REPORT ON
 COMBINED HELICOPTER BORNE MAGNETIC, ELECTROMAGNETIC AND VLF SURVEY
 BENNY PROJECT - PN-232 CARTIER AREA
 ONTARIO

RECEIVED
APR 5
MIINING LANDS SECTION

FOR
FALCONBRIDGE LIMITED
BY
AERODAT LIMITED
February 17, 1989

1. INTRODUCTION 1-1
2. Survey area location 2-1
3. AIRCRAFT AND EQUIPMENT
3.1 Aircraft 3-1
3.2 Equipment
3.2.1 Electromagnetic System 3-1
3.2.2 VLF-EM System 3.1
3.2.3 Magnetometer 3-2
3.2.4 Magnetic Base Station 3-2
3.2.5 Radar Altimeter 3-3
3.2.6 Tracking Camera 3-2
3.2.7 Analog Recorder 3-2
3.2.8 Digital Recorder 3-4
3.2.9 Radar Positioning System 3-5
4. DATA PRESENTATION
4.1 Base Map 4-1
4.2 Flight Path 4-1
4.3 Electromagnetic Profiles 4-1
4.4 VLF-EM Total Field Profiles 4.2
5. INTERPRETATION AND RECOMMENDATIONS 5-1
APPENDIX I - General Interpretive Considerations
APPENDIX II - Personnel
APPENDIX III - Certificate of Qualifications

LIST of MAPS

(Scale 1:10,000)

MAPS:
1.

AIRBORNE ELECTROMAGNETIC PROFILES;
showing flight lines, fiducials and inphase and quadrature profiles of 33 kHz coplanar response.
2.

VLF-EM TOTAL FIELD PROFILES;
showing flight lines, fiducicals, and profiles of VLF EM response from NSS (Annapolis, Maryland) operating at 21.4 kHz .

1-1

1. INTRODUCTION

This report describes an airborne geophysical survey carried out on behalf of Falconbridge Limited by Aerodat Limited. Equipment operated included a four frequency electromagnetic system, a high sensitivity cesium vapour magnetometer, a two frequency VLF-EM system, a power line monitor, a video tracking çamera, an altimeter and an electronic positioning system. Electromagnetic, magnetic and altimeter data were recorded both in digital and analog form. Positioning data were stored in digital form, encoded on the VHS format video tape and recorded at regular intervals in UTM coordinates on the analog trace, as well as being marked on the flight path map by the operator while in flight.

A total of 1,255 kilometres of the recorded data were compiled in map form of which 291 kilometres is presented in this report covering claim groups in the following townships:

Stralak	Munster Craig
Ulster	Hess
Moncrieff	

2. SURVEY AREA LOCATION

The survey area is depicted on the index map shown below.

3. AIRCRAFT AND EQUIPMENT

Abstract

3.1 Aircraft

An Aerospatiale A-Star 350B helicopter, (CG-JIX), owned and operated by Lakeland Helicopters Limited, was used for the survey. Installation of the geophysical and ancillary equipment was carried out by Aerodat. The survey aircraft was flown at a mean terrain clearance of 60 metres.

3.2 Equipment

3.2.1 Electromagnetic System

The electromagnetic system was an Aerodat 4 -frequency system. Two vertical coaxial coil pairs were operated at 935 Hz and 4.6 kHz and two horizontal coplanar coil pairs at 4.2 kHz and 33 kHz . The transmitter-receiver separation was 7 metres. Inphase and quadrature signals were measured simultaneously for the four frequencies with a time constant of 0.1 seconds. The electromagnetic bird was towed 30 metres below the helicopter.

3.2.2 VLF-EM System

System was a Herz Totem 2A. This instrument measures the total field and quadrature components of two selected transmitters, preferably oriented at right angles to one
another. The sensor was towed in a bird 12 metres below the helicopter. The normal configuration of transmitting stations monitored was NSS, Annapolis, Maryland for the Line station and NLK, Jim Creek, Washington for the Ortho station broadcasting at 21.4 and 24.8 kHz respectively. Station NAA, Cutler, Maine at 24.5 kHz was also used and occasionally, combinattions of the above three were required.

3.2.3 Magnetometer

The magnetometer employed a Scintrex Model VIW - 2321 H8 cesium, optically pumped magnetometer sensor. The sensitivity of this instrument was 0.1 nanoTeslas at a 0.1 second sampling rate. The sensor was towed in a bird 17 metres below the helicopter.

3.2.4 Magnetic Base Station

A Geometrics G-803 magnetometer was operated at the base of operations to record diurnal variations of the earth's magnetic field. The clock of the base station was synchronized with that of the airborne system to facilitate later correlation.

3.2.5 Radar Altimeter

A King KrA10A radar altimeter was used to record terrain clearance. The output from the instrument is a linear function of altitude for maximum accuracy.

3.2.6 Tracking Camera

A Panasonic video flight path recording system was used to record the flight path on standard VHS format video tapes. The system was operated in continuous mode and the flight number, real time and manual fiducial numbers were registered on the picture frame for cross-reference to the analog and digital data.

3.2.7 Analog Recorder

An RMS dot-matrix recorder was used to display the data during the survey. In addition to manual and time fiducials, the following data were recorded:

Channel	Input	Scale
RALT	Altimeter (150 m at top of chart)	$3 \mathrm{~m} / \mathrm{mm}$
CXI1	935 Hz Coaxial Inphase	
CXQ1	935 Hz Coaxial Quadrature	$2.5 \mathrm{ppm} / \mathrm{mm}$
CXI2	4.6 kHz Coaxial Inphase	$2.5 \mathrm{ppm} / \mathrm{mm}$
		$2.5 \mathrm{ppm} / \mathrm{mm}$

$$
3 \cdot 4
$$

Channel	Input	Scale
CXQ2	4.6 kHz Coaxial Quadrature	$2.5 \mathrm{ppm} / \mathrm{mm}$
CPI1	4.2 kHz Coplanar Inphase	$10 \mathrm{ppm} / \mathrm{mm}$
CPQ1	4.2 kHz Coplanar Quadrature	$10 \mathrm{ppm} / \mathrm{mm}$
CPI2	33 kHz Coplanar Inphase	$20 \mathrm{ppm} / \mathrm{mm}$
CPQ2	33 kHz Coplanar Quadrature	$20 \mathrm{ppm} / \mathrm{mm}$
VLT	VLF-EM Total Field, Line	$2.5 \mathrm{\%} / \mathrm{mm}$
VLQ	VLF-EM Quadrature, Line	$2.5 \mathrm{q} / \mathrm{mm}$
VOT	VLF-EM Total Field, Ortho	$2.5 \mathrm{\%} / \mathrm{mm}$
VOQ	VLF-EM Quadrature, Ortho	$2.5 \% / \mathrm{mm}$
MAGF	Magnetometer, fine	$2.5 \mathrm{nT} / \mathrm{mm}$
MAGC	Magnetometer, coarse	$25 \mathrm{nT} / \mathrm{mm}$
PWRL	POwer Line Monitor	n / a

3.2.8 Digital Recorder

An RMS DGR 33 system recorded the survey on magnetic tape. Information recorded was as follows:

Equipment
EM system 0.1 seconds
Magnetometer 0.1 seconds
VLF-EM 0.2 seconds
Altimeter $\quad 0.5$ seconds
NAV System 0.2 seconds.
3.2.9 Radar Positioning System

A Syledis SR3 UHF radio positioning system was used for navigation and track recovery. A network of antennae provided the pilot/operator with constant navigation information, with a positional accuracy of ± 5 metres.

4 - 1

4. DATA PRESENTATION

4.1 Base Map

A topographic base map at a scale of $1: 10,000$ was prepared from enlargements of Ontario Basic Mapping topographic maps (originals at 1:20,000).

4.2 Flight Path

The flight path was derived from the Syledis electronic positioning system. It is estimated that the flight path is generally accurate to about 10 metres with respect to the topographic detail of the base map. The flight path is presented with time and navigator's manual fiducials for cross reference to both the analog and digital data.

4.3 Electromagnetic Profiles

The electromagnetic data were recorded digitally at a sample rate of $10 /$ second with a time constant of 0.1 seconds. A two stage digital filtering process was carried out to reject major sferic events and to reduce system noise.

Local-sferic activity can produce sharp, large amplitude events that cannot be removed by conventional filtering procedures. Smoothing or stacking will reduce their amplitude
but leave a broader residual response that can be confused with geological phenomena. To avoid this possibility, a computer algorithm searches out and rejects major sferic events.

The signal to noise ratio was further enhanced by the application of a low pass digital filter. It has zero phase shift which prevents any lag or peak displacement from occurring, and it suppresses only variations with a wavelength less than about 0.25 seconds. This low effective time constant permits maximum profile shape resolution.

Following the filtering process, a base level correction was made. The correction applied is a linear function of time that ensures the corrected amplitude of the various inphase and quadrature components is zero when no conductive or permeable source is present. The filtered and levelled data were then presented in profile map form.

4.4 VLF-EM Total Field Profiles

The VLF-EM data from NSS (Annapolis, Maryland) operating at 21.4 kHz were presented in profile map form.

5 - 1

5. INTERPRETATION

The geophysical results presented in this report indicate the existence and position of conductivity anomalies. The response will be a maximum over the conductor, with the amplitude being related to the target's conductance and depth. Most of the surveyed blocks exhibit conductivity contrasts which may be interpreted as structural features. However, a more detailed evaluation of the significance of the data presented should be performed by those most familiar with the local geology and with access to additional geological and geophysical information.

Respectfully submitted,
AERODAT LIMITED

February 17, 1989 J8885MNR

Anthony E.Valentini
Geophysicist

APPENDIX I

GENERAL INTERPRETIVE CONSIDERATIONS

Electromagnetic

The Aerodat four frequency system utilizes two different trans-mitter-receiver coil geometries. The traditional coaxial coil configuration is operated at two widely separated frequencies and the lower frequency horizontal coplanar coil pair is operated at a frequency approximately aligned with one of the coaxial frequencies.

The electromagnetic response measured by the helicopter system is a function of the "electrical" and "geometrical" properties of the conductor. The "electrical" property of a conductor is determined largely by its electrical conductivity, magnetic susceptibility and its size and shape; the "geometrical" property of the response is largely a function of the conductor's shape and orientation with respect to the measuring transmitter and receiver.

Electrical Considerations

For a given conductive body the measure of its conductivity or conductance is closely related to the measured phase shift between the received and transmitted electromagnetic field. A small phase shift indicates a relatively high conductance, a large phase shift lower conductance. A small phase shift results
in a large inphase to quadrature ratio and a large phase shift a low ratio. This relationship is shown quantitatively for a nonmagnetic vertical half-plane model on the accompanying phasor diagram. Other physical models will show the same trend but different quantitative relationships.

The phasor diagram for the vertical half-plane model, as presented, is for the coaxial coil configuration with the amplitudes in parts per million (ppm) of the primary field as measured at the response peak over the conductor. To assist the interpretation of the survey results the computer is used to identify the apparent conductance and depth at selected anomalies. The results of this calculation are presented in table form in Appendix II and the conductance and inphase amplitude are presented in symbolized form on the map presentation.

The conductance and depth values as presented are correct only as far as the model approximates the real geological situation. The actual geological source may be of limited length, have significant dip, may be strongly magnetic, its conductivity and thickness may vary with depth and/or strike and adjacent bodies and overburden may have modified the response. In general the conductance estimate is less affected by these limitations than is the
depth estimate, but both should be considered as relative rather than absolute guides to the anomaly's properties.

Conductance in mhos is the reciprocal of resistance in ohms and in the case of narrow slab-like bodies is the product of electrical conductivity and thickness.

Most overburden will have an indicated conductance of less than 2 mhos; however, more conductive clays may have an apparent conductance of say 2 to 4 mhos. Also in the low conductance range will be electrolytic conductors in faults and shears.

The higher ranges of conductance, greater than 4 mhos, indicate that a significant fraction of the electrical conduction is electronic rather than electrolytic in nature. Materials that conduct electronically are limited to certain metallic sulphides and to graphite. High conductance anomalies, roughly 10 mhos or greater, are generally limited to sulphide or graphite bearing rocks.

Sulphide minerals, with the exception of such ore minerals as sphalerite, cinnabar and stibnite, are good conductors; sulphides may occur in a disseminated manner that inhibits electrical
conduction through the rock mass. In this case the apparent conductance can seriously underrate the quality of the conductor in geological terms. In a similar sense the relatively nonconducting sulphide minerals noted above may be present in significant consideration in association with minor conductive sulphides, and the electromagnetic response only relate to the minor associated mineralization. Indicated conductance is also of little direct significance for the identification of gold mineralization. Although gold is highly conductive, it would not be expected to exist in sufficient quantity to create a recognizable anomaly, but minor accessory sulphide mineralization could provide a useful indirect indication.

In summary, the estimated conductance of a conductor can provide a relatively positive identification of significant sulphide or graphite mineralization; however, a moderate to low conductance value does not rule out the possibility of significant economic mineralization.

Geometrical Considerations

Geometrical information about the geologic conductor can often be interpreted from the profile shape of the anomaly. The change in shape is primarily related to the change in inductive coupling among the transmitter, the target, and the receiver.

In the case of a thin, steeply dipping, sheet-like conductor, the coaxial coil pair will yield a near symmetric peak over the conductor. On the other hand, the coplanar coil pair will pass through a null couple relationship and yield a minimum over the conductor, flanked by positive side lobes. As the dip of the conductor decreased from vertical, the coaxial anomaly shape changes only slightly, but in the case of the coplanar coil pair the side lobe on the down dip side strengthens relative to that on the up dip side.

As the thickness of the conductor increases, induced current flow across the thickness of the conductor becomes relatively significant and complete null coupling with the coplanar coils is no longer possible. As a result, the apparent minimum of the coplanar response over the conductor diminishes with increasing thickness, and in the limiting case of a fully 3 dimensional body or a horizontal layer or half-space, the minimum disappears completely.

A horizontal conducting layer such as overburden will produce a response in the coaxial and coplanar coils that is a function of altitude (and conductivity if not uniform). The profile shape will be similar in both coil configurations with an amplitude ratio (coplanar:coaxial) of about 4:1*.

In the case of a spherical conductor, the induced currents are confined to the volume of the sphere, but not relatively restricted to any arbitrary plane as in the case of a sheet-like form. The response of the coplanar coil pair directly over the sphere may be up to 8* times greater than that of the coaxial pair.

In summary, a steeply dipping, sheet-like conductor will display a decrease in the coplanar response coincident with the peak of the coaxial response. The relative strength of this coplanar null is related inversely to the thickness of the conductor; a pronounced null indicates a relatively thin conductor. The dip of such a conductor can be inferred from the relative amplitudes of the side-lobes.

Massive conductors that could be approximated by a conducting sphere will display a simple single peak profile form on both coaxial and coplanar coils, with a ratio between the coplanar to coaxial response amplitudes as high as 8*.

Overburden anomalies often produce broad poorly defined anomaly profiles. In most cases, the response of the coplanar coils closely follows that of the coaxial coils with a relative amplitude ratio of $4 *$.

Occasionally, if the edge of an overburden zone is sharply defined with some significant depth extent, an edge effect will occur in the coaxial coils. In the case of a horizontal conductive ring or ribbon, the coaxial response will consist of two peaks, one over each edge; whereas the coplanar coil will yield a single peak.

* It should be noted at this point that Aerodat's definition of the measured ppm unit is related to the primary field sensed in the receiving coil without normalization to the maximum coupled (coaxial configuration). If such normalization were applied to the Aerodat units, the amplitude of the coplanar coil pair would be halved.

Magnetics

The Total Field Magnetic Map shows contours of the total magnetic field, uncorrected for regional variation. Whether an EM anomaly with a magnetic correlation is more likely to be caused by a sulphide deposit than one without depends on the type of mineralization. An apparent coincidence between an EM and a magnetic anomaly may be caused by a conductor which is also magnetic, or by a conductor which lies in close proximity to a magnetic body. The majority of conductors which are also magnetic are sulphides containing pyrrhotite and/or magnetite. Conductive and magnetic
bodies in close association can be, and often are, graphite and magnetite. It is often very difficult to distinguish between these cases. If the conductor is also magnetic, it will usually produce an EM anomaly whose general pattern resembles that of the magnetics. Depending on the magnetic permeability of the conducting body, the amplitude of the inphase EM anomaly will be weakened, and if the conductivity is also weak, the inphase EM anomaly may even be reversed in sign.

VLF Electromagnetics

The VLF-EM method employs the radiation from powerful military radio transmitters as the primary signals. The magnetic field associated with the primary field is elliptically polarized in the vicinity of electrical conductors. The Herz Totem uses three coils in the X, Y, Z configuration to measure the total field and vertical quadrature component of the polarization ellipse.

The relatively high frequency of VLF (15-25) kHz provides high response factors for bodies of low conductance. Relatively "dis. connected" sulphide ores have been found to produce measureable VLF signals. For the same reason, poor conductors such as sheared contacts, breccia zones, narrow faults, alteration zones and porous flow tops normally produce VLF anomalies. The method can therefore be used effectively for geological mapping. The only

Abstract

relative disadvantage of the method lies in its sensitivity to conductive overburden. In conductive ground the depth of exploration is severely limited.

The effect of strike direction is important in the sense of the relation of the conductor axis relative to the energizing electromagnetic field. A conductor aligned along a radius drawn from a transmitting station will be in a maximum coupled orientation and thereby produce a stronger response than a similar conductor at a different strike angle. Theoretically, it would be possible for a conductor, oriented tangentially to the transmitter to produce no signal. The most obvious effect of the strike angle consideration is that conductors favourably oriented with respect to the transmitter location and also near perpendicular to the flight direction are most clearly rendered and usually dominate the map presentation.

The total field response is an indicator of the existence and position of a conductivity anomaly. The response will be a maximum over the conductor, without any special filtering, and strongly favour the upper edge of the conductor even in the case of a relatively shallow dip.

The vertical quadrature component over steeply dipping sheet-like
conductor will be a cross-over type response with the cross-over closely associated with the upper edge of the conductor.

The response is a cross-over type due to the fact that it is the vertical rather than total field quadrature component that is measured. The response shape is due largely to geometrical rather than conductivity considerations and the distance between the maximum and minimum on either side of the cross-over is related to target depth. For a given target geometry, the larger this distance the greater the depth.

The amplitude of the quadrature response, as opposed to shape is function of target conductance and depth as well as the conductivity of the overburden and host rock. As the primary field travels down to the conductor through conductive material it is both attenuated and phase shifted in a negative sense. The secondary field produced by this altered field at the target also has an associated phase shift. This phase shift is positive and is larger for relatively poor conductors. This secondary field is attenuated and phase shifted in a negative sense during return travel to the surface. The net effect of these 3 phase shifts determine the phase of the secondary field sensed at the receiver.

A relatively poor conductor in resistive ground will yield a net positive phase shift. A relatively good conductor in more conductive ground will yield a net negative phase shift. A combination is possible whereby the net phase shift is zero and the response is purely in-phase with no quadrature component.

A net positive phase shift combined with the geometrical crossover shape will lead to a positive quadrature response on the side of approach and a negative on the side of departure. A net negative phase shift would produce the reverse. A further sign reversal occurs with a 180 degree change in instrument orientation as occurs on reciprocal line headings. During digital processing of the quadrature data for map presentation this is corrected for by normalizing the sign to one of the flight line headings.

PERSONNEL

FIELD

Flown - January, 1989

Pilot - Roger Morrow

Operator - Steve Robinson

OFFICE

Processing

- Anthony E. Valentini
- George McDonald

Report

- Anthony E. Valentini

APPENDIX III

CERTIFICATE OF QUALIFICATIONS

Anthony E. Valentin

1. I am a geophysicist and have been working in this field since 1985.
2. I reside at 48 Village Drive, Stoney Creek, Ontario.
3. I hold an honours B.Sc. in Geophysics from the University of Western Ontario having graduated in 1985.
4. I hold the position of Geophysicist at Aerodat Limited. I have been employed by Aerodat since July 1986.
5. I am a member of the Canadian Exploration Geophysical Society.
6. The accompanying report was prepared from a review of the airborne geophysical survey flown by Aerodat for Falconbridge Limited. I have not visited the property.
7. I have no interest in the property described nor do I hold any securities in Falconbridge Limited.

Mississauga, Ontario
Signed,

Anthony E. Valentini Geophysicist

Ministry of
Northern Development and Mines

Ministère du
Développement du Nord et des Mines
November 24, 1989

Mining Lands Section 880 Bay Street, 3rd Floor Toronto, Ontario M5S 128

Telephone: (416) 965-4888
Your File: W8907-045
Our File: 2.12328

Mining Recorder
Ministry of Northern Development and Mines
Bag 3000
200 Brady Street, 6th floor
Sudbury, Ontario
P3A 5W2
Dear Sir:
Re: Notice of Intent dated October 23, 1989 for Geophysical (Magnetometer and Electromagnetic) Survey submitted on Mining Claims S 993569 et al in Ulster, Moncrieff, Hess, Munster and Craig Townships.

The assessment work credits, as listed with the above-mentioned Notice of Intent have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

W.R. Cowan

Provincial Manager, Mining Lands
Mines \& Minerals Division
LS:eb
Enclosure
cc: Mr. G.H. Ferguson
Mining and Lands Commissioner
Toronto, Ontario
Falconbridge Ltd.
Falconbridge, Ontario
Anthony E. Valentini
Stoney Creek, Ontario
Michael J. Gray
Sudbury, Ontario

ONTARIO GEOLOGICAL SURVEY ASSESSMENT FILES OFFICE.
INUV 291989
RECEIVED

Resident Geologist Sudbury, Ontario

Recorded liolder
FALCONBRIDGE LTD.

Township or Áree
ULSTER, MONCRIEFF, HESS, MUNSTER, AND CRAIG TOWNSHIPS.

Type of survey and number of Assessment days credix per claim	Mining Claims Ascesced
Geophysical	
Electromsgnetic 40 _ days	S 993569
	993653 to 656 incl.
Magnerometer 40 _ days	994096
	1013391-92
Radiomerric____dars	1042317 to 63 incl.
Induced polarization _____ deys	1042367
Induced polisrization _______ days	1042369 to 372 incl.
Other___ dors	1042378
	1042388 to 392 incl.
Section 77 (19) See "Mining Claims Assessơ" coiumn	1042397-98
	1042400
Geological ___ dars	1042461 to 467 incl.
	1042469-70
Geochemical __der_ders	1042479 to 487 incl.
	1042946, 1042952
Man dars \square Airborne \mathbb{X}	1046856 to 881 incl.
	1046885 to 914 incl .
Special provision \square Ground \square	1046916 to 944 incl.
Credits have been reduced because of partial coverage of claims.	
Credits have been reduced beesuse of corrections 10 work dates and figures of applicant.	

Special credits under section 77 (16) for the following mining claims

10 days Airborne VLF+10 days Airborne Electromagnetic S 993568, 993570, 994048

1042368, 1042377, 1042387, 1046883-84.
20 days Airborne VLF +15 days Airborne Electromagnetic $S 830744$ to 747 incl .

No credits have been allowed for the following mining claims
not sulficiently covered by the sumer
\square insufficient technical data fited

S 1042468
1042488
1042504

Report of Work
(Geophysica!, Geological, Geochemical and Expenditures)
$\left[\begin{array}{l}\text { DOCUMENT No. Instru tions: } \\ \text { W8907-o } 5\end{array}\right]_{\text {Noto: }}$

- If number of mining claims iraversed exceeds space on this form, attach a list. Oniy days credits calculated in the in Expenditures" section may be enterce - Do ini use shaded arens below.
 Surver Compeny

Aerodat Ltd.
Name ond Address of Author (of Geo-Technical report)
Anthony E. Valentini 48 Village Dr., Stoney Creek, Ontario 18 E - $3 \mathrm{~N} /$

Credits Requested per Each Claim in Columns at right

Expenditures (excludes power stripping)
Tvpe of Work Periformed
Pertiormed on Climims ald 1989

MINING LANDS SECTION
Calculation of Expenditure Davs Credits Total Expenditures
$\$+$Total Oays Credits

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected
in columns at right.

Mining Claims Traversed (List in numerical sequence)

Mining Claim		$\begin{array}{\|l\|} \hline \text { Expend. } \\ \text { Days } \mathrm{Cr} . \end{array}$	Mining Claim		Expend. Days Cr
Prefix	Numiter		Prefix	Number	
S	1042483	80	S	1046917	80
	1042463	80		1046918	80
	1042464	80		1046919	80
	1042465	80		1046920	80
	1042466	80		1046921	80
	1042468	80		1046923	80
	1042469	80		1046924	80
	1042470	80		1046925	80
	1042479	80		1046931	80
	1042480	80		1046932	80
				1046933	80
	1046857	80		1046934	80
	1046858	80		1040935	80
	1046859	80		1046936	80
	1046860	80		1046937	80
	1046861	80		1046938	80
	1046872	80		1046939	80
	1046873	80		1046940	80
	1046874	80		1046941	80
	1046875	80		1046942	80
	1046876	80		1046943	80
	1046916	.80		1046944	80

* Chazqc minde pre conversalion tutal number of mining blw H.Gray/K.Giroux. 89.04.07. cloims covered by this

For Office Use Only		
Total Days Cr. Recorded	Date Recorded APRIL 7, 198,9	$\text { Mining necorder }(v i)(1)$
14.460	Sale Approvod bs मecorded	

[^0]Name and Postal Address of Person Certilving
Michael J. Gray \#6-351 Hellinaton Hts.
Sudbury, Ontario

Certification Verifying Report of Work
I hereby certify that I have a personal and intimate knowledge of the facts set louth in the Report of Work annexed thereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.
Name and Postal Address of Person Certifying

Page 3 of 5
Report of Work
(Geophysica!, Geological, Geochemical and Expenditures)

Instructions: - Please type or print.

- If number of mining claims traversed exceeds space on this form, attach a list.
Note: - Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns. - Do not use shaded areas below.

Prospector's Licenceno.

Date of Survey (irom a 10) Day | Mo. | Yr...| Day | Mo.| Yr.
Neme and Address of Author (of Geo-Technical report)

Mining Act

Expenditures (excludes power stripping)

Trpe of Work Performed
Performed on Claim(s)
Tolal Total Expenditures $\$$

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Mining Claims Traversed (List in numerical sequence)

pratix	Number		Pratix		
S	1046926	80	S	1042341	80
	1046927	80		1042342	80
	1046928	80		1042343	80
	1046929.	80		1042344	80
	1046930	80		1042345	80
				1042346	80
	1013391	80		1042347	80
	1013392	80		1042348	80
	1042317	80		1042349	80
	1042318	80		1042350	80
	1042319	80		1042351	80
	1042320	80		1042352	80
	1042321	80		1042353	80
	1042322	80		-1842355	88
	1042323	80		1042356	80
	1042324	80		-1042359	-80
	1042325	80		$\underline{1042360}$	80
	1042326	80		1042361	80
	1042335	80		1042362	80
	1042337	80		1042363	80
	1042338	80		1042367	80
	1042339	80		$1042368{ }^{*}$	${ }^{2} 80$
	1042340	80			

*' maximum reached le.r-
(-icupheysicat..
For Olfice Use Only
TotaiDavs
Recorded
climits covored by this teport of work. \square

Certification Verifying Report of Work

[^1]Ministry of
Northern Development
and Mines
Ontaric
28

Expenditures (excludes power stripping)

Instructions
Total Days Credits may be opportioned at the claim holder's choice. Enter number of days credits por claim solected in columns at right.

Mining Claims Traversed (List in numerical sequence)					
Prefix	Iining Cisim Numbiver	$\begin{aligned} & \text { Exxonnt } \\ & \text { Onvs } \\ & \text { O. } \end{aligned}$	-Pretix	Mininọ Claim	$\begin{aligned} & \text { Expend. } \\ & \text { Oaps cr. } \end{aligned}$
S	1042369	80	S	1046901	80
	1042370	80		1046902	80
	1042371	80		1046903	80
	1042372	80		1046907	80
	1042377*	2080		1046908	80
	1042378	80		1046909	80
	1042387^{*}	2080		1046910	80
	1042388	-80		1046911	80
	1042389	80		1046912	80
	1042390	80		1046913	80
	1042391	80		1046914	80
	1042392	80		994096	80
	1092397	00		1042952	80
	1042398	80		. 1042946	80
	1042461	80			
	1042462	- 80		.. 993569	80
	1042467	80		993653	80
	1046886	-80		993654	80
	1046887	80		993655	80
	1046888	80			
	1046898	-80			
	.-1046899	80			
	1046900	80			

*- maximums rcachea.
for Geophysical.
Total number of mining
clains covered by this
report of work.

For Olfice Use Only		Mining Mecorder
Total Days Cr. Rerorded	Dato necorded	
	Onte Approved os nccorded	Brancli Director

[^2]Page 5 of 5

Ministry of
Northern Development and Mines

Report of Work

(Geophysica!, Geological, Geochemical and Expenditures)

Mining Act
2.12320
$\left\{\begin{array}{l}\text { Type of Surver(b) } \\ \text { Address } \\ \text { Surver Company } \\ \text { Name and Address of Author (of Geo-Technical report) }\end{array}\right.$

Date or Surver (irom a tó) Day | Mo. | Yr. | Day | Mo. | Yr. |

Instructions: - Please type or print.

- If number of mining claims traversed exceeds space on this lorm, attach a list.
Note: - Only days credits catculated in the "Expenditures" section moy be entered in the "Expend. Days Cr." columns.
- Do not use shaded areas below.

Mining Claims Traversed (List in numerical sequence)

Special Provisions	Geophyrical	Oavs per Claim
	- Electromagnetic	
Enter 40 days. (This includes line cutting)	- Magnetometer	
For each additional survey: using the same grid:	- Radiomerric	
Enter 20 days (for each)	- Other	
	Geological	
1	Geochemical	
Man Divs MINING DIV Geophysich		Davs per Claim
and enter total(s) here		
A. M. - Redididmetric		
Alrborne Credits		$\begin{aligned} & \text { Days per } \\ & \text { Claim } \end{aligned}$
Note: Special provisions credits do not apply to Airborne Surveys.	Electromagnetic	40
	Magnetometer	
	Rediomeris is. ${ }^{\text {a }}$	40

Expenditures (excludes power stripping)

Type of Work Performed
Performed on Claim(s)
Calculation oi Expenditure Days Credits Total Expenditures $\$$$+\square$Total Days Credits

Instructions
Total Days Credits may be apportioned at the elaim holder's choice. Enter number of days credits per claim selected in columns at right.

For Office Use Only		Mining Recorder
Total Days Cr. Recorded	Date Recorded	
	Date Approved as Recorded	Branch Director

I hereby certify that I have a personal and intimate knowiddge of the facts set forth in the Report of Work annexed hereto, having perlormed the work or witnessed same during and/or after its completion and the annexed report is true.
Name and Postal Address of Person Certifying

(i3) $\begin{gathered}\text { Ministry of Ministry of } \\ \text { Natual }\end{gathered}$
Citario
Resources and Mines
IN SERVICE 1988
HOEX -O LANO Digrosurio

ния	m.n... aommsin
G-4062	SUDBURY
shlp	SUDBUFiY

HESS LAND mitesingisiny
SUDEURY
-
SYMBOLS

DISPOSITION OF CROWN LAMDS

INDEX TO LAND DISPOOSITION

[^0]: I hereby certify that I have a personal and intimate knowlectye of the facts set forth in the Report of Work annexed heteto, having perlormed the work or witnessed same during and/or after its completion and the annexed report is true.

[^1]: I hereby certify that I have a personal and intimate knowledge of the facts set forth in the feport of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.
 Name and Postal Address of Person Certifying

[^2]: I hereby certify that I have a personal and intimate knowiedge of the lacts set forth in the fieport of Work annexpd heleto, having performed the work or witnessed same during and/or after its completion and the annexed repnit is true.
 Name and Postal Address of Person Certifying

