

TABLE OF CONTENTS

SUMMARY 1

1. INTRODUCTION 3
2. LOCATION AND ACCESS 4
3. SURVEY PARAMETERS 6
3.1 Grid \# 1
Grid \# 2
Grid \# 3
Grid \# 4
:3.2 VLF-EM Surveying 93.2.1 Grid \#l3.2.2 Grid \#23.2.3 Grid \#33.2.4 Grid \#4
3.3 Magnetics 10
3.3.1 Grid \#1
3.3.2 Grid \#2
3.3.3 Grid \#3
3.3.4 Grid \#4
3.4 Personnel 11
4. GEOLOGY 12
5. INSTRUMENTATION 15
5.1 VLF-EM Electromagnetic Method 15
5.2 Magnetics 17
6. PRESENTATION OF DATA 19
7. INTERPRETATION 21
7.1 Grid \#l
7.1.1 Magnetics 7.1.2 VLF-EM
7.2 Grid \#2 25
7.2.1 General Comments
7.2.2 Magnetics

7.2.3 VLF-EM
7.3 Grid \#3 29
7.3.1 Magnetics
7.3.2 VLF-EM
7.4 Grid \#4 39
7.4.1 General Comments
7.4.2 Magnetics
7.4.3 VLF-EM Survey
8. CONCLUSIONS 41
8.1 Grid \#l 41
8.2 Grid \#2 42
8.3 Grid \#3 43
8.4 Grid \#4 44
9. RECOMMENDATIONS 46
CERTIFICATE 47
REFERENCES 48
APPENDIX I 49

SUMMARY

During the period March llth to April 5th, 1981, M P H Consulting Limited of Toronto, Ontario carried out a programme of geophysical surveying on behalf of Northgate Exploration Limited of Toronto, Ontario on the latter's Scadding Township Project near Sudbury, Ontario.

The surveying programme consisted of VLF-EM and total field magnetometer surveys carried out on four separate grid locations.

The purpose of this work was to systematically map and survey the grid areas with a view of outlining areas of potential economic interest.

The area is mainly underlain by units of conglomerate and limestone of the Sudbury group and quartzite of the Mississagi formation. Post-Huronian gabbro intrudes the Sudbury group with smaller areas of intense shearing containing quartz located within and close to the contact. (Thompson, 1961).

The gold occurrences in the area have been documented as accompanying quartz carbonate veining within shear zones
in the gabbro. Disseminated pyrite generally accompanied the gold.

The shear zones containing the gold mineralization could possibly respond to the high frequency (relative to other exploration geophysical methods) utilized by the VLF-EM. However this response would probably reflect a change in lateral resistivity since the nature and extent of the reported accompanying sulphides (as described in the literature) will probably not be present in sufficient quantity to produce a conductive response.

The nature and extent of the gold mineralization in Scadding Township does not lend itself to definitive mapping with the systems used for this survey and as such no highpriority targets can be outlined from the data at hand.

1. INTRODUCTION

During the period from March llth to April 5, 1981, a programme of geophysical surveying was carried out by M P H Consulting Limited on behalf of Northgate Exploration Limited on the latter's Scadding Township Project near Sudbury, Ontario.

The field programme was carried out under the supervision of D. Jones, M.Sc., of M P H Consulting Limited with overall supervision provided by Dr. G. Harper, PhD, and R. Zinn, B.Sc., both of Northgate Exploration Limited.

This report describes the exploration techniques employed and presents the results of ground exploration work to date and provides recommendations for further exploration of the property.

2. LOCATION AND ACCESS

The property consists of 199 contiguous unpatented mining claims located in Scadding Township in the District of Sudbury and in the Sudbury Mining Division of northern Ontario.

Within Scadding Township the property covers lots 5 through 12 in concessions 1 through 5 (see Figure "l).

The claims covered by this geophysical survey are numbered:

$478823-478832$	$359343-359345$	5346915,5346916
$357987-357990$	$357993-357996$	5359359,5359360
$346897-346900$	$538818-538833$	346895,546827
$539389-539403$	$478916-478928$	539384,478891
$478976-478979$	$478880-478881$	

while those included in the property but not surveyed are numbered:

$346887-346892$	$507801-507811$	$357991-357993$
$346894-364896$	$478876-478879$	$357997-357998$
$478886-478880$	$346902-346903$	$651183-551222$
$538663-538669$	$551176-551177$	$551179-551182$
$($ part $)$		

Access to the property is by an all weather road departing north from the Trans-Canada Highway (Highway l7) approximately 25 kilometers east of Sudbury. A series of gravel
roads leading from this all weather road provides access to various portions of the property.

3. SURVEY PARAMETERS

The survey grids on which the geophysical surveying was conducted were established at various times and are in both English and metric units. For this report the English grid has been converted to metric (100 feet $=30.48$ meters).

3.1 Grid \#1

Grid \#l was established with its main baseline having the point $0+00$ on line $762+00 \mathrm{E}$ approximately 487.68 meters north of the concession post II and III which post also marks the boundary of lots 4 and 5 of Scadding Township. This baseline runs at an azimuth of 180° for 762 meters to point $0+00$ of line $0+00$ and then continues westward for a further 975.36 meters. A second baseline, located at 152.40 S extends the grid from 975.36 to 1249.68 W .

Crosslines were established on this baseline at intervals of 30.48 meters (100 feet) and were extended a distance of 487.68 meters south. North of the baseline the line length varied from 396.24 meters in the east to 736.52 meters in the west.

Stations on both the baselines and crosslines were at 30.48 meter (100 feet) intervals. Approximately 67 km of survey lines were cut, chained and picketed.

Grid \#2

This grid was established with point $0+00$ of Line 731.52 N located near post \#3 of Claim 357994. The baseline extends southward at an azimuth of 155° for a distance of 1036. 32 meters.

Crosslines were established on this baseline at 15.26 meter (50 foot) intervals and were extended for a distance of 304.80 meters both east and west of the baseline. Stations were located on both the baselines and crosslines at 15.24 meter intervals.

Approximately 44 km of survey line was cut, chained and picketed.

Grid \#3
Grid \#3 was established with point $0+00$ of the baseline located at the concession post common to concessions I and II, which post was also common to lots 4 and 5 of Scadding Township.

The baseline was driven due west for a distance of 4200 meters. North-south striking crosslines were established on this baseline at 100 meter intervals. These crosslines were driven north to the boundary of concessions II and III while the southern lines were cut to the property boundary. Stations were established on both the baselines and crosslines at 25 meter intervals. Approximately 105 km of line was cut, chained and picketed.

Grid \#4
Grid \#4 was established with the point $0+00$ of the baseline located 50 meters west and 20 meters north of post marking the common boundary between lots 6 and 7 and concessions III and IV of Scadding Township.

The baseline was driven due north for a distance of 2300 meters. Crosslines were established at 100 meter intervals on this baseline and were cut and chained for a distance of 1800 meters west of the baseline. A number of the most southerly lines were extended for a further 600 meters eastward.

Stations were located on all the crosslines and baselines at 25 meter intervals.

3.2 VLF-EM Surveying

Abstract

3.2.1 Grid \#1 - Approximately 67 km of VLF-EM surveying was carried out on this grid. Cutler, Maine transmitting at a frequency of 17.8 kHz was the transmitting station used. The propagation direction of this station is 110° in the vicinity of Grid \#l which will ensure good electromagnetic coupling with the geologic strike of the area. For the VLF-EM surveying a 15.24 meter (50 feet) station interval was utilized with line spacing of 30.48 meters* (100 feet).

Abstract

3.2.2 Grid \#2 - Approximately 23 km of VLF-EM surveying was completed on this grid. Line and station spacing for this grid was 15.24 meters (50 feet). As for Grid \#l, Cutler, Maine was the transmitting station used and would provide good coupling with the geologic strike of the area. It was requested that the eastern half of the grid not be surveyed since a previous survey had covered this area.

3.2.3 Grid \#3 - Approximately 101 km of VLF-EM surveying was completed on this grid. Cutler, Maine at 17.8 kHz was the transmitting station used as the signal source. The propagation plane wave direction was 110° which would intersect the projected geologic strike at 20° thus providing adequate coupling with
any conformable conductive trend. Station intervals of 25 meters were utilized for the systematic coverage of the grid area.

Abstract

3.2.4 Grid \#4 - No VLF-EM surveying was carried out on this grid since the east-west survey lines were located such as to cover a north-south geologic trend. No VLF-EM transmitting station will provide adequate coupling with conductor striking in this direction in the area and thus no VLF-EM surveying was conducted.

3.3 Magnetics

3.3.1 Grid \#l - Approximately 69 km of magnetic survey-
ing was conducted on this grid with station obser-
vations at 15.24 meter, (50 foot) intervals. Line
spacing was at 30.48 meters (100 foot) intervals.
3.3.2 Grid \#2 - Approximately 42 km of total field proton precession magnetometer surveying was conducted on this grid. The magnetometer reading intervals were established at 15.24 meters.
3.3.3 Grid \#3 - For this grid area the line spacing was established at 100 meter intervals. Nominal station separation was at 25 meter intervals. In
anomalous areas intermediate stations at 12.5 meter intervals were observed to provide additional detail. Approximately 105 km of surveying was conducted in this fashion.
3.3.4 Grid \#4 - Approximately 55 km of total field proton precession magnetometer surveying was conducted on this grid. A 25 meter reading interval was utilized for systematic coverage of the grid with a 12.5 meter station interval used in anomalous areas to provide additional detail.

3.4 Personnel

The following M P H Consulting Limited personnel were employed during this exploration programme:
D.Jones, M.Sc. Geophysical Consultant Toronto, Ontario D.Hall Party Chief Toronto, Ontario
M.Bickers Geophysical Operator Toronto, Ontario
T.Kraft Geophysical Operator Toronto, Ontario
D.Johnston Geophysical Operator Windsor, Ontario
M.Nadjiwan Geophysical Operator Wiarton, Ontario

4. GEOLOGY

Most of Scadding township is underlain by the Aphebian Age sedimentary rocks which make up the Sudbury, Bruce and Cobalt Groups. Younger Aphebian or Helikian gabbro or diabase is intrusive into the older sediments.

Sudbury Group Sediments outcrop in the southwestern part of the township. Quartzite and conglomerate with minor limestone intercalations are the predominant rock types. These sediments are well-bedded, and generally strike northwestsoutheast. Dips are variable from 40° to 70° to both the south and north. The sediments are usually brecciated near the gabbro intrusives.

Conglomerate of the Mississagi Formation unconformably overlies the rocks of the Sudbury Group. A rusty regolith has been noted at some localities in the region along the paleosurface. In Scadding Township, the Mississagi Formation is comprised of siltstone, argillite and quartzite and may contain traces of sulphides. The formation dips to the north or northeast at between 20° and 45° with local dips of up to 70°.

The sediments in the northeastern part of the township are part of the Gowganda Formation of the Cobalt Group.

Interbedded polymictic conglomerate, argillite, greywacke and quartzite lie unconformably on the rocks of the Mississagi Formation. Gowganda Formation rocks generally strike north to east and dip 20° to 80°.

Gabbro or diabase intrusives make up about 20% of the bedrock in the township. The intrusives vary in occurrence from large sill or dyke-like bodies to small, irregularly distributed swarms. Texture and composition of the gabbro may be variable due to differentiation of the intrusive sheets. Brecciation of host rocks may also have accompanied some of the intrusions.

Two major faults trending approximately northwest-southeast cross the central part of the township. Shearing, brecciation, quartz veining and sulphide mineralization with minor copper and gold values is associated with one of these faults.

Other occurrences of possible economic interest in Scadding Township are limited to quartz-carbonate veins closely associated with the gabbro intrusives. Native gold, galena, chalcopyrite and pyrite have been reported to occur with some of these veins. The basal portions of the Mississagi Formation are a possible target for paleoplacer-type uranium and gold occurrences; in Maclennan Township just to the
west, the Skead gold mine may represent a residual gold deposit formed on the Sudbury Group erosional surface with the gold being later remobilized into quartz-carbonate veins along the contact.

5. INSTRUMENTATION

5.1 VLF-EM Electromagnetic Method

The VLF-EM method employs as a source one of the numerous submarine communication transmitters in the 15 to 25 kHz band located throughout the world. At the surface of the earth these radio waves propagate predominantly in a single mode along the earth-air interface. This mode is known as the 'surface wave'. Over flat homogeneous ground in the absence of vertical conductive discontinuities the magnetic field component of this ratio is horizontal and perpendicular to its direction of propagation.

Where non-horizontal structures such as faults, contacts and conductors give rise to change in ground conductivity, secondary modes are generated which produce a vertical component of the magnetic field. This produces an elliptical polarization of the total field in a plane perpendicular to the direction of propagation.

Commercial VLF instruments enable detection of disturbing structures by measuring the tilt angle of the major
axis of the polarization ellipse. On flat homogeneous ground the tilt angle will be zero, but in the vicinity of conducting disturbances it will acquire a finite value. Direction of tilt indicates directions of the disturbing structure. Ability to deduce such parameters as depth, depth extent, dip, and width of anomalous structures is minimal.

Fortunately, this does not seriously affect location of points where VIJF-EM profiles cross the upper limit of dipping structures which can be identified as areas of greatest change in tilt angle per unit of distance.

The transmitting station used during the survey was Cutler, Maine transmitting at 17.8 kHz .

The data is read as a dip angle and a vertical quadrature where the dip angle is a percentage of the incline from the horizontal, i.e. (100 $\mathrm{x} \tan \theta$), where θ is the tilt angle of the major axis of the polarization ellipse in degrees, and the vertical quadrature is the out-of-phase amplitude of the polarization ellipse.

The data is presented as profiles with positive to the left, negative to the right. The instrument
specifications are given in Appendix I.

5.2 Magnetics

Two McPhar GP 70 proton precession magnetometers were used on the project. The proton magnetometer utilizes the precession of spinning protons of a hydrogen atom within a hydrocarbon fluid. These spinning magnetic dipoles are polarized by applying a magnetic field using a current within a coil of wire. . Upon discontinuation of the current the protons precess about the earth's magnetic field and in turn will generate a small current in the wire. This current is proportional to the precession frequency which in turn is proportional to the earth's total magnetic field.

The instrument reading unit is the gamma and the reading is the absolute value of the earth's total field for that station. Repeatability is usually within two gammas for a particular station.

Magnetic data was corrected for diurnal variations using a Barringer M123 base station magnetic recorder. Deviations from a chosen base value were measured every ten seconds throughout the day. These deviations were then used to reduce field survey results to a constant datum plane.

The instruments' specifications are presented in Appendix I.

6. PRESENTATION OF DATA

Abstract

All the field data from this area is presented on a series of maps at a horizontal scale of $1: 2000$.

The VLF-EM data is presented as profiled data along the survey lines. The in-phase or dip angle data is plotted with positive to the right and negative to the left such that negative slopes are representative of a 'true' crossover.

Conductor axes are also presented on the VLF-EM profile maps.

The magnetic data is presented as a series of isomagnetic contours superimposed on a map of corrected magnetic values recorded at each station. Contour lines at 100 and 25 gamma intervals were found suitable to highlight the magnetic expression from the survey area.

The maps accompanying this report are as follows:

Map \#1	Magnetics Grid 1	East-side
Map \#2	Magnetics Grid 1	West-side
Map \#3	VLF	Grid 1

Map \# 4	VLF	Grid 1	West-s	ide
Map \#5	Magnetics	Grid		
Map \#6	VLF	Grid		
Map \#7	Magnetics	Grid	Lines	$0+00-16+00 \mathrm{~W}$ st $0+00-16+00 \mathrm{~N}$
Map \#8			Lines	$16+00-32+00 \mathrm{~W}$ st $0+00-16+00 \mathrm{~N}$
Map \# 9			Lines	$32+00-44+00 \mathrm{~W}$ st $0+00-16+00 \mathrm{~N}$
Map \#10			Lines	16+00-32+00W st $0+00-16+00 \mathrm{~S}$
Map \#11			Lines	$32+00-44+00 \mathrm{~W}$ st $0+00-12+00 \mathrm{~S}$
Map \#12	VLF-EM	Grid	Lines	$0+00-16+00 \mathrm{~W}$ st $0+00-16+00 \mathrm{~N}$
Map \#13			Lines	$16+00 \mathrm{~W}-32+00 \mathrm{~W}$ st $0+00-16+00 \mathrm{~N}$
Map \#14			Lines	$32+00 \mathrm{~W}-44+00 \mathrm{~W}$ st0+00-16+00N
Map \#15			Lines	$16+00 \mathrm{~W}-32+00 \mathrm{~W}$ st $0+00-16+00 \mathrm{~S}$
Map \#16			Lines	$32+00 \mathrm{~W}-44+00 \mathrm{~W}$ st $0+00-12+00 \mathrm{~S}$
Map \#17	Magnetics	Grid	Lines	$9+00 \mathrm{~N}-23+00 \mathrm{~N}$
Map \#18	Magnetics	Grid	Lines	$0+00 \mathrm{~W}-9+00 \mathrm{~N}$ st $4+50 \mathrm{E}-10+50 \mathrm{~W}$
Map \#19	Magnetics	Grid 3	Lines	$0+00 \mathrm{~W}-9+00 \mathrm{~N}$ st $9+00 \mathrm{~W}-24+00 \mathrm{~W}$

7. INTERPRETATION

7.1 Grid \#1

7.1.1 Magnetics - The magnetic survey carried out on this grid outlined a very weak magnetic response with the majority of the area showing a magnetic relief of 100-200 gammas. This low relief coupled with a low anomaly density revealed a nebulous magnetic trend from the survey area.

The main structural features outlined from the magnetic surveying were a number of northwest striking magnetic linears which are probably attributable to diabase intrusives. These features are probably conformable but could be crosscutting stratigraphy and thus cannot be deemed to represent the geologic strike of the area.

Interpretation of selected magnetic profiles indicates a northerly dip of 45° to the magnetic linear and a depth estimation of 10 to 30 meters.

The remaining magnetic features observed from the grid area showed no distinct trends although an interpretation of the magnetic
contouring has outlined a number of possible fault structures. These are presented on Maps 1 and 2.

The grid is believed to be underlain by quartzite and quartz-pebble conglomerates of the Mississagi Formation which is in contact with conglomerate and intercalated limestone of the Sudbury group in the southwest portion of the grid area. No magnetic signature was observed which could be directly attributable to the contact zone.
7.1.2 VIF-EM - The VLF-EM survey conducted on Grid \# l revealed a generally flat response with a number of small amplitude anomalous zones showing a northwest-southeast conductive trend.

The largest amplitude and longest strike length VLF-EM features are coincident with the magnetic linears believed to represent diabase.

Inspection of the VLF-EM response indicates a topographic source for several conductive axes, and these anomalies have been discounted in the interpretation of this grid. The remainder of
the VLF-EM anomalies were short, discrete conductive horizons which are considered to be bedrock responses. These anomalies have been labelled on the VLF-EM profiles map and are discussed below.

Anomaly 'D'- This anomaly is located at approximately 182.88 N between lines 30.48 W and 60.96 E and trends approximately 090\%. The anomaly amplitude is exceedingly small ($\sim 5 \%$ peak to peak) and as such no dip or depth estimates were extracted from the VLF-EM profiles.

The anomaly showed no coincident magnetic signature. The nature of the causative source is uncertain.

Anomaly 'E'- Anomaly 'E' is a semi-arcuate, small amplitude zone located at approximately 213.36 N between lines 975.36 W and 822.96 W . The anomaly is semi-coincident with a number of topographic features which possibly in part contribute to the anomaly's signature. For this reason no dip or depth estimates were interpreted from the VLF-EM profiles.

The eastern end of the anomaly appears truncated by a north-south striking feature interpreted from the magnetics.

The conductive axis of this anomaly is located on the northern flank of a discrete magnetic high which could possibly be spatially related to the VLF-EM anomaly.

The nature of the causative source for Anomaly ' D ' is uncertain.

Anomaly ' E ' - is located at approximately 213.36 N between lines 274.32 and 364.76 E for a strike length of ~ 80 meters. The anomaly trend is northwest-southeast and parallels the main VLFEM trend from this grid. The eastern extent of the anomaly is curtailed by a magnetically interpreted fault. Interpretation of the VLF-EM profiles indicated a depth to conductive axis of n 30 meters. No dip value was estimated from this zone since topographic effects on the south side of the anomaly distort the positive flank of the profile.

The anomaly is situated in a small magnetic low
of approximately 50 gammas. The magnetic correlation is probably coincidental with the two geophysical responses not directly attributable to the same causative source.

Anomaly 'G' - this anomaly is a long, linear, conductive feature which parallels and in places straddles the baseline between lines 426.72 W and 91.44 E . A possible easterly extension could be postulated to line 579.12E, however, it is possible that a topographic source contributes part if not all the VLF-EM response associated with this eastern extension.

The broadness of the VLFF-EM response indicates that bedrock topography is a possible cause for this anomaly with the positive shoulder south of the baseline reflecting a ridge or uplift of the bedrock. No magnetic signature was observed coincident with this anomaly.

A number of very small 1 or 2° dip angle anomalies are observable from the VLF-EM survey. These have not been discussed within the text of this report however they are represented on the VLF-EM profile map.

7.2 Grid \#2

7.2.1 General Comments - This grid lies at an azimuth of 155° and overlaps in part both grids \#l and \#3.

The grid covered a gold zone which is associated with pyrite mineralization apparently conformable to the
pyrite mineralization apparently conformable to the geologic strike of the area.

Abstract

7.2.2 Magnetics - The total field magnetic survey from the area revealed a low magnetic relief of approximately 200 gammas with a low anomaly density. The magnetic trend observed appears to strike north-northwest -south-southeast. This trend is dpminated by a series of three magnetic linear highs (of approximately 400500 gammas). These highs have been attributable to diabase dykes and as such may not be conformable with the geologic stratigraphy from the area. The low magnetic relief outside of these zones preclude any accurate definiation of the magnetic trend from this area.

Interpretation of selected profiles of the magnetic data indicates easterly dips of 45° to the major dyke-like features and depth values varying from 1035 meters. A tabular body of infinite strike extent was used as a model for this work. A change in magnetic background is observable on either side of the westernmost dyke-like feature with the response on the eastern side being approximately 100 gammas higher. This probably relates to a thinning of overburden
due to uplifting of the bedrock on the eastern side of the dyke rather than a change in rock type, the diabase dyke in this case occupying the fault plane at which the movement occurred.

The portion of the grid from line 121.92 N to line 335.28 N shows a greatly increased magnetic relief. This response is directly attributable to cultural noise (i.e. drill casing). This portion of Grid \#2 has been drilled and a mineralized gold zones discovered. Unfortunately the cultural noise resulting from the drilling has destroyed any recognizable magnetic signature from the mineralized zone such that it cannot be used as a case study by which to grade other anomalies from the grid area.

A number of crosscutting (fault?) structures have been interpreted from the truncation and deviations of the magnetic contour lines. These are presented on the magnetic map (Map 5).
7.2.3 VLF-EM - The VLF-EM survey conducted on this grid displayed a north-northwest strike direction conformable with the magnetic trend. Three anomalous features were outlined which dominated the VLF-EM response from this area. These zones corresponded
closely with the interpreted diabase dyke from the magnetic survey.

Additionally a number of short strike length anomalous features were outlined which are presented on Map 6.

All the anomalous features outlined were low amplitude anomalies indicative of a relatively homogenous bedrock with little change in lateral resistivity values within the bedrock.

No VLF-EM anomaly mapped on the grid could be correlated with the known gold mineralization on the property.

Anomaly 'A' - is located at approximately 152.40 W between lines 487.68 and 335.28 N . This short strike length anomaly appears to intersect a longer formational anomaly, (diabase), on line 274.32 N at approximately 152.40 W . This anomaly shows no magnetic signature and appears to crosscut stratigraphy at a low angle. No causative source can be attributed to this target.

Anomaly 'B' - this anomaly is located at approximately 182.88 E between lines 182.88 N and 121.92 N and is apparently conformable with the geologic strike
of the area. The anomaly is open to the south and has been mapped by a previous survey conducted by Northgate Exploration Limited.

The anomaly shows no magnetic signature and no geological source can be ascribed to the observed geophysical response.

Anomaly ' C' - is a short arcuate anomaly located at approximately 243.84 E between linés 243.84 N to 304.80N with the anomaly being open to the north. The conductive strike axis is conformable with the postulated geologic strike of the area.

The anomaly is coincident with a small (100 gamma) discrete magnetic high. No definite causative source can be ascribed to this anomaly although the associated magnetic signature would suggest a possible sulphide and/or magnetite concentration in underlying gabbroic intrusive rocks.
7.3 Grid \#3
7.3.1 Magnetics - The magnetic survey conducted on Grid. \#3 outlined a higher magnetic relief than that observed on either Grids 1 or 2. This increase in magnetic relief reflects the higher mafic content present in the gabbro intrusive believed to underlie the major portion of this grid.

The magnetic trend observed from this grid area is a basic east-west trend with a number of northwestsoutheast linears crosscutting the magnetic stratigraphy in the northeast portion of the grid area. These units are the southerly continuation of the interpreted diabase dykes previously outlined on both Grids \#1 and \#2

The magnetic relief observed on Grid \#3 is approximately 300 to 400 gammas superimposed on a relatively flat background of 58700 gammas.

Structural interpretation of the magnetic maps has outlined several fault structures trending in an approximate northwesterly direction. These are presented on Maps 7 through 11.

In addition an interpretation of the magnetic signature of the Sudbury group and the intrusive post Huronian gabbro has been carried out with the interpreted common boundaries represented as geologic contacts. This is presented on Maps 7-11.

A west-northwest-east-southeast striking contact has been postulated bisecting the northeast portion of the grid area. The postulated contact separates the conglomerate of the Sudbury group on the north from the Post Huronian gabbro in the south. (Thompson,
1961). (Maps 7 and 8).

The occurrence of gold mineralization in close proximity to this contact as reported by Kindle in 1933 and Thompson in 1961 makes the location and mapping of this contact of paramount importance. The gold is reported to be located within a series of irregular veins and pockets of quartz within a sheared gabbro. Disseminated pyrite accompanies the gold, some of which is reportedly visible.

The contact location as interpreted from the magnetics is empirical and the actual location should be ground located by geologic mapping.

The interpreted southern boundary of the intrusive gabbro is presented on Maps 7, 8 and 9. This projected southern boundary in essence parallels the northern boundary. This postulated southern contact is located at $0+00$ on line $0+00$ and runs northwesterly to $12+00 \mathrm{~N}$ on line $42+00 \mathrm{~W}$.

The higher magnetic values and increasing magnetic relief located in the south-central portion of the grid area is also interpreted as reflecting a gabbroic intrusion. The postulated boundary has been
outlined on the magnetic maps.

Similarly a smaller zone has been outlined located in the southwest corner of the grid area.

The magnetic anomalies located in the interpreted intrusive portion of the grid area are mainly narrow linear, discrete zones. These features probably represent zones containing higher concentrations of magnetite and/or sulphide mineralization. The presence of gold mineralization accompanying disseminated sulphide mineralization within the gabbro is documented by Thompson (1961) and as such the linear magnetic anomalies located within the interpreted gabbroic unit could be of economic importance.
7.3.2 VLF-EM - The VLF-EM electromagnetic survey carried on on Grid \#3 outlined an east-west trend conformable to the magnetic trend. In comparison with Grids \# 1 and 2 the dip angle amplitudes outlined on this grid were substantially larger as were the peak to peak anomaly amplitudes. This reflects either a larger concentration of conductive material or a larger lateral inhomogeneity within the bedrock. Both these observations are probably true in the case of Grid \# 3.

The most prominent VLF-EM response was a long, linear anomaly extending from approximately $1+00 \mathrm{~N}$, Line $1+00 \mathrm{~W}$ to $12+00 \mathrm{~N}$, Line $40+00 \mathrm{~W}$. This is coincident with and probably reflects the interpreted contact between conglomerate of the Sudbury group in the south and intrusive gabbro in the north.

The remainder of the above geologic contact as interpreted from the magnetic survey did not show any strong electromagnetic response.

Eight anomalies believed to be representative of bedrock were shown by the VLF-EM survey. These are presented on the VLF-EM profile maps (Maps 12-16).

Almost all of the VLF-EM anomalies located on the map are located within areas interpreted from the magnetics to be underlain by gabbro intrusive.

A number of anomalies interpretable from the data have been ascribed to topographic features and are not discussed further within the context of this report.

The small amplitudes and the extremely wide.VLF-EM crossovers (possibly due to the shallow dips of the
geologic units) are not conducive to qualitative interpretations: Depth estimates are given only for anomalies where parameter values can be interpreted with any degree of confidence.

Anomaly 'H' - This east-west striking feature was located at approximately $12+00 \mathrm{~N}$ between Lines $13+00 \mathrm{~W}$ and $23+00 \mathrm{~W}$ with a possible westerly extension of the añomaly to Line $29+00 \mathrm{~W}$ Lack of "data on the intervening lines precludes accurate definition of this extension.

The character of the anomaly changes along its strike length. From west to east, the amplitude and breadth of the anomaly diminishes indicating either a deepening, or a decreasing conductive content of the anomaly, eastward.

This anomaly shows no magnetic signature and is located in a quiescent magnetic zone. The eastern end of Anomaly 'H' could possibly be terminated by a magnetic structure which appears as an offshoot of the interpreted diabase. Within the context of the magnetic interpretation this anomaly is believed to be located within the gabbro and is subparallel to the contact.

From the VLF-EM profile map, extrapolation of Anomaly 'H' would appear to show it intersecting the southern gabbro contact at Line $24+00$ or $25+00 \mathrm{~W}$. Both of these lines unfortunately lie off the property, and no definite conclusion regarding this observation can be made.

Anomaly 'I' - This anomaly is located at approximately $7+50 \mathrm{~N}$ between Lines $2+00$ and $12+00 \mathrm{~W}$. The anomaly strikes slightly north of east and is subparallel to Anomaly 'H'.

The anomaly appears to intersect the interpreted gabbro/conglomerate contact at Lines $11+00$ and $12+00 \mathrm{~W}$ at which intersection the anomaly is truncated. No magnetic signature was directly attributable to Anomaly 'I' and the anomaly was located in a relative magnetic low of approximately 100-200 gammas.

The eastern end of the anomaly abuts against a magnetic high interpreted as a diabase dyke. Thus the zone is bounded by structural controls at either end. Probable causative source for this zone is a shear or a fracture-filled fault zone.

Abstract

Anomaly 'J' - is a small amplitude (5° peak to peak) short strike length anomalous zone, located at approximately $4+50 \mathrm{~N}$ between Lines $0+00$ and $3+00 \mathrm{~W}$. The anomaly is open to the east.

The anomaly appears to be crosscutting the magnetic trend of the area and parallels the postulated gab-bro-conglomerate contact. From the magnetic interpretation the zone is located within the gabbro intrusive.

There is no directly coincident magnetic signature and no causative source could be ascribed to this anomaly.

Anomaly ' K ' - is located at approximately $3+00 N$ and between Lines $9+00$ and $4+00 \mathrm{~W}$. The anomaly subparallels Anomalies 'H' and 'I' and as with both 'H' and 'I' it appears that its western extent intersects with and is truncated by the gabbro/conglomerate contact. The anomaly is open to the east and shows no direct magnetic signature.

Anomaly 'L' - is a long, arcuate anomalous zone located at approximately $6+005$ between Lines $10+00$ and $32+00 \mathrm{~W}$.

The western extension of the anomaly is truncated at or near an interpreted gabbro contact. The conductive axis of Anomaly 'L' could possibly represent the southern margin of the gabbro intrusive. The contact as interpreted from the magnetics is not sharply defined and could possibly be moved northward slightly from its present interpreted location to correspond with the VLF-EM conductive axis.

No direct magnetic signature can be attributed to this zone and a possible causative source is a geological contact.

Anomaly ' M ' - this conductive zone straddles the baseline between Lines $20+00$ and $30+00 \mathrm{~W}$. The anomaly is located in a topographic low but topography is not believed to be the main causative source of the anomaly. The western extent of the anomaly is truncated at an interpreted north-south striking fault.

Anomaly 'M' is located in a relative magnetic low, however the magnetic low does not appear to be caused by the source of the conductor.

Anomaly 'N' - is located at approximately $2+00 \mathrm{~N}$ between Lines $39+00$ and $45+00 \mathrm{~W}$, and is open to the west.

This zone is the largest amplitude anomaly on the property and depth estimates have been interpreted from the VLF-EM profile. Depth to the conductive axis of Anomaly ' N ' is estimated at 30 meters and a northerly dip of $60-80^{\circ}$ is interpreted from the profile.

The anomaly is believed to be located within the conglomerate of the Sudbury group. Thompson's 1961 geological map indicates a contact in this vicinity which could relate to Anomaly 'N' however based on the geophysical interpretation of the magnetics no gabbro contact was outlined in this area.

The anomaly is believed to be underlain by conglomerate and/or possibly limestone and should be ground checked geologically.

Anomaly ' ${ }^{\prime}$ ' - is a short, discrete, large amplitude conductive zone located at approximately $7+00 \mathrm{~S}$ between Lines $39+00$ and $42+00 \mathrm{~W}$.

The anomaly has an interpreted depth of 15 meters and appears to be dipping steeply to the north.

The anomaly was located within an area of large magnetic relief believed to reflect a post-Huronian
gabbro. No direct magnetic coincidence was observed and no direct causative source was attributed to the geophysical response.

Other Anomalies - A number of other small anomalies were detected. These have been presented as possible conductive horizons on the VLF-EM maps. They have not been discussed in detail in this report but should not be overlooked in any subsequent investigations of this property. Re-evaluations of the targets in light of any further information may enhance these weak zones regarding their possible economic potential.

7.4 Grid \#4

7.4.1 General Comments - This grid has been mapped as being underlain mainly by quartzite of the Mississagi Formation with a conglomerate and argillite of the Gowganda Formation being located in the northeast corner of the grid area. These two formations are mineralogically similar and no large magnetic contrast would be expected.
7.4.2 Magnetics - The magnetic survey conducted on the property outlined a north-south magnetic trend. The very low magnetic relief observed on the property indicates a fairly homogeneous bedrock with no large lateral
magnetic inhomogeneities.

Interpretation of the magnetic data did not reveal any signature attributable to contact zones and no distinction between any of the underlying units could be made.

A number of east-west fault zones have been interpreted and are presented on Maps 17, 18 and 19.
7.4.3 VLF-EM Survey - The geologic strike of the survey area is north-south as reflected in the magnetic survey. and as such no VLF-EM station is located such as to provide a transmitter signal which would be conducive to VLF-EM mapping of the property.

8. CONCLUSIONS

The VLF-EM and magnetic surveys carried out on the grids have shown a generally quiescent geophysical area. Known gold associations in the area are as quartz stockworks within gabbro and as possible paleo-placer deposits at the contact between Aphebian conglomerate and quartzite. Neither of these targets will give rise to unique magnetic response, and the reported nature and extent of any sulphide (pyrite) associated with the gold will probably not give rise to a VLF-EM response due to its disseminated nature. These types of gold occurrences are therefore not ideal geophysical targets although the surveys described herein have provided valuable structural lithologic information.

8.1 Grid \#1

The magnetics outlined a very low relief magnetic pattern containing a number of northwest-southeast striking-magnetic linears. These zones have been attributed to diabase intrusions which are possibly paralleling stratigraphy. The VLF-EM survey also outlined the diabase zones. Four short, discrete bedrock conductors were outlined, none of which showed any magnetic signature and no definite causative source was ascribed to any of the zones. A number of other small amplitude zones were detected and are
presented on the VLF-EM profile maps. These zones were not highly rated geophysically but it is felt that their priority value should be reassessed as more information of a geological nature becomes available for the grid area.

8.2 Grid \#2

The magnetics and the VLF-EM response from this grid has outlined a fairly flat geophysical response with the main geophysical features attributable to a series of diabase dykes two of which are the same as and continuations of those mapped on Grid \#l.

Of the three discrete VLF-EM anomalies outlined, only Anomaly 'C' showed any magnetic correlation which could possibly be attributable to an increase in sulphide (pyrrohotite) and/or magnetic content.

As previously mentioned gold mineralization on this grid is in the process of being drill evaluated. Cultural noise associated with the drilling precluded observation of any magnetic signature associated with the gold mineralization. There was no VLF-EM response attributable to the zone.

As with Grid \#l, no economic implications can be ascribed to any of the geophysical anomalies outlined. Re-evaluation of the anomalies in light of detailed geological mapping could possibly alleviate this and allow priorities to be placed on the individual anomalies.

8.3 Grid \#3

A larger magnetic relief was observed on Grid \#3 relative to Grids 1 and 2. This could be attributable to a higher magnetite content in the gabbro which underlies the major portion of Grid 3.

Structural interpretation outlined a fault trending northsouth in the western portion of the grid. Detailed interpretation aided in outlining the gabbro/conglomerate contact with three separate intrusive bodies outlined. A southerly continuation of the diabase dyke outlined on Grid \#l was located and mapped in the northeast portion of the grid area.

The VLF-EM mapping outlined eight anomalies. Four of these anomalies, 'H', 'I', 'J', and 'K' were located within the northern gabbroic zone. Anomalies 'H' and 'I' are probably structurally controlled being truncated by the gabbro/conglomerate contact in the south and the diabase contact in the north. These are possibly shear
or fracture-filled fault zones. 'J' could represent the contact of a gabbro intrusive with conglomerate of the Sudbury group.

Anomalies ' M ' and ' O ' are located within gabbro units and no causative sources have been ascribed to them.

Anomaly ' N ' is a large amplitude anomaly and believed to be located within the conglomerate.

No economic implications can be drawn from the data at hand although, bearing in mind the location of the known mineralization, Anomalies 'H' and 'I' are of obvious interest.

The other anomalies, though of lower priority at this time, are nonetheless good targets and further geological information is necessary before a definitive answer can be given regarding their potential.

8.4 Grid \#4

The magnetic survey from Grid \#4 outlined a north-south magnetic trend. The low magnetic relief and low anomaly density indicate a homogenous bedrock and no subdivisions were made from the magnetic survey. A number of east-west striking structures (faults) were interpreted from the
magnetics. No VLF-EM was carried out on this grid.

9. RECOMMENDATIONS

The nature and extent of the gold mineralization in Scadding Township does not lend itself to definitive mapping with the systems used for this survey and as such no high-priority targets can be outlined from the data at hand.

Recommendations for further work include:

1) A detailed geological mapping programme of the area using the geophysical grids as control.
2) The geological information from the drilling conducted on Grid \#2 should be analysed in detail to provide information regarding the nature of occurrences and association of the gold mineralization in this area.
3) Re-evaluation of the geophysical data should be carried out following the detailed geologic analysis of the area at which time decisions regarding the further exploration of the area could be made.
4) The documented pyritic association with the gold mineralization should be examined with a view to utilizing Induced Polarization surveying to outline possible areas of economic interest.

CERTIFICATE

I, David Jones of Toronto, Ontario hereby certify that:

1) I hold a Bachelor of Technology degree in Applied Physics from the University of Bradford, England, and a Master of Science degree in Applied Geophysics from McGill University in Montreal.
2) I have practised my profession in exploration continuously since graduation.
3) I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience with the geophysical techniques used and on the results of the field work conducted on the property during March, 1981 which was carried out under my supervision.
4) I hold no interest, directly or indirectly in this property other than professional fees, nor do I expect to receive any interest in the property or in Northgate Exploration Limited or any of its subsidiary companies.

Toronto, Ontario

REFERENCES

Society of Exploration Geophysicists	1967	Mining Geophysics Vols. and II - Society of Exploration Geophysicists
Telford, W. M.	1976	Applied Geophysics. Cambridge University Press, 860 p.
Telford et al	1976	VLF Mapping of Geological Structure - Geological Survey of Canada Paper 76-25
Fraser, D.C.	1981	A review "of Some Useful Algorithums in Geophysics CIM Bulletin, vol. 74 No. 828
Fraser D. C.	1969	```Contouring of VLF-EM Data Geophysics Vol. 34 No. 6 - p. 958-967```
Madden-Vozoff		Selected plots from the Mad-den-Vozoff. VLF Model Suite (Surface data)
Thompson, J.E.	1961	Maclennan and Scadding Townships Ont. Dept. Mines, Gr. z, 34 p incl. Map 2009 - Scale 1:31,680

Pioneered and patented exclusively by Geonics Limited, the VLF method of electromagnetic surveying has been proven to be a major advance in exploration geophysical instrumentation.

Since the beginning of 1965 a large number of mining companies have found the EM16 system to meet the need for a simple, light and effective exploration tool for mining geophysics.

The VLF method uses the military and time standard VLF transmissions as primary field. Only a receiver is then used to measure the secondary fields radiating from the local conductive targets. This allows a very light, one-man instrument to do the job. Because of the almost uniform primary field, good response from deeper targets is obtained.

The EM16 system provides the in-phase and quadrature components of the secondary field with the polarities indicated.

Interpretation technique has been highly developed particularly to differentiate deeper targets from the many surface indications.

Principle of Operation
The VLF iransmitters have vertical antennas. The magnetic signal component is then horizontal and concentric around the transmitter location.

Specifications

Source of primary field

Transmitting slations used

Operating frequency range
Parameters measured

Method of reading

Scale range
Readability

VLF transmitting stations.
Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two tuning units can be plugged in at one time. A switch selects either station.

About $15-25 \mathrm{kHz}$.
(1) The vertical in-phase component (tangent of the tilt angle of the polarization ellipsoid).
(2) The vertical out-of-phase (quadrature) component (the short axis of the polarization ellipsoid compared to the long axis).

In-phase from a mechanical inclinometer and quadrature from a calibrated dial. Nulling by audio tone.

In-phase $\pm 150 \%$; quadrature $\pm 40 \%$. $\pm 1 \%$.

Reading time

Operaling temperature range Operaling controls

Power Supply
Dimensions
Weight
Instrument supplied whth

Shipping weight

10-40 seconds depending on signal strength.
-40 to $50^{\circ} \mathrm{C}$.
ON-OFF switch, battery testing push button, station selector, switch, volume control, quadrature, dial $\pm 40 \%$, inclinometer dial $\pm 150 \%$.

6 size AA (penlight) alkaline cells.
Life about 200 hours.
$42 \times 14 \times 9 \mathrm{~cm}(16 \times 5.5 \times 3.5 \mathrm{in}$.)
1.6 kg (3.5 lbs .)

Monotonic speaker, carrying case, manual of operation, 3 station selector plug-in tuning units (additional frequencies are optional), set of batteries.
4.5 kg (10 lbs .)

[^0]

Areas of VLF Signals

Coverage shown only for well-known stations. Other reliable, fully operational stations exist. For full information regarding VLF signals in your area consult Geonics Limited. Extensive field experience has proved that the circles of coverage shown are very conservative and are actually much larger in extent.

EM 16 Profile over Lockport Mine Property, Newfoundland
Additional case histories on request.

Station Selector wo tuning units can be plugged f at one time. A switch selects ither station.

Receiving Coils
Vertical receiving coll circuit in instrument picks up any vertical signal present. Horizontal receiving coil circuit, after automatic 90° signal phase shift, feeds signal into quadrature dial in series with the receiving coil.

In-Phase Dial
shows the tilt-angle of the instrument for minimum signal. This angle is the measure of the vertical in-phase signal expressed in percentage when compared to the horizontal field.

Quadrature Dial
Is calibrated in percentage markings and nulls the vertical quadrature signal in the vertical coil circuit.

By selecting a suitable transmitter station as a source, the M 16 user can survey with the most suitable primary field azimuth.

The EM 16 has two receiving coils, one for the pick-up of the corizontal (primary) field and the other for detecting any anomalous vertical secondary field. The coils are thus orthogonal, and are mounted inside the instrument "handle".

The actual measurement is done by first tilting the coil assembly to minimize the signal in the vertical (signal) coil and then further sharpening the null by using the reference signal to buck out the remaining signal. This is done by a calibrated 'quadrature' dial.

The tangent of the tilt angle is the measure of the vertical in-phase component and the quadrature reading is the signal at right angles to the total field. All readings are obtained in per centages and do not depend on the absolute amplitude of the primary signals present.

The "null" condition of the measurement is detected by the drop in the audio signal emitted from the patented resonance loudspeaker. A jack is provided for those preferring the use of an earphone instead.

The power for the instrument is from 6 penlight cells. A battery tester is provided.

Measures absolute magnitude of total magnetic field

1 gamma sensitivity.
10 scale ranges: 20,000
to 100,000 gammas
Digital readout with long life, light emilling diodes.

Nolse cancelling toroidal sensor.
Wide operating temperature range.

Model GP-70 is a reliable, light weight, proton magnetometer designed for field operation under widely varying environmental conditions. It measures the absolute magnitude of the total magnetic field within the range of 20,000 to 100,000 gammas to an absolute accuracy of ± 1 gamma and ± 15 parts per million of the field under measurement, over the temperature range of -30° to $+50^{\circ} \mathrm{C}$.

The instrument is simple to operate. A complete reading is obtained in 3.5 seconds by depressing a push button. The field intensity is read directly in gammas from a five digit display consisting of light emitting diodes. A 10 position switch sets the appropriate range.

The instrument is powered by internally mounted size "D" alkaline batteries
(standard) or by non-ferrous rechargeable batteries (optional). The rechargeable batteries have virtually zero mag. netic effect and permit full use of the magnetometer sensitivity even with close spacing between the sensor and console.

A battery meter shows condition of batteries at all times and allows

anticipation of when batteries should be replaced.

The GP-70 noise cancelling toroidal sensor minimizes effect of external interference from man made sources. In high electrical noise areas, further improvement in signal to noise ratio can be achieved by keeping the push
manual; all in a sturdy transit case.
button depressed during a reading. This procedure automatically doubles the sensor polarize time, creating a higher signal output from the sensor.

Model GP-70 comes complete and ready for use with console, carrying strap, sensor, extending aluminum staff, spare batteries, instruction

An optional feature of the GP-70 is the back pack sensor harness. This option allows for a hands-free operation of the magnetometer, a major benefit in areas of rough terrain or thick vegetation.

Specifications

Senslitivity: 1 gamma
Range: 20,000 to 100,000 gammas in ten switch positions.
Operating Temperature: -40° to $55^{\circ} \mathrm{C}$.
Absolute Accuracy: ± 1 gamma and ± 15 parts per million of measured field over range of -30° to $+50^{\circ} \mathrm{C}$.
Sensor: Noise cancelling toroidal coil is electro-statically balanced to minimize interference between sensor and console.
Read Out: 3.5 seconds total - by push button. Double polarizing time by keeping button depressed.
Display: 5 digits on long life, light emitting diodes.

Electronic Circults: Integrated circuits complying with military specifications used throughout.

Console: Sturdy aluminum housing with rubber light shield and shock guard.

Dimensions: Console -3 " $\times 6$ " $\times 9.5$ "
($7.5 \times 15 \times 24 \mathrm{~cm}$)
Sensor $-4.5^{\prime \prime} \times 5^{\prime \prime}(10.5 \times 12.7 \mathrm{~cm})$
Staff-5 ft. (1.5 m) extended
$2 \mathrm{ft}(0.6 \mathrm{~m})$ collapsed
Weights:
Console 3.8 lbs . (1.7 kg)
Sensor and cable $5 \mathrm{lbs} .(2.3 \mathrm{~kg})$
Aluminum staff $1 \mathrm{lb} .(0.45 \mathrm{~kg})$
12. Alkaline "D" cells 3 lbs (1.1 kg)

Power Supply: Standard - 12 internally mounted alkaline "D" cells provide over 10,000 readings at $25^{\circ} \mathrm{C}$. decreasing to approximately 1,000 readings at $-30^{\circ} \mathrm{C}$. Optional: Internally mounted rechargeable non-ferrous batteries and charger. Over 3,000 readings between charges.

Battery Indicator: A miniature meter monitors battery life and helps predict battery replacement time.

McPhar Instrument Corporation

Head Office:

55 Tempo Avenue, Willowdale, Ontario, Canada M2H 2 R9
Tel: (416) 497-1700 Telex: 0623541
Cable: McPHAR TOR

Sales agents in:
Africa, Asia, Australia, Europe, North
\& South America

Contact McPhar Instrument Corp. head office for the agent in your area.

DESCRIPTION

The Barringer BM-123 magnetometer system uses the proton precession principle to measure the earth's total magnetic field intensity. There is no need for levelling or calibration of the sensor and it is unaffected by external influences such as temperature, etc.

FEATURES

- Magnetometer neatly combined with analog recorder in console measuring only $17^{\prime \prime} \times 12^{\prime \prime} \times 8^{\prime \prime}$ ($43.2 \mathrm{~cm} \times 30.5 \mathrm{~cm} \times 20.3 \mathrm{~cm}$)
- powered by mains AC or 24 Volts DC
- Full 1 gamma or 0.5 gamma sensitivity

APPLICATIONS

- Storm monitoring
- Diurnal variation monitoring

TYPICAL SYSTEM COMPONENTS

- Magnetometer console, including 5-inch chart recorder
- Toroidal sensor
- Fully adjustable cycling rate from 2 seconds to 99 minutes in 1 second stages
- BCD output readily adaptable to digital cassette or other magnetic type recording
- To save power chart recorder can be made to operate only when magnetometer cycles
- Observatory measurements including three component measurements with the use of Helmholtz coils
- Connecting cable
- Tripod
- Power supply (optional)

SMECIFICATIONS

CONSOLE MODEL M-123-1

Sensitivity
Accuracy
Range
Cycle Rates:
Continuous Cycling
Automatic Cycling
Manual Cycling
External Cycling
Outputs:
Analog
Fiducial Marker
Visual
External Outputs:
Analog

Digital

Fiducial Mark
Size
Weight
Operating Temperature
Power Requirements
Options

1 gamma throughout the range
± 1 gamma at 24 volts dc
20,000 to 100,000 gammas in 12 overiapping settings
$0.6,0.8,1.2$ and 1.9 seconds.
2 seconds to 99 minutes in 1 second steps
pushbutton single cycling at 1.9 seconds
actuated by a 2.5 to 12 volt pulse longer than 1 millisecond
front panel select 0 to 99 gammas or 0 to 990 gammas internal selection of 1 second to 99 minutes in 1 second steps
5 digit numeric display directly in gammas
2 channels, 0 to 99 gammas and 0 to 990 gammas at 1 milliamp or 1 volt Full Scale Deflection
BCD 1, 2, 4, 8 code, TTL compatible
0 State - 0 to 0.5 volts
1 State -2.5 to 5 volts
Relay closure or open state selected internally from 1 second to 99 minutes $8^{\prime \prime} \times 12^{\prime \prime} \times 17^{\prime \prime}(20.3 \mathrm{~cm} \times 30.5 \mathrm{~cm} \times 43.2 \mathrm{~cm}$) (fits under a commercial airline seat)
$20 \mathrm{lbs}(9.1 \mathrm{~kg})$
$-28^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Magnetometer 12 to 30 volts dc 60 to 200 milliamps maximum
Recorder $\quad 12$ to 30 volts dc 0.5 to 0.9 amps maximum
Component Spares Kit - a selection of critical solid state components and
fuses required for general console maintenance
Board Spares Kit - a complete selection of plug-in PC boards for maintenance of the console on longer term surveys

HIGH SENSITIVITY CONSOLE MODEL M-123-2

Sensitivity
Accuracy
0.5 gammas at 1.9 seconds
± 0.5 gammas at 1.9 seconds

All other specifications the same as Model M-123-1

MAGNETOMETER ELECTRONICS ONLY MODEL M-123-3
Size $\quad 6^{\prime \prime}$ high $\times 7^{\prime \prime}$ wide $\times 6^{\prime \prime}$ deep ($15.2 \mathrm{~cm} \times 17.8 \mathrm{~cm} \times 15.2 \mathrm{~cm}$) can fit a standard $19^{\prime \prime}(48.3 \mathrm{~cm})$ rack
approximately $5 \mathrm{lbs}(2.3 \mathrm{~kg})$
Weight
Outputs
External Outputs
same as model M-123-1 above

CONSOLE OPTIONS
Digital Cassette Recording - various systems available, details on request Hewlett-Packard Recorder Spares
Hewlett-Packard Recording Supplies -- chart paper and disposable pens

Mining Recorder
Ministry of Natural Resources
199 Larch Street
Sudbury, Ontario
P3E 5P9

Dear SIr:
RE: Geophysical (Electromagnetic \& Magnetometer) Survay on Mining Claims $S 346895$ et al in the Township of Scadding.

The Geophysical (Electromagnetic \& Magnetometer) Survey assessment work credits as 11sted with my Notice of Intent dated December 6, 1982 have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours very truly,
E. F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: 416/965-1380
A. Barr:se
cc: Northgate Exploration Limited Toronto, Ontario
cc: Resident Geologist Sudbury, Ontario

Ministry of
Natural
Resources

Your file:

Our file:
2.4211

Mining Recorder
Ministry of Natural Resources
199 Larch Street Sudbury, Ontario P3E 5P9

Dear Sir:

Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the other. In approximately fifteen days from the above date, a final letter of approval of these credits will be sent to you. On receipt of the approval letter, you may then change the work entries on the claim record sheets.

Yours very truly,
E.F. Anderson

Director
Lands Administration Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
MFA IW3
Phone: 416/965-1316
A. Barr: sc

For further information, if required, please contact Mr. F.W. Matthews at 416/965-1380.
cC: Northgate Exploration Limited Toronto, Canada
cc: Mr. G.H. Ferguson
Mining \& Lands Commissioner Toronto, Ontario

Ministry of
Natural Resources
Ontario

Notice of Intent

for Technical Reports

19820206

2.4211

An examination of your survey report indicates that the requirements of The Ontario Mining Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on his record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the "Special Provision-Performance and Coverage" method and you are of the opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted direct to the Lands Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued.

Recorded Holder	SCADDING GOLD MINES LIMITED
Township or Area	SCADDING TONNSHIP

Type of survey and number of Assessment days credit per claim	Mining Claims Assossed
Geophysical Electromagnetic \qquad days Magnetometer \qquad 40 \qquad days Radiometric \qquad days Induced polarization \qquad days Section 86 (18) \qquad days Geological \qquad days Geochemical \qquad days Credits have been reduced because of partial coverage of claims. Credits have been reduced because of corrections to work dates and figures of applicant.	```S 346895 346897 to 99 inclusive 357987 to 90 inclusive 357993 to 96 inclusive 346915 357990 357993 to 95 359343 to 45 359360 373196 346900 478823 to 32 incil. 538818 to 22 inil. 538824 538828 to 33 incl. 546805 to 24 incl. 546827-28 546831 551173-75 551178```
Special credits under section 86 (15a) for the following mining claims	
$\begin{aligned} & \text { IO days } \\ & \text { S } 551179 \end{aligned}$	20 days S 538823 539825

No credits have been allowed for the following mining claims
[X] not sufficiently covered by the survey
Insufficient technical data filed
S 538826-27

Ontario

Recorded Holder	SCADDING GOLD MINES LIMITED
Township or Area	SCADDING TOWNSHIP

Type of survey and number of Assessment days credit per claim	Mining Claims Assessed	
Geophysical Electromagnetic \qquad 20 days Magnetometer \qquad days Radiometric \qquad days Induced polarization \qquad days Section 86 (18) \qquad days Geological \qquad days Geochemical \qquad days Credits have been reduced because of partial coverage of claims. Credits have been reduced because of corrections to work dates and figures of applicant.	S 478916 478919 478976 to 26 incl. 79 incl. 539384 $539389-90$ 539397 539403 346895 346897 to 900 incl. 99 incl.	```S 538824 538828 to 33 incl 546805 to 24 incl. 546827-28 546831 551173 to 75 incl. 373196```

Special credits under section 86 (15a) for the following mining claims

5 days	10 days	15 days
S 551179	$\mathrm{S} \mathrm{478917-18}$	S 478891
	$478927-28$	
9	5388823	

No credits have been allowed for the following mining claims

[X not sufficiently covered by the survey
 Insufficient technical data filed

```
S 539391 to 96 incl.
539401-02
538826-27
```

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 86(18)-60:

Claims in Scadding Tomship

ID IV A78891 S478916 S478917 S478918 S478919 S478920 S478921 S478922 S478923 S478924 S478925
S478926
S478927
S478928
S478976
S478977
S478978
S478979.
S539389
S538398
S539384.
S539390
S539391.
S539392
S539393
S539394
S539395
S539396
S539397
S539399
S539400
S539401
S539402
S539403
ID I S346895
S346897
S346898
S346899
S357987
S357988
$\$ 357989$
S357990.
S357993
S357994
S357995
S357996.
ID II S346915
S357990
S357993
S357994
S357995
\$359343
$\$ 359344$
\$359360
$\$ 373196$

	man days	(Ground Nagnetics Only)
40		
40	" 1	
40	" \quad	
40	" "	
40	" "	
40	" "	- : .
40	" "	
40	" 1	
40	" "	
40	" "	
40	" "	
40	" 1	
40	"	-
40	"	
40	"	
40	"	
40	"	
40	"	
40	".	
40	" "	
40	" "	\cdots
40	" "	\because
40	" "	$\vdots \because$
40	" "	
40	" "	Viv-
40	" "	- . .
40	" "	
40	"	…
40	" ".	M
40	"	
40	"	
40	1	
40	" "	
60	" "	(Ground Magnetics and VLF-EM)
60	" \quad	
60	"	
60	"	
60	"	
60	"	
60	"	
60	"	
60	"	
60	" "	
60	"	
60	"	

Included in Grids I and III

Claims in Scadding Township (Con't)

S346900 S478823 S478824
S478825
S478826
S478827
S478828
S478829
S478830
S478831
S478832
S359343
S359344
S359345
S538818
S538819
S538820
S538821
S538822
S538823
S538824
S538825
S538826
S538827
$\$ 538828$
\$538829
S538830
S538831
S538832
S538833
\$546805
\$546806
S546807
S546808
S5n6809
S546810
S546811
S546812
5546813
S546814
S546815
S546816
S546817
S546818
-S546819
5546820
\$546821
S546822
S546823
S546824
S546827
5546828
5546831

60 man days (Ground Magnetics and VLF-EM) 60
60 " " 60 60 6
6
6
6 6 6 6 6 6 6 6

60 60 60 60
60 60 60. 60 60
60 60 60 60^{-} 60 60 60 60 60 60 60 60 60 60
60 60 60

60	$"$	$"$
60	$" 1$	$" 1$
60	$"$	$" 1$

claims in Scadding Township (Con't)

To: Geophysics m. Barlow. Comments

To: Geology - Expenditures Comments

Approved $\quad \square$ Wish to see again with corrections	Date	Signature

To: Geochemistry comments
\square To: Mining Lands Section, Room 6462, Whitney Block.
(Tel: 5-1380)

NOPTHGATE EXPLORATION LIMITED
SUITE : P. O. BOX 143. 1 FIRST CANADIAN PLACE. TORONTO, CANADA M5X 1C7 • TELEPHONE (418) 362-6683 • TELEX 06-217766

July 28th, 1982
RECEIVED
Land Management Branch
circulate
comments please
BY
Your File: 2.4211
Mr. E. F. Anderson
Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario M7A 1W3
Dear Mr. Anderson,
Re: Geophysical (Electromagnetic and Magnetometer) Survey re Mining Claims: S 346895 et al, Scadding Township

Enclosed, please find the V.L.F. maps for the above mentioned survey which have now had the values added as per your request. Furthermore, I enclose the Grid III maps, now showing the north direction.

For further assistance, please don't hesitate to contact me.
Yours truly,
NORTHGATE EXPLORATION LIMITED

W. W. Weber

Manager of Exploration
/hp
cc: \quad Mining Recorder Sudbury, Ontario

Encl.

Northgate Exploration Limited
Suite 3140 - 1 First Canadian Place
P.O. Box 143

Toronto, Ontario
M5X 1 C7
Attn: Mr. W. W. Weber
Dear Sir:
RE: Geophysical (Electromagnetic and Magnetometer) Survey submitted on Mining Claims: S 346895 et al in the Township of Scadding

Enclosed are the V.L.F. maps for the above-mentioned survey. These maps must show the values of the readings taken at each station point, 1.e., raw data. Also the Grid III maps are missing the north direction.

For further information, please contact Mr. F.W. Matthews at 965-6918.

Yours very truly,
E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Qưeen's Park
Toronto, Ontario
M7A 1H3
Phone: 416/965-1316
A. Barr/amc

Encl.
cc: Mining Recorder Sudbury, Ontario

Ministry of Natural Resources
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A-1W3

RECEIVED OCT 211981
 MINING LANDS SECTION

Attention: Mr. Fred Matthews

Dear Mr. Matthews:
Enclosed please find the Mining Act of Work for the Magnetic and Electromagnetic Survey conducted over 105 claims in Scadding Township. Application is being made for 40 man days credit on 34 claims and 60 man days credit on 71 claims.

1 hope this report is to your satisfaction. Should any further information be required please do not hesitate to contact me.

> Yours truly

Dr.2r.2neteu

W.W. Weber Manager of Exploration North America

Enclosed: 2 copies of Geophysical Data Statement
1 copy of the Mining Act Report of Work including claims schedule and invoices

2 copies of the Geophysical Report on the Scadding Township Project Sudbury, Ontario. Report by MPH Consulting Ltd. for Northgate Exploration. (Volume 1 and Map Volume 2)
\qquad

> TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

Ministry of Natural Resources

List numerically

See.....is.t..at.t.a.ched (prefix)
(number)

Type of Survey (s) __ Magnetometer, VLF-EM
Township or Area Scadding Township
Claim Holder(s)__ Northgate Exploration Limited Toronto, Ontario
Survey Company_ MPH Consulting
Author of Report __Dave Jones
Address of Author _ 706-141 Adelaide Street West, Toronto
Covering Dates of Survey November $\frac{\text { (linecutting to office) }}{} 1981$
Total Miles of Line Cut 271 km.

SPECIAL PROVISIONS		DAYS per claim
CREDITS REQUESTED		

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol.
Qualifications \qquad
Previous Surveys

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations Mag 13,800, VLF 11,600 Number of Readings Mag 13,800, VLF 11,600
Station interval \#1 $100^{\prime}, \# 250^{\prime}, \# 3,425 \mathrm{~m} \quad$ _Line spacing \#1 $100^{\prime}, \# 250^{\prime}, \# 3,4100 \mathrm{~m}$
Profile scale $1 \mathrm{~cm}=10 \%$
Contour interval 100 gammas and 25 gammas
Instrument McPhar GP70 Proton Precession
Accuracy - Scale constant $\frac{ \pm 1 \text { gamma, } \pm 15 \text { ppm of field under measurement }}{\text { Diurnal correction method Barringer M123 Base Station }}$
Base Station check-in interval (hours) 10 sec . intervals
Base Station location and value Base camp

Instrument EM 16
Coil configuration Horizontal Loop
Coil separation As per grid
Accuracy $\pm 1 \%$ \qquad
Method: $\quad \square$ Fixed transmitter $\quad \square$ Shoot back line $\quad \square$ Parallel line
Frequency Cutler Maine 17.8 khz (specify V.L.F. station)
Parameters measured. Tilt angle of axis of polarization ellipse

Instrument
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad
\qquad
Elevation accuracy

Instrument \qquad
Method [] Time Domain
Frequency Domain
Parameters ... On time \qquad Frequency \qquad
.... Off time
Range
--. Delay time \qquad

- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode \qquad

	Claims in Scadding Township (Con't)			
GRID III	S346900			days (Ground Magnetics and VLF-EM)
	S478823			" (Ground Magnetics and VLF-EM)
	S478824	60		"
	S478825	60	"	"
	S478826	60	"	"
	S478827	60	"	"
	S478828	60	"	"
	S478829	60	"	"
	S478830	60	"	"
	S478831	60	"	"
	S478832	60	'	"
	S359343	60	$!$	"
	S359344	60	"	"
	S359345	60	"	"
	S538818	60	"	"
	S538819	60	"	"
	S538820	60	"	"
	S538821	60	"	"
	S538822	60	"	"
	S538823	60	"	"
	S538824	60	"	"
	S538825	60	"	"
	S538826	60	"	11
	S538827	60	"	"
	S538828	60	"	"
	S538829	60	11	"
	S538830	60	"	"
	S538831	60	"	"
	S538832	60	11	"
	5538833	60	"	"
	S546805	60	"	"
	S546806	60	"	,
	S546807	60	"	"
	S546808	60	"	11
	S546809	60	"	11
	S546810	60	"	"
	S546811	60	1	,
	S546812	60	"	"
	S546813	60	"	"
	S546814	60	"	"
	S546815	60	"	"
	S546816	60	"	,
	S546817	60	"	"
	S546818	60	"	"
	S546819	60	"	"
	S546820	60	"	11
	S546821	60	"	"
	S546822	60	"	"
	S546823	60	"	"
	S546824	60	"	"
	S546827	60	"	"
	S546828	60	"	,
	S546831	60	"	"

	Claims in Scadding Township (Con't)	
$\begin{aligned} & \text { GRID III } \\ & \text { Con't } \end{aligned}$	S551173	60 män days (Ground Magnetics and VLF-EM)
	S551174	60 " "1
	S551175	60 " "
	S551178	60 " "
	S551179	60 " "
	S373196	60 " "
	TOTAL CLAIMS 105 TOTAL DAYS	5620
	TOTAL CLAIMS AT 40 MAN DAYS 34	(Magnetometer Survey only)
	TOTAL CLAIMS AT 60 MAN DAYS 71	(Magnetometer and VLF-EM Surveys)

SEIF POTENTIAL

Instrument \qquad Range \qquad
Survey Method \qquad

Corrections made \qquad
\qquad

RADIOMETRIC

Instrument \qquad
Values measured
Energy windows (levels) \qquad
Height of instrument \qquad Background Count \qquad
Size of detector \qquad
Overburden
(typc, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WILA LOGGING ITC.)
Type of survey
Instrument \qquad
_

Accuracy
Parameters measured \qquad

Additional information (for understanding results)
\qquad

AIRBORNE SURVJYS
Type of survey(s)
Instrument(s) \qquad (specify for each type of survey)
Accuracy. (specify for each type of survey)
Aircraft used \qquad
Sensor altitude. \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude \qquad Line Spacing
Miles flown over total area Over claims only

Numbers of claims from which samples taken

Total Number of Samples_________
Type of Sample___ (Nature of Material)
Average Sample Weight__
Method of Collection \qquad

Soil Horizon Sampled
Horizon Development
\qquad

Sample Depth \qquad
Terrain. \qquad
\qquad
Drainage Development
Estimated Range of Overburden Thickness
\qquad
\qquad

SAMPIE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis. \qquad
\qquad
\qquad
\qquad

General \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
——_
\qquad \longrightarrow

ANALYTICAL METHODS

Values expressed in:	per cent \square p. p. m. \square p.p.b.	\square

$\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Ag}, \mathrm{Mo}, \mathrm{As}$, -(circle)
Others
Field Analysis (_______________(ests)
Extraction Method \qquad
Analytical Method \qquad
Reagents Used \qquad
Field Laboratory Analysis
No. tests)
Extraction Method
Analytical Method \qquad
Reagents Used \qquad
Commercial Laboratory (________tests)
Name of Laboratory \qquad
Extraction Method_________________
Analytical Method
Reagents Used \qquad

General \qquad

MRPH Consulting Limited
141 Adelaide Street W., Suite 706, Toronto, Canada M5H 3L5

March 31, 1981

Northgate Exploration Ltd.
P.O. Box 143

First Canadian Place Toronto, Ontario M5X 1C7

C429 Scadding
TO: Professional Services

D. Jones
D. Hall
M. Bickers
D. Johnston
T.R. Kraft
M. Nadjiwan

3 hours	at $\$ 40$	$\$ 120.00$
14 days	at $\$ 150$	$2 ; 100.00$
14	days	at $\$ 125$
5 days	at $\$ 125$	$1,750.00$
14 days	at $\$ 125$	625.00
4 days	at $\$ 125$	$1,750.00$
		$\$ 6,845.00$

Equipment Rental:
VLF-EM Unit 13 days at $\$ 17$

Disbursements: Page Two
$\frac{\$ 2,710.59}{\$ 9,776.59}$
.. . 2

$\$ 221.00$

Northgate Exploration Ltd. Page Two
March 31, 1981

C429
TO: Disbursements

College Copy Shop	
BPX Delivery	
BPX Delivery	
Bell Canada	
McPhar 1767	
McPhar Instruments	R1785
Langridge	Rl7
Project Truck	Rl784
D. Hall Exp. Acct.	R1780
D. Hall Exp. Acct.	R1067
Deonics	

Administration 10\%
$\$ 12.25$
BPX Delivery
BPX Delivery
Bell Canada R1767
McPhar Instruments R1785
McPhar Instruments Rl786
Langridge
Project Truck
D. Hall Exp. Acct. R1067

Geonics
5.05^{\checkmark}
5.05
10.22
636.93
432.55
52.91^{\sim}
588.50 V
99.98 V
54.33 V
$\$ 2, \frac{566.40}{}{ }^{264.17}$
246.42
$\$ \longdiv { 2 , 7 1 0 . 5 9 }$

April 30, 1981

Northgate Exploration Ltd.
P.O. Box 143

First Canadian Place
Toronto, Ontario
MEX 1C7

TO: Professional Services
D. Jones
D. Hall
D. Johnston
M. Bickers

Tom Kraft
4.75 hours @ \$ 40

14 days @ $\$ 150$
13 days @ $\$ 125$
13 days @ \$125
20 days @ $\$ 125$
\$ 190.00
2,100.00
1,625.00
1,625.00
$2,500.00$
$\$ 8,040.00$
$\$ 221.00$
$\$ 1,345.79$
$\$ 9,606.79 \lambda$

$$
\text { . . . } 2
$$

$772-401=25 \%$
$724-401=25 \%$
$723-401=121 / 2 \%$.
$725-401=121 / 2 \%$.
$726-401=121 / 2 \% 1205.5$
$727-401=12 \mathrm{~V} 2 \% \cdot 12$.

Northgate Exploration Ltd.
Page Two
April 30, 1981
C-429 Scadding
TO: Disbursements:
D. Johnston Expense Account

Barringer Research R1852
J. Siriunas Expense Account
D. Hall Expense Account Rll02

Barringer Research R1882
D. Hall Expense Account

Administration 10\%
27.25
650.03
1.07
208.10
325.01
11.99
$\$ 1, \frac{223.45}{122.34}$
$\$ 1,345.79$

May 30, 1981

Northgate Exploration Ltd.
PO Box 143
First Canadian Place Toronto, Ontario MEX 1C7

C429 Scadding
TO: Professional Services
D. Jones
T. Kraft
12.5 hours @ $\$ 40 /$ hour
500.00
1000.00

8 days @ \$125/day
$\$ 1500.00 \quad 1$
Disbursements
Geo Cartographic Services Ltd. R1897
27.94

Geo Cartographic Services Ltd. R1907
Project Truck Rentals Ltd.
R1929
304.82
974.30

Credit for D. Johnston
Exp. Acct.- Invoiced in April
(27.25)
$\$ 1279.81$
Administration - 10\%
127.98
$\$ 1407.79$
TOTAL:

\$2,907.79

Date:	June 30,1981
Invoice No.	0115
Page No.	C-429 Scadding Township

Northgate Exploration Co. Ltd. P.O. Box 143

First Canadian Place
Toronto, Ontario M5X 1C7

TO: Professional Services

| D. Jones | 21.5 hours at $\$ 40$ | $\$ 860.00$ | |
| :--- | ---: | :--- | ---: | ---: |
| D. Hall | 1 day at $\$ 150$ | 150.00 | |
| T.R.Kraft | 9 days at $\$ 125$ | $1,125.00$ | $\$ 2,135.00$ |

Disbursements:
Geo Cartographic Services R2081
Geo Cartographic Services R2080
Geo Cartographic Services R2079
Bell Canada
Geo Cartographic Services R3069
Geo Cartographic Services R3067
Geo Cartographic Services R3066
Administration - 10\%

$\$ 3,095.64$
52.00
107.86
2.43
2.41
20.54
106.57
$\$ 3,387.45$
338.75
$\$ 3,726.20$
\$5,861. 20

Minine Recorder's office
Ministry of Natural Resources
199 Jarch Street,
Sudbury, Ontario
P3E 5P9

Dear Sir:
We have received reports and maps for a Geophysical (Electromagnatic and Magnetometer) survey submitted under Special Provisions (credit for Performance and Coverage) on mining claims $S 346895$ et al in the Iownship of Scadding.

This material will be examined and assessed andaa statement of assessnent work credits will be $18 s u e d$.

Yours very truly

```
E.F. Anderson
Director
Land Management Branch
Whitney Elock, Room 6450
Queen's Park
Toronto, ontario
M7A 1W3
Phone 416/965-1380
Joan Sl.ura
cc: Northgate Lxploration Limited
        Toronto, Ontario
    MPH Consulting
    Toronto, Ontardo
```

MINING I LANDS COMMENTS: V. L. Fisucec -nerve

a

LD Y Logic Radios Now lo derexte

GEOPHYSICS ma. Barlow. \qquad -ur maze nad under - Gull III, man must nan due.

\square GEOLOGY - EXPENDITURES \qquad

DATE:		APPROVED
SIGNATURE:		WISH TO SEE AGA IN WITH CORRECTIONS

DATE:		APPROVED
SIGNATURE:		WISH TO SEE AGA IN WITH CORRECTIONS

the mining act report of work

A separate form is required for each type of work to be

 recorded．
Claim No Days Claim No．Days Claim No．Day

READ CAREFULLY：THE FOL LOWING INFORMATION IS REQUIRED BY THE MINING RECORDER．

For Manual Work，Stripping or Opening up of Mines，Sinking Shafts or Other Actual Mining Operations－Names and addresses of the men who performed the work and the dates and hours of the ir employment．
For Diamond and other Core Drilling．Footage，No．and angle of holes and diameter of core．Name and address of owner or operator of drill．Dates when drilling was done．Signed core log and sketch in duplicate．
For Compressed Air or Other Power Driven or Mechanical Equipment
Type of drill or equipment．Names and addresses of men engaged in operating equipment and the dates and hours of their employment．
For Power Stripping－Type of equipment．Name and address of owner or operator．Amount expended．Dates on which work was done．Proof of actual cost must be submitted within 30 days of recording．
With each of the above types of work sketches are required to show the location and extent of the work in relation to the nearest claim post．In the case of diamond or other core drilling the sketch must be submitted in duplicate． For Geophysical，Geological，Geochemical Surveys and Expenditure Credits．the name of author of report．Covering dates of survey（linecutting \＆office）．Type of instrument used．Total amount of expenditure．Technical reports， maps，expenditure breakdown，receipts must be filed in duplicate with the Minister within 60 days of recording．
For Land Survey－the name and address of Ontario L and surveyor．
The Required Information is as Follows：（Attach a list if this space is insufficient）
Contractor MPH Consulting，D．Jones
Date of Survey，Line cutting commenced October 1980，Geophysical report was submitted July 1981
VLF－EM survey－EM 16 instrument
Magnetometer survey－GP 70 Proton Magnetometer with BM 123 Base Station
Copies of line cutting charges and MPH billing enclosed．

Dote ．．October 20 1981

The Mining Act
Certificate Verifying Report of Work
I．

2．That the annexed report is true．

Dated．．．October 20．．1981．．．．．．． 19

Northgote Exploration Limited
 1ヨA

[^0]: 2 Thorncliffe Park Drive, Toronto/Ontario/Canada M4H 1H2
 Tel: 425-1824
 Cables: Geonics

