.6	16	78	91	3.77	0.33	2	1.00
SL99-FR-89	0.7	4.85	<2	21	56	0.4	<3	3.22	<.5	13	115	124	2.05	0.18	<1	0.96
SL99-FR-90	1.1	2.84	<2	6	516	0.7	<3	1.93	<.5	22	91	31	5.53	2.13	12	2.31
	Mn	Мо	Na	Ni	P	Ръ	Sb	Se	Si	Sn	Sr	Ti	v	w	Zn	
	ppm	ppm	%	ppm	ppr n	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	
SL99-FR-68	508	1	0.37	39	556	<2	<2	<5	0.04	<5	33	0.22	106	<2	32	
SL99-FR-69	996	<1	0.10	14	3250	4	<2	<5	0.04	<5	14	0.37	324	<2	189	
SL99-FR-70	492	<1	0.07	10	1606	5	<2	<5	0.06	<5	26	0.31	7	<2	36	
SL99-FR-71	278	2	0.05	10	925	7	<2	<5	0.03	<5	3	0.20	12	<2	52	
SL99-FR-72	974	<1	0.07	66	2510	<2	13	<5	0.04	<5	8	0.56	163	<2	142	
SL99-FR-73	519	3	0.05	78	727	11	3	<5	0.03	<5	61	0.23	37	<2	60	
SL99-FR-74	405	<1	0.03	6	947	<2	4	<5	0.02	<5	11	0.21	8	<2	46	
SL99-FR-81	415	3	0.14	65	400	10	2	<5	0.03	<5	25	0.17	51	<2	37	
SL99-FR-87	236	<1	0.03	6	18	10	<2	<5	0.02	<5	71	0.04	<1	<2	16	
SL99-FR-88	585	<1	0.06	20	871	13	2	<5	0.04	<5	33	0.26	83	<2	74	
SL99-FR-89	318	<1	0.57	51	345	19	<2	<5	0.03	<5	57	0.12	59	<2	29	
	1105	<1	0.04	71	821	4	14	<5			37		70	<2	63	
SL99-FR-89 SL99-FR-90		•			345 821				0.03 0.03	<5 <5		0.12 0.26				

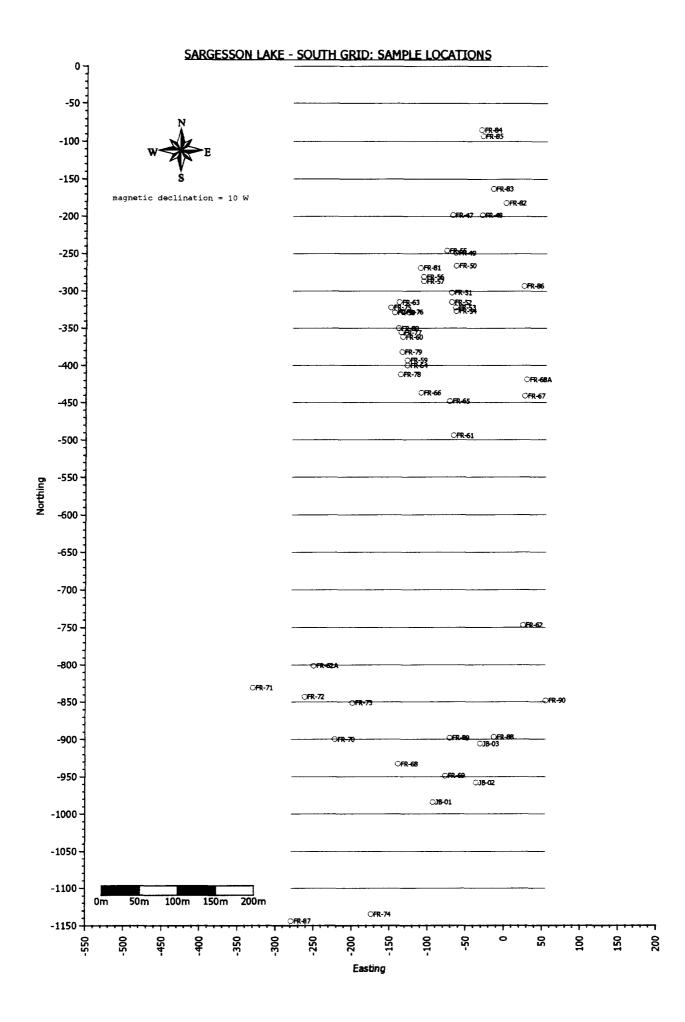
Certified By:

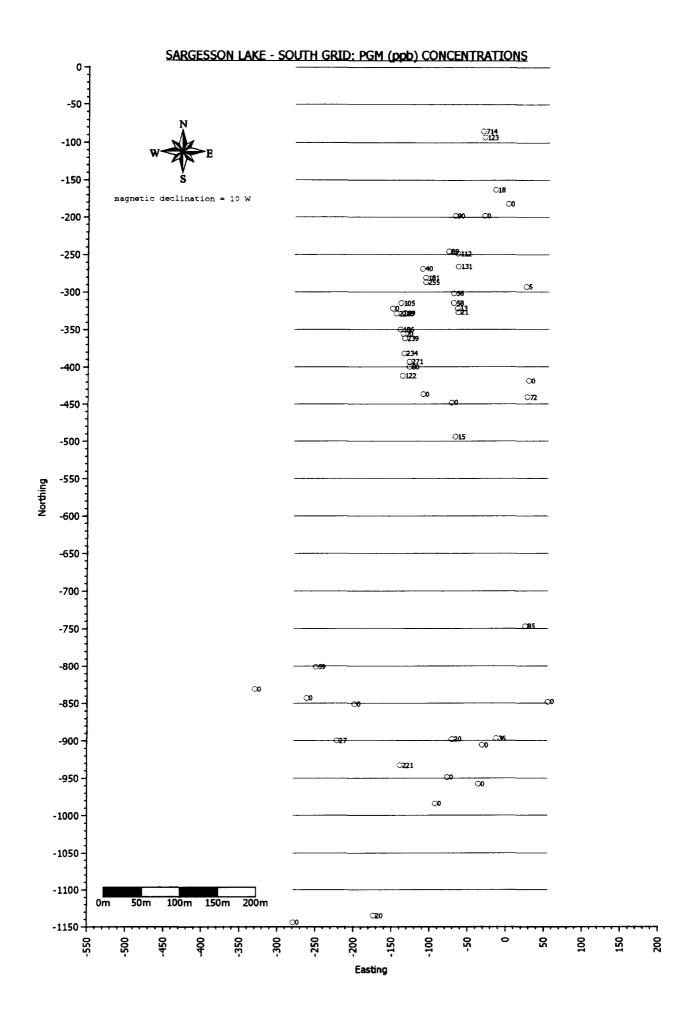

ACCURASSAY LABORATORIES A DIVISION OF ASSAY LABORATORY SERVICES INC. Page 1

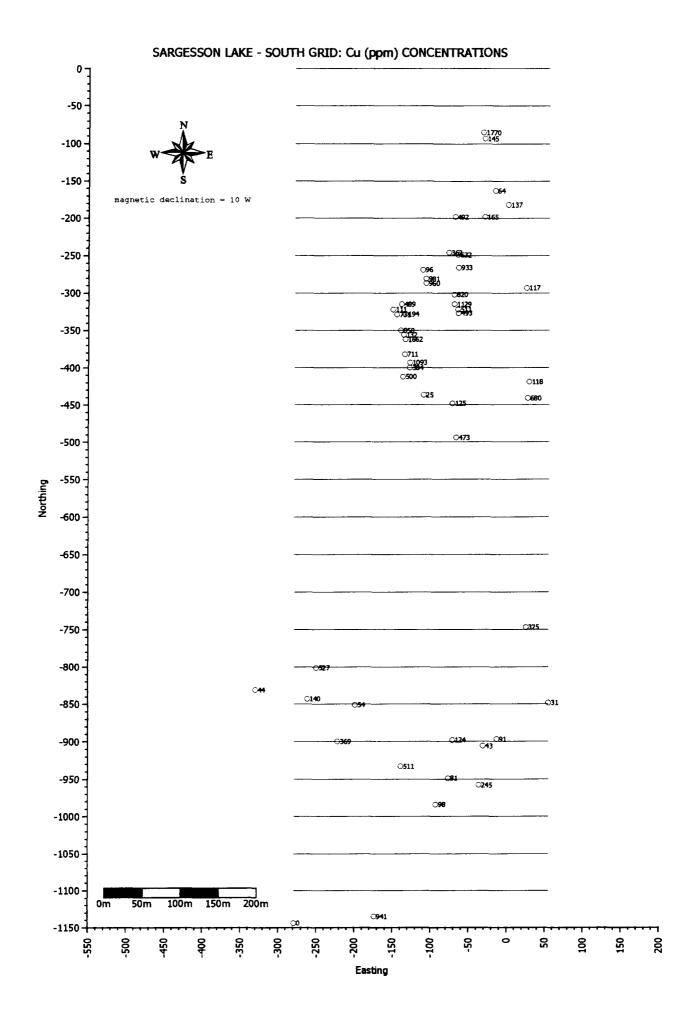
APPENDIX III

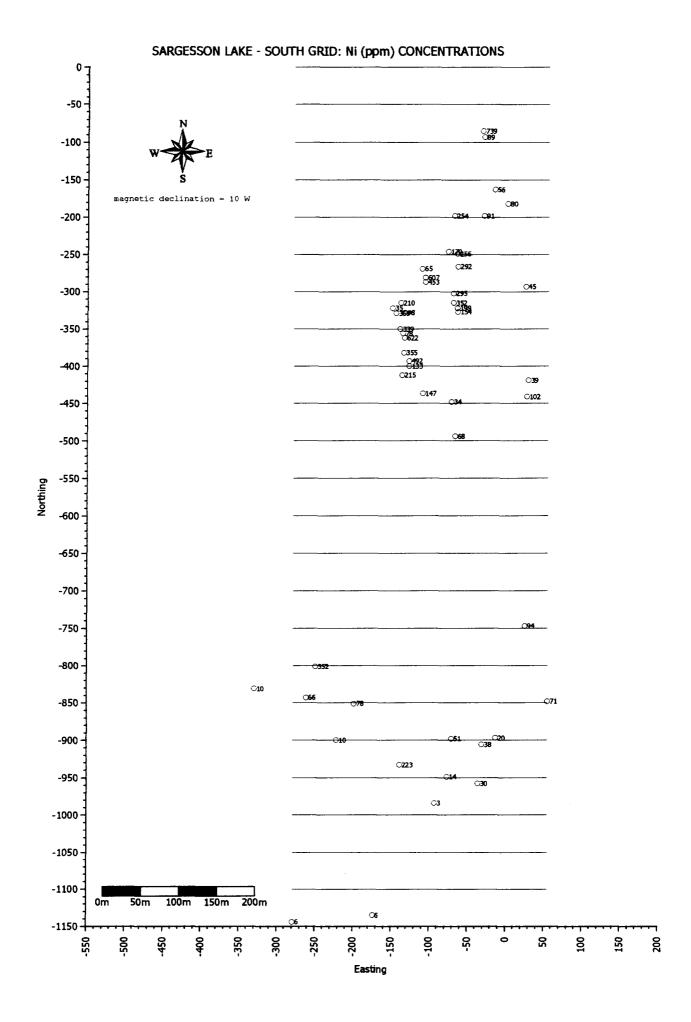

Element Distribution Plots


SARGESSON LAKE - NORTH GRID: SAMPLE LOCATIONS


SARGESSON LAKE - NORTH GRID: PGM (ppb) CONCENTRATIONS




SARGESSON LAKE - NORTH GRID: Cu (ppm) CONCENTRATIONS



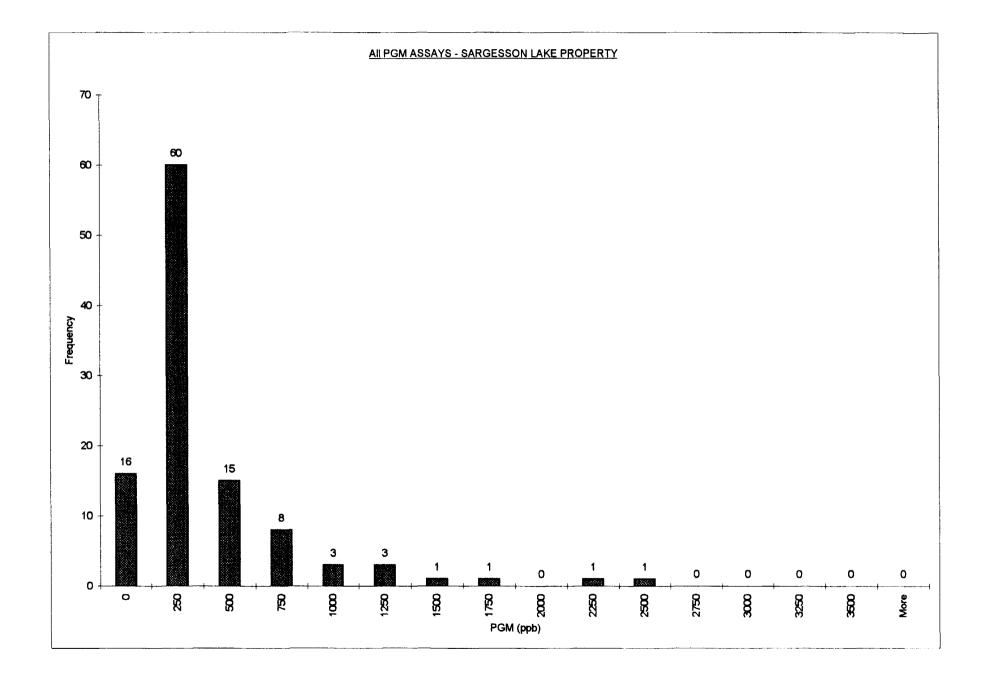
SARGESSON LAKE - NORTH GRID: Ni (ppm) CONCENTRATIONS

APPENDIX IV

Statistical Analysis of Data

Data Used to Calculate Background Values (n=32)

Sample	Tag No.	Easting	Northing	Pd	Au	Pt	PGM	Cu	Ni	Pt+Pd	Pd:Pt	Cu:Ni
FR-05	43555	117	7	0	7	0	7	132	94	0		1.4
FR-13B	43564	33	21	12	11	0	23	107	50	12		2.1
FR-15	43566	-5	-23	0	5	0	5	192	63	0		3.0
FR-29	43580	-267	-28	29	29	19	77	284	183	48	1.5	1.6
FR-37	43588	-195	62	29	11	21	61	253	166	50	1.4	1.5
JB-12	43609	-7	9	0	7	0	7	177	60	0		3.0
JB-13	43610	-4	-54	0	0	0	0	151	44	0		3.4
JB-14	43611	-8	-77	0	0	0	0	36	42	0		0.9
JB-15	43612	7	-101	0	0	0	0	138	34	0		4.1
JB-16	43613	-3	-127	0	0	0	0	124	34	0		3.6
JB-18	43615	-4	-225	13	0	0	13	47	59	13		0.8
JB-19	43616	3	-214	32	0	0	32	109	41	32		2.7
JB-20	43617	1	-146	0	0	0	0	133	43	0		3.1
JB-21	43618	21	57	23	15	18	56	216	79	41	1.3	2.7
FR-48	43702	-30	-198	0	0	0	0	165	91	0		1.8
FR-65	na	-72	-448	0	0	0	0	125	34	0		3.7
FR-66	na	-110	-437	0	0	0	0	25	147	0		0.2
FR-68A	na	29	-419	0	0	0	0	118	39	0		3.0
FR-69	na	-77	-949	0	0	0	0	81	14	0		5.8
FR-75	na	-150	-322	0	0	0	0	111	35	0		3.2
FR-76	na	-134	-328	20	19	30	69	194	98	50	0.7	2.0
FR-77	na	-136	-356	19	17	34	70	132	78	53	0.6	1.7
FR-81	na	-111	-269	16	0	24	40	96	65	40	0.7	1.5
FR-82	na	1	-182	0	0	0	0	137	80	0		1.7
FR-83	na	-16	-163	18	0	0	18	64	56	18		1.1
FR-85	na	-30	-93	68	29	26	123	145	89	94	2.6	1.6
FR-86	na	25	-293	0	5	0	5	117	45	0		2.6
FR-87	na	-279	-1144	0	0	0	0	0	6	0		0.0
FR-88	na	-13	-897	14	0	22	36	91	20	36	0.6	4.6
FR-89	na	-71	-898	20	0	0	20	124	51	20		2.4
JB-02	43599	-36	-958	0	0	0	0	245	30	0		8.2
JB-03	43600	-31	-906	0	0	0	0	43	38	0		1.1
						1						
average	n=32			9.8	4.8	6.1	20.7	128.5	62.8	15.8	1.2	2.5


Sample	Tag No.	Easting	Northing	<u>Pd</u>	<u>Au</u>	<u>Pt</u>	PGM	<u>Cu</u>	Ni	Pt+Pd	Pd:Pt	<u>Cu:Ni</u>	Cu+Ni
FR-01	43551	96.0	19.0	176	169	144	489	2030	1	320	1.2	1.7	3202
FR-02	43552	102.0	21.0	227	289	169	685	4005	1378	396	1.3	2.9	5383
FR-03	43553	109.0	24.0	718	185	109	1012	889	557	827	6.6	1.6	1446
FR-04	43554	107.0	13.0	182	160	100	442	2464	966	282	1.8	2.6	3430
FR-05	43555	117.0	7.0	0	7	0	7	132	94	0		1.4	226
FR-06	43556	11.0	6.0	0	20	0	20	303	97	0		3.1	400
FR-07	43557	24.0	31.0	248	257	160	665	4628	1542	408	1.6	3.0	6170
FR-08	43558	24.0	31.0	242	264	171	677	4778	1207	413	1.4	4.0	5985
FR-09	43559	24.0	31.0	117	127	95	339	2771	882	212	1.2	3.1	3653
FR-10	43560	15.0	41.0	148	159	101	408	2620	946	249	1.5	2.8	3566
FR-11	43561	20.0	50.0	1078	134	146	1358	1586	575	1224	7.4	2.8	2161
FR-12	43562	14.0	24.0	305	323	229	857	5754	1931	534	1.3	3.0	7685
FR-13A	43563	33.0	21.0	16	144	17	177	444	182	33	0.9	2.4	626
FR-13B	43564	33.0	21.0	12	11	0	23	107	50	12		2.1	157
FR-14	43565	28.0	10.0	83	84	45	212	1081	369	128	1.8	2.9	1450
FR-15	43566	-5.0	-23.0	0	5	0	5	192	63	0		3.0	255
FR-16	43567	-202.0	13.0	60	159	57	276	1676	615	117	1.1	2.7	2291
FR-17	43568	-205.0	8.0	91	106	73	270	3799	1178	164	1.2	3.2	4977
FR-18	43569	-205.0	8.0	34	47	27	108	1809	528	61	1.3	3.4	2337
FR-19	43570	-205.0	8.0	74	117	47	238	3045	720	121	1.6	4.2	3765
FR-20	43571	-205.0	8.0	102	121	82	305	3254	852	184	1.2	3.8	4106
FR-21	43572	-229.0	-1.0	47	95	40	182	1003	447	87	1.2	2.2	1450
FR-22	43573	-229.0	-1.0	42	74	28	144	1794	495	70	1.5	3.6	2289
FR-23	43574	-204.0	19.0	68	92	45	205	2293	511	113	1.5	4.5	2804
FR-24	43575	-229.0	-1.0	13	19	0	32	436	158	13		2.8	594
FR-25	43576	-290.0	-25.0	126	132	86	344	2563	597	212	1.5	4.3	3160
FR-26	43577	-290.0	-25.0	136	131	94	361	2542	879	230	1.4	2.9	3421
FR-27	43578	-290.0	-25.0	70	78	53	201	2064	446	123	1.3	4.6	2510
FR-28	43579	-264.0	-24.0	48	59	46	153	1625	409	94	1.0	4.0	2034
FR-29	43580	-267.0	-28.0	29	29	19	77	284	183	48	1.5	1.6	467
FR-30	43581	-274.0	-17.0	345	199	106	650	2653	858	451	3.3	3.1	3511
FR-31	43582	-274.0	-17.0	220	161	93	474	1215	622	313	2.4	2.0	1837
FR-32	43583	-274.0	-17.0	857	824	392	2073	7594	3215	1249	2.2	2.4	10809
FR-33	43584	-223.0	-29.0	66	53	47	166		467	113	1.4	2.6	1685
FR-34	43585	-223.0	-29.0	68	111	35	214		476	103	1.9	3.3	2050
FR-35	43586	-201.0	1.0	10	16	0	26	496	182	10		2.7	678
FR-36	43587	-198.0	50.0	0	10	0	10	321	108	0		3.0	429
FR-37	43588	-195.0	62.0	29	11	21	61	253	166	50	1.4	1.5	419
FR-38	43589	-403.0	-42.0	324	368	183	875		1540	507	1.8	3.7	7259
FR-39	43590	-403.0	-42.0		293	186	828		1707	535	1.9	3.0	6844
FR-40	43591	-403.0	-42.0		202	165	606		1591	404	1.4	2.3	5222
FR-41	43592	-322.0	-50.0	117	147	95		5040	1390	212	1.2	3.6	6430
FR-42	43593	-309.0	-50.0	99	178	85		4070	1255	184	1.2	3.2	5325
FR-43	43594	-309.0	-50.0	49	60	48	157		697	97	1.0	3.2	2904
FR-44	43595	-524.0	-117.0	98	79	62	239		384	160	1.6	3.4	1702
FR-45	43596	-505.0	-122.0	121	151	86		2706	749	207	1.4	3.6	3455
FR-46	43597	-429.0	-89.0	20	68	25	113	763	231	45	0.8	3.3	994
JB-04	43601	-175.0	72.0			173	1546		809	1444	7.3	2.3	2653
JB-05	43602	-175.0	72.0		274		1175		2700	901	2.6	1.4	6371

1

Sample	Tag No.	Easting	Northing	Pd	<u>Au</u>	<u>Pt</u>	<u>PGM</u>	<u>Cu</u>	<u>Ni</u>	Pt+Pd	Pd:Pt	<u>Cu:Ni</u>	Cu+Ni
JB-06	43603	-175.0	72.0	494	485	201	1180	4452	2145	695	2.5	2.1	6597
JB-07	43604	-175.0	72.0	46	46	0	92	966	333	46		2.9	1299
JB-08	43605	-175.0	72.0	218		134	531		763	352	1.6	2.2	2460
JB-09	43606	-175.0	72.0	309		119	633			428	2.6	2.9	5551
JB-10	43607	-453.0	-103.0	0	7	0	7	122	52	0	2.0	2.3	174
JB-11	43608	-482.0	-116.0	0	13	0	13	284	114	0		2.5	398
JB-12	43609	-7.0	9.0	0	7	0	7	177	60	0		3.0	237
JB-13	43610	-4.0	-54.0	0	0	0	0	151	44	0		3.4	195
JB-14	43611	-8.0	-77.0	0	0	0	0	36	42	0		0.9	78
JB-15	43612	7.0	-101.0	0	0	0	0	138	34	0		4.1	172
JB-16	43613	-3.0	-127.0	0	0	Ō	0	124	34	0		3.6	158
JB-17	43614	-4.0	-179.0	0	11	0	11	363	93	0		3.9	456
JB-18	43615	-4.0	-225.0	13	0	0	13	47	59	13		0.8	106
JB-10	43616	3.0	-214.0	32	0	0	32	109	41	32		2.7	150
JB-20	43617	1.0	-146.0	0	0	0	0	133	43	0		3.1	176
JB-20	43618	21.0	57.0	23	15	18	56	216	79	41	1.3	2.7	295
FR-47	43701	-69	-198	31	18	41	90	492	254	72	0.756	1.937	746
FR-48	43702	-30	-198	0	0	0	0	165	91	0		1.813	256
FR-49	43703	-65	-249	35	38	39	112	632	256	74	0.897	2.469	888
FR-50	43704	-64	-266	41	47	43	131	933	292	84	0.953		1225
FR-51	43715	-70	-302	13	19	24	56	820	295	37	0.542	2.78	1115
FR-52	43716	-70	-315	13	24	21	58		352	34	0.619		1481
FR-53	43705	-65	-322	0	13	0	13	511	199	0		2.568	710
FR-54	43706	-64	-327	0	21	0	21	493	154	0		3.201	647
FR-55	43707	-77	-246	29	25	35	89	362	170	64	0.829	2.129	532
FR-56	43708	-107	-281	61	91	29	181	981	607	90	2.103	1.616	1588
FR-57	43709	-107	-287	165	56	34	255	960	453	199	4.853	2.119	1413
FR-58	43710	-145	-329	1883	132	238	2253	731	369	2121	7.912	1.981	1100
FR-59	43711	-128	-393	84	79	108	271	1093	492	192	0.778		1585
FR-60	43712	-134	-362	87	70	82	239	1662	622	169	1.061	2.672	2284
FR-61	43713	-67	-494	0	15	0	15	473	68	0		6.956	541
FR-62	na	25	-747	25	60	0	85	325	94	25		3.457	419
FR-62A	43714	-250	-801	15	13	31	59	527	352	46	0.484	1.497	879
FR-63	na	-139	-315	29	46	30	105	489	210	59	0.967		699
FR-64	na	-128	-400	28	36	16	80	384	133	44	1.75		517
FR-65	na	-72	-448	0	0	0	0	125	34	0		3.676	159
FR-66	na	-110	-437	0	0	0	0	25	147	0		0.17	172
FR-67	na	27	-441	0	72	0	72	680	102	0		6.667	782
FR-68	na	-139	-933	109	77	35	221	511	223	144	3.114	2.291	734
FR-68A	na	29	-419	0	0	0	0	118	39	0		3.026	157
FR-69	na	-77	-949	0	0	0	0	81	14	0		5.786	95
FR-74	na	-174	-1135	0	20	0	20	941	6	0		156.8	947
FR-75	na	-150	-322	0	0	0	0	111	35	0		3.171	146
FR-76	na	-134	-328	20	19	30	69	194	98	50	0.667	1.98	292
FR-77	na	-136	-356	19	17	34	70	132	78	53	0.559		210
FR-78	na	-137	-412	39	45	38	122	500	215	77	1.026		715
FR-79	па	-135	-382	83	77	74	234	711	355	157	1.122		1066
FR-80	na	-140	-350	69	67	50	186	850	339	119		2.507	1189
FR-81	na	-111	-269	16	0	24	40	96	65	40	0.667		161

Data Used for Statistical Analysis (n=109)

Sample	Tag No.	Easting	Northing	Pd	<u>Au</u>	<u>Pt</u>	PGM	<u>Cu</u>	Ni	Pt+Pd	Pd:Pt	Cu:Ni	Cu+Ni
FR-82	na	1	-182	0	0	0	0	137	80	0		1.713	217
FR-83	na	-16	-163	18	0	0	18	64	56	18		1.143	120
FR-84	na	-32	-85	382	216	116	714	1770	739	498	3.293	2.395	2509
FR-85	na	-30	-93	68	29	26	123	145	89	94	2.615	1.629	234
FR-86	na	25	-293	0	5	0	5	117	45	0		2.6	162
FR-87	na	-279	-1144	0	0	0	0	0	6	0		0	6
FR-88	na	-13	-897	14	0	22	36	91	20	36	0.636	4.55	111
FR-89	na	-71	-898	20	0	0	20	124	51	20		2.431	175
FR-90	na	55	-848	0	0	0	0	31	71	0		0.437	102
JB-02	43599	-36	-958	0	0	0	0	245	30	0		8.167	275
JB-03	43600	-31	-906	0	0	0	0	43	38	0		1.132	81
average	n=109	·		128	85	54	268	1354	486	182.4	1.826	4.2	

APPENDIX V

Property Maps

TANES

41109NW2024 2.20783

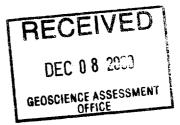
020

2.20783

WORK REPORT: PHASE I

SARGESSON LAKE PROPERTY

JANES TOWNSHIP, SUDBURY MINING DISTRICT, ONTARIO


June 29th, 1999

Prepared For:

Pacific North West Capital Corp. 626 West Pender Street, Mezzanine Floor Vancouver, British Columbia, Canada V6B 1V9

and

Consolidated Venturex Holdings Ltd. Suite 450, 999 West Hastings Vancouver, British Columbia, Canada V6C 2W2

S. Jobin-Bevans, M.Sc. * Consulting Geologist * 225 Ferndale Avenue * Sudbury, Ontario, Canada, P3B 3C2 * (705) 524-8060

TABLE OF CONTENTS

	1
Summary	2
Introduction	3
Location & Accessibility	7
Claim Status	7
Regional Geology	8
Property Geology	9
Topography & Vegetation	9
Property History	10
Current Work	12
Phase I	12
Geology and Mineralization	12
Lithogeochemical Sampling	13
Major Element Data	20
Lithogeochemical Traverse	21
Platinum Group and Base Metal Data	22
Conclusions	24
Recommendations	24
Certificate of Qualification	26
APPENDIX I – Element Distribution Plots – Main Exploration Grid	
APPENDIX II – Assay Certificates	
List of Figures	
1. Location of property in Ontario, Canada	4
2. Janes Twp. Claim Map	5
3. Location of Phase I Exploration Grid	6

Table of Contents

- 4. Location of old trenches and old drill holes115. Sample locations southwest claim area146. Current exploration grid with sample locations and geology157. Data plots for geochemical profile of intrusion23
- List of Tables1. Distribution of mining claims72. Old drill core assays 1965/68103. Assay results from samples collected Phase I164. Geochemical results major elements and sulphur Phase I185. Descriptions of lithogeochemical samples Phase I196. Budget Summary for recommendations on Sargesson Lake Property25

SUMMARY

This report represents a work summary on the <u>first phase</u> of exploration at the Sargesson Lake Property, located in the Sudbury Mining Division of north-central Ontario, Canada. The property is located about 105 road km northeast of the City of Sudbury, in the northeast quadrant of Janes Township. The current exploration program is a joint venture between Pacific North West Capital Corp. and Consolidated Venturex Holdings Ltd., both of Vancouver, Canada.

The Sargesson Lake Property has the potential to host economic accumulations of platinum (Pt), palladium (Pd) and gold (Au) metals in association with copper (Cu) - nickel (Ni) sulphides. Moreover, this property is proximal to the highly prospective Janes Property, which is currently being explored by PFN. PFN recently reported several highly anomalous diamond drill intersections from its Janes Property, one of which returned 3.1 g/t Pt+Pd+Au, 1.08% Cu and 0.27% Ni over an approximate true width of 15.05 m.

Work completed during the Phase I exploration program included: (1) a 2.2km exploration grid (~300m x 650m) over the main area of surface sulphide mineralization; (2) prospecting and sampling over the grid area; (3) general geological mapping and sampling over the grid area; and, (4) reconnaissance geological mapping and sampling in the southwest area of the claim bloc. A total of 68 samples were collected for geochemical analysis (whole rock and sulphur) and assay (Pt-Pd-Au-Cu-Ni) through Accurassay Laboratories (Thunder Bay, Ontario).

At the Sargesson Lake Property, the platinum-group metals (PGM=Pt+Pd+Au) and Cu-Ni sulphides (chalcopyrite, pyrrhotite and pentlandite) occur primarily as disseminations and blebs within medium-grained, relatively homogenous gabbroic rocks of the Nipissing Diabase. Sulphide mineralization is exposed intermittently at surface by a series of old trenches and pits that occur over a northeast-southwest strike length of about 500m.

Observations made during the recently completed prospecting and reconnaissance mapping program indicate similarities between the Sargesson Lake and Janes properties - in both cases mineralization occurs within 50m of a gabbro-sedimentary contact and for the most part within a medium-grained, hypersthene-bearing gabbro. Furthermore, assay values from grab samples taken during the recently completed Phase I are as high as 2.1g/t Pt+Pd+Au (1.44 g/t Pt+Pd), 0.76%Cu and 0.32% Ni; significant enough to warrant implementation of the second phase of exploration.

2

INTRODUCTION

The Sargesson Lake Property, centred at 46°40'24"N latitude/80°19'58"W or 551025mE-5169075mN (NTS 411/NE), consists of one (1) unpatented mining claim bloc (15 claim units) covering 240 ha in Janes Township, Sudbury Mining Division, Ontario (Figures 1, 2 and 3). This property is one of several projects in the area that is currently under option by Pacific North West Capital Corp. (PFN) and their joint venture partners, Consolidated Venturex Holdings Ltd. (CVA); both companies are from Vancouver, Canada.

The Sargesson Lake Property lies within the Southern Geological Province of the Canadian Shield and is one of several properties in the area that has potential to host economic concentrations of platinum-group metals, copper and nickel that is spatially associated with Nipissing Diabase (gabbro) intrusive rocks. Sporadic exploration work from the early 1950's to present, including ongoing exploration work in the immediate area by Goldwright Explorations Inc. and Pacific North West Capital Corp., and regional geological mapping by the Ontario Geological Survey has identified sulphide mineralization in the area that is of potential economic interest.

Phase I of a 3 phase exploration program has now been completed. Work completed under Phase I included: (1) a 2.2km exploration grid (~300m x 650m) over the main area of surface sulphide mineralization; (2) prospecting and sampling over the grid area; (3) general geological mapping and sampling over the grid area; and, (4) reconnaissance geological mapping and sampling in the southwest area of the claim bloc. A total of 68 samples were collected for geochemical analysis and assay through Accurassay Laboratories (Thunder Bay, Ontario); 68 samples for Pt-Pd-Au and ICAP-28 (includes Cu—Ni) and 18 samples for whole rock (major elements) and sulphur.

3

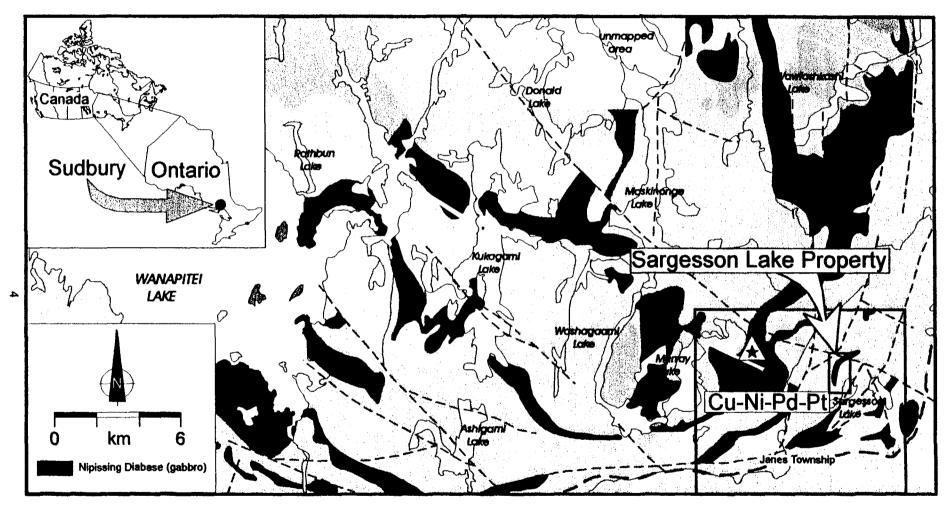


Figure 1. Location of the Sargesson Lake Pd-Pt-Cu-Ni property, Janes Township, Sudbury Mining District, Ontario. The property is located about 50 km northeast of the City of Sudbury (off the map) and east of the Janes Property (star and triangle) held by Pacific North West Capital Corp.

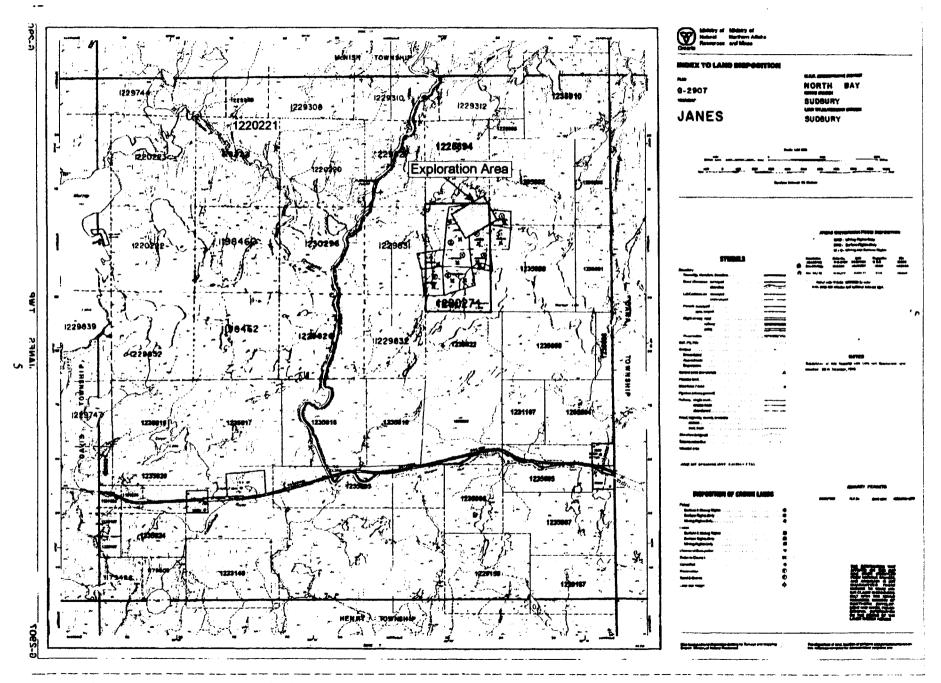
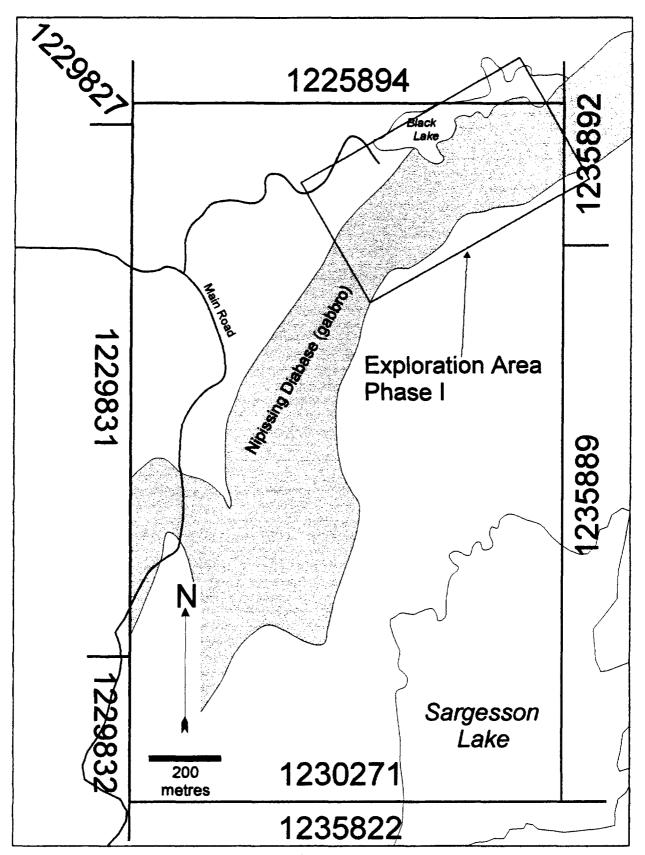



Figure 2. Claim map of Janes Township (G-2907) showing the location of the exploration grid that covers the Sargesson Lake Property's Phase I Exploration Area - unpatented mining claim S-1230271.

LOCATION & ACCESSIBILITY

The Sargesson Lake Property, located immediately east of PFN's Janes Property and within the northeast quadrant of Janes Township, is about 105 road km (53 km direct) northeast of the City of Sudbury, and is road accessible (Figures 1, 2 and 3). The property can be reached by traveling about 51km east from Sudbury to Warren along Highway 17. At Warren, turn north (left) following secondary road 539 toward the town of River Valley, a distance of about 36km. Continue on route 539 for about 10.45km heading toward the old railway stop of Glen Afton. Follow a dirt track road, leading west and paralleling the old railway bed from Glen Afton, for about 750m to where the road crosses the railway bed. Immediately after the crossing, turn north (left) and follow the old logging road for about 6.8km to the north end of the claim bloc; the last 2 km of this road is negotiable only by 4-wheel drive truck or ATV.

CLAIM STATUS

The Sargesson Lake property consists of one (1), 15 claim unit unpatented mining claim bloc comprising 240 hectares and centred at approximately 46°40'24"N latitude/80°19'58"W longitude (551025mE-5169075mN: NTS 41I/NE) in Janes Township (Table 1; Figure 2).

Claim	Township	Units	Hectares	Due Date	Work \$
1230271	Janes	15	240	June 29/99	\$6,000
	TOTALS:	15	1593 2 40		

Table 1. Distribution of Mining Claims for the Sargesson Lake Property.

REGIONAL GEOLOGY

The Huronian-Nipissing Magmatic Province (HNMP) includes intrusive bodies such as the East Bull Lake, Agnew Lake and River Valley Intrusions (*ca.* 2.4 Ga) and younger intrusions (*ca.* 2.2 Ga) of Nipissing Diabase (Gabbro); both intrusive suites are spatially associated with and intrude Early Proterozoic sedimentary rocks of the Huronian Supergroup (*ca.* 2.45 Ga). Northwest-trending olivine gabbro dykes (*ca.* 1.2 Ga) of the Sudbury Swarm crosscut all of the older rock types. To date there are no known economic Ni-Cu-Pt-Pd-Au sulphide deposits associated with Nipissing Diabase. Nonetheless, numerous showings (>50 known) with anomalous PGM values (1-10 g/t PGM) are recorded throughout the HNMP.

Nipissing Diabase comprises about 25% of the outcrop area in the HNMP and consists of dominantly tholeiitic to calc-alkaline rocks. The majority of Nipissing Diabase occurs as near-horizontal sheets or undulating sills, consisting of basins and arches, and dykes that are generally less than 1000 m thick. In this form, disseminated to massive sulphide mineralization is concentrated within the basin or limb portions with pods of dominantly massive pyrrhotite occurring within the arches.

Lopolithic forms outcrop as irregular-shaped intrusions and may represent deeper feeder systems to the stratigraphically higher sill and cone-shaped intrusions. In this form disseminated to semi-massive sulphides are hosted by hypersthene gabbro within tens of metres of the footwall sedimentary rocks and within irregular regions at the footwall contact. This form is characterized by the gabbroic intrusion at PFN's Janes property.

Arcuate and open ring outcroppings of Nipissing Diabase and structural features of surrounding sedimentary rocks suggest inward-dipping, **cone-shaped intrusions** in which disseminated sulphides hosted by hypersthene gabbro are within a few hundred metres of the basal contact. This form is typified by the gabbroic intrusion at PFN's Kelly property.

8

PROPERTY GEOLOGY

A steeply southeast dipping gabbroic body of the Nipissing Diabase suite underlies the most prospective area of the Sargesson Lake Property. The gabbro is bound to the north, south and east by rocks of the Lorrain Formation (quartz arenite/arkose) and to the west by rocks of the Gowganda Formation; the most western contact is represented by the Floodwood Chutes Fault.

Lorrain Formation stratigraphically overlies the Gowganda Formation, and it would appear that the Floodwood Chutes Fault represents a normal fault along which the gabbroic body to the west (Janes property) was uplifted relative to the Sargesson Lake gabbro. This faulting does not preclude the likelihood that the Sargesson Lake gabbroic body is a dyke-like extension emanating from the larger gabbroic body that outcrops further to the west on PFN's Janes property.

The Sargesson Lake Property is within several kilometres northwest and north of the Grenville Front Tectonic Zone (GFTZ). The GFTZ represents a complex zone that is several kilometres wide and consists of generally southeast-dipping imbricate thrust faults.

Metamorphic grade ranges from low greenschist (chlorite zone) to upper greenschist facies (biotite-chlorite zone) as characterized by the presence of metamorphic biotite in the gabbroic rocks. It is important to note that the Sargesson Lake property is proximal to the GFTZ and as such would have been subjected to a higher grade of metamorphism than other prospective properties in the area (i.e. Janes Property).

TOPOGRAPHY AND VEGETATION

Topography on the Sargesson Lake Property is characterized by generally north-south to northeast-southwest trending ridges of gabbroic rocks with gradual slopes and local metre- to 10's of metres scale cliffs. The primary vegetation on the ridges is mixed forest consisting of spruce, pine, birch and poplar, with alders, cedars, and poplar dominating the intervening low and swampy ground. Overburden consists primarily of 1-

9

2 m of silty sand, clay and poorly developed glacial till; locally overburden may be >10m thick.

Several large unnamed lakes and Sargesson Lake itself are located within about 600 m of the approximate centre of the Sargesson Lake Property.

PROPERTY HISTORY

The earliest recorded work on the **Sargesson Lake property** was in 1964 when several chalcopyrite and pyrrhotite occurrences were discovered by a prospector. Several trenches and pits exposed the mineralization for several hundred metres and in a northeast strike direction (Figure 4).

In 1965 and 1968, Pan Central Explorations Limited conducted a magnetometer survey followed by a diamond drilling program that included 8 holes, totaling 527 m in length (Table 2 and Figure 4). Drilling intercepted a mineralized zone that is described as being several hundred metres in length and parallel to a gabbro-sediment contact; the zone is apparently confined to within 30 m of this contact. In 1965, Pan Central Explorations Limited reported drill intercept values that ranged from 0.08-0.80% Cu (averaged 0.36% Cu) and 0.07-0.74% Ni (averaged 0.19% Ni). No assay values were reported from the 1968 drilling program and no assays for platinum or palladium were reported from either 1965 or 1968.

DH No.	Hole Length (feet)	From (feet)	To (f ee t)	Length (feet)	Au (oz/t)	Cu (%)	Ni (%)
J-1	278.0	169.5	171.3	1.8		0.26	0.07
J-2	150.0	91.4	94.1	2.7	0.18	0.11	0.74
J-3	223.0	114.1	117.7	3.6		0.46	0.19
		134.4	139.0	5.0		0.78	0.28
		139.0	144.0	5.0	0.035	0.74	0.34
		144.0	149.0	5.0		0.80	0.23
J-5	160.00	43.2	47.0	3.8		0.45	0.27

TABLE 2. Drill core assays - Pan Central Explorations Ltd. (1965/68) - Sargesson Lake property.

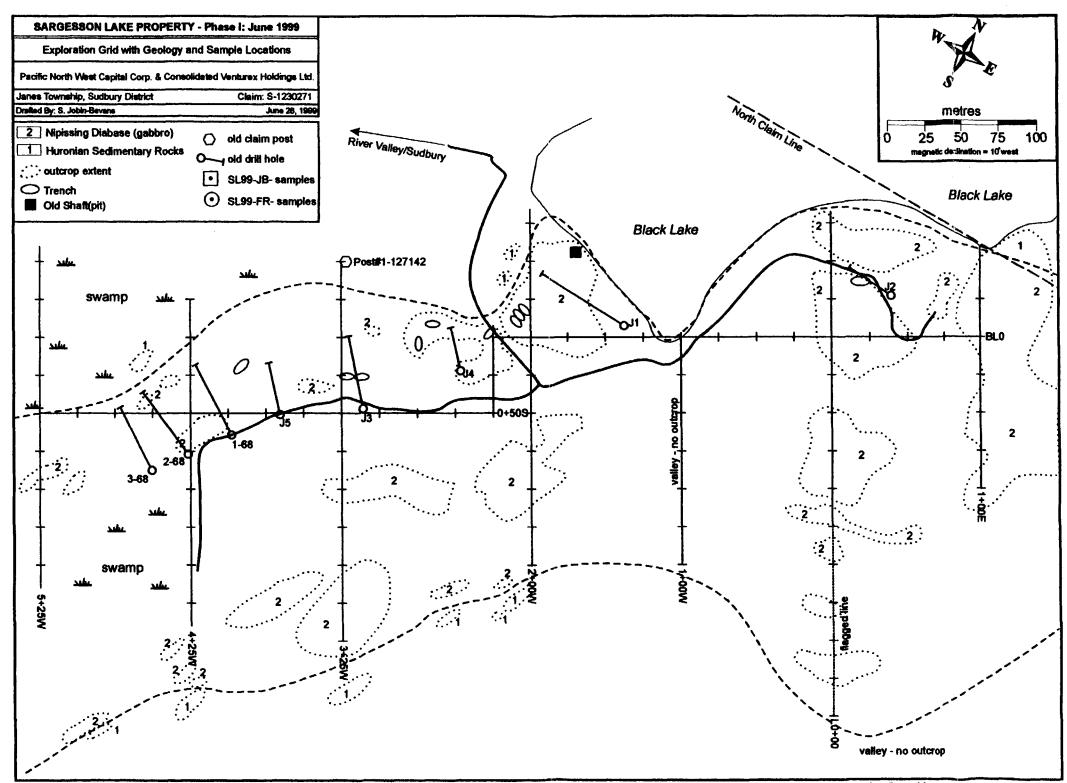


Figure 4. Location of trenches and diamond drill holes (estimated) from Pan Central Explorations Ltd.'s 1965-68 exploration program. Locations are shown relative to the Phase I exploration grid.

In 1997, F. Racicot (prospector) collected 17 grab samples from rubble around old trenches and pits. Eleven of the 17 samples reportedly returned assay values of 38-175 ppb Pt, 44-250 ppb Pd and 80-289 ppb Au. The highest reported value was 705 ppb Pt+Pd+Au and Pd:Pt ratios averaged 1.4:1.

CURRENT WORK

Phase I

Phase I of a 3 phase exploration program has now been completed. Work completed under Phase I included: (1) a 2.2km exploration grid (~300m x 650m) over the main area of surface sulphide mineralization; (2) prospecting and sampling over the grid area; (3) general geological mapping and sampling over the grid area; and, (4) reconnaissance geological mapping and sampling in the southwest area of the claim bloc (Figures 5 and 6).

Geology and Mineralization

The dominant rock type in the area of the exploration grid is medium-grained gabbro containing 2-10% hypersthene phenocrysts. This rock type is commonly referred to as a hypersthene-bearing gabbro and is the most common host to PGM sulphide mineralization in Nipissing Diabase intrusives. Fine-grained to chilled gabbro, proximal to scattered outcroppings of quartzite (Huronian sediments), marks the northern gabbro-sediment contact along the northern part of the grid (Figure 6). As yet it is unclear whether or not this northern contact represents the footwall or hangingwall.

In general, melanocratic gabbroic rocks (mafic:felsic mineral ratio of 55:45 to 60:40) are concentrated within about 100m of the northern sedimentary contact whereas differentiated leucocratic rocks (mafic:felsic mineral ratio of 50:50 to 40:60) occur toward the southern contact. This suggests fractionation of the magma toward the south and therefore stratigraphic tops toward the south. This being the case, the northern gabbrosediment contact would represent the footwall and the south, the hangingwall (see below - Lithogeochemical Traverse).

Prospecting over the main exploration grid confirmed the presence of magmatic sulphide mineralization. The zone of sulphide mineralization appears to be confined to about 50-75m of the northern contact and is primarily hosted by melanocratic hypersthene-bearing gabbro. Magmatic sulphide mineralization consists of varying proportions of chalcopyrite, pyrrhotite and pentlandite that occur primarily as disseminated grains with subordinate bleb sulphide. Total sulphide content ranges from <1% to about 12%. Subordinate sulphide-bearing rocks include coarse- to medium-grained quartz-gabbro, medium-grained gabbro and fine- to medium-grained quartz-gabbro. The observed textures, host gabbroic rock types and geological settings are similar to those observed at PFN's Janes property from which highly anomalous PGE values are reported.

Lithogeochemical Sampling

A total of 68 samples were collected for geochemical analysis and assay through Accurassay Laboratories (Thunder Bay, Ontario); 68 samples for Pt-Pd-Au and ICAP-28 (includes Cu-Ni) and 18 samples for whole rock (major elements) and sulphur.

Three (3) of the 68 samples were collected during reconnaissance mapping and prospecting in the southwest area of the property (Table 3a and Figure 5) and the remaining 65 samples were collected during prospecting and geological mapping of the main exploration grid (Table 3b and Figure 6). Results of the 18 geochemical analyses are listed in Table 4; assay certificates for all the data are provided in Appendix I. Graphical distribution of the PGM-Cu-Ni data on the main exploration grid are provided in Appendix II. Table 5 provides summary descriptions for all of the samples collected.

13

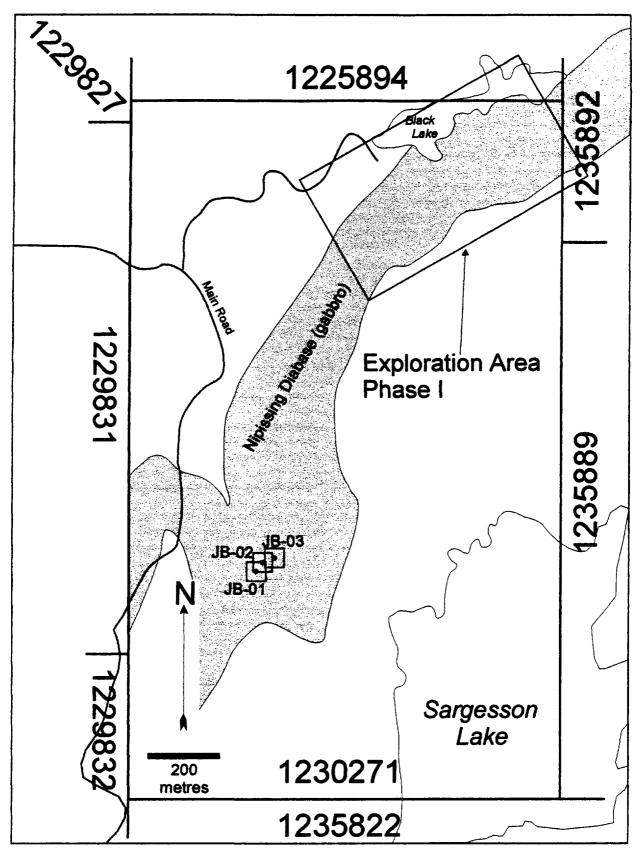


Figure 5. Location of lithogeochemical samples SL99-JB-01 to 03 collected during prospecting in the area southwest of the main exploration grid - Sargesson Lake Property, Janes Township, June 1999.

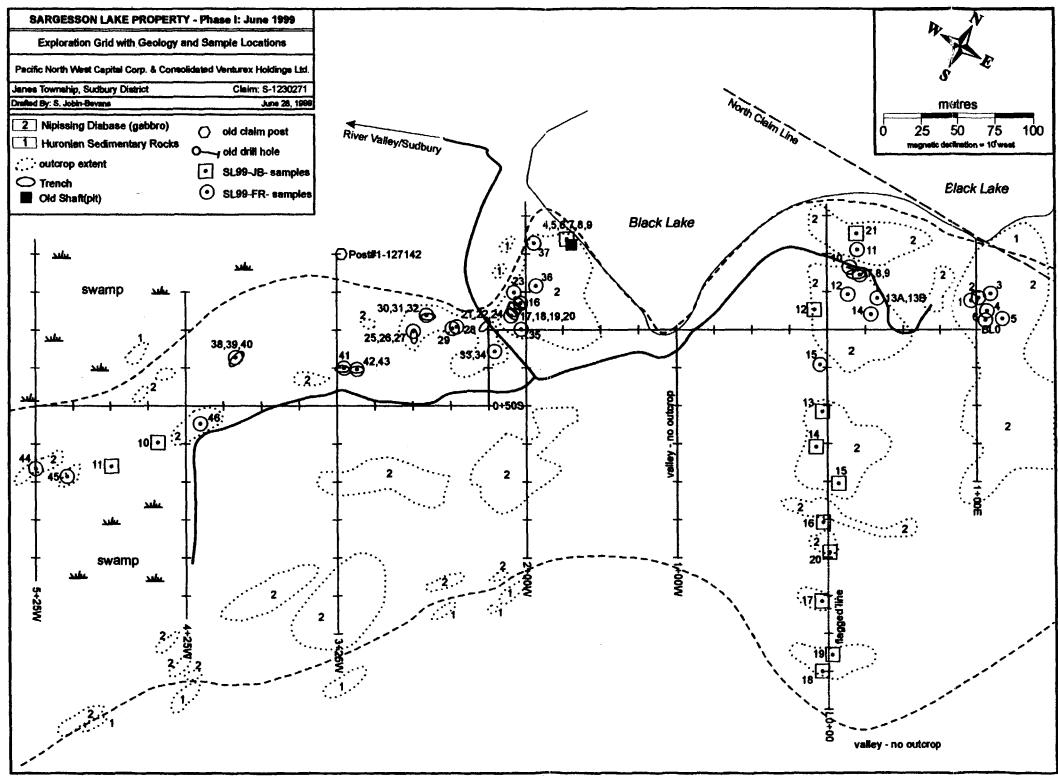


Figure 6. Phase I exploration grid, sample locations and geology on the Sargesson Lake Property, Janes Township.

Table 3a. Assay results from samples collected in the southwest part of the claim.

Sample (SL99-)	Tag	Pd (ppb)	Au (ppb)	Pt (ppb)	Cu (ppm)	Ni (ppm)	PGM (ppb)	Pt+Pd (ppb)	Pd:Pt	Cu:Ni
JB-01	43598	0	0	0	98	3	0	0	0.0	32.7
JB-02	43599	0	0	0	245	30	0	0	0.0	8.2
JB-03	43600	0	0	0	43	38	0	0	0.0	1.1

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario

Table 3b. Assay results from samples collected on the main exploration grid.

Sample	Tag	Easting	Northing	Pd	Au	Pt	PGM	Cu	Ni	Pt+Pd	Pd:Pt	Cu:Ni
(SL99-)		(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppb)		
FR-01	43551	96.4	19.3	176	169	144	489	2030	1172	320	1.2	1.7
FR-02	43552	101.5	21.2	227	289	169	685	4005	1378	396	1.3	2.9
FR-03	43553	109.3	23.9	718	185	109	1012	889	557	827	6.6	1.6
FR-04	43554	106.9	12.5	182	160	100	442	2464	966	282	1.8	2.6
FR-05	43555	117.1	7.3	0	7	0	7	132	94	0		1.4
FR-06	43556	10.6	6.4	0	20	0	20	303	97	0		3.1
FR-07	43557	21.4	36.2	248	257	160	665	4628	1542	408	1.6	3.0
FR-08	43558	21.4	36.2	242	264	171	677	4778	1207	413	1.4	4.0
FR-09	43559	21.4	36.2	117	127	95	339	2771	882	212	1.2	3.1
FR-10	43560	15.0	41.0	148	159	101	408	2620	946	249	1.5	2.8
chk FR-10	43560	15.0	41.0	149	167	96	412			245	1. 6	
avg FR-10	43560	15.0	41.0	148.5	163	98.5	410			247	1.5	
FR-11	43561	19.7	52.7	1078	134	146	1358	1586	575	1224	7.4	2.8
FR-12	43562	13.8	23.5	305	323	229	857	5754	1931	534	1.3	3.0
FR-13A	43563	32.8	21.0	16	144	17	177	444	182	33	0.9	2.4
FR-13B	43564	32.8	21.0	12	11	0	23	107	50	12		2.1
FR-14	43565	28.4	10.4	83	84	45	212	1081	369	128	1.8	2.9
FR-15	43566	-4.9	-22.9	0	5	0	5	192	63	0		3.0
FR-16	43567	-203.6	17.7	60	159	57	276	1676	615	117	1.1	2.7
FR-17	43568	-208.0	13.6	91	106	73	270	3799	1178	164	1.2	3.2
FR-18	43569	-208.0	13.6	34	47	27	108	1809	528	61	1.3	3.4
chk FR-18	43569	-208.0	13.6	40	53	26	119			66	1.5	
avg FR-18	43569	- 208 .0	13.6	37	50	26.5	113.5			63.5	1.4	

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario

Table 3b(Sample	Tag		Northing	Pd	Au	Pt	PGM	Cu	Ni	Pt+Pd		Cu:Ni
(SL99-)		(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppb)		••••
FR-19	43570	-208.0	13.6	74	117	47	238	3045	720	121	1.6	4.2
	43571	-208.0	13.6	102	121	82	305	3254	852	184	1.2	3.8
FR-21	43572	-210.1	9.3	47	95	40	182	1003	447	87	1.2	2.2
	43573	-210.1	9.3	42	74	28	144	1794	495	70	1.5	3.6
FR-23	43574	-208 .1	24.6	68	92	45	205	2293	511	113	1.5	4.5
FR-24	43575	-210.1	9.3	13	19	0	32	436	158	13		2.8
FR-25	43576	-274.6	-0.8	126	132	86	344	2563	597	212	1.5	4.3
FR-26	43577	-274.6	-0.8	136	131	94	361	2542	879	230	1.4	2.9
FR-27	43578	-274.6	-0.8	70	78	53	201	2064	446	123	1.3	4.6
chk FR-27	43578	-274.6	-0.8	73	73	5 9	205			132	1.2	
avg FR-27	43578	-274.6	-0.8	71.5	75.5	56	203			127.5	1.3	
FR-28	43579	-246.0	2.2	48	59	46	153	1625	409	94	1.0	4.0
FR-29	43580	-249.0	1.0	29	29	19	77	284	183	48	1.5	1.6
FR-30	43581	-266.0	9.8	345	199	106	650	2653	858	451	3.3	3.1
FR-31	43582	-266.0	9.8	220	161	93	474	1215	622	313	2.4	2.0
FR-32	43583	-266 .0	9.8	857	824	392	2073	7594	3215	1249	2.2	2.4
FR-33	43584	-221.0	-14.1	66	53	47	166	1218	467	113	1.4	2.6
FR-34	43585	-221.0	-14.1	68	111	35	214	1574	476	103	1.9	3.3
FR-35	43586	-203.3	0.4	10	16	0	26	496	182	10		2.7
FR-36	43587	-193.5	29.0	0	10	0	10	321	108	0		3.0
chk FR-36	43587	-193.5	29.0	0	12	0	12			0		
avg FR-36	43587	-193.5	29.0	0	11	0	11			0		
FR-37	43588	-194.8	57.1	29	11	21	61	253	166	50	1.4	1.5
FR-38	43589	-392.0	-18.0	324	368	183	875	5719	1540	507	1.8	3.7
FR-39	43590	-392.0	-18.0	349	293	186	828	5137	1707	535	1.9	3.0
FR-40	43591	-392.0	-18.0	23 9	202	165	606	3631	1591	404	1.4	2.3
FR-41	43592	-320.4	-25.1	117	147	95	359	5040	1390	212	1.2	3.6
FR-42	43593	-311.8	-25.8	99	178	85	362	4070	1255	184	1.2	3.2
FR-43	43594	-311.8	-25.8	49	60	48	157	2207	697	97	1.0	3.2
FR-44	43595	-525.0	-91.2	98	79	62	239	1318	384	160	1.6	3.4
FR-45	43596	-504.3	-96 .3	121	151	86	358	2706	749	207	1.4	3.6
chk FR-45	43596	-504.3	-96.3	110	142	91	343			201	1.2	
avg FR-45	43596	-504.3	-96.3	115.5	146.5	88.5	350.5			204	1.3	
FR-46	43597	-415.4	-61.4	20	68	25	113	763	231	45	0.8	3.3

Table 3b(cont.). Assay results from samples collected on the main exploration grid.

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario

Sample	Tag	Easting	Northing	Pd	Au	Pt	PGM	Cu	Ni	Pt+Pd	Pd:Pt	Cu:Ni
(SL99-)		(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppb)		
JB-04	43601	-172.2	59.7	1271	102	173	1546	1844	809	1444	7.3	2.3
JB-05	43602	-171.2	58.5	652	274	249	1175	3671	2700	901	2.6	1.4
JB-06	43603	-170.7	57.5	494	485	201	1180	4452	2145	695	2.5	2.1
JB-07	43604	-169.2	54.0	46	46	0	92	966	333	46		2.9
JB-08	43605	-167.7	54.0	218	179	134	531	1697	763	352	1.6	2.2
chk JB-08	43605	-167.7	54.0	212	171	145	528			357	1.5	
avg JB-08	43605	-167.7	54.0	215	175	139.5	529.5			354.5	1.5	
JB-09	43606	-170.2	55.3	309	205	119	633	4118	1433	428	2.6	2.9
JB-10	43607	-443.7	-73.9	0	7	0	7	122	52	0		2.3
JB-11	43608	-474.3	-89.4	0	13	0	13	284	114	0		2.5
JB-12	43609	-8.6	13.3	0	7	0	7	177	60	0		3.0
JB-13	43610	-3.6	-53.7	0	0	0	0	151	44	0		3.4
JB-14	43611	-7.8	-77.0	0	0	0	0	36	42	0		0.9
JB-15	43612	7.3	-101.0	0	0	0	0	138	34	0		4.1
JB-16	43613	-3.2	-126.6	0	0	0	0	124	34	0		3.6
JB-17	43614	-4.3	-178.6	0	11	0	11	363	93	0		3.9
chk JB-17	43614	-4.3	-178.6	0	11	0	11			0		
avg JB-17	43614	-4.3	-178.6	0	11	0	11			0		
JB-18	43615	-4.3	-224.7	13	0	0	13	47	59	13		0.8
JB-19	43616	2.6	-213,9	32	0	0	32	109	41	32		2.7
JB-20	43617	1.1	-146.4	0	0	0	0	133	43	0		3.1
JB-21	43618	19.3	63.4	23	15	18	56	216	79	41	1.3	2.7

Table 3b(cont.). Assay results from samples collected on the main exploration grid.

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario

Table 4. Geochemical anal	vses from 18 samples collected	on the main exploration grid.

Sample	Tag No.	Easting	Northing	SiO2	AI2O3	MgO	Fe2O3	Cr2O3	TiO2	S
(SL99-)		(m)	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
FR-03	43553	109.3	23.9	47.48	13.94	7.76	10.11	0.07	0.53	0.84
FR-07	43557	21.4	36.2	47.48	13.35	8.03	11.87	0.08	0.58	1.29
FR-11	43561	19.7	52.7	48.19	13.81	9.92	9.02	0.10	0.44	0.34
FR-15	43566	-4.9	-22.9	49.82	12.61	9.00	10.15	0.04	0.65	0.06
FR-18	43569	-208.0	13.6	48.97	14.05	8.56	10.38	0.05	0.55	0.49
FR-39	43590	-392.0	-18.0	48.80	14.04	7.92	12.17	0.04	0.66	1.29
FR-43	43594	-311.8	-25.8	50.30	13.83	9.34	11.09	0.06	0.56	0.62
FR-45	43596	-504.3	-96.3	48.52	12.70	10.19	11.19	0.03	0.49	0.73
JB-12	43609	-8.6	13.3	51.05	14.32	9.59	9.40	0.07	0.52	0.06
JB-13	43610	-3.6	-53.7	48.44	15.04	7.47	9.45	0.05	0.53	0.04
JB-14	43611	-7.8	-77.0	49.16	13.09	8.09	10.60	0.05	0.57	0.00
JB-15	43612	7.3	-101.0	49.41	14.88	6.84	10.27	0.03	0.61	0.05
JB-16	43613	-3.2	-126.6	49.94	14.76	6.53	10.60	0.00	0.74	0.05
JB-17	43614	-4.3	-178.6	51.00	12.89	7.86	12.84	0.00	0.78	0.18
JB-18	43615	-4.3	-224.7	49.64	16.29	8.61	8.45	0.07	0.51	0.03
JB-19	43616	2.6	-213.9	50.12	16.20	8.43	8.75	0.05	0.51	0.04
JB-20	43617	1.1	-146.4	47.97	14.78	7.49	10.35	0.00	0.51	0.05
JB-21	43618	19.3	63.4	49.45	14.42	7.44	10.53	0.04	0.73	0.10

see Appendix II for complete major element data

Sample (SL99-)	%Mafic	%Felsic	Texture*	%Sulphide	%po+pn	%сру	Notes
FR-01	60	40	fg	0.5	50	50	ds in dark gabbro
FR-02	55	45	mg	2-3	45	5	ds in grey gabbro; >1% quartz
FR-03	60	40	fg-mg	0.5	60	40	ds in green gabbro; minor biotite
FR-04	60	40	fg-mg	2-4	60	40	finely ds in green gabbro
FR-05	40	60	mg	0.5	98	2	light grey gabbro
FR-06	nr	nr	cg	0.5	9 8	2	blebs up to 1cm; grey gabbro
FR-07	60	40	fg-mg	3-5	20	80	trench on road
FR-08	50	50	fg-mg	2-3	15	85	trench on road
FR-09	nr	nr	mg	2-3	50	50	trench on road
FR-10	nr	nr	mg	4-6	50	50	trench on road
FR-11	65	35	fg-mg	0.5-1	80	20	ds to bs; minor hematite
FR-12	nr	nr	fg-mg	3-5	60	40	ds to bs
FR-13A	50	50	mg	0.5	70	30	very rusty; 5% biotite; 5% quartz
FR-13B	nr	nr	mg	0	0	0	
FR-14	45	55	mg	1	70	30	ds and bs; small aplitic veins
FR-15	nr	nr	mg	0.1	96	4	ds
FR-16	40	60	mg	2-4	80	20	ds and bs; cpy mainly on fractures
FR-17	nr	nr	mg	5-7	5	95	trench rubble on 2+00W
FR-18	60	40	fg-mg	1-3	35	65	ds and bs; trench on 2+00W
FR-19	40	60	mg	1-3	20	80	ds and bs; cpy on fractures
FR-20	40	60	mg	3-4	30	70	ds and bs; trench on 2+00W
FR-21	55	45	mg	1	80	20	ds and bs; trench on 2+00W
FR-22	50	50	mg	2-3	25	75	ds and bs; frequent on fractures
FR-23	60	40	mg	2-4	5	95	ds and bs; trench on 2+00W
FR-24	40	60	mg	0.1	80	20	bs; calcite veinlets with cpy
FR-25	65	35	mg	3-4	20	80	very rusty; old trench
FR-26	55	45	mg	2-4	45	55	ds and bs; old trench
FR-27	60	40	mg	0.5	70	30	ds and bs; old trench
FR-28	60	40	mg	0.5-1	2	9 8	ds in dark gabbro
FR-29	50	50	mg	0.5	50	50	ds
FR-30	nr	nr	fg-mg	2-3	40	60	ds and bs
FR-31	55	45	mg	1-1.5	70	30	ds and bs; slightly sheared
FR-32	60	40	mg	10-12	60	40	ds and bs; trench rubble
FR-33	40	60	mg	2-3	70	30	ds cpy and bs po; blebs >1cm
FR-34	40	60	mg	1-2	40	60	ds>bs
FR-35	55	45	mg	0.1	90	10	ds
FR-36	60	40	fg-mg	0.1	9 5	5	ds
FR-37	70	30	fg	0.1	60	40	ds
FR-38	50	50	mg	3-5	5	95	ds; trench rubble
FR-39	50	40	mg	3-5	20	80	ds; trench rubble

Table 5. Descriptions of gabbroic lithogeochemical samples.

*fg=fine-grained, mg=medium-grained, cg=coarse-grained; ds=disseminated sulphide; bs=bleb sulphide; cpy=chalcopyrite, po=pyrrhotite, pn=pentlandite, py=pyrite; nr=not recorded

Sample	%Mafic	%Felsic	Texture*	%Sulphide	%po+pn	%сру	Notes
(SL99-)							· · · · · · · · · · · · · · · · · · ·
FR-40	55	45	mg	1-2	40	60	ds; minor graphite; trench wall
FR-41	55	45	mg	4-6	40	60	ds and bs; trench wall
FR-42	60	40	mg	3-5	50	50	bs and ds; trench wall
FR-43	50	50	mg	1-1.5	50	50	bs and ds; trench rubble
FR-44	nr	nr	mg	0.5	50	50	ds and bs; local rubble
FR-45	55	45	mg	2-3	60	40	ds and bs
FR-46	55	45	mg	0.5	80	20	ds; on road
JB-01 ⁺			mg	1	2	98	cataclastic-10-15% oxides possibly quartz monzonite
JB-02*	40	60	mg-cg	1-2	60	40	ds; 10-15% oxide
JB-03 ⁺	20	80	mg	1	1	99	ds; py and cpy; 10% oxide
JB-04	50	50	fg	3-5	60	40	ds and bs; up to 5mm blebs
JB-05	60	40	mg	2-3	50	50	ds and bs
JB-06	55	45	fg-mg	5	70	30	bs and ds
JB-07	45	55	mg	3	40	60	ds and bs; 3% quartz
JB-08	55	45	fg-mg	3-5	60	40	bs and ds; cpy smears on fracture
JB-09	60	40	mg	2-3	65	35	ds and bs; smears of po/cpy
JB-10	60	40	mg	1	98	2	ds; weakly magnetic
JB-11	45	55	mg	1	97	3	ds
JB-12	60	40	mg	0.1	0	0	ds
JB-13	60	40	mg	0.1	0	0	ds
JB-14	55	45	mg	0.1	0	0	ds; locally sheared
JB-15	50	50	mg	0.1	0	0	ds
JB-16	60	40	mg	0	0	0	
JB-17	60	40	mg	1	99	1	ds and bs; po>>cpy
JB-18	40	60	mg	0	0	0	
JB-19	55	45	mg	0.1	0	0	
JB-20	50	50	mg	0.1	0	0	1 bleb of po
JB-21	50	5	fg	0.1	0	0	ds; rusty on weathered surface

Table 5 (cont.). Descriptions of gabbroic lithogeochemical samples.

*fg=fine-grained, mg=medium-grained, cg=coarse-grained;

ds=disseminated sulphide; bs=bleb sulphide; cpy=chalcopyrite, po=pyrrhotite, pn=pentlandite, py=pyrite; nr=not recorded +collected from area in southwest portion of claim bloc

Major Element Data

Eighteen (18) of the 65 samples collected from the main exploration grid were analyzed for major oxide chemistry and sulphur (Table 4 and Appendix II). Averages, based on the 18 samples, are 49.21wt% SiO₂, 14.17wt% Al₂O₃, 8.28wt% MgO, 10.40wt% Fe₂O₃ (total iron), 0.05wt% Cr₂O₃, 0.58wt% TiO₂, 0.35wt% S and 58.8-71.9 magnesium number (Mg#=(MgO/40.404/(MgO/40.404+85/100*(Fe₂O₃/79.926)))*100).

Geochemical guidelines for exploration of PGM-enriched sulphide mineralization in Nipissing Diabase include: (1) 6.0-9.75wt% MgO; (2) 0.40-0.55wt% TiO₂; (3) <50wt% SiO₂; (4) 12-14wt% Al₂O₃; and, (5) 45.5-66.5 Mg#. The majority of the gabbroic rocks sampled during Phase I meet all of these criteria. This suggests that the Sargesson Lake intrusion is a good candidate for economic accumulations of PGM and Cu-Ni mineralization.

Lithogeochemical Traverse

Twelve (12) of the 18 samples that were analyzed for major element and sulphur geochemistry were collected along grid line 0+00, in order to construct a geochemical profile through the intrusion. The sample suite, from south to north, comprises JB-18, JB-19, JB-17, JB-20, JB-16, JB-15, JB-14, JB-13, FR-15, JB-12, FR-11 and JB-21 (Figure 6). Geochemical profiles through the intrusion, generated from the 12 samples are shown in Figure 7. In order to provide comparable data, samples with <<1% total visible sulphide were chosen.

One of the aims of this exercise was to determine stratigraphic tops within the intrusion, on the basis of fractionation trends. However, the fractionation trends from the major oxide data do not clearly discern stratigraphic tops. Nonetheless there are several important inferences that can be derived from the profiles (Figure 7):

(1) SiO_2 - increases then declines sharply at 178.6m south and 13.3m north, and increases sharply at 63.4m north. The southernmost and northernmost increases may be the result of simultaneous hangingwall and footwall assimilation/contamination as the intruding magma consumed the host sediments. The increase at 13.3m north may be the result of contamination and/or internal fractionation.

(2) Sulphur – rapid increase at 178.6m south, coincident with an increase in SiO₂ content. This may indicate addition of external sulphur such as assimilation of a sulphide-bearing sedimentary rock unit. A second spike in sulphur content occurs after the mineralized zone is encountered and is explained by the presence of the sulphide-mineralized horizon.

(3) MgO – decline from 224.7m 126.6m south, followed by an increase northward through the mineralized zone, followed by a rapid decrease at 63.4m north. The MgO content would normally be expected to decrease upward through a fractionating body of magma. However, the observed trend – increasing MgO outward in both directions from the middle of the intrusion -, coupled with the SiO₂ trends, suggests assimilation of the hangingwall and footwall sediments as the magma fractionated; a term referred to as assimilation fractional crystallization or AFC.

These trends, and in particular that of sulphur, suggest a potential zone of mineralization between 150m and 200m south.

Platinum Group and Base Metal Data

Of the 68 samples collected, the highest recorded values are 2100ppb (2.1 g/t) total PGM, 1444ppb (1.4 g/t) Pt+Pd, 0.76% Cu and 0.32% Ni. Of the 65 samples collected on the main exploration grid, 16 returned total PGM values >500ppb (0.5g/t) and of these 16 samples, 6 returned total PGM values >1000ppb (1.0g/t).

Using 46 of the 65 samples collected from the main exploration grid, weighted averages are: **497ppb PGM**, **329ppb Pt+Pd**, **1.9 Pd:Pt ratio**, **0.27% Cu**, **.09% Ni and 3.0 Cu:Ni ratio**. It is important to note that although the PGM values are not economic, they are anomalous at about 6 to 9 x background PGM for Nipissing Diabase (background estimates: 17ppb Pt, 33ppb Pd, 5ppb Au). The Cu-Ni values are also anomalous at about 16 x background for Cu and 10 x background for Ni (background estimates: 163ppm Cu, 89ppm Ni).

The highest values for individual and combined PGM and/or Cu-Ni values are restricted to the northern part of the grid, proximal to the northern gabbro-sediment contact and following an approximately southwest trend (see Appendix I).

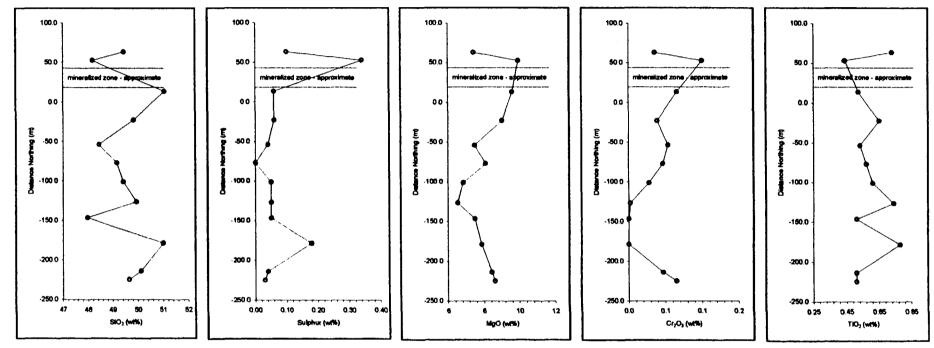


Figure 7. Geochemical profiles through the Sargesson Lake intrusion. The graphs were generated from a sample suite collected from the south (-2+25S) to the north (0+75N) along line 0+00.

CONCLUSIONS

Observations made during the recently completed prospecting and reconnaissance mapping program indicate similarities between the Sargesson Lake and Janes properties - in both cases mineralization occurs within 50m to 75m of a gabbro-sedimentary contact and for the most part within a medium-grained, hypersthene-bearing gabbro. Furthermore, assay values from grab samples taken during the recently completed Phase I are as high as 2.1g/t Pt+Pd+Au (1.44 g/t Pt+Pd), 0.76%Cu and 0.32% NI; significant enough to warrant implementation of the second phase of exploration.

RECOMMENDATIONS

Previous diamond drilling on the property (*ca.* 1965-68) indicated that sulphide mineralization, originally discovered at surface, is continuous at depth and occurs in a geological environment that is similar to that observed on PFN's Janes property, immediately to the west. Moreover, previous work did not test for PGM and consisted of only reconnaissance geological mapping and sampling. Tables 6 outlines a \$15,000 budget with recommendations for further exploration (Phase II) on the Sargesson Lake Property. Should Phase II return encouraging results, a third phase would be implemented involving diamond drilling of targets outlined in Phases I and II.

The principal goal for the second phase of exploration on the Sargesson Lake Property is to extend the known areas of PGM sulphide mineralization to the southwest by prospecting/geological mapping and sampling over an extended exploration grid. As well, the area between 150m and 200m south on the exploration grid should be considered as a primary target for prospecting and possibly self-potential survey.

In addition to exploration toward the southwest, the possibility of acquiring the mineral claim (S-1235892) immediately to the northeast should be considered so that prospecting can be initiated on the northeastern extension of the gabbroic intrusion.

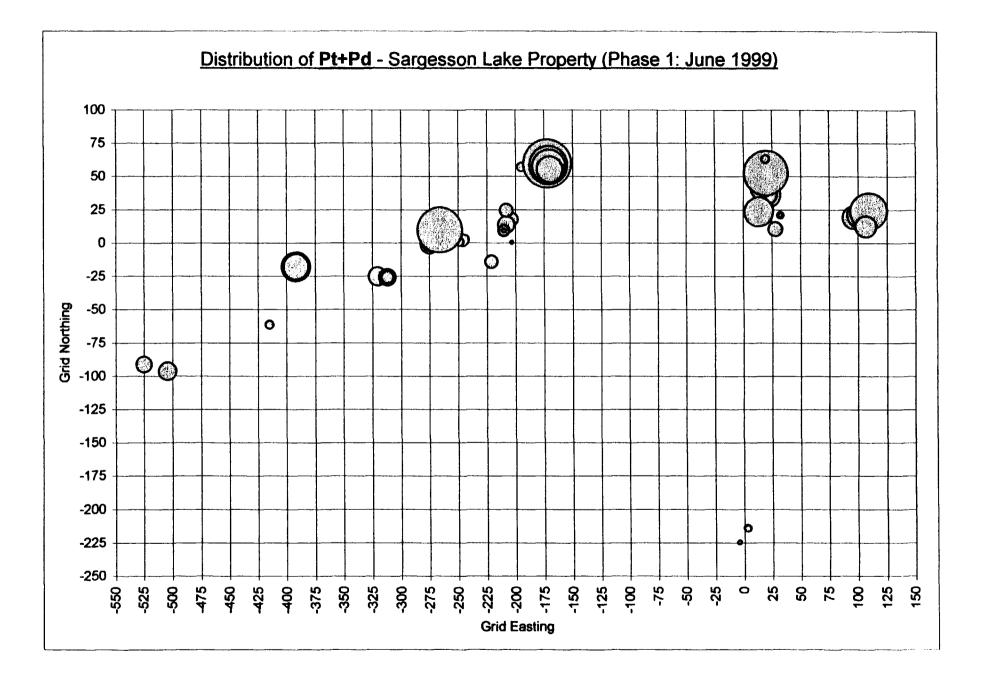
24

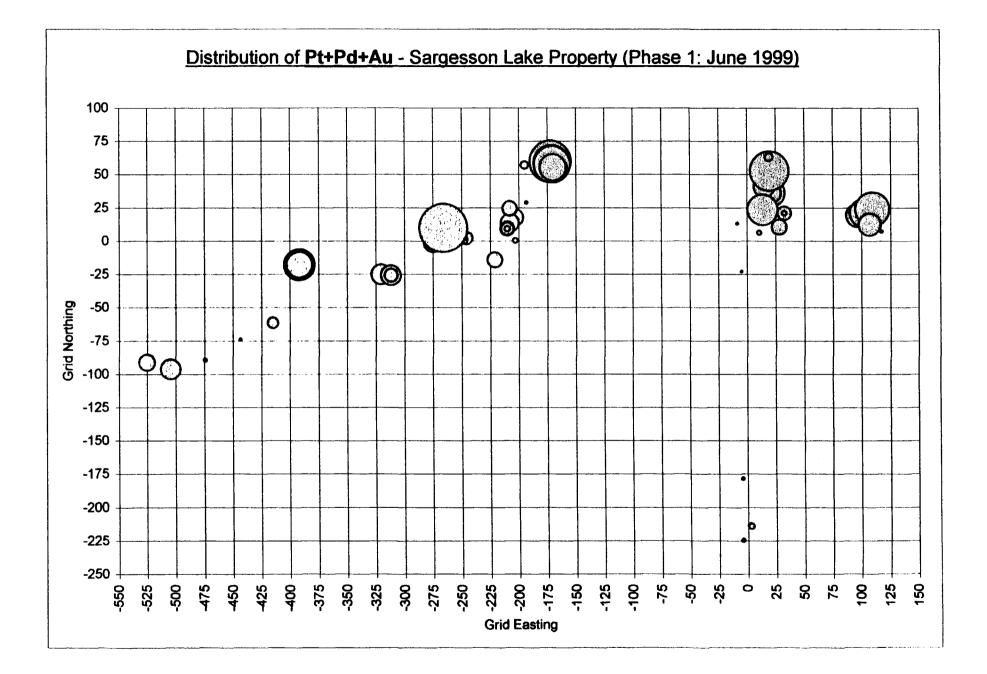
TABLE 6. Budget summary for recommendations on the Sarges	son Lake property.
EXPLORATION COSTS	
Exploration Grid (7 km) - extend Phase I grid	\$2,100.00
General Prospecting/Sampling	\$3,500.00
Geological Mapping/Sampling	\$1,050.00
Self-Potential Orientation Survey	\$1000.00
Geophysical Report	\$600.00
Hand Clearing/Stripping	\$800.00
Assay Costs – Pt-Pd-Au (125 samples)	\$1,625.00
Assay Costs – Cu-Ni (50 samples)	\$325.00
Sub-Total:	\$11,000.00
ADDITIONAL COSTS	
Supervision/Management	\$800.00
Report Writing	\$800.00
Operating Costs	\$1,400.00
Contingency Fund (approximately 10%)	\$1,000.00
GRAND TOTAL:	\$15,000.00

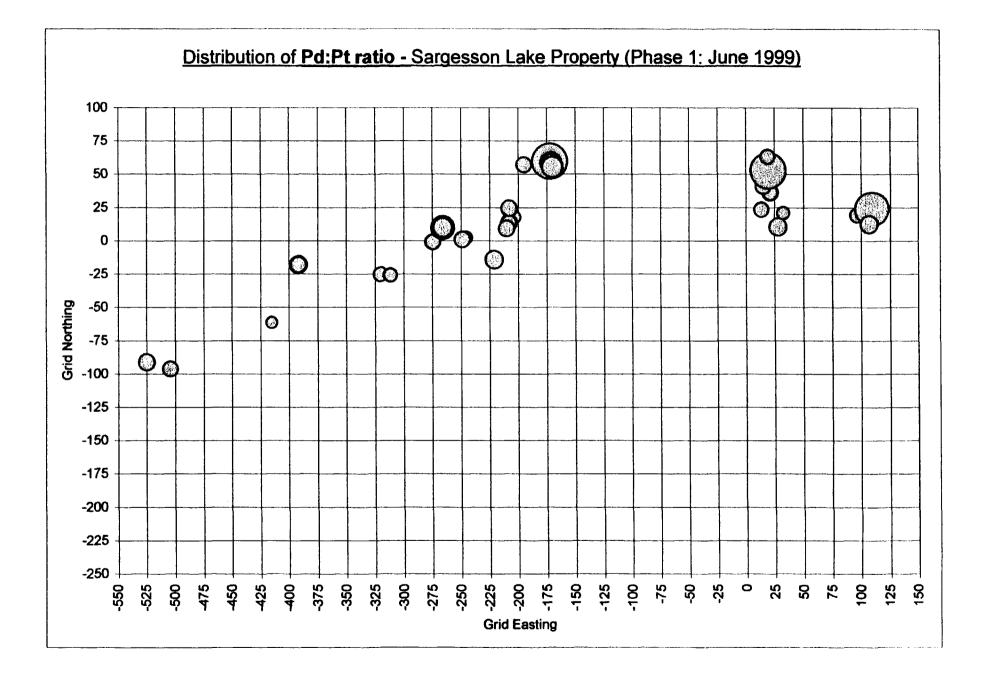
.1

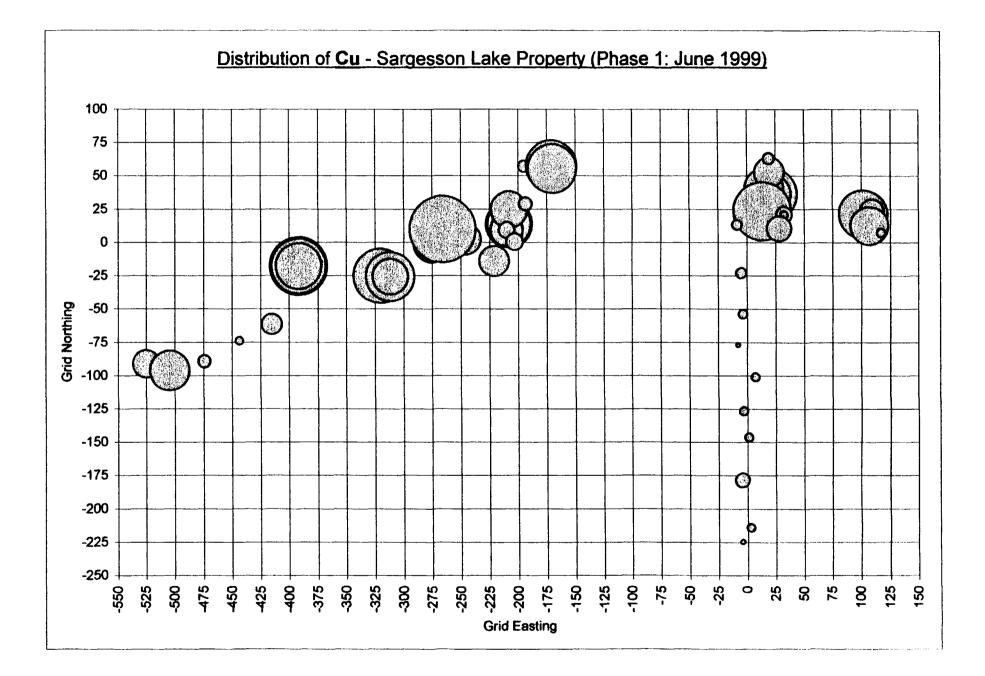
CERTIFICATE OF QUALIFICATION

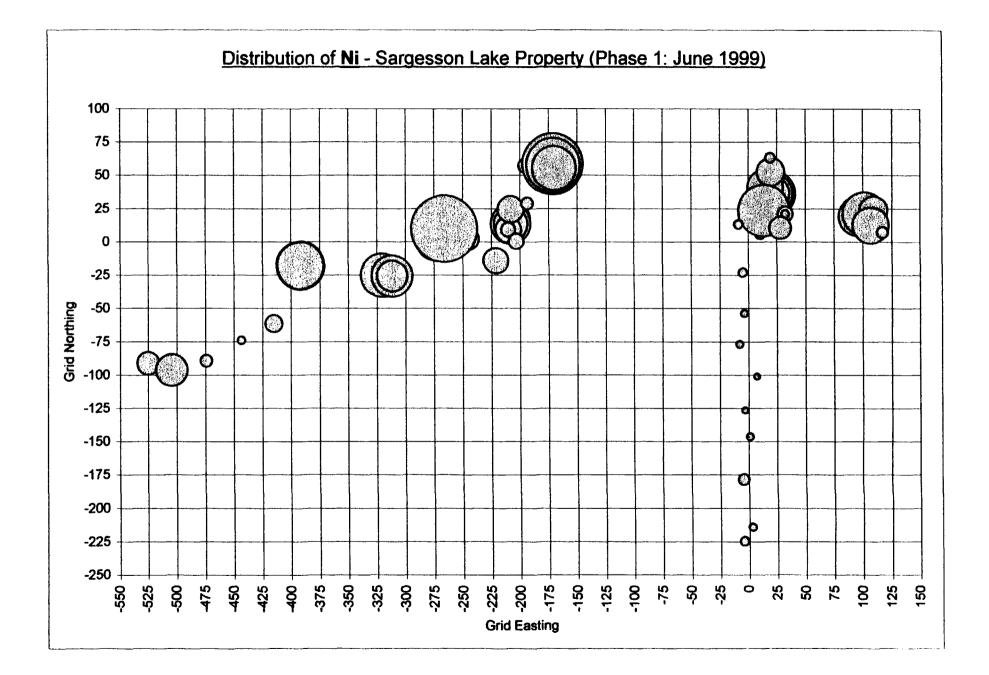
I, Scott Jobin-Bevans of 225 Ferndale Avenue, Sudbury, Ontario, Canada, do hereby certify that:

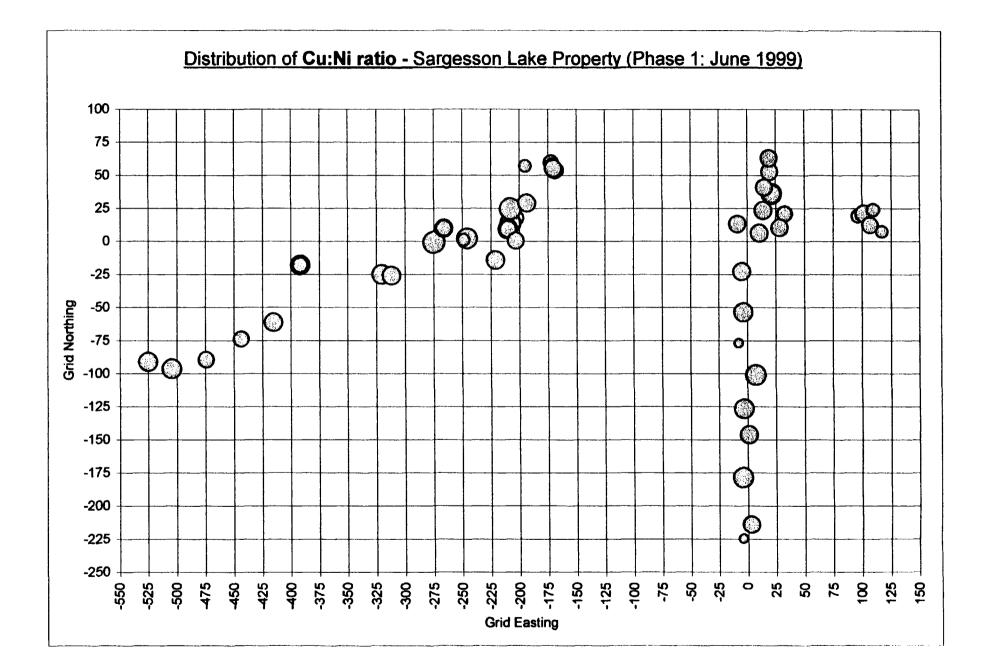

- 1. I am a consulting geologist with the mineral exploration company JB Exploration & Development of Sudbury, Ontario.
- 2. I am a graduate of the University of Manitoba, Winnipeg, Manitoba with a B.Sc. (Hons.) Geology 1995, and M.Sc. Geology 1997.
- 3. I am a member of the Society of Economic Geologists and the Canadian Institute of Mining, Metallurgy and Petroleum.
- 4. I have been an exploration geologist and prospector for ten years.
- 5. I am a member of the Association of Geoscientists of Ontario.
- 6. I have an active prospector's license for the province of Ontario (# H14027).
- 7. I have not received any direct or indirect interest in Pacific North West Capital Corporation.
- 8. This report is intended to be an overview of the potential of the property or properties with recommendations and conclusions that are based solely on the available data.


1. Job Form


Scott Jobin-Bevans (B.Sc., M.Sc. Geology) June 1999 Association of Geoscientists of Ontario, Member


APPENDIX I


Element Distribution Plots – Main Exploration Grid (Pt-Pd-Au-Cu-Ni)



APPENDIX II

Assay Certificates

Accurassay Laboratories, Thunder Bay, Ontario

Pt-Pd-Au by fire assay with NA finish Cu-Ni by ICAP ACCURASSAY LABORATORIES A DIVISION OF ASSAY LABORATORY SERVICES INC.

NIT 2 6G3 6448 6820
3

SAMP	LE#	Paliadium	Gold	Platinum
Accurassey	Customer	ррь	ррь	ppb
1	43551	176	169	144
2	43552	227	289	169
3	43553	718	185	109
4	43554	182	160	100
5	43555	<10	7	<15
5	43556	<10	20	<15
7	43557	248	257	160
6	43558	242	264	171
9	43559	117	127	95
10	43560	148	159	101
11 Check		149	167	96
12	43561	1078	134	146
13	43562	305	323	229
14	43563	16	144	17
15	43564	12	11	<15
16	43585	83	84	45
17	43566	<10	5	<15
18	43567	60	159	57
19	43568	91	106	73
20	43569	34	47	27
21 Check	43569	40	53	26
22	43570	74	117	47
23	43571	102	121	82
24	43572	47	95	40
25	43573	42	74	28
26	43574	68	92	45
27	43575	13	19	<15
28	43578	126	132	96
29	43577	136	131	94

Certified By:

ACCURASSAY LABORATORIES A DIVISION OF ASSAY LABORATORY SERVICES INC.

Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Ferndale Avenue Sudbury, Ontario P38 3C2 Fax (705) 521-0653	1070 LITHIUM DRIVE, UNIT 2 Page 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820		
	June 10, 1999		
	Job# 9940492		

SAMPL	E#	P alled ium	Gold	Platinum
Accurassay	Customer	ppb	ppb	ppb
30	43578	70	78	53
31 Check	43578	73	73	59
32	43579	48	59	46
33	43580	29	29	19
34	43581	345	199	106
35	43582	220	161	93
36	43583	857	824	392
37	43584	66	53	47
38	43585	68	111	35
39	43586	10	16	<15
40	43587	<10	10	<15
41 Check	43587	<10	12	<15
42	43588	29	11	21
43	43589	324	368	183
44	43590	349	293	165
45	43591	239	202	165
46	43592	117	147	95
47	43593	99	178	85
48	43594	49	60	48
49	43595	98	79	62
50	43596	121	151	66
51 Check	43596	110	142	9 1
52	43597	20	68	25
53	43598	<10	<5	<15
54	43599	<10	<5	<15
55	43600	<10	<5	<15
56	43601	1271	102	173
57	43602	652	274	249
58	43603	494	485	201
59	43804	46	46	<15

ρ Certified By:

ACCURASSAY LABORATORIES

	1070 LITHIUM DRIVE, UNIT 2 Page 3 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX (807) 623-6820		
Pacific North West Capital Corporation c/o DTE Exploration & Development 225 Femdale Avenue	June 10, 1999		
Sudbury, Ontario P3B 3C2	Job# 9940492		
Fax (705) 521-0653			

الساقات

Distances

SAMPL	_E #	Palladium	Gold	Platinum
Accuraseay	Customer	ppb	ppb	ppb
60	43605	218	179	134
61 Check	43605	212	171	145
62	43606	309	205	119
63	43607	<10	7	<15
64	43608	<10	13	<15
65	43609	<10	7	<15
66	43810	<10	<5	<15
67	43611	<10	<5	<15
68	43612	<10	<5	<15
69	43613	<10	<5	<15
70	43614	<10	11	<15
71 Check	43614	<10	11	<15
72	43615	13	<5	<15
73	43616	32	<5	<15
74	43617	<10	<5	<15
75	43618	23	15	18

Certified By:

ACCURASSAY LABORATORIES

Pacific North West Capital Corporation June 22, 1999 O LITHIUM DRIVE, UNIT 2 8 BAY, ONTARIO P78 6G3 8 BHONE (807) 623-6448 FAX (807) 623-6820 8 c/o DTE Exploration and Development 225 Ferndale Avenue Job #9940446 Sudbury, Ontario P3B 3C2 Fax (705) 521-0653 AI203 BaO CaO Cr2O3 Fe2O3 120 MgO MnO Na20 P205 SiO2 SrO **TiO2** LOI Total S * % **%** ٩L ĸ % % Y * THUNDER ¥ % % % % 43553 13.94 0.014 11.73 0.071 10.11 0.17 7.76 0.166 0.382 1.49 47.48 0.036 0.53 3.0 96.89 0.84 43557 13.35 0.018 10.88 0.082 11.87 1.60 0.581 47.48 0.028 0.29 8.03 0.192 0.58 2.5 97.48 1.29 43561 13.81 0.015 12.89 0.100 9.02 0.39 9.92 0.183 1.30 0.758 48,19 0.029 0.44 2.5 99.54 0.34 43586 12.61 0.020 11.89 0.039 10.15 0.38 9.00 0.210 1.51 0.258 49.82 0.030 0.65 2.0 98.56 0.06 43569 14.05 0.021 10.77 0.052 10.38 0.57 8.56 0.175 1.55 0.518 48.97 0.035 0.55 3.4 99.61 0.49 43590 14.04 0.017 11.08 0.037 12.17 0.31 7.92 0.193 1.55 0.509 48.80 0.039 0.66 3.5 100.82 1.29 43504 13.83 0.016 12.63 0.062 11.09 <.01 9.34 0.197 1.48 0.911 50.30 0.032 0.56 0.9 101.34 0.62 43596 12.70 0.017 13.03 0.031 11.19 <.01 10.19 0.208 1.27 0.583 48.52 0.037 0.492.5 100.76 0.73 43609 14.32 0.019 12.81 0.066 9.40 0.56 9.59 0.214 1.43 0.624 51.05 0.034 0.522.0 102.65 0.06 43610 15.04 0.019 12.39 0.054 9.45 0.41 7.47 0.199 1.61 0.193 48.44 0.035 0.53 1.3 97.15 0.04 43611 13.09 0.015 10.42 0.047 10.60 0.23 8.09 0.185 2.34 0.555 49.16 0.037 0.57 3.4 98.74 <.01 43612 14.88 0.021 10.99 0.028 10.27 0.50 1.74 0.892 6.84 0.206 49.41 0.035 0.61 1.8 98.23 0.05 43613 14.76 0.023 11.10 0.002 10.60 6.53 0.210 0.58 1.72 1.016 49.94 0.036 0.74 1.4 98.66 0.05 0.019 11.09 43614 12.89 <.001 12.84 0.46 7.86 0.250 1.78 1.101 51.00 0.035 0.78 1.7 101.81 0.18 43615 16.29 0.022 13.25 0.065 8.45 0.56 1.57 0.597 49.64 0.045 8.61 0.159 0.51 2.7 102.48 0.03 43616 16.20 0.017 14.28 0.047 8.75 0.75 8.43 0.187 1.51 0.327 50.12 0.039 0.51 1.9 103.06 0.04 43617 14.78 0.015 11.88 <.001 10.35 0.39 0.194 7.49 1.74 0.692 47.97 0.043 0.51 2.4 98.46 0.05 43618 14.42 0.022 10.89 0.036 10.53 0.66 7.44 0.192 1.39 0.887 49.45 0.047 0.73 3.2 99.90 0:10

Page 1

Certifled By:

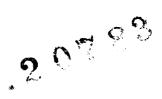
TANES

41I09NW2024 2.20783

030

Addendum to

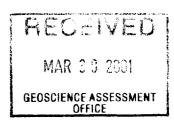
FINAL WORK REPORT: PHASES I & II


SARGESSON LAKE PROPERTY

JANES TOWNSHIP, SUDBURY MINING DIVISION, ONTARIO

Originally Submitted November 30th, 2000

Re-submitted March 30th, 2001


Prepared For:

Pacific North West Capital Corp. 626 West Pender Street, Mezzanine Flore Vancouver, British Columbia, Canada V6B 1V9

and

Consolidated Venturex Holdings Ltd. Suite 450, 999 West Hastings Vancouver, British Columbia, Canada V6C 2W2

S. Jobin-Bevans, M.Sc. * Consulting Geologist * 225 Ferndale Avenue * Sudbury, Ontario, Canada, P3B 3C2 * (705) 524-8060

TABLE OF CONTENTS

41109NW2024 2.20783

JANES

030C

	Page No
Table of Contents	1
Summary	2
Introduction	3
Location & Accessibility	3
Claim Status	6
Topography & Vegetation	6
Regional Geology	8
Property Geology	9
Mineralisation	9
Property History	10
Exploration Program: Phases I & II	13
Phase I	13
Phase II	13
Bedrock Geological Mapping	14
Prospecting & Lithogeochemical Sampling	16
Conclusions	20
Certificate of Qualification	21

TABLES	S

TABLES	Page No
1 – Distribution of Claims	6
2 – Drill core assays from 1965/1968 drilling program	11
3 – Assay data from samples collected on north grid	17
4 – Assay data from samples collected on south grid	19

FIGURES	Page No
1 – Regional Location Map	4
2 – 1:1000000 scale Regional Road Map	5
3 – Claim map G-2907	7
4 - Plan map of 1960's drill holes and current drill hole program	12
5 - Location of exploration grids and surface PGM-Cu-Ni showings	15

Appendix 1 - Property Map

2.207.63

SUMMARY

This report is an addendum to the summary of mineral exploration work (Phases I and II) report for the **Sargesson Lake** property (December 30th, 1999), located in the Sudbury Mining Division of north-central Ontario, Canada. The property, located about 105 road km northeast of the City of Sudbury, in the northeast quadrant of Janes Township, is an early-stage precious metal (platinum-palladium-gold) and base metal (copper-nickel) exploration target that is proximal to the prospective Janes property; reported diamond drill intersections from Janes include 3.1 g/t Pt+Pd+Au, 1.08% Cu and 0.27% Ni over an approximate true width of 15.05 m. The Sargesson Lake exploration program is a joint venture between Pacific North West Capital Corp. and Consolidated Venturex Holdings Ltd., both of Vancouver, Canada.

At the Sargesson Lake property, the platinum-group metals (PGM=Pt+Pd+Au) and Cu-Ni sulphides (chalcopyrite, pyrrhotite and pentlandite) occur primarily as disseminations and blebs within medium-grained, relatively homogenous gabbroic rocks of the Nipissing Diabase. Sulphide mineralization is exposed intermittently at surface by a series of old trenches and pits that occur over a northeast-southwest strike length of about 500 m on the north grid. This mineralization has been drill-confirmed to extend 55 m down-dip of surface exposures.

The **Phase I exploration program** included: (1) a 2.2 km exploration grid (north grid: ~300m x 650m) covering surface sulphide mineralization; (2) **prospecting and sampling on the north grid**; (3) general geological mapping and sampling on the north grid; and, (4) reconnaissance geological mapping and sampling in the southwest area of the claim bloc. A total of 68 samples (65 on north grid and 3 on south grid) were collected for geochemical analysis (whole rock and sulphur) and assay (Pt-Pd-Au-Cu-Ni).

The **Phase II exploration program** included: (1) a 10.5 km exploration grid (south grid: ~450m x 1150m) covering the southwest extension of the gabbroic body and north grid mineralization; (2) **prospecting and sampling on the south grid**; and, (3) general geological mapping and sampling on the south grid. A total of 46 samples were collected for assay (Pt-Pd-Au-Cu-Ni). In addition, a **Phase I diamond drilling program** (320 m (1050 ft) in 6 holes) was completed on the north grid in order to test the subsurface extent of known surface mineralization.

Assays from grab samples are maximum **2.1g/t PGM**, **0.76%Cu** and **0.32% Ni** from the north grid and **2.8 g/t PGM**, 731 ppm Cu, 369 ppm Ni from the south grid. These values and the potential for further discoveries in this area are significant enough to warrant implementation of a third phase of exploration.

INTRODUCTION

The Sargesson Lake property, centred at 46°40'24"N latitude/80°19'58"W or 551025mE-5169075mN (NTS 411/NE), consists of one (1) unpatented mining claim bloc (15 claim units) covering 240 ha in Janes Township, Sudbury Mining Division, Ontario (Figures 1 and 2). This property is one of several projects in the area that is currently under option by Pacific North West Capital Corp. (PFN) and their joint venture partners, Consolidated Venturex Holdings Ltd. (CVA); both companies are from Vancouver, Canada.

The Sargesson Lake property lies within the Southern Geological Province of the Canadian Shield and is one of several properties in the area that has potential to host economic concentrations of platinum-group metals, copper and nickel that is spatially associated with Nipissing Diabase (gabbro) intrusive rocks. Sporadic exploration work from the early 1950's to present, including ongoing exploration work in the immediate area by Goldwright Explorations Inc. and Pacific North West Capital Corp., and regional geological mapping by the Ontario Geological Survey has identified sulphide mineralization in the area that is of potential economic interest.

LOCATION & ACCESSIBILITY

The **Sargesson Lake property**, located immediately east of PFN's Janes property and within the northeast quadrant of Janes Township, is about 105 road km (53 km direct) northeast of the City of Sudbury, and is road accessible (Figures 1 and 2). The property can be reached by travelling about 51 km east from Sudbury to Warren along Highway 17. At Warren, turn north (left) following secondary road 539 toward the town of River Valley, a distance of about 36 km. Continue on route 539 for about 10.45km heading toward the old railway stop of Glen Afton. Follow a dirt track road, leading west and paralleling the old railway bed from Glen Afton, for about 750m to where the road crosses the railway bed. Immediately after the crossing, turn north (left) and follow the old logging road for about 6.8km to the north end of the claim bloc; the last 2 km of this road is negotiable only by 4-wheel drive truck or ATV.

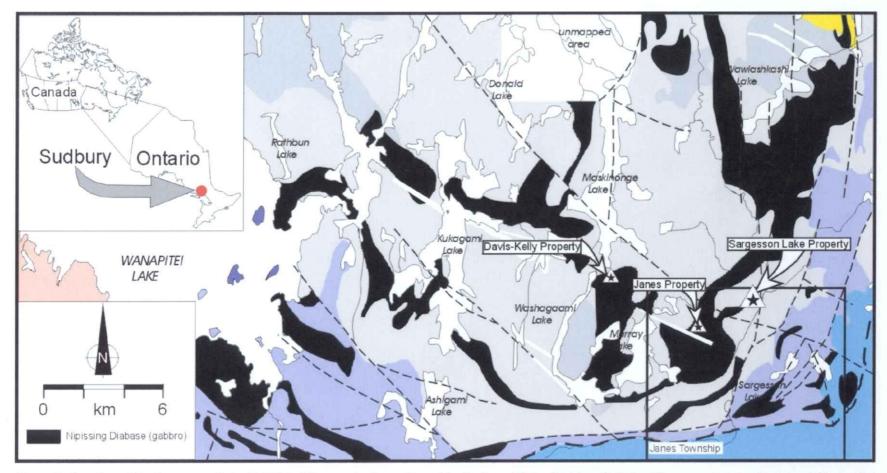


Figure 1. Location of the Sargesson Lake Pt-Pd-Cu-Ni property, Janes Township, Sudbury Mining Division, Ontario. The property is located about 86 road km northeast of the City of Sudbury (Sudbury is off the map). Also shown is the location of the Janes property and the Davis-Kelly property.

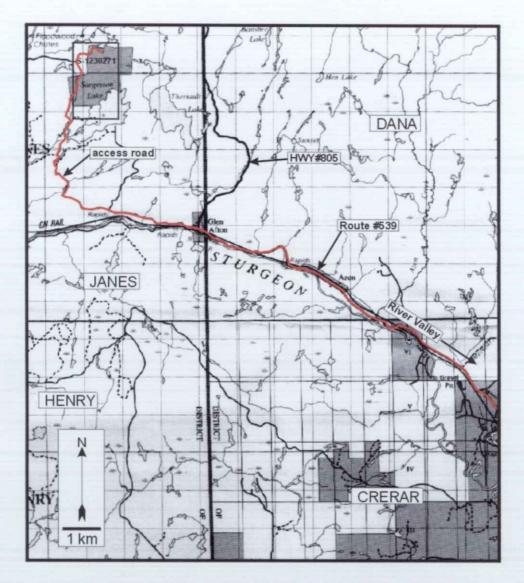


Figure 2. Accessibility to the Sargesson Lake property, located about 105 road km northeast of the City of Sudbury, Ontario. See text for complete description of travel directions.

CLAIM STATUS

The Sargesson Lake property consists of one (1), 15 claim unit unpatented mining claim bloc comprising 240 hectares and centred at approximately 46°40'24"N latitude/80°19'58"W longitude (551025mE-5169075mN: NTS 41I/NE) in Janes Township (Table 1; Figure 3). Claim S-1230271 is on option by PFN from F. Racicot.

Claim	Township	Units	Hectares	Due Date	Work \$
1230271	Janes	15	240	June 29/00	\$6.000
	TOTALS:	31	496	_	• •

Table 1. Distribution of Mining Claims for the Sargesson Lake Property.

In accordance with assessment requirements, \$7,887 worth of exploration assessment work was filed against the mining claim on June 29th, 1999 (see work summary: Phase I). The total amount applied to the mining claim was \$6,000 and the remaining \$1,877 was put in reserve for application at a future date. Exploration work not yet filed against the mining claim includes Phase II surface exploration and October 1999 diamond drilling program.

TOPOGRAPHY AND VEGETATION

Topography on the Sargesson Lake property is characterised by generally north-south to northeast-southwest trending ridges of gabbroic rocks with gradual slopes and local metre- to 10's of metres scale cliffs. The primary vegetation on the ridges is mixed forest consisting of spruce, pine, birch and poplar, with alders, cedars, and poplar dominating the intervening low and swampy ground. Overburden consists primarily of 1-2 m of silty sand, clay and poorly developed glacial till; locally overburden may be >10m thick.

Several large unnamed lakes and Sargesson Lake itself are located within about 600 m of the approximate centre of the Sargesson Lake property.

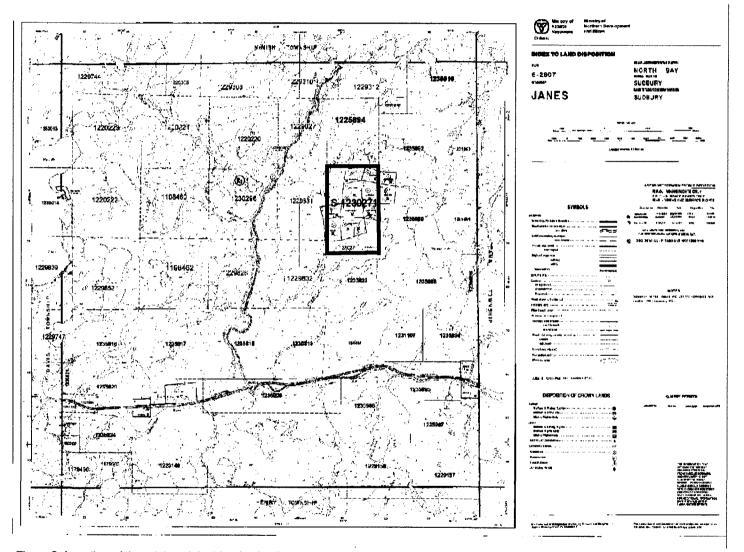


Figure 3. Location of the mining claim bloc for the Sargesson Lake property, Janes Township, Sudbury Mining Division, Ontario (claim map G-2907).

7

REGIONAL GEOLOGY

The Huronian-Nipissing Magmatic Province (HNMP) includes intrusive bodies such as the East Bull Lake, Agnew Lake and River Valley Intrusions (*ca.* 2.4 Ga) and younger intrusions (*ca.* 2.2 Ga) of Nipissing Diabase (Gabbro); both intrusive suites are spatially associated with and intrude Early Proterozoic sedimentary rocks of the Huronian Supergroup (*ca.* 2.45 Ga). Northwest-trending olivine gabbro dykes (*ca.* 1.2 Ga) of the Sudbury Swarm crosscut all of the older rock types. To date there are no known economic Ni-Cu-Pt-Pd-Au sulphide deposits associated with Nipissing Diabase. Nonetheless, numerous showings (>50 known) with anomalous PGM values (1-10 g/t PGM) are recorded throughout the HNMP.

Nipissing Diabase (gabbro) comprises >25% of the outcrop area in the HNMP and consists of dominantly tholeiitic to calc-alkaline rocks. The majority of Nipissing Diabase occurs as near-horizontal sheets or undulating sills, consisting of basins and arches, and dykes that are generally less than 1000 m thick. In this form, disseminated to massive sulphide mineralization is concentrated within the basin or limb portions with pods of dominantly massive pyrrhotite occurring within the arches. Lopolithic forms outcrop as irregular-shaped intrusions and may represent deeper feeder systems to the stratigraphically higher sill and cone-shaped intrusions. In this form disseminated to semi-massive sulphides are hosted by hypersthene gabbro within tens of metres of the footwall sedimentary rocks and within irregular regions at the footwall contact. This form is characterised by the gabbroic intrusion at PFN's Janes property. Arcuate and open ring outcroppings of Nipissing Diabase and structural features of surrounding sedimentary rocks suggest inward-dipping, cone-shaped intrusions in which disseminated sulphides hosted by hypersthene gabbro are within a few hundred metres of the basal contact. This form is typified by the gabbroic intrusion at PFN's Kelly property and CVA's Davis-Kelly property.

PROPERTY GEOLOGY

A steeply southeast dipping gabbroic body of the Nipissing Diabase suite underlies the most prospective area of the **Sargesson Lake property**. The gabbro is bound to the north, south and east by rocks of the Lorrain Formation (quartz arenite/arkose) and to the west by rocks of the Gowganda Formation; the most western contact is represented by the Floodwood Chutes Fault. Gabbroic rock sequences show a subtle increase in felsic to mafic mineral ratios and an increase in the percentage of granophyric to vari-textured gabbro from the north to south contacts on the north grid. This suggests that the northern contact represents the basal portion of the sill.

The property is primarily underlain by rocks of the Nipissing Diabase suite, which include hypersthene (mafic) gabbro, gabbro, leucogabbro, vari-textured gabbro, and pegmatitic gabbro. Outcroppings of magnetite-bearing olivine diabase dyke (Sudbury Dyke Swarm) are exposed toward and beyond the most eastern edge of the property.

Lorrain Formation stratigraphically overlies the Gowganda Formation, and it would appear that the Floodwood Chutes Fault represents a normal fault along which the gabbroic body to the west (Janes property) was uplifted relative to the Sargesson Lake gabbro. This faulting does not preclude the likelihood that the Sargesson Lake gabbroic body is a dyke-like extension emanating from the larger gabbroic body that outcrops further to the west on PFN's Janes property.

The Sargesson Lake property is within several kilometres northwest and north of the Grenville Front Tectonic Zone (GFTZ). The GFTZ represents a complex zone that is several kilometres wide and consists of generally southeast-dipping imbricate thrust faults.

Metamorphic grade ranges from low greenschist (chlorite zone) to upper greenschist facies (biotite-chlorite zone) as characterised by the presence of metamorphic biotite in the gabbroic rocks. It is important to note that the Sargesson Lake property is proximal to the GFTZ and as such would have been subjected to a higher grade of metamorphism than other prospective properties in the area (i.e. Janes property).

Mineralization

On the **north grid**, surface sulphide mineralization is intermittently exposed by a series of old trenches and pits that occur over a northeast-southwest strike length of about 500 m (Figure 5). The main area of sulphide mineralization occurs within about

10-50 m of the basal gabbro-sedimentary contact and is mainly hosted by massive, medium-grained, hypersthene-bearing (<10% orthopyroxene) gabbro. Subordinate sulphides also occur in vari-textured to pegmatitic gabbro and fine- to medium-grained gabbro. Platinum-group metals are associated with Cu-Ni sulphides (chalcopyrite, pyrrhotite and pentlandite) that are primarily disseminated but can locally develop bleb textures (individual blebs up to 1.2 cm diameter).

On the **south grid**, sulphide mineralization was discovered in a medium-grained gabbro outcrop that is approximately 125 m north of old pits (Figure 5); the old pits were excavated into a quartz-carbonate vein system and were probably aimed at a gold target. The new sulphide showing is within about 25 m of the northwestern contact (extension of northern contact – north grid) and consists of scattered bleb and very-finely disseminated sulphide (~0.5% total visible sulphide).

PROPERTY HISTORY

The earliest recorded work on the **Sargesson Lake property** was in 1964 when several chalcopyrite and pyrrhotite occurrences were discovered by a prospector. Several trenches and pits exposed the mineralization for several hundred metres and in a northeast strike direction.

In 1965 and 1968, Pan Central Explorations Limited conducted a magnetometer survey followed by a diamond drilling program that included 8 holes, totalling 527 m in length (Table 2 and Figure 4). Drilling intercepted a mineralized zone that is described as being several hundred metres in length and parallel to a gabbro-sediment contact; the zone is apparently confined to within 30 m of this contact. In 1965, Pan Central Explorations Limited reported drill intercept values that ranged from 0.08-0.80% Cu (averaged 0.36% Cu) and 0.07-0.74% Ni (averaged 0.19% Ni). No assay values were reported from the 1968 drilling program and **no assays for platinum or palladium were reported from either 1965 or 1968**.

DDH No.	Hole Length (feet)	From (feet)	To (feet)	Length (feet)	Au (oz/t)	Cu (%)	Ni (%)
J-1	278.0	169.5	171.3	1.8		0.26	0.07
J-2	150.0	91.4	94.1	2.7	0.18	0.11	0.74
J-3	223.0	114.1	117.7	3.6		0.46	0.19
		134.4	139.0	5.0		0.78	0.28
		139.0	144.0	5.0	0.035	0.74	0.34
		144.0	149.0	5.0		0.80	0.23
J-5	160.00	43.2	47.0	3.8		0.45	0.27

TABLE 2. Drill core assays - Pan Central Explorations Ltd. (1965/68) - Sargesson Lake property.

"---" = not reported

In 1997, F. Racicot (prospector) collected 17 grab samples from rubble around old trenches and pits. Eleven of the 17 samples reportedly returned assay values of 38-175 ppb Pt, 44-250 ppb Pd and 80-289 ppb Au. The highest reported value was 705 ppb PGM and Pd:Pt ratios averaged 1.4:1.

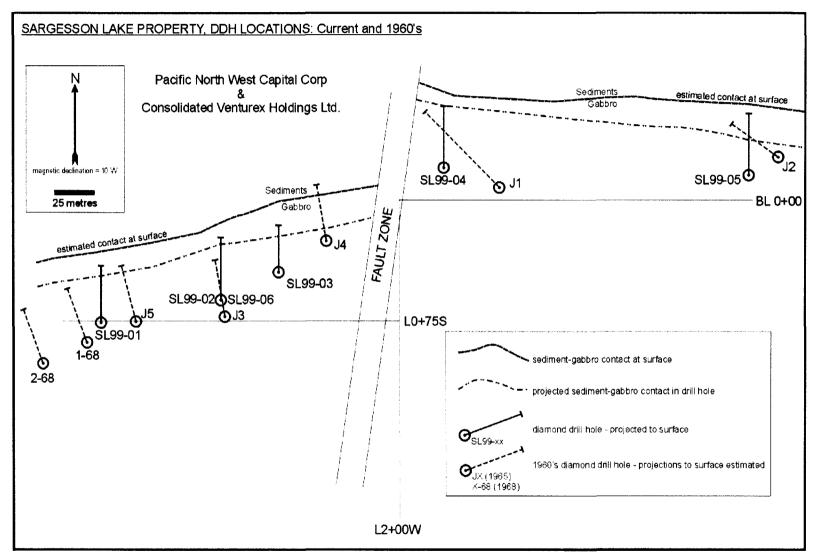


Figure 4. Main components of the current exploration grid with location of the 6 drill holes (SL99-xx) from current drilling program and location of 7 drill holes ca. 1965-1968; Sargesson Lake property, Janes Township, Ontario.

12

EXPLORATION PROGRAM: PHASES I & II

Phase I

The first phase of surface exploration began May 25th, 1999 and was completed by June 28th, 1999. During this time the following work was completed:

(1) A 2.2 km exploration grid (~300m x 650m) over the main area (north grid) of surface sulphide mineralization (Figure 5).

(2) Prospecting and sampling over the north grid area. A total of 68 samples (65 on north grid and 3 from reconnaissance) were collected for geochemical analysis (whole rock and sulphur) and assay (Pt-Pd-Au-Cu-Ni) through Accurassay Laboratories (Thunder Bay, Ontario).

(3) General geological mapping and sampling over the north grid area.

(4) Reconnaissance geological mapping and sampling in the southwest area (south grid) of the claim bloc (Map SL99-SG-01).

Results of the Phase I program are discussed briefly below; for complete information, see Phase I summary Report dated June 29th, 1999.

Phase II

The second phase of surface exploration began July 10th, 1999 and was completed by December 30th, 1999. During this time the following work was completed:

(1) A 10.5 km exploration grid (~450m x 1150m) over the southwest extension of the gabbroic body (south grid), along strike of north grid mineralization (Figure 5).

(2) Approximately 1259 m of additional grid line was added to the north grid, including a 1000 m tie line at 1+25S.

(3) Prospecting and sampling over the south grid area. A total of 46 samples were collected for assay (Pt-Pd-Au-Cu-Ni) through Accurassay Laboratories (Thunder Bay, Ontario).

(4) General geological mapping and sampling over the south grid area.

(5) A diamond drilling program, totalling 320 m (1050 ft) in 6 holes, was completed on the north grid, in order to test the down-dip and strike extent of known surface mineralization.

Results of the Phase II surface exploration program are discussed below. Phase I diamond drilling results are summarised below; for a complete description, see Phase I Diamond Drilling Report dated December 30th, 1999.

Bedrock Geological Mapping

Geological bedrock mapping at a scale of 1:2500 was completed over the north and south exploration grids. Most of the property is underlain by gabbroic rocks of Nipissing Diabase that include chilled to very-fine-grained gabbro, fine- to coarse-grained gabbro, medium-grained, hypersthene-bearing gabbro, medium- to coarse-grained vari-textured and/or granophyric gabbro and coarse-grained to pegmatitic gabbro. For the most part, all the gabbroic rocks are massive with some localised shear and foliation that is best developed toward igneous contacts.

Chilled and very fine-grained gabbro occurs within about 10 m of sedimentary contacts and generally contains <0.25% visible sulphide and rare pyrite. *Normal* gabbro (30-60% felsic minerals) occurs throughout the property and can host up to 5% visible sulphide, although it generally contains about 0.5% total sulphide.

Hypersthene-bearing gabbro occurs throughout the property but exposures are less common than *normal* gabbro. Hypersthene-bearing gabbro contains up to 10% orthopyroxene phenocrysts in a medium-grained gabbro that is generally distinctively dark in colour and weathered. This rock unit contains up to 10% disseminated and bleb sulphide and is the most common host to PGM sulphide mineralization in Nipissing Diabase intrusives.

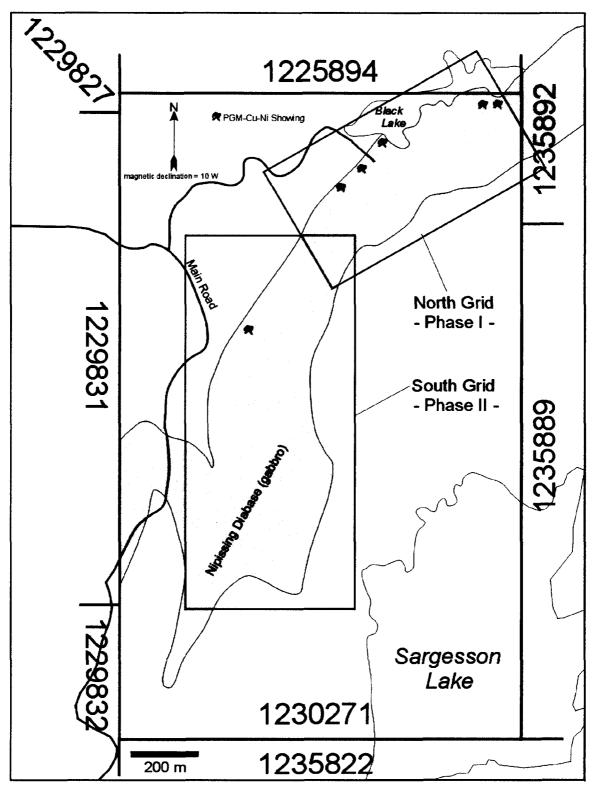


Figure 5. Location of the north (Phase I) and south (Phase II) exploration grids, Sargesson Lake property, Janes Township, Ontario.

Vari-textured gabbro and patches of pegmatitic gabbro occur more frequently along the southern part of the gabbro sill in the north than in any other area of the property; this may be indicative of upper level intrusive stratigraphy toward the south (i.e. a southfacing intrusion). This being the case, the northern gabbro-sediment contact would represent the footwall and the south, the hangingwall. These vari-textured and pegmatitic units can have up to 2% bleb and disseminated sulphide that is very localised and patchy.

The south grid contains several exposures of gabbro-sedimentary breccia in which centimetre to decimetre-scale blocks of sediment are enveloped within gabbroic rocks. These patches of breccia occur within about 25m of the contact but do not contain any significant visible sulphide.

Prospecting & Lithogeochemical Sampling

A Total of 7 days were spent prospecting and sampling over the 12.7 km exploration grid. The prospecting was completed by Frank Racicot (C36625) between June 22 and July 6th and between September 21st and 27th, 1999. Prospecting confirmed the presence of magmatic sulphide mineralization on the north grid and led to the discovery of a new sulphide showing on the south grid (Figure 5). For the most part prospecting utilised the exploration grid for traverses and location, targeting the most prospective areas noted during bedrock geological mapping. A total of 65 samples were collected on the north grid and 49 samples were collected on the south grid; rocks were assayed for Pt-Pd-Au-Cu-Ni at Accurassay Laboratories, Thunder Bay, Ontario. Results from the north grid assays are listed in Table 3 and results from the south grid assays are listed in Table 4.

Sample	Tag		Northing	Pd	Au	Pt	PGM	Cu	Ni	Pt+Pd	Pd:Pt	Cu:Ni
(SL99-)		(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppb)	-	
FR-01	43551	96.4	19.3	176	169	144	489	2030	1172	320	1.2	1.7
FR-02	43552	101.5		227	289	169	685	4005	1378	396	1.3	2.9
FR-03	43553	109.3	23.9	718	185	109	1012	889	557	827	6.6	1.6
FR-04	43554	106.9	12.5	182	160	100	442	2464	966	282	1.8	2.6
FR-05	43555	117.1	7.3	0	7	0	7	132	94	0		1.4
FR-06	43556	10.6	6.4	0	20	0	20	303	97	0		3.1
FR-07	43557	21.4	36.2	248	257	160	665	4628	1542	408	1.6	3.0
FR-08	43558	21.4	36.2	242	264	171	677	4778	1207	413	1.4	4.0
FR-09	43559	21.4	36.2	117	127	95	339	2771	882	212	1.2	3.1
FR-10		15.0	41.0	148	159	101	408	2620	946	249	1.5	2.8
chk FR-10		15.0	41.0	149	167	96	412			245	1.6	
avg FR-10		15.0	41.0	148.5	163	98.5	410			247	1.5	
FR-11		19.7		1078	134	146	1358	1586	575	1224	7.4	2.8
FR-12		13.8	23.5	305	323	229	857	5754	1931	534	1.3	3.0
FR-13A		32.8	21.0	16	144	17	177	444	182	33	0.9	2.4
FR-13B		32.8	21.0	12	11	0	23	107	50	12		2.1
FR-14		28.4	10.4	83	84	45	212	1081	369	128	1.8	2.9
FR-15		-4.9	-22.9	0	5	0	5	192	63	0		3.0
	43567			60	159	57	276	1676	615	117	1.1	2.7
FR-17				91	106	73	270	3799	1178	164	1.2	3.2
	43569			34	47	27	108	1809	528	61	1.3	3.4
chk FR-18				40	53	26	119			66	1.5	
avg FR-18		-208.0	13.6	37	50	26.5	113.5	0045	700	63.5	1.4	
FR-19		-208.0		74	117	47	238	3045	720	121	1.6	4.2
FR-20		-208.0		102	121	82	305	3254	852	184	1.2	3.8
FR-21		-210.1	9.3	47	95	40	182	1003	447	87	1.2	2.2
FR-22		-210.1	9.3	42	74	28	144 205	1794 2293	495	70 113	1.5 1.5	3.6
FR-23		-208.1	24.6 9.3	68 13	92 19	45 0	205	436	511 158	13	1.5	4.5 2.8
FR-24		-210.1		126	132	86	344	2563	597	212	1.5	4.3
	43576 43577		-0.8 -0.8	120	132	94	361	2505	879	230	1.5 1.4	4 .3 2.9
FR-20		-274.0		70	78	53	201	2064	446	123	1.3	4.6
chk FR-27		-274.0	-0.8 -0.8	73	73	59	205	2004	0	132	1.3	4.0
avg FR-27		-274.6	-0.0 - 0.8	71.5	75.5	56	203			127.5		
-	43579			48	59	46	153	1625	409		1.0	4.0
	43580			29	29	19	77	284	183	48	1.5	1.6
FR-30		-266.0		345	199	106	650	2653	858	451	3.3	3.1
	43582			220	161	93	474	1215	622	313		2.0
FR-32				857	824	392	2073	7594	3215	1249	2.2	2.4
FR-33				66	53	47	166	1218	467	113		2.6
FR-34				68	111	35	214	1574	476	103		3.3
		-203.3		10	16	0	26	496	182	10		2.7

Table 3. Assay results from samples collected on the north exploration grid.

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario

Sample	Tag		Northing	Pd Pd	Au	Pt	PGM	Cu	Ni	Pt+Pd		
(SL99-)	Tay	(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppb)	FU.FL	Cu.INI
FR-36	42507	. ,	29.0	0	(ppb) 10		(PPD) 10	321		(0qq) 0		3.0
chk FR-36			29.0 29.0		10	0	10	321	108			3.0
				0		0	12			0		
avg FR-36			29.0	0	11	0		050	400	0		4.5
FR-37			57.1	29	11	21	61	253	166	50	1.4	1.5
FR-38			-18.0	324	368	183	875	5719	1540	507	1.8	3.7
FR-39 FR-40				349	293	186 165	828	5137	1707	535 404	1.9	3.0 2.3
			-18.0	239	202		606	3631	1591		1.4	
FR-41 FR-42			-25.1 -25.8	117 99	147 178	95 85	359 362	5040 4070	1390 1255	212 184	1.2 1.2	3.6 3.2
FR-42				99 49	60		302 157	2207	697	97	1.2 1.0	3.2 3.2
			-25.8	49 98	79	48 62		1318	384	97 160	1.0	3.2 3.4
FR-44 FR-45			-91.2 -96.3	90 121	79 151	62 86	239 358	2706		207	1.0 1.4	3.4 3.6
chk FR-45			-96.3 -96.3	121	142	91	343	2700	/49	207	1.4	5.0
			-90.3 -96.3	115.5	146.5	88.5	350.5			201 204	1.2	
avg FR-45 FR-46			-90.3 -61.4	115.5 20	140.5 68	66.5 25	350.5 113	763	231	204 45	1.3 0.8	3.3
						25 173		1844	809	45 1444	0.8 7.3	3.3 2.3
JB-04 JB-05			59.7	1271 652	102 274	249	1546 1175	3671	2700	901	7.3 2.6	2.3 1.4
JB-05 JB-06			58.5 57.5	494	485	249 201	1175	4452	2145	695	2.0 2.5	2.1
JB-00 JB-07			57.5 54.0	494 46	465 46	201	92	966	333	46	2.5	2.1
JB-07 JB-08			54.0 54.0	218	179	134	531	1697	763	352	1.6	2.9
chk JB-08			54.0 54.0	210	175	145	528	1097	705	357	1.5	2.2
avg JB-08			54.0 54.0	212	175	139.5	529.5			354.5	1.5 1.5	
-	43606		55.3	309	205	119	5 29.5 633	4118	1433	428	2.6	2.9
JB-09 JB-10			-73.9	309	205	0	7	122	52	420	2.0	2.9
JB-10 JB-11			-73.9 -89.4	0	13	0	13	284	114	0		2.5
JB-11 JB-12			-89.4	0	7	0	13	177	60	0		3.0
JB-12 JB-13				0	0	0	0	151	44	0		3.4
JB-13 JB-14			-53.7 -77.0	0	0	0	0	36	42	0		0.9
JB-14 JB-15			-101.0	0	0	0	0	138	42. 34	0		4.1
JB-15 JB-16				0	0	0	0	124	34	0		3.6
JB-10 JB-17			-128.6	0	11	0	11	363	93	0		3.9
				0	11	0	11	303	93	0		3.9
chk JB-17			-178.6 -178.6	0	11 11	0	11			0		
avg JB-17	43615		-178.0 -224.7	13	11	0	13	47	59	13		0.8
JB-18 JB-19			-224.7 -213.9	32	0	0	32	109	- 59 41	32		2.7
	43610		-213.9	32 0	0	0	32 0	133	41	- 32 0		3.1
	43617		-146.4 63.4	23	15	18	56	216	43 79	41	1.3	2.7
JB-21	43018	19.3	03.4	23	15		00	210	19	41	1.3	

Table 3(cont.). Assay results from samples collected on the north exploration grid.

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario

Table 4. A										_		~ ~ ~ ~
Sample	Tag	Easting	Northing	Pd	Au	Pt	PGM	Cu	Ni		Pd:Pt	Cu:Ni
(SL99-)		(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppb)		
FR- 4 7	43701	-69	-198	31	18	41	90	492	254	72	0.8	1.9
FR-48	43702	-30	-198	0	0	0	0	165	91	0		1.8
FR-49	43703	-65	-249	35	38	39	112	632	256	74	0.9	2.5
FR-50	43704	-64	-266	41	47	43	131	933	292	84	1.0	3.2
FR-51	43715	-70	-302	13	19	24	56	820	295	37	0.5	2.8
FR-52	43716	-70	-315	13	24	21	58	1129	352	34	0.6	3.2
FR-53	43705	-65	-322	0	13	0	13	511	199	0		2.6
FR-54	43706	-64	-327	0	21	0	21	493	154	0		3.2
FR-55	43707	-77	-246	29	25	35	89	362	170	64	0.8	2.1
FR-56	43708	-107	-281	61	91	29	181	981	607	90	2.1	1.6
FR-57	43709	-107	-287	165	56	34	255	960	453	199	4.9	2.1
FR-58	43710	-145	-329	1883	132	238	2253	731	369	2121	7.9	2.0
chk FR-58	43710			2313	149	346	2808			2659	6.7	
avg FR-58	43710			2098	140.5	292	2530.5			2390	7.2	
FR-59	43711	-128	-393	84	79	108	271	1093	492	192	0.8	2.2
FR-60	43712	-134	-362	87	70	82	239	1662	622	169	1.1	2.7
FR-61	43713	-67	-494	0	15	0	15	473	68	0		7.0
FR-62	na	25	-747	25	60	0	85	325	94	25		3.5
FR-62A	43714	-250	-801	15	13	31	59	527	352	46	0.5	1.5
FR-63	na	-139	-315	29	46	30	105	489	210	59	1.0	2.3
FR-64	na	-128	-400	28	36	16	80	384	133	44	1.8	2.9
FR-65	na	-72	-448	0	0	0	0	125	34	0		3.7
FR-66	na	-110	-437	0	0	0	0	25	147	0		0.2
FR-67	na	27	-441	0	72	0	72	680	102	0		6.7
FR-68	na	-139	-933	109	77	35	221	511	223	144	3.1	2.3
FR-68A	na	29	-419	0	0	0	0	118	39	0		3.0
FR-69	na	-77	-949	0	0	0	0	81	14	0		5.8
¹ FR-70	na	-222	-900	0	27	0	27	369	10	0		36.9
¹ FR-71	na	-330	-831	0	0	0	0	44	10	0		4.4
¹ FR-72	na	-262	-843	0	0	0	0	140	66	0		2.1
¹ FR-73	na	-199	-851	0	0	0	0	54	78	0		0.7
FR-74	na	-174	-1135	0	20	0	20	941	6	0		156.8
FR-75	na	-150	-322	0	0	0	0	111	35	0		3.2
FR-76	na	-134	-328	20	19	30	69	194	98	50	0.7	2.0
FR-77	na	-136	-356	19	17	34	70	132	78	53	0.6	1.7
chk FR-77	na			22	14	28	64			50	0.8	
avg FR-77	na			20.5	15.5	31	67			51.5	0.7	
FR-78	na	-137	-412	39	45	38	122	500	215	77	1.0	2.3
FR-79	na	-135	-382	83	77	74	234	711	355	157	1.1	2.0
FR-80	na	-140	-350	69	67	50	186	850	339	119	1.4	2.5
FR-81	na	-111	-269	16	0	24	40	96	65	40	0.7	1.5
FR-82	na	1	-182	0	0	0	0	137	80	0		1.7
FR-83	na	-16	-163	18	0	0	18	64	56	18		1.1

Table 4. Assay results from samples collected on the south exploration grid.

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario; 'sedimentary rock

	<u>,,</u>	554y 105		Jamp	103 001			<u>soull</u>	capiore	<u>auon g</u> i	<u>iu.</u>	
Sample	Tag	Easting	Northing	Pd	Au	Pt	PGM	Cu	Ni	Pt+Pd	Pd:Pt	Cu:Ni
(SL99-)		(m)	(m)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppb)		
FR-84	na	-32	-85	382	216	116	714	1770	739	498	3.3	2.4
FR-85	na	-30	-93	68	29	26	123	145	89	94	2.6	1.6
FR-86	na	25	-293	0	5	0	5	117	45	0		2.6
FR-87	na	-279	-1144	0	0	0	0	0	6	0		0.0
FR-88	na	-13	-897	14	0	22	36	91	20	36	0.6	4.6
chk FR-88	na			14	0	0	14			14		
avg FR-88	na			14	0	11	25			25	0.6	
FR-89	na	-71	-898	20	0	0	20	124	51	20		2.4
¹ FR-90	na	55	-848	0	0	0	0	31	71	0		0.4
JB-01	43598	-93	- 9 84	0	0	0	0	98	3	0		32.7
JB-02	43599	-36	-958	0	0	0	0	245	30	0		8.2
JB-03	43600	-31	-906	0	0	0	0	43	38	0		1.1

Table 4(cont.). Assay results from samples collected on the **south** exploration grid.

all assays performed by Accurassay Laboratories, Thunder Bay, Ontario; ¹sedimentary rock

CONCLUSIONS

The Sargesson Lake property is within several kilometres of the highly prospective Janes property, which is currently being explored by Pacific North West Capital Corp. and their joint-venture partners. PFN reported values from their Janes property option that included up to 102.4 g/t PGM over 0.4 m from a surface channel sample and a 13.63 m drill core intersection of 3.2 g/t PGM, 1.12% Cu and 0.27% Ni. These values are very encouraging and demonstrate the potential for Nipissing Diabase rocks to host economic PGM-Cu-Ni deposits. It is very likely that the magmas that produced the high PGM contents at the Janes property also fed the sill that is currently covered by the Sargesson Lake property.

The Phase I and II exploration program was successful in confirming the presence of anomalous PGM-Cu-Ni values on the Sargesson Lake property. In addition to expanding our knowledge about the surface and sub-surface (drilling program) mineralization on the north grid, geological mapping and **prospecting also led to the discovery of a new PGM-Cu-Ni showing on the south grid**.

CERTIFICATE OF QUALIFICATION

I, Scott Jobin-Bevans of 225 Ferndale Avenue, Sudbury, Ontario, Canada, do hereby certify that:

- 1. I am a consulting geologist with the mineral exploration company JB Exploration & Development Inc. of Sudbury, Ontario.
- 2. I am a graduate of the University of Manitoba, Winnipeg, Manitoba with a B.Sc. (Hons.) Geology 1995, and M.Sc. Geology 1997.
- 3. I am a member of the Society of Economic Geologists and the Canadian Institute of Mining, Metallurgy and Petroleum.
- 4. I have been an exploration geologist and prospector for eleven years.
- 5. I am a member of the Association of Geoscientists of Ontario.
- 6. I have an active prospector's license for the province of Ontario (# H14027).
- 7. This report is intended to be an overview of the potential of the property or properties with recommendations and conclusions that are based solely on the available data.

1. John Boans

Scott Jobin-Bevans (B.Sc., M.Sc. Geology) March 30, 2001 Association of Geoscientists of Ontario, Member

APPENDIX 1

Property Map

Declaration of Assessment Work Performed on Mining Land

Transaction Number (office use)

Assessment Files Research Imaging

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Ibsection 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, this ient work and correspond with the mining land holder. Questions about this collection nent and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Fax Number

41109NW2024 2.20783 Instructions: - For WORK p

2.20783 JANES 900 - For work performed on Grown Lanus Derore recording a claim, use form 0240.

 Please type or print in ink. Recorded holder(s) (Attach a list if necessary) 1. Name **C**li ent Nu RANK RACICOT 853 Address **Telephone Number** 705-)525-5920 DINAGO Fax Number P3A ON (same Name **Client Number** Telephone Number Address

2. Type of work performed: Check (✓) and report on only ONE of the following groups for this declaration.

Geotechnical: prospecting, s assays and work under section]	Physical: drilling strip trenching and associa		Rehabilitation
Work Type	(i		(Office Use
Line Cutting, Prospec	ting, Bedro	oc C	Mapping,	Commodity	
Work Type Line Cutting, Prospec Assays	7		1	Total \$ Value of Work Claimed	19,530
	1999 To 30 Year Day		21999 Month Year	NTS Reference	
Global Positioning System Data (if available)	Township/Area	ĀN	ESTWP.	Mining Division	Suddury
	M or G-Plan Number	6	1907	Resident Geologist District	Sudbuey

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

provide proper notice to surface rights holders before starting work;

- complete and attach a Statement of Costs, form 0212;

- provide a map showing contiguous mining lands that are linked for assigning work;

- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

Name Laurence Scott Job	in-Bevans	Telephone Number 705-524-8060
Address 2235 Ferndyle Ave. Sudk	BUM. P3B 3CZ	Fax Number 705 - 521 - 065-3
Name /	For the second se	Telephone Number
Address	RECEIVED	Fax Number
Name	DEC 0 8 2001	Telephone Number
Address	GEOSCIENCE ACCCOMMENT	Fax Number
	OFFICE	

4. Certification by Recorded Holder or Agent

I, Laurence Scott Jobin-Bevans do hereby certify that I have personal knowledge of the facts set forth in

this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder er Agent		Date Nov, 30/00
Agent's Address Telephone N 2.25 Ferndule Ave, Sudbury 138312 705-	Number 524-8060	Fax Number 705-521-0653
0241 (03/97)	PROVINCIAL RECO	NO NO

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form

101111.		W0070, C	00258	9 🚯	A Y Car	1
work w mining column	g Claim Number. Or if ras done on other eligible g land, show in this n the location number ted on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
1	5-1230271	15	\$19,530	\$6,000	0	\$13,530
2						
3						
4						
5						
6						
7						
8	· · · · · · · · · · · · · · · · · · ·					
9	· · · · · · · · · · · · · · · · · · ·					
10						
11	<u></u>			· · · · · · · · · · · · · · · · · · ·		
12				1		
13						
14			· · · · · · · · · · · · · · · · · · ·			
15						
L	Column Totals	15	\$19,530	\$6,000	¥C	\$\$13,530

I, <u>Laurence</u> Scott Jobin-Bevans, do hereby certify that the above work credits are eligible under (Print Full Name)

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim

where the work was done.

Signature of Recorded Holder of Agent/Authorized in Writing	Date NOV- 30/00

6. Instruction for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only		۰ ۱	
Received Stamp		Deemed Approved Date	Date Notification Sent
	RECEIVED	Date Approved	Total Value of Credit Approved
0241 (03/97)		Approved for Recording by Mining	g Recorder (Signature)
	DEC 0 8 2000	P	
	GEOSCIENCE ASSESSMENT OFFICE		
	WEATER TO WEATER TO THE TANK AND TO THE TANK AND THE TANK		

Ontario Ministry of Northern Development and Mines

V

Statement of Costs for Assessment Credit

Transaction Number (office use)

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the A Act, this information is a public record. This information will be used to review the assessment work a collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and N	nd corre	spond	with the min	ing land holde	r. Question:	s about this
6B5.		/ ? @	K. N. #	С.		

Work Type	Units of work Depending on the type of work, list the number of hours/day worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
Line Cutting	14 km	#325	\$4,550
Geological Consulting		# 300	\$1,200
Prospecting	7 days	\$200	\$1,400
Geological Mapping	14 days	\$300	\$4,200
Geo-Assistant	14 days	\$150	\$2,100
Assays (PGM-CM-N;)	114 samples	#20	\$2,280
Reports/Drafting	5 days	\$300	\$1,500
Associated Costs (e.g. supplie	s, mobilization and demobilization).		
	Shipping, Operating Cost	<u> </u>	#800
	Fuel		\$620
Transpo	rtation Costs		
	Vehicle Rental (16 day	\$ \$\$55	*880
Food and	Lodging Costs		
	RECEIVED		84.0 50
	Total DEC 0 8 2080	Value of Assessment Work	*19,530
Calculations of Filing Discounts:	GEOSCIENCE ASSESSMENT OFFICE		
2. If work is filed after two years and	ormance is claimed at 100% of the above T up to five years after performance, it can o situation applies to your claims, use the ca	nly be claimed at 50% of the T	
TOTAL VALUE OF ASSESSMENT W	ORK x 0.50	Total \$ value of v	vorked claimed.
	to verify expenditures claimed in this state ection/clarification. If verification and/or co		
(please print full name)	⊘ <u>೮√4/</u> }do hereby certify, that the amounts s urred while conducting assessment work or		-

0212 (03/97)

PROVINCIAL RECORDING
RECEIVED
RECEIVED
DEC 0 8 2000
A.M. 3.45 N. P.M.
7 8 9 10 11 12 1 2 3 4 5 6

Date Nov. 30/00 Signature

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

April 18, 2001

FRANK CHARLES RACICOT 1912 SPRINGDALE CRESCENT SUDBURY, Ontario P3Y-5J1

Subject: Transaction Number(s):

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Dear Sir or Madam:

Submission Number: 2.20783

Status W0070.00258 Approval After Notice

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact JIM MCAULEY by e-mail at james.mcauley@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

fucille Jerome

ORIGINAL SIGNED BY Lucille Jerome Acting Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 15860 Copy for: Assessment Library

Work Report Assessment Results

Submission Number: 2.20783

Date Correspondence Sent: April 18, 2001		Assessor: JIM MCAULI	EY		
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W0070.00258	1230271	JANES	Approval After Notice	April 12, 2001	
.					

Section:

12 Geological GEOL 9 Prospecting PROSP

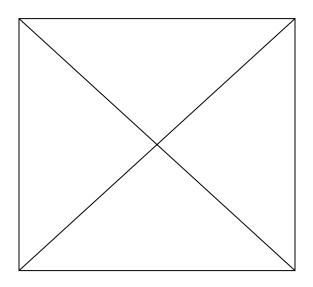
The revisions outlined in the Notice dated February 26, 2001 regarding the prospecting program have been corrected. Accordingly, assessment work credit has been approved as outlined on the Declaration of Assessment Work Form accompanying this submission.

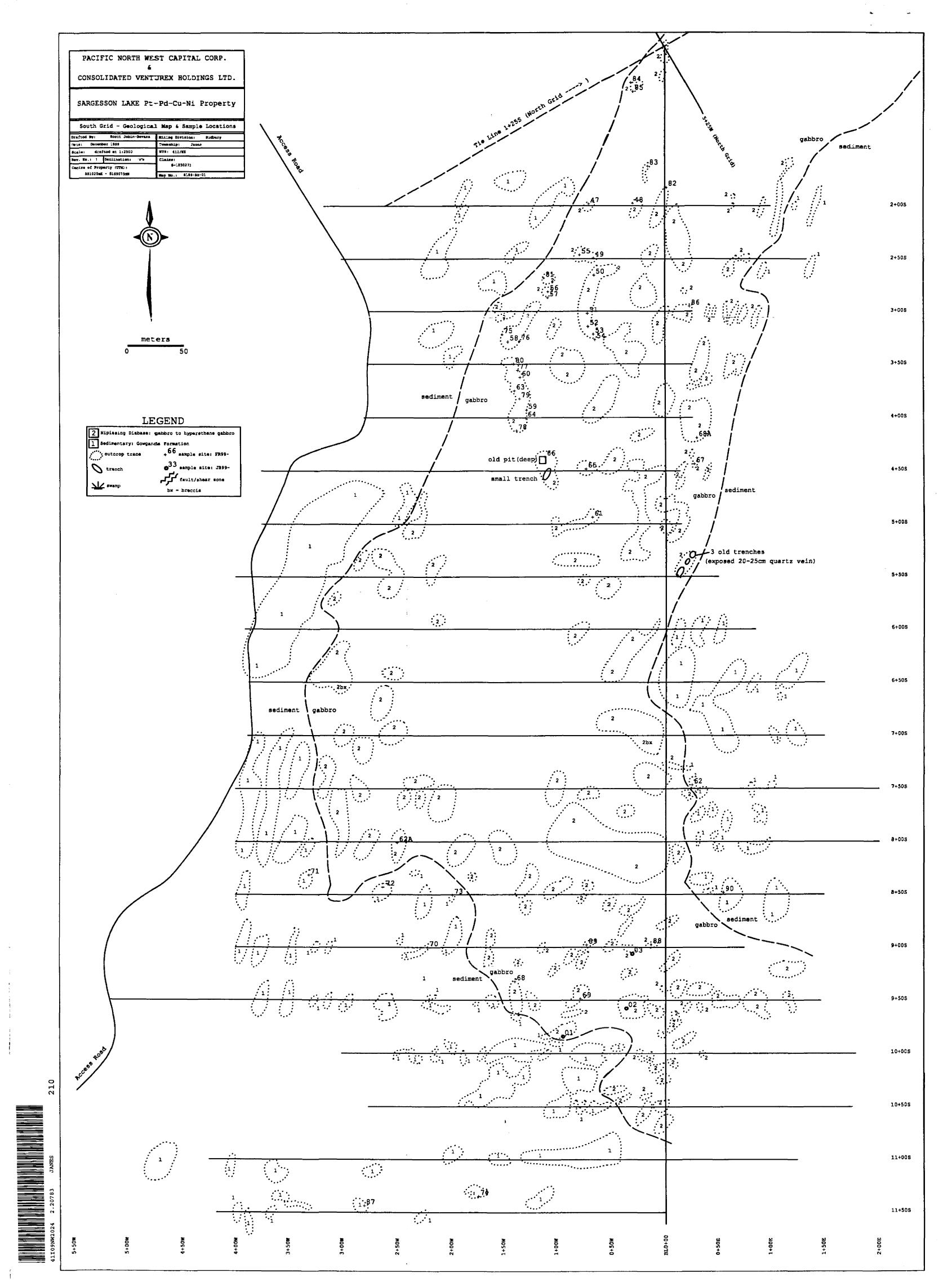
The partial expenditure verification requested was provided. Although complete verification of the shipping, operating costs could not be provided, the expenses for prospecting exceeded the charges made in the original submission. The costs allowed are as documented in the original submission. IN FUTURE, PLEASE PROVIDE AN ACCURATE BREAKDOWN OF EXPENDITURES IN THE STATEMENT OF COSTS FOR THE WORK PROGRAM.

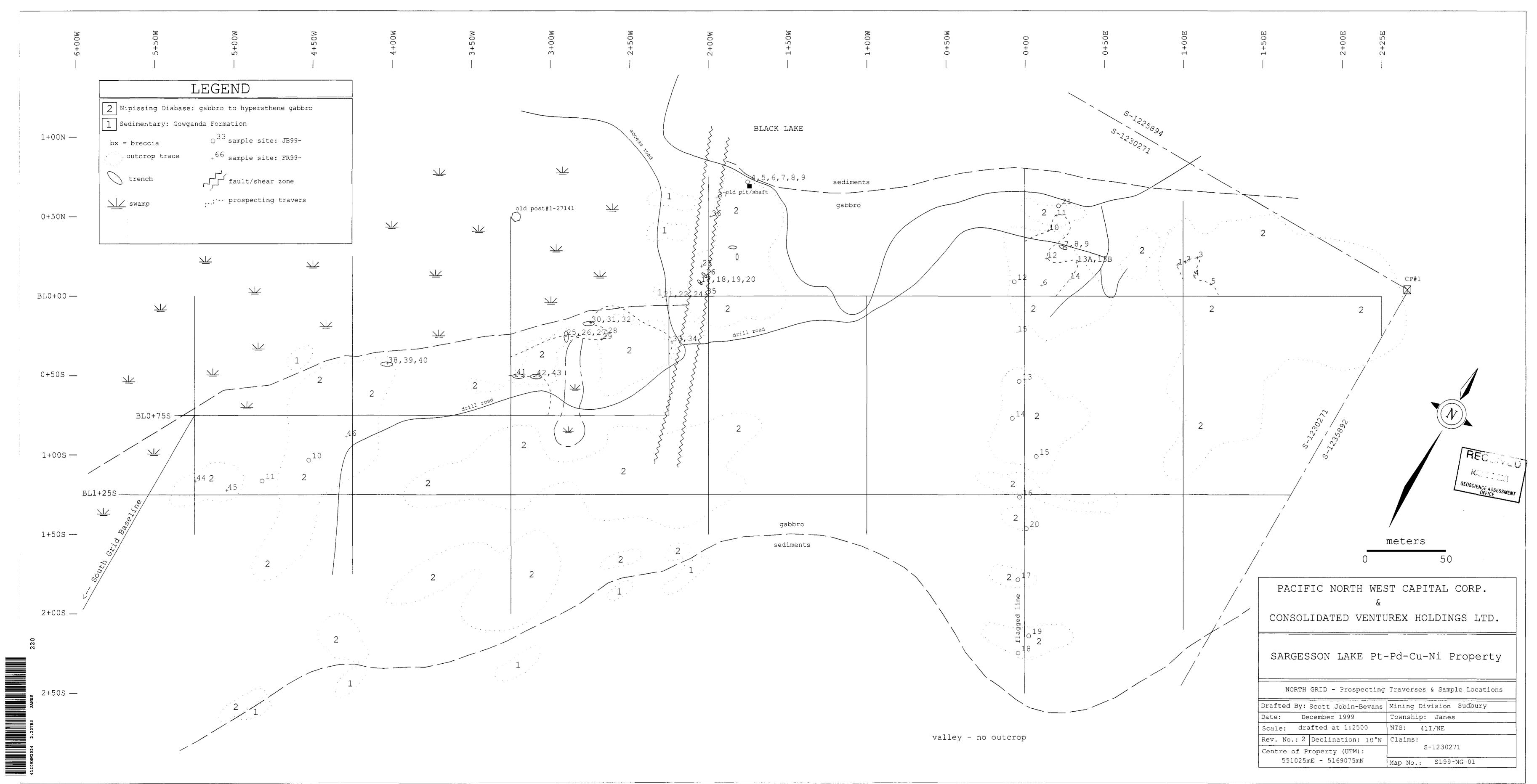
At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

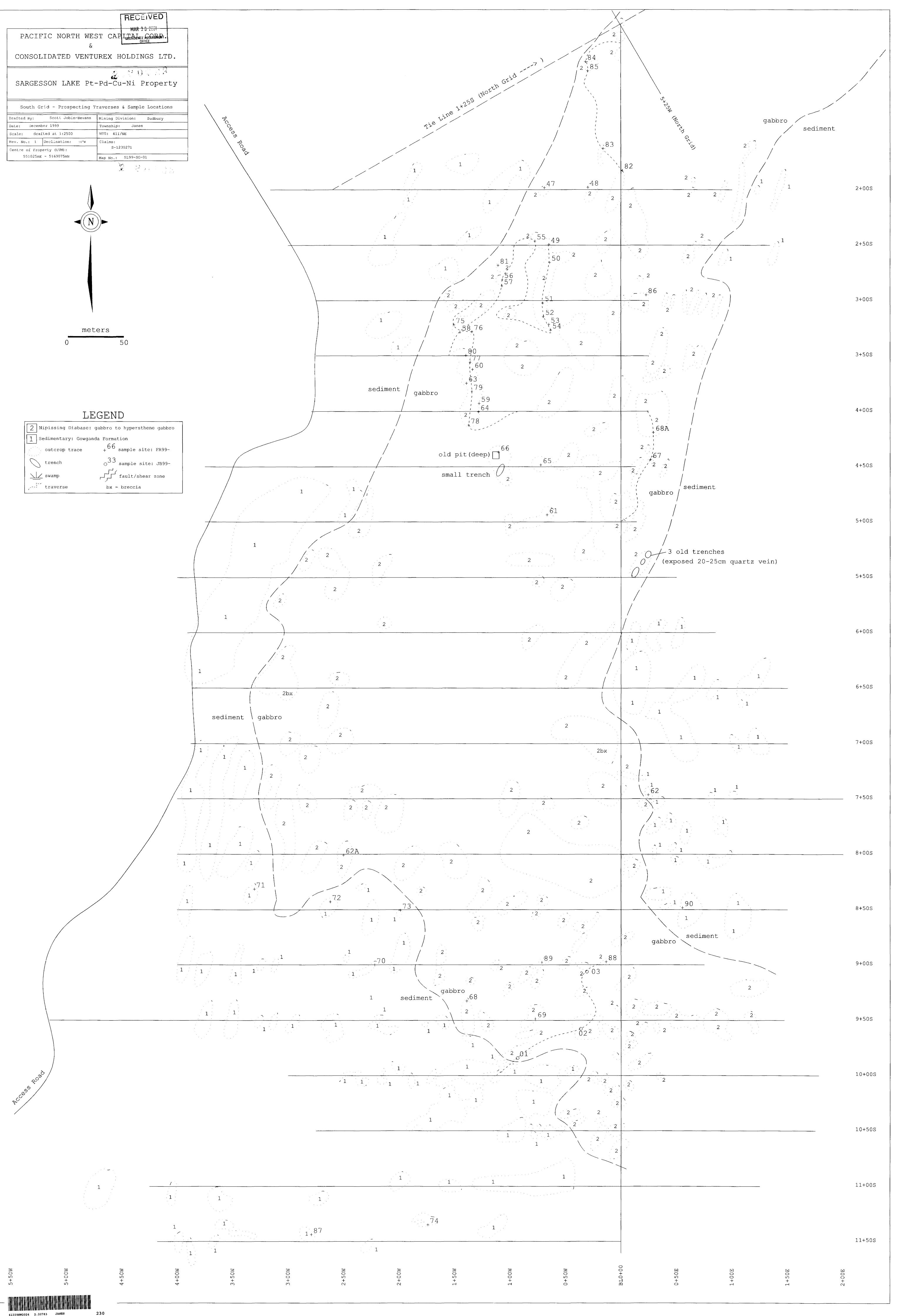
Recorded Holder(s) and/or Agent(s):
Laurence Scott Jobin-Bevans
SUDBURY, ON, CAN
FRANK CHARLES RACICOT
SUDBURY, Ontario

Problem Page


The original page in this document had a problem when scanned and as a result was unable to convert to Portable Document Format (PDF).


We apologize for the inconvenience.


Problème de conversion de page


Un problème est survenu au moment de balayer la page originale dans ce document. La page n'a donc pu être convertie en format PDF.

Nous regrettons tout inconvénient occasionné par ce problème.

a i d**eletat**errador antis e condition a Martin Karakanan antis

JANES