RIVED 010 U Li 211981
 mining lands section

2*2". cioplenter
gEOPHYSICAL REPORT

ON THE
SPADING TOWNSHIP PROJECT

SUDBURY, ONTARIO
\qquad
for
NORTHGATE EXPLORATION LIMITED

Toronto, Ontario, Canada July, 1981
D. Jones, MASc.

TABLE OF CONTENTS

SUMMARY
1

1. INTRODUCTION 3
2. LOCATION AND ACCESS

4
3. SURVEY PARAMETERS 6
3.1 Grid \#1

Grid \#2
Grid \#3
Grid \#4
3.2 VLF-EM Surveying 9
3.2.1 Grid \#1
3.2.2 Grid \#2
3.2.3 Grid \#3
3.2.4 Grid \#4
3.3 Magnetics 10
3.3.1 Grid \#1
3.3.2 Grid \#2
3.3.3 Grid \#3
3.3.4 Grid \#4
3.4 Personnel 11
4. GEOLOGY 12
5. INSTRUMENTATION 15
5.1 VLF-EM Electromagnetic Method 15
5.2 Magnetics 17
6. PRESENTATION OF DATA 19
7. INTERPRETATION 21
7.1 Grid \#l
7.1.1 Magnetics
7.1.2 VLF-EM
7.2 Grid \#2 25
7.2.1 General Comments
7.2.2 Magnetics
7.2.3 VLF-EM
7.3 Grid \#3
7.3.1 Magnetics
7.3.2 VLF-EM
7.4 Grid \#4

39
7.4.1 General Comments
7.4.2 Magnetics
7.4.3 VLF-EM Survey
8. CONCIUSIONS 41
8.1 Grid \#l 41
8.2 Grid \#2 42
8.3 Grid \#3 43
8.4 Grid \#4 44
9. RECOMMENDATIONS 46
CERTIFICATE 47
REFERENCES 48
APPENDIX I 49

SUMMARY

During the period March llth to April 5th, 1981, M P H Consulting Limited of Toronto, Ontario carried out a programme of geophysical surveying on behalf of Northgate Exploration Limited of Toronto, Ontario on the latter's Scadding Township Project near Sudbury, Ontario.

The surveying programme consisted of VLF-EM and total ficld magnetometer surveys carried out on four separate grid locations.

The purpose of this work was to systematically map and survey the grid areas with a view of outlining areas of poiential economic interest.

The area is mainly underlain by units of conglomerate and limestone of the Sudbury group and quartzite of the Mississagi formation. Post-lluronian gabbro intrudes the Sudbury group with smaller areas of intense shearing containing quartz located within and close to the contact. (Thompson, 1961).

The gold occurrences in the area have been documented as accompanying quartz carbonate veining within shear zones
in the gabbro. Disseminated pyrite generally accompanied the gold.

The shear zones containing the gold mineralization could possibly respond to the high frequency (relative to other exploration geophysical methods) utilized by the VLF-EM. However this response would probably reflect a change in lateral resistivity since the nature and extent of the reported accompanying sulphides (as described in the literature) will probably not be present in sufficient quantity to produce a conductive response.

The nature and extent of the gold mineralization in Scadding Township does not lend itself to definitive mapping with the systems used for this survey and as such no highpriority targets can be outlined from the data at hand.

1. INTRODUCTION

During the period from March llth to April 5, 1981, a programme of geophysical surveying was carried out by M P H Consulting Limited on behalf of Northgate Exploration Limited on the latter's Scadding Township Project near Sudbury, Ontario.

The field programme was carried out under. the supervision of D. Jones, M.Sc., of M P H Consulting Limited with overall supervision provided by Dr. G. Harper, PhD, and R. Zinn, B.Sc., both of Northgate Exploration Limited.

This report describes the exploration techniques employed and presents the results of ground exploration work to date and provides recommendations for further exploration of the property.

2. LOCATION AND ACCESS

The property consists of 199 contiguous unpatented mining claims located in Scadding Township in the District of Sudbury and in the Sudbury Mining Division of northern Ontario.

Within Scadding Township the property covers lots 5 through 12 in concessions 1 through 5 (see Figure 1).

The claims covered by this geophysical survey are numbered:

478823-478832		359343-359345	5346915,5346916
357987-357990		357993-357990	5359359,5359360
346897-346900		538818-538833	346895,546827
539389-539403	\%	478916-478928	539384.478891
478976-478979	,	478880-478881	

while those included in the property but not surveyed are numbered:

$346887-346892$	$507801-507811$	$357991-357993$
$346894-364896$	$478876-478879$	$357997-357998$
$478886-478880$	$346902-346903$	$651183-551222$
$538663-538669$	$551176-551177$	$551179-551182$
$($ part)		

Access to the property is by an all weather road departing north from the Trans-Canada lighway (Highway l7) approximately 25 kilometers east of Sudbury. A series of gravel
roads leading from this all weather road provides access I
to various portions of the property.

Claims in Scadding Township

GRID IV	S478891	40	man days	(Ground Magnetics	Only)
	S478916	40	"		
	S478917	40	"		
	5478918	40	" "		
	S478919	40	"		
	S478920	40	" "		
	S478921	40	" "		
	S478922	40	" "		
	S478923	40	"		
	S478924	40	"		
	S478925	40	" ${ }^{\prime \prime}$		
	S478926	40	" 1		
	S478927	40	" "		
	S478928	40	"		
	S478976	40	"		
	S478977	40	"		
	S478978	40	"		
	S478979	40	"		
	S539389	40	" "		
	S538398	40	"		
	S539384	40	$"$		
	\$539390	40	" "		
	S539391	40	"		
	S539392	40	" "		
	5539393	40	"		
	\$539394	40	"		
	S539395	40	"		
	55.39396	40	"		
	S539397	40	"		
	\$539399	40	"		
	'5539400	40	" "		
	\$539401	40	" "		
	\$539402	40	" "		
	S539403	40	"		
GRID I	S346895	60		(Ground Magnetics	and VLF-EM)
	S346897	60			
	S346898	60	" "		
	S346899	60	" "		
	S357987	60	" "		
	S357988	60	" "		
	S357989	60	" "		
	S357990	60	" "		
	S357993	60	" "		
	S357994	60	11		
	S357995	60	$"$		
	\$357996 ${ }^{\text {/ }}$	60	" "		
GRID II	S345915		cluded in	Grids I and III	
	S357990				
	S357993				
	\$357994 -				
	S357995.				
	S359343				
	S359344 - -				
	S359360 -				
	S373196 -				

Claims in Scadding Township (Con't)

GRID III	S346900 -	60	man	n days	(Ground Magnetics and VLF-EM)
	S478823	60			
	5478824	60	"	"	
	S478825	60	"	"	
	S478825.	60	"	"	
	S478827.	60	"	"	
	S478828	60	"	"	
	S478829 -	60	"	"	
	S478830-	60	"	"	
	S478831 -	60	"	"	
	S478832 -	60	"	"	
	S359343	60	!	"	
	S359344	60	"	"	
	S359345	60	"	"	
	S538818	60	"	"	
	S538819	60	"		
	S538820	60	"	"	
	S538821	60	"	"	
	S538822	60	"	"	
	S538823	60	"	"	
	5538824	60	"	"	
	S538825	60	"	"	
	S538826	60	"	"	
	S538827 -	60	"	"	
	S538828 -	60	"	"	
	S538829	60	"	"	
	\$538830	60	"	"	
	\$538831	60	"	"	
	S538832	60	"	"	
	\$538833	60	"	"	
	S546805	60	"	"	
	\$546806	60	"	"	
	S546807	60	"	"	
	S546808	60	${ }^{\prime \prime}$	"	
	\$546809	60	"	"	
	\$546810	60	"	"	
	S546811	60	"	"	
	S546812	60	"	"	
	S546813	60	"	"	
	S546814	60	"	"	
	S546815	60	"	"	
	S546816	60	"	"	
	S546817	60	"	"	
	S546818	60	"	"	
	S546819	60	"	"	
	S546820	60	"	"	
	S546821	60	"	1	-
	S546822	60	"	"	
	S546823	60	"	"	
	S546824	60	"	"	
	S546827 -	60	"	"	
	S546828	60	"	"	
	S546831 -	60	"	"	

Claims in Scadding Township (Con't)

GRID III S551173
Con't \quad S551174
S551175
S551178
S551179
S373196
60 män days (Ground Magnetics and VLF-FM)
S37
60 " "
60 " "
60 " "
60 " "
60 " "
TOTAL CLAIMS 105 TOTAL DAYS 5620
TOTAL CLAIMS AT 40 MAN DAYS 34 (Magnetometer Survey only)
TOTAL CLAIMS AT 60 MAN DAYS 71 (Magnetometer and VLF-EM Surveys)
Figure 1

3. SURVEY PARAMETERS

The survey grids on which the geophysical surveying was conducted were established at various times and are in both English and metric units. For this report the English grid has been converted to metric $(100$ feet $=30.48$ meters).
3.1 Grid ${ }^{\text {in }}$

Grid \#l was established with its main baseline having the point $0+00$ on line $762+00 \mathrm{E}$ approximately 487.68 meters north of the concession post II and III which post also marks the boundary of lots 4 and 5 of Scadding Township. This baseline runs at an azimuth of 180° for 762 meters to point $0+00$ of line $0+00$ and then continues westward for a further 975.36 meters. A second baseline, located at 152.40 S extends the grid from 975.36 to 1249.68 W.

Crosslines were established on this baseline at intervals of 30.48 meters (100 feet) and were extended a distance of 487.68 meters south. North of the baseline the line length varied from 396.24 meters in the cast to 736.52 meters in the west.

Stations on both the baselines and crosslines were at 30.48 meter (100 feet) intervals. Approximately 67 km of survey lines were cut, chained and picketed.

Grid \#2

This grid was established with point $0+00$ of Line 731.52 N located near post $\# 3$ of Claim 357994 . The baseline extends southward at an azimuth of 155° for a distance of 1036.32 meters.

Crosslines were established on this baseline at 15.26 meter $(50$ foot) intervals and were extended for a distance of 304.80 meters both east and west of the baseline. Stations were located on both the baselines and crosslines at 15.24 meter intervals.

Approximately 44 km of survey line was cut, chained and picketed.

Grid \#3
Grid \#3 was established with point $0+00$ of the baseline located at the concession post common to concessions I and II, which post was also common to lots 4 and 5 of Scadding Township.

The baseline was driven due west for a distance of 4200 meters. North-south striking crosslines were established on this baseline at 100 meter intervals. These crosslines were driven north to the boundary of concessions II and III while the southern lines were cut to the property boundary. Stations were established on both the baselines and crosslines at 25 meter intervals. Approximately 105 km of line was cl!t, chained and picketed.

Grid \# 4
Grid \#4 was established with the point $0+00$ of the baseline located 50 meters west and 20 meters north of post marking the common boundary between lots 6 and 7 and concessions III and IV of Scadding muwnship.

The baseline was driven due north for a distance of 2300 meters. Crosslines were established at 100 meter intervals on this baseline and were cut and chained for a distance of 1800 meters west of the baseline. A numbe: of the most southerly lines were extended for a further 600 meters eastward.

Stations were located on all the crosslines and baselines at 25 meter intervals.

3.2 VLF-EM Surveying

3.2.1 Grid \#1 - Approximately 67 km of VLF-EM surveying was carried out on this grid. Cutler, Maine transmitting at a frequency of 17.8 kHz was the transmitting station used. The propagation direction of this station is 110° in the vicinity of Grid \#1 which will ensure good electromagnetic coupling with the geologic strike of the area. For the VLF-EM surveying a 15.24 meter (50 feet) station interval was utilized with line spacing of 30.48 meters (100 feet).
3.2 .2 Grid H_{2} - Approximately 23 km of VLF-EM surveying was completed on this grid. Line and station spacing for this grid was $\mathbf{1 5 . 2 4}$ meters (50 feet). As for Grid \#1, Cutler, Maine was the transmitting station used and would provide good coupling with the geologic strike of the area. It was requested that the eastern half of the gria not be surveyed since a previous survey had covered this area.
3.2.3 Grid $\# 3$ - Approximately 101 km of VLF-EM surveying was completed on this grid. Cutler, Maine at 17.8 kllz was the transmitting station used as the signal source. The propagation plane wave direction was 110° which would intersect the projected geologic strike at 20° thus providing adequate coupling with
any conformable conductive trend. Station intervals of 25 meters were utilized for the systematic coverage of the grid area.
3.2.4 Grid \#4 - No VLF-EM surveying was carried out on this grid since the east-west survey lines were located sucn as to cover a north-south geologic trend. No VLF-EM transmitting station will provide adequate coupling with conductor striking in this direction in the area and thus no VLF-EM surveying was conducted.

3.3 Magnetics

3.3 .1 Grid \#l - Approximately 69 km of magnetic survey-
ing was conducted on this grid with station obser-
vations at 15.24 meter. $(50$ foot) intervals. Line
spacing was at 30.48 meters (100 foot) intervals.
3.3.2 Grid \#2 - Approximately 42 km of total field proton precession magnetometer surveying was conducted on this grid. The magnetometer reading intervals were established at 15.24 meters.
3.3.3 Grid \#3 - For this grid area the line spacing was established at 100 meter intervals. Nominal station separation was at 25 meter intervals. In
anomalous areas intermediate stations at 12.5 meter intervals were observed to provide additional detail. Approximately 105 km of surveying was conducted in this fashion.

Abstract

3.3.4 Grid \#4 - Approximately 55 km of total field proton precession magnetometer surveying was conducted on this grid. A 25 meter reading interval was utilized for systematic coverage of the grid with a 12.5 meter station interval used in anomalous areas to provide ađditional detail.

3.4 Personnel

The following M P H Consulting limited personnel were enployed during tinis exploration programne:

D.Jones, M.Sc.	Geophysical Consultant	Toronto, Ontario
D.Hall	Part, Chief	Toronto, ontario
M.Bickers	Geophysical Operator	Poronto, Ontario
T. Kiaft	Geophysical Operator	Toronto, Ontario
D.Johnston	Geophysical Operator	Windsur, Ontario
M.Nadjiwan	Geophysical Operator	Wiarton, Ontario

4. GEOLOGY

Most of Scadding township is underlain by the Aphebian Age sedimentary rocks which make up the Sudbury, Bruce and Cobalt Groups. Younger Aphebian or Helikia. gabbro or diabase is intrusive into the older sediments.

Sudbury Group Sediments outcrop in the southwestern part of the township. Quartzite and conglomerate with minor limestone intercalations are the predominant rock types. These sediments are well-bedded, and generally strike northwestsoutheast. Dips are variable from 10° to 70° to both the south and north. The sediments are usually brecciated near the gabbro intrusives.

Conglomerate of the Mississagi Formation unconformably overlies the rocks of the Sudbury Group. A rusty regolith has been noted at some localities in the region along the palcosurface. In Scadding Township, the Missıssagi Furmation is comprised of siltstone, argillite and quartzite and may contain traces of sulphides. The formation dips to the north or northeast at between 20° and 45° with local dips of up to 70° 。

The sediments in the northeastern part of the township are part of the Gowganda Formation of the Cobalt Group.

Interbedded polymictic conglomerate, argillite, greywacke and quartzite lie unconformably on the rocks of the Mississagi Formation. Gowganda Formation rocks generally sirike north to east and dip 20° to 80°.

Gabbro or diabase intrusives make up about 208 of the bedrock in the township. The intrusives vary in occurrence from large sill or dyke-like bodies to small, irregularly distributed swarms. Texture and composition of the gabbro may be variable due to differentiation of the intrusive sheets. Brecciation of host rocks may also have accompanied some of the intrusions.

Two major faults trending approximately northwest-southeast cross the central part of the township. Shearing, brecciation, quartz veining and sulphide mineralization with minor copper and gold values is associated with on of these faults.

Other occurrences of possible economic interest in Scadding Township are limited to guartz-carbonate veins closely associated with the gabbro intrusives. Native gold, galena, chalcopyrite and pyrite have been reported to occur with some of these veins. The basal portions of the Mississagi Formation are a possible target for paleoplacer-type uranium and gold occurrences; in Maclennan Township just to the
west, the Skead gold mine may represent a residual gold deposit formed on the Sudbury Group erosional surface with the gold being later remobilized into quartz-carbonate veins along the contact.

5. INSTRUMENTATION

5.1 VLF-EM Electromagnetic Method

The VLF-EM method employs as a source one of the numerous submarine communication transmitters in the 15 to 25 kHz band located throughout the world. At the surface of the earth these radio waves propagate predominantly in a single mode along the earth-air interface. This mode is known as the 'surface wave'. Over flat homogeneous ground in the absence of vertical conductive discontinuities the magnetic field component of this ratio is horizontal and perpendicular to its direction of propagation.

Where non-horizontal structures such as faults, contacts and conductors give rise to change in ground conductivity, secondary modes are generated which produce a vertical component of the magnetic field. This produces an elliptical polarization of the total field in a plane perpendicular to the direction of propagation.

Commercial VLF instruments enable detection of disturbing structures by measuring the tilt angle of the major
axis of the polarization ellipse. On flat homogeneous ground the tilt angle will be zero, but in the vicinity of conducting disturbances it will acquire a finite value. Direction of tilt indicates directions of the disturbing structure. Ability to deduce such parameters as depth, depth extent, dip, and width of anomalous structures is minimal.

Fortunately, this does not seriously affect location of points where VLF-EM profiles cross the upper limit of dipping structures which can be identified as areas of greatest change in tilt angle per unit of distance.

The transmitting station used during the survey was Cutier, Maine transmitting at 17.8 kHz .

The data is read as a dip angle and a vertical quadrature where the dip angle is a percentage of the incline from the horizontal, i.e. ($100 \times \tan \theta$), where θ is the tilt angle of the major axis of the polarization ellipse in degrees, and the vertical quadrature is the out-of-phase amplitude of the polarization cllipse.

The data is presented as profiles with positive to the left, negative to the right. The instrument
specifications are given in Appendix I.

5.2 Magnetics

Two McPhar GP 70 proton precession magnetometers were used on the project. The proton magnetometer utilizes the precession of spinning protons of a hydrogen atom within a hydrocarbon fluid. These spinning magnetic dipoles are polarized by applying a magnetic field using a current within a coil of wire. .Upon discontinuation of the current the protons precess about the earth's magnetic field and in turn will generate a small current in the wire. This current is proportional to the precession frequency which in turn is proportional to the earth's total magnetic field.

The instrument reading unit is the gamma and the reading is the absolute value of the earth's total field for that station. Repeatability is usually within two gammas for a particular station.

Magnetic data was norrected for diurnal variations using a Barringer Ml23 hase station magnetic recorder. Deviations from a chosen base value were measured every ten seconds throughout the day. These deviations were then used to reduce field survey results to a constant datum plane.

The instruments' specifications are presented in Appendix I.

6. PRESENTATION OF DATA

All the field data from this area is presented on a series of maps at a horizontal scale of $1: 2000$.

The VLF-EM data is presented as profiled data along the survey lines. The in-phase or dip angle data is plotted with positive to the right and negative to the left such that negative slopes are representative of a 'true' crossover.

Conductor axes are also presented on the VLF-EM profile maps.

The magnetic data is presented as a series of isomagnetic contours superimposed on a map of corrected magnetic values recorded at each station. Contour lines at 100 and 25 gamma intervals were found suitable to highlight the magnetic expression from the survey area.

The maps accompanying this report are as follows:

Map \#1	Magnetics Grid 1	East-side
Map \#2	Magnetics Grid 1	West-side
Map \#3	VLF	Grid 1

Map	\# 4	VLF	Grid 1	West-s	ide	
Map	\# 5	Magnetics	Grid 2			
Map	\# 6	VLF	Grid 2			
Map	\# 7	Magnetics	Grid 3	Lines	$0+00-16+00 \mathrm{~W}$	st $0+00-16+00 \mathrm{~N}$
Map	\# 8			Lines	16+00-32+00w	st $0+00-16+00 \mathrm{~N}$
Map	\# 9			Lines	$32+00-44+00 \mathrm{~W}$	st $0+00-16+0.0 \mathrm{~N}$
Map	\#10			Mines	16+00-32+00W	st $0+00-16+00 s$
Map	\#11			Lines	$32+00-44+00 \mathrm{~W}$	st $0+00-12+00 \mathrm{~S}$
Map	\#12	VLF-EM	Grid 3	Lines	$0+00-16+00 \mathrm{~W}$	st $0+00-16+00 \mathrm{~N}$
Map	\#13			Lines	$16+00 \mathrm{~W}-32+00 \mathrm{~W}$	sto+00-16+00N
Map	\#14			Lines	$32+00 w-44+00 \mathrm{~W}$	sto+00-16+00N
Map	\#15			Lines	$16+00 w-32+00 \mathrm{w}$	sto+00-16+00s
Map	\#16			Lines	$32+00 w-44+00 \mathrm{~W}$	sto $000-12+00 \mathrm{~s}$
Map	\#17	Magnetics	Grid 3	Lines	$9+00 \mathrm{~N}-23+00 \mathrm{~N}$	
Map	\#18	Magnetics	Grid 3	Lines	$0+00 \mathrm{~W}-9+00 \mathrm{~N}$	st $4+50 \mathrm{E}-10+50 \mathrm{~W}$
Map	\#19	Magnetics	Grid 3	Lines	0+00W-9+00N	st9+00w-24+00w

7. INTERPRETATION

7.1 Grid \#1

7.1.2 Magnetics - The magnetic survey carried out on this grid outlined a very weak magnetic response with the majority of the area showing a magnetic relief of $100-200$ gammas. This low relief coupled with a low anomaly density revealed a nebulous magnetic trend from the survey area.

The main structural features outlined from the magnetic surveying were a number of northwest striking magnetic linears which are probably attributable to diabase intrusives. These features are probably conformable but could be crosscutting stratigraphy and thus cannot be deemed to represent the geologic strike of the area.

Interpretation of selected magnetic profiles indicates a northerly dip of 45° to the magnetic linear and a depth estimation of 10 to 30 meters.

The remaining magnetic features observed from the grid area showed no distinct trends although an interpretation of the magnetic
contouring has outlined a number ot possible fault structures. These are presented on Maps 1 and 2.

The grid is believed to be underlain by quartzite and quartz-pebble conglomerates of the Mississagi Formation which is in contact with conglomerate and intercalated limestone of the Sudbury group in the soutliwest portion of the grid area. No magnetic signature was observed which could be directly attributable to the rontact zone.
7.1.2 VLF-EM - The VLF-EM survey conducted on Grid \#l revealed a generally flat response with a number of small amplitude anomalous zones showing a northwest-southeast conductive trend.

The largest amplitude and longest strike length VLF-EM features are coincident with the magnetic linears believed to represent diabase.

Inspection of the VLF-EM response indicates a topographic source for several conductive axes, and these anomalies have een discounted ir the interpretation of this grid. The remainder of
the VLF-EM anomalies were short, discrete conductive horizons which are considered to be bedrock responses. These anomalies have been labelled on the VLF-EM profiles map and are discussed below.

Anomaly 'D'- This anomaly is located at approximately 182.88 N between lines 30.48 W and 60.96 E and trends approximately 0908. The anomaly amplitude is exceedingly small ($\sim 5 \%$ peak to peak) and as such no dip or depth estimates were extracted from the VLF-EM profiles.

The anomaly showed no coincident magnetic signature. The nature of the causative source is uncertain.

Anomaly 'E'- Anomaly 'E' is a semi-arcuate, small amplitude zone located at approximately 213.36 N between lines 975.36 W and 822.96 W . The anomaly is semi-coincident with a number of topographic features which possibly in part contribute to the anomaly's signature. For this reason no dip or depth estimates were interpreted from the VLF-EM profiles.

The eastern end of the anomaly appears truncated by a north-south striking feature interpreted from the magnetics.

The conductive axis of this anomaly is located on the northern flank of a discrete magnetic high which could possibly be spatially related to the VLF-EM ancmaly.

The nature of the causative source for Anomaly ' D ' is uncertain.

Anomaly ' E ' - is located at approximately 213.36 N between lines 274.32 and 364.76 E for a strike length of ~ 80 meters. The anomaly trend is northwest-southeast and parallels the main VLFEM trend from this grid. The eastern extent of the anomaly is curtailed by a magnetically interpreted fault. Interpretation of the VLF-EM profiles indicated a depth to conductive axis of ~ 30 meters. No dip vaiue was estimated from this zone since topographic effects on the south side of the anomaly distort the positive flank of the profile.

The anomaly is situated in a small magnetic low
of approximately 50 gammas. The magnetic correlation is probably coincidental with the two geophysical responses not directly attributable to the same causative source.

Anomaly 'G' - this anomaly is a long, linear, conductive feature which parallels and in places straddles the baseline between lines 426.72 W and 91.44 E . A possible easterly extension could be postulated to line 579.12E, however, it is possible that a topographic source contributes part if not all the VLF-EM response associated with this eastern extension.

The broadness of the VLF-EM response indicates that bedrock topography is a possible cause for this anomaly with the positive shouluer south of the baseline reflecting a ridge or uplift of the bedrock. No magnetic signature was observed coincident with this anomaly.

A number of very small 1 or 2° dip angle anomalies are observable from the VLF-EM survey. These have not been discussed within the text of this report however they ave represented on the VLF-EM profile map.

7.2 Grid \#2

7.2.1 General Comments - This grid lies at an azimuth of 155° and overlaps in part both grids \#l and \#3.

The grid covered a gold zone which is associated with pyrite mineralization apparently conformable to the
pyrite mineralization apparently conformable to the geologic strike of the area.
7.2 .2

Magnetics - The total field magnetic survey from the area revealed a low magnetic relief of approximately 200 gammas with a low anomaly density. The magnetic trend observed appears to strike north-northwest -south- utheast. This trend is dominated by a series of three magnetic linear highs (of approximately 400500 gammas). These highs have been attributable to diabase dykes and as such may not be conformable with the geologic stratigraphy from the area. The low magnetic relief outside of these zones preclude any accurate definiation of the magnetic trend from this area.

Interpretation of selected profiles of the magnetic data indicates easterly dips of 45° to the major dyke-like features and depth values varying from lo35 meters. A tabular body of infinite strike extent was used as a model for this work. A change in magnetic background is observable on either side of the westernmost dyke-like feature with the response on the eastern side being approximately 100 gammas higher. This probably relates to a thinning of overburden
due to uplifting of the bedrock on the eastern side of the dyke rather than a change in rock type, the diabase dyke in this case occupying the fault plane at which the movement occurred.

The portion of the grid from line 121.92 N to line 335.28 N shows a greatly increased magnetic relief. This response is directly attributable to cultural noise (i.e. drill casing). This portion of Grid \#2 has been drilled and a mincralized gold zones discovered. Unfortunately the cultural noise resulting from the drilling has destroyed any recognizable magnetic signature from the mineralized zone such that it cannot be used as a case study by which to grade other anomalies from the grid area.

A number of crosscutting (fault?) structures have been interpreted from the truncation and deviations of the magnetic contour lines. These are presented on the magnetic map (Map 5).
7.2.3 VLF-EM - The VLF-EM survey conducted on this grid displayed a north-northwest strike direction conformable with the magnetic trend. Three anomalous features were outlined which dominated the VLF-EM response from this area. These zones corresponded
closely with the interpreted diabase dyke from the magnetic survey.

Additionally a number of short strike length anomalous ieatures were outlined which are presented on Map 6.

All the anomalous features outlined were low amplitude anomalies indicative of a relatively homogenous bedrock with little change in lateral resistivity values within the bedrock.

No VLF-EM anomaly mapped on the grid could be correlated with the known gold mineralization on the property.

Anomaly ' A ' - is located at approximately 152.40 W between lines 487.68 and $335.28 N$. This short strike Jength anomaly appears to intersect a longer formational anomaly, (diabase), on line 274.32 N at approximately 152.40 W . This anomaly shows no magnetic signature and appears to crosseut stratigraphy at a low angle. No causative source can be attributed to this target.

Anomaly ' B^{\prime} - this anomaly is located at approximately 182.88 E between lines 182.88 N and 121.92 N and is apparently conformable with the geologic strike
of the area. The anomaly is oper to the south and has been mapped by a previous survey conducted by Northgate Exploration Limited.

The anomaly shows no magnetic signature and no geological source can be ascribed to the observed geophysical response.

Anomaly 'C' - is a short arcuate anomaly located at approximately 243.84 E between linés 243.84 N to 304.80N with the anomaly being open to the north. The conductive strike axis is conformable with the postulated grologic strike of the area.

The anomaly is coincident with a small (100 gamma) discrete magnetic high. No definite causative source can be ascribed to this anomaly although the associated magnetic signature would suggest a possible sulphide and/or maynetite concentratıon in under]ying gabbroic intrusive rocks.

7.3 Grid \#3

7.3.1 Magnetics - The magnetic survey conducted on Grid $\# 3$ outlined a higher magnetic relief than that observed on either Grids 1 or 2. This increase ir. magnetic relief reflects the higher mafic content present in the gabbro intrusive believed to underlie the major portion of this grid.

The magnetic trend observed from this grid area is a basic east-west trend with a number of northwestsoutheast linears crosscutting tine magnetic stratigraphy in the northeast portion of the grid area. These units are the southerly continuation of the interpreted diabase dykes previously outlined on both Grids \#1 and \#2

The magnetic relief observed on Grid \#3 is approximately 300 to 400 gammas superimposed on a relatively flat background of 58700 gammas.

Structural interpretation of the magnetic maps has outlined several fault structures tyending in an approximate northwesterly direction. These are presented on Maps 7 through 11.

In addition an interpretation of the magnetic signature of the Sudbury group and the intrusive post Huronian gabbro has been carried out with the interpreted common boundaries represented as geologic contacts. This is presented on Maps 7-11.

A west-northwest-east-southeast striking contact has been postulated bisecting the northeast portion of the grid area. The postulated contact reparates the conglomerate of the Sudbury group on the north from the Post Huronian gabbro in the south. (Thompson,

19:1). (Maps 7 and 8).

The occurrence of gold mineralization in close proximity to this contact as reported by Kindle in 1933 and Thompson in 1961 makes the location and mapping of this contact of paramount importance. The gold is reported to be located within a series of irregular veins and pockets of quartz within a sheared gabbro. Disseminated pyrite accompanies the gold, some of which is reportedly visibie.

The contact location as interpreted from the magnetics is empirical and the actual location should be ground located by geologic mapping.

The interpreted southers boundary of the intrusive gabbro is presented on Maps 7, 8 and 9. This projected southern boundary in essence parallels the northern boundary. This postulated southern contact is located at $0+00$ on line 000 and runs northwesterly to $12+00 \mathrm{~N}$ on line $42+00 \mathrm{~W}$.

The higher magnetic values and increasing magnetlc relief located in the south-central portion of the grid area is also interpreted as reflectirg a gabbroic intrusion. The postulated boundary has been
outlined on the magnetic maps.

Similarly a smaller zone has been outlined located in the southwest corner of the grid area.

The magnetic anomalies located in the interpreted intrusive portion of the grid area are mainly narrow linear, discrete zones. These features probably represent zones containing higher concentrations of magnetite and/or sulphide mineralization. The presence of gold mineraljzation accompanying disseminated sulphide mineralization within the gabbro is documented by Thompson (1961) and as such the linear magnetic anomalies located within the interpreted gabbroic unit could be of economic importance.
7.3.2 VLF-EM - The VLF-EM electromagnetic survey carried on on Grid \#3 outlined an east-west trend conformable to the magnetic trend. In comparison with Grids \# l and 2 the dip angle amplitudes outlined on this gr:d were substantially larger as were the peak to peak anomaly amplitudes. This reflects either a larger concentration of conductive material or a larger lateral inhomogeneity within the bedrock. Both these observations are probably true in the case of Grid \# 3.

The most prominent VLF-EM response was a long, linear anomaly extending from approximately $1+00 \mathrm{~N}$, Line $1+00 \mathrm{~W}$ to $12+00 \mathrm{~N}$, Line $40+00 \mathrm{~W}$. This is coincident with and probably reflects the interpreted contact between conglomerate of the Sudbury group in the south and intrusive gabbro in the north.

The remainder of the above geologic contact as interpreted from the magnetic survey did not show any strong electromagnetic response.

Elght anomalies believed to be representative of bedrock were shown by the VLF-EM survey. These are presented on the VLF-EM profile maps (Maps 12-16).

Almost all of the VLF-EM anomalies located on the map are lorated within areas interpreted from the magnetics to be underlain by gabbro intrusive.

A number of anomalies interpretable from the data have been ascribed to topographic feátures and are not discussed further within the context of this report.

The small amplitudes and the extremely wide.VLF-EM crossovers (possibly due to the shallow dips of the
geologic units) are not conducive to qualitative interpretations. Depth estimates are given only for anomalies where parameter values can be interpreted with any degree of confidence.

Abstract

Anomaly 'H' - This east-west striking feature was located at approximately $12+00 \mathrm{~N}$ between Lines $13+00 \mathrm{~W}$ and $23+00 \mathrm{~W}$ with a possible westerly extension of the anomaly to Line $29+00 \mathrm{~W}$ Lack of data on the intervening lines precludes accurate definition of this extension.

The character of the anomaly changes along its strike length. From west to east, the amplitude and breadth of the anomaly diminishes indicating either a deepening, or a decreasing conductive content of the anomaly, eastward.

This anomaly shows no magnetic signature and is located in a quiescent magnetic zone. The eastern end of Anomaly 'H' could possibly be terminated by a magnetic structure which appears as an offshoot of the interpreted diabase. Within the context of the magnetic interpretation this anomaly is believed to be located within the gabbro and is subparallel to the contact.

From the VLF-EM profile map, extrapolation of Anomaly 'H' would appear to show it intersecting the southern gabbro contact at Line $24+00$ or $25+00 \mathrm{~W}$. Both of these lines unfortunately lie off the property, and no definite conclusion regarding this observation can be made.

Anomaly 'I' - This anomaly is located at approximately $7+50 \mathrm{~N}$ between Lines $2+00$ and $12+00 \mathrm{~W}$. The anomaly strikes slightly north of east and is subparallel to Anomaly 'H'.

The anomaly appears to intersect the interpreted gabbro/conglomerate contact at Lines $11+00$ and $12+00 \mathrm{~W}$ at which intersection the anomaly is truncated. No magnetic signature was directly attributable to Anomaly 'I' and the anomaly was 'ocated in a relative magnetic low of approximately 100-200 gammas.

The eastern end of the anomaly abuts against a magnetic high interpreted as a diabase dy . Thus the zone is bounded by structural controls at either end. Probable causative source for this zone is a shear or a fracture-filled fault zone.

Abstract

Anomaly 'J' - is a small amplitude (5° peak to peak) short strike length anomalous zone, located at approximately $4+50 \mathrm{~N}$ between Lines $0+00$ and $3+00 \mathrm{~W}$. The anomaly is open to the east.

The anomaly appears to be crosscutting the magnetic trend of the area and parallels the postulated gab-bro-conglomerate contact. From the magnetic interpretation the zone is located within the gabbro intrusive.

There is no directly coincident magnetic signature and no causative source could be ascribed to this anomaly.

Anomaly ' K ' - is located at approximately $3+00 N$ and between lines $9+00$ and $4+00 \mathrm{~W}$. The anomaly subparallels Anomalies 'H' and 'I' and as with both 'H' and 'I' it appears that its western extent intersects with and is truncated by the gabbro/conglomerate contact. The anomaly is open to the east and shows no direct magnetic signature.

Anomaly 'L' - is a long, arcuate anomalous zone located at approximately $6+00 \mathrm{~S}$ between Lines $10+00$ and $32+00 \mathrm{~W}$.

The western extension of the anomaly is truncated at or near an interpreted gabbro contact. The conductive axis of Anomaly 'L' could possibly represent the southern margin of the gabbro intrusive. The contact as interpreted from the magnetics is not sharply defined and could possibly be moved northward slightly from its present interpreted location to correspond with the Vi.,-EM conductive axis.

No direct magnetic signature can be attributed to this zone and a possible causative source is a geological contact.

Abstract

Anomaly ' M ' - this conductive zone straddles the baseline between I,ines $20+00$ and $30+00 W$. The anomaly is located in a topographic low but topography is not believed to be the main causative source of the anomaly. The western extent of the anomaly is truncated at an interpreted north-south striking fault.

Anomaly ' M ' is located in a relative magnetic low, however the magnetic low does not appear to be caused by the source of the conductor.

Anomaly 'N' - is located at approximately $2+00 \mathrm{~N}$ between Lines $39+00$ and $45+00 \mathrm{~W}$, and is ope: to the west.

This zone is the largest amplitude anomaly on the property and depth estimates have been interpreted from the VLF-EM profile. Depth to the conductive axis of Anomaly ' N ' is estimated at 30 meters and a northerly dip of $60-80^{\circ}$ is interpreted from the profile.

The anomaly is believed to be located within the conglomerate of the Sudbury group. Thompson's 1961 geological map indicates a contact in this vicinity which could relate to Anomaly ' N ' however based on the geophysical interpretation of the magnetics no gabbro contact was outlined in this area.

The anomaly is believed to be underlain by conglomerate and/or possibly limestone and should be ground checked geologically.

Anomaly 'O' - is a short, discrete, large amplitude conductive zone located at approximately $7+00$ S between Lines $39+00$ and $42+00 w$.

The anomaly has an interpreted depth of 15 meters and appears to be dipping steeply to the north. The anomaly was located within an area of large magnetic relief believed to reflect a post-Huronian
gabbro. No direct magnetic coincidence was observed and no direct causative source was attributed to the geophysical response.

Other Anomalies - A number of other small anomalies were detected. These have been presented as possible conductive horizons on the VLF-EM maps. They have not been discussed in detail in this report but should not be overlooked in any subsequent investigations of this property. Re-evaluations of the targets in light of any further information may enhance these weak zones regarding their possible economic potential.

7.4 Grid \#4

7.4.1 General Comments - This grid has been mapped as being underlain mainly by quartzite of the Mississagi Formation with a conglomerate and argillite of the Gowganda Formation being located in the northeast corner of the grid area. These two formations are mineralogically similar and no large magnetic contrast would be expected.
7.4.2 Magnetics - The magnetic survey conducted on the property outlined a north-south magnetic trend. The very low magnetic relief observed on the property indicates a fairly homogeneous bedrock with no large lateral
magnetic inhomogeneities.

Interpretation of the magnetic data did not reveal any signature attributable to contact zones and no distinction between any of the underlying units could be made.

A number of east-west fault zones have been interpreted and are presented on Maps 17, 18 and 19.
7.4.3 VLF-EM Survey - The geologic strike of the survey area is north-south as reflected in the magnetic survey. and as such no VLF-EM station is located such as to provide a transmitter signal which would be conducive to VLF-EM mapping of the property.

8. CONCLUSIONS

The VLF-EM and magnetic surveys carried out on the grids have shown a generally quiescent geophysical area. Known gold associations in the area are as quartz stockworks within gabbro and as possible paleo-placer deposits at the contact between Aphebian conglomerate and quartzite. Neither of these targets will give rise to unique magnetic response, and the reported nature and extent of any sulphide (pyrite) associated with the gold will probably not give rise to a VLF-EM response due to its disseminated nature. These types of gold occurrences are therefore not ideal geophysical targets although the surveys described herein have provided valuable structural lithologic information.

8.1 Grid \#1

The magnetics outlined a very low relief magnetic pattern containing a number of northwest-southeast striking-magnetic linears. These zones have been attributed to diabase intrusions which are possibly paralleling stratigraphy. The VLF-EM survey also outlined the diabase zones. Four short, discrete bedrock conductors were outlined, none of which showed any magnetic signature and no definite causative source was ascribed to any of the zones. A number of other small amplitude zones were detected ard are
presented on the VLF-EM profile maps. These zones were not highly rated geophysically but it is felt that their priority value should be reassessed as more information of a geological nature becomes available for the grid area.
8.2 Grid \#2

The magnetics and the VLF-EM response from this grid has outlined a fairly flat geophysical response with the main geophysical features attributable to a series of diabase dykes two of which are the same as and continuations of those mapped on Grid \#1.

Of the three discrete VLF-EM anomalies outlinad, only Anomaly 'C' showed any magnetic correlation which could possibly be attributable to an increase in sulphide (pyrrohotite) and/or magnetic content.

As previously mentioned gold mineralization on this grid is in the process of being drill evaluated. Cultural noise associated with the drilling precluded observation of any magnetic signature associated with the gold mineralization. There was no VLF-EM response attributable to the zone.

As with Grid \#1, no economic implications can be ascribed to any of the geophysical anomalies outlined. Re-evaluation of the anomalies in light of detailed geological mapping could possibly alleviate this and allow priorities to be placed on the individual anomalies.

8.3 Grid \#3

A larger magnetic relief was observed on Grid \#3 relative to Grids 1 and 2. This could be attributable to a higher magnetite content in the gabbro which underlies the major portion of Grid 3.

Structural interpretation outlined a fault trending northsouth in the western portion of the grid. Detailed interpretation aided in outlining the gabbro/conglomerate contact with three separate intrusive bodies outlined. A southerly continuation of the diabase dyke outlined on Grid \#l was located and mapped in the northeast portion of the grid area.

The VLF-EM mapping outlined eight anomalies. Four of these anomalies, 'H', 'I', 'J', and 'K' were located within the northern gabbroic zone. Anomalies 'H' and 'I' are probably structurally controlled being truncated by the gabbro/conglomerate contact in the south and the diabase contact in the north. These are possibly shear
or fracture-filled fault zones. 'J' could represent the contact of a gabbro intrusive with conglomerate of the Sudbury group.

Anomalies ' M ' and ' O ' are located within gabbro units and no causative sources have been ascribed to them.

Anomaly ' N ' is a large amplitude anomaly and believed to be located within the conglomerate.

No economic implications can be drawn from the data at hand although, bearing in mind the location of the known mineralization, Anomalies 'H' and 'I' are of obvious interest.

The other anomalies, though of lower priority at this time, are nonetheless good targets and further geological information is necessary before a definitive answer can be given regarding their potential.

8.4 Grid \#4

The magnetic survey from Grid \#4 outlined a nort:-south magnetic trend. The low magnetic relief and low anomaiy density indicate a homogenous bedrock and no subdivisions were made from the magnetic survey. A number of east-west striking structures (faults) were interpreted from the
magnetics. No VLF-EM was carried out on this grid.

9. RECOMMENDATIONS

The nature and extent of the gold mineralization in Scadding Township does not lend itself to definitive mapping with the systems used for this survey and as such no high-priority targets can be outlined from the data at hand.

Recommendations for further work include:

1) A detailed geological mapping programme of the area using the geophysical grids as control.
2) The geological information from the drilling conducted on Grid \#2 should be analysed in detail to provide information .egarding the nature of occurrences and association of the gold mineralization in this area.
3) Re-evaluation of the geophysical data should be carried out following the detailed geologic analysis of the area at which time decisions regarding the further exploration of the area could be made.
4) The documented pyritic association with the gold mineralization should be examined with a view to utilizing Induced Polarization surveying to outline possible areas of economic interest.

CERTIFICATE

I, David Jones of Toronto, Ontario hereby certify that:

1) I hold a Bachelor of Technology degree in Applied Physics from the University of Bradford, England, and a Master of Science degree in Applied Geophysics from McGill University in Montreal.
2) I have practised my profession in exploration continuously since graduation.
3) I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience with the geophysical techniques used and on the results of the field work conducted on the property during March, 1981 which was carried out under my supervision.
4) I hold no interest, directly or indirectly in this property other than professional fees, nor do I expect to receive any interest in the property or in Northgate Exploration limited or any of ats subsidiary companies.

Society of Exploration Geophysicists	1967	Mining Geophysies Vols. I and II - Society of Exploration Geophysicist,
Telford, W. M.	1976	Applied Geophysics. Cambridge University press, 860 p.
Telfordet al	1976	VLf Mapping of Geological Structure - Geological Survey of Canada Paper 76-25
Fraser, D.C.	1981	A review of Some Useful Algorithums in Geophysics CIM Bulletin, Vol. 74 No. 828
Fraser D. C.	1969	```Contouring of VLF-FM Data Geophysics Vol. 34 No. 6 - p. 958-967```
Madden-Vozoff		Selected Ilots from the Mad-den-Vozoff VLF Model Suite (Surface data)
Thompson, J.E.	1961	Maclennan and Scadding Toviships Ont. Dept. Mirese Gr. 7. 34 p incl. Map $=009$ Scale 1:31.680

EM16

VLF Electromagnetic Unit

Pioneered and patented exclusively by Geonics Limited, the VLF mothod of electromagnetic surveying has been proven to be a major advance in exploration geophysical instrumentation.

Since the beginning of 1965 a large number of mining companies have lound the EM16 system to meet the need for t imple, light and effective exploration tool for mining geophysics.

The VLF method uses the military and time standard VLF ransmissions as primary field. Only a receiver is then used to measure the secondary lields radiating from the local conductive targets. This allows a : ry light, one-man instrument to do the job. Because of the annost unitorm primary field, good response tror: deeper largets is oblained.

The EM16 sy: em provides the in phase and quadrature components ol the secondary lield with the polarities indicated.

Interpretation technique has been highly developed particularly to differentiate deeper targets from the many surface indications.

Principle of Operation
The VLF transmillers have vertical antennas. The magnetic signal component is then horizontal and concentric around the transmitter location.

Specifications

Source of primary lield
Transmitting stations used

Operating frequency range
Parameters mieasited

Method of reading

Scale range
Readability

VLF Transmitting stations.
Any desired station frequency can be supplied with the instrument in the lorm of plug-in tuning units. Two tuning units can be plugged in at one tume. A switch selects ether station.

About 15.25 kHz .
(1) The vertical in-phase component (tangen: of the 'ill angle of the polatization ellipsoid).
(2) The vertical out-ol phase (quadratule) component the short axis of the polarization ellipsoid cmmpared to the long axis).

In-phase from a mechanical inclinometer and quadrature from e calibrated dial. Nulling by audio tone.

In phase $\rightarrow 150 \%$, quadrature $\rightarrow 40 \%$.
$\pm 1 \%$.

Reading time

Operating temperalure range -40 to $50^{\circ} \mathrm{C}$.
Operating conirols

Power Supply

Dimensions
Welght
Instroment supplied with

Shipping weight
$10-40$ seconds depending on signal strength.

ON-OFF switch, batlery testing push bulton, station selector, switch, volume control, quadrature, dial $\because 40 \%$. inclinometer dial $\rightarrow 150 \%$.

6 size AA (penlight) alkaline cells. Lile about 200 hours.
$42 \times 14 \times 9 \mathrm{~cm}(16 \times 5.5 \times 3.5 \mathrm{in})$
$1.6 \mathrm{~kg}(3.5 \mathrm{lbs}$.
Monotonic spesker, carrying case, manual of operation, 3 station seleclor plug-in luning units l-dditional frequencies are optional), set o! batteries
$4.5 \mathrm{~kg}(10 \mathrm{lbs}$.

[^0]

Areas of VLF Signals
Coverage shown only for well-known stalions. Other reliable, fully operalional stations exist. For full information regarding VLF signals in your area consult Goonics Limited. Extensivo field experience has proved that the circles of coverage shown are very conservative and are actually much larger in extent.

P:EM 16 Profile over Lockporl Mine Property, Newloundland

Additional case histories on request.

Station Selector
wo tuning units can be plugged
at one time. A swilch solects
tither station.

Recelving Colis

Verficalreceli.ing coil circuit in instrument picks up any vortical signal present. Horizontal recolving coil circuil, aller automatic 90° signal phase stilf, leeds signal into quadrature dial in series with the receiving coil.

In-Phase Dial
shows the tilt-angle of the instrument for minimum signal. This angle is the measure of the vertical in-phase signal expressed in percentage when compared to the horizontal lield.

Quadralure Dial
is calibrated in percentage markings and nulls the vertical quadrature signal in the vertical coil circuit.

- B selecting a suitable transmitter station as a source, the EM 16 user can survey with the most suitable primary field azimuth.

The EM 16 has two receiving coils, one for the pick-up of the horizontal (primary) lield and the other for detecting any anomalous vertical secondary field. The coils are thus orthogonal, and are mounted inside the instrument "handle".

The actual measurement is done by first tilling the coil assembly to minimize the signal in the vertical (signal) coil and then further sharpening the null by using the reference signal lo buck out the remaining signal. This is done by a calibraled 'quadralure" dial.

The tangent of the tilt angle is the measure of the vertical in-phase component and the quadrature reading is the signal at right angles to the total field. All readings are obtained in per centages and do not depend on the absolute amplitude of the primary signals present.

The "null" condition of the measurement is detected by the drop in the audio signal emitted from the patented resonanco loudspeaker. A jack is provided for those preferring the use of an earphone instead.

The power for the instrument is from 6 penlight cells. A battery tester is provided.

Measures absolute magnitude of total magnetic field

Q 日 gamma sensitivily.
 10 scale ranges: 20,000
 to 100,000 gammas
 Digital readout with long lile, light emilling diodes.
 Noise cancelling toroidal sensor.

Wide operating temperature range.

Model GP-70 is a reliable, light weight, proton magnetometer designed for lield operation under widely varying environmental conditions. It measures the absolute magnitude of the total magnetic field within the range of 20,000 to 100,000 gammas to an absolute accuracy of ± 1 gamma and ± 15 parts per million of the lield under measurement, over the
temperature range of -30° to $+50^{\circ} \mathrm{C}$.

The instrument is simple to operate. A complete reading is obtained in 3.5 seconds by depressing a push button. The field intensity is read directly in gammas from a five digit display consisting of light emitting diodes. A 10 position switch sets the appropriate range.

The instrument is powered by internally mounted size " D " alkaline batteries
(standard) or by non-ferrous rechargeable batteries (optional). The rechargeable batteries have virtuatly zero mag. netic effect and permit full use of the magnelometer sensitivity even with close spacing between the sensor and console.

A ballery meter shows condition of batteries at all times and allows

BASE STATION MAGNETOMETER Model BM-123

DESCRIPTION

The Batinger BM-123 magnetometer system uses the proton precession principle to measure the earth's total magnetic theld intensity. There is no need for levelling or calibration of the sensor and it is unatlected by external influences such as temperature, etc.

FEATURES

- Magnetometer neatly combined with analog re. corder in console measuring only $17^{\prime \prime} \times 12^{\prime \prime} \times 8^{\prime \prime}$ $(43 ? \mathrm{~cm} \times 30.5 \mathrm{~cm} \times 203 \mathrm{~cm})$
- powered by mains AC or 24 Volts DC
- Full 1 gamma or 0.5 gamma serisitivity

APPLICATIONS

- Storm monitoring
- Diurnal variation monitoring

TYPICAL SYSTEM COMPONENTS

- Magnetometer console, including 5-inch char recorder
- Toroidal sensor
- Fully adjustable cycling rate from 2 seconds to 99 min'tes in 1 second slages
- BCD output readily adaptable to digital cassette or other magnetic type recording
- To save power charl recorder can be made to operate only when magnetometer cycles
- Observatory measurements including three component ineasurements with the use of Helmholiz coils
- Connecting cable
- Tripod
- Power supply (optional)

SPECIFICATIONS

Sensitivity
Accuracy
Range
Cycle Rates:
Continuous Cycling
Automatic Cycling
Manual Cycling
External Cycling
Outputs:
Analog
Fiducial Marker
Visual
External Outputs:
Analog
Digital

Fiducial Mark

Size

Weight

Operating Temperature
Power Requirements

Options

1 gamma throughout the range
± 1 gamma at 24 volts dc
20,000 to 100,000 gammas in 12 overlapping settings
$0.6,0.8,1.2$ and 1.9 seconds
2 seconds to 99 minutes in 1 second steps
pushbutton single cycling at 1.9 seconds
actuated by a 2.5 to 12 voll pulse longer than 1 millisecond
front panel select 0 to 99 gammas or 0 to 990 gammas internal selection of 1 sucond to 99 minutes in 1 second steps
5 digit numeric display directly in gammas

2 channels. 0 to 99 gammas and 0 to 990 gammas at 1 milliamp or 1 volt Full Scale Dellection
BCD 1, 2, 4, 8 code, TTL compatible
0 State - 01005 volis
1 State - 2.5105 volls
Relay closure or open state selected internally from 1 second to 99 minutes $8^{\prime \prime} \times 12^{\prime \prime} \times 17^{\prime \prime}(20.3 \mathrm{~cm} \times 30.5 \mathrm{~cm} \times 43.2 \mathrm{~cm})$ (fits under a commerchal airline seat)
$20 \mathrm{lbs}(9.1 \mathrm{~kg})$
$-28^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}$
Magnetometer 12 to 30 volts dc 60 to 200 milliamps maximum Recorder $\quad 12$ to 30 volts de 051009 amps maximum
Component Spares Kit - a selection of critical solid state components and fuses required lor general console maintenance
Board Spares Kit - a complete selection of plug-in PC boards for main.
tenance of the console on longer term surveys

HIGH SENSITIVITY CONSOLE MODEL M-123-2
Sensitlvily 05 gammas at 1.9 seconds
Accuracy
+0.5 gammas at 19 seconds
All other specifications the same as Model M-123-1

MAGNETOMETER ELECTRONICS ONLY MODEL M-123-3

Size

Weight
Outputs
External Oulputs
$6^{\prime \prime}$ high $\times 7^{\prime \prime}$ wide $\times 6^{\prime \prime}$ deep $(152 \mathrm{~cm} \times 178 \mathrm{~cm} \times 152 \mathrm{~cm}) \mathrm{can}$ it a standard $19^{\prime \prime}$ (483 cm) rack
approximately $51 \mathrm{us}(23 \mathrm{~kg}$)
5 digit display in gammas
same as model M-123-1 above

CONSOLE OPTIONS

Digital Cassette Recording - various systems available details on request
Hewlell-Packard Recorder Spares
Hewlett-Packard Recording Supplies - chant paper and disposable pens

For Additional
Information
See Maps:
SCADDING-0022 \#1-21

REGIONAL PROPERTY LOCATION scals

Northgate Exploration Limited SCADDING TOWNSHIIP PROUECT CONTOURED MAGNETOMETER

[^0]: 2 Thornclifle Park Drive, Toronto/Ontario/Canada M4H ${ }^{1} \mathrm{H} 2$
 Tel: 425-1824
 Cables: Geonics

