ONTARIO

PROSPECTORS ASSISTANCE PROGRAM (OP 93-146)

REPORT ON THE SELF-POTENTIAL SURVEY AND

DIAMOND DRILLING WORK FOR THE

T-H PROPERTY
EXPLORATION PROGRAM

MONCRIEFF PROGRAM

MONCRIEFF TOWNSHIP
(G-4086)

1993

SUDBURY MINING DIVISION
ONTARIO

PREPARED BY:

Harold J. Tracanelli, G.E.T.N.

January 20, 1994

HAROLD J. TRACANELL
582 Vermillion Lake Road
Box 167
Chelmsford, Ontario
POM ILO

January 20, 1994

Mr. Edward R. Solonyka, Supervisor
Supervisor of Incentives
The Incentives Office
Mineral Development and Rehabilitation Branch
Ministry of Northern Development and Mines
933 Ramsey Lake Road
5th Floor
Sudbury, Ontario
P3E 6B5

Dear Mr. Solonyka:

Enclosed please find two copies of the "Report on the Self-Potential Survey and Diamond Drilling Work" for the T-H Property Exploration Program, Moncrieff Township \{G-4086), File OP93-146. The property is situated approximately 45 miles northwest of Sudbury, Ontario.

The T-H property is situated over the northern sequences of the Benny Greenstone Belt, which is made up of a wide variety of metavolcanic rocks, some of which are believed to have the potential for hosting $\mathrm{Zn}-\mathrm{Pb}-\mathrm{Ag}$ type mineral deposits.

As I am sure you are aware, the T-H Exploration program was broken down and operated in two, more or less, separate parts.

The first part of the program which included backhoe trenching, geological mapping and rock and mineral assaying, is covered under an O.P.A.P. application by John George Huycke (OP93-145). The field supervision of the trenching operations and the carrying out of the various geological related duties was looked after by geologist Yues Clement.

Yves Clement was completely responsible for compiling all pertinent data and reporting on the findings of the above stated functions.

The second part of the program included the initiation of an orientative self-potential survey, followed by the drilling of a 604 foot diamond drill hole (C-93-1). This applicant was directly responsible for the initiation of the geophysical survey work, and the setting up of the diamond drill hole. All pertinent data was collected, evaluated, interpreted and reported on by this applicant (Harold J. Tracanelli) (OP93-146). Occasionally throughout the duration of the exploration program some consultations between Yves Clement and Harold Tracanelli were carried out in order to keep up to date with respect to progress and preliminary findings.

The T-H Exploration Program was designed to test the base metal potential at or near the contact between the felsic-metavolcanics and mafic metavolcanic sequences in the northern parts of the property in which previous preliminary geology, geochemical and geophysical studies over the past couple of years appears to indicate that the area has a strong potential for hosting base metal mineralization.

Generally the findings and the results of the self-potential diamond drilling work are thought to be somewhat mixed, although tirere are some interesting aspects which may be worthy of further, more detailed investigations in the near future. Recommendations for further, more detailed deeper diamond drilling and detailed chemical analysis work should be considered to test a few new geological ideas, which were generated as a result of the 1993 field work. Provided that the appropriate funding can be secured, work could begin in the 1994 field season.

I expect that you shall find the following report to be in good order and to your satisfaction.
Yours truly,

Harold J. Tracanelli

at-hexploration program.

TABLE OF CGinicivio

List of Plans, Maps and Sketches
1.0 INTRODUCTION 1
2.0 PROPERTY LOCATION AND ACCESS 6
3.0 PROPERTY DESCRIPTION 7
4.0 PROPERTY OWNERSHIP 8
5.0 DISCUSSION OF THE PRACTICES, PROCEDURES AND FIELD RESULTS OF THE SELF-POTENTIAL SURVEY 9
6.0 DISCUSSION ON DIAMOND DRILLING OF HOLE C-93-1 17
7.0 CONCLUSION 26
8.0 RECOMMENDATIONS 28
APPENDIX I - Supporting Documentation - Self-PotentialAPPENDIX II - Analytical Procedures and SpecificationsAPPENDIX III - Drill Core Samples, Analytical ResultsAPPENDIX IV - Analytical Expenditures
APPENDIX V . Diamond Drilling Expenditures
APPENDIX VI - Self-Potential Fieldwork and Manpower InformationAPPENDIX VII - Transportation, Report Preparation, Report ProductionExpenditure Information
APPENDIX VIII -

\square
\square

List of Maps

The following maps can be found within this report.
Property location map.
T-H Property, Moncrieff Township - Benny Greenstone Belt Area
Scale 1:253,440 or 1 inch to 4 miles
Part of Moncrieff Township, Claim Map (G-4086) issued March 5,1 993
Scale 1:20,000
Key Plan, T-H Property, Moncrieff Township, Ontario, (G-4086), Exploration Target Area,
Working Area (two drawings)
Scale 1 inch = 1640 feet
Part of Moncrieff Township GDIF, Primary Area of Interest (three drawings)
Scale 1 inch - $1 / 2$ mile
Legend For Report Drawings
No Scale
Corrected Self-Potential Data - Profile Plot
Scale 1:2500
Cumulative Self-Potential Data - Profile Plot
Scale 1:2500
Uncorrected Self-Potential Field Data - Profile Plot
Scale 1:2500
Contour Plot of the Uncorrected Self-Potential Data, Superimposed into the Extrapolated Geological Formations
Scale 1:2500
Diamond Drill Hole Location Plan C-93-1
Scale 1:2500
Drill Hole Geology, Cross Section. C-93-1
Scale 1 inch = 50 feet
Geological Formations, Drill Hole Geology, Cross Section, C-93-1
Scale: 1 inch = 50 feet
Drill Core Samplings, Cross Section, C-93-1
Scale 1 inch $=50$ feet
Trace Element Geochemistry, C-93-1
Scale 1 inch = 50 feet
Superimposed Geological, Geophysical, Geochemical Data for the S-993570 Claim Area Scale 1:2500

T. H Property

Moncrieff
Township.
Benny greenstone belt area.

T-H PROPERTY
Moncrleff TOUNSHIP, ONT.

$$
(G-4086 .)
$$

exploration target area.
working area.

1.0 INTRODUCTION

The following is a detailed report which covers part of the initial T-H Property Exploration Program, Moncrieff Township. Part of the program included surface backhoe trenching, geological mapping and rock and mineral sampling which was looked after by John George Huycke (Op93-145); and geologist Yves Clement. The self-potential survey and the diamond drilling work which this report essentially describes was taken care of by this writer, the applicant, Harold J. Tracanelli. The findings and the results of the geophysics and drilling are generally mixed, although there are a few key aspects which will probably be subject to further, more detailed investigations.

Based on the findings of the fieldwork, additional work in the more promising and interesting looking areas in the northern parts of the T-H property is currently being evaluated and is under consideration for the 1994 field season.

The following is some detailed information pertaining to the area of interest, which is of interest when considering the various aspects of the exploration work findings.

The Tracanelli-Huycke property shortened to the T-H Property, is located in north central Moncrieff Township, within the Sudbury Mining Division, approximately 45 miles by road northwest of Sudbury, Ontario.

The 22 claim block overlies a number of east-west trending, southward dipping metavolcanic and metasedimentary volcangenetic sequences which makes up a part of what is known as the Benny Greenstone Belt.

The Benny Greenstone Belt is a 21 mile long by $3-4$ mile thick sequence of east/west trending volcanic rocks which are thought to be the remnant portions of a much larger homoclinal pile that has probably been overturned and have since been deeply eroded. The rocks within this belt are known to dip towards the south but are believed to be overturned and actually young towards the north.

Generally the rocks of the belt consist of alternating sequences of flows with fine to very coarse grained pyroclastics, interrupted by cherty. micaceous-graphitic, metasediment rocks.

The composition of the rocks within the belt range from mafic to felsic. Felsic metavolcanic, metasedimentary and coarse grained pyroclastic rocks appear to be more prevalent in the eastern parts of the belt, while thicker sequences of mafic flows and other tuffaceous rocks with subordinate intercalated metasedimentary rocks predominate within the western areas.

Sulphide mineralization associated within the various metavolcanogenetic sequences is most evident with the cherty, micaceous and graphitic schistose rocks and probably represent former distal sea floor volcanoclastic sediments.

At a position near the central portion of the belt a thick sequence of volcanoclastic micaceous metasediments extending over considerable strike lengths is known to host large amounts of pyritepyrrhotite, graphite with only very minor amounts of base metal minerals. For the most part this sulphide bearing stratagraphic horizon is essentially base metal barren.

These mineral bearing rocks have been traced for considerable distances along strike by utilizing exploration methods such as trenching diamond drilling and a muititude of geophysics, over the last 40 years.

To the north of the barren sulphide horizon and stratagraphically above it, a felsic metavolcanicmetasedimentary horizon-zone occurs near the northern fringes of the belt, which is thought to host the Geneva Lake and Stralak base metal deposits. It was within this particular area in which trenching, self-potential and diamond drilling investigations were undertaken during 1993.

The base metal rich felsic volcanogenetic rocks in the Geneva Lake and Stralak areas host sulphide deposits at or near the contacts with the mafic metavolcanic rocks.

A detailed study of the geological mapping - geochemical - geophysical data generated over the years has clearly shown that the geological formations - stratigraphy which hosts the two known mineral deposits of the Benny Belt, appears to have been identified striking across the northern portion of the T-H property. This should be considered a very significant finding. The result of the 1993 work appears to indicate that a weak but identifable metal bearing horizon conformably occurs within felsic metavolcanis, thought to be part of the Ulster formation. The Ulster formation is thought to form a continuous stratagraphic horizon with the Geneva and Capper formations which host the Geneva Lake and Stralak base metal deposits.

On the T-H property, along this favourable, potential mineral bearing horizon, coincidental magnetic electromagnetic and I.P. anomalies with significantly high corresponding soil and lithogeochemical responses have been detected, and are traceable along strike over lengths of approximately 5,000 feet striking directly across the property.

High lithogeochemical metal values have been identified in the same general area where soil values as high as $\mathbf{3 1 8 0} \mathbf{p p m}$ zinc have been detected. Many of the significant looking geophysical-geochemical
responses occur concordantly within the felsic metavolcanic units at or very near the mapped contact between the felsic and mafic metavolcanic rocks. The outcrop distribution in the area is somewhat limited due to the overburden cover, and therefore the geological mapping exercises of the past have been somewhat limited.

The massive sulphide deposits found within the Benny Belt are distinctively stataform and were probably generated as a result of volcanic vent-volcanogenetic massive sulphide processes within an aqueous environment.

The massive sulphide pyrite-pyrrhotite horizon identified in the central parts of T-H property have been traced along strike for some $4000 \mathrm{ft}+/-$, exhibits a number of similarities that have been observed in the geological assembledges at both the Geneva Lake and the Stralak properties, but for the most part are base metal poor.

The recently, partially tested northern part of the T-H property is thought to remain potentially favourable for hosting base metals, while it is believed that the rocks in the area are located along the same stratagraphic horizon as the Geneva Lake and Stralak deposits.

Over the years there has been a considerable amount of exploration work carried out throughout the Benny Greenstone Belt, particularly in those areas between Stralak and Geneva Lake.

The Stralak $\mathrm{Zn}-\mathrm{Pb}-\mathrm{Ag}$ minerat deposit was first discovered in the mid 1890's and although it was shown to contain sizable tonnages and grades, it was, for whatever reason, not brought into production.

The former Geneva Lake deposit was first discovered in 1924, while development and actual mining of the deposit took place in an intermittent fashion between the years 1928 and 1944.

For the most part a lot of the work that has been carried out in the belt has been concentrated around the massive pyrrhotite-pyrite-graphite zones which are easily detected using magnetic and electromagnetic geophysical techniques.

Much of the exploration work carried out over the pyrite-pyrrhotite horizons often included trenching, diamond drilling and testing with geophysics. For the most part the sulphide horizons often stuck out like a sore thumb. The results of much of the work showed generally poor results. Very interestingly, almost no one paid any attention to those areas to the north or stratagraphically above the barren sulphide horizons. At the Geneva Lake and Stralak deposits, barren massive pyrite and pyrrhotite are
known to occur south of the ore zones. Many Archean base metal deposits are capped by a barren sulphide horizon.

Some of the work which was carried out on the T-H property north of the sulphide zone included soil geochemistry, ground geophysics and some very limited trenching. Most of the trenching on the property has been restricted to exposing portions of the pyrite-pyrrhotite horizon, including exposing of some minor areas of the lower sequences of the felsic metavolcanics.

Up until the summer of 1993, little or no surface trenching had ever been carried out along the upper most felsic metavolcanic sequences, (middle felsic-rhyolitic unit) contacting the mafic metavolcanics. This felsic-mafic contact area deserves a great deal more attention.

The results of the work carried out by Chevron in 1976, Noranda Explorations in 1985 and Falconbridge Ltd. in 1987 to 1990 , has indicated that there are rather strong soil geochemical responses with corresponding weak but identifiable induced polarization, magnetic and electromagnetic anomalies, trending across parts of claims S-830677, S-808984, S-808972, S-994048 and S-993570. Most of the work in 1993 was carried out in the central parts of mining claim S-993570. The responses correlate with favourable geology consisting of felsic composition flows and pyroclastic rocks which overlay a sequence of mafic metavolcanics. The strength and characteristics of the geochemical-geophysical responses in conjunction with a favourable geological environment, would suggest that the areas should be further explored for base metals.

Peter S. LeBaron, P. Eng. of Noranda Exploration Company Ltd. concluded in his 1986 property report the following interpretation, much of which relates to the area of interest above described.
> "The geology appears favourable as a host for Stralak-type $\mathbf{Z n}-\mathrm{Pb}-\mathrm{Ag}$ mineralization. However, the only significant sulphide occurrence outlined by geophysical surveys is an iron sulphide formation which has been well-tested by diamond drilling over a strike length of about 1200 meters (North Cal Oils, 1959).

> One coincidental (actually several) $\mathrm{Zn}-\mathrm{Pb}$ soil anomalies and a weak I.P. anomaly is of interest because orientation surveys over the stralak zone indicate that this type of sphalerite-rich sulphide zone is only weakly conductive but gives a strong $\mathrm{Zn}-\mathrm{Pb}$ geochemical anomaly"

The T-H Property Exploration Program was designed to explore in some detail those areas described by Peter S. LeBaron and shown to have produced certain exploration results which may be indicative of potential base metal mineralization. Although some work was carried out, there are certain locations within the area of interest which warrant further, more detailed investigations.

Please note that Bharti Laamanen Mining Inc. or its associated companies holds no interests or is expected to earn any interest rights in the T-H property. The mining property is strictly under the care and control of Harold J. Tracanelli and John George Huycke.

2.0 PROPERTY LOCATION AND ACCESS

The T-H mining property is situated within north central Moncrieff Township, Sudbury Mining Division, Ontario, approximately 45 miles northwest of Sudbury, Ontario along highway 144 north. The highway passes directly through mining claims $\mathrm{S}-808970$ and $\mathrm{S}-808971$. Access to the surrounding points within the claim boundaries is afforded by means of an all weather road which leads west to the former E.B. Eddy pulp siding at Benny. A summer gravel road leads across the eastern portion of the claims and heads towards the former Geneva Lake $\mathbf{Z n}, \mathbf{P b}, \mathbf{A g}$ mine.

The base metal smelters in Timmins are located approximately 160 miles by road north from the T-H property.

3.0 PROPERTY DESCRIPTION

The T-H property consists of 21 surveyed claims and one unsurveyed mining claim, making up an estimated 850 acres $+/-$. The various mining claims are listed as follows:

$\mathrm{S}-831410$	$\mathrm{~S}-994048$	$\mathrm{~S}-993570$	
$\mathrm{~S}-830677$	$\mathrm{~S}-808984$	$\mathrm{~S}-808972$	
$\mathrm{~S}-808971$	$\mathrm{~S}-808985$	$\mathrm{~S}-808983$	
$\mathrm{~S}-808969$	$\mathrm{~S}-808970$	$\mathrm{~S}-993568$	
$\mathrm{~S}-993653$	$\mathrm{~S}-993656$	$\mathrm{~S}-993569$	
$\mathrm{~S}-993654$	$\mathrm{~S}-993655$	$\mathrm{~S}-830744$	
$\mathrm{~S}-830745$	$\mathrm{~S}-830747$	$\mathrm{~S}-830746$	
being part of surveyed claim 382, including unsurveyed mining claim S-808987.			

Although the claims have been surveyed, they have not been brought to lease

$$
\begin{aligned}
& \text { T-H PROPERTY } \\
& \text { MONCRIEFF TOWNSHIP } \\
& \text { ONTARID } \\
& \text { G-4036 }
\end{aligned}
$$

4.0 PROPERTY OWNERSHIP

The above listed 22, surveyed but unleased mining claims, located in Moncrieff Township northwest of Sudbury, Ontario, known as the T-H property, and officially on record at the Sudbury mining Recorder's Office as being held in the names of:

John George Huycke, holding 50% and
Harold Joseph Tracanelli, holding 50\%.

For the records, the listing of the interest holders is presented as follows:

1. Harold Joseph Tracanelli

582 Vermillion Lake Road
Box 167
Chelmsford, Ontario
POM 1LO (705) 855-5356
Lic. No. C-34300, CLN 202732
Holds 50% interest (O.P.A.P. Applicant)
2. John George Huycke

19 Emile Crescent
General Delivery
Dowling, Ontario
POM 1 RO (705) 855-5415
Lic. No. C-30970, CLN 147219
Holds 50\% interest (O.P.A.P. Applicant)

No other outside interests hold rights in the above stated mining property.

A perimeter survey was carried out by P.A. Blackburn, dated November $26 \mathrm{th}, 1990$, at the request of Falconbridge Limited, and has been valuable in clearly defining the outer boundaries of 21 of the 22 T-H claim property.

No disputes, liens, orders, etc. have been filed against the mining claims of the official claim holders.

Ontario

Ministry o
Northern Development and Mines

Ministère du
Développement du Nord et des Mines

Mining Recorders Office 159 Cedar Street 2nd Floor
Sudbury, Ontario P3E 6A5

Phone: (705) 670-7319
Fax: (705) 670-7323

July 15, 1992
Mr. Harold Tracanelli
582 Vermillion Lake Road
BOx 164
Chelmsford, Ontario
POM 1LO
Dear Sir:
RE: Mining Claims S. 808969-72 incl., S. 808983-85 incl., S. 830677; S. 830744-47 incl., S. 993568-70 incl., S. 993653-56 incl., S. 994048; S. 831410 Moncrieff Township

Mr. George Huycke who holds a 50\% interest in the above-noted mining claims has advised this office recently that he has decided not to proceed to lease at this time on the said claims.

In order to discontinue the lease process I require written notification from yourself as well, stating that you also wish to not proceed to lease at this time.

It is important that you respond as soon as possible in order that this office may make the necessary adjustment to your file.

Mining Recorder
Sudbury Mining Division
$/ \mathrm{kg}$

SCBEDULE "A"

S. 808969	S. 830746
S. 808970	S.830747
S. 808971	S. 831410
S. 808972	S. 993568
S. 808983	S. 993569
S. 808984	S. 993570
S. 808985	S. 993653
S. 808987	S. 993654
S. 830677	S. 993655
S. 830744	S. 993656
S. 830745	S.994048

5.0 DISCUSSION ON THE PRACTICES, PROCEDURES AND FIELD RESULTS OF THE SELF POTENTIAL SURVEY

As an integral part of O.P.A.P. project "OP93-146" an orientative self potential survey was proposed to be carried out over the northern part of the T-H property in Moncrieff Township. As a result of a very careful review of existing geological-geophysical and geochemical data, primarily originally generated from the former efforts of Noranda and Falconbridge, it was decided that the original extent of the survey should be reduced somewhat to reflect the findings of the latest evaluation.

Within the original proposal of March 10, 1993, plans called for an estimated four days of self-potential (S-P) surveying to be carried out over parts of mining claims numbered S-808972, S-808984, S-830677, S-831410, S-994048 and S-993570.

Part of the reasoning for reducing the survey area was due to the erratic distribution and complex nature of the volcanic stratigraphy west of mining claim S-993570, in addition a large amount of the stratigraphy that has been displaced by highly irregular shaped metagabbroic intrusions. It was felt that it would not be very worthwhile to carry out such survey work over areas made up mainly of metaintrusives, with highly jostled-reoriented blocks of original volcanic rocks, in which interpretation work would certainly prove to be very difficult.

As a result of the above evaluation, the self-potential orientation survey was carried out over mining claim S-993570, utilizing the former grid lines previously established by Falconbridge in 1988 and 1989.

The following is a discussion on the self-potential survey the equipment used, the procedures followed and the results which were obtained.

The self-potential unit utilized for the orientative work was carefully fabricated by the writer and is made up of the following integrated pieces of equipment:

1. Radio Shack Micronta LCD

Digital Mutli Meter 22-191
Please refer to the supporting documentation for further details in Appendix 1 .
2. Two white-glazed, raw bottom porous clay pots, each containing approximately 150 feet of heavy coper were wound tightly into a $4-1 / 2^{\prime \prime}$ to $5^{\prime \prime}+/-$ coil. Each of the copper coils was fully submerged within 6 cups $+/$ - jellied supersaturated solution of copper sulphate and water. Each of the coils was suspended within the solution so that at no time were the coil electrodes allowed to touch the bottoms of pots which would cause the circuits to become grounded.
3. The conductor between each pot and to the readout meter, consisted of a standard gauge double conductor plastic insulated copper wire. Each end of the lead wires were connected to the extruding portion of the electrode coils by means of clip-like plugs. All of the contact areas were well secured and well taped to ensure good contact and limit the possibility of shorting or grounding out.

Prior to the commencement of the self potential survey, batteries and instrument checks were carried out. The pot differences were measured to determine the ultimate positive and negative survey pot positions. The pot differences in this case were determined to range from 1 to 5 milli-volts. Inverse pot differences were also taken to check the continuity of the instrumentation and the soundness of the leads and connections.

For the purpose of the orientative survey, the leap frog method was used with the positive-negative pot separation being approximately 50 feet $+/-(15.25$ meters $+/-$).

At each of the grid line stations a hole was dug down to the mineral soils, at which time a denim bag filled with damp cedar sawdust was placed and packed into the hole for maximum bag-ground contact.

The sawdust filled bag assists in providing a consistent pH media in which the pots make contact with and subsequently read the galvanic potential with little or minimal effects caused by pH differences.

The positive or forward pot was positioned at each of the advancing stations by the field assistant John George Huycke while the negative or rear position pot was worked by Harold Tracanelli.

The field measurements, geographic data was observed and recorded from the rear negative pot position of the configuration. Directions were issued to the forward pot position by the instrument man at such a time as it was felt that the appropriate data had been recorded.

The establishment of the 50 foot $+/$ pot separation, leap frog configuration would easily allow for the detection of narrow conductors if they were to occur perpendicular to the crosslines and were located below and between the positive and negative stations.

The grid arrangement was originally designed to cross perpendicular to the known regional geological trends, etc. On a regular basis, as well as upon completion of the day's surveying, the instrumentation pot hardware-pot differences etc. would be checked in an attempt to determine if any deviations had occurred.

No appreciable changes were found to have occurred on the day of surveying and it is therefore concluded that equipment consistencies should have lead to a significant reduction in systematic or
random errors.

Background and anomalous millivolt (Mv) readings were determined based on an overall assessment of the readings compared against topographic-geographic characteristics in the grid area. It has been determined that the background values should range in the -25 to -30 Mv to +25 to +30 Mv range $+/$ -

For the purpose of the discussion on the self-potential geophysical survey a series of detailed 1.2500 scaled $11^{\prime \prime} \times 1^{\prime \prime}$ drawings have been generated can be found in this report and include the following:

1. Contour plot of the uncorrected self-potential data superimposed onto the extrapolated geological formations.
2. Uncorrected self-potential field data, profile plot.
3. Corrected self-potential data, profile plot.
4. Cumulative self-potential data, profile plot.

Each of the above stated drawings would be useful for doing some interpretational work, in an attempt to identify sulphide bearing stratigraphy, structural elements, geological contacts, etc.

A complete set of tables showing the collected-corrected field data has also been provided, which at some point in time may be further manipulated.

For the most part the initiation of the survey in conjunction with the reduction and evaluation of the data has generally shown that for at least in this area the self-potential method provided a limited amount of usable data, some of which was shown to be quite cumbersome to work with.

The actual initiation of the self-potential survey was carried out on September 4, 1993. The survey was performed by the applicant (Harold J. Tracanelli) with assistance being provided by John George Huycke.

The survey was carried out over the former Falconbridge Limited precut grid lines of $\mathrm{L} 1+00 \mathrm{E}, \mathrm{LO}+00$ and line L1 + 00W, for a total survey distance of some 4250 feet $+/-.11295$ meters $+/-1$.

The following distances were surveyed on the following lines:

L1 + OOE	2000 feet	$(610$ meters $+/-)$
LO + OO	1250 feet	$(381$ meters $+/-)$
L1 $+00 W$	1000 feet	$(305$ meters $+/-)$

All survey readings were taken along each line at 50 foot (15.25 meter $+/-$) intervals. Various reference points along the metric grid lines were carefully noted, so as to facilitate the production of the appropriate drawings. Although the survey work was carried out in feet, the data representation was translated to metric (i.e. $1: 2500$) as to allow for effective compilation, superimposing and interpretation of data against the numerous Falconbridge maps already generated to date.

The results of the survey and its data representation shall be discussed as follows:

1. Corrected

2. Cumulative
3. Uncorrected

1. Corrected

The raw, uncorrected data, collected in the field was subject to some alterations and adjustments as prescribed by S.V. Burr, 1982, which is apparently necessary to correct for diurnal variations while employing the "Leap Frog Method", with a fixed length of wire between the electrodes.

Plotting of the results of the corrected field data has shown that many of the values appear to have become highly exaggerated.
On Lines $1+00 E$ and $1+00 W$, where the surveying progressed from south to north, a large portion of the numbers are strongly negative, while on line $0+00$ where surveying progressed from north to south, all of the corrected figures seem to show a moderate positive direction.

It is possible that the strongly opposite polarities on line $0+00$ between the two adjacent lines may be in part a reflection of the survey direction. A similar effect can sometimes be observed when running fluxgate magnetometer surveys.

If the corrected values of line $0+00$ were transposed to negative polarity, the vast majority of the corrected values of the survey would be strongly negative but unfortunately show little or no resemblance to responses that might be indicative of sulphide mineralization.

On line $1+$ OOE at approximately $2+50$ to $3+50 \mathrm{~N}$, a small, poorly defined sine curve response sometimes typical of sulphides appears to occur over the northern contact of a metagabbro intrusive with the lower mafic and middle felsic unit. The sine curve response is far more clearly defined in the uncorrected profile data.

On the northern parts of the line starting at approximately $11+00$ north the S.P. values change from weakly positive towards the trend of very strongly negative up to the end of the grid line. The change in polarity occurs over the extrapolated contact between the lower mafic unit and the middle felsic, rhyolitic unit. The character of the profiled data has been so strongly exaggerated that it is not possible at this time to make a useful interpretation.

It is important to note that it is the middle felsic unit which is believed to be the primary horizon for potential sulphide mineralization. The geological arrangement in the north part of the line consists of mafic metavolcanics and clastic metasedimentary rocks and are known to contain only very small amounts of sulphides, but show a very strong negative response in the corrected data. It is in part for this reason that interpreting the corrected data appears to be so difficult.

On line $0+00$ regardless of polarity, if changes were to have been incorporated over an above the corrected data, no polarity crossovers would be indicated.

A moderately large spike of +107 millivolts at station $6+00$ south appears to correspond quite well with fairly well defined sine curve cross over observed in the uncorrected data. Little or no further interpretation of the corrected data from $\mathrm{LO}+00$ is possible at this time.

On line $1+00 \mathrm{~W}$, fairly weak positive values form a crossover into very strong negative values in the area from approximately $2+00$ North to $5+50$ North. The actual polarity change - crossover was detected at $5+50$ North. This crossover appears to correspond with a strong crossover shown in the uncorrected data.

The preliminary characteristics of the response would appear to indicate a steeply south dipping source of weak sulphide mineralization. Sulphides which are present may be strataform and could be associated with certain structural features.

In conclusion the corrected survey data appears to have been highly exaggerated and is quite abstract looking, making interpretation difficult at best. Because there is such exaggeration, effects due to landform, topography were very difficult to pick out.

2. Cumulative

The cumulative data is sometimes used by prospectors running the self-potential surveys as a means to more clearly define responses related to sulphide mineralization.

The accumulation of the positive and negative field data shows numerous sharp negative peaks and values which appear, for the most part, to reflect topographic effects.

On line $1+00 E$ a very strong negative spike of -160 millivolts at $3+00 \mathrm{~N}$ appears to correspond with the sine curves observed in both the corrected and uncorrected data profiles. All values on line $1+00 E$ are of negative polarity.

In addition, on line $1+00 E$ at $14+50 \mathrm{~N}$, a peak of -70 millivolts is paralleled by two nearly equal valleys of -34 and -36 millivolts. This particular response appears to correspond with a weak crossover as observed in the uncorrected data.

On line $0+00$ a weak double crossover of -17 and -29 millivolts at $6+00$ to $6+50$ south appears to correspond with a moderately strong double crossover as is shown in the uncorrected data.

On the same grid line at $11+00 \mathrm{~S}$, the values go from quite strongly positive to deep negative, then back to positive, was detected in an area of poplar and jack pine flats and is considered unexplainable at this time.

The character of the profiles as depicted on line $1+00 \mathrm{~W}$ is somewhat similar in nature to that of line $1+00 \mathrm{E}$, with the exception of the values often changing polarity.

A small negative peak of -24 millivolts at $2+50$ North appears to correspond with the extrapolated contact between the lower mafic unit and the middle felsic rhyolitic unit. At $5+00$ North a crossover from +25 millivolts to -46 millivolts corresponds with a strong crossover of -71 millivolts as depicted in the uncorrected data profiles.

Continuous negative values north of the crossover would appear to indicate the causative sources is dipping north as opposed to south as indicated in the corrected-uncorrected data profiles.

The north dipping source is contradictory with the idea of strataform sulphides associated with south dipping geological formations. A possible explanation for such a response may be the presence of a north dipping structure running parallel to, but cross cutting the local stratigraphy.

In conclusion the plotting of the cumulative data has not been overly helpful in identifying potential sulphide mineralization associated with the felsic-rhyolitic sequences. In some respects the various configurations of negative peaks correspond with characteristic corrected and uncorrected crossovers etc., but still do not show any definitive sulphide (sine curve) responses. It is quite possible that the detected responses are related to weak sulphide mineralization which are only putting out faint voltages.

3. Uncorrected

The uncorrected field data which has been profiled and in this instance most easily contoured, of the three types of data discussed, is most often used and interpreted during prospecting self-potential work.

The data profiles for each of the lines appear to be quite erratic looking and without other forms of data to compare to, the uncorrected data can also be difficult to interpret. By studying both the profile and contours, it is possible to identify certain patterns or characteristic features that may be related to sulphide mineralization. Due to the nature of the corrected and cumulative values, it was not possible to effectively draw contours and there is no additional benefit to try to make interpretations.

On line $1+00 E$, at $3+00 \mathrm{~N}$ a very typical looking sine curve S-P response with a positive and negative crossover is clearly shown. The dip of the causative source appears to be steep towards the south, which is conformable with the metavolcanic stratigraphy. The sine curve response is thought to be due to possible sulphide mineralization related to the contact between the metagabbro intrusive and the metavolcanics. There are a couple of small occurrences of sulphides-arsenides located along the south contact of the above said intrusion, approximately 425 feet (130 meters $+/$) to the southwest.

By contouring the negative values it was possible to identify a weakly to moderately strong lenticular response, trending northeast to southwest and is situated near the centre of the middle felsic-rhyolitic unit. The response which ranges from -34 millivolts at $14+50 \mathrm{~N}$ on line $1+00 \mathrm{E},-52$ millivolts at $6+00 S$ and -71 millivolts at $5+00 N$, appears to be conformable with the local stratigraphy. Due to the irregular nature of the data profiles it is not possible to predict a dip of the causative source. It is estimated that the thickness of the sources is probably in the range of 25 to 30 feet. Since the lenticular responses closely correlate with a weak VLF-EM anomaly detected by Falconbridge Ltd., with Induced polarization and geochemistry responses detected by Noranda Exploration, it is possible to speculate that the self-potential response is due to weak strataform sulphide mineralization.

The weak negative responses to the north and south parallel the main anomalous trend, are thought to be related to topographical effects. The parallel trend to the south can be seen on lines $1+00 E$ and $1+00 \mathrm{~W}$, appear to occur only a short distance north of the contact between the lower mafic and the middle felsic matavolcanic rocks. There may be some contact relationship, but it is difficult to say for certain.

Based on a review of the interpreted geology-geophysics, the uncorrected and cumulative S.P. data, it would appear that the response on line $1+00 \mathrm{~W}$ and possibly on line $0+00$ may be related to weak sulphide mineralization within the middle felsic-rhyolitic unit. The response detected near the south end of line $1+00 E$ is probably related to contact metamorphic-hydrothermal sulphides associated with metagabbro intrusive veins similar to the cobalt-bismuth veins observed near the south intrusive contact of the same metagabbro body.

In conclusion the orientative self-potential work carried out on mining claim S-993570 did not conclusively indicate the presence of conductive sulphide mineralization within those certain horizons suspected to be most favourable as potential hosts for mineralization.

With the exception of one response near the south end of line $1+00 \mathrm{E}$, which shows what is though to be the typical response for sulphide mineralization there appears to be no additional areas surveyed which conclusively indicate the presence of significant concentrations of sulphide minerals, magnetite, etc.

Near the centre of the survey area, there appears to be a series of correlating responses which might be related to weak sulphide mineralization, possibly associated with certain structural features, which has yet to be proven and may warrant further, more detailed investigations.

For the most part the evaluation, interpretation and manipulation of the corrected, cumulative and uncorrected self-potential survey data proved to be difficult and cumbersome. Generally the results were found to be inconclusive and in part may be inaccurate. Whatever interpretations can be made, it is certain that there is now more data to add to the realm of pre-existing geological-geophysicalgeochemical data gathered by various workers from the years gone by.

Date: September 4, 1993
Grid Line $1+00 \mathrm{E}$
Starting Point: Falco $1+10 \mathrm{M}$ North
Traverse-Survey Direction: North
Instrument Operators: Harold J. Tracanelli, John George Huycke

Survey Station	Pot.	Pot. Reading	Cumulative Value	Reading Plus Inverse Pot. Diff. $\text { P.D. }=(-1)$	Transposed Reading at Negative Pot	Tentative Value
ON	(-)	0	0	0	- 0	0
50 N	(+)	-30	-30	$-30+(+1)$	+ (-29)	-29
100 N	(-)	-18	-48	$-18+(+1)$	-(-17)	-12
150 N	(+)	-12	-60	$-12+(+1)$	$+(-11)$	-23
200 N	(-)	-22	-82	$-22+(+1)$	-(-22)	-1
250 N	$(+)$	-56	-138	$-56+(+1)$	+ (-55)	-56
300 N	(-)	-22	-160	$-22+(+1)$	-(-21)	-35
350 N	$(+)$	$+55$	-105	$+55+(+1)$	$+(+56)$	+21
400 N	(-)	$+29$	-76	$+29+(+1)$	$-(+30)$	-9
450 N	$(+)$	$+13$	-63	$+13+(+1)$	+ $(+14)$	$+5$
500 N	(-)	-4	-67	$-4+(+1)$	-(-3)	$+8$
550 N	$(+)$	-9	-76	$-9+(+1)$	$+(-8)$	0
600 N	(-)	-8	-84	$-8+(+1)$	-(-7)	7
650 N	$(+)$	$+10$	-74	$+10+(+1)$	$+(+11)$	18
700 N	(-)	-5	-79	$-5+(+1)$	-(-4)	22
750 N	$(+)$	$+18$	-61	$+18+(+1)$	+(+ 19)	41
800 N	(-)	$+14$	-47	$+14+1+1)$	$-(+15)$	26
850 N	(+)	-31	-78	$-31+(+1)$	+(-30)	-4
900 N	(-)	-12	-90	$-12+(+1)$	-(-11)	7
950 N	$1+1$	$+15$	-75	$+15+(+1)$	$+(+16)$	23
1000 N	$(-)$	$+7$	-68	$+7+(+1)$	$+(+8)$	15
1050 N	$1+1$	$+6$	-62	$+6+(+1)$	$+(+7)$	22
1100 N	(-)	$+25$	-37	$+25+1+1)$	$-(+26)$	-4
1150 N	$1+1$	-46	-87	$-46+(+1)$	$+(-45)$	-49

Date: September 4, 1993
Grid Line $1+00 E$
Starting Point: Falco $1+10 \mathrm{M}$ North
Traverse-Survey Direction: North
Instrument Operators: Harold J. Tracanelli, John George Huycke

Survey Station	Pot.	Pot. Reading	Cumulative Value	Reading Plus Inverse Pot. Diff. $\text { P.D. }=(-1)$	Transposed Reading at Negative Pot	Tentative Value
1200 N	(-)	+ 11	-72	$+11+(+1)$	-1+12)	-61
1250 N	$1+1$	$+1$	-71	$+1+(+1)$	+ + + 2)	-59
1300 N	(-)	-17	-88	$-17+(+1)$	-(-16)	-43
1350 N	$1+1$	$+17$	- 17	$+17+(+1)$	+(18)	-25
1400 N	(-)	$+35$	-36	$+35+(+1)$	$-1+361$	-61
1450 N	$1+1$	-34	. 70	$-34+(+1)$	+(-33)	-94
1500 N	(-)	$+36$	-34	$+36+(+1)$	$-1+37)$	-131
1550 N	$1+1$	-31	-65	$-31+(+1)$	+ (-30)	-161
1660 N	(-)	-1	-66	$-1+(+1)$	-(0)	-161
1650 N	$(+)$	-7	-73	$-7+(+1)$	$+(-6)$	-167
1700 N	(-)	-5	. 78	$-5+(+1)$	-(-4)	-163
1750 N	$(+)$	-6	-84	$-6+(+1)$	$+(-5)$	-158
1800 N	(-)	$+7$	-77	$+7+(+1)$	$-(+8)$	-166
1850 N	$(+)$	-6	-83	$-6+(+1)$	$+(-5)$	-171
1900 N	(-)	-1	-84	$-1+(+1)$	-(0)	-171
1950 N	(+)	$+16$	-68	$+16+(+1)$	$+(+17)$	-154
2000 N	(-)					

Date: September 4, 1993
Grid Line $0+00$
Starting Point: Ulster/Moncrieff Township Line Falco 6+90M North
Traverse-Survey Direction: South
Instrument Operators: Harold J. Tracanelli, John George Huycke

Survey Station	Pot.	Pot. Reading	Cumulative Value	Reading Plus Inverse Pot. Diff. $\text { P.D. }=(-1)$	Transposed Reading at Negative Pot	Tentative Value
0 S	(-)	0	0	0	-0	0
50 S	(+)	+ 5	$+5$	$+5+1+11$	$+1+61$	+ 6
100 S	(-)	-20	-15	$-20+11)$	-(-19)	+ 25
150 S	(+)	+ 30	+15	$+30+(+1)$	+1+31)	+ 56
200 S	(-)	-6	+9	$-6+(+1)$	-(-5)	+61
250 S	$(+)$	0	+9	$0+(+1)$	$+(+1)$	+62
300 S	(-)	0	+9	$0+(+1)$	- +1 1)	+61
350 S	$(+)$	0	+9	$0+(+1)$	$+(+1)$	+62
400 S	(-)	+ 20	+29	+20+1+11	- $1+211$	+41
450 S	(+ 1	+10	+ 39	+10+(+1)	+ + +11)	+52
500 S	$(-)$	-4	+35	$-4+(+1)$	- -3)	+55
550 S	(+)	0	+35	$0+1+1)$	+ $1+1)$	$+56$
600 S	(-)	-52	-17	$-52+(+1)$	-(-51)	+107
650 S	(+)	-12	-29	$-12+(+1)$	+(-11)	+96
700 S	(-)	+61	+32	+61+(+1)	- $1+62)$	+34
750 S	$1+1$	+13	$+45$	+14+(+1)	+(+ 14)	+48
800 S	(-)	+6	$+51$	+6+1+1)	- +7 7)	$+41$
850 S	$1+1$	-1	$+50$	$-1+(+1)$	+ (0)	+41
900 S	(-)	-9	+41	$-9+1+11$	- (-8)	+49
950 S	(+1	+ 7	+48	+ $7+1+11$	+ $1+8)$	$+57$
1000 S	$(-)$	+18	$+66$	$+18+(+1)$	- +19)	+38
1050 S	$1+1$	+ 12	+ 78	+12+(+1)	+ + +13)	+ 51
1100 S	(-)	-3	-75	$+3+1+1)$	-(-2)	$+51$
1150 S	$(+)$	-1	+ 74	$-1+(+1)$	+ 101	+53
1200 S	$(-)$	0	+ 74	$0+1+1)$	- +11	+ 52
1250 S	$(+)$	+ 6	$+80$	+61+1)	+ $1+6)$	+58

Date: September 4. 1993
Grid Line $1+00 W$
Starting Point: Falco $3+50 \mathrm{M}$ North
Traverse-Survey Direction: North
Instrument Operators: Harold J. Tracanelli, John George Huycke

Survey Station	Pot.	Pot. Reading	Cumulative Value	Reading Plus Inverse Pot. Diff. $\text { P.D. }=(-1)$	Transposed Reading at Negative Pot	Tentative Value
O N	(-)	0	0	0	- 0	0
50 N	(+1)	-12	-12	$-12+(+1)$	+(-11)	-11
100 N	(-)	+19	+ 7	+ $19+(+1)$	$-1+20)$	-31
150 N	1+1	-19	-12	$-19+1+1)$	+ (-18)	-49
200 N	(-)	+19	+ 7	+ $19+(+1)$	-1+20)	-69
250 N	(+)	-31	-24	$-31+1+1)$	+ (-30)	-99
300 N	(-)	+ 50	+26	+ $50+(+1)$	- $1+51)$	-150
350 N	(+)	+ 8	+ 34	$+8+(+1)$	+ + +9)	-141
400 N	(-)	-10	+ 24	$-10+1+11$	(-9)	-132
450 N	(+)	+ 1	+25	+1+1+1)	+ $1+2$)	-130
500 N	(-)	-71	-46	$-71+(+1)$	-(-70)	-60
550 N	(+)	+ 46	0	+ $46+(+1)$	+ $1+47$)	-13
600 N	(-)	-49	-49	$-49+(+1)$	-(-48)	+35
650 N	(+)	-5	-54	$-5+(+1)$	+ (-4)	+31
700 N	(-)	+ 10	-44	$+10+1+1)$	$-4(+11)$	+20
750 N	(+)	+ 8	-36	$+8+(+1)$	+ +9)	$+29$
800 N	(-)	+15	-21	+15+1+1)	-1+16)	+13
850 N	$1+1$	-28	-49	$-28+(+1)$	$+(-27)$	-14
900 N	(-)	-3	-52	$-3+(+1)$	-(-2)	-12
950 N	(+)	+25	-27	+25+1+11	+ + +26)	+14
1000 N	(-)	-7	-34	$-7+1+11$	(-6)	+20

6.0 DISCUSSION ON DIAMOND DRILLING OF HOLE C-93-1

A major part of the T-H Property 1993 Exploration Program, OPAP File Number OP93-146, was to put down single diamond drill hole C-93-1, to evaluate and determine the depth extent of the potentially favourable mineral bearing stratigraphy, near or at the contacts between the middle felsic-rhyolitic metavolcanics and the upper mafic metavolcanic sequences. These lithological units have been previously established through geological mapping carried out by Falconbridge Ltd. in 1989 (M. Gray).

Based on a preliminary review of the trenching geological mapping and sampling work carried out by geologist Yves Clement, as part of the OP93-145 program, in conjunction with the available geologicalgeophysical and geochemical data previously generated by Falconbridge Ltd., Noranda Explorations and by this writer (self-potential survey), an appropriate drill hole collar location was chosen.

As a result of the review, the hole was drilled in the upper centre portion of mining claim S-993570, at the Falconbridge Ltd. co-ordinates of $5+16$ meters north and $0+20$ meters west. The drill hole was drilled towards the north-northwest at 331° Azimuth, at an inclination of -55°. The drill machine was set up directly on an outcropping, very near the south end of a large trench (See OP93-145), which is situated approximately 20 meters $(65.0 \mathrm{ft} .+/-)$ west of $\mathrm{LO}+00$. No casing was required for Hole C-93-1, which helped to keep the costs down to a minimum. Upon completion of the drilling, the hole reached a final depth of 604 feet (184.09 meters $+/-$).

The diamond drilling contract was given out to Sparta Diamond Drilling, which is owned and operated by Larry J. Salo, out of Connaught, Ontario. For this drill hole the light weight BBS-2 drill machine was utilized and was easily mobilized into the collar area. The drill machine was equipped with a wireline system which was fitted to produce ADBGM (1.20 inch diameter) core. Core recovery for hole C-93-1 is estimated to be nearly 100%, and the core was laid out in the appropriate wooden boxes, which were easily shipped off to the core shack for logging, sampling, etc.

The total drilling costs for hole C-93-1 was set at $\$ 12.00 /$ foot. A total of 604 feet of drilling was carried out, with the invoiced charges for this work being $\$ 7,200.00$. A copy of the invoice can be found in Appendix V of this report.

Hole C-93-1 was spotted by John George Huycke, under the direction of this writer, on October 2, 1993 at the co-ordinates previously stated above. The drilling of the hole took place over a period of six days from October 2, to 7,1993 . On two occasions John George Huycke paid a visit to the drill site to check on progress and to take a look at some of the fresh core as it was made available. Upon completion of the hole all core boxes were tightly secured and then transported to 582 Vermillion Lake

Road, Chelmsford, Ontario, to be logged, sampled and placed in storage for future reference.

The formal drill core logging procedures were carried out on October 16th and November 13, 1993 by this writer, Harold J. Tracanelli, the OPAP applicant. All lengths of drill core were measured and logged in feet and inches as is clearly denoted within the attached drill logs. Complete descriptions of the rock type - lithological descriptions including colour, grain size, texture, alteration etc. were reported within the drill logs as carefully and effectively as possible.

At various locations throughout the hole core samples ranging in length from 1'-3" to a maximum of $7^{\prime}-0^{\prime \prime}$ were marked out, with each given an identification number. The actual core splitting procedures were carried out on December 7, and 8, 1993. A total of 46 core samples were split, bagged, recorded and prepared for shipment off to Chemex Labs Ltd. in Toronto. Ontario. Each sample was subjected to ICP-32 and gold analysis. The complete results of the above analytical procedures can be found within Appendix III of this report.

The drill log information and the analytical data has been transposed onto a series of cross sections at a scale of 1 inch to 50 feet. The reasoning behind choosing an imperial scale for the sections over the metric scales as was used for the self-potential survey work was that it was found that the 1,2500 would probably prove to be too small to allow for sufficient space to plot some of the logs' useful details. Since there was no drill hole geological information projected vertically onto the horizontal projection of the hole, the "Diamond Drill Hole Location Plan" has been drafted at a scale of 1,2500, which can easily be overlaid onto the Falconbridge geological-geophysical plans, etc.

Within the report, cross sections depicting the Drill Hole Geology, Drill Hole Samplings and Trace Element Geochemistry have been provided. In addition, a 1,2500 scale plan depicting the position of the drill hole and the position of the drill hole showing the relationship of the extrapolated geological contacts with the positions of various geophysical and geochemical anomalies has also been provided. The complete drill hole log has also been provided within the report immediately following this particular section.

The results of drilling hole C-93-1 are considered to be somewhat mixed from a geological and metal bearing point of view. The geological sequences cut looked to be fairly interesting while, for the most part, metal values obtained for the $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{Au}$ and Ag were fairly low. In each instance it is possible to identify certain areas which could be of potential interest, but will require further, more detailed study.

For the most part the geology within the drill hole turned out to be pretty much what was expected. The various stratigraphy encountered generally consisted of felsic metavolcanics with intercalated mafic metavolcanics and metasediments, which have been intruded by gneissic-granitic rocks. Most of the rocks have been strongly altered due to vein infilling, quartz-carbonate-chlorite-biotite alterations and replacement, folding and faulting.

Within the upper parts of the drill hole the rocks are generally made up of a number of alternating sequences-intercalated predominantly felsic ash tuffs and felsic crystal tuffs, which are interrupted by narrow sequences of undifferentiated mafic to intermediate metavolcanic rocks.

Some of the undifferentiated rocks resemble fine grained gabbroic-diabasic intrusive rocks which have been distorted due to the effects of structural-chemical alterations.

In the upper felsic sequence (middle felsic-rhyolitic unit), narrow altered lamprophyre dykes cross cut the stratigraphy. Lamprophyre dykes are known to be fairly common within the central areas of the Benny Greenstone Belt.

From this setup, the drill hole cut approximately 250 feet of middle felsic-rhyolitic metavolcanic rocks. For the most part the rocks are not overly eventful looking, but have undergone some noticeable alterations due to the effects of faulting and subsequent vein infilling of quartz-carbonate-chloriteepidote etc. These rocks were found to contain some minor pyrite. Most of the rocks do not contain more than 5 percent sulphide minerals. Numerous pseudotachylite veins and a fleshy red-pink discoloration due to potassium-sodium or hematite alterations is commonly observed within the felsic rocks. Jointing and fault fracturing with some mineral healings are visibly evident within this section and are probably related to young structural episodes.

The felsic-metavolcanics with the minor intercalated mafic-intermediate, etc. rocks, are thought to make up part of the Ulster Formation as classified by A.E. Guthrie, 1980. The Ulster Formation forms a continuous horizon with the Geneva and Copper formations which are known to host the Geneva Lake Mine and the Stralak base metal deposits. The Ulster Formation is thought to be the same rocks identified as the middle felsic-rhyolitic unit classified by Falconbridge Ltd., 1989.

Within the drill hole, the felsic sequences have been abruptly crosscut by a very strong, apparent south dipping mylonitic fault zone occurring from approximately 250 feet to 365 feet down the hole. The zone is made up of a wide variety of differentiated to undifferentiated altered - twisted and contoured rock fragments - xenoliths, ranging from felsic to mafic, intrusive to extrusive rock types. Some of the rock fragments appear to have been highly altered while others appear quite fresh looking. At a few
locations within the zone, particularly near the upper contact areas, narrow 1 " bands of massive pyritepyrrhotite, including inclusions of brown-sphalerite with lesser chalcopyrite-pyrite and galena were observed within, and appear to be associated with altered intermediate to felsic metavolcanic rock fragments. The very light coloured rock fragments found to contain sphalerite mineralization have been very strongly altered with quartz-carbonate and epidote minerals. The sphalerite is deep purple to brown in colour and occurs as irregular shaped inclusions, associated with minor chalcopyrite, pyrite and traces of galena. The most concentrated sphalerite-sulphide mineralization occurred over a distance of approximately 3 feet $+/-$, from $295^{\prime}-9^{\prime \prime}$ to $293^{\prime}-8^{\prime \prime}+1-$.

The mylonite-fault zone matrix rocks are made up of a dark coloured aphanitic-nearly glassy recrystallized rock flour. In places small fragments of sulphides and minor secondary sulphide remobilization micro veining has been noted. Future investigations might be considered to determine the origin of such sulphides, the petrogenesis, etc.

It is quite possible to speculate that some of the incorporated rock fragments within the mylonite-fault zone were derived from the immediately adjacent formations. The sulphide bearing intermediate-felsic rocks could have been derived from the so-called Ulster Formation rocks, similar to those encountered in the upper parts of the drill hole. The Ulster Formation is though to form a continuous horizon with the Geneva Lake and Copper Formations which host two known base metal deposits.

The very strong structure feature is thought to mark the boundary between the middie felsic-rhyolitic unit (Ulster Formation, A.E. Guthrie, 1980) and the upper mafic metavolcanic unit as depicted on the Falconbridge Limited, Geology maps (Mike Grey, 1989). On surface, the fault zone is clearly marked by the presence of a deep, generally east-west trending gully which can be traced for a considerable distance along strike. This major structure could have acted an important metal bearing-fluid conduit system, allowing for metals to be introduced or mobilized and reconcentrated into rock formations most suitable for the precipitation of metals.

Immediately below the contact of the mylonite fault zone, the rocks are made up of predominantly mafic tuffaceous rocks with minor intercalated felsic ash tuffs. These particular rocks are probably part of the Falconbridge Ltd. Upper Mafic Unit (Munster Formation, A.E. Guthrie, 1980). The original contact between the middle felsic and the upper mafic rocks was obliterated as a result of the introduction of the mylonite fault zone. The visual change from predominantly felsic to predominantly mafic rocks in the down the hole direction would appear to signify the lithological change from felsic to mafic, as has been mapped on surface and which can be seen at depth.

Abstract

Although it is suspected that sulphide mineralization will not likely be found directly on the felsic-mafic contact, it is important that attempts be made to try to approximate the position of the original prestructural contact. The sequences below the apparent south dipping fault structure consist of mafic rocks and clastic metasedimentary rocks.

The metavolcanic-metasedimentary rocks have been intruded by a fine to medium grained foliatedgneissic former felsic intrusive rock. These rocks appear to resemble the granite gneissic rocks north of the Benny Belt. Approximately 95 feet of the felsic intrusive rock was cut in Hole C-93-1, followed by the metasediments to the end of the hole.

Secondary alteration of the predominantly mafic rocks include fracturing and brecciation, followed by infilling of extensive carbonate veining with large inclusions of massive pyrite, magnetite and chlorite. The fracturing of the rocks followed by carbonate-sulphide fluids may have come about due to the establishment of the adjacent fault structure. It is not possible to determine at this time if the brecciation-veining predates or post dates the structure without conducting further detailed studies.

If veining were to post date the faulting, this could be good supporting evidence to suggest the fault may have acted as a fluid bearing conduit.

The metasedimentary rocks encountered in Hole C-93-1 appear to be made up of either Archean aged volcanogenetic or Huronian Supergroup metaclastic rocks ranging from siltstones -argillites, greywacke to conglomerates. Owing to the close special relationship of the granite gneiss and the metasediments to the north, and as can be clearly observed on surface, it is quite possible that the rocks are proterozoic in age (Gowgandan Formation).

Narrow mylonite fault rocks, identical looking to the structure rocks above, were found within the metasediments. The mylonitic-fault related rocks observed throughout approximately the lower half of the drill hole, clearly demonstrates the significant extensiveness of the fault structure.

In a generalized way it is possible to see that the felsic volcanic stratigraphy clearly overlies the maficmetasedimentary stratigraphy. The large structure identified near the base of the middle felsic unit may represent a thrust fault allowing the older volcanic rocks to override the younger metasedimentary rocks. A thrust fault regime would clearly post date Huronian deposition. The thrust fault may have developed concordantly within the felsic sequences following the postulated overturning, (A.E. Guthrie, 1980), of the homoclinal volcanic pile. Over the past couple of years various workers have suggested the presence of such a thrust fault system occurring near the northern limits of the Benny Belt. There are those (K.D. Card, Bill Morris, et. all, who suggest that such deformation zones are related to the
emplacement of the Sudbury structure.

If the proposed thrust fault was responsible for dragging mineralized rocks from below, it may be possible to speculate that there may be favourable, more richly mineralized rock formations to be found downdip along the fault. Deep drill probing would be required to test such a theory. Please refer to the attached diamond drill logs for further details.

With regards to the analytical work carried out, all samples collected from hole C-93-1 were subjected to an ICP-32 trace element determination which includes $\mathrm{Ag}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Co}$, including 26 various other elements. A 10 gram F.A. A.A. finish gold determination was also performed on all samples.

The results of the analytical work has shown that all metal values are generally in the low ranges.

No gold values greater than the detection limit of 5 ppb were reported. This would seem a bit unusual owing to the presence of a lot of quartz-carbonate-sulphide veining, etc. Unfortunately, a lot of the good looking, well mineralized rocks found in various locations throughout the Benny Belt often, for whatever reason, contain little or no gold. This has been demonstrated by a lot of other works over the years.

The silver values generally ranged from $<0.2 \mathrm{ppm}(0.005 \mathrm{oz})$, to $0.60 \mathrm{ppm}(0.175 \mathrm{oz})$. The majority of values are no greater than 0.2 ppm Ag .

The zinc values in most cases are quite low, which is not surprising since the amount of sphalerite encountered within the hole was quite minimal.

The values ranged from as low as 14 ppm to as high as 2090 ppm (0.209%). It is estimated the average values occur in the 50 to 200 ppm range. Two of the highest zinc metal values of 2090 ppm and 1170 ppm (0.209 and 0.117%) each occur over 5 foot core lengths, cut from the mylonite fault zone structure. Although quite limited, these metal values should probably be considered anomalous. There is some thought that the fault has tapped into mineralized strata or veins, etc. from the downdip direction.

It is interesting to note that in the areas that contain the high zinc values, large potassium value spikes were found to more or less correspond. The vast majority of the elevated potassium values were found within the mylonite-fault zone as well as within the mafic metavolcanic rocks adjacent to and below the identified structure.

The trace element geochemical work carried out by A.E. Guthrie, 1980, a part of his major Benny Belt investigations, has shown that both the Geneva Lake and Stralak base metal deposits are associated with increased potassium and a decrease in sodium. All samples from C-93-1 showed sodium values less than 0.10%. It must be kept in mind that only partial digestion of the potassium, sodium, calcium, titanium, etc. bearing minerals may be accomplished when utilizing the ICP analytical procedures.

It is believed that most of the ICP data can be effectively utilized to generalize, and to make broad interpretations. More highly sophisticated analytical work would have to be carried out in order to substantiate any of the preliminary interpretations.

The copper values showed quite erratic distribution ranging from as low as 4 ppm to a high of 301 ppm. For some reason the metal values do not correspond nor increase with increased zinc values. In a number of instances the copper values appear to drop in proportion to increasing zinc values.

With respect to the lead content, most of the values are quite low ranging from $<2 \mathrm{ppm}$ to a high of 452 ppm (0.0452%). Interestingly the lead values for the most part correspond with the increased zinc values.
-
The arsenic values which range from < 2 ppm to 92 ppm are widely scattered through the hole and is probably associated with very weak arsenopyrite mineralization known to occur in the area.

The barium content reported for the hole appears to be quite low. It is strongly suspected that there has only been partial digestion. Previous whole rock litogeochemical work carried out by Falconbridge Limited (Harold Gibson; 1987, M. Gray 1988) has indicated Ba values up to about 2000 ppm.

Reported beryllium values are generally quite low at $<0.5 \mathrm{ppm}$. The exception to this is a few values of 1.0 ppm and a spike of 15.0 ppm Be. This high value was obtained from within the carbonatesulphide veins which occur within the mafic metavolcanics immediately below the mylonite fault zone. In general there appears to be a weak Beryllium association corresponding to an increase in Calcium.

Bismuth values are quite low ranging from < 2 ppm to a maximum of 6 ppm . These values do not appear to be very significant, in light that a significant Bismuthinite BiS_{3} vein showing is known to be located approximately $1 / 4$ mile to the southeast.

Calcium values were found to range from less than 1.00% to over 15.00% and is in part due to carbonatization alteration and carbonate mineral vein emplacements.

Cadmium values were found to be higher than expectations. The metal values ranged from $<0.5 \mathrm{ppm}$ to a high of 17.5 ppm . Very interesting the cadmium values followed very closely with the increased zinc values. The Cd, Zn corresponding relationship may prove to be important in future investigations.

The elements Al , $\mathrm{Co}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Ga}, \mathrm{Hg}, \mathrm{La}, \mathrm{Mg}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Sb}, \mathrm{Sc}, \mathrm{Sr}, \mathrm{Ti}, \mathrm{TI}, \mathrm{U}, \mathrm{V}, \mathrm{W}$ show quite low or scattered values, and may in the future require further, more detailed study to be undertaken.

Aside from the above, but probably no less complex is the phosphorous content, in which seemingly high values up to 2050 ppm (0.205%) has been reported. Most of the values were found to occur within the upper hundreds of ppms. These values may be indicative of the presence of the pervasive phosphorous alterations throughout the volcanic stratigraphy.

Manganese values throughout the hole were not exceptionally high, ranging from a low of 60 ppm to a high of 2010 ppm Mn. For the most part the Mn values appear to correlate with the zinc values within the lower ranges. In all but a few instances the Mn values ranged from about 4 or 5:1 in comparison with the zinc. In the cases where the zinc values were in excess of 0.1% the zinc values exceeded the Mn values by 2 or $3: 1$. It is unknown at this time if Mn would be a useful indicator for attempting to locate sphalerite mineralization, as has been suggested by other workers in the area (Peter Labaron, 1985, Noranda Exploration).

For all of the elements touched upon in this report, there is without doubt, room for further evaluations and interpretations. As was mentioned previously the ICP-32 trace element work is a suitable method to allow one to get some type of idea on the overall metal content in a fairly broad scale. In must be kept in mind that the ICP work has its limitations due to the partial digestion problems. Some interpretations can certainly be made which would give sufficient data to possibly allow for further, more detailed types of exploration work to be planned and carried out.

In conclusion the results of the diamond drilling and assaying procedures carried out by the applicant and a review of the pre-existing assay data obtained from Falconbridge Ltd., it would appear that there exists a conformable, weakly mineralized zinc bearing horizon within the middle felsic-rhyolitic unit (Ulster formation), which trends northeasterly across mining claim S-993570.

The presence of a strong fault structure which was found to host mineralized rock fragments may have tapped into richer zinc bearing strata somewhere in the downdip direction.

The presence of corresponding-nearly overlapping weak, visible VLF-EM, S.P., I.P., magnetic and geochemical anomalies appears to indicate the presence of a mineralized horizon within felsic rocks
closely associated within known mafic metavolcanics contact.

An exploration program of deeper diamond drilling followed up with detailed geological and suitable geochemical analysis and may be warranted, and might be considered for the future.

If possible, a drill hole of 800 to 1000 feet at an inclination of $60^{\circ}-75^{\circ}$ should be considered to be drilled along the east, north-south boundary of mining claim S-993570 to test the westend of a strong Falconbridge VLF-EM anomaly which trends across the company claim S-1042946 up to at least the T-H property boundary line. This particular anomaly is thought to correspond with the same middle felsic-rhyolitic unit (Ulster formation) as occurs on S-993570. The strong anomaly may carry higher concentrations of sulphide mineralization than the VLF-EM anomaly apparently cut by drill hole C-93-1. It is hoped that higher grade sulphides might be found in both areas as a result of potential future exploration.
THE T-H PROPERTY 1993 EXPLORATION PROGRAM
MONCRIEFF TOWNSHIP

Footage					Footage			C-93-01
From	To	Rock Type	Description	Sample No.	From	To	Sample Length	Analytical Procedure
0^{\prime}	18'-2"	Felsic Tuff	Light grey green to beige coloured, sub aphanitic, visibly well fotiated ranging from about 45° T.C.A. 50° T.C.A. Some visible pervasive alteration of the felsic rock by very fine grained silvery-white sericite, also possible micro fine grained chlorite. The tuffaceous bands range in thickness from a mere fraction of an inch to about 1 inch +1 . This section of rock hes been intruded by numerous unidirectional thin veins of calcite after pink iron carbonate, also, micro thin green chlorite stringers an also green chlorito inclusions. There are the occasional < $1 / 2^{\prime \prime}$ sharp contacting quartz-epidote vains. A lot of the possible related white-calcite, pink iron carbonate? follows somewhat along the core axis, while other less prominent looking veins appear to cross cut the foliation at $45^{\circ}-50^{\circ}$ T.C.A. There would appear to have been 2 or 3 veining events (probably secondary remobilization of siliceous-carbonate fluids). Locally the rock hosts from trace to 2% finely disseminated pyrite. Treces of finely disseminated sulphides noted within the intrusive veins @ 10. 5". 13'-0" late, moderately broken "fault zone". Fracturing appears to hava cross cut the carbonate veining, fractures evident at 25° T.C.A. Portions of the rock appear to have been replaced by fine grained chlorite and carbonate, also thin carbonate veins developed in some fractures. Locally the "fault zone" may host 5.6% finely diss. pyrite. The rock of the fault zone is distinctively greener in colour than the adjacent rocks but has a very similar texture-grain size, etc. For the most part the rocks are foliated tuffs altered with chlorite-carbonates and minor iron sulphides.					
18'0"	37'0"	Mafic Unit	Undifferentiated, possible flow? rock ranges from dark green to light grey green, subaphanitic to phaneritic, can be massive looking, weakly to well foliated @ 45° T.C.A., locally the mafic unit has been interrupted by thin intercelated bands of dark to light grey felsic tuff @ $27^{\prime} \cdot \mathbf{7 " ~}^{\prime \prime}$ to $29^{\prime} \cdot 5^{\prime \prime}$ complete with foliation @ 40° T.C.A. Trace diss. pyrite, also from $31^{\prime} \cdot 5^{\prime \prime}$ to $32^{\prime} \cdot 3^{\prime} \cdot 1 / 2^{\prime \prime}$ being the same as $27^{\prime} \cdot 7^{\prime \prime}$ to $29^{\prime} \cdot 5^{\prime \prime}$ except slightly darker due to some chlorite alteration. veining @ $33^{\prime} \cdot 3^{\prime \prime}$ to $3^{\prime} \cdot 5^{\prime \prime}$ "lampropyre dyke" mottled dark groen to grey equigranular, phoneritic rock with visible black to black groy biotite and stubby pyroxene phenocrysts, somewhat obscured contacts with adjacent mafic rocks @ 59° T.C.A. The dyke host traces of fine diss. to inclusions of pyrite-chalcopyrite, minor thin $<1 / 8^{\prime \prime}$ anastomosing carbonate veins intrude the dyke. Much of the "mafic unit" has been subjected to visible alterations, most notably in the form of numerous, locelly concentrated thin irregular anastomosing voins of carbonate, somatimes with minor apidote-chlorite traces of sulphides. Irregular shaped vains of chlorite with quartz and epidote have cross cut the carbonate veins. The minor areas of increased chlorite alteration are found to contain $3-5 \%$ diss. to inclusions of coarse grained pyrite, sometimes as crude cubes. The most concentrated sulphides can be found from about $19^{\prime}-0^{\prime \prime}$ to $2^{\prime} 4^{\prime} 0^{\prime \prime}$ - 5' (possible "chlorite-sulphide alteration zone").					

Footage					Footage			C-93-01
From	To	Rock Type	Description	Sample No.	From	To	Sample Length	Analytical Procedure
			The most evident carbonate veining con be found in the mafic sections and less prominent in the intercalated feisic tuff bands and least evident in the lamprophyre dykes, suggesting that the veining alteration preceded the emplacement of the dykes. Some of the veins within the dykes including the adjacent mafic rocks, could be due to socondary remobilization during the initial emplacement and cooling down of the dykes.					
37-0"	88'0"	Felsic Tuff Folsic X-Stal Tuff	Light grey-grey green subaphanitic to phaneritic (grey quartz eves), moderately to well foliated @ $45^{\circ}-55^{\circ}$ T.C.A. Tuffaceous bends are generally only a fraction of an inch thick, and are quite regular looking. Some very minor kink bands were noted. The tuffs show fine grained disseminated silvery sericite and minor visible light coloured carbonate alteration. The coarser grained tuff sections showing quite visible quartz oyes are alternating with the finer grained tuffs which often have an increased. more concentrated saricite content, most notable along the foliation plains. Minor localized very thin micro anastomosing veins of quartz-carbonates with light green aphanitic epidote intruded the tuffs. Micro thin pseudotochylite? veins appear to cross cut quartz-carbonate veins. For the most part the tuffaceous unit may host traces of diss. pyrite. @ $61^{\prime} .66^{\prime \prime} 3 / 4^{\prime \prime}$ white-groy quartz vein, moderately sharp contacts @ 27° T.C.A. @ 86'.0" $1 / 4^{\prime \prime}$ whito-grey quartz vein, moderately sharp contacts @ 87° T.C.A., no sulphides observed in either of the veins. @ $69^{\prime} \cdot 6^{\prime \prime}+1$ to $80^{\prime} \cdot 7^{\prime \prime}$ noticeable light pink to salmon pink coloration of the tuffs. The pink colour does not seem to be evenly distributed but looks to be somowhat patchy, very fine grained light yellow-green aphanitic pseudotachylite? veins and phaneritic apidote veins randomly occur within the pink altered parts of the tuff. Quartz with epidote and lesser carbonate minerals appeer to occur together at some locations. The strongest, most evident quartz-epidote, pink (k-spar) minor carbonate alterations of the tuffs occur between the footages of $73^{\prime}-3^{\prime \prime}$ to $76^{\prime} \cdot 0^{\prime \prime}+1$. @ approximately 74^{\prime} the quartz-epidote and pink mineral appears to have almost replaced the host tuffs. @ 80'. $\mathbf{8}^{\prime \prime}$ to $82^{\prime} \cdot 3^{\prime \prime}$ derk to light green, aphanitic massive to weakly foliated undifferentiated mafic rock, possible "mafic dyke" contacts appear somewhat obscured. Possibly aligned to the foliation plain of about 45° T.C.A. Mafic rock has been intruded by a number of thin < $1 / 4^{n}$ irrogular shaped carbonate veins with possibly some epidote veins although irregular and somewhat discontinuous trend at approx. 20° T.C.A.					

Footage					Footage			C-93-01 Page 3 Analytical Procedure
From	To	Rock Type	Description	Sample No.	From	To	Sample Length	
			@ 82'-3" to $88^{\prime}-0^{n}$ noticeable pink (K-spar) alteration, the same as that noted from within section $69^{\prime} \cdot 9^{\prime \prime}$ to $80^{\prime}-7^{\prime \prime}$, most noteworthy within this section is the significant increase in the number of light green-yellow aphanitic psoudotachylite? veins, including some thin sharply contecting quartz epidote veins. These visibly altered rocks occur in between two thin mafic bands. The pseudotachylite? veins appear to have developed after the pink alteration. These veins do not appear to occur within the adjacent mafic rocks.					
88'0"	89'8'	Mafic Dyke	Dark green, almost subaphanitic, a fow laths of pyroxenes can be observed in a generally tine grain green-black ground mass. The dyke appears to have intruded the felsic tuffs. There appear to be some thin < 1 " chilled margins. The contacts are marked by a thin $<1 / 4^{\text {n }}$ light yellow.green aphanitic, possible pseudotochylite materials. The dyke contains a few minor < $1 / 8^{\prime \prime}$ to $1 / 4^{\prime \prime}$ carbonate veins developed within fractures that extend across the contacts into the tuffs. Within the tuffs the carbonate fracture filling is noticeably narrower, likely due to the different strengths etc. of the two rock types. It is worthy to note that the dyke appears to have developed concordant with the foliation. former deposition of features of the tuffs. The mafic units (dykes) may havo followed highly incompetent, easily penetrable tuff units. The tuff units would have also been most suscoptible to alteration such as the quartz-carbonate-pinkepidote veining. Unfortunately no appreciable sulphides have been noted above the $88^{\prime} \cdot 0^{\prime \prime}$ mark in this hole.					
89'-8"	100' $\mathbf{8}^{\prime \prime}$	Folsic Ash Tuff	Light grey to very light beige, with lesser pink (K-spar) discoloration, mainly fine grained aphanitic to minor subaphanitic. very weakly foliated to nearly massive looking in places. Rock appears to have been folded relative to the rocks in upper parts of the hole as evident by the foliation of $70^{\circ}-80^{\circ}$ T.C.A. Much of the section length has been subjected to visible alteration, the most prominent being numerous thin < $1 / 4^{\prime \prime}$ green-black chlorite stringers, a fow minor carbonate-chlorite stringers and some localized brecciation of the tuffs with grey calcite healing and disseminated sulphides. The section can be broken down into the following subsections: $90^{\prime} \cdot 2^{\prime \prime}$ to $91^{\prime} \cdot 0^{\prime \prime}$ dark green massive altered mafic rock, possible dyke, with semi-gradational contacts. Rock shows some minor spotty-like pink discolorations, some replacement by fine grained green chlorite, rock intruded by thin $<1 / 4^{\text {" }}$ irregular shaped grey carbonate veins.					

Footage		Rock Type	Description		Footage			$\begin{aligned} & \mathrm{C}-93-01 \\ & \text { Page } 4 \\ & \hline \end{aligned}$ Analytical Procedure
From	To			Sample No.	From	To	Sample Length	
		$91^{\prime}-0^{\prime \prime}-97^{\prime} \cdot 6^{\prime \prime}$ Weak chlorite stringer zone	91'-0" to $94^{\prime}-4^{\prime \prime}$ felsic ash tuff with thin but noticeable (5%) groen-black chlorite stringers with trace pyrite. minor pink discoloration of rock. $94^{\prime} \cdot 4^{\prime \prime}$ to $97^{\prime} \cdot 6^{\text {" }}$ felsic esh tuff with noticeably increased (up to 10%) irregular shaped-unidirectional green-black chlorito - with minor epidote veins with trace 1% disseminated pyrite. Strong but localized brecciation and infiling with calcite with up to 5% fine grained pyrite occurs from $94^{\prime} \mathbf{4 " ~}^{\prime \prime}$ to 95^{\prime}-10" $+/$. The strongest part of the breccia shows a grey-blue coloured fragment (either foreign or bleached). Some minor chlorite was noted with the calcite. In the strongest brecciated areas the rock shows significent pink discoloration. alleration. Minor microthin calcite veins are noted in the section, one microthin calcite vein carried a thin seam of chalcopynte. $97^{\prime} \cdot 6^{\prime \prime}$ to $98^{\prime} \cdot 0^{\prime \prime}$ - same rock as $90^{\prime} \cdot 2^{\prime \prime}$ to $91^{1} \cdot 0^{\prime \prime}$ with trace diss. chalcopyrite, bands or foliation occur at 65° T.C.A. Contact with the altered mafic rock is quite sharp, while with the felsic tuff the contact appears more gradational, suggesting replacement of tuff by carbonate?	301701	94*-0"	${ }^{98} \cdot 2^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$	ICP, Au
100'8*	104.11"	Mafic Dyke	Dark green, fine grained phaneritic, massive equigranular, generally fairly fresh looking, noticeable chillod margins of $4^{\prime \prime}$ to $8^{\prime \prime}$ upper contact of dyke sharp but slighty broken apart due to microfaulting in felsic tuff. Contact marked by thin band of grey carbonate-epidote, trace pyrite, lower contact is somewhat sharper @ 65° T.C.A. Two apisodes of veining in the dyke, 1 st thin quartzfeldspar veins @ 25° T.C.A., cross cut by 2 nd calcite-iron carbonate veins < 1/4" @ 45 T.C.A.					
104.11"	114.0"	Felsic Ash Tuff	Light grey to dark grey aphanitic to subaphanitic, weakly to moderately well foliated @ 80° T.C.A. This tuffaceous unit is noticeably different from the provious tuffs, most noticeably there are only traces of quartz oyes within this section. These tuffs have been intruded by a couple of thin $2^{\prime \prime}$ to $6^{\prime \prime}+1$ massive somewhat altered mafic dykes. The rock has a noticeable increase in sericite mica, and there are localized sections which appear to have beon bleached. There are very few thin carbonate veins although micro stringers of yellow green pseudotachylites appear present. Some minor apidote with inclusions of chlorite, trace pyrite or a few micro thin chlorite veins were noted. $105^{\prime}-7^{\prime \prime}$ to $108^{\prime}-8^{\prime \prime}+1$ - dark grean to red spotted, altered mafic dyke, which appears to have been subjected to some shearing-faulting with the fractures being infilled with carbonate and chlorite, minor epidote, no sulphides. Overall the tuffaceous section looks pretty much uneventful.					

Footage					Footage			$\begin{aligned} & \text { C-93-01 } \\ & \text { Page } 5 \end{aligned}$
From	To	Rock Type	Description	Sample No.	From	To	Sample Length	Analytical Procedure
114.0"	157.1"	Felsic crystal to lesser ash tuff.	Light to dark grey with noticeable sections of pink (k-spar) discoloration. The unit appears to be made up of alternating bands of aphanitic to subaphanitic ash to phaneritic to aphaneritic quartz oye crystal tuff. The quartz eyo crystal tuff predominates while the finer ash layers do not appear to exceed a couple of feet thick. For the most pert the unit is only woakly foliated, while in places the rock almost looks massive. Observed foliation trends were noted @ about 80° T.C.A. At various locations the unit has been interrupted by thin dark green, massive fine grained mafic bands or dykes ranging from $3 \cdot 1 / 2^{\prime \prime}$ to $1^{\prime} \cdot 2^{\prime \prime}$ thick. Several of these mafic rocks have been strongly altered with microfine grained carbonate minerals. The most noteworthy mafic sections were noted from: $114^{\prime}-0^{\prime \prime}$ to $114^{\prime} \cdot 8^{\prime \prime}$ strongly carbonate altered, trace 1% fine diss. pyrite, some opidote at the contacts. Pervasive chlorite alteration. @ 124'.9" to 125'0" moderately carbonate altered, secondary carb-chlorite veining at the contacts, 70° T.C.A. Trace pryite, pervasive chlorite altarations. @ $127 \cdot 1$ " to $127 \cdot 11^{\prime \prime}$ weakly carbonate altered, weak but noticeable chlorite alteration, secondery carbonate veins < $1 / 16^{\prime \prime} \cdot 1 / 4^{\prime \prime}$ near contact areas, minor obscure quartz-pink feldspar veining, trace - $1 / 2 \%$ finely diss. pyrite. @ $130^{\prime} \cdot 8^{\prime \prime}$ to $131^{\prime} \cdot 10^{\prime \prime}$ weakly to moderately carbonate altered, very minor carb-epidote veining near contact as well as in mafic rock, pervasive chlorite alteration noted. Tr. diss. pyrite. @ 135'2" to 135'-9" weakly carbonate altered, some chlorite alteration noted, minor quartz, feldspar-carb veins noted, which host trace to $1 / 2 \%$ pyrite.					
			For the most part the tuff unit does not carry a lot of quartz-carbonate-epidote veins as in the upper sections - most noticeable are at: $114^{\prime} \cdot 6^{\prime \prime} 1 / 2^{\prime \prime}$ quartz-epidote-carbonate vein cut off by mafic dyke $119^{\prime} \cdot 10^{\prime \prime} 1 / 8^{\prime \prime}$ quartz-carbonate vain $120^{\prime} \cdot 5^{\prime \prime} 1 / 4$ carbonate-epidote vein @ 85° T.C.A. $125^{\prime}-2^{\prime \prime} 1 / 4^{\prime \prime}$ quartz vein 128'-6" $1^{\prime \prime}$ irregular carbonato-epidote vein 129'-1" $1 / 2^{\prime \prime}$ irregular carb.-opidoto vein $131^{\prime} \cdot 6^{\prime \prime} \cdot 1 / 2^{\prime \prime} \quad 1 / 4^{\prime \prime}$ atz vein right laterally separated 132-6" $1^{\prime \prime}$ white-grey quartz voin $134^{\prime}-6^{\prime \prime} 1 / 4^{\prime \prime}$ quartz opidote carbonate. 5% pyrite vein right laterally soparated by microthin psoudotachylite voins @ 20° T.C.A. 147'.7.1/2" $1-1 / 2^{\prime \prime}$ quartz carbonate epidote spar vein, trace diss. pyrite $152 \cdot 0^{\prime \prime}+$ /- to $155^{\prime}-3^{\prime \prime}$ series of thin pink to white-gray carbonate-quartz-chl. epidote foldspar veins ranging from $1 / 3^{\prime \prime}$ to $3 / 4^{\prime \prime}$ thick. Most noticeable throughout the section is the randomly distributed microthin anastomosing pseudotochylite veins which appear to be clearly socondary to the other alteration elements.					

Footage					Footage			$\begin{aligned} & \text { C-93-01 } \\ & \text { Page } 6 \end{aligned}$
From	To	Rock Type	Description	Sample No.	From	To	Sample Length	Analytical Procedure
157'-1"	166'0'	Strongly oxidized fault-breccia zone	The rock colour ranges from quite dark green to salmon red, pink, hematite red to white grey. The altered rock is generally aphanitic to subaphanitic appearing to be made up of rocks ranging from mafic through to telsic. Most of the materials appear to be on the mafic side. The brecciated materials occur in between a prominent felsic tuff unit and a less prominent mafic unit. These strongly altered rocks may represent "flow top breccia". This section which is highly broken up carries a considerable amount of carbonate minerals, green epidote, lesser quartz and chlorite as irregular shaped inclusion, and vein infillings. Almost the entire section has been dooply oxidized which is clearly evident by the large amount of hematite-mud-send and stainings.	$\begin{aligned} & 310702 \\ & 301703 \\ & 301704 \end{aligned}$	$\begin{aligned} & 157^{\prime} \cdot 1^{\prime \prime} \\ & 160^{\prime \prime} 1 "^{\prime \prime} \end{aligned}$	$\begin{aligned} & 160^{\prime} \cdot 1^{\prime \prime} \\ & 163^{\prime} \cdot 1^{\prime \prime} \\ & 166^{\prime} \cdot \end{aligned}$	$\begin{aligned} & 3^{\prime} \cdot 0^{-0} \\ & 3^{\prime} \cdot 0^{-0} \\ & 3^{\prime} \cdot 0^{\prime} \end{aligned}$	ICP, Au ICP, Au ICP, Au
166'0"	176'1"	Matic flow?	Very dark green to black, being somewhat motiled 50/50 with fine grained equigranular light and dark minerals. The entire section has been moderataly to strongly carbonate altered, with some chlorite alterations. Much of the section has been riddled by microthin, unidirectional anastomosing green-yellow to white carbonete-minor epidote veins. The rock host traces of pyrite inclusions, some minor altered carbonate-opidote-chlorite hematite oxidized veins $<1 / 2^{\prime \prime}$ wide noted at $170^{\circ} \cdot 1^{\prime \prime}$ to $170^{\circ} \cdot 6^{\prime \prime}+$ /.	$\begin{aligned} & 301726 \\ & 301727 \end{aligned}$	$\begin{aligned} & 168^{\prime} \cdot 1^{\prime \prime} \\ & 171 \cdot 1^{\prime \prime} \end{aligned}$	$\begin{aligned} & 171^{\prime \prime}-1^{\prime \prime} \\ & 176^{\prime}-1^{\prime \prime} \end{aligned}$	$\begin{aligned} & 5^{\prime} \cdot 0^{\prime \prime} \\ & 5^{\prime} \cdot 0^{\prime} \end{aligned}$	$\begin{aligned} & \text { ICP. Au } \\ & \text { ICP. Au } \end{aligned}$
176'1"	214'0"	Felsic crystal tuff $<$ Fringes of major alteration zone >	Groy to light grey to reddish-brown thematite-k-spar alteration). The rock is generally fine to medium grained, mainly phaneritic, but finer grained eshy matrix of the quartz eyes can be aphanitic. For the most part the rock unit is weakly foliated @ $80^{\circ}-90^{\circ}$ T.C.A. The highly noticeable red-brown discoloration appears to increase with depth down the hole. The section has often been riddled by numerous thin unidirectional carbonate, iron, carbonate, quartz, epidote and microthin pseudotochylite veins. As a result of certain structural opisodes, breccias were developed in which the fragments were sometimes infilled with carbonate minerals, chlorite-apidote etc. The section has been considerably broken in places with some of the fractures being coated with light green yellow talc. Generally all of the observed veins range from a fraction of an inch to less than one inch thick.	$\begin{aligned} & 301728 \\ & 301729 \end{aligned}$	$\begin{aligned} & 204^{\prime} \cdot 0^{\prime \prime} \\ & 209^{\prime \prime} \cdot \end{aligned}$	$\begin{aligned} & 209 ' 00^{\prime \prime} \\ & 214^{\prime \prime} \end{aligned}$	$\begin{aligned} & 5^{\prime} \cdot 0^{n \prime \prime} \\ & 5^{\circ} \cdot 0^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { ICP, } A u \\ & \text { ICP, } A u \end{aligned}$
214 ${ }^{\text {- }} 0^{-}$	217'.6"	Mafic unit, Mafic dyke?	Dark green-black, medium fine grained, massive, non-foliated, parts seom to have a light-dark green mottled appearance, rock hosts 3.4% diss. inclusions of pyrite-pyrrhotite, host rock intruded by several narrow secondary groy pink carbonate veins which host inclusions of chlorite and coarse grained anhedral pyrite crystels. Some iron carbonate may be present within the secondery veins. Similar veins also occur within the adjacent felsic tuffs. Some veining ovent cross cut two distinct rock types, probably fault related veining.	301730	214.0"	217.6"	$3^{\prime} \cdot 6^{\prime \prime}$	ICP. Au
217'.6"	249'.4"	Felsic crystal tuff	Significantly altered, medium to fine grained, aphanitic-to subphaneritic, mainly light to derk grey but also brown-pink, due to some hematite alterations. Rock can range from nearly massive to moderately foliated, from $40^{\circ}-80^{\circ}$ T.C.A., evidence of folding of rocks, more likely reorientation of foliation due to the effects of faulting. In places the rock shows quartz-eyes-porphyroblests.	301731	217'-8"	218-9"	1-3"	ICP, Au

Footage					Footage			$\begin{aligned} & \text { C-93-01 } \\ & \text { Page } 7 \end{aligned}$
From	To	Rock Type	Description	Sample No.	From	To	Sample Length	Analytical Procedure
			In a few places the host tuff has been intruded by narrow, irregular shaped less than $1 / 2^{\prime \prime}$ wide carbonate-quartz veins with large clusters or inclusions of pyrite crystals. The vains also host some minor chlorite-hematite. Locally the rock has been intruded by microthin pseudotachylite veins which in some instances form microbreccias. The rock is commonly highly fractured into many pieces, some of the fracture surfaces are coated with calcite green talc. traces of fine grained sulphide films. Faulting is clearly the cause of such breakage. Brown-pink (Na ? Fe ?) altored felsic crystal fuff.	301732	242'0"	246'0"	$4^{\prime} \cdot 0^{\prime \prime}$	ICP. Au
249'.4"	364'0"	Mylonite Fault Zone	Extremely altered and contorted. Fault has arranged a wide variety of identifiable and undifferentiated rock types throughout the section. The colour of the mylonitic rock, with its fragments otc. range from green to grey-green, yellow green, dark green to lesser brown-pink. The outer fringes of the zone appear to have formed within a now brown to pink, barely foliated felsic crystal tuff. The more interior areas of the mylonitic fault zone appear to have developed within more mafic to intermediate type rocks, some of which appear to be massive to visibly foliated. Some of the rock chunks resemble mafic intrusives, while others more closely resemble foliated-bedded tuffs. Most of the rocks incorporated within the mylonite fault zone are so badly altered, contorted that it is nearly impossible to determine their origin, otc.	$\begin{aligned} & 301733 \\ & 301734 \\ & 301735 \\ & 301736 \\ & 301737 \\ & 301738 \\ & 301739 \\ & 301740 \\ & 301741 \\ & 301742 \end{aligned}$	$\begin{aligned} & 294^{\prime} \cdot 04^{n} \\ & 253^{\prime} \cdot 0^{\prime \prime} \\ & 258^{\prime} \cdot 9^{\prime \prime} \\ & 263^{\prime} \cdot 0^{\prime \prime} \\ & 268^{\prime} \cdot 0^{\prime \prime} \\ & 274^{\prime} \cdot 0^{\prime \prime} \\ & 279^{\prime} \cdot 0^{\prime \prime} \\ & 284^{\prime} \cdot 0^{\prime \prime} \\ & 294 \cdot^{\prime} 0^{\prime \prime} \\ & 299^{\prime} \end{aligned}$		$\begin{aligned} & 4^{\prime} \cdot 7^{\prime \prime} \\ & 5^{\prime} \cdot 0^{\prime \prime} \end{aligned}$	ICP, Au ICP, Au ICP, Au ICP, Au ICP, Au ICP, Au ICP. Au ICP, Au ICP, Au ICP. Au
			The fragments range in size from a mere fraction of an inch to a couple of foot across although most of the fragments are probably only a couple of inches across. Some of the rock fragments carry various amounts of disseminated, bands or stringers of pyrite-pyrrhotite, with some minor sphalerite (brown) and galens-traces of chalcopyrite. Most notable sulphides are found at he following footages: 260'-0' $-263^{\prime} \cdot 3^{\prime \prime}$ coarsely disseminated to bands of massive pyrite-pyrrhotite up to $1^{\prime \prime}$ thick, associated with some quartz-carbonate atteration. Sulphides appear to be associated with a foliated intermediate rock. 295'-9" $\cdot \mathbf{2 9 8}^{\prime \prime} \cdot \mathbf{8}^{\prime \prime}+1$ - irrogular inclusions of brown to deep purple sphalerite with lesser chalcopyrite, pyrite and traces of galena, associated with quartz, carbonate-epidoto alteration, possible secondary sulphide remobilization?	301743 301744 301745 301746 301747 301748 301749 301750 4981 4982 4983 4984 4985	$\begin{aligned} & 299^{\prime} \cdot 0^{\prime \prime} \\ & 304^{\prime} \cdot 0^{\prime \prime} \\ & 309^{\prime} 0^{\prime \prime} \\ & 314^{\prime} 0^{\prime \prime} \\ & 319^{\prime} \cdot 0^{\prime \prime} \\ & 324^{\prime} \cdot 0^{\prime \prime} \\ & 329^{\prime} \cdot 0^{\prime \prime} \\ & 334^{\prime} \cdot 0^{\prime \prime} \\ & 339^{\prime} \cdot 0^{\prime \prime} \\ & 344^{\prime} 0^{\prime \prime} \\ & 349^{\prime} \cdot 0^{\prime \prime} \\ & 354^{\prime} 0^{\prime \prime} \\ & 359^{\prime} \cdot 0^{\prime \prime} \end{aligned}$	$304^{\prime} 0^{\prime \prime}$ $309^{\prime} 0^{\prime \prime}$ 314'0" 319'0" 324'0" 329'0" 334'0" 339'.0" 344'0" 349'0" 354* ${ }^{\prime \prime}$ 359'.0" 364'.0"	$\begin{aligned} & 5^{\prime} \cdot 0 \\ & 5^{\prime} \cdot 0^{n} \\ & 5^{\prime} \cdot 0^{n} \\ & 5^{\prime} \cdot 0^{\prime \prime} \\ & 5^{\prime} \cdot 0^{n} \\ & \\ & 5^{\prime} \cdot 0^{\prime \prime} \\ & 5^{\prime} \cdot 0^{\prime \prime} \\ & 5^{\prime} 0^{\prime \prime} \\ & 5^{\prime} 0^{\prime \prime} \\ & 5^{\prime} 0^{n} \\ & 5^{\prime} \cdot 0^{\prime \prime} \\ & 5^{\prime} \cdot 0^{\prime \prime} \\ & y^{\prime} \end{aligned}$	ICP, Au ICP. Au ICP, Au ICP, Au ICP, Au ICP, Au ICP, Au ICP. Au ICP. Au ICP. Au ICP. Au ICP, Au ICP. Au

Footage					Footage			C-93.01 $\text { Page } 8$
From	To	Rock Type	Description	Sample No.	From	To	Sample Length	Analytical Procedure
			The rock fragments were found to have shapes ranging from highly rounded to highly angular. A lot of the fragments look to have been heated up and stretchod out, bent around, twisted, etc. The matrix of the mylonite fault zone is made up of a grey-green aphanitic matorial, surrounding almost all fragments. Some of the matrix materials have worked into openings within the rock fragments. Within some sections of the matrix, the rocks appear to be aligned along a preferred orientation, possible plastic like flowing. The matrix materials may contain traces to minor micro seams of pyrite with lesser chalcopyrite. Almost everywhere throughout the section the rocks have been very intensely intruded by numerous multi-directional moderately thin epidote-pseudotachylite vains, sometimes forming distinct microbreccias, including carbonate-quartz veins with amphibole minerals and chlorite as vein inclusions. Some sections of the rock shows possible black biotite-chlorite alterations, most notably around $335^{\prime} \cdot 0^{\prime \prime}+1-\cdot 359^{\prime} \cdot 0^{\prime \prime}+1$. The structure alteration within this section is incredibly strong. Very strongrandomly oriented secondary opidote-pseudotachylite, quartz-carbonate sulphide veins and inclusions, may be indicative of potential mineralized fluid conduits following or developing within an incompetent host rock. Primary sulphide mineralization predating the structural deformation observed within the fragments is also indicative that the structural feature appears to have tapped into a sulphide bearing strate above or below. This structure also appears to mark the boundary botween felsic and mafic rocks. The large gully just north of the drill hole C.93-1 marks the surface contect between the two above mentioned rock types. This gully which is thought to be a fault zone is thought to dip south and has generally developed concordantly with the general trend and fabric of the surrounding goological formations. It is quite possible that this significantly thick structural feature oncountered in C. 1-93 represents a large trust fault, thought by other workers to have developed at the top of the Benny Belt volcanogenetic sequences.					
364'0"	373'0"	Mafic- Intermediate Unit	Mainly dark green to dark grey, poorly to very well foliated @ 55° T.C.A., fine grained, aphanitic-subaphanitic. The rock has undorgone some visible alteration by minor carbonate, localized spotty inclusions of chlorite, possible spotty white luecoxene. There are a couple of distinct but narrow < $1 / 2$ inch carbonate veins with traces of sulphides and chlorite in this section, trending at about 15° T.C.A. These minor veins are probably related to the large mylonitic structures (textures) encountered immodiately above this section.					

Footage					Footage			C.93-01 $\text { Page } 9$
From	To	Rock Type	Description	Sample No.	From	To	Sample Length	Analytical Procedure
373'0"	410'.2'	Mafic Matavolanic Unit <Alteration Zone >	Very strong veining, alteration zone within a rock predominantly made up of mafic metavolcanics, with some subordinate minor intercelated intermediate to felsic metavolcanic rocks. For the most part the bulk of the rocks appear to be made up of massive to visibly foliated rocks. Some of the rocks resemble massive igneous intrusives such as lamprophyres. The foliated rocks look to be laminated tuffs and are generally fine grained sub-aphanitic in character. The minor intercalated felsic-intermediate rocks appear to be quite aphanitic. They have been highly contorted and altered. All of the rocks throughout the section have undergone from mold to very strong alterations.	$\begin{aligned} & 4986 \\ & 4987 \\ & 4988 \\ & 4989 \\ & 4990 \\ & 4991 \\ & 4992 \\ & 4993 \end{aligned}$	372'.9" $378^{\prime} \cdot 0^{\prime \prime}$ 383^{\prime} $0^{\prime \prime}$ 388'-7" $393^{\prime} 0^{\prime \prime}$ 3980° $403^{\prime} \cdot 0^{\prime \prime}$ 408'0"	378.0" 383'.0" 388'-7" 393'0" $408^{\circ} \cdot 0^{-1}$ $410^{\prime} \cdot 10^{\prime \prime}$	$\begin{aligned} & 5^{\prime}-0^{n} \\ & 5^{\prime}-0^{n} \\ & 5^{\prime}-7^{n} \\ & 5^{\prime}-0^{\prime \prime} \\ & 5^{\prime} \cdot 0^{n} \\ & 5^{\prime}-0^{\prime \prime} \\ & 5^{\prime} \cdot 0^{\prime \prime} \\ & 2^{\prime}-10^{n} \end{aligned}$	ICP, Au ICP. Au ICP. Au ICP. Au ICP. Au ICP, Au ICP, Au
			In numerous places within the sequence, the rocks have undergone very strong carbonate voining associated with some quartz, fine grained sulphide inclusions, green clots and whisps of chlorite and opidote veining. In places the veining opisode has resulted in the development of brecciation of the host rock being intruded. The strongest most evident carbonate veining with sulphides occurs from about $382^{\prime}-0^{\prime \prime}+1-$ to $388^{\prime} \cdot 8^{\prime \prime}+1$. The carbonate minerals making up the veins tends to be fine to medium grained to granular-sugar-like. With the exception of the sbove, most of the veins tend to be quite narrow $<1^{11}+1$. but have developed within networks for clusters of veins throughout the section. In the lower part of the section from about $400^{\prime}+/$ to $410^{\circ} \cdot 2^{\prime \prime}+/ /$.. The rocks appear to have undergone some shearing and appear to be made up of more competent rocks like the lamprophyre-mefic dykes, otc. Strong atteration of these rocks may be due to the contact metamorphic effects of the adjacent granitic rocks found a short distance further down the hole.					
410'2'	429'0"	Felsic Crystal Tuff	Generally grey to salmon pink coloured, quite massive, fine grained aphanitic, $10 \%+1$ grey-blue quartz. Porpyroblasts present, weakly to strongly ovident in places throughout the section. In the upper portion of the unit, the rocks have undergone some visible alteration of quartz-chlorite veining, followed by microfracturing and infilling with magnetite, trace - 1\% diss. inclusions of pyrite. Some minor carbonate alteration-veining is present in the section. @ 426'.8" $+1-429^{\prime}-0^{n}$ altered fine grained mafic dyke, minor thin carbonatemegnetite veining, alteration of parts of the rock to talc-chlorite, trace- 1% inclusions of pyrite throughout. Rounded xenoliths of felsic crystal tuff evident in rock. Contacts with the adjacent tuff and the lower granite gneiss are fairly sharp, but appear to have been contorted somewhat.	$\begin{aligned} & 4994 \\ & 4995 \end{aligned}$	$\begin{aligned} & 410^{\prime} \cdot 10^{\prime \prime} \\ & 415^{\prime} \cdot 10^{\prime \prime} \end{aligned}$	$\begin{aligned} & 415^{\prime} \cdot 10^{\prime \prime \prime} \\ & 418^{\prime} \cdot 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & 5^{\prime} \cdot 0^{\prime \prime} \\ & 2^{\prime} \cdot 6^{\prime \prime} \end{aligned}$	ICP. Au ICP, Au

Footage					Footage			$\begin{aligned} & \text { C-93-01 } \\ & \text { Page } 10 \end{aligned}$
From	To	Rock Type	Description	Sample No.	From	To	Sample Length	Analytical Procedure
429-11"	523.0"	Granite Gnoiss	Fine grained, fleshy pink to grey pheses of quartz feldspar-ferro magnesium mineral gneiss (granite gnoiss). The light colourad gneiss is often alternating with darker phases, suggesting stight compositional changes. The light and dark phases grade into each other. The occasional thin $1 / 4^{\prime \prime}$ to $2^{\prime \prime}$ max. quartz vein with minor chlorite-carbonate, traces of sulphides occur within the section. These veins occur at about 50° T.C.A. For the most part the gneiss is uneventful looking except from 516'.523'. @ 516'.0" - 523' . odd light pink coloured motted 30% spotted alteration of the gneiss. Very fine grained pyrite noted on some of the fracture surfaces of the altered rock? In places the rock has been quite highly fractured. Tight jointing near contact with the metasediments.	4996	516.0"	523***	7'0"	ICP, Au
523.0"	604 :0"	Medasediment Sequence	Very dark green to nearty black to light green, fine grained, massive to plainerfoliated like, very sharp fractures developed along apparent depositional beds. in the upper part of the sequence the rocks appeer to be made up of greywackes, argillites and lesser conglomerates with some visible granitic and other rounded rock fragments. In the mid section of the sequence the rocks appear to be made up of very thin < $1 / 2^{\prime \prime}$ well developed beds @ about 60° T.C.A. Parts of the unit have been intruded and altered by faulting-mylonite development, followed by the intruding of a couple of narrow fine grained mafic dykes, narrow quartz-carbonate-opidote-pseudotachylite veins are common throughout the section.	$\begin{aligned} & 4997 \\ & 4998 \end{aligned}$	$\begin{aligned} & 549^{\prime} \cdot 2^{\prime \prime} \\ & 554^{\prime} \cdot 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 554^{\prime} \cdot 2^{\prime \prime} \\ & 559^{\prime \prime} \cdot \end{aligned}$	$\begin{aligned} & 5^{\prime} \cdot 0^{\prime \prime \prime} \\ & 5^{\prime} \cdot 0^{\prime} \end{aligned}$	ICP, Au
			@ $578^{\prime} \cdot 0^{\prime \prime} \cdot 580^{\prime} \cdot 0^{\prime \prime}+1$ dark orange-red (hematite altered) thin < $1 / 4^{\prime \prime}$ carbonate veins crosscut all other types of veins mentioned above.					
			In the lower sections from around $585^{\prime}-0^{\prime \prime}+1$ to $604^{\circ}-0^{\prime \prime}$ the rocks are generally lighter green in colour, are bedded-foliated, and appear to be fairly well weathered. The rock fabric is about $60^{\circ} \cdot 65^{\circ}$ T.C.A. Numerous quartz feldspar-minor carbonate inclusion partings occur within the lower section. In numerous places below the $585^{\prime} .0^{\prime \prime}$ mark the rocks have been quita badly fractured, with some deep weathering to mud-clay. Everywhere throughout the metasedimentary sequence sulphides can be found usually less than 1%. For the most part the section of rocks below the granite gneiss is uneventiul Touking?					
	604'0"	$\begin{aligned} & \text { End of Hole } \\ & \text { C.93.1. } \end{aligned}$						

7.0 CONCLUSIONS

The T-H Property 1993 Exploration Program was initiated on the Moncrieff Township mining property during the mid summer to fall of 1993. The work proposed included backhoe trenching, geological mapping - sampling, (John George Huycke OP93-145), followed by a self-potential geophysical survey and the diamond drilling of hole C-93-1, carried out under the application for Harold J. Tracanelli (OP93-146).

Most of the work carried out on the T-H property was concentrated in and around mining claim S-993570 which covers what is thought to be a favourable metal bearing geological contact area between the middle felsic-rhyolitic unit (Ulster Formation) and the upper mafic metavolcanic unit (Munster Formation). The Ulster Formation which was previously identified by A.E. Guthrie, 1980, is thought to form a continuous stratigraphic horizon with the Geneva Lake and Copper Formations. These two formations are known to host the former Geneva Lake mine base metal deposit and the Stralak prospect-deposit.

Previous geological-geophysical and geochemical work over the years carried out by Noranda Explorations, Falconbridge Limited and most recently by this applicant have shown there to be a close, clearly identifiable correlation between the expected, favourable geological formations (Ulster) and various geophysical-geochemical responses. Although, in some cases, the nature of the responses might be considered weak or negligible, various matters such as topography, overburden characteristics, conductivity, physical characteristics, geometry, depth to source, etc. need to be kept in mind throughout the evaluation process.

The work that was carried out for the exploration program was designed to test some of the theories that had been developed and to possibly determine if any further, more detailed work might be warranted.

Generally the results of the work showed that there is a well developed sequence of felsic metavolcnic rocks overlying mafic metavolcanic rocks which, at least in the near surface areas, show weak base metal horizons containing from 0.10 to 0.20% zinc. Importantly, the zinc mineralization occurs primarily within felsic metavolcanics in close proximity with the mafic metavolcanic contacts, which is conformable to the archean volcanogenetic VMS models.

The self-potential orientative survey work was carried out over three former pre-existing Falconbridge Limited grid lines in early September 1993. The results of this work showed the possible correlation with the previously identified VLF-EM and IP anomalies.

In part, the characteristics of the survey data appear to indicate a strataform, fairly narrow (25-30 foot) weakly mineralized sources within the felsic metavolcanics. Further, more detailed data manipulationsinterpretations would have to be undertaken in order to make any further determinations. For the most part, in the early interpretation stages, the data evaluation proved quite cumbersome and may in part be inaccurate.

In early October of 1993, diamond drill hole C-93-1 was drilled to a depth of 604 feet near the north central part of mining claim S-993570. The drilling cut through a significant thickness of felsic metavolcanics followed by mafic metavolcanics and metasedimentary rocks. In between the felsic and mafic rocks, a very strong east-west trending mylonite fault zone developed, greatly altering and incorporating various rock fragments, some of which were shown to be well mineralized with sphalerite-chalcopyrite-galena, pyrite and pryyhotite. Some small bits of purely sulphide fragments were commonly observed within the fault zone. Because the majority of the rocks, mineralized or otherwise found, incorporated within the structural zone are probably fragments torn off of an adjacent geological formation, an important questions arises as to the former location and origin of the rock containing the richest sulphides. In this particular matter a thrust fault is postulated, in which it may be possible to speculate on the origin of the sulphides found within the rock fragments may have been brought up from lower stratigraphy down dip along the fault.

For the most part the rocks encountered throughout the length of the hole probably do not carry more than 5% of any one sulphide mineral. Various sections are quite visibly altered by sericite, biotitechlorite, or injected by numerous quartz-carbonate-sulphide, pseudotachylite veins which have occupied fracture zones. Numerous samples were taken and trace eiement geochemistry work on the split core was undertaken. The results of the assaying were generally quite low, although there were a few exceptions, 0.2090% zinc over 5.0 feet.

Although the findings of the exploration work undertaken by this writer appear somewhat mixed, there are a few optimistic highlights within the data that might be worthy of future, more detailed investigations. It is quite possible that sulphide mineralization might exist at further depths. Sulphides observed in the mylonite fault zone may help to support such a theory. Sulphide bodies found at increasing depths will give weak or no conductivity-magnetic responses, etc, making exploration difficult.

8. RECOMMENDATIONS

The evaluation of the exploration data and conclusions would lead one to believe that further exploration work should be considered. The type of work that might be considered could be the drilling of a fairly steep 800 ft . - 1200 ft . diamond drill hole at the eastern boundary of mining claim S-993570 to test the western extension of the strong VLF-EM anomaly which trends across the adjacent Falconbridge Ltd. claim, S-1042946, up to the boundary of the T-H property. This strong anomaly may be associated with higher concentrations of sulphides, closer to surface than those anomalies exhibited on mining claim S-993570.

By utilizing Sparta Diamond Drilling, it is estimated that the cost of such a proposed drill hole would be $\$ 9,600$ to $\$ 14,400$ for an 800 ft . to 1200 ft . depth, at $\$ 12.00$ per foot. Not included are mobdemob costs and the applicable taxes.

Any further analytical work considered should include processes which subject the samples to complete digestion. Thin sectioning and microscopic analysis should also be considered as part of a detailed investigation.

In order for the recommended work to be carried out, it will be necessary to obtain funding from private sources. It may also be possible that this work could be supported through the OPAP program, at which time the applicant, Harold J. Tracanelli and John George Huycke would once again collaborate, putting together two OPAP grants, in order to carry out a proposed exploration program.

APPENDIX I

The following is the supporting self-potential survey, instrumentation documentation for future reference.

$$
\begin{aligned}
& \text { Roger Bourlow } \\
& 965-16 \Phi 7
\end{aligned}
$$

Ontario Geological Survey Miscellaneous Paper 99

A Guide to Prospecting by the Self-Potential Method

by
S.V. Burr

1982

Ministry of	Hon. Alan W. Pope Minster
Natural	W.T. Foster Depury Mrisister
Resources	

Publications of the Ontario Ministry of Nalural Resources and price lists are available through the
 Minusiny of Natural Resources. Public Service Centre Room 1640. Whilney Block. Queen's Park. Toronio. Ontario. M7A IW3 (personal shopping and mall orders)
 and reports only from the
 Ontario Government Bookstore. Main Floor. 880 Bay St. Toronto for personal shopping.

Out-of-town customers write to Ministry of Government Services. Publications Services Section. 5th Floor. 880 Bay St.. Toronto. Ontario. M7A 1N8. Telephone 9656015. Toll-í:ee long distance 1-800-268-7540, in Area Code 807 dial O-Zenith 67200.

Orders for publications should be accompanied by cheque or money order payable to the Treasurer of Ontario

Every possible effori is made to ensure the accuracy of the information contained in this report but the Ministry of Natural Resources does not assume any liability for errors that may occu: Source references are included in the report and users may wish to verity critical information

Parts of this publicaion may be quoted if credit is given. It is recommended that reference to this repori se made in the following form:

Burf. S.V
1982. A Gurde to Prospecting by the Self Potential Method: Ontario Geological Survey. Miscellaneous Paper 99. 15p

FOREWORD

A GUIDE TO PROSPECTING BY THE SELF-POTENTLAL METHOD

This guide to the self-potential method of geophysical prospecting represents part of continuing efforts by the Ontario Geological Survey to assist explorationists. and to support the development and implementation of sound mineral exptoration technologies suited to Ontario conditions.
-The self-potential method-is small-scaled, versatile, and provides a simple, reliable and economical means of near-surface electrical prospecting for centain base metal sulphides and other mineral resources. In Canada. discoveries of important sulphide ore bodies by the SP method attest to its proven exploration value. Additionally, through research and development of the method, there should be further possible refinements and applications for SP.

E.G. Pye
Director
Ontario Geological Survey

CONTENTS

PAGE
METRIC CONVERSION TABLE vi
INTRODUCTION 1
IMPORTANT FACTS 1
BRIEF HISTORY 2
BRIEF THEORY 2
COMPARISON OF ELECTRICAL GEOPHYSICAL METHODS 3
LIMITATIONS OF THE SELF-POTENTIAL METHOD 4
SELF-POTENTIAL EOUIPMENT 5
INSTRUCTIONS
(1) Operation of SP Equipment 5
The Pots 5
Jellying the Pors 6
Pot Ditference 6
The Millivoltmeter-Potentiometer 6
The Reel of Wire 6
The Walke-Talkies 6
(2) Conducting an SP Survey 7
Magnetic Storms 9
(3) Alternative Field Methods 10
Topographic Problems 10
Magnetic Storm Problems 11
(4) Notes on the Interpretation of SP Survey Results 12
(5) Mineral Prospecting with the SP Method 12
CONCLUSIONS 14
REFERENCES 15

TABLES

1. An example of SP survey notes for a survey conducted with a real of wire 610 m (2000 ti) long .10
2. An example of SP survey notes for a survey conducted using the "leapirog" method with a lixed length of wire

FIGURES

1. Schemalic representation of spontaneously generated eleciric cureent llow near a sulphide body
2 Schematic representation of various naturally occurring conilgura!ons of elecirical equipotential tields
2. An example of logistical details for an SP survey conducted with 6:0 m (2000 ft$)$ of wire
4 An example of logistical details for an SP survey conducted with $244 \mathrm{~m}(800 \mathrm{n})$ of wire
3. Theoretical SP readings showing the effects of topography 9
4. An example of the "leapfrog" method of SP surveying 11
5. An example of an SP anomaly detailed by cross-traverse lines 13
6. An example of dip determination using SP data 13
7. An example of detailed follow-up surveying used to located a maximum SP peak 14
8. The "spidenweb" method of SP surveying 14

A Guide to Prospecting by the Self-Potential Method

by
S.V.Burr ${ }^{1}$

INTRODUCTION

The author has used the self-potential or spontaneous polarization (SP) prospecting method extensively for 35 years in surveying mining claims, and considers it the best of the electrical geophysical methods.

Recently, interest in the method has revived, probably due to renewed gold exploration. Most gold deposits are not good conductors, but do contain some sulphides which can be delected by the SP method.

The few available lextbooks which mention the SP method are briel in their descriptions of field prospecting methods, and some prospectors, who have tried the method with insufficient understanding of the technique. have become discouraged and added to the misconceptions about it. Good practical descriptions of the SP method are contained in "Prospecting in Canada" by Lang (1970) and in "Mining Geophysics. Second Edition" by Parasnis (1975).

This guide incorporates and updates information from a previous paper by the author (Burr 1960) and is intended to instruct the layperson in the routine prospecting use of the method and to encourage more geophysical research of the SP phenomenon. Much of the material presented is unavailable elsewhere and was derived by experience through field applications.

IMPORTANT FACTS

Although the author has endeavoured to dispell some misconceptions. and to add some new facts on the SP -method in the body of this guide. some isolated lacts

[^0]could be emphasized at the beginning:

1) Hydro and telephone lines, which plague some of the other electrical methods, do not afiect SP
2) Iron formation, which acts as a "good conductor" with some of the other electrical methods. does not affect SP unless sulphides or graphite are associated with it. One major iron formation at the Sherman Iron Mine. Temagami. Ontario. contains graphite. The SP method begins to detect this anomaly at least two miles away. On the basis of one long north-south traverse conducted by the author. a peak of 4000 mv (4 volts) was obtained over or near this iron formation.
3) Buried or grounded metal objects can produce spurious SP "spot anomalies". A buried long metal pipe can produce a linear and sometimes genuinelooking (pseudo)anomaly. Graphite cathodes are used beside gas pipe lines to prevent corrosion and can produce an abnormally high negative SP anomafy. Similarty, it can be demonstrated that an axe. pick or knife driven into the ground beside the forward pot (an SP ground electrode) produces a high negative reading in the instrument. \therefore :
4) Several years ago in Northern Quebec, the author discovered a graphite SP anomaly of 1 volt at a pot separation of 300 feet. An unsuccessful experiment was conducted to try and achieve a 6 volt potential and power a radio. An additional pot merely cut the potential to .05 volts. Apparently the current strength or "ground amperage" in a near-surface self-potential electrical field is not proportional to the number of pots used.
5) Natural SP anomalies of a few hundred to over a thousand millivolts, and of negative sign by convention, are caused by the iron sulphides pyrile and pyrshotite, the copper sulphide chalcopyrite, and the native element graphite. Graphite gives the strongest SP reaction. followed by pyrmotite, pyrite, and chalcopyrite. Strong negative anomalies have also been reponted over chalcocite, covellite and anthracite (Sato and Mooney 1960). Because of the many other factors influencing the strength of an SP response. it is not possible to predict which type of sulphide is responsible for the anomaly. A magnetometer or dip needle survey may help to determine whelher the magnetic
iron sulphide pyrrholite is present or not
6) Magnetic storms, dealt with in the "Instructions" section of this guide. are a nalural phenomenon which can be detected by the SP instrument It has been suggested that approaching earthquakes. or an atomic explosion anywhere in the world could be detected by a monitoring SP instrument. In California. the method is used to locate water leaks in pipelines: in Australia. to detect salt springs: and it can also be used in geothermal exploration and in sinuctural studies. Other applications are also possible but await further research of the SP method.
7) Manganese oxides (psilomelane and pyrolusite wads) have been observed to give positive SP anomalies. In Jamaica. the author detected high grade manganese "veins" or "dykes" which gave strong positive anomalies. The sedimentary Sibley Formation in the District of Thunder Bay. Ontario contains a manganese oxide unit which produces alternating high positive and high negative readings which the author interprets as a possible indication of the presence of graphite
8) Finally. the peak of an SP anomaly is detected with the measuring pot positioned directly above the source. This is in contrast to other electrical methods which can be responsive to the dip of the anomalous source. and through misinterpretation have led to some drill holes that have overshot. or have been spotted too far from or too near the target.

BRIEF HISTORY

The SP method is the earliest electrical geophysical method to be discovered or invented. It was first applied in England by Robert Fox (1830) who conducled SP research around the lin mines of Cornwall. and later by Carl Barus (1882) who applied the method at the Comestock Lode in Nevada. The first sulphide orebody discovered by an electrical method was detected by SP at Nautenen. Lapland. Sweden in 1907 (Lundberg 1948)

BRIEF THEORY

Most explanations of the SP phenomenon propose that a "wet" sulphide (or graphite) body develops negative and positive electrical potenlials at its lop and bottom. resulting in a both metallically and electrolytically mediated "flow" of electrochemically generated current around and through the body as shown in Figure 1.

II is possible that sulphide and graphite bodies in contact with ground water electrolytes induce a "spontaneous" DC flow of current. but local ground currents are not solely related to potential differences arising from spontaneous polarization of a conducting body. The author considers that the natural telluric fields and currents encircling the earth provide a natural applied electrical

Figure 1-Schematic representation of spontaneously generated electric current flow near a sulphide body. showing cur. rent paths through the ground and the SP apparatus (after Lang 1970)
field which-close to an electrolyte-bathed SP bodycan give rise to a "conductive" spontaneous polarization effect which distorts the local prmary geosymmetry of natural electrical fields near the earth's surface.

For example. if these ground currents are flowing through an electrically isotropic and homogeneous rock type. they are like the parallel, equispaced strings of a harp. and a uniform potential difference field is develoded (see A in Figure 2) It they are passing through ditferent rock types with different conductivities, some of the nearby "harp strings" will converge slightly to take advantage of a better conducting rock unit. resulting in a "resistivity" map which differentiates between different conductivities of the rock types (see B in Figure 2). If the currents come upon sulphides or graphite they will be drawn towards such bodies in an attempt to flow through them. resulting in a high potential or anomaly (see C in Figure 2) Finally, in a strong magnetic storm, the harp strings will quiver as it they were being stroked (see D in Figure 2) The effect of a magnetic storm will be discussed at greater length in the "Instructions" section.

COMPARISON OF ELECTRICAL GEOPHYSICAL METHODS

Although the SP method was extensively and routinely used during the 1930's and 40's by many well-known professional geophysicists, currently. it is generally misunderstood or overlooked as a useful and economical geophysical prospecting method.

The first orebody found in Canada by electrical methods was surveyed by Hans Lundberg (1928) at the Buchan's Mine in Newfoundland, where conductive ore was detected using the SP method. At least one orebody was found in the Noranda area and Lundberg (1948. p.179) reports: ". a lead-zinc-copper orebody was tound in the Eastern Townships of Quebec. This survey was carried out dy A R Clark and H.G. Honeyman, and the results were well confirmed by subsequent drilling." He also states: The outlining of the Flin Flon orebody in Mantoba is pernaps the best known example of his [Sherwin Kelly's) surveys."

Figure 2-Schematic representation of varrous naturally occurring configurations of electrical equipotential fields.

The author was involved in early field surveying experiments with the resistivity method, using formulae developed by Dr Arthur Brant. University of Toronto. This method requires the "pushing" of allernating current into the ground and can provide an excelleni interpretive model of the geological stratigraphy and struciure Resistivity surveying can also detect conducting anomalies which may correlate with buried sulphides or graphite. However. the method was found to be cumbersome and slow. and soon gave way to the faster, more portable. but less informative electromagnetic (EM) methods More recently the induced polarization (IP) method has been developed and applied. It also "pushes" current [as DC putses which naturally decay] into the ground out is much more cumbersome than the resistivity methoc and much more expensive than most of the EM methoos it is considered to be a composite of the resistivity and SP methods and is capable of detecting low resisirvity "good" conductors and disseminated sulphides (ineluding oxidized oredodies)

Unfortunately. The interpretation procedi:e is complicated and the method witl equally well deteci iron oxides and other semimetallic uneconomic minerals A drawback with the resistivity. EM and IP methods is that they measure secondary electrical fields which are sometimes difficult to interpret. They also respond to unmineralized wet shears. faults, and fissure zones. Perhaps the most common cause of "false" anomalies with these methods is the variable depth of overburden over the rock surface. If there is a subsurface valley buried by overburden. all the above methods will yield a "psuedoanonaly" similar to an anomaly observable over a massive sulphide zone.

Alternatively, the SP method does not deiermine secondary fields. so survey results are much easier to interpret it does not respond to subsurface valleys. wet clay. shears. or faults. and. in the author's experence. the SP method does not provide results which could lead to a false anomaly In over 500 SP anomalies which were stripped or drilled. the author always found :he source of the SP anomaly to be sulphides and/or grap ite in the underlying rock

The SP method responds to good conducting sulphides (both oxidized and unoxidized bodres). graphite. and nonconducting (disseminated) sulphides if these sulphides are oxidizing. The author has encountered only two cases where disseminated sulphides were not detected by the SP method. In one case, an exposure of disseminated pyrite showed roo oxidation "rusi" (gossan) whatsoever. in another. sulphides of a pyme-chalcopy-rite-bearing copper orebody were also frest. and the pH of the ground water was found to be 10.0, to0 basic to oxidize the pyrite. According to Lundberg (i946. p.179): "The self-potential method must be used with some cauton. . and many orebodies may not cause any anomalies at all, owing to certain ground-water or overburden conditions." The proportion of nonoxidizing, nonconducting sulphide bodies is unknown, but the author expects that the number in Canada is probably very small II is this small percentage of nonconducting sulphide bodies which prevents one from saying the SP is a "Yes" or "No"
method in geophysical prospecting for sulphide ores It is a Yes or No method for the detection of good conductors only, but not necessarly for disseminated sulphides

Another teature of the SP method is its ability to differentiate between anomalies caused by sulphides and anomalies caused by graphite. Sulphides produce a range of up to 350 millivolts between the most positive and most negative SP readings. graphite has a higher range. The SP method also has the ability to "smell" an anomaly some distance away and can smell graphite at a greater distance than sulphides

One of the popular misconceptions about the SP method is that it is limited to shallow depths as its detecting ability is dependent on the presence of oxidizing sulphodes which usually occur close to surface of the earth Lundberg (1948. p 179) states "The self-potential method is based on the lact that slowly proceeding weathering in the upper portion of a sulphide body is accompanied by electrical potential differences between the surficial oxidiation zone and the deeper nonoxidized portions of the orebody" Lang (1970. p 162) contends this idea by noting that graphite is not oxidizing. The author has located disseminated sulphides under 25 m of sand (including a quicksand layer), and a weak conductor under 36 m of overburden Lang (1970. p.162) also states: " reactions at the surface may become too weak to interpret when the overburden is more than about 300 feet [91 m] thick. The author has located "heavy" sulphides capped by 7.6 m ol barren rock. with no apparent indications of oxidation

Another misconception is that one can derive a formula to determine the percentage of sulphides in an SP anomaly based on the strength of the readings Lang (1970. p 162) states. "The strength of the potential generated depends largely on the concentration of sulphides " One cannot, however. determine any variations in the strengih of anomalies as dependent on the concentration of sulphides. For example. the strongest SP value along the strake of an anomaly does not occur where the sutphides are most highly concent:ated. but where the source of the anomaly is closest to surface. With a little practice. one can determine whether the source of the anomaly is close enough to the surface to be exposed by stripping Details are given in the section "Mineral Prospecting with the SP Method"

Although the author has stated that the SP method does not give false anomalies certain operator errors can produce them To help operators avoid such errors is one of the objectives of this guide

LIMITATIONS OF THE SELFPOTENTIAL METHOD

As no one geophysical method is all-embracing. the tollowing limitations of the SP method should be borne in mind when planning surveys

1) The SP method cannot be used over water How
ever．Lang（1970．p 162）states Where sulphide depos－ its lie beneath lake waters，the method is not usually ap－ plicable except over the ice in the winter＂．Further re－ search is needed to reline this technique．

2）Winter surveys are now possible through snow cover using high impedance vollmeters，but damp－ ness can short－circuit the instrument，extreme cold can weaken the batteries．and ice can encrust the pots and prevent ground contact．Prevenlive mea－ sures include addition of glycerine to the pors，and carefully planned quick checks over target areas．to maximize surveying before prolonged frigid tempera－ tures can aftect the equipment．
3）An SP anomaly does not indicate whether conduct－ ing sulphides are disseminated or massive．Accord－ ingly．the anomaly could be tested by another electri－ cal method such as VLF（very low frequency）to determine whether it is a good conductor．At the same time．the anomaly could be checked with a magne－ tometer to determine whether the magnetic iron sul－ phide pyrrhotite is present
4）As mentioned in the section＂Important Facts＂．the SP method responds to pyrrhotite．pyrite，and chaico－ pyrite．It does not respond to zinc．lead，gold，or sitver minerals．However．some ron or copper sulphides are generally present with these other metals and，if oxi－ dizing，will result in an SP anomaly．
5）In the case of a strong and obvious graphite SP anomaly．the method cannot indicate the presence or absence of associated sulphides．Presently，only one instrument．the RONKA EM－15．can resolve associ－ ated sulphides．but only it the anomalous source is shallow，and if any associated sulphides are good conductors．For reasons not fully understood，this in－ strument only responds to good conducting sul－ phides．but not to graphite．

SELF－POTENTIAL EQUIPMENT

A millivoltmeter－potentiometer is used to take SP read－ ings by a needie and scale．digital readout．or an adjusta－ ble dial which brings a needle or audio signal to a null po－ sition．The operator will likely make fewer mistakes in recording with a digital readout Readings should be double－checked for precision．particularly at established control stations．

A basic requirement is a reel of wire．In most cases． more than 600 m of wire is desirable．Arrother useful and timesaving item in conjunction with the use of a long wire is a pair of walkie－talkies Lastly．the most important items are the porous pots．If these do nol function properly．the survey becomes a wasted endeavour．Occasionally the millivoltmeter may get wet and short－circuited．This con－ dition is easy to detect if not to rectity Also．the wire may develop a bare spot which may make contact with the wet ground and give a sudden strong negative reading． This is also easily identified though of infrequent occur
rence．In sone cucumstances，an unmonitored pot may change its sotential along a survey line and produce false anomalous readings．The pots are crucial to the successful operation of the SP equipment．and accord－ ingly，will be discussed first in the＂Instructions＂section．

INSTRUCTIONS

（1）Operation of SP Equipment

The Pots

The two pots are generally made of porcelain ceramic in hollow cylindrical forms with porous bottoms．From the caps．copper electrodes are suspended down into the pots．A saturated copper sulphate solution is used as the medium to connect the porous pot contact with the ground．which establishes a mediated electrical contact with the cooper electrodes suspended in solution．If two bare metal electrodes made contact with the ground， there would be an instantaneous surge in polarization be－ tween them which would then drop quickly to zero．With the copper sulphate solution as the mediator of the ground cor：act．no net polarization effect involving a dis－ charge of current takes place and the relative potential difference beiween two survey stations can be measured with consicerable accuracy

Occasionally，the two pots will have．or may develop an inherent potential difference between them．If this is only a few mullivolts．no harm is done in running survey lines with the reel and not correcting the individual read－ ings．An error of a few millivolts will not result in false or obscured anomalies．However，a high pot potential difter－ ence can be very critical in some situations as discussed below．

The reason for an original pot difference is probably due to slight variations in construction making one pot more porows than the other，and thereby．of a slightly dif－ ferent concuctive response．This is usually a fixed and unchangiric condtion which does not hamper the SP sur－ vey．However a sudden change in pot difference may be caused by a crack．by contact of the porous part of the pot with me：al or sulphides．by the drying out of one pot． or by the si－ution in one or both pots becoming undersa－ lurated in cooper sulphate The pot difference should be checked $0-.2 n$ ；for example．at the start of the day，at noon，at $15=$ end of the day．and at each controt station and tie－in mant

The filing of the pots must be carried out with care． the level ot the solution checked often，and additional crystals or sowder added frequently as required．Without ample copper sulphate solids in contact with the solution． a rise in ter：perature of one or both pots may result in un－ dersaturation This is because of the increased solubility of copper s．＇phate at higher temperatures．To make the saturatec $こ こ=$ per sulphate solution．It is advisable to heat the water $こ$ ：ine crystals are being added．until the solu－
lion is hot and solid crystals are still presen: A pyrex bowl is recommended. as the solution is corrosive. and a wooden spoon or stick is useful for stirring

Jellying the Pots

If the pols are to be used for a week or more it is timesav. ing to make a pelly of the solution. Only enougn pellied solution to fill the two pots is required The operaton is similar to making any jelly, except it is advisable to add two or three times as much gelatin to the water to make a good set The hot water plus gelatin solution should be well stirred as the copper sulphate crystals are added Ater the solution has cooled. a few crystals shoule oe added to each pot The jelly solution can then be po-ed into the pots. capped, and allowed to set One se: ot pethed pots should last an enture prospecting season of 3 or 4 months

However. The pots should always be stored under morst conditions away from excessive héai io prevent evaporation and danger of drying out

Pot Difference

Once the pots have been filled and allowed to cool it is possible to determine by a simple procedure whether there is any inherent pot difference:
(1) The pols are placed on or in the ground. close together. with one pot connected to wire running from the positive ("far") connection of the millivoltmeter. and the other pot connected by wire to the negative ("near") connection. A first reading is taken.
(2) The pots are now reversed leaving the same wires attached to the positive and negative connections of the millivoltmeter. and a second reading is taken
(3) The formula for calculating the poi difference is: (1st Reading +2 nd Reading) $/ 2$.
For example, it the 1 st Reading is -8 millivolts and the $2 n d$ Reading is +10 millivolts. the po: difierence is ((-8) $+(+10)): 2=+1 \mathrm{mv}$. These relatively high readings indicate that the potential diffieience between the ground and each pot is 9 millivolts. suggesting that the pot difference was measured in an anomalous area tiowever, as long as the correct procedure is followed, the tue pol difference is obtainable anywhere. Once the magnitude of the pot difference is established. the positive and negative pots should not be interchanged during the course of SP survey readings. An alligator clamp on the "forward" positive pot is ample identification, and is useful for engaging and disengaging the end of the wre The pot difference should be regularly monitored and carefully measured al each control station and tie-in point

The Millivoltmeter-Potentiometer

Most voltmeters are accompanied by full operating instructions which describe how to read the insinument. It is important to emphasize that by convention the forward advancing pot should be linked to the positive or far instrument connection and the stationary or rear control station
pot should linked to the negative near connection (Figure 1) With the positive pot moving "ahead". anomalies are negative after the traditional Carl Barus method which is the currently accepted convention. If the negative pot is inadvertently sent ahead, strong positive readings would be anomalous

The Reel of Wire

Wire used in SP prospecting stould be strong. thin. light. flexible, and well-insulated with a smooth surface Depending on the roughness of the terram. thickness of underbush. and straightness of the traverse line. a 08 km length of wire can be pulled off a reel to its end Wire should be attached to the forward pot by a clove hitch knot. with a bared end connected to the copper electrode which proirudes above the pol cap The connection should be made with a short piece of insulated wire securely attached at one end to the pol electrode. and to an alligator clamp at the other end in order to make contact with the reel wire. With this arrangement. an SP surveyor can pull the wire and the forward pot with one hand without danger of disengagement of the pot connection

Theoretically, the potential difference due to the SP effect could be measured with the two pots several kilometers apart. Although impracticable, a longer wire is preterable as more readings can be taken with the millivoltmeter and rear pot set up at a single control station. and lewer control stations are needed as discussed below

A reel with only $244 \mathrm{~m}(800 \mathrm{ft})$ of wire should not be spliced onto an exira length of wire. Regardless of how well the wire is spliced and insulated. it will come apart or become entangled under most field condituons The tume gained from avording such survey delays will more than compensate for the cost of an appropriate length (e g $610 \mathrm{~m}(2000 \mathrm{ft})$ oi wire

The polsitive wire from the millivoftmeter should have an alligator clamp to attach to the reel wire. as it is generally necessary to disengage the clamp before the reet unwinds

The Walkie-Talkies

Although the two SP operators can shout for a few hundred meters and then send messages by tugs on the taut wire. a faster and more reliable survey can result from use of walkie-talkies for vorce communication The forward operator can describe the topography (eg swamps. creeks. up-hill. down-hill. etc) to the note-taker operating the millivoltmeter. and can notily when the forward pot is in ground contact and ready for a reading Olten. the reel will stop. the instrument operator will attach the millivoltmeter at the rear control station wire. and then the reel will suddenly move foward resulting in possible damage The instrument operator can also inform the fonward operator of the trend of the readings, and, if "smelling" an enomaly. to cut down the readings from, for example. 20 m intervals to 10 m or less for a preliminary detailed survey of the anomaly

The walkie-talkes should not be so powertul as to interfere with nearby cilizens bands

(2) Conducting an SP Survey

After the pots have been prepared and the initial pot difference measured. they may be combined with the millivoltmeter. the reel of wire. the walkie-talkies, and weatherproot note-taking materials in preparation for an SP survey along a predetermined line grid. The starting procedure will depend on the size of the grid and the length of wire on the reel. For example. the grid shown in Figure 3 is oriented with a base line (BL) parallel to the structure or strike of rock units and cross lines at right angles.

With $610 \mathrm{~m}(2000 \mathrm{ft})$ of wire a survey moving from east to west could effectively cover the area as follows: (1) The first control station is established on the base line at cross tine 4 W . This station is giren a centative value of 0 mv . (2) The pot difference is recorded, and (3) SP survey
measurements are recorded along with pot locations and other notes. north and south on lines $0,4 \mathrm{~W}$ and 8 W . as well as readings along the base line between line 0 and line 8 W . Readings should never be taken at forward pot spacing intervals of over $15 \mathrm{~m}(50 \mathrm{ft})$. except possibly along the base line. In exploration for narrow vein deposits, the intervals should be shortened to define the peak. Bends in the wire of 90 degrees or even 360 -degree loops do not affect the readings.

After line 8W has been traversed, readings are taken along the base line to line 16 W where a careful measurement is taken and added to the inverse of the pot difference. Next. the second control station at BL. 16 W is established. If the tentative value of the second control station is +5 mv , then all readings taken from the second control station set-up-along lines 12W. 16W. 20W. and

Figure 3-An example of logistical details for an SP survey conducted with 610 m (2000 ft) of wire (see also Table 1).
the rest of the base line-are relative to a value of +5 mv For example, a reading of -25 mv gives a tentative value for that point. or survey station. of -20 mv All readings or final adjusted values may be plotted on suntably scaled maps beside the appropriate survey stations

With only $244 \mathrm{~m}(800 \mathrm{tt})$ of wire, an SP survey conducted over the same grid would require more set-ups. or control stations (Figure 4). In such a situation the first control station is set up at $7+00 \mathrm{~N}$ on line C (tentative value 0 mv). and readings taken north, and south to the base line. Along the base line the pot positions should be carelully marked for tie-in with other control stations south of the base line. After the northern part of line 0 has been run, a reading is taken at $4 \mathrm{~W} .7+00 \mathrm{~N}$ and the inverse of pot difference is added. After this, the rear opera:or traverses over to $4 \mathrm{~W}, 7+00 \mathrm{~N}$ where a second contro siation is established. The rest of the northern par? of Ine: W. including the base line. is surveyed and the pros=dure is repeated across the northern section of the cra to control station $20 \mathrm{~W} .7+00 \mathrm{~N}$. Next the pots. milivormeter. and reel of wire are moved to $20 \mathrm{~W} .7+00 \mathrm{~S}$ The suinern secthon of line 20W is traversed. tieing-in at the ease line sta-
tion. Assuming the value at BL.20W had been given as -23 mv from the control station al line 20W. $7+00 \mathrm{~N}$: then, if the reading (including pol difference) from the new control station at $20 \mathrm{~W} .7+00 \mathrm{~S}$ is +10 mv . it follows that the new control station is 10 mv more negative than the base line at line 20 W - thus -33 mv . The survey is continued eastward in the same fashion as the north section. It is unlikely that the rest of the base line tie-ins will check as the potential will have changed somewhat because of moisture and temperature variations. Any discrepancies should not produce or hide anomalies. Nevertheless. it is obvious from the above examples that a longer wire provides better control of background SP variations over a larger area (2 control stations versus 12 control stations and 6 lie-ins). and allows a faster and more efficient survey to be run

When following the normal procedure of placing the pots on or in the ground. it is possible to obtain variations of up to 110 mv due to the varying acidity and bioelectric activity of soils. Wet swamps tend to give positive S° values, and dry hills negative ones In areas where there is a more uniform type of soll cover, the background range is

Figure 4-An example of logistıcá' detalls for an SP survey conducted with $244 \mathrm{~m}(800 \mathrm{fl})$ of wire.
much less. As an extreme example of this a detailed traverse across a $244 \mathrm{~m}(800 \mathrm{ft})$ wide tarings pond may give a range in readings from +1 to -1 mv . probably due to the uniform acidity of the tailings. The author observed similar small variations in the residual solls of Jamaica Lang (1970. p.162) states. "Pronounced slopes. . sometimes introduce a topographic effect "Fortunately. in Canada this potential variation of the background agrees with the topography, and. in rorianomalous areas of swamps and hills. the SP contours correiate to topographic fealures. This is one reason why the :opography at each station should be noted Another imporant reason is shown in Figure 5

Figure 5 represents hypothetical $S P$ ralues along one line. In example A SP measurements occur on a "flat" map showing no topography. such that the weak negatives opposite the ? would normatly be ignored Example \mathbf{B} shows a small rise which would explain :he negative readings in terms of normal background topographic vanation However. ithere s a swame as in

Figure 5-Theoretical SP readings showing ine eifecis of topography
example C inese weak negatives would definitely be anomalous

Unge: : avourable conditions an SP survey such as that depicied by Figure 3 could cover the area with a few hundred readings in one or two days. traversing approximately 4 km of grid. If an SP survey detects strong an:omalous negatives and has also covered a few swampy areas. It is likely that the greatest positive and negatwe values o: :-e survey have beentencountered As an ex. ample. SD survey notes might read as shown in Table 1

If the enge of values is of the order of $250-300 \mathrm{mv}$ or more. abo.i one third of that range is probably background va- thon due to the varying acidily of the solls in this case : :he most positive tentative value is near -:00 mv . or nea' - 10 mv . it should be given an adjusted value of +50 mr and the other lentative values adjusted accordingly For example. if the most positive tentative value is +75 mv . it is adjusted to +50 mv , and it follows th:at a normahzer of -25 mv must be added to all the tentative values. as .a Table 1 . to yield the final adpusted value

If the -cst positive tentative value is between - -0 and $-60 \mathrm{mv}$. . 0 adjustment is necessary. In most cases the mosi sositive value is over a swamp or low wet ground

In so-e localized anomalous areas the range f:om most posir: to most negative readings may be 150 mv . or less. and is probably due to a more uniform soll cover In such a case. the most positive tentative value snould be adjustec to about +25 mv . In most circumstances. one does not know at the time when the first control stathon is set-up, what anomalous conditions will occur On more than one occasion, the author has unknowingly setup a lirst control station over an anomaly and all the subsequent readings were positive to high positive.

The purpose of the adjustment is to attain a tinal balanced background range about the zero value. such that the anomabus signals are more readily recognized and interpreted The background is the range of electrical self-potentiai which is due mostly to variations in topography or soil $\mathrm{\rho H}$. For example. a final adjusted value of - 50 mv on top of a hill would not necessarlly be anomatous A value of .70 mv . or more negative. would be in the second case asove. wilh a background range of 50 mv or less. an adpusted value of -25 mv on top of a hill would not necessartly be anomatous. A value of -40 mv would be if should be stressed that over a swamp, as illustrated above, an anomaly due to buried sulphides might be much less negative. or in some cases. a low positive $S P$ anomalies under swamps and deep overburden are much weaker than on hills and shallow overburden thus. topographic information is needed in this type of electrical survey. Below, in the section on "Alternative Field Methods". a simple technique which minimizes the topographic effect is discussed

Magretic Storms

Solar flares produce gecmagnetic disturbances which are related to the phenomenon of the aurora borealis and can cause magnetic storms of several days duration

TABLE 1	AN EXA REEL OF (see Figu	$\begin{aligned} & \text { F SP SUR } \\ & 610 \text { METE } \end{aligned}$	NOTES FO 050 ft.$)$	SURVEY CON ON A 400 ft -	TED WITH A ACED GRID
Control Station	Survey Station	Reading	Tentative Value	$\underset{(\text { Normalizer })}{+(-25)}=$	Final Adjusted Value
				(Millivoits)	
BL. 4W	-	-	0		-25
	BL, 3W	+3	+3		-22
	BL,2W	-8	-8		-33
	BL, 1W	-12	-12		. 37
	BL,O	-7	-7		-32
	O+50N	-2	-2		-27
	-				
	etc.		(a'0	t' area)	
	:				
	BL, 16W	+5	+5		-20
BL, 16W	-	-	+5		-20
	BL, 15W	-25	-20		-45
	etc.		(prob	y anomalous)	
	.				i°
	BL, 12W	-70	-65		. 90
	O+50N	-44	-39		. 64

The intensity and effects of magnetic storms in northern areas are enhanced near strongly magnetic iron formation. During a magnetic slorm. SP readings fluctuate in an unpredictable and random fashion similar to fluctuations observable on a magnetometer under the same conditions. Generally, the magnetic storm has no eflect on the SP readings until the two pots are more than about 100 metres apart; and increased pot separations increase the violence of the fluctuations. Magnetic storms may start suddenly and last only a few minutes. or they may last a few days. Except for short traverses, an SP survey with a reel of wire is not possible under storm conditions. Below, an alternative field method will be discussed which can avoid the effects of a magnetic storm.

(3) Alternative Field Methods

Topographic Problems

Although the influence of topography on SP readings may be interpreted and anomalies recognized, the problems can be confusing to the inexperienced operator. For several years, the author has used a technique which effectively inhibits the topographic effect and gives better ground contacts. even on rubble and bare outcrops.

First, two porous canvas sample bags are filled with material which will stay wet for several hours. such as black muck. loam. or sawdust. Second, a pot is inserted in each sample bag and tied on. Both pots are then in
contact with a medum of constant pH and the influence of varying acidity is strongly altenuated As a result．read－ ings become more uniform．the background displays a narrower range．anomalies in swamps are better defined． and anomalies on hills are less negative and less exag－ gerated A final adjusted value of +10 mv for the most positive value is adequate．and a -25 mv value may be anomalous．
$=$

Magnetic Storm Problems

A magnetic storm can hamper or preclude an SP survey conducted with a reel of wire However by moving both pols at a constant separation along a survey line，it is possible to overcome the eifects of a magnetic storm Only on rare occasions such as in northern latitudes near strongly magnetic iron formation could there be any Huctuation with a pot separation of about 15 metres（ 50 ft ） or so

There are two alternative methods by which iwo op－ erators can move aong a survey line without the reel．bul ！nked ！ogether by about 20 m of wire．to allow for 15 me－ tre－spaced（ 50 ft ）readings in rugged topography．Both methods are much fasier than a survey conducted with a reel since it is not necessary to walk back along a line and reel the wire in．From ：he base line the operators can sur－ vey along the longest ！nes．traverse across along a tie－ tine or through the bush to an adjoining line．and survey along it back to the base line．and over to the starting sta－ tron io ：te in－－similar to magnetic surveying methods．

One method requires that the rear negative pol be moved up to the same ground contact location on which the forward positive pot was positioned Under field sur－ vey conditions this method is impracticable due to the dif－ ficulty of placing the rear pot on the exact ground contact position of the forward pot．such that every station be－ comes an uncontrolled＂control station＂．

A preferable alternative for $S P$ surveying during magnetic storms is the＂leaptrog method＂shown in Fig－ ure 6

This rre：nod solves the problem of uncontrolled con－ trol stations but adds to the arithmetic computations of the operatc laking notes since each station has to be evaluated cefore the next station is＂read＂．Both of the methods r ．olve adding the inverse pot difference to each readirg

For exenple．the leaplrog pattern can be started from an es：三dished control station on the base line with an assignes ientative value of 0 mv ．An example of typi－ cal survey ries is shown in Table 2

The ここ－：rol station．with a tentative value of 0 mv ． reads the cositive pot at $0+50 \mathrm{~N}$ ．The reading is +5 mv ： thus．witr \equiv sot difference（ PD ）of -1 mv ．the corrected reading is -6 mv and the tentative value is $0+6=+6$ mv Next．：renegative pot is moved to $1+00 \mathrm{~N}$ and reads station $0-50 \mathrm{~N}$ The corrected reading is -9 mv ．Thus， $0+50 \mathrm{~N}$ is 9 mv more negative than $1+00 \mathrm{~N}$ ：or $1+00 \mathrm{~N}$ is 9 mv more positive than $0+50 \mathrm{~N}$ ．Thus $1+00 \mathrm{~N}$ has a transposec reading of +9 mv （see Table 2），and the ten－ tative value at $1+00 \mathrm{~N}$ is $(+6)+(+9)=+15 \mathrm{mv}$ ．The positive po：s then moved from $0+50 \mathrm{~N}$ to $1+50 \mathrm{~N}$ ．Sta－ ton $1+50$, ras a tentative value of +31 mv ．The nega－ tive pot is $\mathrm{r}^{-}=\mathrm{n}$ moved to $2+00 \mathrm{~N}$ and reads $1+50 \mathrm{~N}$ ．If the corrected \hat{y} acing is +36 mv ．then the transposed read－ ing of 36 m ．means that $2+00 \mathrm{~N}$ is 36 mv more negative than $1+50 \%$ ard thus has a tentative value of -5 mv ．

To ers－e that results are meaningful，it is important to keep aこ三＇etul record of each reading and calculation for later＇esrecking．On returning to the base line，the readings srouid be tied－in to the control station from which the ：！averse stanted An exact tie－in or equivalence of starting and finishing readings at the control station is unlikely．sut cepending on the number of stations read． one can treat the tie－in error as one would treat correc－ tions for magnetic diurnal variation during a magnetic survey For example if the tie－in reading is +50 mv after 50 readings then working backwards one would distrib－ ute the discrepancy by adding－ 50 to the last reading．-49 to the second last．and so on However，if the change in readings 2 ：the control station is several hundred milli－

Figure 6 －An example of the＂leaptrog＂method of SP surveying ivith \equiv＂xed length of wire（see also Table 2）

TABLE 2	AN EXAMPLE OF SP SURVEY NOTES FOR A SURVEY CONOUCTED USING THE "LEAPFROG" METHOD WITH A FIXED LENGTH OF WIRE (see Figure 6).					
Control Station	Survey Station	Pot	Reading plus inverse Pot Difference P.D. $=(-1)$	Transposed Reading at Negative Pot	Tentative Value	Finai Adjusted Value
				(Millivolts)		
BL,O	0+00	(-)	-	-	0	...
	0+50N	(+)	$+5+(+1)=+6$	+(+6)	16
	$1+00 \mathrm{~N}$	(-)	$-10+(+1)=-9$	-(-9)	+15
	1+50N	(+)	$+15+(+1)=+16$	+(+16)	+31
	2+00N	(-)	$+35+(+1)=+36$	-(+36)	-5

volts it is necessary to recheck calculations or resurvey the lines.

Although faster, this allernative method is somewhat complicated, requires careful arithmetic, and usually involves an adjustment to bring the relative values into reasonable perspective for interpretation. Despite savings in time, it is not recommended unless one is obliged to use it due to magnetic storms or a shortage of wire

(4) Notes on the Interpretation of SP Survey Results

The results of an SP survey can be effectively represented and interpreted by using maps on which the final adjusted values are shown along with SP line proliles. or more preferably. SP contours of appropriate intervals. If a good background range is established, most anomalies are well delineated as more negative areas.

Anomalies of -450 mv . or more negative. are due to graphite, but anomalies of -350 to -400 mv can occur in a variety of lithologic or mineralized conditions Generally. detailed follow-up readings along the strike of the anomaly can resolve some of the possibilites.

Another situation sometimes encountered during an SP survey is a line of values which are more negative than the values along the adjacent lines on each side. This means that the anomatous SP contours run abong the line at right angles to the base line and also to the regional strike. This condition may either be due to a loss of control, or the presence of a crosscutting conducting body which may contain sulphides. Loss of control may be due to a sudden change in pot difference, an erroneous reading (value) of the control station. or location of the control
station over an anomaly. Similar to magnetic surveys, SP surveys are better controlled from nonanomakus control stations. If control stations are to be set up on the base line, it is preferable to first survey the base line, back and forth if necessary, to establish reliable values. Then. if some parts of the base line are anomalous. these should be avoided as control stations if possible. Since slight variations in moisture or temperature can change the electrical potential of any station, it is likely that in an anomalous area the change will be greater. To determine the cause of an anomatous line of values: the readings along it should be repeated. Repeated surveys of SP anomalies due to buried conductors are generally replicative: although, they may change in strength due mainly to variations in the level of the water table. A low water table produces stronger negatives than a high water table.

If duplicate readings should substantiate that an anomaly follows along a survey line. some follow-up cross traverses perpendicular to the line may be required in order to detail the anomaly as depicted in Figure 7.

In some cases the line profiles or contours of SP values may be used to approximately indicate the direction of dip of a conducting body (see Figure 8). This is particluarly so in level areas of no topographical effect or when using the canvas sample-bag method (see "Alternative Field Methods").

(5) Mineral Prospecting with the SP Method

The main procedures of the SP method are described under the heading "Conducting an SP Survey". SP prospecting may be conducted with a reel of wire; or, at a constant pot separation. depending on which is more

Figure 7-An example of an SP anomaly (arbitrary contour values) detailed by cross traverse lines.
convenient. Normally. it is not necessary to cut picketed grid lines for prospecting. as pace-and-compass traverses provide sufficient control over location of anomafies.

When an anomaly has been detected it should be "peaked up". This means that the forward pot is moved back along the survey line until the highest, reading on that traverse line is accurately located. This may require moving the pot only a few centimetres along the line. Next, the rear pot and millivoltmeter are moved up ctose to the anomaly, preferably at or near a surveyed station so that the new control station can be tied-in to the rest of the survey values. As an example. the peak on the survey line in Figure 9 is 225 mv : since somewhere along strike the peak could rise to a "graphite" level, it is necessary to
maintain some control over the relative magnitude of SP values. Assuming the new control station is found to be valued at - 125 mv , it is possible to do a further check perpendicular to the traverse line to establish the location of the anomaly peak more accurately. If there is higher ground to the right and lower ground to the left, it is preferable to test the higher ground first by a detailed parallel traverse line some 5 to 10 m from the original survey line. as shown in Figure 9.

If a second peak of -285 mv is located to the right. this means that the best direction was chosen, and another detailed traverse line should be surveyed farther to the right. The third peak may be only -105 mv . Thus the strongest vaute is near -285 mv . Next, it is possible to pinpoint the SP target by "potting" along strike until the maxi-

Figure 8-An example of dip determination using SP data.
(A)-cross-section of a dipping sulphide body.
(B)-_line profile of SP readings over (A) showing smooth gentle slope on the down-dip side and steep abrupt slope on the up-dip side.
(C)-contours of SP readings over (A) showing wider spacing interval down-dip and a closer interval up-dip.

Figure 9-An example of detailed follow-up surveying used to locate a maximum SP peak.
mum peak is located, probably between the original traverse line and the -285 mv value for the above example. Assuming the highest peak value is -320 mv , this is where the source of the anomaly is closest to surface. To evaluate whether the anomaty can be exposed by stripping. it is necessary to "pot" around the highest peak by taking a dozen or so readings over an area of about $30 \times 30 \mathrm{~cm}^{2}$ (1 ft^{2}).

If the readings around the peak vary by only 1 to 5 $m v$ within the square area. then the source of the anomaty is probably below the water table and inaccessible by ordinary overburden stripping. If the readings vary by 5 to 15 mv or more, the anomaly is above the water table and probably may be exposed by stripping off the overburden with a shovel and pick. If the peak area varies by 25 to 50 mv cr more. the source of the anomaly is probably graphite which may, or may not, be above the water table.

An alternative to the grid prospecting method for surveying well-staked contiguous claims is the "spiderweb" technique illustrated in Figure 10.

Four claims can be covered from a single control station. This method is recommended for base metal prospecting in areas where only large sulphide bodies are of interest. It is not recommended for gotd prospecting.

Figure 10_The "spiderweb" method of SP surveying

CONCLUSIONS

Lang (1970. p.162) states: "Of all the geophysical methods applicable to the search for sulphides, the spontaneous polarization technique provides the quickest field procedure and also fumishes highly definite information as to the occurrence or absence of sulphide mineralization...With the exception of graphite there are but few insignificant factors to lead the geophysicist astray when interpreting the spontaneous polarization results."

Nevertheless. because varying concentrations of iron sulphide are common near the surface of the earth's crust. and are readity detected by the SP method, there may be a considerable number of SP anomalies which are due to uneconomic mineralization. Thus SP should be combined with other prospecting methods when the nafure of mineralization is in doubt. Also. laboratory and lield research into several important aspects of the SP method are lacking. For example. the feasibility and eflectiveness of SP surveys over ice are not well established. Other areas of possible investigation include the effects of magnetic storms, the extra intensity of these storms near major iron formations. the effect of hydrothermal atteration on SP anomalies, improvement of the canvas sample-bag technique (see "Alternative Fieid Methods") to eliminate potentials due to varying soil acidity. derivation and refinement of topographic correction techniques, and use of the SP method to monitor earthquakes or atomic explosions.

References

Barus. Carlw.
1882: On the Electrical Activity of Ore Bodies in Geology of the Comstock Lode. edited by George F. Belcher, Monograph III. United States Geological Survey. Chapter X. D 309.

Burr. S.V.
1960: The Selt-Potential Method Ior the Prospector. Canadian In. stitute of Mining and Metallurgy. Transactions. Vol. UIII, p.591-597

Fox. Roben W
1830: On the Electromagnetic Properties of Metalliferous Vens in the Mines of Cornwall. Proc Roy Soc London. Vol. 2. p. 411.

Kelly. Sherwin F
1957. Spontaneous Polarization, or Self-Potential Method in Methods and Case Histories in Mining Geophysics. edited by J.P. deWet. Sixth Commorwealth Mining and Metallurgical Congress. p 53-59

Lang. A.H
1970: Prospecting in Canada. Economic Geology Report No. 7. Geological Survey of Canada. 4ih edition. 308p.
Lundberg. Hans
1928: The Present Status of Geoptysical Methods of Prospecting. Canadian Inslitute of Mining and Metallurgy. Transactions. Vol XXXI, p. 209-221
1948: On the History of Geophysical Exploration. Canadian Institute of Mining and Metallurgy. Volume 41. No 431, p.171185
Parasnis. DS
1975: Minung Geophysics (2nd edition). Elsevier Scientific Publishung Company. p. $80-97$.
Salo. Motoaki and Mooney, H.M.
1960: The Electrochernical Mechanism of Sulfide Self-Potentials. Geophysics. Vol XXV(1). p. 226-249.

MICRONTA*

LCD Digital Multimeter

OWNER'S MANUAL
22-191
*tranemarks of radio shack division. tandy corporation

ITEM NO.	NAME	FUNCTION
1	Display	A 3% digit display (1999 max) with decimal point and minus polarity indication. Indicates measured input values and over.range and low battery condition plus $0 \cdot A D J$ and mV / Ω functions.
2	POWER Switch	Turns the instrument $O N$ and OFF. Set to CONTINUITY for continuity check. Set to ON when 8uzzer function is not desired.
3	zERO ADJUST Switch	Push to suppress the two least significant digits. Push again (or change Range/Function switch position) to cancel O.ADJ.
4	$\begin{aligned} & \text { Input (+) } \\ & \text { Jack } \end{aligned}$	Connect $1+1$ rẹ̆d lead for all voltage, current and resist. ance measurements.
5	$\begin{aligned} & \text { Input (-) } \\ & \text { Jack } \end{aligned}$	Connect (-) black lead for all measurements.
6	Function Switch	For selecting functions: DCV, AC V, \rightarrow CHECK, K $\Omega, D C m A, A C m A$
7	Range Switch	For selecting ranges: Voltage: DCV $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Voltage: ACV $2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V} .500 \mathrm{~V}$ Current: 2mA, 20mA, 200mA Resistance: $200 \Omega, 2 \mathrm{~K}, 20 \mathrm{~K}, 200 \mathrm{~K}, 2000 \mathrm{~K}, 20 \mathrm{M} \Omega$ $\rightarrow+$ CHECK:
8	Battery/Fuse Comparment	Open to install/replace fuse and/or batteries.
EXPLANATION OF SPECIAL PANEL MARKINGS		
Special mark tions and safo A. soov MAX	ing has been added ety. o avoid electrica ommon input ter espect to earth/gro	to the panel to remind you of the measurement limita. shock and/or instrument damage do not connect the minal (-jack) to any source of more than 500 volts with und.

EXPLANATION OF SPECIAL PANEL MARKINGS respect to earh/ground.

SAMPLE PREPARATION

ROCK CHIPS. DRILL CUTTINGS AND CORE

SOIL. SEDIMENT, HUMUS AND VEGETATIO iv SAMPLES

Procedure code	Description	Price
201		Si10
202	Stie reject fromary	-55
220	 	055
205		210
217	to 150 mesh $; 99$ -	210
210	Dry. macerate dra wem . $\because \cdots:$: : \quad. .	$\therefore 25$
237	Dry, macerate anc orend vegetato sanion mess neo a 	635

HIGH GRADE SAMPLES AND CONCENTRATES

235	Pan concervates Dry acd rgoci......... \because ambe :00 gan 	5530
209		$5: 5$
1364	ring puiverization as pe- code? ?	: OOC
1327	Stanual of meondratme..........	303

miscellaneous procedures

261	Compositing cnarge (pe we gheds .r stone:	≤ 1.30
227		05
214/225	Handing charge for puips not prepa:e , \because.o.se minimum Chemex pulp $O C=$:ena: $2 \cdots \cdot 50$ iresh	030
24.4		c

 COMAERCIAL VALUE" Preaddressed snoping : \because : a a lade at no cost or eavest
 anci?

GOLD AND OTHER PRECIOUS METALS

GOLD ANALYSIS - FIRE ASSAY PROCEDURES

	Procedure code	Sample weight	Fire Assay finish procedure	Detection limit	Upper limit	Price per sample
Trace Level	Suitable for the analysis of gold in exploration rock chip. soil or sediment sampies. Since fire assay reagents will typically introduce a blank value of 1 to 2 ppb Au , lower detection limits than 1 ppb are not meaningful.					
	100	10 grams	A.A.	5 ppb	10 ppm	\$ 7.95
	983	30 grams	A.A.	5 ppb	10 ppm	9.50
	101	10 grams	N.A.A.	1 ppb	10 ppm	8.50
	993	30 grams	N.A.A.	1 ppb	10 ppm	10.00
Low Grade	Sutable for the analysis of lower grade ore deposits where more than 95 percent of the samples will have a gold content of less than 0.35 ozt . Any 'overlimits' are automatically re-assayed and charged out as per procedure 996 (see below).					
	877	1 AT	A.A.	0.0005 ozh	0.35 ozt	9.50
Intermediate Grade	Suitable for the analysis of ores averaging from 0.15 to $0.5 \mathrm{oz} / \mathrm{t}$. Any samples which assay over $0.4 \mathrm{oz} / \mathrm{t}$ are automatically re-assayed using a gravimetric fire assay procedure at no extra charge. The gravimetrically determined gold content is substituted into the certificate of analysis.					
	398	1/2 AT	A.A.	0.002 02/t	$502 / 1$	9.50
	998	1 AT	A.A.	$0.001 \mathrm{oz} / \mathrm{t}$	5 ozft	10.50
High Grade	Suitable for ores which assay routinely over $0.35 \mathrm{oz} / \mathrm{l}$.					
	396	1/2 AT	Gravimetric	$0.003 \mathrm{oz/t}$	20 ozt	10.00
	996	1 AT	Gravimetric	$0.002 \mathrm{oz/t}$	$20 \mathrm{oz} / \mathrm{t}$	11.00
	1296	2 AT	Gravimetric	0.001 ozft	20 oz/t	18.00
	1596	5 AT	Gravimetric	0.001 ozt	20 oz/t	30.00
Special	Metallics or 'screen' assay. The plus 150 mesh fraction screened from the pulp is assayed in its entirety by fire assay and averaged in with a 30 gram assay of the minus 150 mesh fraction. (Requires a code 207 sample preparation scheme.)					
	G180	1 AT	Gravimetric/A.A.	0.001 ozt	$5 \mathrm{oz} / \mathrm{t}$	23.50
	Combination of coarse gold extraction by cyanide leach (24 hour bottle roll) followed by fire assay of a representative $\mathbf{3 0}$ gram sample of the residue. Results are reported for both the cyanide extractable gold and the fire assay of the residue. Total gold is also reported by summing these two values.					
	G380	500 grams	A.A.	$0.001 \mathrm{oz/}$	2021	29.50

SILVER ANALYSIS

| | Procedure
 code | Sample
 weight | Method | Detection
 limit | Upper
 limit | Price per
 sample |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trace Level | 6 | 1 gram | Aqua-regia. A.A. | 0.2 ppm | 100 ppm | $\$ 2.90$ |
| Ore grade | 385 | 2 grams | Aqua-regia, A.A. | $0.01 \mathrm{oz/t}$ | $20 \mathrm{oz/t}$ | 3.70 |
| | 383 | 15 grams | Fire assay. grav | 0.1 ozh | $20 \mathrm{oz/t}$ | 3.70^{*} |

- Fire assay silver price applies to samples which are also being analyzed for Gold by a FA-Gravimetric method. Pricing for 'silver only' assays is $\$ 10.00$ per sample.

TRADITIONAL ICP PACKAGES

Traditional ICP packages offer an economic altemative to single element determinations. Aqua-Regia digestions will not completely digest some of the elements which are normally reported as part of a multielement scan (especially those shaded in grey below). Tri-acid digestions such as the nitric-perchlorichydrofluoric acid digestions used for the ICP-24 and ROCK-20 packages will be essentially quantitative for all elements. Only extremely mineralized material will not be totally dissolved in this type of acid matrix.

For the ICP-32 package those elements shaded in grey will only be partially dissolved.
(*) These elements are reported as oxides in the ROCK-20 package

Please refer to the attached "Certificates of Analysis" for the C-93-1 diamond drill hole core sample assay results.

安昌		\|inn in in in		우ㄱㅜㅜNㅜㅜ국		Onnoon	\|inin no in	
$\underbrace{\circ}$	がッ～゚ロッ ヘicion	タ웅․․․ 				－ioioi	헝후운	
5昌	이으욱으우		으웅우ㅇㅠㅔ		웅우융	웅유융	융우욱	
4	$00^{\circ 0} 0^{\circ}$	00000			～no			$00^{\circ 0} 0^{\circ}$
品昌	न－नचन		न－		小－			
㦱吕	욱유국	우국악	9\％9\％9	웅ㅇㄱ욱	으우우윽	우의․․․	욱ㅇ․․․	
	\checkmark	vママレレ	vマレレマ	v	\checkmark	い v v v	v v v v	v v v v
8^{80}			¢ヲ7600		우웅웅 －mivini	뇽ㅇㅇㅇ テinió		$\left.\right\|_{0} ^{a}$
己镸		न90975		－¢icoim	न－®icr			－¢ ¢ ¢ ¢ \％
号曼		$\underset{\sim}{\text { Fin }}$			べmmom			
8 袁		二®icmi		न－	～780＊	mogoicos	かべがが	
\％袁	nn inn in 0.000 マ v v v	nunomu －ónó v v	ninmun －0000． マ い v v	（1）	¢nonnun	uncuncus	～00nnor	
5 ${ }^{\circ}$	 		ゅ응ㅎㅇㅇ․․ ヘirioio				Morociol	
皿昌		crucrum	crumby	$\underset{\sim}{\sim}+\infty$	$\cdots \rightarrow$	\cdots－		
\％镸	numin in －0000． v v	$0^{\circ 00} 0^{\circ} 0^{\circ}$		nnunno	ounnun －10000		亿nunon	
ゅ要			\％8080응		－90808	욱유윽		
－昌		～ロズ゚		\cdots	いいでい	\cdots	con_{v}	
as^{20}	जimion		ヘmलoन			－imóo	नicimí	
是量	$\cdots \mathrm{NTN}$ 00000 $\vee \vee \vee$	\|rọ			$\begin{array}{lrl} 1 & 1 & 1 \\ 0 & 0 \\ 0 & 0 & 0 \\ v & 0 & 0 \end{array}$		$\left.\right\|_{r u c u c} ^{a}$	
$\begin{aligned} & \text { 을ㅊㅊㅊ } \\ & \text { 렻 } \end{aligned}$								
国送		\|			\|icicinion	Wo in ee		Oin icicicici
$\begin{aligned} & \text { 억 } \\ & \text { 家 } \end{aligned}$								

CERTIFICATE OF ANALYSIS A9326205 $\begin{array}{ll}\text { Project：} & \text { T．H PROPERTY } \\ \text { Comments：} & \text { ATN：H．TRACONELLI CC：H．TRACONELLI }\end{array}$

SAMPLE											CE	RTIF	ATE	OF	NAL	SIS	A9326205
	$\begin{aligned} & \text { PREP } \\ & \text { CODE } \end{aligned}$		$\begin{aligned} & \text { Mo } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \mathrm{Na} \\ \text { \& } \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{p} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{pp} \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Sc } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p m} \end{array}$	$\begin{gathered} T i \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Tl} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { U } \\ \mathrm{p} p \mathrm{~m} \end{array}$	$\begin{array}{r} v \\ p p m \end{array}$	$\begin{array}{r} \text { W } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{zn} \\ \mathrm{ppm} \end{array}$	
4982	205	226	$\leqslant 1$	0.02	96	720	62	< 2	10	22	0.20	< 10	< 10	133	<10	200	
4982	205	226	<1	0.02	78	770	16	< 2	6	43	0.30	- 10	- 10	102	10	130	
4983	205	226	1	0.02	57	910	12	< 2	6	50	0.31	< 10	< 10	96	10	162	
4984	205	226	< 1	0.04	15	210	20	<2	3	38	0.08	- 10	< 10	20	<10	64	
4985	205	226	1	0.02	61	680	2	2	8	33	0.31	< 10	< 10	103	10	140	
4986	205	226	<1	0.03	30	900	12	$\leqslant 2$	13	13	0.13	< 10	- 10	149	<10	88	
4987	205	226	< 1	0.01	43	2050	6	2	18	29	0.08	- 10	- 10	145	10	106	
4988	205	226	2	0.01	26	350	22	< 2	10	75	0.03	- 10	< 10	63	20	304	
4989	205	226	<1	0.03	37	740	2	<2	12	27	0.11	- 10	- 10	101	< 10	98	
4990	205	226	1	0.03	43	1180	< 2	< 2	12	54	0.14	- 10	< 10	88	10	94	
4991	205	236	1	0.02	61	1070	2	2	10	44	0.16	< 10	< 10	85	10	126	
4992	205	226	1	0.01	160	670	14	< 2	6	46	0.49	< 10	< 10	95	10	126	
4993	205	226	< 1	0.01	197	770	6	2	3	36	0.62	- 10	< 10	100	10	102	
4994	205	226	1	0.03	8	30	6	<2	1	6	0.01	< 10	< 10	4	< 10	14	
4995	205	226	2	0.02	18	110	4	< 2	3	6	0.02	- 10	< 10	21	< 10	38	
4996	205	226	$\leqslant 1$	0.04	24	280	< 2	<2	2	4	0.04	< 10	< 10	24	< 10	16	
4997	205	226	$\leqslant 1$	0.03	40	620	8	<2	7	20	0.21	<10	< 10	67	< 10	52	
4998	205	226	< 1	0.04	51	1190	<2	4	6	57	0.27	-10	- 10	111	< 10	98	
301701	205	226	7	0.03	26	400	12	2	4	18	0.10	< 10	< 10	33	< 10	64	
301702	205	226	$\leqslant 1$	0.01	41	820	< 2	2	16	12	0.07	< 10	-10	192	<10	210	
301703	205	226	$\leqslant 1$	0.01	26	980	<2	2	11	41	0.07	<10	- 10	130	10	108	
301704	205	226	<1	0.01	25	560	2	2	7	31	0.08	<10	< 10	82	< 10	88	
301726	205	226	<1	0.03	13	940	2	6	8	24	0.28	< 10	-10	160	< 10	174	
301727	205	226	<1	0.02	9	950	6	<2	6	25	0.24	<10	< 10	132	< 10	156	
301728	205	226	< 1	0.04	5	290	6	<2	2	13	0.04	< 10	< 10	22	< 10	28	
301729	205	226	<1	0.04	8	430	2	<2	3	21	0.03	<10	< 10	29	- 10	36	
301730	205	226	<1	0.02	30	1730	12	<2	15	24	0.14	- 10	-10	144		126	
301731	205	226	<1	0.03	26	250	4	<2	5	26	0.05	< 10	< 10	27	< 10	30	
301732	205	226	<1	0.06	3	350	< 2	<2	4	9	0.08	< 10	<10	25	< 10	14	
301733	205	226	<1	0.05	9	460	4	< 2	6	21	0.13	< 10	< 10	56	< 10	2 B	
301734 301735	205	226		0.04 0.03	14	550	6		6 8	38 15	0.15		< 10	60 97	< 10	40	
301735 301736	205	226	1	0.03	50	960	60	<2	8	15	0.17	-10	<10	97	< 10	332	
301736	205	226	1	0.04	56	710	194	2	6	18	0.20	< 10	< 10	86	10	2090	
301737	205	226	<1	0.01	33	650	36	2	8	28	0.41	<10	<10	165	10	920	
301738	205	226	3	0.03	69	810	54	< 2	6	31	0.43	< 10	< 10	160	10	278	
301739	205	226	<1	0.06	34	1020	78	2	7	28	0.31	< 10	< 10	146	< 10	334	
301740	205	226	<1	0.03	43	630	66	2	6	41	0.27	< 10	< 10	103	- 10	228	
301741	205	226	1	0.06	74	720	92	4	4	34	0.24	< 10	< 10	78	< 10	186	
301742	205	226	<1	0.06	88	630	452	2	4	54	0.22	< 10	< 10	54	- 10	1170	
301743	205	226	< 1	0.04	67	660	104	2	3	27	0.22		< 10	71	< 10	396	

CERTIFICATE OF ANALYSIS A9326205

The following is a listing of the assaying and assaying related expenditures that are a result of the samplings taken from drill hole C-93-1 on the T-H Property in Moncrieff Township.

Laboratory Work Order Number	Cost
19326205	$\$ 830.53$
Shipping of Samples to Lab	$\$ 49.22$
Total Cost of Assaying Related Expenses	$\$ 879.75$

The total of the assaying expenditures remains to be paid. Awaiting remainder of O.P.A.P. funds to settle the account.

$$
\begin{aligned}
& \text { To: BHARTI LAAMANEN MINING INC. } \\
& \text { 131 FIELDING RD., P.O. BOX } 700 \\
& \text { IIVELY, ON } \\
& \text { POM 2EO } \\
& \hline \text { INVOICE NUMBER }
\end{aligned}
$$

Diamond drilling of hole C-93-1 was carried out from October 2, to October 7, 1993 on mining claim S-993570 of the T-H Property by Sparta Diamond Drilling.

The invoice for the above described work has been included within this appendix.

L.J. SALO
 General Delivery.
 Connaught, Ontario
 PON-1AO (705)363-2108

MR. HAROLD TRACANELLI

582 Nickel Basin Road
Chelmsford, Ontario

INVOICE; OP930907

RE; DRILLING Benny Road Area

THANK YOU FOR YOUR WORK IT WAS A PLEASURE TO SERVE YOU.

APPENDIX VI

On September 4, 1993 the applicant (OP93-146) Harold J. Tracanelli was assisted by John George Huycke (OP93-145), performed a self-potential survey over lines $1+00 \mathrm{E}, 0+00$ and $1+00 \mathrm{~W}$, primarily being located on mining claim S-993570, Moncrieff Township.

Date Worked	Duty Performed	Daily Allowance
September 4, 1993	Self-Potential Survey	$\$ 100.00$

APPENDIX VII

Transportation, Drill Core Logging and Sampling, Report Preparation and Reproduction, Word Processing Expenditures and Expenditure Summary Statement

TRANSPORTATION EXPENSES

1. Return trip to project site for backhoe orientation.

Harold Tracanelli, Yves Clement, Gordon Salo.
2. Spotting of Drill Hole C-93-1 by John George Huycke, October 2, 1993.
3. John George Huycke visited the diamond drill site to check on drilling progress on October 4, 1994
4. John George Huycke visited the diamond drill site to check on drilling pragress on October 6, 1993.

4 trips of 120 km per trip from residences were made $=480 \mathrm{~km}+/-$
$480 \times 40.30 / \mathrm{km}=\$ 144.00$

DRILL CORE LOGGING EXPENSES

On the following dates diamond drill core logging endeavours were carried out by the applicant on hole C-93-1.

Date	Function	Hours Worked	
October 16, 1993	Drill Core Logging	8.0	
November 13, 1993	Drill Core Logging	8.0	
Total		16.0 hours	

DRILL CORE SAMPLING EXPENSES

Date	Function	Hours Worked
December 7, 1993	Split Samples 301743-301750 4981-4998	4.0
December 8, 1993	Split Samples 801701-301742	4.0
Total		8.0 hours
8 hours $/ 8$ hrs. $=1$ day $\times \$ 100.00 /$ day $=\$ 100.00$		

REPORT PREPARATION EXPENSES

The following dates and hours were spent in preparing, proof reading the draft copy of the report. All report preparation work was carried out by the applicant, Harold J. Tracanelli, at a rate of \$100.00/day.

Date	Function, Daily Logs	Hours Worked
December 20, 1993	Drafting drill hole C-93-1 cross section geology	4.0
December 21, 1993	Drafting drill hole C-93-1 cross section assay data	4.0
December 23, 1993	Reducing, correcting, reducing S-P survey data	4.0
December 27, 1993	Drafting of corrected S-P data	2.0
December 29, 1993	Drafting of S.P. data, geological compilation, superimposed onto S.P. survey data	2.0
December 30, 1993	Drafting S.P. data	1.0
January 1, 1994	Drafting of remaining S-P data, geologicalgeophysical compilation, began to finalize all drawings, S-P, drill sections, etc.	5.0
January 2, 1994	Telephone consultation with geologist Yves Clement regarding findings of trenching work (OP93-145). completed finalized drafting of $11^{\prime \prime} \times 17^{\prime \prime}$ drawings	3.0
January 4, 1994	Report writing, self-potential survey	5.5
January 5, 1994	Report writing, diamond drilling	3.0
January 6, 1994	Report writing, diamond drilling, assaying, began compiling information for appendices	7.0
January 7, 1994	Report writing, completed compiling appendix data, put together introduction, location, access data, etc.	6.0
January 9, 1994	Began proof reading parts of the draft report.	5.0
January 10, 1994	Completed compiling all data for report for word processing for final draft.	5.0
January 14, 1994	Final proofing of draft copy of report, minor corrects to be made prior to printing.	4.0
TOTAL		58.50 hrs .
$58.50 \mathrm{hrs} / 8 \mathrm{hrs}=7.31$ days $\times \$ 100.00 /$ day $=\$ 731.25$		

REPORT REPRODUCTION

The cost of supplies required to produce two copies of the report to the OPAP offices has been estimated at
$\$ 30.00$

The copies of the report shall be generated by the applicant.
3 hours work will be required to complete the process.
$3 \mathrm{hrs} / 8 \mathrm{hrs}=0.375 \times \$ 100.00 /$ day $=$
$\$ 37.50$

WORD PROCESSING

The exploration work report word processing work was carried out by Bharti Engineering Staff secretary Maryann Foy over the following dates and hours. The company uses a chargeout rate for such services at $\$ 27.00$ /hour.

Date	Hours Worked
December 7, 1993	2.5
December 8, 1993	4.25
December 9, 1993	3.0
December 13, 1993	1.5
December 30, 1993	2.0
January 3, 1994	1.5
January 4, 1994	2.0
January 5, 1994	1.5
January 6, 1994	5.0
January 7, 1994	3.75
January 11, 1994	1.5
January 12, 1994	3.0
January 13, 1994	3.0
January 14, 1994	2.0
Total Hours	36.5

EXPENDITURE SUMMARY STATEMENT

Item	Total Cost of Item	Amount Paid out to Date of Report	Amount Outstanding to Date of Report
Diamond Drilling	$\$ 7.200 .00$	$\$ 4.900 .00$	$\$ 2,300.00$
Assaying	$\$ 830.53$	0	$\$ 830.53$
Sample Shipping	$\$ 49.22$	0	$\$ 49.22$
Self-Potential Survey*	$\$ 100.00$	$\$ 100.00$	0
Drill Core Logging*	$\$ 200.00$	0	$\$ 200.00$
Drill Core Sampling**	$\$ 100.00$	0	$\$ 100.00$
Report Preparation*	$\$ 731.25$	0	$\$ 731.25$
Report Reproduction*	$\$ 67.50$	0	$\$ 67.50$
Word Processing ${ }^{*}$	$\$ 985.50$	0	$\$ 985.50$
Transportation	$\$ 144.00$	0	$\$ 144.00$
Totals	$\$ 10.408 .00$	$\$ 5,000.00$	$\$ 5.408 .00$

- work carried out by the applicant (OP93-146) designated rate of $\$ 100.00 /$ day based on an 8 hour work day.
* work carried out by M. Foy

APPENDIX VIII

O.P.A.P. Certificate and Supporting Documentation

Ministry of
Northern Development and Mines
Ministère du
Développement du Nord et des Mines

February 24, 1993

ONTARIO PROSPECTORS ASSISTANCE PROGRAM 1993-94

INFORMATION CIRCULAR 93-1

For 1993-1994, a booklet containing information on the OPAP program, the OPAP Regulations and OPAP application forms, has been prepared. These booklets are being mailed to past OPAP applicants as well as anyone else who has been placed on the Incentives mailing list. The booklets will also be available at all Ministry regional offices.

The official starting date for this year's program is April 1, 1993. All applications received prior to this date will be considered for assistance under the OPAP program. All applications received after this date will be considered only if there are unallocated funds.

As the competition for OPAP assistance is very strong, it is important that each applicant submits a complete application form and proposal. Failure to do so will likely result in the application being rejected. Please read the OPAP booklet thoroughly prior to completing the application form.

As a result of several fatal accidents last year, we have included some safety literature. (French versions may be obtained from the Incentives Office)

For further information on OPAP. please contact the staff at your local Resident's office or

The Incentives Office
Mineral Development and Rehabilitation Branch
Ministry of Northern Development and Mines
5th Floor, 933 Ramsey Lake Road,
Sudbury, Ontario
P3E 6B5

Telephone (705) 670-5824
1-800-265-0834
Fax (705) 670-5803
le 24 février 1993

PROGRAMME D'AIDE AUX PROSPECTEURS DE L'ONTARIO 1993-1994

CIRCULAIRE DTNFORMATION 93-1

On a préparé pour l'année 1993-1994 une brochure qui contient des renseignements sur le PAPO, ses règlements afférents et le formulaire de demande. Elle sera envoyée aux personnes ayant déjà fait demande auprès du PAPO ainsi qu'a celles dont le nom figure sur la liste d'envoi du Bureau des subventions d'encouragement. Ces brochures seront également disponibles aux bureaux régionaux du Ministère.

Le programme de cette année sera en vigueur officiellement à partir du 1 er avril 1993. Les demandes reçues avant cette date seront considérées. Toutes celles reçues après cette date seront considérées seulement s'il reste des fonds.

Les demandes étant très nombreuses, il importe de remplir au complet le formulaire de demande ainsi que le plan proposé. Sinon, la demande risque d'ètre rejetée. On vous encourage à lire la brochure attentivement avant de remplir le formulaire.

Puisqu'il est arrivé plusieurs accidents mortels l'année dernière, nous incluons du matériel sur la sécurité. (La version française est disponible au Bureau des subventions d'encouragement.)

Pour de plus amples renseignements sur le PAPO. communiquez avec le personnel du bureau local du géologue résident ou de la géologue résidente, ou encore :

Le Bureau de subventions d'encouragement
Direction de l'exploitation des minéraux et de la réhabilitation

Ministère du Développement du Nord et des Mines
933, chemin du lac Ramsey, 50 étage
Sudbury (Ontario)
P3E 6B5

Téléphone (705) 670-5824
1-800-265-0834
Télécopieur (705) 670-5803

Ministry of	Ministère du	Mineral Development Section
Northern Development		
and Mines	Développement du Nord	933 Ramsey Lake Rd. 5th Floor Sudbury, Ontario
	et des Mines	P3E5

May 13. 1993

HAROLD J. TRACANELLI
582 VERMILLION LK RD. BOX 167
CHELMSFORD, ONTARIO
POM 1L0

Dear Mr. TRACANELLI:

Re: OPAP File Number OP93-146
I am pleased to inform you that your application for financial assistance under the Ontario Prospectors Assistance Program (OPAP) has been reviewed and approved in the amount of $\$ 10,000$.

Please quote the above file number in any future correspondence with the Incentives office.

A cheque for one half of this amount, $\$ 5,000$, in accordance with the regulations, will be forwarded to you directly. The balance of your OPAP grant will follow when your final submission form and supporting documentation have been submitted to the ministry and approved.

Please find enclosed one copy of the following documentation:

- Certificate of Initial Grant Approval
- Ontario Prospectors Assistance Program 1993, Information Circular 93-2, "Guidelines for the Preparation of the Summary Technical Report and Additional Reporting Requirements for Prospecting, Stripping and Trenching".
- Ontario Prospectors Assistance Program 1993, Information Circular 93-3, "Guidelines for the Reporting of Financial Expenditures."

PLEASE BE ADVISED THAT THE EVALUATION OF THE FINAL SUBMISSION PORI AND SUPPORTING DOCUMENTATION WILL BE BASED ON THE DOCUMENTATION SUBMITTED BY THE DEADLINE OF JANUARY 31, 1993.

Supporting documentation submitted after this date may not be considered. Thus, applicants must file a complete submission by that date to avoid any cutbacks in their final grant amounts. Failure to submit the required documentation by the deadline would require the reimbursement of the full amount of the initial grant payment.

This past year, the majority of OPAP recipients submitted their final submissions in January, thus causing a large backlog and delays in final grant payments. To avoid the reoccurrence of this problem, applicants are strongly encouraged to forward their completed final submissions immediately upon completion of their projects.

Please note that according to the Regulations, if exploration work on a designated project is discontinued before the project is completed, you must notify this office in writing within thirty days of discontinuing the work. This provision is to allow any unused funds to be passed on to applicants who were initially unable to receive a grant as a result of the program's budget being fully allocated. Failure to notify this office would make you ineligible to apply for further incentives for a period of three years from the expiry of the designation of the project.

Also, please note that the reporting requirements for OPAP and assessment work may differ for some exploration activities. Therefore, reports submitted to OPAP may not be accepted for assessment credits and vice versa. Please ensure that reports submitted for OPAP meet OPAP requirements. Please forward Report of Work Forms directly to the appropriate Mining Recording office. Geotechnical reports must still be forwarded to the Mining Lands Section to ensure timely approval of your assessment work.

If you have any questions about these or other aspects of OPAP, I will be pleased to discuss them with you.

I wish you every success with your project and look forward to reviewing your prospecting report at the conclusion of your field work.

Yours truly,

Edward R. Solonyka
Supervisor
Incentives

Ontario

Ministry of
Northern Development and Mines

Ministère du
Développement du Nord et des Mines

May 15, 1993

ONTARIO PROSPECTORS ASSISTANCE PROGRAM 1993

INFORMATION CIRCULAR 93-3
GUIDELINES FOR THE REPORTING OF FINANCIAL EXPENDITURES
Expenses being claimed for the OPAP project must be detailed on the form in Section III of the OPAP Final Submission Form. These expenses are then summarized in Section II of the form.

Please note that the cost of supplies or services provided by a company in which the applicant holds an interest, rental costs of equipment owned by the applicant, staking and land maintenance costs and expenses for non-consumable items are NOT eligible.

Examples of non-consumable items are given below:

- Camping equipment: tents, stoves, cots, mattresses, lanterns, etc.
- Prospecting equipment: packsacks, compasses, hand lenses. etc.
- Clothing: boots, jackets, pants, shirts, rain gear, etc.
- Others: chain saws, water pumps and hoses, generators, geophysical equipment, major repairs and parts and insurance, etc.

Ontario

Ministry of
Northern Development and Mines

Ministère du
Développement du Nord et des Mines

May 15, 1993

ONTARIO PROSPECTORS ASSISTANCE PROGRAM 1993

INFORMATION CIRCULAR 93-2

GUIDELINES FOR THE PREPARATION OF THE SUMMARY TECHNICAL REPORT
 AND

ADDITIONAL REPORTING REQUIREMENTS FOR PROSPECTING, STRIPPING AND TRENCHING

Although the OPAP Regulations, included in the OPAP booklet, state the reporting requirements for the program, a SUMMARY TECHNICAL REPORT is also required for each OPAP project.

In the preparation of the reports, information must be provided under the headings outlined in the attached guidelines.

In addition to the SUMMARY TECHNICAL REPORT, further information is required for the reporting of prospecting, stripping and trenching results.

The applicant must identify, in detail, the location of the area that the prospecting, sampling, stripping and trenching has taken place, both in the daily log and on sketches. A description of the samples and their assay results must also be included. Examples are attached.

The quality and content of the overall submission including the report and accompanying maps will be used to judge your performance as an OPAP recipient. This performance will be taken into consideration when reviewing any future OPAP applicants.

FINAL SUBMISSION - SUMMARY TECHNICAL REPORT GUIDELINES

DATE:
NAME:
LIST OF INDIVIDUALS WHO APPLIED FOR ASSISTANCE FOR THIS PROJECT:
LOCATION AND ACCESS: Mining Division, Township or Area name, with a claim location map and prospecting traverse map.

CHANGES TO PROPOSED PROJECT: if any
GEOLOGY: Similar to the information given in the proposal, but is based on the applicants' field work.

WORK DONE: State work that was accomplished during the designated period, how, and why.
e.g. Line cutting - miles/km and what survey(s) were run on
the grid
Geological Surveys - scale of mapping, sampling locations
Geophysical Surveys - type, miles/km
Geochemical Surveys - type, no. of samples
Drilling - type, footage
Stripping/trenching - method
Other - type, explanation, description
Maps for each survey should be submitted, showing sample sites (location, width and grade), grids, drill hole locations, Erenches etc. Also state if the proposed work was completed or not.

RESULTS AND RECOMMENDATIONS: Any significant results from assays, (include assay/certificate of analysis) new showings, anomalies, etc. State if there were any claims staked during the designated period, or if an option agreement will result from the work completed. State if more work is necessary or not, recommend follow up work based on the work completed in this project.

DAILY LOG: There is a page allocated on the application for this purpose. If more space is required, feel free to attach a separate sheet.

DETAILED LIST OF EXPENDITURES: There is a page allocated for this purpose on the final submission form, additional sheets may be used if necessary.

NOTE: Total expenditures for the project should be submitted in case some of the subitted expenses are ineligible and have to be deducted.

Prospecting Daily Log

Project Area Date
July 3

July 4

July 4

Work Performed
Prospected along north claim line of claple no. $10{ }^{10}{ }^{8892}$ (3 samples taken)
Prospected along east claim line of claim no. 0078892 (1 sample taken)
Prospected a long EW line across centre of claim no. 1078892 (2 samples taken)
$\xrightarrow[\text { Location of Prospecting }]{\text { - area outlined }}$

- area outlined on previously submitted claim map
- detailed sketch a thatched

Description of Samples
Sample No. Type of Sample Rock Type Mineralization Assay Results

Location of Stripping and Trenching

Scale 1:5000

Office of the Minister

Bureau du Ministre

Ministry of
Northern Development
and Mines
Ministère du
Développement du Nord et des Mines

159 Cedar Street 7th Floor Sudbury. Ontario P3E 6A5
7^{7} étage Sudbury (Ontario) P3E 6A5

June 11, 1993

HAROLD J. TRACANELLI
582 VERMILLION LK RD., BOX 167
CHELMSFORD, ONTARIO
POM ILO
Dear Mr. TRACANELLI:
Re: OPAP File Number OP93-146
I would like to congratulate you on your successful application under the Ontario Prospectors Assistance Program (OPAP). Once again this year, there has been a very strong demand for the program. A strong and active prospecting industry is vital to the future of mining in Ontario and, as such, I wish you much success with your project.
As this ministry is very interested in the Ontario Prospectors Assistance Program and the results it generates, we would be interested in hearing any suggestions you may have on how to improve it. Please forward any comments you may have directly to Dr. Dick Cowan or Mr. Ed Solonyka, Ministry of Northern Development and Mines, Mineral Development Section, Sth Floor, Willet Green Miller Centre, 933 Ramsey Lake Road, Sudbury, Ontario P3E 6B5.

Once again, good luck with your project.
Sincerely,

Shelley Martel
Minister

> Certificate of Initial
Grant Approval Certificat d'allocation d'une
subvention initiale The Ontario Prospectors Assistance Program

Programme d'aide aux prospecteurs de POntario Ministry of
Northem Development
and Mines Ministère du Ministere du
Développement du Nord
et des Mines of des Mines

TRACANELLI

582 VERMILLION LK RD., BOX 167

Applicant \cdot Name/Nom du demandeur	HAROLD J.	TRACANELLI	
Street Name and Number/Adresse (rue et numéro)	582 VERMILLION LK RD., BOX 167		
City, Town, Village/Localité	CHELMSFORD	Province	

is hereby approved. est approuné.

APPENDIX IX

REFERENCES

fEFERENCES

Benny Area

Card. K.D., and Lambers.S.B
1977: Sudbury Cobalt Sheet. Algoma, Manitoulin. Nipissing. Parry Sound. Sudbury, and Timiskaming Districts; Ontario Geological Survey. Map 2361, scale 1:253 440 or I inch 104 miles. Revised Geological Compilation 1974-1975

Card. K.D. and Memn. H.D.
1969: Geologe of the Leinster-Bowell Area. District of Sudbury: Ontario Department of Mines. GR65.40p. Accompanied by Maps 2132. 2133. and 2134, scale 1 inch to $1 / 2$ mile

Card. K.D., and Palonen. P.A
1976: Geolgg' of the Dunlop-Shakespeare Area. District of Sudbury: Ontario Division of Mines. GR139. 52p. Accompanied by Map 2313, scale 1 inch $20 / 1 /$ mile.

Card. K.D., and Paulison, E.F.
1973: Nipissing Diabase of the Southern Province. Ontario; p. $7-10$ in Iluronian Stratigraphy and Sedimentation. Edited by Grant M. Young. Geological Association or Canada. Special Paper 12.271p.

Collins, W.H
1917: Onaping Map-Area: Geological Survey of Canada, Memoir 95, 157p. Accompanied by Map 179A, scale 1 inch to 4 miles or $1: 253440$ and Map 153A.

Dressler, B
1976a: Emo Township. District of Sudbury: Ontario Division of Mines. Preliminary Map P. 1089. Geological Series, seale 1:15 840 or 1 inch to $\%$ mile. Geology 1975.

1976b: Rhodes Township. District of Sudbury; Ontario Division of Mines, Preliminary Map P.1090. Geological Series, scale 1:15 840 or 1 inch to $\%$ mile. Geology 1975.

1976c: Botha Township. District of Sudbury: Ontario Division of Mines, Preliminary Map P.1091, Geological Series, scale 1:15 840 or 1 inch to \% mile. Geology 1975.

Dietz, R.S.
1964: Sudbury Structure as an Astrobleme; Journal of Geology, Volume 72. Number 4. p. 12 12-434.

Gast, Paul W.
1968: Trace Element Fractionation and the Origin of Tholeitic and Alakaline Magma Types; Geochim et Cosmochim. Acta. Volume 32. Number 10. p. 1057-1086.

Gates. T.M. and Hurley, P.M.
1973: Evaluation of Rb-Sr Dating Method Applied to the Matachewan, Abitibi. MacKenzie. and Sudbury Dike Swarms in Canada; Canadian Journal of Earth Sciences, Volume 10. p.900-919.

GSC
1965a: Chelmsford Sheet, Ontario; Geological Survey of Canada. Geophysical Paper 1518. Aeromagnetic Series, Map $1518 G$, scale 1 inch to 1 mile. Survey June 1959 to October 1960.
1965b: Venetian Lake Sheet. Ontario; Geological Survey of Canada, Geophysical Paper 1519. Aeromagnetic Series, Map 1519G. scale 1 inch to 1 mile. Survey June 1959 20 October 1960.
1965c. Cartier Sheet, Ontario; Geological Survey of Canada. Geophysical Paper 1524. Aeromagnetic Series, Map 1524G, scale 1 inch to 1 mile. Survey June 1959 to October 1960.

1965d: Pogamasing Sheet, Ontario; Geological Survey of Canada. Geophysical Paper 1525. Geophysical Series 1525G, scale 1 inch to 1 mile. Survey June 1959 to October 1960.


```
        K:u!! i f : ... . . :`,um.|
```



```
\vdots
    .:!\vdots.:: : ...'.
```



```
        -1::-
    #: \
```



```
    \therefore.\because口:-... 
```



```
\because.a!.
```



```
                                    .l.ur
```



```
    O1mes. Volume 3! :'::
    Ambatee Contac: :%.-4
                            ..!1930, :40
```


Parks. W.A.
1900: Niven's Base Line, 1899; p.125-142 in Ontario Bureau of Mines. Volume 9. 239p.
Popelar.J.
1971: Gravity Measurements in the Sudbury Area. with Map Number 138: Canada Department of Energy, Mines, and Resource. Earth Physics Branch Publication.

Quirke.T.T
1920: Geneva Map-Area, Sudbury District. Ontario; Geological Survey of Canada. Summary Report. 1920. Part D.p.7D-18D.

Saarnisto, M
1974: The Deglaciation History of the Lake Superior Region and its Climatic Implications: Quaternary Research. Volume 4. p.316-339.

Sangster, D.F.
1972: Precambrian Volcanogenic Massive Sulphides Deposits in Canada, a Review; Geological Survey of Canada Paper 72-22.44p.

Speers. E.C.
1957: The Age Relation and Origin of the Common Sudbury Breccia; Journal of Geology. Volume 65. p.497-514.

Stockwell, C.H., McGlynn, J.C., Emslie, R.F., Sanford, B.V., Norris, A.W., Donaldson. J.A.,
Hahrig. W.F., and Currie, K.
1970: Geology of the Canadian Shield: p.44-150 in Geology and Economic Minerals of Canada. Edited by R.J.W. Douglas, Geological Survey of Canada, Economic Geologe Report Number 1, 838p.

T:lley, LD.
1950: Some Aspects of Magnetic Evolution: Quarterly Journal of the Geological Society of London. Volume 106, p. 37-61.

Tuck, Ralph
1931: A Lead-Zinc Deposit at Geneva Lake, Ontario: Economic Geology, Volume 26. Number 3. p.295-313.

VanSchmus, WR
1965: The Geochronology of the Blind River-Bruce Mines Area. Ontario. Canada: Journal of Geology, Volume 73. p.775-780.
1971: Ages of Lamprophyre Dikes and of The Mongowin Pluton. North Shore of Lake Huron. Ontario, Canada; Canadian Journal of Earth Sciences, Volume 8, p.1203-1209.
1976: Early and Middle Proterozoic History of the Great Lakes Area, North America; p.605628 in Philosophical Transactions of the Royal Society of London, Volume A 280. Nuraber 1298, p.397-667.

Wager, L.R., and Deer. W.A.
1939: Geological Investigations in East Greenland III, the Petrology of the Skaergaard Intrusion, Kangerdlugssuaq; Meddelelser om Gronland, Volume 105, Number 4. 352p. (Reíssue 1962).

Wanless, R.K., Stevens, R.D., LaChance, G.R. and Rimsaite, R.Y.H.
1965: Age Determinations and Geological Studies, Part 1, Isotopic Ages; Report Number 5. Geological Survey of Canada, Paper 67-2, Part A, 141 p.

Winkler, H.G.F.
1967: Petrogenesis of Metamorphic Rocks; Springer Verlag. New York. Second Edition, 237p.
$\because 1$. \therefore


```
;";! ;
```


References

The following reference maps can be obtained from the various provincial government agencies and are also obtainable within the OPAP Application for Funding. T-H Property Exploration Program, Moncrieff Township (G-4086). 1993.

Index to Land Disposition
Plan (claim map)
G-4086
Township of Moncrieff
Sudbury M.N.R. Administrative District
Sudbury Mining Division
Sudbury Land Titles/Registry Division
Scale 1:20,000
N.T.S. Topographic Series

Pogamasing
41-1/13 Edition 2 Canada 1977
Scale 1:50,000
Ontario Geological Survey
Map 2435
Geneva Lake, Sudbury District
Scale $1: 31,680$ or 1 inch to $1 / 2$ mile

Plan and Field notes of
Perimeter Survey
CLM 382, Plan 53R-
P.A. Blackburn

Ontario Land Surveyor
November 26. 1990
Scale: 1 inch to 400 feet
Falconbridge Exploration
T-H Option
Detailed Geology M.J. Gray
Scale 1:2500
September 1989

TRENCHING REPDRT

ON

T-H PROPERTY

MONCRIEFF TOWNSHIF
 SUDRURY MINING DIVISION

ONTARIO
for
J.G.HUYCKE
(OFAF GRANT NO. OP93-145)

Yves F. Clement
Jantary. 1994

Fage

1. Introduction 1
2. Froperty Description 9
2.1 Claim Description 4
2.2 Location and Access 5
2.3 Topography and Yegetation 5
2.4 Services 6
3. Frevious Wort: 6
4. Geology 7
4.1 Fierional Geology 7
4.2 Froperty Geology 9
5. Trenching Frogramme (1793) 12
5.1 Frogramme Description 12
5.2 Trenching Area Geology 13
a) Geology 13
b) Structure 17
c) Alteration 18
d) Mineralization and Lithogeochemistry 19
5.3 Section $1+00 E$ Trenching 20
5.4 Section $0+00$ Trenchina 20
5.5 Section $1+006$ Trenchina 25
5.6 Sertion 3tood Trenching 28
6. Conclusions and Fecommendations 31
Certificate of Gualifications 33
Fieferenres 34

LIST OF FIGURES

AFFFENDICES

1. INTRODUCTION

The T-ll property consists of twenty-two (22) contiguons, unleaced, mining claims within Moncrieff $\begin{aligned} & \text { ownship. The claims are }\end{aligned}$ located in the Sudbury Hining Division and cover an area of approximately 345 hectares.

The property is centered at 4648 N latitude, 8136 w lonaitude and is located approximately 70 kilometers northwest of Sudbury, along highway 144 (figure 1). The highway bisects the central portion of the claim block as illustrated in figure 2.

The T -H property is located along the northeastern fringe of the [ienny Greenstone Felt, an east-west trending belt of Early Frecambrian metavolcanic/metasedimentary rocks. A number of stratabound, base metal deposits occur within the belt. The most important of these is the Geneva Lake Mine which is lecated southeast of the $T-11$ property in Hess Township. This mine produced 4,717,000 kilograms of zinc. 1,632,900 kilograms of lead and $\$ 28,416$ of silver between 1941 and 1914.

A recent compilation, ty the property owners, of the exploration data generated over the years appears to show that the felsic-mafic metavolcanic rock sequence which extends across the northern portion of the $T-H$ property is stratigraphically equivalent to the sequence hosting the Geneva Lake and Stralak base metal deposits. Contained within the $T-H$ property, and along this potential mineral bearing zone, are coincidental magnetic. electromagetic and induced polarization anomalies with corresponding anomalous soil and lithogeochemical yalues.

FIGURE I
GENERAL LOCATION MAP

T-H PROPERTY

MONCRIEFF TOWNSHIP

FIGURE 2

CLAIM LOCATION

T-H PROPERTY

MONCRIEFF TWP
: T-H PROPERTY BOUNDARY

Durirg the 1973 field season a programe of trench mapping and lithogeochemical sampling was conducted along this favourable horizon. The obiective of the trenching programe was two fold. In addition to directly evaluating the exposed subcropg trenching data was used to strateqically position a diamond drill hole along the zolfe. The drilling programe was undertaten by the property co-owner. Harold Tracanelli (0F93-146), during September: 1793. Trefiching and diamond drilling were possible through the assistance provided by the Ontario Frospectors Assistance frogram (OFAF). Fiesults of the trenching programme form the basis for this report.

2. FROFERTY DESCRIPTION

2.1 Clain Description:

The T-H property encompasses twenty-two (22) contiguous. unleased, mining clains totalling approximately 345 hectares (table 1). The block is located in the north-central portion of Moncrieff Township within the Sudbury Mining Division (Map \quad G-4086). The property clains, with the exception of claim no.S-808987, have been surveyed but have not been brought to lease. The claims are held jointly by Mr. Harold Tracanelli of Chelmsford (50\%) and Mr. Jahn G. Huycte of Dowling (50\%). Fhysiographic features and infrastructures with respect to the claim bloct are depicted in figure 2.

TABLE 1:

2.2 Location and Access:

The T-H property is centered at 4648 'N latitude, 81310 longitude, approximately 70 :ilometers northwest of Sudburys Ontarin (figure 1).

The property is readily accessible via paved Highnay 144 whirh passes throunh the central portion of the claim group. The Eenny road, an all season gravel road, provides access to the property's southwestern extremity while the eastern portion is accessed via Fannerman Creek.

2.3 Topography and Veqetation:

Froperty topography is characterized by billy terrain with a mayimum relief of approyimately 45 meters. For the most part fault controlled ravines separate hilly areas. Outcrep exposure varies from 5% to 20 with the remainder of the property being ouerlain by glacial drift and swamps.

The hille are mantled with thin to moderate thicknesses of boulder till which is in turn covered largely by spruce, poplar and birch. Sandy areas of low relief are characterized by iaclapirie with spruce, tamaracl: and alders present along ravine and water course borders.

2.4 Services:

The closest services to the property occur at Cartier which is located 12 tilometers southeast of the property.

A low voltage power line, along Highway 144, extende to within 7 lilometers of the propertys south boundary. Gannerman Creel: which disects the property's eastern side. constitutes an adequate uater supply for mining operations. Fenny: a railway siding along the transcontinental line of Canadian Facific Fiailways (CFF), is located 800 meters southwest of the property's southwestern extremity.

3. FREVIOLSS MORK

Exploration for base metals, quld, silver, iron and urarium has been carried out throughout the property area over the years. within the Genny Greestone Felt, the bull: of the exploration work has been conducted between Stralat and Geneva Lake. There are a number of stratabound, base metal deposits within the Fenny metavolcanic-metasedimentary belt. The most important of these deposits, the Geneva Lave Mine in Hess Townships mas discovered by John Collins in 1924 and produced some $4,717.000$ kilograms of zine. $1,632,900$ lilograms of lead and $\$ 28,416$ of silver between 1941 and 1944. The stralat Deposit was discovered in the mid 1890 s and although it is of considerable tonnage and grade has never been brought into production.

On the $\mathrm{I}-\mathrm{H}$ property, most of the wort: has been carried out on a pyrite-pyrrhotite bearing horizon that trends across the central portion of the claim blocl: A drilling programme conducted ty

Horthcal 0il ltd. (1759) on this zone yielded relatively poor results. The potential base metal bearing felsic sequence lorated within the northern portion of the property has been subiected to very little exploration activity over the years. Wort carried out in the northern portion of the property, as fart of property-wide programmes, include geological mapping: lithoqeochenical sampling. ground geophysics and soil qeochemistry. Figure 5 depicts significant findings encountered. within the area of questiong by Chevron (1976), Noranda Explorations (1985) and Falconbridge Ltd. (1987-1990).

4 GEOLOGY

4.1 Regional Geology:

The property area lies along the southern flank of the Superior Frovince of the Canadian Shield, a short distance north of the Sudbury Intrusive Complex (figure 3). The geological terrain has been subject to Early: Middle and Late Frecambrian depositional, deformational. metamorphic and intrusive events.

The following lithologies are present within the property area: Early Frecambrian metavolcanic and metasedimentary rocks: several agec of Early Frecambrian mafic and felsic intrusive rocks: Midde Frecambrian metasedimentary recks of the Hurnnian Supergroup; Midde Frecambrian Nipissing Diabase dykes and sills: lamprophyre and breccia bodies of varying compositions and ages and Late frecambrian olivine diabase dykes.

The Fenny Greenstone Felt consists of ari east-west trending zone of Early frecambrian metavolcanic and metasedimentary rock: The belt
$991{ }^{\circ}$ ON LYOd3y 590 ' כ'

Abstract

is approximately 40 filometers long and arerages approximately 2.4 lilometers in width. The belt is enclosed within Early frecambrian granitic ard mignetitic rocts which dips stepply southward ard may represent the remnant of a previously more extensive supracrustal sequence. A number of cyclic repetitions from mafic to intermediate to felsic are observed in the metavolcanic rock: sequence. Major lithologies include mafic flows (basaltic and andesitic!. (andesitic-rhyolitic) pyroclastics including tuffs: lapilli tuffs and tuff-breccias and minor felsic flows (rhyolitic and dacitic). Metasedimentary roct:s include wactes, siltstones, sandstones, cherts. graphitic and sulphide bearing metasedimentary racks and oxide facies iron formations. The rocts of the Henny felt have been subiected to upper greenschist to lower anphibolite faciess regional metamorphism and are generally strongly deformed in character. There are a number of stratabound base metal deposits within the Eemin Greenstone Eelt.

4.2 Property Geology:

The T-H property lies along the eastern extremity of the Fenny Greenstone felt, an east-west trending belt of Early Frecambian metavolcanic and metasedimentary rocks (figure 4). The Henny felt is approximately 40 kilometers long and averages approxinately 2.4 :ilometers in width. Major lithologies include mafic flows (basaltic and andesitic!, (andesitic-rhyolitic) pyroclastics including tuffs, lapilli tuffs and tuff-treccias and mimor felsic (rhyolitic and dacitic) flows.

The southeastern half of the $1-H$ property is domiriated by andesitic tuff-breccia while the northwestern half coneiets of a
repetative mafic, intermediate and felsic metavolcanic rock eequence. The metavolcanic sequence is east-northeasterly trending and steeply dipping to the south. The prospective felsic-mafic metavolcaric horizon which forms the objective of the 1993 trenching programe lies along the northern margin of this sequence. According to OGS Map No. 2435 , maior lithologies within the metavalcanic rocl sequence include intermediate tuffe arid tuff-brecciass mafic flows arid tuffs of basaltic-andesitic composition and porphyritic felsic rocks of rlyolitic-dacitic composition. Intercalated metasedimentary roclss consisting mainly of tuffaceous wackes and siltstones are also present within the sequence. A thick sequence of pyrite-pyrrtiotite-graphite bearing. volcanoclastic, micaceous metasediments extends across the central portion of the northeastern half of the property. This horizong which host large amounts of iron sulphide but relatively lou tase metal tenor, has been the object of most exploration programmes on the T-H property over the years.

Middle Frecambrian metasedimentary outliers, of the Huronian Supergroup, consisting of Gowganda Formation sandstones, wackes and conglomerates are present along the northern flant: of the property. An extensive Nipissing diabase intrusion is present within the northwestern portion of the claim block. Late mafic intrusives (metagabbro dykes) are relatively abundant throughout the property. The Fannerman Creet and Fenny Creek faults trend across the southeastern and northwestern portions of the property respectively.

5. TRENCHING FROGRAMME

A detailed compilation of past exploration data (geological. qeophysical and geochemical) indicates that the felsje-mafic metavolcanic rocl: sequence that trends through the northern portion of the \mathbf{T}-H property is stratagraphically equivalent to the sequence hosting the Geneva Lake and Stralal base metal deposits. The horizon is further enhanced on the $T-H$ property by coincident qeophysical anomalies (magnetic. electromagnetic and induced polarization) with geochemical anomalies from soils and lithogeochemical sampling. Fast geological mapping and lithogeochemical sampling programmes have been restricted due to extensive glacial drift cover in the perspective area. The implementation of a trenching programme was deem to be the most cost effective way to further evaluate this potential base metal bearing horizon.

During the 1993 field season a programme of mechanical trenching, trench preparation (subcrop washing): geological mapfing and lithogeochemical sampling was conducted alonq this horizon within the northern portion of the 1 -H property (claims S.973570.5.974048). The worl: was conducted under supervision of Yves Clement, a Sudbury-based geological contractor, during June and July, 1993.

The initial phase involved 78 hours of mechanical trenching. The trenching was completed by Mainville Lumber of Chelmsford utilizing a John Deer 440 stidder with a mounted back:hoe. A total of approximately 730 linear meters of trenching/stripping was completed along the potential base metal bearing felsic horizon. Five (5) sections (grid lines) spanning over a 600 meter strite length uere
trenched across the prospective horizor. Sections were positioned to expose lithological contacts, lineamentsistrurtural features and areas encompassing geophysjcal or georhemical anomalies (figure 5). Due to time and funding constraints, the southeast trench of section $\mathbf{3}+00 \mathrm{~d}$ and line $5+00 W$ trenching remain unwashed and unmapped. The property owners plan to complete the trench mapping during the coming field season.

The exposed subcrops were subiected to power washing in preparation for geological mapping and lithogeochemical sampling. Upon establishment of spray painted base lines the trenches were mapped at a scale of $1: 100$. Fepresentative lithogeochemical sampling was conducted in combination with the mapping. The results of the mapping/sampling portions of the programme will be discussed in the remainder of this report.

5.2a Trenching Area Geoloqy (Litholoqies and Field Relationships):

quartz/feldspar mixture and qenerally contains a maximum of $+/-5 \%$ fine grained mafics (chlorite + biotite). The rock is relatively homogeneous in appearance with local increases and decreases in feldspar crystal percentage being the only differentiating characteristic. The unit is massive in character with no apparent signs of stratification being observed during the mapping programme. Flattened, rounded to subanqular: breccia-size (5-20 centimeters), monolithic felsic fragmente comprise $1-5 \%$ locally to 15% of the rock mass. Fragments are strongly vesiculated/puniceous in texture and unsorted in character. Fare, lensoid shaped, quartz amygdules up to 3.0 millimetes in length were observed in a few localities.

Due to the following criterias the felsic rocls dominating the trenching area are tentatively interpreted to constitute a pyroclastic flow(s): minimal internal stratifications presence of relatively rounded, strongly vesiculated/puniceous fragments and the unsorted nature of these framents. This interpretation is tentative however and based on limited 1 ateral exposure provide by relatively narrow. 1-3 meter wide. trenches.

The area in question is characterized by a moderate-strong, northeasterly striking (050-070 degree), moderately steeply (60-80 degree) southeasterly dipping, penetrative foliation. The foliation is defined by parallel orientation of chlorite, biotite and sericite along foliation planes as well as the flatened nature of framents. Felatively extensive expanses of the trenched sections exhibit moderate-strong deformation (shearing). Sheared feldspar phyric felsic material typically exhibits weat-moderate, locally strong. foliation rontrolled silica, sericite, chlorite $4 /-$ biotite. The
felsic horizon is sulphide poor with sulphide mineralization typigally consisting of nil-rare, locally trace, finely disseminated and foliation controlled pyrite.

Mafic intrusive (qabtroic) bodies are prevalent within the trenched area. These rocks fall within two (z) main categories: Early (pre-tectonic) Mafic Intrusive rocks and Late (post-tectonic) Mafic Intrusive rocks. Early mafic (metagabbro) sills/dykes are by far the most common of the two intrusive types. The metaqabbro bodies are characterined by moderate-strong deformation and metamorphisms indicative of their pre-tectonic nature in respect to Early Frecambrian deformation activities. The early metagabbros are fine-medium grained, subequigranular to locally feldspar subporphyritics moderately to strongly foliated rocks which are a relatively homogenous mixture of amphibole (uralite?) and plagioclase? feldspar. These metagabbras are typically moderately chloritized and exhitit weal:-strong fracture controlled quartz and epidote which occur as fine fracture fills and pods. The unit also shows a very deep weathering. The early metaqabbros occur in northeasterly trending, steef southeasterly dipping sills with their orientation being conformable with the northeasterly trend of the metavolranic rock sequence. The sills range in width from 1.0 centimeter to 5.0 meters but average $10-30$ centimeters in width.

Late (post-tectonic) mafic, metagabbro bodies are essentially undeformed and transert earlier formed tectonic features exhibited in older lithologies. Late metagabbros tend to occur as erratically oriented dyies ranging in width from 10.0 centimeters to 15.0 meters. These dyres average between 30 centimeters and 2.0 meters in width. A
fine grained. Hipissing Diabase dyte, in excess of 30 meters in width. occurs at the southern extremity of the Litoow trench section. Fare-trace, locally 2% pyrite is present within, along andior nroximate to all mafic intrusive bodies.

The felsic-mafic metavolcanic rock contart, located along the northern flank of the trenched area, was not trenched during the 1793 programme due to it's location along a steep sided/swampy ravine (fault?). Similarly, the southern felsic-mafic contact was not exposed due to heavy glacial drift cover.

5.2b Structure:

The dominant tectonic feature of the trenched area is a moderate to strong penetrative foliation/cleavage. The northeasterly striaing (050-060 degree) moderate-steeply dipping (60-80 degrees) foliation is defined by hairline wafers of secondary minerals such as sericite, chlorite and biotite. Although not observed at many loralities within the trenches, flattened and parallel breccia size lithic frapments also define the foliation. The foliation appears to be subconcordant to the metavolcanic rock sequences primary stratification. Extensive zones of stronger deformationstiearing occur within the trenched sections. Shearing in combjnation with alteration is responsible for the formation of pseudo-fragments within the felsic metavolcanic rocks. These fragments result from the truncation of the rock by intersecting cleavage planes, thus forming lenses of isolated material. Foliation controlled quartz, sericite, chlorite bands and stringer accentuate the process by further isolating the truncated fragments from the main rock mass.

Minor faults and joints are numerous throughout the area. Most faults and ioints have steef to vertical difs and relatively erratic orientations, although the principal directions are north-east and north north-westerly. Minor dextral and sinistral displacements of 2-20 centimeters were observed along quartz stringers and narrow mific sills/ dyles. A strong east north-easterly (o70 deqrees) trending. topographic lineament interpreted as a faultshear occurs along the northern flank of the trenched area. A narrow breccia zone was observed along the edge of the ravine at the northern extremity of trench \#0-01.

5.2c Alteration:

The type and degree of alteration within the trenched area appears to be dependant on lithologys structural features and proximity to intrusive bodies. Typically the felsic volcanic rocks exhibit very weal to weat foliation and fracture controlled sericite and chlorite. Weak-moderate, locally strong, foliation controlled sericite and chlorite characterize zones of deformation and shearing. In addition to sericite and chlorite; sheared felsic rocks commonly exhibit weat: locally moderate foliation controlled silica and very weak to wear bintite enrichment. Silicification generally consists of very thin ($0.5-2.0$ millimeter) foliation concordant bands and lenses. Weat-moderate patchy, light pint to cream bleaching occurs locally within the felsic volcanic rocks. This bleaching may be indicative of feldspathization.

The early mafic intrusives typically extibit moderates pervasive chloritization of mafic minfrals and weak to moderate satussuritization
of the feldspars. weak. locally moderate-strongs fine fracture controlled quartz, epidote and chlorite crmmonly occur withing along andor proximate to mafir intrusive bodies. Early mafic intrusives also exhibit moderately to strongly developed alteration ribbing. This feature is the result of differential weathering of quartz-epidote-chlorite fracture fillings.

5.2d Mineralization and Lithogeochemistry:

Sulphide mineralization is relatively restricted in terms oi occurrence and abundance within the trenched area. Sulphide mineralization consists, for the most part, of rare-trace, locally 2% finely disseminated and fracture controlled pyrite. These sulphides occur within and/or proximate to mafic intrusive bodies. Felsic metavolcanic rocks are essentially sulphide barren with only rare, finely, disseminated pyrite observed in a few localities.

A total of 22 lithogeochenical samples were collected during the 1993 trenching programme. Samples were collected in the field on basis of sulphide mineralizationg veinings shearing and/or alteration. Fepresentative composite chip samples were collected wherever possible. Of the 22 roct samples, 17 consisted of felsic metavolranic rock, four (4) of mafic intrusive rock and one (1) of quartz veining. Samples were analyzed by XFAY Laboratories Limited of Don Mills: Ontario. Analytical procedure utilized a multi-acid digestion followed by a 32 element induced current plasma (ICF) analysis. Gold
 atsorption (A.A.\} finish. Sample descriptions are provided in Appendix 1 and analytical result are presented in Appendix 2.

Feflecting the sulphide foor nature of the felsic rocks within the trenched area. the feldspar phyric felsic volcanic samplos failed to return any anomalous base metal values. Mafic intrusive samples yielded a few weally anomalous (80-220 ppm) base metal values for zinc, copper and nickel. Kard (1981) obtained similar base metal values from the Genny area mafic intrusives. As anticipated all samples returned gold values below the detection limit of 1 frb.

5.3 Section 1+00E Trenching:

Trenching on section (line) $1+00 E$ targeted the mafic-felsic rock contact, a VLF-EM conductor and an anomalous soil geochemistry value of 341 ppm zific. Unfortunately the contact lies within an alder sump while the area over the oeophysical and oeochemical anomalies coincides with a plain of extersive alacial drift (sand). A total of seven(7) ter, trenches/pits were excavated along the section but all trenches failed to reach bedrack: (figure 6).

5.4 Section 0+00 Trenching:

Section $0+00$ tarqeted coincidental ULF-EM and induced polarization anomalies lying along the northern fringe of the prospective felsic metavolcanic horizon. The area also yielded an anomalous lithogeochemical zinc value of 3180 ppm during a previous programme. Section $0+00$ consists of two(2) trenches spanning approximately 175 meters, from $4+80 N$ to $5+95 \mathrm{~N}$.

Trenched section $0+00$ is dominated lithologically by feldspar Niyric felsic volcanic roct:s. The unit typically consists of an aphanitic, felsic groundmass with trace-3\%, locally 15% relatively

FIGURE 6

T-H PROPERTY

DECEMBER 1993
equant, greyish-white feldspar grains/crystals. Fare to locally 1% equant quartz grains are alsn present. The felsic horizon is characterized by a moderate-strong, northeasterly striting. southeasterly dipping, penetrative foliation. The southern third of trench Ho-01 exhibits a moderate-strongly developed shearing. Local horizons contain rare-10\%, flattened, breccia sized (5-15 ceritimeter). vesiculated/punaceous fragments. The fragments tend to be monolithic and felsic in character and occur in otherwise homogenous. feldspar phoric material. Early (pre-tectenic) mafic intrusives, containing moderately -strongly deformed and altered metagabbros are prevalent within the trenched section. Metagathros tend to occur as narrow sills ranging in width from 1.0 centimeters to 1.0 meters with aver age widths of between $20-30$ centimeters. Moderately to strongly foliated, biotite phenocryst bearing. lamprophyre dykes also occur within the section.

Alteration within the feldspar phyric felsic volcanic rock consists, for the most part, of meat foliation controlled sericite, chlorite and silica. Zones of stronger deformation, specifically along the southern third of trench Ho-01, typically exhibits weatmoderate, locally strong, shear controlled sericite, silica and chlorite. local zones of wear-moderate, semi-pervasive, bleaching (silicifiration? are also characteristic of areas with stronger deformation. The northern extremity (10 meters) of trench $10-02$ exhibits weat-moderate, locally strong, semi-pervasive silicification with the primary feldspar phyric texture being obliterated.

The feldspar phyric felsic unit is relatively sulphide barren with rare, locally trace, finely disseminated pyrite encountered.

Abstract

Fiare-traces locally 2% finely disseminated pyrite is typically present withing along andior proximate to mafic intrusive bodies. The induced polarization anomaly, lying within the southern portion of trench $\# 0-01$, appears to reflect such metagathro related mineralization. Trace to 1% pyrite bearing metagatbro sills and to a lesser degree lamprophyre dytes comprise approximately 20% of this moderately-strongly sheared zone. The VLF-EM anomaly lying approximately at $5+50 \mathrm{~N}$ appears to reflect the moderately sheared. fractured and blocky nature of the rocks.

5.5 Section 1+00W Trenching:

Section $1+00 \%$ approximately 175 meters in length. exposed practically the entire width of the prospective felsic horizon. As in the case of section $0+00$, the northern felsic-mafic metavolcanic rect contact lies within a steep sided, swampy ravine (fault?) while the southern contact falls within an alder swamp. Unfortunately, due to time/funding constraints the northern half of section 1 toow french (\$1-01) bas not mapped.

The southern half of section $1+00 \mathrm{~W}$ (trench $\# 1 w-0$) , like the entire trench area is dominated lithologically by feldspar phyric felsic volcanic rocks. The trench is characterized by moderate-strong deformation (shearing) alona more or less it's entire 115 meter length. Deformation corisists of a strong. northeasterly etriking (050-060 degree), southeasterly dipping (70-75 degree), penetrative fabric (shearing/cleavage). Shearing commonly results in the formation of pseudo-fragments within the feldspar phyric felsic rocks. Deformation zones typically extibit weat-moderate, locally strong,

Abstract

foliation controlled silica and sericite with weal: locally moderates chlorite and biotite. weal-moderates semi-pervasive silicification is lorally present within the trench. fatchy pintish to rrean. bleaching (feldspattizatior?) is commonly ascociateds at least spatially with zones of silicification. Trace orangy-broun garmets were locally observed within sheared felsic rocks. The feldspar phyric felsic volcanic rocts are relatively sulphide barreng with nil-rares locally traces fine foliation controlled pyrite observed during mapping.

Early mafic intrusives consisting of moderately-strongly deformed/ altered metagabhros are prevalent within trench $H 1 \notin-0 \mathcal{Z}$. These rocks typically occur as narrow (10 centimeter to 5 meter) wide sills that strife northeasterly and dif steprly to the south. Averaqe sill widths are between $50-100$ centimeters. The rortheasterly trend of these intrusive bodies is roughly concordant to the general attitude of the metavolcanic rock sequence. Late mafic intrusive dykes are not as common within the trench but tend to be more extensiof in natire. A fine grained diabase dykes in excess of 30 meters in widthg doninates the southern extremity of trench $\# 14-02$. Fare-trace, locally to 2% pyrite is found in association to these mafic intrusive bodies. Sample $\#$ 2803, collected from a stronqly foliated to schistose. early metagabbro unit returned very wealily elevated values of 72 ppm z inc and 132 ppm copper.

5.6 Section 3+00W Trenching:

Sectior $3+00 \mathrm{~b}$ trenching was positioned to investigate an anomalous value of 1170 pom zinc from a lithogeochemical sample
ottained by Noranda in 1985. The trench was also utilized to expose the southern portion of the felsic-mafic metavolcanic contact. Approximately 180 linear meters of trenching was conducted along section $3+000$. Unfortunatelys due to time and funding constraints the southern trenches ($\# 36-04$ and $\# 3 W-05$) were not washed and mapped.

The northern portion of the $3+004$ trenched section consisting of trenches $H 3 W-01, H 3 W-02$ and $H 3 W-03$ is dominated lithologically by feldspar phuric felsic volcanic rocks. Rare to locally 10%, flatteried, breccia-size (5-15 centimeters), vesiculated/puficeous, monolithic felsic fragments occur within the southern portion of trench \#Sb-01. Fragments appear unsorted in character and do not appear to form a distinct horizon. Felsic volcanic rocks are characterized ty a moderate-strong, northeasterly trending (055-065 degrees): southerly dipping (60-75 degrees), penetrative foliation with weal. locally moderate, faliation controlled sericite and chlorite. Narrow zones of stronger deformation (shearing) with associated weak-moderate, locally strong, silica, sericite and chlorite alteration are common within the trench. Trace-2\%, locally to 10\%s reddish-browns equantly shaped, garnets occur in a variety of locations within trench $H 3 W-01$. Garnets average $0.5-4$ millimeters in diamter.

Sampling of the feldspar phyric felsic volcanic unit failed to return any anonalous base metal values, thus reflecting the relatively sulphide barren nature of the felsic unit within the northern portion of section $3+006$. As is the case throughout the trenched area, early northeasterly strifing metagabbro sills are prevalent within the trenches along this line.

6. CONCLUSIONS AND RECOMMENDATIONS

In summary a recent compilation of exploration wort condurted over the years appears to indicate that the felsic-mafic metarolcanic rock sequevce trending across the northern portion of the $T-H$ property is stratigraphically equivalent to a similar sequence that fosts the Geneva Lat:e and Stralat base metal deposits. Coincidental magnetic. electromagnetic and induced polarization anomalies with corresponding soil and lithogeochemical values are presont along this potential mineral bearing horizon within the northern portion of the property.

Sampling of the prospective horizon during the 1993 trenching programme failed to reproduce anomalous base metal valucs (250-3180ppn) zinc obtained along the horizon during previous exploration ventures. However only 22 samples were collected along approximately 475 meters of mapped trenches which is by no means exhaustive for a lithogeochemical programme. In additiong the trenched sections provided good vertical representation but poor lateral exposure of the horizon with trench widths of $1-3$ meters. The 1993 trenching programme did however expose moderate- strong deformation (shearing) with associated silica, sericite, chlorite and biotite alteration along the horizon in question. The trenches also frovide qeolgaical information which allowed the felsic volcanic rocks to be tentatively interpreted as a pyroclastic flow unit. If this evidence is true then the area would be located in a relatively proxifial environment.

Fased on the results of wort to date and the relatiuely unexplored nature of the northern portion of the T-H property and of
the potential tase metal horizor in generals ar on poing exploration progranme is recommended. Io continue the evaluation of the T - l property and the area in general the following recommendations should be implemented:

1) As already planned by the property co-owners the remaining listoow and 5 foow trenches should be washed and subiected to detailed mapping.
2) Further detailed mapfing to entance and clarify the geological environment established so far.
3) The implementation of a detailed lithogeochemistry prog̣ramme utilizing classical whole rock analyses. A study of the major oxides and trace elements may establish alteration patterns within the prospective horizon. In additiong a RiEE (rare earth elements) study should be conducted in order to determine if the felsic volcanic rocks in question correspond to the so called FIII group of felsic volcanic rocks with negative Ell anomalies.
4) Conclusive to recommendation $H 3$, the established geochemical alteration signature of the prospective horizon should be compared to alteration sigriatures associated with the Geneva Late and Stralat: base metal deposits.

CERTIFICATE OF QUALIFICATION

I, Yes Pierre Clement do hereby certify:

1. that I am a geological technologist and reside at $\# 209,227$ tore Dame Avenue, Sudbury, Ontario, FBC-5K4,
2. that I graduated from Cambrian College in 1986 with a Geological Technologist Diploma.
3. that I have partially fulfilled the requirements (missing one credit) for a Bachelor of Applied Sciences in Geology at Late Superior State University.
4. that I have practised my profession continuously for the past seven seasons.
5. that my report on the $1-H$ Property, Monerieff Township, Sudbury Mining Division, Ontario, is based on my personal knowledge of the area, my tort on the property and a review of published and unpublished information on the property and surrounding area.
6. that I have no interest, whether direct or indirect, in the $T-H$ Property.

Yves Fierce Clement

Geological Technologist
January, 1994

References

Card. K.D.
1778: Geology of the Sudbury-Maritoulin Area, Districts of

Sudtury and Manitoulin: Ontario Geoloqical Survey fipport 166. 238p. Accomparied by Map 2360 and 4 charte.

Card. K.D.and Innes. D.G.
1981: Geology of the Eenny frea, District of Sudtury; Ontario Geological Survey Fieport 206, 117p. Accompanied by Maps 2434 and 2435, scales 1:31,680 and 4 charts.

Ontario Geolonical Survey

1985: Moncrieff Township. District of Sudhurys Onteric Geological Survey. Geological Data Inventory Folio 293. compiled by the staff of the Fesident Geolagist's Offices Sudbury, 20p. and 2 maps.

```
SAMFLE % 2BO1
TRENCH % 10-02
NORTHING: 4+55N
EASTING: 1+05W
SAMFLE TYFE: Composite chip sample.
DESCRIPTION: Sheared feldspar phyric, felsic volcaric rock exhibiting
    moderate foliation controlled silica and eericite
alteration. No visible sulphides but rock contains rare-trace,light
brown spect:s, (sphalerite?).
SAMPLE H 28C2
TRENCH 1W-02
NORTHING: 4+59W
EASTING: 1+05w
SAMPLE TYFE: Composite chip sample.
DESCRIPTION: Strongly foliated/sheared, felspar phyric felsic
    volcanic in contact with a narrow metagabbro (EHI) body.
Felsic volcanic contains 5% fine: drusy quartz (epidote! fracture
fills. Fiare, very locally trace. finely disseminated pyrite within
felsic material and minor bromnish. resinous: staining (sphalerite)
along quartz fracture fille.
SAMPLE # 2803
TRENCH # 1W-02
NORTHING: 4+68N
EASTING: 1+0JW
SAMPLE TYPE: Composite chip sample.
DESCRIFTION: Strongly foliated to schistose: moderately chloritic
    metagabbro (EMI) containing rare-trace, locally 1%:
foliation controlled pyrite.
SAMPLE # 2804
TRENCH H 0-02
NORTHING: 4+96N
EASTING: 0+08W
SAMPLE TYPE: Composite chip sample.
DESCRIFTION: Strongly foliated, moderately chloritic, metagabbro (EMI)
containing minor disseminated and foliation controlled
pyrite.
SAMPLE M 28OS
TRENCH # 0-01
NORTHING: 5+93N
EASTING: 0+2IN
SAMFLE TYPE: Grab sample.
DESCRIPTION: Weafly-moderately foliated, feldspar phyric felsic
    volcanic exhititing weat: foliation controlled chlorite.
Nilg locally rare. finely diseeminated pyrite present. Fare foliation
controlled, brownish, resinous specks (sphalerite?).
```

```
SAMPLE H 2806
TRENCH # 0-01
NORTHIHG: 5+87H
EASTING: 0+ぞW
SAMPLE TYFE: Composite chip sample.
DESCRIPTION: Moderately foliated, feldspar subporptiyritic metagatibro
                    (EMI) exhibiting moderate fracture controlled epidote,
chlorite and calcite. Fiare-trace, locally 1-2%, very finely
disseminated pyrite present within the metagabbro.
SAMPLE # 2807
TRENCH # 0-01
HORTHING: 5+75N
EASTING: 0+20W
SAMFLE TYPE: Composite chip sample.
DESCRIPTION: Moderately foliated, feldspar phyric felsic volcanic
    exhibiting weat: foliation controlled chlorite and biotite.
Minor fine quartz-epidote fracture fills. Fare, locally trace, finely
disseminated pyrite and rare-nil chalcopyrite.
SAMFLE # 2808
TRENCH 3l!-01
NORTHING: 5+15N
EASTING: 2+98w
SAMFLE TYPE: Composite chip sample.
DESCRIPTION: Feldspar phyric felsic volcanic containing trace-2%.
    locally 5%, reddish-brown, round (equant) garnets? (Iron
stained quartz?).
SAMFLE 2809
TRENCH SW-O1
NORTHING: 5+11H
EASTING: }3+01
SAMFLE TYFE: Composite chip sample.
DESCRIFTION: Moderately foliated feldspar phyric felsic volcanic
    exhibiting weat: foliation controlled sericite;chlorite.
Numerous fine foliation concordant and cross-cutting quartz (iron
carbonate?) stringers. Fare, locally trace, fine pyrite within and/or
proximate to the stringers.
SAMFLE 2810
TRENCH SW-02
NORTHING: 5+06N
EASTING: \tilde{z}+94W
SAMPLE TYPE: Composite chip sample.
DESCRIPTION: Feldspar phyric felsic volcanic exhititing weal spotty
    frarture controlled chlorite and hematite. No visible
sulphides but rock very weally rusted on weathered surface. Surface
also pitted in character.
```

```
SAMPLE 2G11
TRENCH # 0-01
NORTHING: 5+61N
EASTING: 0+254
SAMPLE TYFE: Composite chip sample.
DESCRIPTION: Strongly sheared/schistose metagabtiro (EMI) containing
                                    10-20% foliation concordant quartz-calcite stringers. No
sulphides noted.
SAMPLE 2812
TRENCH 0-02
NORTHING: 5+07N
EASTING: 0+02W
SAMFLE TYFE: Composite chip sample.
DESCRIPTION: Outcrop-large boulder? Chloritic metagabbro with
    irreqular drusy quartz (chlorite/epidote) veining.
Trace, locally 2-3%, pyrite within and/or proximate to veining.
SAMFLE 2813
TRENCH 日 0-02
NORTHING: 5+09H
EASTING: 0+056
SAMFLE TYPE: Composite chip sample.
DESCRIPTION: Hoderate-strong pervasively silicified feldspar phyric
    felsic volcanic. Rocl: also exhibits moderate fracture
controlled chlorite and calcite. Sample contains rare finely
disseminated pyrite.
SAMPLE 日 2814
TRENCH # 3W-01
NORTHING: 5+46N
EASTING: 2+99W
SAMPLE TYFE: Composite chip sample.
DESCRIFTION: Strongly foliated/sheared feldspar phyric felsic
    volcanic containing 2-3% reddish-broun garnets? Fock:
contains rare-nil, locally trace, very finely disseminated pyrite.
SAMPLE # 2815
TRENCH # 0-02
NORTHING: 5+02H
EASTING: 0+06G
SAMFLE TYPE: Composite chip sample.
DESCRIPTION: Weat-moderate semi-pervasively silicified, feldspar
                    phyric felcic volcanic exhibiting moderate patchy pinfish
bleaching (feldspathization?). Kock: contains very rare. finely
disseminated pyrite.
```

```
SAMPLE # 2816
TRENCH 年 0-01
NORTHING: 5+20H
EASTING: 0+2Id
SAMPLE TYFE: Composite chif samfle.
DESCRIPTION: Strongly foliated/sheared feldepar phyric felsic
    volcanir exhibiting moderate foliation controlled
sericite. Unit appears to contain very rare, very fine foliation
controlled pyrite.
SAMPLE N 2817
TRENCH 0-01
NORTHING: 5+2OH
EASTING: 0+21H
SAMFLE TYPE: Composite chip sample.
DESCRIPTION: Strengly foliated/sheared feldspar phyric felsic
    volcanic exhibiting weal moderate foliation controlled
silica, sericite and chlorite. Few hairline frarture fillings of
hematite p'esent. No sulphide mineralization observed but locally
very weally rusted.
SAMPLE # 2818
TRENCH 0-01
NORTHING: 5+30N
EASTING: 0+20W
SAMFLE TYFE: Composite chip sample.
DESCRIFTION: Strongly foliated feldspar phyric felsic volcanic
    exhibiting moderate semi-pervasive bleaching (silica and
sericite). Rock cortains t/- 2% fine fractures which exhibit
orangy-red alteration (feldspathization?). Fiare, locally trare, very
fine grained pyrite in fracture fills.
SAMFLE 2817
TRENCH ( 0-01
NORTHING: 5+37H
EASTING: \(0+2 \mathrm{C}\) U
SAMFLE TYPE: 30 centimeter chif sample.
DESCRIPTION: Chip sample along contact between feldspar phyric felsic volcanic and dioritic dyle. Sample consists of mostly weatly oxidized (rusty) felsic volcanic proximate to the contart. No visible sulphides.
SAMPLE 2920
TRENCH 0-01
NORTHING: \(5+39 \mathrm{~N}\)
EASTING: \(0+21 \mathrm{w}\)
SAMPLE TYPE: Grab sample.
DESCRIFTION: Sheared feldspar phyric felsic volcanic material which exhibits moderate to strong foliation controlled chlorite and sericite. Rock. contains rare-trace, locally trace-1\%, finely disseminated pyrite.
```

```
SAMPLE 2821
TRENCH (0-01
NDRTHING: 5+43N
EASTING: 0+23H
SAMPLE TYPE: Composite chjp sample.
DESCRIPTION: strengly deformed, sheared, feldspar phyric felsic
volcanic exhibiting moderate bleaching (silica?-
sericite?}. Minor iron oxides along foliation flanes. No visible
sulphides noted.
SAMPLE # 2822
TRENCH 宣 0-01
NORTHING: 5+70N
EASTING: 0+23W
SAMPLE TYPE: Composite chip sample.
DESCRIPTION: Sheared feldspar phyric felsic volcanic ertibiting weal:-
    moderate foliation controlled silica. Sample contains
very rare filmely disseminated fyrite.
```

APFENDIX 2

ANALYTICAL RESULIS

A DIVISION OF SGS CANADA INC.
1885 LESLIE STREET • DOM HILLS, ONTARIO M3B 3J4 • CANADA
TEL: (416)445-5755 TELEX: 06-986947 FAX: (416)445-4152

CERTIIFICATE OF ANATYSIS
 REPORT 24198

TO: YVES CLEMENT
227 NOTRE DAME
\#209
SUDBURY, ONTARIO P3C 5K4

CUSTOMER NO. 2228
DATE SUBMITTED
30-Aug-93

REF. FILE 15951-A6

22 ROCKS Proj. T-H PROPERTY

	HE HMOD	Detection limit		HETHOD	DEIECTION LIMIt	
AU PPB	FADCP	1.	2N PPM	ICP	. 5	
BE PPM	ICP	. 5	AS PPM	ICP	3.	
MA \%	$1{ }^{\text {IPP }}$. 01	SR PPM	ICP	. 5	
HG \%	ICP	. 01	Y PPM	ICP	. 1	
AL X	1 CP	. 01	2R PPM	ICP	. 5	
$p x$	ICP	. 01	MO PPM	ICP	1.	
K \%	ICP	. 01	AG PPA	1 CP	. 1	
CA $\%$	ICP	. 01	CD PPM	ICP	1.	
SC PPM	ICP	. 5	SN PPM	ICP	10.	
$\\| \%$	ICP	. 01	SB PPM	ICP	5.	
\checkmark PPN	ICP	2.	BA PPM	ICP	1.	
CR PPM	ICP	1.	LA PPM	ICP	. 5	
ma PPM	ICP	2.	1A PPM	ICP	1.	
fe \%	ICP	. 01	U PPM	1CP	10.	
CO PPM	ICP	1.	PB PPM	ICP	2.	
NI PPM	ICP	1.	81 PPM	ICP	3.	

SAmple	AU PPB	BE PPM	MA $\%$	MG \boldsymbol{x}	AL \%	P X	K \%	CA \%	SC PPM
2801	-1	$<.5$. 09	. 35	. 58	. 02	. 05	. 13	3.0
2802	<1	<. 5	. 09	. 44	. 60	. 01	. 04	. 26	2.6
2803	<1	1.1	. 05	1.97	2.72	. 09	. 87	. 72	3.2
2804	<1	. 8	. 07	2.12	2.46	. 12	. 44	1.10	2.9
2805	<1	<. 5	. 08	. 24	. 66	. 03	. 18	. 32	1.2
2806	<1	. 9	. 08	1.49	2.19	. 08	. 70	. 49	3.3
2807	<1	$<.5$. 08	. 38	. 71	. 03	. 17	. 30	2.0
2808	<1	$<.5$. 08	. 29	. 63	. 02	. 16	. 18	1.8
2809	<1	$<.5$. 05	. 09	. 34	. 01	. 16	. 15	. 8
2810	-1	$<.5$. 08	. 28	. 55	. 02	. 12	. 21	1.8
2811	<1	1.4	. 02	2.37	2.36	. 13	. 08	. 85	6.4
2812	<1	$<.5$. 05	. 71	1.12	. 04	. 49	. 33	2.3
2813	8	8.5	. 08	. 58	. 68	<. 01	. 11	. 22	1.7
2814	<1	$<.5$. 05	. 30	. 50	<. 01	. 08	. 10	1.3
2815	<1	c. 5	. 05	. 49	. 80	. 03	. 17	. 22	2.0
2816	<1	$<.5$. 05	. 68	. 87	. 02	. 21	. 09	. 8
2817	<1	$<.5$. 06	. 60	. 65	<. 01	. 21	. 05	. 8
2818	<1	<. 5	. 05	. 40	. 59	<. 01	. 13	. 06	1.0
2819	<1	. 9	. 06	2.55	2.29	. 07	. 16	. 40	4.7
2820	<1	1.0	. 03	3.05	2.74	. 09	. 23	. 51	5.2
2821	<1	$<.5$. 04	. 31	. 57	<. 01	. 25	. 06	. 5
2822	<1	$<.5$. 04	. 35	. 72	. 03	. 26	. 19	. 9
D 2801	-.	$<.5$. 08	. 34	. 56	. 01	. 05	. 13	2.9
D 2813	-.	$<.5$. 06	. 59	. 70	<. 01	. 11	. 23	1.8

D - OUALITY CONTROL DUPLICATE

SAMPLE	(CR PPA	HN PPM	fe 8	CO PPM	WI PPM	CU PPH
2801	. 08	8	152	226	1.20	4	5	9.1
2802	. 08	11	163	325	1.12	5	5	12.0
2803	. 20	71	145	1370	4.94	24	37	72.7
2804	. 15	70	184	756	4.20	27	82	50.5
2805	. 06	11	115	229	1.10	4	6	8.7
2806	. 17	102	66	680	4.50	19	24	17.2
2807	. 03	18	110	236	1.42	6	6	27.6
2808	. 17	6	98	271	. 93	2	2	10.8
2809	. 04	3	122	179	. 44	2	3	4.1
2810	. 07	5	116	274	. 92	3	3	23.6
2811	. 08	74	541	910	4.10	22	87	8.4
2812	. 14	52	212	411	2.29	11	11	32.1
2813	. 06	5	118	267	. 91	3	4	12.2
2814	. 05	3	69	365	. 81	2	1	4.1
2815	. 08	14	72	293	1.21	3	5	3.8
2816	. 03	5	61	250	1.11	4	6	3.1
2817	. 03	4	60	168	. 75	4	2	4.3
2818	. 03	6	70	166	. 83	3	4	4.8
2819	. 11	74	439	697	3.29	23	119	43.0
2820	. 12	78	332	795	3.90	32	109	88.9
2821	. 02	3	104	142	. 58	2	4	5.6
2822	. 05	8	66	158	. 93	4	4	6.2
D 2801	. 08	8	147	260	1.18	3	3	8.1
D 2813	. 07	5	120	272	. 92	3	4	12.5

SAMPLE	2M PPM	AS PPM	SR PPM	Y PPM	2R PPM	MO PPM	AG PPM	CD PPM
2801	28.3	<3	2.2	7.0	13.4	<1	. 2	<1
2802	47.3	<3	7.7	8.0	11.3	-1	<. 1	<1
2803	132	<3	19.7	8.6	3.3	2	. 5	<1
2804	112	<3	18.6	6.9	2.2	<1	$<.1$	<1
2805	75.1	<3	8.5	7.6	6.7	<1	$<.1$	<1
2806	112	<3	7.8	6.2	4.8	<1	. 3	1
2807	28.2	-3	16.3	7.7	10.4	2	$<.1$	<1
2808	46.1	3	10.2	8.4	14.4	81	$<.1$	<
2809	24.6	<3	8.8	5.9	10.4	<1	$<.1$	<1
2810	44.2	<3	8.0	8.3	10.6	<1	<. 1	<1
2811	131	39	10.8	13.0	5.7	-1	$<.1$	<1
2812	51.1	<3	13.5	4.2	3.4	2	. 5	<1
2813	30.3	<3	7.7	8.0	19.2	-1	. 5	<1
2814	88.2	<3	2.2	5.5	15.1	<1	. 7	<1
2815	44.9	<3	0.2	6.9	11.5	<1	$<.1$	<1
2816	37.1	<3	1.5	6.6	27.0	1	<. 1	<1
2817	41.6	<3	1.3	6.7	36.2	<1	. 3	<1
2818	28.8	<3	2.7	5.1	19.2	2	<. 1	<1
2819	164	9	6.8	5.7	5.8	<1	. 2	<1
2820	222	<3	10.6	6.6	6.1	<1	. 5	<1
2821	28.3	<3	2.7	8.1	34.4	5	. 5	<1
2822	35.4	<3	5.3	8.1	10.4	<1	$<.1$	<1
D 2801	27.0	<3	2.2	7.0	13.1	<1	$<.1$	<1
D 2813	30.8	<3	8.0	8.2	20.4	<1	. 3	<1

D - OUALITY CONTROL DUPLICATE

SAMPLE	SM PPM	SB PPM	BA PPM	LA PPM	TA PPM	UPPM	PB PPM	BI PPM
2801	<10	<5	12	15.8	<1	<10	4	<3
2802	<10	- 5	11	28.1	2	<10	36	C3
2803	<10	<5	56	19.2	3	<10	3	<3
2806	<10	< 5	39	13.8	<1	<10	<2	4
2805	-10	<	33	27.5	-1	<10	26	5
2806	<10	<5	89	17.6	el	<10	<2	7
2807	<10	< 5	20	30.7	<1	<10	<2	4
2808	<10	<5	38	25.0	4	<10	3	<3
2809	<10	<5	60	18.6	1	<10	4	3
2810	<10	<5	35	28.2	<1	<10	<2	<3
2811	<10	<5	28	15.7	3	<10	8	10
2812	<10	<5	48	8.7	3	<10	6	6
2813	<10	<5	21	30.7	2	<10	<2	<3
2814	<10	<5	20	19.5	3	$\leqslant 10$	8	<3
2815	<10	<5	48	18.3	<1	<10	<2	<3
2816	<10	-5	29	10.6	<1	<10	<2	<3
2817	<10	-5	25	14.0	<1	<10	3	<3
2818	<10	<5	19	15.7	2	<10	<2	<3
2819	<10	<5	18	15.8	<1	<10	4	<3
2820	<10	<5	23	16.1	<1	<10	6	5
2821	<10	<5	20	13.0	3	<10	7	<3
2822	<10	<5	23	32.9	<1	<10	5	<3
D 2801	<10	<5	12	15.6	<1	<10	2	<3
D 2813	<10	< 5	22	30.9	<1	<10	<2	<3

D - QuALITY CONTROL DUPLICAIE

DRAJN BY: HAROLD 1 . TRACANELLi
DECEMBER 21, 1933

Mining Act
Personal information collected on this form is obtained under the authority of the Minim this collection should be directed to the Propprial Manager, Mining Lands, Ministry

Instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining Recorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

Work Performed (Check One Work Group Only)

Total Assessment Work Claimed on the Attached Statement of Costs $\$ \ldots .5232 .00$
Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

(attach a schedule If necessary)
Certification of Beneficial Interest "\$0. . :en 1 on reverse side

Certification of Work Report
I certhy that I have a personal knowledge of the facts set forth in this Work repon, having performed the work or witnessed same during andfor after the completion and annexed report is true.

													U 1 8 s 8 5 F ∞	$\begin{aligned} & \hline n \\ & 1 \\ & s \\ & \infty \\ & w \\ & 0 \\ & n \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 1 \\ & 0 \\ & 0 \\ & w \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 6 \\ & h \end{aligned}$	$\varepsilon S g \varepsilon b b-S$		
													-		-	-		02 0 50 ¢0 0	1

[^1]1. Les crédits doivent être réduits en commençant par le dernịer claim sur la liste.
2.Les crédits dolvent etre réduits egalement entre tous les claims figurant dans le présent rapport.
2. \square 上acréélts dolvent être réduits selon l'ordre donné en ann

Note 1 : Examples d'intóréts bénóncialres : cessions non enreglstrbes, ententes sur des optiono, protocoles d'entente, etc. relaths aux cialms.
and mines
Ministere du
Dtvoloppement du Nord
or-Assessment Credit \qquad el des mines

État des coats aux fins du crédit d'évaluation

Personal information collected on this form is oblained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection shoutd be directed 10 the Provincial Manager, Minings Lands. Ministry of Northern Development and Mines, 4th Floor. 159 Cedar Street. Sudbury. Onlarıo P3E 6A5, telephone (705) 670-7264.
-es'renseignememts personnets contenus dans la présente formule sont ecueilis en vertu de la Lol sur las mines et serviront à tenir à jour un registre des concessions minieres. Adresser loute quesiton sur la collece de ces renseignements au chef provincial des terrains miniers, minıstere du Développement du Nord el des Mines, 159. rue Cedar, 4^{e} elage. Suobury (Ontario) P3E 6A5, telephone (705) 670-7264.

2. Indirect Costs/Coûts indirects

- Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work.
Pour le remboursement des travaux de refhabilitation, les coûts indirects ne sont pas admissibles en tant que travaux d"évaluation.

re instects cole dracu

Note: Le titulaire enregistré sera tenu de verifier les depenses demandees dans le présent élat des coüts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuee, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentes

Filing Discounts

1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
2. Work filed three, four or five years after completion is claimed at 50\% of the above Total Value of Assessment Crodit. See calculations below:

Toral Value of Assessment Credit	
	$\times 0.50=$ Total Assessment Claimed

Certification Verifying Statement of Costs

I hereby certify:

that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the acoompanying Report of Work form.
that to make this certification

Remlses pour depot

1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100% de ta valeur totale susmentionnee du credi d évaluation.
2. Les travaux déposés trois, quatre ou cinq ans après lour achèvement sont remboursés a 50% de la valeur totale du crédit d'évaluation susmentionne. Voir les calculs ci-dessous.

Valour totale du crédit d'évaluation
Evaluation totalo demandée $\times 0.50=$

Attestation de l'état des coots

J'atteste par la présente :
que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'evaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Et qu'à titre de \qquad jo suis autorise
(litulaire enregistre. roprosentami, posto occupt dans la compagnio)
a faire cette attestation.

Norther Devolpprom one After Recording Claim and Mince

Mining Act
ronal Information collected on this form ba obtained under the euthorky of the Mining Act. This information wall be used for correspondence. Questions about collection should be directed le the Provincial Manager. Mining Lands, Mintaty of Northern Development and Mines, Fourth Floor, 150 Ceder Street, bury, Ontario. PBE BA5
tructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining Recorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

York Performed (Check One Work Group Only)

Total Assessment Work Claimed on the Attached Statement of Costs $\$ 7200.00$
Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verity expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

(attach a schedule H necessary)

Certification of Work Report
I certify that I have a personal knowledge of the facts set forth in this Work report, having performed the work or witnessed same during andfor after the completion and annexed report is true.
Wame and Address d Person Cextityino

[^2]
Note 1: Examples of beneflicial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining clalms.

Note 2: If work has been performed on patented or leased land, please complete the following:

								\|
								䢒
						-		\%
					\%			\% ${ }^{\text {\% }}$
					${\underset{\sim}{\omega}}_{\sim}^{\omega} \underset{\sim}{\omega}$	$\sim \sim$	\sim^{\sim}	${ }^{\text {Pive }}$
								\%
\%		!						

Les cródits que vous réclamez dans le présent rapport peuvent étre réduits. Afin de diminuer les conséquences défavorables de telles réductions, veuillez indiquer l'ordre dans tequel vous désirez au'elles soient appliquées à vos claims. Veuillez cocher (2) l'une des options suivantes:

1. Les crédits dolvent Atre réduits en commencant par le derffier claim sur ta liste.
2. \square Les crédits doivent être réduits également entre tous les claims figurant dans le présent rapport.
3. Les credits doivent étre redults seton loordre donné en annitiza.-

Si vous nemaz pas choisi d'option, la première sera appliquee. Xis?
Note
4- ragety
 eux cielms.

Note 2: SI des travaux ont cth exécutes sur un terrain falsant l'opjei de lettres patentes ou d'un ball, veullez rempilr ce quat aft:

Nonthen b in

MinistAre du

Développement du Nord
of des mines

État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing stalus of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Minings Lands. Ministry of Nonthern Development and Mines, 4th Floor, 159 Cedar Street. Sudbury. Ontario P3E 6A5, telephone (705) 670-7264.

1. Direct Costs/Coûts directs

Note: The recorded holder will be required to verity expenditures ciaimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject for assessment work all or part of the assessment work submitted

Fling Discounts

1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
2. Work filed !hree, four or five years after completion is claimed at 50% of the cturs Total Value of Assessment Credit. See calculations telow:

Total Value of Assessment Credit	
	$\times 0.50$
	$=$

Certification Verifying Statement of Costs

I hereby certify:
that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.
that as Harod j. Tracanediu i am authorized

Les renseignements personniofs remt ius dans la présente formule son recueillis en vertu de la Lot sur bes mines ef serviront à fenir à jour un regisire des concessions minieres. Adresser toute quesiton sur la collece de ces renseignements au chet provincial des lerrains miniers, ministère du Développement du Nord el des Mines, 159, rue Cedar. 4^{e} élage. Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

2. Indirect Costs/Coûts indirects

* Note: When claıming Rehabilitation work Indirect costs are not allowable as assessment work.
Pour te remboursement des travaux de réhabilitation, les coutts indirects ne sont pas admissibles en tant que travaux d'évaluation.

Type	Description	Amount Montant	Totals Total global
Transportation Transport	Type		
Food and Lodging Nourture et hebergement			
Mobilizatlon and Demobillzation Mobllisation et démobllisation			

indirect conte)
d'evaluation
Tatides colts dirocts

Note: Le titulaire enregistré sera lenu de vérifier les dépenses demandées dans le présent élat des coüts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Remises pour dépot

1. Les travaux déposés dans les deux ans suivant leur achévement sont remboursés à 100 \% de la valeur totale susmentionnée du crédit d'évaluation.
2. Les travaux déposés trois, quatre ou cinq ans aprés leur achèvement sont remboursés à 50% de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

Valeur torale du crédit d'Évaluation	Evaluation totale demandée
$\times 0,50=$	

Attestation de l'état des coûts

J'atteste par la présente :
que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Et qu'à titre de

fitulaire enregistret. representant, posto occupe dans la compagnio)
à faire cette attestation.

Personal Information collected on this form le obtained under the authority of this Mining Act. This information will be used for correspondence. Quveations about this collection should be directed to the Provincial Manager, Mining Landes inntetry of Northern Development and Mines. Fourth Floor, 159 Cedar Street.

Instructions: - Please type or print and submit in duphCtrit

- Refer to the Mining Act and Regulations torfyuirements of filing assessment work or consult the Mining Recorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

Work Performed (Check One Work Group Only)

Total Assessment Work Claimed on the Attached Statement of Costs $\$ \ldots 100.00$
Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

(attach a schedule II necessary)
Certification of Beneficial interest *See Note No. 1 on reverse side

0241 (00391)

	$\begin{aligned} & 0 \\ & j \\ & j \end{aligned}$	$\left\lvert\, \begin{aligned} & e \\ & 0 \\ & j \\ & j \end{aligned}\right.$	$\left\|\begin{array}{c} 0 \\ 0 \\ \dot{\gamma} \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & j \\ & j \end{aligned}$	$\left\|\begin{array}{l} \hat{\theta} \\ \hat{j} \\ \dot{j} \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & \dot{\theta} \\ & \dot{j} \end{aligned}$	$\begin{gathered} \hat{0} \\ \dot{\theta} \\ i \end{gathered}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{j} \end{aligned}$	$\begin{aligned} & a \\ & 0 \\ & 0 \\ & \gamma \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & j \\ & j \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left.\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} 0 \\ 0 \\ i \\ n \end{array}\right\|$	$\left.\begin{gathered} 0 \\ 0 \\ i \\ i \end{gathered} \right\rvert\,$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	
							:										1 0 i i	

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$												$\begin{aligned} & \text { N } \\ & \text { y } \\ & 0 \\ & 0 \end{aligned}$					
$\begin{aligned} & 0 \\ & 0 \end{aligned}$												$\begin{aligned} & V_{j} \\ & j \\ & j \end{aligned}$	$\begin{aligned} & \sigma_{1} \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & y \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & C_{1}^{1} \\ & C_{0} \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{9}{\frac{1}{3}}{ }^{8} \frac{9}{3} \frac{5}{8} \frac{5}{8}$

[^3] tions suivantes.

1. \square Les crédits doivent être réduits en commençant par le dernier claim sur la liste.
2.Les crédits doivent être réduits également entre tous les daims figurant dans le présent rapport.
2.

Si vour-lyz pas choisi dioption, ta premiere sera appliguée.
Note 1 : Examples d'Intérets bónéficielres : cessions non enregistrées, ententes sur des options, protocoles d'entente, etc. relatits sux cidme.

兴:

Ministry of
Northern Development
and Mines
Ontario
Ministère du
Développement du Nord
el des mines

Statement of Costs for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury. Ontario P3E 6A5, telephone (705) 670-7264

1. Direct Costs/Couts directs

Note: The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made. the Minister may reject for assessment work all or part of the assessment work submitted.

Les renseignements personnels contenus dans la présente formule sont recueillis en vertu de la Loi sur les mines et serviront à tenir à jour un registre des concessions minieres. Adresser toute quesiton sur la collece de ces renseignements au chef provincial des terrains miniers, ministere du Développement du Nord et des Mines, 159, rue Cedar, 4 e étage, Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

2. Indirect Costs/Coûts indirects

* Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work.
Pour le remboursement des travaux de réhabilitation, les coüts indirects ne sont pas admissibles en tant que travaux d'evaluation.

Type Description Amount Montant Totals Total global Transportation Transport Type

Troell des coilts drocts
of indirects adoniselibios

Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandées dans le présent état des coûts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Remises pour dépot

1. Les travaux déposés dans les deux ans suivant leur achévement sont remboursés à 100% de la valeur tolale susmentionnée du crédil d'évaluation.
2. Les tràau, déposés trois, quatre ou cinq ans aprés leur achèvement sont rericiursés à 50% de la valeur totale du crédit d'évaluation susmentioriné. Voir les calculs ci-dessous.

Valeur totale du crédit d'évaluation
$\times 0,50=$

Attestation de l'état des coûts

J'atteste par la présente :
que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Et qu'à titre de je suis autorise (fitulaire enregistré, représentant, poste occupé dans la compagnie)
à faire cette attestation.

Personal information collected on this form ls obtained under the authority of the Mining Act. This information will be tired for correapondenctiduestions about

Instructions: - Please type or print and submit in duplicate

- Refer to the Mining Act and Regulations for Requirements of filing assessment work or consult the Mining Recorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

Work Performed (Check One Work Group Only)

Total Assessment Work Claimed on the Attached Statement of Costs s 690:00
Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verity expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

(attach a schedule if necessary)
Certification of Beneficial Interest - See Nut io. 1 on reverse side

Certification of Work Report

¢											:							
	$\begin{aligned} & u \\ & 1 \\ & s \\ & s \\ & v_{3} \\ & v_{1} \\ & 0 \\ & 0 \end{aligned}$			$\begin{array}{\|c} \hline c \\ 1 \\ \alpha \\ w \\ \hline \frac{f}{c} \\ \hline \end{array}$	$\begin{gathered} 0 \\ 1 \\ f_{1} \\ 0 \\ 0 \\ \vdots \\ f \\ j \end{gathered}$	$\begin{gathered} \substack{1 \\ c \\ w \\ w \\ 0 \\ j \\ j \\ \dot{\alpha} \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} w \\ 1 \\ \omega \\ 0 \\ 0 \\ 1 \\ 5 \\ 5 \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline u \\ 1 \\ w \\ w \\ 0 \\ 0 \\ \vdots \\ j \end{array}$	$\left.\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\left\|\begin{array}{c\|} \hline \\ 1 \\ c \\ o \\ o \\ -\infty \\ -\rho \\ \infty \\ \sim \end{array}\right\|$	$\begin{array}{\|l\|} \hline \left.\begin{array}{l} 1 \\ 1 \\ \alpha \\ 0 \\ \infty \\ 0 \\ \infty \\ \infty \\ \hline \end{array} \right\rvert\, \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & \therefore \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 6 \end{aligned}$	$\begin{gathered} 4 \\ \infty \\ 0 \\ \infty \\ -2 \\ \frac{1}{3} \end{gathered}$	$\begin{aligned} & \sim \\ & 1 \\ & 0 \\ & 0 \\ & \mathcal{R} \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \varphi \\ & \infty \\ & 0 \\ & \infty \\ & \infty \\ & \frac{1}{d} \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} n \\ 1 \\ \infty \\ 0 \\ \infty \\ s \\ s \\ s \\ s \end{array}\right\|$	
	-	Γ	-	-	-	-	-	-	-	-	$\stackrel{*}{*}$	\bigcirc	-	-	-	-	-	

											-							
	$\begin{aligned} & 0 \\ & J \end{aligned}$	$\begin{aligned} & w \\ & w \\ & \hline \end{aligned}$	$\underset{r}{u}$	$\frac{v^{2}}{J}$	$\frac{w}{v}$	$\frac{v^{3}}{3}$	$\frac{3}{3}$	$\frac{N}{v}$	$\frac{w}{2}$	\underline{v}	$\frac{\infty}{\sim}$	$\frac{v^{v}}{v}$	$\frac{w}{j}$	$\frac{\omega}{v}$	\underline{w}	$\frac{\omega}{-j}$	$\frac{w}{2}$	

Credits you are claiming in this report may be cur back. In order ro minimize the adverse effects of such detetions, please indicate from which claims you wish to priorize the defetion of crodits. Please mark (-) one of the tollowing:
1.Cledits are to be cut back starting with the claim listed last, working backwards.
2. Credits are to be cut back equally over all claims contained in this report of work.
3.Credits are to be cut back as priorized on the antached appendix.
in the event that you have not specified your choice of priority, option one will be implemented.
Note 1: Examples of beneficial interest are unrecorded transters, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: if work has been periformed on patented or loased land, please complete the following:

有				\%					$\frac{\stackrel{\rightharpoonup}{4}}{\frac{1}{7}}$				${ }^{\text {a }}$
\%					,				\%	5			${ }^{\text {che }}$

[^4]Note 1: Excmples d'intérits bónsficialres : ceaciona non enrejigtrtes, ententes sur des options, protocoles d'entente, otc. relatifs sux cialme.

Ministry of Northern Development and Mines

Ministére du
Développement du Nord et des mines

Statement of Costs for Assessment Credit
 État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Les renseignements personnels contenus dans la présente formule sont recueillis en vertu de la Lol sur les mines et serviront à tenir à jour un registre des concessions miniéres. Adresser toute quesiton sur la collece de ces renseignements au chef provincial des terrains miniers. ministere du Développement du Nord et des Mines, 159, rue Cedar, 4^{\ominus} etage, Sudbury (Ontario) P3E 6A5, telléphone (705) 670-7264.

2. Indirect Costs/Coûts indirects

Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandées dans le présent état des coûts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Remises pour dépot

1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100% de la valeur totale susmentionnée du crédit d'évaluation.

2 Les travaux déposés trois, quatre ou cinq ans aprés leur achèvement sont remboursés à 50% de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

Valeur totale du crédit d'évaluation	Evaluation totale demandée
$\qquad 0,50=$	

Attestation de l'état des coûts

J'atteste par la présente :
que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Et qu'à titre de
je suis autorise (uitulaire enregistre, representant, poste occupé dans la compagnie)

Northern Development--me-
and Mines
Report of work condiciciod After Record mo Claim MInIfict Personal Information collected on this form is obtained under the authority of the Mining Act. This information wis be used for correspondence. Questions about
this collection should be directed to the Provincial Manager, Mining Lat Ministry of Northern Development end Mines, Fourth Floceise Cedar Street. this collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development end Mines, Fourth Foonicien Cedar Street. Sudbury, Ontario. P3E GA5, telephone (709) s70-7 as.

Instructions: - Please type or print and submit in itupicise.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining Recorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

Work Performed (Check One Work Group Only)

Total Assessment Work Claimed on the Attached Statement of Costs $\$ 136200$
Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verity expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

(attach a schedule if necessary)
Certification of Beneficial Interest - See Note No. 1 on reverse side

I certify that at the timer? won performed, the claims covered in this work report were recorded in the current holder's name or held under a beneficial interest by the current recorded holder.

Certification of Work Report

Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the deletion of credits. Please mark (v) one of the following:

1. \square g'edits are to be cut back starting with the claim listed last, working backwards.
2. Credits are to be cut back equally over all claims contained in this report of work.
3. \square Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.
Note 1: Examples of beneficial Interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased laind, please complete the foliowing:

Les crédits que vous réclamez dans le présent rapport peuvent être réduits. Afin de diminuer les conséquences défavorables de telles
réductions, veuillez indiquer l'ordre dans lequel vous désirez au'elles soient appliquées à vos claims. Veuillez cocher (\sim) l'une des options suivantes :

1. Les crédits doivent être réduits en commençant par le dernier claim sur la liste.
2.Les crédits doivent étre réduits également entre tous les claims figurant dans le présent rapport.
2. \square Les crédits doivent être réduits seton l'ordre donné en annexe.

Si vous $n^{\prime 2}$ mappas choisi d'option, la premiére sera appliquêe.

Note 1. aux cialme

Note 2: SI evetravaux ont dtt exb́cutbs sur un terraln falsant l'objet de lettres patentos ou d'un boh, veullez remplir ce quis suit:

tryaux on

Ministry of Northern Development and Mines

Ministére du
Developpement du Nard et des mines

Statement of Costs for Assessment Credit
 État desc counts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Les renseignements personnels contenus dins la présente formule son recueillis en vertu de la Lot sur les mines et serviront à tenia à jour un registre dis concessions minieres. Adresser tote quesiton sur la collect de ce renseignements au chef provincial does terrains miniers, ministère du Développement du Nor et dee Mines. 159, rue Cedar, 4^{e} etage. Sudbury (Ontario) P3E 6A5, telephone (705) 670-7264.

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claims). Questions about this collection should be directed to the Provincial Manager, Minings Lands. Ministry of Northern Development and Mines, th Floor. 159 Cedar Street, Sudbury. Ontario P3E 6A5, telephone (705) 670-7264.

1. Direct Costs/Couts directs

Note: The recorded holder will be required to verity expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made. the Minister may reject for assessment work all or part of the assessment work submitted.

Filing Discounts

1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
2. Work filed three, four or five years after completion is claimed at $5 \% \%$ of the above Total Value of Assessment Credit. See calculations below:

Total Value of Assessment Credit	
	$\times 0.50=$
	Total Assessment Claimed

Certification Verifying Statement of Costs

I hereby certify:
that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.
that as $\frac{\text { Harold J. Tracane } U_{i}}{\text { (Recorded Holder. Agent. Position in Company) }}$ I am authorized
to make this certification

2. Indirect Costs/Coûts indirects

* Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work.
Pour le remboursement des travaux de réhabilitation, les courts indirect ne sont pas admissibles en ant que travaux d'évaluation.

indirect costs) d'ivaluation (Toter desc colts directs el indirect admisellive

Note : Le titulaire enregistré sera tenu de verifier les dépenses demanders dan le présent élat desc counts dans les 30 jours suivant une demande al cet effet. Si la vérification n'est pas effectuée, le ministry pout rejecter tout qu une partied des travaux d'évaluation présentés.

Remises pour dépost

1. Les travaux déposés dang les deux ans suivant lour achèvement son remboursés à 100% de la valour totale susmentionnée du credit d'évaluation.
2. Les travaux déposés trois, quatre cu cinq anis après leur achèvement sent remboursés à 50% de la valeur totaled du credit d'évaluation susmentionné. Voir les calculs ci-dessous.

| Valour totaled du credit d'évaluation | Evaluation totaled demandée |
| ---: | :--- | :--- |
| $\times 0,50=$ | |

Attestation de l'état odes counts

J'atteste par la présente :
que les montants indiqués sent le plus exact possible et que cess dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Et qu'à titre de \qquad joe suis autorisé (titulaire enregistrb, représentant, paste occupy dins la compagnie)
al fire cote attestation.

Ontario

Ministry of
Northern Development and Mines

Ministère du
Développement du Nord et des Mines

Mining Recorder's Office Willet Green Miller Centre 933 Ramsey Lake Road 3rd Floor (B)
Sudbury, ON P3E 6B5

Telephone: (705) 670-5742
Fax: (705) 670-5681

File: W9570.00090
October 17, 1995

Harold Tracanelli
Box 167
Chelmsford, ON POM 1LO
Dear Sir:
Subject: Approval of Assessment - Moncrieff Township

The assessment work credits for Diamond Drilling, as outlined on the AMENDED report of work form, have been approved as of October 17. 1995.

/kg
Encl.
c.c. George Huycke

Ministry of Northern Development and Mines

Ministère du Développement du Nord et des Mines

```
Geoscience Approvals Office
933 Ramsey Lake Road
6th Floor
Sudbury, Ontario
P3E 6B5
Telephone: (705) 670-5853
Fax: (705) 670-5863
Our File: 2.16200
Transaction *W9570.00091
                                    #W9570.00092
                                    #W9570.00093
```

September 27, 1995
Mining Recorder
Ministry of Northern Development \& Mines
933 Ramsey Lake Road, 3rd Floor
Sudbury, Ontario
P3E 6B5
Dear Mr. Denomme:
SUBJECT: APPROVAL OF ASSESSMENT WORK CREDITS ON MINING CLAIMS 993570 ET AL IN MONCRIEFF TOWNSHIP

Assessment work credits have been approved as outlined on the original report of work forms for this submission. The credits have been approved under Section 14,12,17, Geophysics(SP), Geology, Assays, Mining Act Regulations.

The approval date is September 26, 1995. Please indicate this approval on the claim record sheets.

If you have any questions regarding this correspondence, please contact Bruce Gates at (705) 670-5856.

Acting Senior Manager, Mining Lands Section
Mining and Land Management Branch
Mines and Minerals Division

BIG/
cc: Resident Geologist Assessment Files Library Sudbury, Ontario

Sudbury, Ontario

SEPTEMBER 21, 1995

NOTE TO: MINING LANDS - ASSESSMENT OFFICE
RE: W9570.00089 TO W9570.00093

Please find attached Work Reports W9570.00091, W9570.00092 and W.9570.00093 along with one copy of the technical report. I have the other copy of the report as it supports Reports of Work W9570.00089 and W9570.00090, which were filed under Physical Work and Diamond Drilling. Once the physical work and Diamond Drillig reports have been assessed and approved, I'll forward the fecond set of technical data to-you.

Kim Giroux
Senior Clerk
Sudbury

Yves Cle'ment Exploration Services
422 st-George st., Sudbury, Ont, P3B2<6 (705) 673-9297

January 16, 94
Invoice \#21
on account with: John G. Huyde 19 Emile Crescent Dewling, Ontario POM IBO

Re: T-H Property Trenching
Moncrieff Township

Field Days (trench supervision, washing mapping)

$$
17 \text { days a \$175.00/day - \$2,975.00 }
$$

Report Preparation (Report, trench sections) - \#1,000.00

Helper (trench washing)

$$
3 \text { day= @ \$100/day }
$$

$$
\text { I } 300.00
$$

Travelling Expenses

$$
\begin{aligned}
& 17 \text { trips } \times \$ 15 / \text { trip } \\
& \frac{\text { Andytical }}{\text { Sorts }} \text { (induces } \$ 22.47 \text { for shipping) }
\end{aligned} \$ 481.50
$$

<1き Supplies
(flagging tape, spray paint,
gas for pump)
word Processing

$$
\text { - \# } 150.00
$$

Report Expenditures

$$
4 \text { copies } \times 12.50 / \text { copy }
$$

$$
\text { - If } 50.00
$$

Invoice Total: t) $5,243.63$

Yo P. Alanent

Yves clement. Consulting project geologist

$$
44762.13>4762.00
$$

304 Leroux Street CHELMSFORD, ONTARIO POM ILO

Phone 855-2577

STATEMENT

terns
$\$$ \qquad
PLEASE DETACH AND RETURN WITH YOUR PEMTTIANCE

BANVILLE LUMBER COMPANY LAMED

INDEX TO LAND DISPOSITION

pan		M.N.R. ADMINISTRATIV SUDBURY MINING DIVISION
G-4086	Date Of ISve	
	\% 21 E445	SUDBUR
MONC	Sume	UDBURY

T-H. Propert.

IㅐㅐㅐㅐㅐIIIIIII

\qquad

[^0]: 'Consulting geciogist-geophysicist. 2111 Catton Plaza. 140 Carlion St . Toronto. Ontario MSA 3W:
 Manuscript approved lor publication (March 15. 1981) and published with the permission of E G Pye. Drector. Ontarn Geotogical Survey

[^1]: Les crédits que vous réclamez dans le présent rapport peuvent être réduits. Afin de diminuer les consequences défavorables de teles réductions, veuillez indiquer l'ordre dans lequel vous désirez au'elles solent appiquées a vos claims. Veuilez cocher (o) lune des options suivantes:

[^2]: Crodits you are claiming in this reporr may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish io priorize the deletion of credits. Please mark (r) one of the following:

 1. Criodits are to be cut back starting with the claim listed last, working backwards.
 2. Credits are io be cut back equally over all claims contained in this seport of work.
 3. \square Credits are to be cut back as priorized on the attached appendix.

 In the event that you have not specitiod your choice of prioitity. option one will be implemented.

[^3]: Les crédits que vous réclamez dans le présent rapport peuvent être réduits. Afin de diminuer les conséquences défavorables de telies reductions, veuillez indiquer l'orore dans lequel vous désirez au eiles soient appliquees à vos claims. Veuillez cocher (r) l'une des op-

[^4]: Les crédits que vous réclamez dans le présent rapport peuvent être réduits. Afin de diminuer les conséquences défavorables de telles réductions, veuillez indiquer l'ordre dans lequel vous désirez au'elles soient appliquées à vos claims. Veuillez cocher (o) l'une des options suivantes:
 1.

 1. Les credits doivent être réduits en commencant par le dernier claim sur la liste.
 2. \square Les crédits doivent être réduits egalement entre tous teì deims figurant dans le présent rapport.
 3. - Les crédits doivent etre réduits seton l'ordre donné en angien
