THE BHARTI LAAMANEN MINING INC.
1992 RICHARDSON LAKE EXPLORATION PROGRAM OMIP REPORT

RHODES TOWNSHIP
(G-4096)

SUDBURY MINING DIVISION ONTARIO

Report Prepared By:
Harold Joseph Tracanelli
Exploration Geologist, BEA

February 5, 1993

131 Fielding fload
P.O. Box 700

Lively, Ontario
POM $2 E O$
Tet: (705) 682.3211
fax: (705) $682-2718$

AFFRLLATED COMPANIES:
Bharti Engineering Assoc. Inc.
BLM Mining Services Inc.
BLM Mincon Inc.

February 5, 1993

Edward R. Solonyka, Supervisor
The Incentives Office
Mineral Development Section
Ministry of Northem Development and Mines
5th Foor
933 Ramsey Lake Road
Sudbury, Ontario
P3E 6B5

Dear Mr. Solonyka:
Enclosed please find the required copies of the 1992 BLMI Richardson Lake Exploration Program which was carried out in Rhodes Township (G-4096) during the summer of 1992.

A great deal of effort has been put into the project over the months. The results of the work were shown to be interesting and has made it possible to identify specific areas on the mining claims which may host potential mineral deposits.

Please keep in mind that there has been a modification of the eligible expenses from $\$ 53,775$ to $\$ 65,781$ as specified by Cathie Simon-Leonard on December 22, 1992.

It is hoped that the government incentives can be utilized in the future to continue the ongoing investigative work in the never-ending search for new resources.

If you have any questions or comments with respect to the submitted data, please do not hesitate to contact me.

Thank you very much for your time and attention to this matter. We will be looking forward to the project approval and remittance of the 50% grant for the eligible expenses.

A southward view of Richardson Lake and the BLMI Richardson Lake Property.
A property with the potential for hosting future mineral resource deposits.
Photograph by Harold J. Tracanelli, Exploration Geologist in May 1990.

This report has been respectfully dedicated to the memory of the late

David "Artie" Langdon
1965-1992

BLMI RKHARDSON LAKE PROPERTY
RHDDES TOUNSHIP ONTARD.
Sudburd mining Division.
-
-
-

Figure 2

TABLE OF CONTENTS

1.0 INTRODUCTION 1
2.0 PROPERTY LOCATION AND ACCESS 3
2.1 PROPERTY OWNERSHIP 4
2.2 PROPERTY STATUS 4
3.0 PHYSIOGRAPHY 5
4.0 DEVELOPMENTAL INFRASTRUCTURE 7
5.0 PREVIOUS GOVERNMENT GEOLOGICAL WORK IN THE RHODES TOWNSHIP AREA 9
6.0 EXPLORATION HISTORY 13
7.0 REGIONAL GEOLOGY OF THE RICHARDSON LAKE GREENSTONE BELT AND SURROUNDING AREAS 16
8.0 EXPLORATION PROGRAM 18
8.1 PROSPECTING AND RELATING GEOLOGICAL INVESTIGATIONS AND EVALUATIONS 18
8.2 LINE CUTTING AND GROUND VERTICAL LOOP ELECTROMAGNETIC (VLEM) SURVEY 44
8.3 SURFACE TRENCH EXCAVATING 54
8.3.1 SAMPLE DESCRIPTIONS FROM GEOLOGICAL MAPPING OF TRENCHES BY DAVID A. LANGDON 79
8.4 DIAMOND DRILLING 93
8.4.1 DIAMOND DRILLING SPECIFICATION INFORMATION 96
9.0 CONCLUSIONS 100
10.0 RECOMMENDATIONS 101
APPENDIX I BLMI RICHARDSON LAKE EXPLORATION PROGRAM EXPENDITURES
APPENDIX IA LINE CUTTING AND GROUND VERTICAL LOOP ELECTROMAGNETIC SURVEY EXPENDITURE INFORMATION
APPENDIX IB BACKHOE TRENCHING -MECHANICAL -LABOUR EXPENDITURES
APPENDIX IC DIAMOND DRILLING EXPENDITURE INFORMATION
APPENDIX ID ASSAYING EXPENDITURE INFORMATION APPENDIX IE MANPOWER REQUIREMENTS
APPENDIX IIAPPENDIX IIISUPPORTING FIELD SAMPLE COLLECTION INFORMATION
APPENDIX IV O.M.I.P. CERTIFICATES AND SUPPORTING DOCUMENTATION

LIST OF FIGURES

Foure	Description
Figure 1	Photo view of the BLMI Richardson Lake Property
Figure 2	BLMI Richardson Lake Property Location Map
Figure 3	BLMI Mining Properties (not to scale)
Figure 4	BlMI Richardson Lake Property Part of Rhodes Township Claim Map Scale 1:20,000
Figure 5	BLMI Richardson Lake Property, Rhodes Township Scale 1":600'
Figure 6	Topography of Rhodes Township NTS Series 41-1/14 Venetian Lake Ontario Scale 1:50,000
Figure 6a(i)	Sand and Gravel Inventory Rhodes Township, Sudbury Area Scale 1:500,000
Figure 7	Upping Direction Detailed Sketch "Dead Bird Trench" (not to scale)
Figure 8	Prospecting-Geological Type Work Index Map Scale $1{ }^{1 ": 600}$
Figure 9	Generalized Surface Geology - Approximated Scale 1":600'
Figure 1a (${ }^{(1)}$	Location Access Map Scale 1:250,000
Figure 2a (fin)	BLM Mines (BLMI) Richardson Lake Claim Biock Scale $1^{1}: 600^{\circ}$
Figure 2b	Part of Rhodes Township Claim Map Scale 1:20,000
Figure 3a (\#3)	Region of Geological Map Ontario Geological Survey, Map 2413 Emo, Rhodes and Botha Townships, Sudbury District Scale 1:13, 680 or 1^{-1} to .5 mile
Figure 4a (\%4)	Conductor Response Applied Geophysics W.M. Telford, 1980 Pg. 533
Figure 5a	VLEM Survey Data Profile L0 South
Figure 6a	VLEM Survey Data Profile L1 South

\|	Description
Figure 7a	VLEM Survey Data Profile L2 South
Figure 8a	VLEM Survey Data Profile L3 South
Figure 9a	VLEM Survey Data Profile L4 South
Figure 10a	VLEM Survey Data Profile L5 South
Figure 11a	VLEM Survey Data Profile L7 South
Figure 12a	VLEM Survey Data Profile L8 South
Figure 13a	VLEM Survey Data Profile L9 South
Figure 14a	VLEM Survey Data Profile L10 South
Figure 15a	VLEM Survey Data Profile L11 South
Figure 16a	VLEM Survey Data Profile L12 South
Figure 17a	VLEM Survey Data Profile L3 South
Figure 18a	VLEM Survey Data Profile L2 East
Figure 19a	VLEM Survey Data Profile L1 East
Figure 20a	VLEM Survey Data Profile L0 West
Figure 21a	VLEM Survey Data Profile L1 West
Figure 22a	VLEM Survey Data Profile L2 West
Figure 23a	VLEM Survey Data Profile L3 West
Figure 24a	VLEM Survey Data Profile L4 West
Figure 25a	VLEM Survey Data Profile L5 West
Figure 26a	VLEM Survey Data Profiles - Geophysical Interpretation Notes LO South
Figure 27a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L1 South
Figure 28a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L2 South
Figure 29a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L3 South
Figure 30a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L4 South
Figure 31a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L5 South
Figure 32a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L7 South
Figure 33a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L8 South
Figure 34a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L9 South
Figure 35a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L10 South
Figure 36a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L11 South
Figure 37a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L12 South
Figure 38a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L3 East
VLEM Survey Data Profiles - Geophysical Interpretation Notes L2 East	

Figure	Description
Figure 40a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L1 East
Figure 41a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L0 West
Figure 42a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L1 West
Figure 43a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L2 West
Figure 44a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L3 West
Figure 45a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L4 West
Figure 46a	VLEM Survey Data Profiles - Geophysical Interpretation Notes L5 West
Figure 10	BLMI Richardson Lake Property Grid Index Map Scale 1":600'
Figure 11	BLMI Richardson Lake Property VLEM Profile Peak Plots Scale 1":600'
Figure 12	BLMI Richardson Lake Property 1992 Trenching and Diamond Drilling Index Map Scale 1":600'
Figure 13	Black Hole Trench Scale 1":20'
Figure 14	Dead Bird Trench Scale $1^{\prime \prime}: 20^{\circ}$
Figure 15	Dead Bird Trench, Detailed Sketch (not to scale)
Figure 16	Dog Leg Trench Scale 1":25'
Figure 17	Fautt Trench Scale $1^{\prime \prime}: 20^{\circ}$
Figure 18	Hidden Trench Scale 1":20'
Figure 19	Hill Trench Scale $1^{1 "}: 25^{\prime \prime}$
Figure 20	Last Trench Scale 1":20'
Figure 21	Long Trench, North Part Scale 1":25"
Figure 22	Long Trench, South Part Scale 1":25'
Figure 23	Pine Tree Trench, North Part Scale 1""20'
Figure 24	Pine Tree Trench, North Part Sample Index Map Scale 1":20'

F Figure	Description
Figure 25	Pine Trench, South Part Scale 1":25'
Figure 26	Ridge Trench Scale 1":25'
Figure 27	Small Trench Scale 1":25'
Figure 28	Swamp View Trench Scale 1":20'
Figure 29	BLMI Richardson lake Property 1992 Trenching and Diamond Drilling Index Map Scale 1 ":600'
Figure 30	BLMI RL-92-01 -45 ${ }^{\circ}$ to -40 Geological Cross Section Scale $1^{\prime \prime}: 50^{\circ}$
Figure 31	BLMI RL-92-01 Sample Locations Scale 1":50"
Figure 32	BLMI RL-92-01 Sample Locations, Copper Geochemistry Scale $1^{1 ": 50}$
Figure 33	BLMI RL-92-01 Sample Locations, Lead Geochemistry Scale $1^{\prime \prime}: 50^{\prime \prime}$
Figure 34	BLMI RL-92-01 Sample Locations, Zinc Geochemistry Scale 1":50'
Figure 35	BLMI RL-92-02 -45 ${ }^{\circ}$ to -45.5 ${ }^{\circ}$ Geological Cross Section Scale $1^{\prime \prime}: 50^{\circ}$
Figure 36	BLMI RL-92-02 Sample Locations Scale 1":50'
Figure 37	BLMI RL-92-02 Sample Locations, Copper Geochemistry Scale $1^{\prime \prime}: 50^{\circ}$
Figure 38	BLMI RL-92-02 Sample Locations, Lead Geochemistry Scale 1":50́ㅗㅇ
Figure 39	BLMI RL-92-02 Sample Locations, Zinc Geochemistry Scale $1^{\prime \prime}: 50^{\circ}$
Figure 40	BLMI RL-92-03-45 ${ }^{\circ}$ to -470 Geological Cross Section Scale $1^{\prime}: 50^{\prime}$

Figure	Description
Figure 41	BLMI RL-92-03 Sample Locations Scale $1^{\prime \prime}: 50^{\circ}$
Figure 42	BLMI RL-92-03 Sample Locations, Copper Geochemistry Scale 1":50'
Figure 43	BLMI RL-92-03 Sample Locations, Lead Geochemistry Scale $1^{-1}: 50^{\circ}$
Figure 44	BLMI RL-92-03 Sample Locations, Zinc Geochemistry Scale $1^{\prime \prime}: 50^{\prime}$
Figure 45	BLMI RL-92-04 -55 ${ }^{\circ}$ to -56.5 ${ }^{\circ}$ Geological Cross Section Scale $1^{\prime \prime}: 50^{\prime}$
Figure 46	BLMI RL-92-04 Sample Locations Scale 1":50'
Figure 47	BLMI RL-92-04 Sample Locations, Copper Geochemistry Scale $1^{\prime \prime}: 50^{\circ}$
Figure 48	BLMI RL-92-04 Sample Locations, Lead Geochemistry Scale 1":50'
Figure 49	BLMI RL-92-04 Sample Locations, Zinc Geochemistry Scale $1^{\prime \prime}: 50^{\circ}$

LIST OF DRAWINGS

Drawing	Description
Map 1	BLMI Richardson Lake Property S-1095080 Geological Plan Scale $1^{\prime}: 50^{\prime}$
Map 2	BLMI Richardson Lake Property VLEM Survey Scale $1 ": 50^{\prime}$

ACKNOWLEDGEMENTS

The completion of the 1992 BLMI Richardson Lake Exploration Program could not have been possible without the grateful participation of several parties involved.

David A. Langdon was certain that the property was not a "Dog" and it is most unfortunate that David is not with us to see the potential fruits of his labour. Many thanks must be given to the Ecuadorian professionals Gabriel Valenzuela and Efrain Gonzalez for their very active participation and debates while studying the various metalvolcanic sequences in the western areas of the BLMI property.

Thanks should also be given to the Laamanen Construction excavating crew and Larry Salo of Sparta Diamond Drilling for a number of important jobs being very well done.

A great deal of thanks must be given to Maryann Foy for her persistence and patience with respect to the final production of this report.

1.0 INTRODUCTION

Over much of 1992, an extensive amount of exploration type work was carried out on the BLMI Richardson Lake Property in Rhodes Township located approximately 35 miles north, northwest of Sudbury, Ontario. This mining property is situated within the Richardson Lake Greenstone Belt consisting of mafic to felsic metavolcanic and metasedimentary rocks.

The Richardson Lake Greenstone Belt is thought to be genetically related to the Benny Greenstone Belt to the southwest and the Parkin Greenstone Belt to the east. These once interconnected groups of volcanic rocks probably made up a quite large volcanic terrain.

Base metal mineral deposits are known to exist in both the Benny and Parkin Belts while a number of base metal prospects have been discovered in the Richardson Lake Belt.

Primary interest in the Richardson Lake Greenstone Belt has been concentrated around the exploration of the iron bearing formations found throughout the belt. Exploration work concentrating on developing the potential iron deposits appears to have begun as early as 1904. There is little evidence to suggest that other metals other than iron were being explored for. The Algoman metasediments in the Rhodes Township area were identified as the western extension of the Hutton and Parkin Iron Ranges. For many years there are no available records indicating that precious or base metals were discovered, even though certain geological formations were probably encountered which today are well known to be favourable hosts for mineral deposits.

The old records show that no gold or base metal exploration work was carried out in the Richardson Lake area until 1933 or 1934. The first recorded prospector to work the ground now held by BLMI was Thure Holmstrom. Possibly spurred on by the ongoing development at the Geneva Lake Mine in the early 1930 's, Holmstrom prospected and staked two mining claims on what is now the BLMI Richardson Lake Property, on January 22, 1934. Hoimstrom worked the claims for a short time, blasting and digging trenches before allowing the claims to lapse. Between the years 1934 and 1990 there were no mining claims staked over the area under current investigation. In the spring of 1990 after hearing reports of a new copper showing being found northwest of Richardson Lake and by utilizing former documents, attempts were made to relocate the old Holmstrom workings. During this reconnaissance investigation the badly overgrown trenches were relocated after 57 years. Following the relocation of the workings, a series of claims were staked to secure the main trench-showing areas as well as the along strike extent of the general geology.

In the fall of 1990 Falconbridge Ltd. took an interest in the belt and proceeded to stake over 100 claims to cover a large portion of the metavolcanic sequences. A winter program of line cutting and ground VLF-EM and magnetics was undertaken in early winter of 1991 by BLMI over the entire Richardson Lake Property. The results of the survey were considered to be encouraging and future fieldwork was recommended which included the running of a soil sampling program and reconnaissance geological investigations were carried out during the 1991 field season. The results of the 1991 work were found to be encouraging and recommendations for work to be carried out in 1992 were made.

An OMIP grant was secured in the later winter of 1992 which allowed for the initiation of prospecting geological type investigations, line cutting and VLEM geophysical surveying, followed by surface backhoe trenching and finally diamond drilling.

The work was designed to test the highly altered and deformed mineral bearing felsic metavolcanic rocks, which are known to strike for several hundreds of feet across the BLMI property. The detailed investigative work has shown that these mineral bearing metavolcanic rocks have an estimated strike length of at least $\mathbf{4 0 0 0}$ feet. More work shall have to be carried out in order to test the mineral potential along this favourable strike length area.

Petrographic investigations of this favourable mineral bearing environment may indicate the presence of potential volcanogenetic massive sulphide deposits within these rocks. The results of the geological, geochemical, geophysical, trenching and diamond drilling type work carried out over the property may reveal information that might indicate possible buried mineralization on the property.

A considerable amount of useful information has been presented including geological - geophysical maps, trench plans, diamond drill logs and cross sections, etc.

In conclusion, all of the work which has been carried out on the BLMI property has been valuable in identifying potential mineral bearing environments which may host valuable mineral deposits.

So far most of the assaying results obtained from both the surface trenching and diamond drilling have not been overly encouraging. The most promising results of the work have shown that the strong alteration zone is clearly identifiable at depth. This should be considered encouraging since so little of the zone has been tested that there would appear to remain plenty of room for a mineral deposit to have developed.

The favourable strong alteration of the felsic metavolcanics and the contacting amphibolites appear to be open along strike and at depth and should be tested further.

2.0 PROPERTY LOCATION AND ACCESS

The Richardson Lake Property consists of 4 contiguous 40 acres +1 - mining claims, numbered S-1095077, S-1095078, S-1095079 and S-1095080, located in Central Rhodes Township, Sudbury Mining Division (G-4096), approximately 35 air miles north-northwest of the City of Sudbury, Ontario.

Present access to the property can be made through a series of good logging roads, constructed by E.B. Eddy Forest Products, which run northeast from Highway 144 north, just outside of Benny, Ontario. Good access directly onto the property can be afforded by float plane or boat by travelling south along the western shore of Richardson Lake. Access onto the property can also be obtained by way of a $4000 \mathrm{ft}+/$ - bulldozer trail which was established off of a small bush road branching off of the main E.B. Eddy access road. Please refer to Figures 3, 4 and 5.

BlMi Mining Properties

Reservations-400 foot Surface Rights reservation around all lakes and rivers. Sand. eraves and pelt resurved.

Including land under water
R. 9007.00270

2.1 PROPERTY OWNERSHIP

The existing 4 claim, 160 acre BLMI Richardson Lake property was staked by Harold J. Tracanelli in the early summer of 1990, who is presently employed as an exploration geologist with Bharti Engineering Associates Inc. (BEA) of Lively, Ontario.

Bharti Laamanen Mining Inc. (BLMI) holds a 100% interest in the mining claim group and is presently responsible for supplying the necessary exploration funds required to conduct various exploration endeavours. A significant amount of the exploration funding was provided by the Ontario Provincial Government through the O.M.I.P. program, in order that specific work could be carried out. In later winter of 1992 an O.M.I.P. grant was secured, allowing various types of exploration work to be carried out on the property during the summer months of 1992. Monies spent on the BLMI property were credited to Bharti Engineering Associates Inc. for work carried out on the property by BEA on behalf of its parent company BLMI. Please refer to the attached abstracts for property ownership.

2.2 PROPERTY STATUS

Recent work carried out on the Richardson Lake Property under the direction of this Writer which included prospecting, surface trenching and diamond drilling have been undertaken in an attempt to more thoroughly evaluate the base and precious metal potential of the mining property. All relevant exploration functions will at some point in the near future be converted into dollar value assessment work credits which will allow the claims to remain in good standing for a number of years into the future.

Various exploration endeavours undertaken on the property in the summer of 1992 will allow the mining claims to remain in good standing for about 15 years provided that the banked assessment credits are maintained and updated.

3.0 PHYSIOGRAPHY

The Emo, Rhodes and Botha Township areas which includes the BLMI Richardson Lake property, occur within the Canadian shield and have characteristic low relief of isolated to interconnected swamps to glacial debris areas and deposits which can be interrupted by random protruding rock outcroppings.

The general elevation throughout the area is approximately 1475 feet above sea level, with the average topographic relief ranging from 100 feet to 330 feet. The highest point in Rhodes Township is 1679 feet above mean sea level and is located approximately 2600 feet east of the BLMI property.

The topography of the area generally shows a relationship to the regional fabric of the bedrock lithology, structures and the deposition characteristics of the assorted glacial debris deposits laid down in the area.

The early Precambrian granitic rocks, quartz sandstones of the Lorrain Formation and those metavolcanic rocks with inherent primary fabric occurring somewhat parallel to the abrading trend of glaciation, can be quite resistant to erosion and form high, often barren rocky hills. The amphibolite rich rocks in the are tend to form pronounced hills, easily visible in the area.

Under most circumstances the Early Precambrian archean metavolcanic, metasedimentary rocks and the Proterozoic siltstones and conglomerates of the Gowganda Formation are generally less resistant to erosion and can be found at lower elevations.

Lakes and swamps are numerous throughout the area. The largest bodies of water found within the township include Friday Lake, Rhodes Lake, Richardson Lake and Bennet Lake which are drained through a series of straight to meandering course creeks and swamps which ultimately drain and are part of the upper Onaping River drainage system.'

Climatic conditions in the area can be quite variable throughout the seasons. Summers are often hot and humid due to the large presence of swamp water, while winters are often cold and dry. Due to a significant height of land located between the Sudbury Basin and Cartier, Ontario, various weather conditions can be affected and are notable in the Richardson Lake area. To the north of the height of land such as the Richardson Lake area, often receive less rain or snow and see greater temperature variations than Cartier or Levack, Ontario, located only 12-15 miles to the south.

[^0]Throughout the past 60 to $\mathbf{7 0}$ years, large portions of the timber resources in the area were cut down by the KVP Company and most recently by the E.B. Eddy Company. What remains today is scattered stands of Red and White Pine, various species of Spruce, Poplar and White Birch. Within low swampy areas, Alders, Tamarack, Cedar and other brush wood species can be found. In those areas which have been logged or burnt as a result of forest fires, the most prominent tree species is the Balsam Fir which covers vast areas as very thick masses. Occasionally Birch, Poplar, Spruce and Hazels can be found growing amongst the Firs.

Widlife species in the area include Moose, Deer, Black Bear, Fox, Wolf, Beaver, Muskrat, etc. Fish species found in most of the lakes and large creeks include Northern Pike, Yellow Pickerel, Small Mouth Bass and Speckled Trout.

Much of the area's timber resources have been exploited athough there remains a number of localized pine tree stands yet to be harvested. With the recent construction of the new network of logging roads into the township, there are now certain accessible areas which could host sizeable aggregate deposits.

As with the limited timber resources, the aggregates could be potentially utilized for future potential mineral developments in the area.

Please refer to Figure 6 and $\mathbf{6 a (i)}$.

RHODES TOWNSHIP, OntarIO I:50.000
venetian lake

$$
41-1 / 14
$$

figure 6.

4.0 DEVELOPMENTAL INFRASTRUCTURE

In the event that a sizeable economically viable mineral deposit is located on the BLMI Richardson Lake Property, the present infrastructure of the area would, it is hoped, make it far less difficult to develop than a lot of other mienral deposits located in more remote regions of the province.

Currently there is good road access to within 3000 to $\mathbf{4 0 0 0}$ feet +1 - of the mining property. A short section of the road could easily be established and built up, utilizing the local aggregate materials as an inexpensive source of fill.

The property is 65 road miles northwest of Sudbury, Ontario. Approximately 46 miles of the route is over the paved Highway 144 north while the remaining 19 miles is over a solid bottom gravel road which would currently need minor upgrading by placing down fine grained aggregates and/or grading. Currently the 19 miles of gravel road and bridges are not being maintained by the Ministry of Natural Resources. The bridges have been well constructed of large timbers and steel beams and should remain in good condition for several years to come. The gravel road on the othe hand is gradually growing in with brush wood and is riddled with potholes and washboard. Windfalls and the washing out of culverts under the road due to the increased beaver population is becoming an ever increasing problem.

Some timber resources with sizeable dimensions should be readily available to be utilized for certain mining requirements, etc.

Throughout the immediate area, large deposits of mainly coarse grained aggregates would be readily available for use. Some screening of the aggregate materials would most certainly have to be carried out to render the materials of use. No large fine grained sand deposits are known to occur in the area.

Unlimited access to water for assorted mining purposes etc. is available from Richardson Lake. Low swampy-gully areas with slow drainage characteristics would make the area suitable for settling ponds, tailings, mine water disposal sites, etc.

The closest source of hydroelectric power is located at Dowes Lake, approximately $\mathbf{3}$ miles north of Cartier, Ontario and approximately 22.5 miles southwest by road from the property.

Railway siding facilities are located at the Village of Benny, in Moncrieff Township, approximately 20 miles by road from the property.

Labour and equipment are readily available throughout the Sudbury Basin area, 1.0 to 1.5 hours drive from the property.

5.0 PREVIOUS GOVERNMENT GEOLOGICAL WORK IN THE RHODES TOWNSHIP AREA

As early as the 1890's government geologists have trekked into the area to study the various geological formations, mineral bearing occurrences, etc. Although several workers have studied the area, none of the work can be said to have been carried out in any great detail. No specific area within the government mapped region can be said to have been studied in such detail that nothing of consequence remains to be discovered. On the contrary, it has been shown that the more intensely the area is being looked at by explorationists and government geologists alike, the more it has been shown that the general geological arrangement may be quite different than that which is generally or originally envisioned. In fact, much of the geological environment looks to be quite favourable for hosting potential mineral deposits. It is the explorationist's job to identify such mineral deposits and to evaluate them in such a fashion as to determine their potential exploitability.

A general summarization of the past government work can be best described by Dressler 1980.

> The first geological work in the area was carried out by Robert Bell. During the period $1880-1890$ he investigated the Sudbury map-area. His report (Bell $1890-1891$) contains descriptions of the rocks seen along Onaping Lake.
> W.H. Collins (1917) mapped the Onaping map-area. His map was presented at a scale of 4 miles to 1 inch and includes the present area of interest.
> The following geological reports on neighbouring townships, including geological maps at a scale of $1 / 2$ mile to the inch, have been published:
> K.D. Card and H. Meyn, (1969): Geology of the Leinster-Bowell Area.
> H. Meyn (1971): Geology of Roberts, Creelman and Fraleck Townships.
> H. Meyn (1973a): Geology of Sweeny, Beaumont and the Beresford Townships.
> A preliminary geological ompilation map (Card 1967) has been issued by the Ontario Department of Mines. It includes the present area of interest.
> The area is also covered by aeromagnetic maps of the Geological Survey of Canada, Venetian Lake Sheet, Map $1519 G$ (GSC $1965 a)$ and Pogamasing Sheet, Map $1525 G$ (GSC 1965b).
> Preliminary geological maps of the preent area have been published in 1976 (Dressler 1976a, b, c).

Of noteworthy mention to the above is some limited small scale work carried out by J.E. Thomson, Assistant Provincial Geologist. In late November of 1949 Thomson examined the Thure Holmstrom

[^1]lead, zinc, copper and silver prospect on Venetian lake in botha Township. Thomson briefly described the geology, collected a number of the mineralized samples for analysis and went on to recommend a few drill holes to be put down in the vicinity of the mineralized showings.

During the same time period Thomson went on to examine sulphide mineralization found on the original Holmstrom property, now the BLMI Richardson Lake Property, on Mountain Lake (now Richardson Lake). Only a couple of samples were taken. There does not appear to be any evidence to suggest that a detailed geological examination was ever carried out in the area. ${ }^{3}$ The results of the sample analysis showed only low gold values while lead, zinc, copper, etc. were not assayed.

In mid July of 1991 Mike Cosec from the Sudbury Resident Geologist's office was brought into the BLMI Richardson Lake Property. An examination was carried out and a number of samples were collected for analyses. A short summarization was prepared which included some brief recommendations ${ }^{4}$ which are presented as follows from the Ministry of Northern Development and Mines staff geologist's note:
> "BLM Mines Incorporated, now Bharti Laamanen Mining Inc. (BLMI) is currently exploring their property in Rhodes Township. A recent visit by staff of this office revealed the property is underlain by amphibolite grade mafic metavolcanic rocks in fault(?) contact with felsic metavolcanic flow rocks. The felsic units host minor finely disseminated magnetite, arsenopyrite and pyrrhotite. Several zones of massive pyrite are also found in brecciated felsic rocks. These zones have been referred to as the "Holmstrom" showing, but no data exists on the property. Precious and base metal assays are currently being conducted on several grab samples.

I recommend gret stripping to expose rocks in the area of the main showing, and along buried contacts."

Further evaluations of collected data prompted Mike Cosec to submit a more formal and detailed description of his findings which are presented as follows:

PROPERTY EXAMINATIONS

T. Holmstrom (Richardson Lake) Occurrence

This small sulphie occurrence is located near the west shore of Richardson Lake in Rhodes Township at UTM co-ordinates 470800 E 5196900 N , approximately 55 km from Sudbury. Access is by bush road from Cartier or float plane to Richardson Lake.

No previous information has been published, and only some handwritten

[^2]correspondence from the $1930^{\prime} \mathrm{s}$, by T. Holmstrom, who is known for the discovery of several precious and base metal occurrences in the area, particularly Botha Township to the east. Holmstrom conducted trenching on at least two different sulphide zones which were observed by the Author. Other work appears overgrown. Bharti Laamanen Mining Cin. recently re-discovered this work and staked four claims over the ground. The occurrence is found on claim S -1095077. Outcrop coverage on the claims is relatively sparse. In 1991 the company completed trenching on the old workings, magnetometer and VLF electromagnetic geophysical surveys and limited geological mapping over the entire property (Sudbury Resident Geologist's assessment files). The regional geology has been described by Dressler (1980).

The area in the vicinity of the claims is underlain by east-trending Archean mafic metavolcanic rocks termed by Dressler (1980) as amphibolite, as well as intermediate to felsic metavolcanic rocks. Some iron formation is present within the amphibolite and at the amphibolite-intermediate to felsic metavoicanic contact. These have been intruded by granitic rocks, particularly to the north. Paleoproterozoic Huronian Supergroup sedimentary rocks unconformably overlie, or are in fault-contact with the Archean units.

The amphibolite in the area of the showing is fine to medium-grained and well foliated with bands of feldspar, quartz and homblende. The rock is dark green to black and locally weathers dark brown. Foliation appears to strike 280° and dip $40^{\circ} \mathrm{S}$. The bands are up to 10 cm wide and exhibit tight, small scale folding in hand specimen. Thin section analysis shows hornblende altering to epidote and chlorite. The amphibolite-intermediate to felsic metavolcanic contact is sharp and trikes 290° and dips $85^{\circ} \mathrm{S}$. The itnermediate to felsic unit appears fine-grained to aphanitic, light grey to light green and wethers grey to buff. Fine laminations are present and may be representative of a primary sedimentary structure, however, most features have been obliterated by alteration. The rock appears highly epidotized in hand specimen and the thin section reveals plagioclase crystals are highly saussuritized.

Zones of sulphide mineralization and gossan are present at the contacts of the amphibolite-intermediate to felsic metavolcanic rock in the trench. The only sulphide observed was fine to medium-grained pyrite. It occurs either massive or strongly disseminated through the intermediate to felsic metavolcanic unit associated with pervasive silicification. Quartz veins, from 1 to 10 cm wide, mimic the trend of the units (i.e., 290°). The massive pyrite from the trench assayed 1.7 ounces Ag per ton and 0.003 ounces Au per ton (Temiskaming Testing Laboratories, Cobalt). The disseminated pyrite lacked precious metals. A possible fault, trending 300°, cuts the amphibolite in the north end of the trench, but does not appear to ahve any impact on mineralization or alteration. Approximately 30 m east-southeast of the trench, on the shore of Richardson Lake, is a small outcrop of weak, finely banded iron formation. It is essentially composed of magnetite and chert, with compositional banding in the magnetite beds up to 10 mm thick. Minor pyrite is also present within the magnetite beds. Lorraine Formation quartzite unconformably overlies the Archean units in the northeast.

The recent geophysical surveys by Bharti Laamanen Mining Inc. suggest some magnetic anomalies may represent mafic dikes. However, none have been mapped in the immediate area. The VLF electromagnetic survey. has identified a northwesttrending conductor approximately 100 m east of the trench (Lambert, G andTurcotte, R, 1991). This conductor may be an extension of the exposed sulphide zone. The company plans to conduct trenching over this conductor and detailed geological mapping over the claims in 1992.

In the early fall of 1992 Mike Cosec had an opportunity to examine the freshly explosed geology in the newly excavated trenches as well as some freshly drilled core from diamond drill hole RL-92-02.

Mike carefully examined the surface trenches and carried out some mapping and rock and mineral sampling exercises. The results of his field findings are to be reported within the MND \& M 1992 Resident Geologist's Annual Report which is currently in press.

Thanks should be given to Mike Cosec, who, like the geologists at BEA, are very interested in the geology of the area, but are having a difficult time in sorting out the geological arrangements, timeframes, etc.

In conclusion, there has not been a lot of meaningful detailed government geological actiity in the area since the preliminary fieldwork carried out by Dressler in 1975.

There are some important new findings which have been made since Dressler carried out his work over 16 years ago.

The recent discovery of copper. lead, zinc and silver mineralization in the Richardson Lake area may renew government interest, which may spur the initiation of a truly detailed study of the area geology which may ultimately lead to renewed exploration activities and lead to the potential discovery of valuable mineral deposits.

6.0 EXPLORATION HISTORY

Throughout the years as long as there have been people travelling over the major water routes inthe area, across portages, etc. there has probably been those persons who have at least quickly glanced at, or broke away, fresh rock for further examinations. Since the Onaping River system was often navigated by trappers, loggers and hunters, it is conceivable that prospecting could have taken place well over 100 years ago.

The first government work was carried out by geologist Robert Bell in 1888 to 1890, describing the rocks of the Onaping Lake area. Bell may have helped to expose and identify this new mineral exploration area to prospectors.

There is at this time very little evidence that exists other than the occasional overgrown trenches or pits which would indicate that previous work had ever been carried out in the area. Unfortunately there is very little documentation to support most of this very old work, even if on ground evidence were found.

In most instances it is very difficult to determine precisely what commodity might have been sought. What little information is available is primarily in the form of public assessment files or private estate documents. It would appear that the main focus of exploration activities were somewhat centred around the search for iron ore deposits.

In 1904 M.T. Culbert studied the known iron deposits in the Hutton Township area about 18 miles to the southeast. Over time the iron formations found within the mafic metavolcanics were traced northwestward into and across Roberts, Botha, Rhodes and Emo Townships. With the discovery of the iron formation came the prospectors and exploration-mining companies ready to exploit the resources during the periods of high demand.

During this period various mining and logging roads were developed, which allowed for easy access to the areas allowing for the additional exploration for iron to be carried out. According to the available documentations, only iron was extensively explored for, with little apparent attention being paid to precious or base metals.

An extensive search through the government records has shown that most of the activity was restricted to a narrow band of mafic metavolcanic rocks which was known to host the iron-bearing formations. Very little or no exploration attention was directed towards the northern areas of the volcanic belt within the felsic suite of rocks west and north of Richardson Lake. The first and only
mining claims that were staked on what is now the BLMI Richardson Lake Property, numbered S-25747 and S-25748 were staked on January 22, 1934, and held by Thure Holmstrom. It is believed that these original claims were staked to secure a strong sulphide showing near the western shore of what was then known as Mountain Lake, now Richardson Lake. A large blasted pit and a couple of smaller hand-dug trenches containing appreciable amounts of sulphide mineralization are believed to be part of the original Holmstrom workings and were found to be heavily overgrown with large trees and brush when rediscovered in 1990 after 57 years. Up until 1990 there was no government information found to indicate the location or results of work carried out in the area. Only by examining private documentation from the thure Holmstrom estate was it possible to relocate the old workings.

Throughout the Emo, Rhodes and Botha Township areas, Thure Holmstrom, who was thought of as somewfhat of a loner and is believed to have prospected extensively throughout the area in search of iron, precious and base metals. Thure Holmstrom operated a tourist business from his Onaping Lake Lodge and most likely would have been able to travel extensively throughout the adjacent townships. In the 1930's Thure Holmstrom discovered a very good looking lead and zinc showing at Venetian lake in Botha Township.

Although Holmstrom is most noted in the documentation for working around the iron deposits south. west and east of the BLMI ground, locals claim that he discovered gold on Bennet Lake and elsewhere around the Township, but liked to keep things quiet and to himself.

Detailed prospecting expeditions in 1990 west of Richardson Lake by prospector Ted Miron of Sudbury resulted in the discovery of a strong zone of chalcopyrite and silver mineralization in a veined shear zone occurring within basaltic rocks. A short distance to the south, Miron discovered a large quartz vein in metavolcanics extending along strike for a few hundred feet and was found to carry gold in the 0.05 oz /ton gold range.

In 1990 and 1991 detailed geology, geophysics and geochemistry investigations were carried out by the BLMI exploration crew and lead to the discovery of strong base metal mineralizations associated with altered felsic metavolcanics near the contact with mafic metavolcanics. The detailed work has indicated that the mineralization occurs within a northwest trending zone, several feet thick with an estimated strike length of at least 4000 feet.

In the early fall of 1990 Falconbridge Limited acquired a large block of claims in Rhodes Township completely surrounding the BLMI group. In late December of 1990 the company commissioned an airborne geological survey to be flow over what the company called the Rhodes Township VMS Project. The results of the airborne survey has indicated several anomalies located between the BLMI
claims and the known iron formation a short distance to the south. One of the anomalies detected by Falconbridge was found to strike well into the BLMI ground.

The Falconbridge Limited airborne anomaly $R 8$ has an estimated length of 1100 meters $+/$ - and was found to trend deep into the BLMI claims, somewhat paralleling the western shore of Richardson Lake. Approximately 800 meters of the anomaly occurs within the BLMI claims and may represent mineralization on a geological contact.

Recent geological investigations on the BLMI claims have confirmed the presence of base metal mineralization near the contact of the mafic and felsic metavolcanics in the area. ${ }^{6}$

Exploration work carried out on the property during the summer of 1992 included extensive surface trenching and limited diamond drilling which revealed the presence of low but probable anomalous base metal values within a variety of highly complex rocks.

A lot of more detailed type work shall have to be carried out on the ground including a systematic evaluation of the existing data in an attempt to answer the multitude of questions created as a result of the recent work.

The more intense detailed work carried out in 1992 allowed for some sorting out of the geology and to explore certain concepts or models that may ultimately help to identify a potential mineral deposit.

In many instances attempts to solve certain geological problems with more intense forms of work, i.e. trenching, diamond drilling often created larger problems which have yet to be solved.

In conclusion, the discovery of a number of well mineralized geological formations in the unexplored areas north and west of Richardson Lake should be considered significant and may be indicative of future mineral deposits yet to be discovered.

6 A Geotem REM and magnetic survey
Rhodes VMS Project, Rhodes Township, Ontario. For Falconbridge Limited, Chris Vaughan, Chief Geophysicist and Glenn Boustea, P. Eng. Geophysicist, May 1991

7.0 REGIONAL GEOLOGY OF THE RICHARDSON LAKE GREENSTONE BELT AND SURROUNDING AREAS

The Richardson Lake Greenstone Belt which is most extensive throughout the southern half of Rhodes Township and is underlain by Early Precambrian massive metavolcanics-metasediments to ortho or paragneiss. These are the oldest rocks in the region and are thought to be genetically related to those volcanogenetic rocks found in the Benny or Geneva Lake Greenstone Belt to the southwest and the Onaping-Marshay-Dublin Township greenstone enclaves found to the north-northwest. It is conceivable that these more or less segmented belts of rock were once part of the large Abitibi volcanic terrain. Near the closing periods of the Early Precambrian, vast volcanic regions were intruded by large masses of assorted granites. The emplacement of the granitic rocks, as well as the advent of much later erosion, ultimately began the process which has led to the current positioning of the various greenstone belts as they are seen today in the areas north and west of the Sudbury Basin.

The most active period of geology is thought to have occurred in the early Precambrian. It is within the early Precambrian that most of the mineral deposits were thought to have formed, particularly those thought to be of volcanogenetic origin. Archean mineral deposits in the region include the former Geneva Lake Pb, $\mathrm{Zn}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$ Mine, Stralak $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Cu} \mathbf{A g}, \mathrm{Au}$ deposit, Venetian lake $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Cu}$, Ag prospect, Zinc Lake-Marshay Township Zn, Pb prospect and the Dublin Township Pb, Zn prospects. These mineral deposits and prospects are thought to have a volcanogenetic origin. Algoman type magnetite-iron mineralization found within mafic metavolcanics and fine grained metasediments occur primarily throughout the Richardson Lake Belt and extending eastwards and may have been formed around the same time as the sulphide deposits.

Middle Precambrian or Proterozoic Huronian Supergroup of metasediments, consisting of fine or coarse clastic debris to fine grained carbonated sands or muds were deposited upon the Archean basement unconformity.

Throughout the Richardson Lake Greenstone Belt most of the Huronian rocks are confined to the western areas and consist of Lorrain Formation quartzites overlying Gowganda Formation conglomerates and sandstones. Isolated embayments or fault block segments of these metasedimentary rocks can be found scattered amongst the greenstone areas and are a manifestation of a once far more expansive cover of sediments which have since been eroded away.

Late in the Proterozoic period large, irregularty shaped bodies of Nipissing type diabase intruded into the Huronian metasediments and Archean metavolcanics of the Richardson Belt. These sill or dyke-like
features are most prominent in Botha and Roberts Townships, but do occur on a minor scale just west of Richardson Lake in Rhodes Township and possibly to the west in Emo Township.

Irregular masses and inclusions of Sudbury Breccia, pseudotachylite and ultramylonite dykes and veins are thought to have followed the emplacement of the Nipissing type intrusives and are commonly found throughout the volcanic-granitic and metasedimentary terrains for many miles north of the Sudbury Basin.

Middle to late Precambrian northwest and minor northeast trending olivine diabase dykes are quite common throughout the region. These dykes appear to occur more commonly with the granitic rocks, less commonly in the metavolcanic rocks and are not known to intrude the Huronian rocks. The Huronian sediments-Olivine diabase age relationship is disturbing and is a geological enigma, particularly in the Richardson Lake and Benny Greenstone Belt areas.

Structural events throughout the region include multiple folding and faulting episodes which are thought to have occurred throughout the Precambrian. Regional folding and faulting in conjunction with local variations most certainly would have played an important role in the large scale positioning of terrains.

Structural episodes may have also been responsible in aiding the development, remobilizing-contouring etc. of potential mineral deposits.

8.0 EXPLORATION PROGRAM

The 1992 BLMI Richardson Lake Exploration Program can essentially be broken down into four main categories or components, being:

1. Prospecting and related geological investigations and evaluations.
2. Line cutting and ground vertical loop electromagnetic (VLEM) survey.
3. Surface trench excavating.
4. Diamond Drilling.

Each of the categories or components shall be discussed and will include information on the findings of the work carried out etc.

The following pages will describe the work that was carried out as part of the 1992 exploration program. Various plans, cross sections, sketches, rock and mineral specimen descriptions, assay data, etc. have been included.

8.1 PROSPECTING AND RELATED GEOLOGICAL INVESTIGATIONS AND EVALUATIONS

As part of the 1992 bLMI Richardson Lake Exploration Program, it had been decided that much more detailed prospecting and geological investigations should be undertaken over in some of the outer reaches of the company's mineral claims.

Much of the work that had been undertaken in the past up to the time of the start of the 1992 program essentially consisted of undertaking very systematic exploration such as air-ground geophysics, soil geochemistry and some selective detailed geological mapping.

Although the geophysical and geochemical surveys were carried out over the entire property, the geological work was essentially restricted to the central portion of the mining claims. It is within the central area of the property where the favourable amphibolite-felsic contact alteration horizon occurs, that the most intense work was carried out.

Prior to 1992 little or no really good prospecting was ever carried out in the southern part of the claims, nor were there really any attempts to study in detail the geological makeup of the ground.

In the northwestem part of the property rocks which were initially examined in 1990 and 1991 were carefully re-examined in 1992 to reveal some very interesting characteristics not previously noticed.

In order to carry out the detailed work on the claims and to assist the exploration geologist with various other related duties, David a. Langdon, formerly of Sudbury, was hired on part-time with Bharti Engineering Associates Inc. (BEA).

David acquired an Honours B.Sc. Degree in geology from Laurentian University in Sudbury, Ontario in 1988. David actively participated in various facets of exploration, working with such companies as Lamontagne Geophysics, Falconbridge Exploration, A.C.A. Howe, Noranda Exploration, etc. before joining BEA in early May of 1992.

David Langdon died in early August of 1992 at Boston Creek, Ontario and only spent a short period of time with BEA.

From mid May into June of 1992 David spent a considerable amount of time prospecting and investigating the various geological aspects of the mining claim S-1095080.

The objectives of the work were to try and determine, subdivide and generally attempt to understand the makeup of the geology, alteration, structures, etc. It is well known that previous workers who have studied the area rocks have had a difficult time in correlating the complex amphibolite rocks. For the most part much of the area studied was made up of amphibolites. As Dressler had mentioned in G.R. 196 (1980), the BLMI crew members discovered with much frustration that it is almost impossible to correlate or follow volcanic horizons within the amphibolites.

It is a fairly simple matter to subdivide the amphibolite grade metavolcanic with the apparently lower grade felsic metavolcanics by noting the location of the often visible contacts. The characteristic trend and appreciation of how these two rock types are oriented are best observed on a regional scale.

At the more local scale, even these two obviously different rock types show their complexity due to the various, not very well understood, geological circumstances that have taken place. Both the amphibolite and felsic rocks are so complex that it is very difficult at times to determine whether the rock was originally a flow, tuff, synvolcanic intrusive, etc.

The prospecting and geological investigations undertaken by David Langdon were carried out by following along a series of east-west grid lines, which were established earlier by Val d° Or Geophysics in the winter of 1991.

It is understood that all of mining claim S-1095080 had been mapped as a result of the investigations carried out by David Langdon. After his death many of the generated field notes were not recovered and subsequently the information pertaining to the northern part of the claim are missing and therefore could not be plotted.

To date it has only been possible to recover the information for the south half of mining claim \mathbf{S} 1095080. What information was available was plotted at a scale of $1^{\prime \prime}: 50$ feet, showing the location of grid lines, claim lines, rock types, geological contacts, structural and mineralogical alterations.

As a result of the David Langdon work, it has been shown that the general geology is made up of north to northwest striking massive to foliated flows and/or tuffs. These rocks probably represent former mafic to intermediate metavolcanics which have been subject to amphibolite grade metamorphism. The amphibolite rocks were found to dip generally from 40° to $60^{\circ}+l$ - towards the west-southwest. In no instance were there amphibolite rocks dipping towards the east, although at a couple of locations the foliated rocks were found to strike east-northeast and dip steeply north, clearly suggesting some localized folding had taken place.

In the western part of the claim near the base line, a narrow 100-120 foot wide intermediate metavolcanic rock can be found, apparently overlying the amphibolites. The rocks are noted as being made up of undifferentiated massive to andesitic flows or tuffs. The rocks were found to strike northnorthwest and dip at about 50° to the west. The strike and dip of the intermediate rock parallels that of the adjacent amphibolites. Since no actual geological contact was observed between the two rock types, it is difficult to determine for certain if the contacts are conformable with the underlying rocks or are fault controlled, etc. The rocks within the unit are noted to have undergone alteration of intense silicification-bleaching with some local seritization having taken place. The rock was found to host traces of pyrite.

Numerous thin quartz stringers to rare quartz veins measuring up to 2.5 feet wide were found to occur within the altered metavolcanics. The stringers and veins strike from 300° to $340^{\circ} \mathrm{Az}$ and dip towards the southwest. On average the stringers and veins strike from 330° to $340^{\circ} \mathrm{Az}$. It is possible that the stringer/veins developed concordantly to the foliated fabric of the rock.

Secondary narrow northeast trending carbonate-feldspar veins cross cut the altered intermediate rock and stringers which may be genetically related to the northeast trending quartz feldspar porphyry dykes known to cross cut the amphibolite rock to the east. A number of east-west, north-east trending right laterally separated faults may have also played a role in the development of the cross cutting veins.

The highly silicified altered intermediate rock shows quite strong blocky joint sets which is typically observed in such altered rocks.

To the east of the altered intermediate unit within the amphibolites a number of outcrops were found to contain quartz-carbonate stringers with traces of pyrite, hematite, cross cutting the amphibolites as far as $4+00 E$. One apparently narrow band of intensely silicified magnetite bearing intermediate metavolcanic rock was identified at about $4+00 E$ on line $26+00 S$.

Chlorite alteration with localized epidote infillings of the amphibolite rocks can often be observed where the quartz-carbonate stringers have formed.

It would appear at this time that the most intense effects or alteration can be observed within the narrow intermediate metavolcanic unit. The apparent same alteration episodes appear to have caused some of the adjacent amphibolites to become deformed. Alteration minerals such as sericite were observed within the intermediate rocks while the development or alteration to chlorite-epidote and magnetite are commonly typical in the amphibolite rocks.

The effects of the overall alteration within both the intermediate and amphibolite rocks in the base line, $L 24+00$ to $L 26+00$ areas, appear to be visible across a thickness of $400-500$ feet.

At various locations within the amphibolites, the rocks have been intruded by narrow metadiabasemetabasalt and/or metagabbro.

The metadiabase-metabasalt occurs as small bodies in the central and eastern areas of the claims within the amphibolites and may represent former synvolcanic dykes with possible associated basaftic flows. Coarser grained metagabbro dykes or sill-like features were observed within the amphibolites near the western limits of the mining claim and may be genetically related to the metadiabasemetabasalt rocks.

Narrow quartz feldspar porphyry dykes were most commonly found cross cutting the amphibolites, but also rarely occur concordant to the foliation of the rocks.

In the southeast comer of the claim a mass of Sudbury Breccia - pseudotachylite - ultramilonite has been noted directly along the shoreline of Richardson Lake.

Most of the amphibolites in the investigated area were found to host from trace to $\mathbf{1 \%}$ pyrite with lesser chalcopyrite and magnetite. A lot, if not all of the amphibolites have undergone at least some
minor alteration by chlorite. At some noted locations the amphibole minerals have been totally altered to chlorite.

Although no pillow flows were encountered during the David Langdon investigation, on claim S-109508, what looked to be highly deformed pillows were examined about $3 / 8$ of a mile to the south of the company's south boundary line. The presence of pillow lavas within such close proximity would possibly suggest that surrounding rocks were laid down in an aqueous to subaqueous environment. Without further, more detailed study it will not be possible to truly differentiate the various metavolcanic rock types in the area.

As a result of the prospecting - geological investigations, certain structural features observed on air photographs were clearly measurable on the ground.

The most prominent structural effects can be observed from the alignment or foliation of many of the rock types. In the general area under study the foliated rocks show very gentle folding towards the northwest. The joint orientations, joint sets often appear to occur perpendicular to the foliation. The development of joint sets may, in part, reflect the tensional stresses that would develop in the rock that is being folded northwestwards.

On a regional scale it would appear that a synform has developed within the area metavolcanics. The synform appears to plunge towards the southwest at moderate to shallow angles. The axle plain of this apparent fold strikes at approximately $030^{\circ} \mathrm{Az}$ and is more or less perpendicular to the regional northwest trend of the metavolcanic rocks within Rhodes Township. Towards the northwest corner of the property the folding appears to become complex or is further complicated by faulting, uplifting, etc.

Northeast trending lineaments observed about one mile southeast of the BLMI property appear to run parallel to the axle plain of the apparent fold.

Faulting information obtained from the 1991 investigations on the BLMI property may be useful for future structural investigations and is presented as follows:

The geology of the property areas has been well fractured as a result of the adverse movements of the Fecunis Lake Fault to the west and the Friday Lake Fault to the east. A suspected fault which has been clearly identified on air photographs, running the length of Richardson Lake, is parallel to and thought to be directly related to the two above mentioned faults. A series of faults is known to occur parallel to the western lake shore and are thought to have developed concordantly within the
amphibolite and the underlying felsic rocks.

Numerous splays or secondary fracture systems_may have developed off of the primary north. northwest trending fault.

Most of the faults which are thought to be directly related to movements along the Richardson Lake Fault, trend north to northwest, dip steeply east and west and are right laterally separated. Stereographic projection work has shown that the predominant shifting has taken place along steeply dipping north, northwest trending fracture systems, which suggest early movement occurring along the Fecunis and Friday Lake Faults.

Secondary north-east trending steeply dipping left lateral faults have been identified cross cutting geology on the property. These faults appear to have developed due to the tension and compression developed near the centre of the large block of rock between the Fecunis and Friday Lake Faults.

Late left lateral movements along the Fecunis and Friday Lake Fault would have released the stresses which resulted in the development of north-east trending splays off of the Fecunis Lake Fault. Similar northeast splays are evident running off of the Friday Lake Fault near Sandfly and Venetian Lakes.

A more thorough examination of the air photographs and the evaluation of the ground generated data, particularly from claim S-1095080, would appear to suggest that the northwest parallel faults west of the Richardson Lake Fault cross cut the fabric of the rock at an acute angle.

The development of the 330° to 340° Az quartz stringers and veins appear to strongly reflect this faulting orientation. The fault trend determined from the air photograph was found to be about 330° Az.

It may be possible that the development of the intense silicification - sericite - chlorite alteration with the quartz stringers and veins on claim S-1095080, may be directly related to movements and the emplacement of hydrothermal fluids along the fault plain conduit systems.

It would appear that much of the altered intermediate metavolcanics studied by David Langdon is covered by low swamp terrain. it is believed that the suspected faut plain crosses through this swampy area which may have become a low topographic depression due to the presence of friable and easily weathered mylonite, chlorite, carbonate altered or sulphide bearing rocks.

From the examination of the air photographs it is possible to trace the particular fault for a distance of approximately $\mathbf{2}$ miles, starting from the north shore of Bennet Lake.

To date there has been no known mineral exploration work carried out along this fault trend. Future exploration endeavours such as backhoe trenching and/or diamond drilling should be undertaken in the areas which exhibit strong alteration.

Future exploration for gold mineralization may prove to be fruitful within this area of the BLMI Property. Please refer to Map 1 to study the various geological features, etc.

The following is a listing of the various rock and mineral samples that were collected by David A. Langdon during his prospecting and geological investigations carried out on mining claim S-1095080 in May and June of 1992. Each of the samples presented in the listing has been plotted on the $\mathbf{1}^{\circ}: 50^{\circ}$ map at the back of this report.

Those sample numbers which do not show the grid line co-ordinates may have a questionable +1 position on the map. In some of the sample identifications, little notations were made, such as "check again...recheck", etc.

Originally some thought was given to having the various rocks submitted for assaying, but this was not followed through due to unforseen circumstances. A number of the samples listed are missing and it is suspected that they were taken by David Langdon off of the site for further examination, never to be returned.

Abstract

Sample ART-1 $0+06 E, 25+75 S$ Rock Type: Amphibolite Medium grained, well foliated, dark green mafic rock with minor rusting of the surface, more than likely due to the ubiquitous trace pyrite found within the rock. Throughout the property the majority of the rocks containing a high percentage of mafic minerals have been altered to chlorite which help to define the foliation planes. No visible macroscopic sulphide minerals were observed. 3\% white to dull greenish-grey coloured irregularly rounded altered feldspars are clearty visible. The green hue of the feldspars is possibly due to the intense chloritization that the amphibolite rock has undergone.

On the cut surfaces perpendicular to foliation, the rock appears to be made up of $\mathbf{8 0 \%}$ to $\mathbf{8 5 \%}$ mafic minerals, 14\% to 15\% white to grey-green aphanitic ground mass of feldspars and 1% fine $<\mathbf{1 m m}$ rusting specks of sulphides or amphibole minerals. The ground mass exhibits an orange, possibly potassic weathering. The mafic minerals (amphiboles) have been partially altered to chlorite occurring as fine to medium grained needles and flakes measuring approximately $1-1.5 \mathrm{~mm}$ by $3-4 \mathrm{~mm}$ setting an aphanitic glassy feldspar ground mass. The chlorite-amphibole needles take on a subtle spherulitic texture, where they have more of an interlocking nature as opposed to a radiating nature. The radiating mineral needles observed were quite rare. The interlocking mineral grains help to define the linear elements or planer fabric of the rock.

The above description is probably quite representative of what most amphibolitic rocks within the Richardson Lake area would be made up of. Predominantly the rock type is made up of amphiboles, lesser feldspars, with or without chlorite alteration or sulphides.

Sample ART-2
0 + 06E, $25+75 S$
Rock Type: Intermediate interbedded ash tuff
Very fine grained to aphanitic well foliated dark green intermediate rock. The surface weathering of the rock shows a light green dusting due to intense chlorite alterations and dull brown rusting due to the breakdown of minor sulphide minerals-magnetite or amphiboles.

The fresh cut surface perpendicular to foliation aphanitic individual layers or layering, alternating from dark to light green, which may represent former bedding? Very narrow < $1 \mathbf{m m}$ discontinuous quartz stringers occur parallel to foliation.

Narrow, often short discontinuous quartz stringers, inclusions, ribbons, boudins, sweats, etc. are generally quite common within the amphibolite grade rocks of the area. For the most part they occur concordant to the rock fabric and likely represent the metamorphic remobilization of silica from the adjacent country rocks. Occasionally these quartz feature host minor quantities of pyrite-pyrrhotitechalcopyrite or chlorite. Most of the free quartz found within these types of rock show only minor visible red-orange rusting.

Sample ART-3

$0+27 W, 25+75 S$
Rock Type: Gabbro-metagabbro
Massive, medium grained, black, with an interlocking granular texture. The mineral components are not easily distinguishable macroscopically due to the weathering of the surface. Surface weathering shows minor rusting with some orange coloured alterations, possibly due to the potassium alteration.

On the fresh cut surface the rock shows that it is made up of 85% mafic minerals predominantly pyroxene and homblende, with 15% felsic minerals being the feldspars. Traces of pyrite commonly occur within the interlocking mafic-felsic mineral boundaries.

Sample ART-4

$0+27 E, 24+575$
Rock Type: Silicified Andesite Tuff
The materials are grey-green in colour with darker coloured black-green bands which may represent reflect tuff bedding features. The rock has been intensely silicified and surface weathering shows rusting and orange colorations, possibly due to potassium alterations.

On the fresh cut surfaces perpendicular to banding, the rock apparently shows the distinctive glassy texture of silicification, making it difficult to distinguish the various mineral components.

The rock was shown to consist of 60% mafic minerals and 40% felsic minerals. The felsic minerals show a grey-green colour, possibly being epidote and/or the alteration of feldspars. The mafic minerals appear to be made up of needles $2 \mathrm{~mm}+/-\mathrm{long}$ to anhedral shaped masses.

Both the mafic and felsic mineral constituents display what appears to be crude layering or banding which may represent former tuff beds. Micro or hairline thick micro fractures cross cutting the fabric of the rock have been infilled with silica.

Sample ART-5

$3+00$ E, $25+985$
Rock Type: Unknown
Somehow this particular sample has managed to become lost. No other records have yet been located pertaining to this sample.

Sample ART-6

$3+73 E, 24+52 S$
Rock Type: Amphibolite (Andesite?)
Fine to very fine grained well foliated, dark green intermediate composition rock. The rock materials have been intensely chlorite altered, showing fine needles of chlorite, measuring $1 \mathbf{m m}+/$, which help to define the foliation planes.

Associated with the chlorite altered minerals is an estimated 30% white specs of altered feldspars? which can be difficult to observe due to the overshadowing by the chlorite minerals.

Examinations of the fresh cut surfaces perpendicular to the foliation has shown that the rock is made up of 70% mafic and 30% felsic minerals. As mentioned above, the presence of chlorite makes it difficult to examine the felsic minerals. Near the weathered surface area the felsic minerals occur as elongated whitish granular textured discontinuous bands, measured at $0.50 \mathrm{~mm}+1$ wide. This observation is only possible due to differential weathering of the various minerals on the surface. The chlorite minerals derived from amphiboles occur as fine needles up to $1 \mathbf{m m}$ and help to define the foliation planes. The rock hosts traces of pyrite.

Sample ART-7

$4+30$ E, $24+93 S$
Rock Type: Intermediate Tuff
Fine grained to aphanitic, banded, dark green intermediate rock with $\mathbf{2 5 \%}$ (felsic?) specs, forming an easily distinguishable banding. The ground mass of the rock has undergone intense chlorite alteration. The rock is moderately magnetic and exhibits minor rusting on the weathered surfaces.

Upon examination of the fresh cut surface it was revealed that the materials were aphanitic to fine grained, dark green. The rock was found to host 3% magnetite occurring as subrounded to subangular $0.50 \mathrm{~mm}+1-$ ash? fragments. The apparent deposition of ash fragments has developed what is though to be crude graded bedding. The identification of such graded bedding may indicate the upping or tops direction. Both the magnetite minerals and the apparent grey ash fragments are set within a dark green aphanitic ground mass.

```
Sample ART-8
3 + 96E, 26 + 38S
Rock Type: Amphibolite
```

A fine grained dark green siliceous textured intensely chlorite altered intermediate ash tuff. On the weathered surface of the rock, shows narrow $<1 \mathrm{~mm}$ elongated banding as defined by angular ash fragments? The bands of possible ash fragments appear to have features that might be indicative of flowing that had taken place. The coarse grained bands are separated by dark green aphanitic-like materials. The rock type from this location is weakly magnetic and the surface weathering shows a rusty coloration.

When the sample was examined from the freshly cut surface perpendicular to the apparent bandings, it was shown that the bands appeared to be made up of silica. It is thought that the silica alteration occurred throughout much of the rock. The rock generally has a whitish granular appearance. 1% magnetite specs with 40% chlorite needles or plates occur in between the silica rich bands.

It is difficult to determine precisely what the geological setting pertaining to this particular sample may have been like. Many of the rocks are very difficult to interpret as to their former origin, composition, etc. Often some wild guesses have been made and at this time it is almost impossible to qualify some of David Langdon's findings.

Sample ART-9

4 + 50E, 25 _ $95 S$
Rock Type: Amphibolite
Fine grained well foliated, dark green, possibly andesite rock, which has undergone intense chlorite alteration. On the weathered surface the sample shows magnesium oxidization and bright orange coloured (K^{+}) alteration of the feldspars. Approximately $\mathbf{3 0 \%}$ to $\mathbf{3 5 \%}$ feldspars occur as elongated wisps and ovoid shapes measuring $<\mathbf{0 . 5} \mathbf{~ m m}$ wide to $\mathbf{3} \mathbf{~ m m}+l$-long, set within a dark green ground mass.

Examining the freshly cut surface, perpendicular to the foliation has shown that the major constituent ground mass of the rock is very fine grained to aphanitic, with fine chloritic needles measuring $\mathbf{1 . 5} \mathbf{~ m m}$ $+/$-long. Trace amounts of pyrite and chalcopyrite were found to occur within micro fractures infilled with quartz. An estimated 7% pyrrhotite occurs as dark brassy rounded grains measuring $0.5 \mathrm{~mm}+1$ were found throughout the rock. The feldspars are less easily observed in the fresh cut due to overshadowing by the chlorite minerals.

Sample ART-10
$5+38 E, 26+12 S$
Rock Type: Diabase-Metadiabase

Massive medium grained, showing minor rusting and $30 \%\left(K^{-}\right)$, weathering on the surface exposures. The rock is made up of 60% mafic minerals predominantly pyroxenes, interlocking with feldspars. Some of the pyroxene minerals show weak ateration to chlorite.

By examining the freshly cut surfaces it was found that the various mineral constituents were not as easily distinguishable as when examining the weathered surfaces. This is due to differential weathering. $\mathbf{1 0 \%}$ visible fine grained anhedral white grey feldspars are set in an aphanitic dark green ground mass.

Sample ART-11

$5+98 \mathrm{E}, 24+00 S$
Rock Type: Amphibolite
Fine grained well foliated dark green, possibly andesite rock. It appears as if the foliation is defined by chlorite minerals and discontinuous fine bands of altered feldspars. Some parts of the rock have undergone intense chlorite alteration which carries trace amounts of pyrite. Yellowish quartz stringers cross cutting at about $45^{\circ}+l$ - to the foliation have been observed. Surface weathering of the rock shows some rusting with minor orange (K^{+}) alteration colorations on the freshly cut surface perpendicular to foliation. It was difficult to observe the felsic minerals due to the chlorite alteration. As has been clearly observed with other specimens, it is sometimes much simpler to examine the weathered surfaces due to differential weathering, etc.

What felsic minerals are visible, show up as fine white to grey wisps within a predominantly mafic aphanitic ground mass. The dark coloured chlorite minerals occur as fine needles aligned parallel to foliation and measure $0.5 \mathrm{~mm}+1$ - wide by $\mathbf{1 ~ m m}+/$ - long. Some pyroxene stubs were said to have been observed. The rock hosts traces of pyrite and pyrrhotite.

Sample ART-12
$6+73 E, 24+63 S$
Rock Type: Amphibolite
Medium grained well foliated dark green to black, possibly andesite rock. The rock is made up of 70\% mafic minerals which have been predominantly altered to chlorite and 30% white-grey specs and discontinuous bands, clearly define the foliation planes. Rose-pink coloured 2 mm wide quartz stringers were found to occur parallel to foliation. The rock is noted as being moderately magnetic and surface weathering shows orange (K^{+}) alteration colorations.

Examining the freshly cut surface perpendicular to the foliation, it was found that the chlorite minerals occur as fine $1 \mathrm{~mm}+/$ needles parallel foliation. The rock appears to have undergone minor silicification while the feldspars appear as elongated anhedral wisps or ovoids also aligned along the foliation planes. It has also been noted that the rock host 1% discontinuous bands of yellow quartz measuring $1 \mathrm{~mm}+/$ - in width.

It is important to note that the vast majority of the chlorite alteration is most visible on the surface of an outcropping or hand specimen due to the direct effect of being exposed to the elements over the ages. When a sharp steel object such as a pick is dragged across the top of the outcrop, a small groove will almost always result. Much, if not all, of the surface exposed amphibole minerals will be converted to chlorite complexes. The depth of this surface alteration in most instances is restricted to the first couple of millimetres. When most field identified amphibolites are broken open, they are
often found to contain fresh amphibole minerats, some of which may or may not have undergone limited chlorite alterations. It seems evident that the likelihood of the chlorite alteration of amphiboles would appear to be most likely to occur with an increase in the felsic components, either primary or metamorphic.

Yellow quartz stringers below the weathered surface show the breakdown of pyrite or magnetite to yellow limonite, while the same quartz stringers exposed on the surface show that the sulphides and/or oxides appear to have been converted to rose-pink hematite oxidation.

Sample ART-13

$7+20 E, 26+27 S$
Rock Type: Amphibolite
Fine grained well foliated dark green intensely chlorite altered andesite rock with an interbedded tuff unit. As is often observed with other specimens, the feldspars stand out due to the differential weathering. The feldspars occur as fine wisps aligned along foliation planes. Very thin 1 mm feldspathic stringers were found to occur parallel to the foliation.

The interbedded tuff unit within the amphibolite is well foliated, contain less feldspars than the host rock and has been intensely chlorite altered.

When examined on the freshly cut surfaces, perpendicular to the foliation the amphibolitic rock shows the chlorite (amphibole) needles being the only distinguishable mafic mineral. The mineral needles measure $<1 \mathrm{~mm}$ and are set within an aphanitic groundmass. The felsic-feldspar minerals are coarser grained in the amphibolites than in the tuff interunit. The feldspar components within both rocks occur as fine white needles within an aphanitic mafic groundmass. The rock host traces of pyrite and $1 \mathbf{m m}$ $+/$ - quartz stringers developed parallel to the foliation.

As most who have worked with amphibolite grade rocks know, it can at times be difficult to put a definitive name to an amphibofite. With respect to this particular sample, it seems somewhat difficult to differentiate between a potential flow and a tuff based primarily on the decrease in the grain size of the feldspars and an increase in the chlorite content. It is possible that David Langdon observed certain features in the field which lead him to believe that he was examining an amphibolite (andesite) with an interbedded tuff layer. This particular material may be too complex to interpret from simply studying hand samples with the hand lens and in so, might be best classified simply as an amphibolite.

Sample ART-14
 Rock Type: Possible Rhyolite

The material consists of a dull grey intensely silicified rock with amphibole minerals taken from a quartz stringer zone. The particular rock hosts $1 \%-2 \%$ disseminated pyrite and is weakly magnetic. The quartz stringers are milky white and are thought to contain some pyrite. Surface weathering shows a fair amount of rusting.

The cutting of and examining the fresh surface revealed that the dull grey areas is the massive silicification alteration which destroyed the primary features of the rock. The pyrite mineralization is primarily associated with the quartz veins or stringers, while observed pyrrhotite occurs within the country rock and appears to follow or form crude bands which may reflect the original foliation-fabric prior to silicification alteration episodes.

Very little attention has been directed in this stringer zone area. It is obvious a considerable amount of afteration has taken place and further, more detailed exploration efforts may be warranted.

A large northwest trending structure is strongly suspected to trend through the immediate area in question.

Sample ART-15
 Rock Type: Feldspathic Dyke (Felsic Tuff or Flow?)

Massive, aphanitic, beige coloured, one foot wide feldspathic band or dyke within an intermediate andesite rock. The feldspathic rock is relatively soft compared to the adjacent country rock. It is possible that the band carries carbonate minerals. It was found that the materials were non-reactive to acid, so it is possible that there may exist dolomite or iron carbonates. The rock is also known to host 2% quartz lenses or boudins up to 4 mm wide.

When the materials were cut up it was found that the rock was not quite as massive as might be observed from the surface exposure. Closer examination has shown that the feldspathic rock has well developed light green bands, possibly being made up of or containing epidote. These bands were found to occur throughout the rock and were measured at $1 \mathrm{~mm}+1$ - wide. The bands appear to be separated into pink coloured sections containing (K^{-}I, feldspar alterations and light to dark green sections containing epidote-chlorite. The contact between the feldspathic rock and the adjacent rocks is quite distinctive and sharp.

It is strongly suspected that the felsic rocks described above are similar to numerous thin felsic bands that seemingly-randomly occur within typical looking amphibolite rocks, all throughout the area and most notably to the south or stratigraphically above the main altered felsic units.

Sample ART-16

Rock Type: Andesite?
Fine to medium grained, well foliated, green coloured intensely chlorite aftered intermediate rock. The rock is composed of $10 \%-15 \%$ fine grained white specs of altered feldspar segregations within what is suspected to be a finer grained amphibolite rich ground mass.

Examinations of the freshly cut surface of the rock sample have shown it to consist of 15% epidote alteration occurring as bands running parallel to the foliation and is associated with traces of pyrrhotite. Some rusting within the epidote altered bands have also been noted. Felsic segregations occur as fine hairlike discontinuous wisps within a predominantly chlorite altered ground mass.

Sample ART-17.
 Rock Type: Rhyolite Fow

The sample materials consists of a pink (K^{\dagger}), altered, hard, (silicified?) aphanitic rock with narrow 2 $\mathrm{mm}+/$ - discontinuous grey quartz (silica?) rich flow bands? The bands give the rock a laminated appearance. Certain portions of the rock show a granular sugary-chert like texture. Some of these bands may be green in colour due to possible epidote alterations.

The examinations of the cut surfaces proved to be difficult due to the fine grained nature of the rock. The aphanitic rock is generally pink to grey green in colour. Rust filled fractures were noted with the sample.

Sample ART-18

Rock Type: Amphibolite
Fine.grained, well foliated, intensely chlorite altered rock. The rock is made up of an estimated 75\% chlorite altered amphibole minerals with $\mathbf{2 5 \%}$ of fine grained white segregations of altered feldspars.

The examination of the fresh cut surfaces also show that the rock consists of $\mathbf{2 5 \%}$ white altered feldspars in a fine grained - aphanitic ground mass of chlorite altered amphibole minerals.

The rock host traces of disseminated pyrite. The foliation of the rock can be best observed on freshly broken surfaces.

Sample ART-19

Rock Type: Amphibolite
The rock is medium to coarse grained, well foliated and green in colour with bands of coarse grained blocky chlorite associated with quartz, feldspars and epidote. The blocky chlorite bands are set in a fine grained ground mass of chlorite and white altered feldspars.

The examinations of the freshly cut surfaces has revealed that numerous interlocking platy chlorite minerals measuring $2 \mathrm{~mm}+/-$ by $1 \mathrm{~mm}+/$ form bands which are associated with an altered spherulitic textured material of radiating amphibole needles. The radiating-acicular mineral needles can be difficult to distinguish due to the intense alteration of feldspars which seem to overprint the original textures. The altered feidspars occur as white anhedral specs and splashes which are pervasive throughout the rock.

Sample ART-20

Rock Type: Intermediate Tuff
Rock is made up of a very fine grained to aphanitic, well foliated, green in colour, with intense chlorite and moderate siliceous alterations.

Examinations of the fresh cut surfaces has shown that the rock is predominantly made up of 90% of a green chlorite rich fine grained to aphanitic ground mass with $10 \%+/$ - of angular to rounded white grey fragments $1 \mathrm{~mm}+/$ - in size, consisting of quartz and felsic materials.

Sample ART-21.
 Rock Type: Amphibolite

The rock is made up of a green, intensely chlorite altered, poorly foliated rock which shows spheruliticradiating amphibole needles set within a pink $\left(K^{+}\right)$altered ground mass. Some of the radiating mineral crystals have a measured diameter of up to $3 \mathrm{~mm}+/-$. The amphibole needles are set in a ground mass of granular-sugary textured feldspars with possible minor quartz.

On the freshly cut surfaces the radiating partially chlorite altered amphibole minerals occur in discontinuous bands and splotches. The rock has a massive appearance.

An estimated 4\% carbonate vugs with yellow/orange thombic crystals appear to be associated with carbonate stringers. Close examination of the rock sample showed it to contain 70% chlorite altered minerals with $\mathbf{2 5 \%}$ to $30 \%\left(\mathrm{~K}^{+}\right)$altered minerals associated with minor epidote.

Sample ART-22
 Rock Type: Amphibolite Breccia or Fragmental Tuff

The rock sample is massive, green, showing intense chlorite with moderate siliceous alterations. Rounded to angular fragments? of quartz with pink $\left\langle K^{-}\right|$altered feldspars, were noted within an intensely chlorite altered ground mass.

Examination of a freshly cut surface has shown that the rock is made up of a series of angular green aphanitic fragments with more rounded fragments of quartz. The quartz fragments are thought to be less abundant. The apparent fragmental rock has been cross cut by orange/pink quartz-carbonate stringers associated with hairline offshoots of epidote minerals. Some quartz stringers cross cut the rock which has resulted in the development of veining type breccia.

Sample ART-23

This sample has gone missing and it is not possible to locate the material at this time.

Sample ART-24
 Rock Type: Silicified Tuff

The rock sample is made up of a dark grey, crudely laminated, intensely silicified with alternating dark to light coloured fine grained bands. The rock is so silicified that it is not possible to determine if any fragments can be seen in the collected specimen. The rock hosts trace amounts of localized pyrite mineralization.

An examination of the freshly cut surface has revealed that the rock laminations are composed of an orange/yellow siliceous aphanitic mineral. The siliceous-aphanitic minerals alternate with a black salt and pepper textured material showing some angular white quartz? fragments which were found to measure $<1 \mathrm{~mm}+1$. The rock was shown to host trace pyrite and pyrrhotite.

Within David Langdon's notes a special note was made with respect to conducting a "Recheck in Field" for the particular material described above. It is strongly suspected that David may have come across something of interest when studying the various samples that have been or will be described, and thought it might be beneficial to re-examine certain sample sites or areas.

Sample ART-25
 Rock Type: Silicified Tuff?

The rock is made up of a fine grained black-grey intensely silicified material which shows some intense surface rusting. The rock shows crude laminations marked by discontinuous bands of aphanitic blackgrey/green (epidote) minerals. The rock is too siliceous to see anything clearly with the naked eye.

By examining a freshly cut surface it was shown that the specimen was intensely silicified, having narrow $2 \mathrm{~mm}+/$ bands with orange-red coloured oxidized sulphides? These bands might be somewhat similar to the black salt and pepper textured materials examined within sample ART-24. These bands may represent relict bedding. The rock hosts trace pyrrhotite and pyrite. Rust commonly occurs along fractures.

Sample ART-26

Rock Type: Amphibolite
The rock consists of fine grained, moderately foliated materials which are moderately silicified. The rock is made up of 80% fine grained chlorite rich ground mass with 20% white specs of altered feldspars and traces of pyrite.

Examination of the freshly cut surface of the rock shows that it appears to be massive when viewed along the lengths of the foliation planes. When viewed perpendicular to foliation, the rock exhibits white wisps and specks of altered feldspars, which help to define the foliation. The rock has been intruded by quartz-carbonate-epidote stringers cross cutting the foliation. The stringers have cores of quartz with rims of epidote needles. The rock host trace disseminated pyrite and pyrrhotite.

Sample ART-27
 Rock Type: Fault Rock

The rock materials are composed of subangular to well rounded fragments of quartz, amphiboles and feldspar rich materials in a light green ground mass which may be epidote rich.

Upon examination of a freshly cut surface, it was shown that the rock was made up of a series of < 1 mm to $\mathbf{6} \mathrm{mm}$ fragments which are made up of fine grained amphibole minerals with lesser quartz and feidspars.

The fragmental ground mass is aphanitic and light green in colour, is epidote bearing and may represent altered fault gouge-mylonite.

Sample ART-28

This sample has gone missing and it is not possible to locate it at this time.

Sample ART-29

Rock Type: Intermediate Tuff
The rock is made up of a very fine grained green aphanitic, poorly foliated tuffaceous material. The tuff rocks contact amphibolites (andesite?). The amphibolite rocks are very fine grained foliated, moderately silicified and chlorite altered. The foliation planes exhibit a greasy feel due to the chlorite alteration.

The examination of the freshly cut surfaces have revealed that the rock is very fine grained to aphanitic, being nearly massive with some visible chlorite attered laths of amphibole minerals. Approximately $10 \%+/$ - angular black fragments measuring less than $1 \mathrm{~mm}+/-$ were observed within a green aphanitic ground mass.

Sample ART-29A

Rock Type: Diabase
The rock consists of medium grained massive needles of amphiboles with stubby pyroxene crystals set within an orange-red aphanitic ground mass made up of 60% mafic and 40% felsic minerals.

The examination of the fresh cut surfaces revealed that the rock is made up of 80% to 85% aphanitic mafic minerals with 15% orange and yellow-white altered feldspars occurring as irregular splotches.

It may be possible to classify this rock as an aglomoporphyritic diabase.

Sample ART-30
 Rock Type: Diabase

The rock specimen is similar to that described above for sample ART-29A. Generally the rock is medium grained, aphanitic with a black mafic ground mass hosting 15% splotchy feldspar minerals. The rock also hosts trace pyrite.

This sample was not slabbed with the diamond saw.

Sample ART-31
 Rock Type: Intermediate Tuff with Amphibolites

The rock is very fine grained, green coloured, well foliated, intensely chiorite and siliceously altered. The foliation planes are defined by fine grained chlorite altered aligned amphibole laths.

Examination of the freshly cut surfaces has revealed that the rock is made up of materials grading from finer grained intermediate tuffs to fine to medium grained amphibolite (mafic). The tuff is very fine grained to aphanitic being predominantly composed of chlorite with elongated hairlike wisps of altered feldspars. The amphibolite is coarser grained, relative to the tuff and consists of considerably more white altered feldspars and chlorite.

Sample ART-32
 Rock Type: Felsic Tuff

The rock is fine grained grey-green, well foliated with intense sericite and moderate siliceous alterations. The developed sericite minerals occur along the foliation plans as flakes measuring $1 \mathbf{m m}$ $+f$. The rock is made up of 55% sericite which gives the rock a greasy feel. On the broken surface perpendicular to foliation, equigranular quartz and feldspar? fragments appear to be evident.

Upon the examination of the fresh cut surfaces it was revealed that the rock is made up of a number of predominantly dull grey subangular fragments of quartz and feldspars ranging in size from <0.5 to 1.5 mm . The foliation planes may represent former depositional bedding.

Sample ART-33.

Rock Type: Amphibolite (Andesite)
The rock is fine to medium grained, green, well foliated with chlorite alteration and 10% to 15% white specs and splotches of altered feldspars. The rock exhibited minor rusty surface weathering.

Examination of the fresh cut surfaces revealed that the rock was made up of predominantly chlorite altered amphibolite needles with 10% to 15% white specs of altered feldspars, exhibiting a salt and pepper textured appearance.

Sample ART-34

Rock Type: Intermediate Tuff

The rock is very fine grained to aphanitic, with almost massive, intense chlorite alteration which gives the rock a greasy feel. A few angular to rounded aphanitic fragments of quartz and feldspars measuring less than 1 mm in size and are set in a green chlorite rich ground mass.

Examination of the freshly cut surfaces have revealed that the rock is so aphanitic that it is almost impossible to distinguish anything in the green ground mass. The odd angular black to white and grey fragments of quartz and feldspars have been noted.

Sample ART-35

Rock Type: Amphibolite
The rock is fine to medium grained, well foliated, intense chlorite and moderate siliceous alteration. The foliation is defined due to the alignment of the chlorite altered and feldspar altered minerals. The rock hosts trace amounts of pyrite.

Examination of the freshly cut surfaces reveals that the ground mass contains chlorite altered amphibolite needles measuring up to 0.5 mm long. Altered feldspars within the rock appear to be over printed (possible saussuritisation) by chlorite giving the minerals a light green colour. Some epidote may be present.

Sample ART-36

Rock Type: Amphibolite
The rock is medium grained, well laminated, green and chlorite altered. the amphibolite rock has been intruded by a 1 cm wide quartz stringer with 1% pyrite, developed concordantly with foliation. Some minor surface rusty weather is present.

Examination of the fresh cut surfaces has revealed that the rock is made up of predominantly chlorite altered amphibole needles measuring up to 1.5 mm in length. The quartz stringer is orange to red in colour and may host some ankerite. The quartz also hosts some chlorite and epidote along the contracts of the stringer. The quartz stringer contact rocks appear to have undergone some narrow $3 \mathrm{~mm}+f$ chilling. The pyrite mineralization occurs along the edges of the quartz stringer.

It is suspected that the sulphides are associated with the chlorite minerals along the stringer contacts. Many of the concordant quartz stringers or inclusion-like features observed within the amphibolite rocks drilled through in holes RL-92-02 to RL-92-04 were shown to host sulphides near their outer edges and were often associated with chlorite.

Sample ART-37
 Rock Type: Feldspathic Rock

The rock is orange in colour with fine grained needles of chlorite altered amphibole minerals $1 \mathbf{m m}+/-$ long. The orange band is aphanitic and well foliated which is clearly defined due to the alignment of chlorite altered minerals.

Upon the examination of the freshly cut surfaces it was revealed that the chlorite attered minerals clearly define the foliation which may represent former depositional bedding. The material is made up of $\mathbf{7 0 \%}$ mafic minerals and $\mathbf{3 0 \%}$ aphanitic pink ($\mathrm{K}+$) altered felsic minerals.

It would appear that the sample might more specifically be a thinly laminated or foliated felsic band occurring within a chloritic aftered amphibolite rock. Thin felsic bands interrupting more formal looking amphibolites are very common in the Richardson Lake area and may represent this veneers of felsic tuffaceous rocks or possibly very thin fluid felsic flows.

While David Langdon was carrying out geological investigation on mining claim S-1095080, some limited investigations were being carried out in the northwest and southeast corners of mining claim S-1095079.

From mid May 1992 to early June 1992 two Ecuadorian professionals, Gabriel Valenzuela and Efrain Gonzolez from Cambrian College in Sudbury, Ontario, were utilized to carry out geological related work.

Both men are geologists and had spent the previous fall and winter months studying at Cambrian College in an attempt to upgrade their geological-geophysical knowledge etc. and to learn of the Canadian-North American exploration techniques.

Earlier in the year Jack W. Wardle from Cambrian College solicited our company with the intent of placing two attachments in a working situation where they would gain valuable Canadian experience.

Gabriel and Efrain carried out field work on the Richardson Lake property starting from about May 12. 1992 to the first week of June 1992. Most of their time was spent working within the felsic pyroclastic rock in the western parts of the property, as well, some concentrated efforts were directed at studying the amphibolite rocks south and stratagraphically above the favourable zone on claim S1095079.

Aside from carrying out field work the two attachments followed along with the project geologists to observe the performing of the VLEM survey and the surface trenching operations that were ongoing at the time.

Often discussions would take place at various locations on the property with respect to the various geological features being studied etc. Every attempt was made to expose Gabriel and Efrain to the various exploration functions that were taking place on the mining claims. Gabriel and Efrain participated in some microscopic work on some rock and mineral samples they had collected from the area.

Because Gabriel Valenzuela and Efrain Gonzalez were on a Cambrian College attachment program, no wages had to be paid.

Cambrian College was responsible for all of the potential liabilities, insurance, etc. No wages, commissions, fees etc. had to be paid by the participating companies. It was the main intent of Cambrian College International Programs Director to place participants into real situations in order to gain hands-on experience.

As a result of the participants work, a number of interesting geological areas were examined.

In the northwest areas of claim S-1095079 it was found that the rocks mainly consisted of medium grained to very coarse grained felsic pyroclastic metavolcanic rocks associated with porphyritic andesites. These rocks have been intruded by irregular shaped metadiabase-metagabbro intrusive rocks.

The felsic and minor intermediate metavolcanic rocks make up a thick sequence of rocks which extend southwards and westwards of the mining claims. They are generally made up of intercalated finer grained ash tuffs with coarse large fragment lapilli tuffs. It would appear that the coarsest grained rocks occur near the northwest corner of claim s-1095079 and appear to become finer grained along strike to the west. West of the property the felsic rocks have been significantly moved southwestwards, possibly due in part to faulting and folding episodes. Carbonaceous metasedimentary rocks similar to what was observed in the newly excavated trenches were observed more than $\mathbf{1 / 2}$ mile west of the BLMI property. This clearly suggests that the highly altered felsic metavolcanic rocks found on the BLMI property occur over considerable lengths, further to the west than originally anticipated.

An interesting characteristic noted was that the pyroclastic rock closest to Richardson Lake are more or less coarse grained and somewhat variable, while the rocks further west along strike appear to be more consistent and exhibit visible lamination or foliation features.

Most, if not all, of the mafic intrusive dykes were found within the coarser grained tuffs, while fine grained irregular-small bodies of pink quartz feldspar porphyries were more prominent in the western areas. It may be possible to speculate that the mafic and felsic intrusives could somehow be genetically related. Intense heat generated as a result of the emplacement of the mafic dykes may have dissipated into the adjacent country rocks, causing total melting-remobilization of molten fluids and recrystallization quartz feldspar porphyries.

While examining the area geology a short distance to the west of the property, a series of large, quite angular boulders were observed upon a felsic tuff outcrop. The shape and size of the chunks would suggest that they had not travelled any great distances. When these boulders were broken open and more thoroughly examined, it was revealed that the rock was a porphyry, being made up of 15\% $\mathbf{2 0 \%}$ anhedral to euhedral white to yellowish weakly striated plagioclase feldspars. The feldspar phenocrysts are set in a light green siliceous aphanitic ground mass. There are no visible quartz phenocrysts, inclusion etc. within the rock.

Minor, very fine grained grey crystals of carbonate with traces of chalcopyrite and pyrite were observed within what appeared to be a thin vein or reworked portion of the porphyritic rock.

This particular rock type may be classified as a latite porphyry which may have formed dykes or other shaped masses within the adjacent felsic rocks. Attempts were made to locate an outcropping of this particular material, but was proven unsuccessful due to the overburden cover.

Much of the felsic metavolcanic rocks in this south shifted buige like area show sericite mica development due to greenschist to upper greenschist facies metamorphism.

Locally the felsic rocks may have undergone sufficient sericitic alteration to develop sericite schist zone which appear to trend towards the northwest. No particular sericite zoning was determined from the observations of the felsic metavolcanic rocks in the area.

From the examinations that were carried out in the western areas of the BLMI property, it has been possible to determine that thick sequences of felsic pyroclastic rocks were deposited in the area. Some of these rocks consisted of fine grained tuffs or lapilli tuffs. The tuffaceous rocks were intruded by stocks or masses of porphyritic andesite, which may have developed contemporaneously with the deposition of the tuffs, but may have since been eroded down to its intrusive roots.

Deposited upon the felsic pyroclastic rocks were various thin flows with intercolated ash tuffs and carbonaceous metasediments. It is within these rocks, on top of the pyroclastics that mineralization has been found to occur. These rocks tend to be highly altered and deformed with carbonate-silica-epidote-garnet-manganese and sulphides minerals.

Overlying the felsic suite, there occurs a very thick sequence of intermediate to mafic amphibolite grade metavolcanics which are thought to represent former flows and/or tuffs. Immediately above the felsic contact the rocks tend to be of an intermediate composition consisting of about equal quantities of amphiboles and feldspar minerals. Within these rocks primary sulphide mineralization of pyrite-pyrrhotite-sphalerite-galena and chalcopyrite has been found, most notably being the "Langdon Showing". Within these rocks pyrite and pyrihotite appear to be the most common sulphide minerals.

The more formal mafic amphibolites occur above the intermediate rocks and appear to be very expansive. Some very massive looking amphibole rich rocks may have represented former basaltic lava flows, which may be supported by the fact of the presence of pillow lava to the south. Some of the more amphibole-feldspar-quartz, chlorite altered and well foliated amphibolites may represent former tuff deposits.

Within the intermediate to mafic amphibolite unit, narrow concordant felsic bands of tuff or flow rocks have developed. These rocks may host minor amounts of sulphides.

Near the boundary between the intermediate and mafic rocks a narrow banded siliceous iron formation has developed which may either be of magmatic or metasedimentary origin. It has been possible to trace this particular iron formation a considerable distance along strike to the west all the way to the Richardson Lake Iron Occurrence (O.G.S. Map 2413). The iron formation may be utilized as a potential markerbed, which would appear to indicate that a very large " S " shaped southwards plunging fold has developed within the metavolcanic sequences west of Richardson Lake. All of the rock sequences have been dragged along during folding episodes. Some of the plains or segments may have been dislocated southwards by northeast trending fault structures developed parallel to or along the axle plains of the folds.

Prior to or following the folding episodes, all of the metavolcanic rocks were intruded by fine grained metadiabase and coarser grained metagabbro bodies. Some of the finer grained materials resemble fine grained massive flows, but exhibit what appears to be intrusive contacts. It is possible that these finer grained rocks may not be related to the metagabbros, but may represent synvolcanic flow rocks with feeder type dykes. The finer grained intrusive-extrusive rocks appear to be more common within the amphibolite rocks.

The metagabbroic rocks observed both on surface and in three of the four drill holes put down in 1992, appear to indicate that the intrusives are quire large. Various sized fragments observed within felsic pyroclastic rocks within the main felsic horizon could put the age of the intrusive as Pre-Huronian. The metagabbro dyke may have acted as a feeder system for overlying rocks which have since been eroded away.

Fine grained quartz feldspar porphyry masses have been found primarily within the felsic rocks, but minor veins have been reported (D. Langdon) in the southern part of the property cross cutting the amphibolites. Narrow, sharply contacted orthoclase-possible plagioclase-muscovite mica pegmatite dykes commonly intrude all the area rocks and are likely caused due to degrassing the various intrusive rocks in the area.

The degree of metamorphic alteration within the Richardson Lake Greenstone Belt is primarily amphibolite grade. There are some unusual exceptions to this, which are noticeable within the felsic metavolcanics.

The carbonaceous metasediments near the top of the felsic sequence have well preserved bedding features exhibiting soft sediment or tectonic folding etc. In very localized sections of the metasediment, minor garnets have been developed, possibly due to the metamorphism or possibly due to hydrothermal-skarn type alteration as a result of the nearby intrusion of the metagabbro.

While some of the felsic rocks appear to have only been subject greenschist facies, other rocks such as well laminated or bedded flows or tuffs, have various layers with well developed amphibole needles.

The amphibolite grade of metamorphism may be very subtle within the felsic rock or it may occur as some form of differential? metamorphic alteration. It is clearly difficult to make a distinction between possible greenschist and amphibolite facies metamorphism in the felsic metavolcanics.

Presently there is some debate as to which direction the volcanic rocks are younging. Certain features observed on the ground would appear to indicate that younging of the rocks might occur towards the south. Please refer to Figure 7, which gives an example of a potential upping direction feature.

There are some workers who believe that the younging direction was originally towards the north. In a 1980 laurentian University Masters of Science Degree, Alan Edger Guthrie proposed that the rocks of the Benny Greenstone Beit younged towards the north and were subsequently overturned. The Richardson Greenstone Belt is situated about 15 miles northeast of the Benny Belt. These two metavolcanic belts are believed to be genetically related.

DEAD BIRD TRENCH.
DETAILED SKETCH.
Not to scale.

- SE.

NW.

The idea that the rock originally dips north in the Richardson Lake Greenstone Belt may not be too farfetched.

Progressing from the southern part of the belt, the rocks are made up of quartz-biotite-plagioclase gneisses, which exhibit upper amphibolite to granulite facies metamorphism. It is noteworthy that the degree of metamorphism appears to decrease in the northwards direction from granulate grade in the gneissic rocks, amphibolite grade in the intermediate-mafic metavolcanics and greenschist grade in the felsic metavolcanics.

This might suggest that gneissic rocks were subject to the effects of burial metamorphism due to having a considerable amount of volcanic rocks being piled on top of the original basement rocks.

If the rocks were originally deposited towards the north, then the large fold traced along strike utilizing the iron formation marker may actually represent a large antiformal structure. The numerous fracture infillings or stringers of quartz-carbonate-epidote and various sulphides observed crosscutting the stratigraphy may have developed along a series of tension gashes parallel to the axle plain of the folds.

If the rocks were in fact laid down towards the north, they would presently be in the overturned position.

On the regional scale there is some evidence to suggest that the rocks of the belt were deposited from north to south. On the local scale there is also good evidence to suggest the rocks were deposited from north to south.

It is expected that there will be considerable debate regarding the upping matter in the future, particularly where work will be required to more thoroughly evaluate the area in search of mineral deposits.

Please refer to Figure 8 for the generalized locations of the prospecting and geological type investigations and evaluations carried out on the BLMI Richardson Lake Property in 1992. The trench mapping has not been included within this section.

Please refer to Figure 9 which exhibits the generalized geology of the area studied.

Prosiectinka-Geological TPpe work ndex Map.

MN.

RICHARDSON LAKE:

Evallations and or
GEDLDGILAL MAPPNG b):
A. Gabriel valenzuela and. EFRAN GONZALEZ: camberal colege.
B. harold I tracaneli and david a lanadon. BLMI.
C. Dalld a lavaDons bumi.

Generalized surface geology
APPROXIMATED.

The following is a list of samples collected by Efrain Gonzalez and Gabriel Valenzuela, Cambrian College attachments, who were studying the geology of mining claim S-1095079 and area.

Macroscopic fock Ipertifications.
"Richardson Lake property Rhodes twp"
ne SARPLE CopE
sc-1

1
$s c-2$

$$
s<-3
$$

4
$s c-s$
sc-5'
$s c-6$
7 sc-7

Description.
TExture - Structure - Color - Composition - .
Remarks - Rock Type/name.
Aphanitic - Massive - Grey greenish - Feldspar, pyroxeae - Trace of Py, chlocitic alteration Metaurlcanic / Díabase.

Aphanitic porphiritic (medium groined) - Massive Dark greenish - Feldspar, pypoxene, some Qtz ond bidite - Trace of Py, chloritic alteration, feldypar. veinlets crosed - Metovolcanic / Diabase.

Aphonitic porphivitic (medium groined) - Massive Dark greenish - Feldspar, pyroxene, some catz und amphitoles - Some chloritic alteration, some Py, feldyear veinlets crassed - Metaurolconic / diabase.

Aphonitic porphinitic - Massive - white piakish liget grey - Qtz eyes, feldspor (k) some muscovite Qtz ryes 3 to 8 cm in feldspor groundmoss, cltz reinlets, - Metavolcamic / Rhyolite.

This somple is a quartz block.p
Aphonitic (fine grained) - Massire - Ligat grey Feldspar, atz, some chlorite und sericiteMetavolconic fetsic.
Aphonitic - Mosrrve - Grey light greinish - Feldspur, Qtz, chborite - Some Qtz ryes - Mihaodlanic felsic
$\frac{\pi-}{8} \left\lvert\, \frac{\operatorname{SARPLE} \operatorname{Cog} E}{S C=8}\right.$

Sc-9

SC- 10

-	
-	12

SC- 13
$14 \quad s c-13^{i}$

Description.
Fire to modium groined - Massive - Pink greenish Feldspor (K, Ha), Qtz, chloite some apidote - Same atz veinlets - Metovolcanic felsic / Totrosive Rock?

Aptronitic - Masrive - Grey greeoush - Feldspar, chlorite some Qtz, $p \times$ ond biotite - ChEa,-itic altarotion, pices of OLz with epiolate, some PY.-Metowolcanic Intarmedicte.

Aphanitic (Camineal) - Massive (Flour structure) - Grey greenish - Feldspar, chlirite, sume Qtz, Py ond murcovite - Py disseminated anal oxided - Metauolcanic intermediote / Felsic Flow?

Phaneritic (medium to coorce grained) - Massive (mia rolitic) - Grey light white - Feldspar, dark atz, muscovite, some mafics - Feldspor fenscristols altered, Otz eyes - Quortz poiphiry.

Aphanitic porptrigritic (fine to medium grained) -Mo. ssive (some olignment mofic groins) - Grey greenish some pink - Feldypor K, plogioclase, piroxene, some Otz - K feldspor in veialets, ollsomple with chloritic alteration, mofics altered to chlonite, scme $P x$ oxideal - Metavolcanic intermediate.

Aphanitic porpiynitic (fine to methiom groined)-Mossive Grey - Feldspor, Qtz, mafics chloritizeal - Metarolconic intermediate.

Porphyrific - Mossive - Pink white - Feldspors $\left(K-H_{2}\right)$, atz, muscovite, weakey chlorite - Dices of Gtz Pesmatite.

8.2 LINE CUTTING AND GROUND VERTICAL LOOP ELECTROMAGNETIC (VLEM) SURVEY

As part of the 1992 BLMI Richardson Lake Project, it was decided that a more sophisticated form of electromagnetics should be carried out over a series of grid lines which would help to compliment the former magnetometer and very low frequency electromagnetic surveys and the geological and geochemical work that had been previously carried out over the company's mining claims.

Originally plans were first made to carry out a horizontal loop - max - min 2, frequency domain survey over the grid lines but it was discovered that the equipment was unavailable due to some electricalelectronic problems.

In place of running the max-min (HEM) survey, it was decided that a vertical Loop Electromagnetic (VLEM) survey would be initiated, utilizing the "Shoot Back Method".

In early May of 1992 Trivett Geological Explorations, Ontario Corporation 972410 was hired to carry out the cutting of a specified predetermined length of grid lines, run the Vertical Loop Electromagnetic Survey and then to report the findings of the work to the exploration staff at Bharti Engineering Associates Inc.

Prior to the initiation of the ground geophysical survey, it was necessary to extend some existing grid lines or establish a series of new grid lines having a predetermined orientation, etc.

A number of grid lines which were part of the fall 1991 orientation grid were extended, particularly towards the south. The original cross lines were established off of the east-west grid line L $4+00$ S which was originally established for BLMI by Val d'Or Geophysics Ltee back in the winter of 1991. The various cross lines run off of the base line $L 4+00 S$, were cut out and trend at about 14° or 15° Azimuth $+/$-, which trended more or less perpendicular across the general geological fabric of the metavolcanic rocks.

As can be seen from the 1 inch to 50 foot map, lines $L O W, L 1 W, L 2 W, L 2 E$, and $L 3 E$ were all extended southwards to about $8+00$ South. Somehow line LIE was not extended, even though there were plans to do so.

In an attempt to keep the gridding consistent, lines L $3 W, L 4 W$ and $L 5 W$ were recut out. The original orientation grid lines were put in by compass and fiagging tape marked the station locations. It was felt that it would be best if these lines were formally cut out, chained and picketed.

In order to continue the investigations of the favourable geological felsic-mafic contact areas, it was determined that a new base line with perpendicular cross lines should be established from a starting point located at BL $\mathbf{O}+\underline{0}$ and L 3E.

The base line for this new part of the grid system was established at $130^{\circ} \mathrm{Az}$ and was run for a length of 1200 feet. At 100 foot $+/$ - intervals along the base line perpendicular cross lines were run off of the base line in both the northeast and southwest directions. The northeast trending lines were generally cut to the west shore of Richardson Lake with the exception of LOSE and L 1 SE. The southwest trending lines were cut as short as $\mathbf{2 0 0}$ feet to as long as $\mathbf{6 0 0}$ feet. The average length of lines on the southwest side of the base line is $\mathbf{6 0 0}$ feet.

On all of the orientation like gridlines, the station spacings have been established at $\mathbf{2 5}$ foot centres using wooden pickets.

To date only a VLEM survey has been carried out over the new grid lines, LOSE through to L 12 SE. There are future plans to carry out a magnetometer survey over the extended lines of the 1991 grid and the newly established lines of the 1992 grid.

In general the establishment of the 1991 Val d'Or Geophysics Ltee grid, the 1991 BLMI orientation grid and the 1992 Trivett Geological orientation grid has proven to be very useful in establishing the various geological features of importance and for establishing the position of excavated trenches, diamond drill hole collars, etc.

In conclusion, the linecutting, VLEM survey and the reporting of the survey results was carried out by Trivett Geological Explorations in May of 1992. Almost all of the work was carried out on mining claims S-1095077, S-1095079 with a small amount carried out on S-1095080 in Rhodes Township, Ontario.

As a result of the work carried out by Trivett Geological, a report of the type of work carried out and the findings of the survey etc, was produced. Included within the report is the completed profiles generated from VLEM work. A complete listing of the data was also provided in the report. A large scale 1 inch to 50 foot map was produced and was later added onto and had to be redrafted for presentation within the BLMI exploration report.

The complete unedited version of the Trivett Geological Explorations Report, as produced by david G.B. Trivert has been copied and is presented as follows:

Some up-to-date comments with respect to the findings of the VLEM survey will be presented immediately following the David G.B. Trivett report.

REPORT

ON

V.L.E.M GEOPHYSICAL SURVEY 1992 SHOOT-BACK METHOD

RICHARDSON LAKE PROJECT

FOR
BHARTI ENGINEERING \& ASSOCIATES LTD.

```
    BY
    - DAVID TRIVETT
    OF

\section*{TABLE of CONTENTS}
Summary ..... 1
Introduction ..... 2
Regional Geology ..... 3
Property Geology / Mineralization. ..... 4
Work History ..... 5
V.L.E.M Field System. ..... 6-7
Results \& Interpretation ..... 8-10
Conclusions \& Recommendations ..... 11
References ..... 12
Qualifications ..... 13
FIGURES: ..... \(1 a\).
\(2 a, b\)
3.....................Regional Geology ..... 3a
4..................... Conductive Response ..... 7a
APPENDIX


The "Richardson Lake" Property of Bharti Engineering Associates Inc. is located in Rhodes Twp. The claim group consists of the four claims s1095077 through s1095080. The property is located 98 km . west of Sudbury. The journey takes approximately 105 minutes. Transport by 4-wheel. drive is recommended. Travel 75 Km . west on Highway 144 to Dunbar Logging road which is adjacent to the turn off to the town of Benny. Drive 25 km. to Rhodes Township. See Location Access Map. (fig.1)

The property has previously yielded interesting values of galena, sphalerite, and copper. A horizon of massive to semimassive sphalerite. galena. and copper sulphides, ( perhaps a result of exhalative activity. is interbedded with carbonated and carbonaceous tuffaceous sediments. ( H. Tracanelli. personnal communication, 1992 )

Concentrations of conductive material trend across the northern and southern perimeter of the property. The mineralized zones have limited surface exposure, therefore geophysical data enhancement should be used to determine the depth and lateral subsurface extent of the zones. Further trenching and assaying should be carried out. Based on positive results from the above work, a diamond drilling program should be initiated.

Location Access Map
Figure. 1


SCALE \(1: 250.000\) Échelie
-miles \(\stackrel{5}{5}\) 5 10

-Fig. la.

The purpose of this study was to assess the property for possible exploration targets through use of a vertical loop electromagnetic or V.L.E.M. geophysical survey.

The survey was conducted over the Richardson Lake Property during a two week period commencing on May 06. 1992. The geophysics party consisted of Eric Stewart and the writer.

The property is located in Rhodes Township, ( N.T.S reference 41 I/13. 41 I/14 ) and consists of four claims ( s1095077-s1095080) (See fig. 2 ) A grid was present on the property prior to the geophysical survey. The southwestern claim s1095079 underwent intense examination. The northwestern corner of claim s1095080, and the southwestern corners of claims s1095077 and s1095078 were given limited attention.

The V.L.E.M. geophysics equipment was loaned by Cambrian College in good faith toward industry and student relations. The survey was carried out over 6.4 km . ( 4 miles ) of cut grid. The coil spacing was 75 feet. The station interval was 25 feet. Line spacing was 100 ft . over 90 percent of the grid. ( See Append-ices 1 and 2.)

The property can be accessed by taking highway \(\$ 144\) west 75 km . and following the Dunbar Logging Road 25 Km . to Rhodes Township. A bulldozed road accesses the claim block and Rhichardson Lake. See Location Access Map, (fig.1)



The property consists of coniferous and deciduous trees of various age and size. Small shrubs are abundant and a swamp runs across the northern portion of the claims s1095079 and s1095078 from Richardson Lake. Richardson Lake takes up the greater portion of claim s1095078.

\section*{REGIONAL GEOLOGY}

The oldest rocks in the area are Archean gneisses. metavolcanics. metasediments. and metagabbros which are remnants of a greenstone belt. These are intruded by granitic rocks. emplaced about 2, \(500 \mathrm{~m} . y\). ago, during the Kenoran Orogeny. ( Fairbairn et al. 1967 )

Early Precambrian mafic dikes are numerous throughout the area. They are younger than the granitic intrusions but older than the sedimentary rocks of the Huronian Supergroup 2. 200 \(2.500 \mathrm{~m} . \mathrm{y}\). which lie unconformably upon the older rocks. The Huronian sediments are remnants of a former. probably continuous sedimentary cover. Nipissing Diabase sills have intruded all older rocks. The Nipissing Diabase is approximately 2,160 m.Y.old, (Fairbairn et al. 1969).

Pseudotachylites and breccias are common mainly in the southern part of the map area. They are possibly related to the Sudbury Event. which was caused by either meteorite impact or explosive volcanism. (Fairbairn and Rodson 1941).


Ontario Geological Survey
Map 2413
EMO, RHODES and BOTHA TOWNSHIPS
SUDBURY DISTRICT
Regional Gecrofil flap
Scale 1:31,680 or 1 Inch to \(1 / 2\) Mile


Late Precambrian olivine diabase dikes are the youngest rocks in the area. ( \(1,100 \mathrm{~m} . \mathrm{y} . \mathrm{old}\) ) (Fairbairn et al. 1960 )

The overburden consists of unconsolidated Cenozoic sediments which are primarily deposits of Pleistocene glaciation from 1 m.y. ago.

\section*{PROPERTY GEOLOGY / MINERALIZATION}

Mineralization on the property consists of pyrite, galena. sphalerite, chalcopyrite, pyrrhotite, and arsenopyrite. Mineralization appears to be associated with the contacts between felsic and mafic volcanics. The mineralization lies within carbonaceous, carbonated, silicified, and epidotized rocks in the upper sequences of the felsic metavolcanics. Base metal sulphides galena and sphalerite are present as disseminated. breccia and stringer like occurrences.

A horizon of massive to semi-massive sulphides. (perhaps a result of exhalative activity), is interbedded to form with carbonated and carbonaceous. tuffaceous sediments.
(H. Tracanelli personal communication 1992)

Mineralization and strike trend with foliation, revealing a minimum of two periods of faulting. Drag folds have also been noted leaving evidence of later folding. The general trend strikes NW-SE and bends around the property with foliation.

Summer 1990

Spring 1991

Summer 1991

Fall 1991 -early -Orientation Grid cut

March 1991

May 1992

June 1991
-late -Recon. Electromagnetic E.M.-
V.L.F. Survey Mag sorvey.
-Staking of four claim block -S-1095077 through S-1095080
-C-Horizon Geochem Survey
-Recon. and detailed mapping -Prospecting
-Val D' OR Geophysique Ltee.
-Line cutting of:
NS. base line EW. cross line 200' line spacing \(50^{\circ}\) sta. spacing 13 Km . I ine cut
-Trivett Geological Explorations Corp. -Expansion Grid, Line cutting of:

SE. base line
NE. cross line 100' line spacing 25' station spacing 5.77 Km . line cut
-Currently trenching project initiated.

\section*{V.L.E.M (Vertical-Loop EM) Field System}

\section*{Shoot-back Method}

The transmitter and receiver are completely portable and are moved simultaneously along grid lines. Readings are taken at intervals of \(50-200 \mathrm{ft}\), with the transmitter pointed vertically perpendicular to the grid line. The receiver coil, normally horizontal. is then rotated about the \(T-R\) axis to obtain a null.

The transmitter-receiver line is maintained approximately parallel to geologic strike where possible. In very hilly terrain it is difficult to maintain correct alignment of the transmitter and receiver coils. The result could cause false dip angles, especially when coil spacing is tight. (ie. >100 ft.). The Shoot-back Method requires a receiver and transmitter at each station. For this purpose the coils are convertible. The spacing is usually 200 ft and the axis, rather than the plane of the transmitter coil. is pointed towards the receiver station. In most set-ups the possibility of misalignment and of obtaining an incorrect dip angle are eliminated by the relative orientation of the two coils. The axis of the transmitter coil. rather than its plane, determines the rotation of the receiver coil about an axis normal to, rather than coaxial with, the \(T-R\) line.

In homogeneous ground the difference between the two tilt angles will be zero. This will be true regardless of the relative elevations of the two coils. However, with a conductor
present, the secondary field will affect the tilt angles at the two receiver positions in the opposite sense. as can be better seen from figure 4 (fig 7.20). The difference between the two dip angles is plotted at the midpoint of the two coils. A profile obtained over a sheet-like conductor is also illustrated in figure 4 (fig. 7.20 - c.)

The equipment used the frequency of 1800 Hz , as commonly is used for reconnaissance work. The profile in fig. 7.20 c shows the resultant (alpha2 - alphal) positive over the conductor. A dipping sheet results in an asymmetric profile which is positive over the upper end and crosses zero to a negative maximum down dip. Flat-lying conductors produce a negative anomaly symmetric about the midpoint. The resultant is also illustrated in the plots produced as tilt angle (a2-a1). (See Plots. Appendices 2.)

- - The Verticai-Loop Electromagnetic (V.L.E.M.) geophysical survey was performed over 6 km . ( 3.84 mi .) of grid. The survey was conducted over the Richardson Lake property through a one week period commencing on May 11. 1992. The geophysics party consisted of Eric Stewart and the wricer.

The property consists of four claims ( s1095077-s1095080) See figure \({ }^{2}\) and 2b. The southwestern claim s1095079 underwent intense examination. The northwestern corner of claim s1095080. and the southwestern corners of claims s1095077 and s1095078 were given limited attention.

Electromagnetic anomalies occurred across two main trends and appear to follow the known foliation.

\section*{Anomaly 1}

The highest crossover peak was noted on Line 3 east (L3E). station ( sta.) 0+50 NE a peak tilt angle response read \(+90 \%\). This is a bedrock anomaly of clear definition being narrow and dipping vertically. The trend of this anomaly can be traced from L12S sta. \(1+25\) NE. (See grid Map - fig. 2 ) and continues northwest across claims s1095077 and s1095079. This main trend follows the lower perimeter of a cliff which traverses the property with a similar trend of northwesterly direction. It is possible that the combination of topography and tight coil spacing allowed slight interference in respect to tilt angle (+/-

6 \%). The anomaly ranges from 250 to 350 feet in ridth and appears to break into two concentrations in the area of L3S. sta. \(1+25 N E\). This anomaly is the high concentration of conductive material to the north. In this same location it is noted that the anomaly has a slight southwest dip which has been increasing from L8S. sta. \(3+00\) NE. The anomaly located at L2S sta. \(1+25\) NE. appears to have a very high concentration of conductive material. dips approximately 75 degrees to the southwest, and reflects the higher concentration to the north. On L1S response is subdued indicating iow concentration of conductive material. indicating iocalized sulphide response. L2E shows the anomaly to dip at approximately 70 degrees north, response is subdued again indicating a slight concentration of conductive material. indicating localized sulphides. This anomaly remains subdued and continues with a northwesterly trend. dipping north along the northern claim boundary of s1095079 to L5W.

\section*{Anomaly 2}

The second anomaly also trends in a north westerly direction. It too appears to roll across the property dipping shallowly to the southwest in the area of L3W sta. \(6+50 \mathrm{SW}\). rolling to a north dip and splitting into two shallow, thin concentrations at L3E sta. 3+50 SW. This anomaly is tailing off to the south and appears less conductive than that to the northern anomaly along the lakeshore. The largest magnetometer
anomaly corresponds here to the V.L.E.M. survey. The V.L.E.M anomaly lies slightly above this "mag" high in the area of LOW, sta. \(5+75\) SW. where tilt angle is read to be about 75 \%. Between L3E to L3S the anomaly is subdued and broken into two linear targets, the strongest to the north at sta. \(2+25\) SW.. with near vertical dip. On L4S sta. \(1+50 \mathrm{SW}\). the anomaly trend is dropping toward the baseline, remaining divided, strongest to the north. and dipping slightly southwest. Between L4S to L12S. along a trend which follows sta. \(1+50\) SW. to sta. \(2+50\) SW. the anomaly remains subdued, less conductive and remains divided into two small linear targets with a near vertical southwest dip.

As noted by the plots there are numerous areas where small non-continuous anomalies have been detected.

The V.L.E.M. data defines a trend in the targets which are steeply dipping and very narrow.

\section*{CONCLUSIONS}

The mineralized zones have 1 imited surface exposure. and appear to dip steeply to the southwest and north. The V.L.E.M. data defines a trend in the targets which are steeply dipping and very narrow. (See Appendices 1. Grid Map, Appendices 2. Plots) The highest concentration of conductive material lies along the lakeshore in the area between L1S and L12S. These targets can be noted on the plots in Appendices 2. Less conductive targets are traced to trend across the southern portion of the property surveyed. (See Appendices 1. Grid Map) These less conductive anomalies lie south of the largest magnetometer anomaly found in the area of LOW sta. \(2+75\).

\section*{RECOMAIENDATIONS}

The mineralized zones have limited surface exposure, and appear to dip steeply to the southwest and north. Geophysical data manipulation should be used to determine the depth and lateral subsurface extent of the zones.

A Horizontal-Loop survey is recommended to better define the conductor width and depth.

Further trenching. blasting and assaying should be carried out. Based on positive results from the above work, a diamond drilling program should be initiated.

\section*{REFERENCES}
1. Applied Geophysics. by W.M. Telford. 1980. Pages 530 - 534.
2. Practical Geophysics - for the Exploration Geologist, by Richard Van Blaricom, 1980
3. Ontario Geological Survey. Report 196. Geology of Emo, Rhodes, and Botha Townships, District of Sudbury, by Burkhard O. Dressler, 1980.

\author{
David G. B. Trivett
}
4-151 Pine St.
Sudbury, Ontario
- P3C 1X2
Tel: (705) 6756598

\author{
Training: * academic: High School Diploma Twin Lakes Secondary School Orillia, Ontario \\ * professional: Geological Engineering Technology Diploma \\ Sept 1987 - May 1990 \\ Cambrian College \\ Sudbury, Ontario \\ Mining Technician Diploma \\ Sept 1990 - May 1991 \\ Cambrian College \\ Sudbury, Ontario
}
Work Experience: Contract Work
JAN.-FEB. \(1992 \begin{gathered}\text { Blast Monitor Technician/Engineer } \\ \text { Consultant for TRANSCANADA PIPELINE }\end{gathered}\)
Responsible for pipeline ditch, bore hole, undercut and right-of-way controlled blast design; monitoring of livelines, fibreoptics with a DS 477 Geophone and report of results to TCPL inspectors; supervising use of the EZ Det non-electric, single or double delay blast sequence plus electric cap numbered sequence with calculations to a terminal board. Safety, equipment maintenance and public relations an integral aspect of the job.
Ray Janbakhsh
Explotech Engineering Ltd.
200-469 Bouchard St.
Sudbury, Ontario
(705) 522-0585

Responsible for organization and completion of a four claim mapping
- survey with written report for the Ministry of Northern Development \& Mines OPAP program. Follow up work included geophysics, trench blasting and mineral identification of located anomalies.

Mr. Jack Rauhala
Site 18, Box 6
Lively, Ontario
(705) 6924476

October 1990

\section*{GEOPHYSICS}

Responsible for organization and completion of MAG and VLF survey over a seven mile grid; data dump from OMNI PLUS to computer software with data correction and alignment.

Mr. Claude Gervais
Tel. 682-0254
Copper Cliff, Ontario
May - August 1990
May - August 1989
Geological Field Assistant
Responsible for reconnaissance geological mapping and claim staking; soil, rock and mineral sampling; MAG and VLF ground surveys plus computer data plotting, report writing, drilling, and blasting.

Stan Bharti
Bharti Engineering
1009 LaSalle Blvd.
Sudbury, Ontario

\section*{Partime/Fulltime Work}

Oct 1989 to present Weekend Counselor
Responsible for the supervision of handicapped clients, distribution of medication, outburst control and home maintenance.

Sudbury \& District Association of
Community Living
Joanne Courchesne
Sudbury, Ontario
(705) 5247494


Tony Insinna Geology/Mining Dept. Cambrian College Sudbury, Ontario Bus. (705) 566-8101

Andy Bite
Inco Exploration General Office Copper Cliff, Ontario Bus. (705) 6828455

Ray Janbakhsh
Explotech Engineering Ltd.
200-469 Bouchard St.
Sudbury, Ontario (705) 522-0585

Randy Junnila
Geology Department
Cambrian College
Sudbury, Ontario COIL SPACING 75 FEET STATION SPACIMG 25 FEET
RHODES TOWNSHIP
VLEM GEDPHYSICAL SLRRVEY
MAY 22-25 1992
- RIVETT GEOLOGICAL EXPLORATIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline - LINE & & STATION & - & RX & TX & READING \\
\hline L12S & NE & 125 & & -32 & 31 & 63 \\
\hline - L125 & & 100 & & -21 & 21 & 42 \\
\hline L12S & & 75 & & -4 & 4 & 8 \\
\hline L125 & & 50 & & -2 & 2 & 4 \\
\hline L125 & & 25 & & -4 & -1 & 3 \\
\hline L125 & & 0 & & 1 & -2 & -3 \\
\hline L125 & SW & 25 & & 4 & \(-10\) & -14* \\
\hline L125 & & 50 & & 4 & -10 & -14. \\
\hline L12S & & 75 & & 17 & -10 & -27 \\
\hline L12S & & 100 & & 2 & -6 & -8 \\
\hline L125 & & 125 & & -2 & 0 & 2 \\
\hline - L12S & & 150 & & -9 & 5 & 14 \\
\hline L12S & & 175 & & -9 & 10 & 19 \\
\hline L12S & & 200 & & -16 & 10 & 26 ' \\
\hline - L125 & & 225 & & -18 & 17 & 35. \\
\hline L12S & & 250 & & -21 & 16 & 37 \\
\hline L125 & & 275 & & -10 & 10 & 20 \\
\hline L125 & & 300 & & -2 & 0 & \(2{ }^{\prime}\) \\
\hline - L125 & & 325 & & -11 & 5 & 16 \\
\hline L12S & & 350 & & -11 & 7 & 18. \\
\hline \(\bigcirc 125\) & & 375 & & -3 & -3 & 0 \\
\hline \(\mathscr{4} 125\) & & 400 & & 8 & -12 & -20 \\
\hline L125 & & 425 & & -1 & -4 & -3 \\
\hline L125 & & 450 & & -9. & 6 & 15 \\
\hline - L12S & & 475 & & -8 & 8 & 16 \\
\hline L12S & & 500 & & 1 & 3 & 2 \\
\hline L12S & & 525 & & -9 & 9 & 18 \\
\hline - L125 & & 550 & & -8 & 11 & 19 \\
\hline \(L 125\) & & 575 & & -8 & 3 & 11 \\
\hline L125 & SW & 600 & & -7 & 1 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{RICHARDSON LAKE PRDJECT RHODES TOWNSHIP VLEM GEOPHYSICAL SURVEY} & \multicolumn{2}{|l|}{OPERATOR: DAVID TRIVETT COIL SPACING 75 FEET} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
-MAY 22-25 1992 \\
( RIVETT GEQLOGICAL EXPLORATIONS
\end{tabular}}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{-} \\
\hline & & & & \multicolumn{2}{|c|}{-} \\
\hline _ LINE & \multicolumn{2}{|r|}{STATION} & FX & TX & READING \\
\hline L115 & SW & 600 & 0 & -3 & 3 \\
\hline L115 & & 575 & 0 & -4 & 4 \\
\hline -L115 & & 550 & -3 & 2 & -5 \\
\hline L115 & & 525 & 0 & 0 & 0 \\
\hline L115 & & 500 & -2 & 0 & -2 \\
\hline - Li15 & & 475 & -1 & 1 & -2 \\
\hline Li15 & & 450 & 2 & 0 & 2 \\
\hline L115 & & 425 & -4 & 5 & -9 \\
\hline L115 & & 400 & -6 & 2 & -8 \\
\hline -L11S & & 375 & 2 & 0 & 2 \\
\hline L115 & & 350 & 2 & -4 & 6 \\
\hline L115 & & 325 & -4 & -1 & -3 \\
\hline -L115 & & 300 & -2 & -1 & -1 \\
\hline L115 & & 275 & 4 & -8 & 12 \\
\hline L115 & & 250 & 2 & -7 & 9 \\
\hline L115 & & 225 & 12 & -14 & 26 \\
\hline -L115 & & 200 & 20 & -23 & 43 \\
\hline L115 & & 175 & 14 & -18 & 32 \\
\hline \%115 & & 150 & - & -4 & 4 \\
\hline , 115 & & 125 & 1 & -5 & 6 \\
\hline L115 & & 100 & 2 & -5 & 7 \\
\hline L115 & & 75 & 4 & -6 & 10 \\
\hline - L115 & & 50 & 0 & \(\bigcirc\) & 0 \\
\hline -L115 & & 25 & -6 & 5 & -11 \\
\hline L115 & & 0 & -17 & 15 & -32 \\
\hline L115 & NE & 25 & -20 & 21 & -41 \\
\hline L11S & & 50 & -16 & 12 & -28 \\
\hline L115 & & 75 & -8 & 4 & -12 \\
\hline L115 & & 100 & -2 & 2 & -4 \\
\hline - Li15 & & 125 & 4 & -9 & 13 \\
\hline L115 & & 150 & 22 & -31 & 53 \\
\hline L115 & & 175 & 26 & -38 & 64 \\
\hline - L115 & & 200 & 28 & -32 & 60 \\
\hline - L11S & & 225 & -25 & 20 & -45 \\
\hline
\end{tabular}

-LINE

L10S
L10S
L10S
- L10S

L10S
L10S
- L10s

L10S
L10S
- Lios

L10S
L10S
L10S
- Lios

Lios
L10S
- LiOS

STATION
NE \begin{tabular}{rrr}
275 & -32 \\
& 250 & -30 \\
& 225 & -18 \\
200 & -18 \\
& 175 & -14 \\
& 150 & -10 \\
& 125 & -11 \\
& 100 & -10 \\
& 75 & -5 \\
& 50 & 0 \\
& 25 & 4 \\
& 0 & -2 \\
SW & 25 & -6 \\
& 50 & -11 \\
& 75 & -22 \\
& 100 & -20 \\
& 125 & -14 \\
& 150 & -20 \\
& 175 & -16 \\
& 200 & -6 \\
& 225 & -10 \\
& 250 & -11 \\
& 275 & -2 \\
& 300 & -3 \\
& 325 & 0 \\
& 350 & 2 \\
& 375 & 2 \\
& 400 & 0 \\
& 425 & -2 \\
& 450 & 2 \\
& 475 & 0 \\
& 500 & 2 \\
& 525 & 6 \\
& 550 & 2 \\
& 575 & -3 \\
& 600 & -4
\end{tabular}

DPERATUR: DAVID TRIVETT COIL SPACING 75 FEET STATION SPACING 25 FEET

TX
READ ING

29
23
16
13
11
8
4
7
4
-4
\(-4\)
1
2
12
20
14
14
22
13
4
11
12
0
0
\(-4\)
-4
\(-2\)
-2
\(-5\)
-3
\(-5\)
\(-4\)
0
2

61
53
34
31
25
18
15
17
9
-4
\(-8\)
8
23
42
34
28
42
29—
10 -
21
23
4
3
0
-6
-6
-2
0
0
\(-7-\)
-4
-5
-11
-6
3
6

\begin{tabular}{|c|c|c|c|c|c|}
\hline -LINE & \multicolumn{2}{|r|}{STATION} & FX & TX & READING \\
\hline 195 & SW & 600 & -8 & 4 & -12 \\
\hline -L95 & & 575 & 2 & -2 & 4 \\
\hline L95 & & 550 & 6 & -6 & 12 \\
\hline 195 & & 525 & 2 & -2 & 4 - \\
\hline L95 & & 500 & -4 & 2 & -6 \\
\hline - 49 & & 475 & -5 & 0 & -5 \\
\hline L95 & & 450 & -5 & 1 & -6- \\
\hline 495 & & 425 & -1 & 3 & -4 - \\
\hline -L9S & & 400 & -4 & 1 & -5- \\
\hline 495 & & 375 & -7 & 4 & -11 \\
\hline 495 & & 350 & -2 & 3 & -5 \\
\hline - 295 & & 325 & -2 & 0 & -2- \\
\hline 495 & & 300 & -7 & 4 & -11- \\
\hline 4.95 & & 275 & -4 & 2 & -6- \\
\hline 495 & & 250 & -4 & 0 & -4 - \\
\hline -L95 & & 225 & -2 & -1 & -1- \\
\hline 195 & & 200 & 4 & -6 & \(10^{-}\) \\
\hline 695 & & 175 & 6 & -6 & 12- \\
\hline 485 & & 150 & 10 & -12 & 22 \\
\hline L95 & & 125 & 20 & -22 & 42 \\
\hline L9S & & 100 & 17 & -19 & 36 \\
\hline 495 & & 75 & 10 & -11 & 21 \\
\hline L95 & . & 50 & 4 & -2 & 6 \\
\hline 495 & & 25 & -6 & 3 & -9 \\
\hline L95 & & 0 & -5 & 5 & -10- \\
\hline -L95 & NE & 25 & -4 & 4 & -8- \\
\hline 495 & & 50 & -1 & 2 & -3- \\
\hline \(L 95\) & & 75 & 2 & -3 & 5. \\
\hline - L95 & & 100 & -2 & 2 & -4 \\
\hline 495 & & 125 & -7 & 2 & -9. \\
\hline 495 & & 150 & -1 & -1 & \(0-\) \\
\hline 495 & & 175 & 4 & -8 & 12. \\
\hline -L9S & & 200 & 8 & -12 & 20. \\
\hline 495 & & 225 & 15 & -18 & 33. \\
\hline 495 & & 250 & 18 & -14 & 32. \\
\hline -L95 & & 275 & 16 & -20 & 36. \\
\hline 1.95 & & 300 & 31 & -34 & 65. \\
\hline \(L 95\) & & 325 & 19 & -26 & 45. \\
\hline _ 495 & & 350 & 19 & -18 & 37 \\
\hline
\end{tabular}
-RICHARDSON"LAKE PROJECT
RHODES TOWNSSHIP
VLEM GEDPHYSICAL SURVEY
MAY 22-25-1992
TRIVETT GEOLOGICAL EXPLORATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline -LINE & \multicolumn{2}{|r|}{STATION} & FX & TX & READING \\
\hline Les & NE & 400 & -18 & 18 & 36 \\
\hline L8S & & 375 & -3 & 4 & 7 \\
\hline L8S & & 350 & -20 & 13 & 33 \\
\hline L8S & & 325 & -46 & 42 & 88 \\
\hline L8S & & 300 & -36 & 30 & 66 \\
\hline -L8S & & 275 & -24 & 22 & 46 \\
\hline L8S & & 250 & -20 & 12 & 32 \\
\hline L8S & & 225 & -6 & 5 & 11 \\
\hline -L8S & & 200 & -12 & 9 & 21 \\
\hline L8S & & 175 & -9 & 2 & 11 \\
\hline L8S & & 150 & 3 & -6 & -9 \\
\hline L85 & & 125 & 4 & -9 & -13 \\
\hline -L8S & & 100 & 0 & -6 & -6 \\
\hline L8S & & 75 & -4 & 0 & 4 \\
\hline L8S & & 50 & 4 & -6 & -10 \\
\hline -L8S & & 25 & 10 & -10 & -20 \\
\hline L8S & & 0 & 5 & -8 & -13- \\
\hline \(L 85\) & SW & 25 & -3 & -2 & 1 \\
\hline - L8S & & 50 & -6 & 3 & 9 \\
\hline L8S & & 75 & -14 & 0 & 14 \\
\hline L8S & & 100 & -18 & 18 & 36 \\
\hline 8.85 & & 125 & -19 & 16 & 35 \\
\hline \(\square_{285}\) & & 150 & -4 & 4 & 8 \\
\hline L8S & & 175 & 4 & -3 & -7 \\
\hline L8S & & 200 & 0 & -3 & -3: \\
\hline -L85 & & 225 & -14 & 8 & 22 \\
\hline L8S & & 250 & -12 & 10 & \(22^{\circ}\) \\
\hline L85 & & 275 & -6 & 4 & 10 \\
\hline L85 & & 300 & 2 & 0 & -2 \\
\hline -L8S & & 325 & 7 & -2 & -9 \\
\hline L85 & & 350 & 2 & -6 & -8 \\
\hline L8S & & 375 & 2 & -4 & -6 \\
\hline - L8S & & 400 & 2 & -5 & -7 \\
\hline L85 & & 425 & 0 & -3 & -3 \\
\hline L8S & & 450 & -4 & 5 & 9 \\
\hline - L85 & & 475 & -8 & 3 & 11 \\
\hline L8S & & 500 & 0 & -1 & -1 \\
\hline - L8S & SW & 525 & -5 & 5 & 10 \\
\hline L8S & & 550 & -4 & 1 & 5 \\
\hline L85 & & 575 & 0 & -1 & -1 \\
\hline - L8S & & 600 & 8 & -8 & -16 \\
\hline
\end{tabular}

LINE
-275
175
\(L 75\)
175
\(-275\)
175
\(L 75\)
\(L 75\)
-L75
L75 \(L 75\)
\(-L 75\)
L75
\(L 75\)
\(L 75\)
\(-L 75\)
L75
6675
275
475
\(-175\)
\(L 75\)
175
L75
\(-L 75\)
\(L 75\)
L75
\(-L 75\)
L75
L75
\(L 75\)
-475
L75
175
\(-L 75\)
\(L 75\)
175
\(-L 75\)
L75

STATION
SW
\begin{tabular}{|c|c|c|}
\hline 600 & -4 & 3 \\
\hline 575 & -5 & 6 \\
\hline 550 & -3 & 1 \\
\hline 525 & 3 & -3 \\
\hline 500 & -3 & 0 \\
\hline 475 & -2 & 0 \\
\hline 450 & 3 & -4 \\
\hline 425 & -3 & 0 \\
\hline 400 & 0 & 0 \\
\hline 375 & -6 & 3 \\
\hline 350 & -6 & 0 \\
\hline 325 & 3 & -4 \\
\hline 300 & 3 & -6 \\
\hline 275 & 4 & -7 \\
\hline 250 & 6 & -8 \\
\hline 225 & 6 & -10 \\
\hline 200 & 11 & -14 \\
\hline 175 & 4 & -8 \\
\hline 150 & 6 & -11 \\
\hline 125 & 10 & -14 \\
\hline 100 & 10 & -11 \\
\hline 75 & 0 & -1 \\
\hline 50 & -6 & 5 \\
\hline 25 & -2 & 2 \\
\hline 0 & -1 & -4 \\
\hline 25 & 0 & 2 \\
\hline 50 & -2 & 0 \\
\hline 75 & -6 & 6 \\
\hline 100 & -10 & 8 \\
\hline 125 & -10 & 10 \\
\hline 150 & 0 & -4 \\
\hline 175 & 12 & -14 \\
\hline 200 & 4 & -6 \\
\hline 225 & 10 & -12 \\
\hline 250 & 20 & -26 \\
\hline 275 & 26 & -39 \\
\hline 300 & 34 & -38 \\
\hline 325 & 14 & -18 \\
\hline 350 & 4 & -6 \\
\hline
\end{tabular}

FEADING
\[
\begin{array}{r}
-7 \\
-11 \\
-4 \\
6- \\
-3 \\
-2 \\
7 \\
-3- \\
0- \\
-9 \\
-6- \\
7 \\
9 \\
11- \\
14 \\
16 \\
25 \\
12 \\
17 \\
24 \\
21 \\
1 \\
-11 \\
-4 \\
3 \\
-2 \\
-2 \\
-12 \\
-18 \\
-20 \\
4 \\
26 \\
10 \\
22 \\
46 \\
65 \\
72 \\
32 \\
10 \\
-1
\end{array}
\]

RICHARDSON LAKE PROJECTY
RHODES TONNSHIP
VLEM GEDPHYSICAL SURVEY
MAY 22-25 1992
-TRIVETT GEOLOGICAL EXPLORATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline LINE & \multicolumn{2}{|r|}{STATION} & RX & TX & READING \\
\hline - 255 & NE & 400 & 0 & 1 & 1 \\
\hline L55 & & 375 & -2 & 0 & 2 \\
\hline L55 & & 350 & -4 & - & 4 \\
\hline L5S & & 325 & -5 & 1 & 6 \\
\hline - L55 & & 300 & -5 & 2 & 7 \\
\hline LSS & & 275 & -9 & 6 & 15 \\
\hline L5S & & 250 & -36 & 36 & 72 \\
\hline -L5S & & 225 & -48 & 48 & 96 \\
\hline L55 & & 200 & -30 & 26 & 56 \\
\hline L5S & & 175 & -13 & 10 & 23 \\
\hline LSS & & 150 & -5 & 4 & 9 \\
\hline L5S & & 125 & -6 & 2 & 8 \\
\hline L55 & & 100 & -2 & 0 & 2 \\
\hline LS5 & & 75 & 3 & -4 & -7 \\
\hline - L55 & & 50 & 7 & -10 & -17 \\
\hline LSS & & 25 & 6 & -8 & -14 \\
\hline 655 & & 0 & 0 & -3 & -3 \\
\hline \& 35 & & 25 & -2 & 0 & 2 \\
\hline L5S & & 50 & -6 & 4 & \(10<\) \\
\hline L5S & & 75 & -13 & 6 & 19 \\
\hline LSS & & 100 & -14 & 11 & 25 \\
\hline - L5S & & 125 & -14 & 10 & 24 \\
\hline L55 & & 150 & -13 & 10 & 23 \\
\hline L5S & & 175 & -11 & 5 & 16 \\
\hline - L5S & & 200 & -6 & 2 & \(8{ }^{\prime}\) \\
\hline L5S & & 225 & -6 & 2 & 83 \\
\hline L5S & & 250 & -4 & 2 & 6 \\
\hline - L5S & & 275 & 0 & 0 & \(0 \%\) \\
\hline L5S & & 300 & -4 & 1 & 5 \\
\hline L5S & & 325 & -4 & 3 & 7 - \\
\hline L55 & & 350 & -4 & 0 & 4 - \\
\hline - LS5 & & 375 & -3 & 2 & 5 \\
\hline L5S & & 400 & -4 & 0 & 4 - \\
\hline L5S & & 425 & -4 & 2 & 6 \\
\hline - L5S & & 450 & -4 & 4 & 8 \\
\hline L55 & & 475 & -2 & 0 & \\
\hline L5S & & 500 & 0 & -2 & -2 \\
\hline L.5S & & 525 & 0 & -3 & -3 \\
\hline L55 & & 550 & 4 & -7 & -11 \\
\hline L5S & & 575 & 5 & -8 & -13 \\
\hline L5S & & 600 & 5 & -7 & -12 \\
\hline
\end{tabular}
-RICHARDSON LAKE PROTECT RHODES TOUNSHIP
VLEM GEDPHYSICAL SURVEY MAY 22-25 1992
( QIVETT GEOLOGICAL EXPLORATIONS


OPERATOR: DAVID TRIVETT COIL SPACING 75 FEET STATION SPACING 25 FEET
-RICHARDSTON LAKE PROJECT RHODES TOUNSHIP
VLEM GEOPHYSICAL SURVEY
MAY 22-25 1992
-RIVETT GEOLOGICAL EXPLORATIONS


OPERATOR: DAVID TRIVETT
COIL SPACING 75 FEET STATION SPACING. 25 FEET

RICHARDSON LAKE PROJECT -RHDDES TOWNSHIP
1 -EM GEOPHYSICAL SURVEY MAY 22-25 1992
TRIVETT GEOLOGICAL EXPLGRATIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline -Line & \multicolumn{2}{|r|}{STATION} & RX & TX & \multicolumn{2}{|r|}{READING} \\
\hline L2S & SW & 325 & 8 & -14 & & 22 \\
\hline -L25 & & 300 & 13 & -18 & & 31 \\
\hline L2S & & 275 & 14 & -18 & & 32 \\
\hline L25 & & 250 & 11 & -16 & & 27 \\
\hline -L25 & & 225 & 5 & -5 & & 10 \\
\hline L2S & & 200 & -4 & 0 & & -4 \\
\hline L25 & & 175 & -1 & 0 & & -1 \\
\hline L2S & & 150 & -14 & 8 & & -22 \\
\hline -L25 & & 125 & -9 & 7 & & -16 \\
\hline L25 & & 100 & -6 & 4 & & -10 \\
\hline L25 & & 75 & -9 & 6 & & -15 \\
\hline -L25 & & 50 & -12 & 3 & & -15 \\
\hline L25 & & 25 & 2 & -6 & & 8 \\
\hline L2S & & 0 & 5 & -9 & & 14 \\
\hline -L25 & & 25 & 14 & -17 & & 31 \\
\hline L25 & & 50 & 18 & -21 & & 39 \\
\hline L25 & & 75 & 14 & -18 & & 32 \\
\hline ¢25 & & 100 & 25 & -30 & & 55 \\
\hline -25 & & 125 & 34 & -37 & & 71 \\
\hline L2S & & 150 & 24 & -27 & - & 51 \\
\hline L2S & NE & 175 & 6 & -10 & & 16 \\
\hline -L25 & & 200 & -1 & -4 & & 3 \\
\hline L2S & & 225 & 0 & -4 & & 4 \\
\hline L25 & & 250 & -1 & -6 & & 5 \\
\hline -L25 & & 275 & 0 & -7 & & 7 \\
\hline L25 & & 300 & 3 & -7 & & 10 \\
\hline L2S & & 325 & -2 & -4 & & 2 \\
\hline L25 & & 350 & 2 & -4 & & 6 \\
\hline - L25 & & 375 & 3 & -4 & & 7 \\
\hline L25 & & 400 & 0 & -1 & & 1 \\
\hline L2S & & 425 & -3 & -3 & & 0 \\
\hline - L25 & & 450 & 0 & 0 & & 0 \\
\hline L25 & & 475 & 0 & -2 & & 2 \\
\hline
\end{tabular}

RICHARDSON LAKE PROJECT ZHODES TOWNSHIP OPERATOR: DAVID TRIVETT COIL SPACING 75 FEET
\begin{tabular}{|c|c|c|c|c|c|}
\hline LINE & \multicolumn{2}{|r|}{STATION} & RX & TX & READING \\
\hline -15 & & 575 & -8 & 3 & 11 \\
\hline -15 & NE & 550 & -5 & 2 & \(7^{-}\) \\
\hline L15 & & 525 & -6 & 5 & 11- \\
\hline - 15 & & 500 & -6 & 4 & 10. \\
\hline -15 & & 475 & -8 & 3 & 11. \\
\hline L15 & & 450 & -9 & 5 & 14. \\
\hline -15 & & 425 & -7 & 2 & 9. \\
\hline -15 & & 400 & -3 & 0 & 3 - \\
\hline L1S & & 375 & 0 & -2 & -2- \\
\hline L1S & & 350 & -3 & 1 & 4- \\
\hline L1S & & 325 & -7 & 2 & 9 \\
\hline -15 & & 300 & -5 & 2 & 7 \\
\hline L15 & & 275 & -5 & 2 & 7 \\
\hline --15 & & 250 & -8 & 4 & 12- \\
\hline L1S & & 225 & -6 & 3 & 9 \\
\hline Lis & & 200 & -2 & 0 & \(2-\) \\
\hline \(\xrightarrow{\sim} 15\) & & 175 & -3 & 1 & 4 - \\
\hline L1S & & 150 & 5 & -2 & -7 \\
\hline L15 & & 125 & 3 & -1 & -4 \\
\hline \(\underset{\sim}{15}\) & & 100 & 4 & 0 & -4 \\
\hline -15 & & 75 & -14 & 12 & 26 \\
\hline L15 & & 50 & -15 & 13 & 28 \\
\hline L15 & & 25 & -9 & 6 & 15 \\
\hline -L15 & & 0 & -4 & 2 & 6 \\
\hline L15 & & 25 & 3 & 0 & -3 \\
\hline L15 & & 50 & \(\bigcirc\) & 2 & 2 \\
\hline -L15 & SW & 75 & -5 & 1 & 6 \\
\hline L15 & & 100 & -12 & 9 & 21 \\
\hline L15 & & 125 & -4 & 1 & 5 \\
\hline L15 & & 150 & -6 & 4 & 10 \\
\hline
\end{tabular}

RICHARDSON LAKE PROJECT RHODES TOWNSHIP VLEM GEOPHYSICAL SURVEY MAY 22-25 1992

OPERATOR: DAVID TRIVETT
COIL SPACING 75 FEET
STATION SPACING 25 FEET
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LINE & \multicolumn{2}{|r|}{STATION} & & RX & TX & READING \\
\hline Los & & 600 & & -10 & \(9^{-}\) & 19 \\
\hline Los & & 575 & & -10 & 10 & 20 \\
\hline - LOS & & 550 & & -17 & 14 & 31 \\
\hline Los & & 525 & & -18 & 14 & 32 \\
\hline Los & NE & 500 & & -11 & 9 & 20 \\
\hline Los & & 475 & & -6 & 2 & 8 \\
\hline - LOS & & 450 & & -2 & 1 & 3 \\
\hline Los & & 425 & & 3 & -10 & -13 \\
\hline LOS & & 400 & & 9 & -16 & -25- \\
\hline - Los & & 375 & & 0 & -8 & -8 \\
\hline L0S & & 350 & & -4 & 0 & 4 \\
\hline Los & & 325 & & 0 & -8 & -8 \\
\hline - LOS & & 300 & & 20 & -21 & -41 \\
\hline Los & & 275 & & 7 & -14 & -21 \\
\hline Los & & 250 & & 0 & -3 & -3 \\
\hline Los & & 225 & & 0 & -1 & -1 \\
\hline - LoS & & 200 & & -4 & 0 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \% 05 & 175 & -4 & 0 & 4 \\
\hline -10S & 150 & -10 & 8 & 18 \\
\hline Los & 125 & -15 & 14 & 29 \\
\hline Los & 100 & -28 & 29 & 57 \\
\hline - LOS & 75 & -38 & 36 & 74 \\
\hline Los & 50 & -39 & 40 & 79 \\
\hline LOS & 25 & -19 & 23 & 42 \\
\hline
\end{tabular}
OICHARDSON LAKE PROJECT
HODES TOWNSHIP
VLEM GEOPHYSICAL SURVEY
MAY 22-25 1992
TRIVETT GEOLOGICAL EXFLORATIONS
-
\begin{tabular}{|c|c|c|c|c|c|}
\hline LINE & & STATION & RX & TX & READING \\
\hline L3E & . & 375 & -3 & & \\
\hline L3E & & 375
350 & -3 & 0
-5 & 3 \\
\hline L3E & & 325 & 6 & -10 & -1i \\
\hline LЗE & & 300 & 19 & -20 & -39 \\
\hline L3E & \(\mathbf{N}\) & 275 & 16 & -21 & -37 \\
\hline L3E & & 250 & 9 & -14 & -23 \\
\hline - \(23 E\) & & 225 & 11 & -13 & -24 \\
\hline L3E & & 200 & 10 & -11 & -21 \\
\hline LЗE & & 175 & 3 & -7 & \(-10\) \\
\hline -L3E & & 150 & -6 & 2 & 8 \\
\hline L3E & & 125 & -6 & 6 & 12 \\
\hline L3E & & 100 & -14 & 11 & 25 \\
\hline L3E & & 75 & -25 & 24 & 49 \\
\hline L3E & & 50 & -46 & 44 & 90 \\
\hline L3E & & 25 & -41 & 35 & 76 \\
\hline \%3E & & 0 & -22 & 22 & 44 \\
\hline W3E & : & 25 & -18 & 10 & 28 \\
\hline L3E & & 50 & -1 & -3 & -2 \\
\hline L3E & & 75 & -6 & -1 & 5 \\
\hline L3E & & 100 & 2 & -6 & -8 \\
\hline L3E & & 125 & 4 & -7 & -11 \\
\hline L3E & & 150 & 8 & -9 & -17 \\
\hline LЗE & & 175 & 12 & -11 & -23 \\
\hline -L3E & & 200 & 11 & -14 & -25 \\
\hline L3E & & 225 & 15 & -19 & -34 \\
\hline L3E & & 250 & 4 & -13 & -17 \\
\hline L3E & & 275 & 2 & 6 & 4 \\
\hline L3E & & 300 & -5 & 3 & 8 \\
\hline LJE & & 325 & -21 & 20 & 41 \\
\hline L3E & & 350 & -27 & 22 & 49 \\
\hline L3E & & 375 & -10 & 10 & 20 \\
\hline LЗE & & 400 & -8 & 5 & 13 \\
\hline L3E & & 425 & -9 & 8 & 17 \\
\hline -L3E & & 450 & -9 & 7 & 16 \\
\hline L3E & & 475 & -8 & 5 & 13 \\
\hline L3E & & 500 & -7 & 4 & 11 \\
\hline -L3E & & 525 & -4 & 4 & 8 \\
\hline L3E & & 550 & -7 & 1 & 8 \\
\hline LJE & & 575 & -8 & 1 & 9 \\
\hline L3E & & 600 & -3 & 0 & 3 \\
\hline 7.3E & & 625 & 3 & -6 & -9 \\
\hline 1 SE & & 650 & 2 & -4 & -6 \\
\hline - 3E & 5 & 675 & 4 & -1 & -5 \\
\hline -LSE & & 700 & 2 & -1 & -3 \\
\hline L3E & & 725 & 9 & -12 & -21 \\
\hline LЗE & & 750 & 3 & -5 & -8 \\
\hline L 3E & & 775 & 2 & -4 & -6 \\
\hline
\end{tabular}

OPERATOR: DAVID TRIVETT COIL SPACING 75 FEET STATION SPACING 25 FEET

READ ING
3
-9
-16
-39
-37
-23
-24
-21
10
8
12
25
49
90
44
28
\(-2\)
\(-8\)
\(-11\)
\(-17\)
\(-23\)
\(-25\)
\(-17\)
4
41
49
20
13
17
16
13
\({ }^{11} 8\)
8-
9
-9
-6
-5
\(-3\)
-8
-6

ZICHARDSON LAKE PROJECT
ZHODES TOWNSHIP
VLEM GEOPHYSICAL SURVEY MAY 22-25 1992
RIVETT GEOLOGICAL EXPLORATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline _INE & \multicolumn{2}{|r|}{STATION} & RX & TX & READING \\
\hline L2E & & 775 & -2 & 0 & -2 \\
\hline --2E & & 750 & 0 & -2 & 2 \\
\hline -2E & & 725 & 8 & -10 & 18 \\
\hline L2E & & 700 & 7 & -10 & 17 \\
\hline - 2 E & 5 & 675 & 0 & -2 & 2 \\
\hline L2E & & 650 & -3 & 0 & -3- \\
\hline L2E & & 625 & 2 & -12 & 14. \\
\hline L2E & & 600 & 17 & -21 & \(38-\) \\
\hline -2E & & 575 & 4 & -11 & 15 \\
\hline L2E & & 550 & -10 & 8 & -18. \\
\hline L2E & & 525 & -20 & 17 & -37: \\
\hline -L2E & & 500 & -6 & 5 & -11- \\
\hline L2E & & 475 & 4 & -8 & 12 \\
\hline L2E & & 450 & 9 & -11 & \(20-\) \\
\hline \(\perp 2 \mathrm{E}\) & & 425 & 11 & -14 & 25 \\
\hline L2E & & 400 & 16 & -18 & 34 \\
\hline L2E & & 375 & 11 & -15 & \(26^{-}\) \\
\hline 2E & & 350 & 4 & -9 & 13- \\
\hline -2E & & 325 & 10 & -12 & 22- \\
\hline L2E & & 300 & 11 & -17 & 28 \\
\hline L2E & & 275 & 2 & -6 & 8 \\
\hline -L2E & & 250 & -5 & 0 & -5 \\
\hline L2E & & 225 & -13 & 6 & -19 \\
\hline L2E & & 200 & -10 & 8 & -18 \\
\hline L2E & & 175 & -6 & 2 & -8 \\
\hline L2E & & 150 & -9 & 5 & -14 \\
\hline L2E & & 125 & -8 & 4 & -12 \\
\hline L2E & & 100 & -4 & 2 & -6 \\
\hline L2E & & 75 & -6 & 4 & -10 \\
\hline L2E & & 50 & -2 & -2 & 0 \\
\hline L2E & & 25 & 3 & -12 & 15 \\
\hline \(\xrightarrow{\text { L2E }}\) & & 0 & 8 & -16 & 24 \\
\hline L2E & & 25 & 13 & -18 & 31 \\
\hline L2E & & 50 & 22 & -27 & 49 \\
\hline L2E & & 75 & 14 & -18 & 32 \\
\hline L2E & & 100 & 2 & -6 & 8 \\
\hline L2E & & 125 & 1 & -3 & 4 \\
\hline L2E & & 150 & -3 & 0 & -3 \\
\hline -L2E & & 175 & -3 & 0 & -3 \\
\hline L2E & N & 200 & -4 & 2 & -6 \\
\hline L2E & & 225 & -8 & 5 & -13 \\
\hline -L2E & & 250 & -12 & 10 & -22 \\
\hline ' 2 E & & 275 & -22 & 16 & -38 \\
\hline ( 2E & & 300 & -18 & 14 & -32 \\
\hline L2E & & 325 & -9 & 9 & -18 \\
\hline L2E & & 350 & -5 & 4 & -9 \\
\hline L2E & & 375 & 0 & -3 & 3 \\
\hline
\end{tabular}

DPERATDRS DAVID TRIVETT
LIE COIL SPACING 75 FEET STATION SPACING 25 FEET

RICHARDSON LAKE PRDJECT
RHODES TOWNSHIP
VLEM GEDPHYSICAL SURVEY
MAY 22-25 1992
(-TRIVETT GEOLOGICAL EXPLORATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline LINE & \multicolumn{2}{|r|}{STATION} & RX & TX & F:EADING \\
\hline LOW & & 300 & 5 & \(-10\) & \(-15\) \\
\hline LOW & & 275 & 11 & \(-12\) & -23 \\
\hline -LOW & & 250 & 8 & \(-13\) & -21 \\
\hline LOW & \(N\) & 225 & 6 & -8 & -14 \\
\hline LOW & & 200 & -2 & \(-2\) & 0 \\
\hline LOW & & 175 & -3 & -2 & 1 \\
\hline LOW & & 150 & 4 & -8 & -12 \\
\hline LOW & & 125 & 2 & -6 & -8 \\
\hline LOW & & 100 & -3 & -2 & 1 \\
\hline -LOW & & 75 & -10 & 5 & 15 \\
\hline LOW & & 50 & \(-10\) & 6 & 16 \\
\hline LOW & & 25 & \(-12\) & 8 & 20 \\
\hline -LOW & & 0 & -16 & 12 & 28 \\
\hline LOW & & 25 & -13 & 6 & 19 \\
\hline LOW & & 50 & -4 & 2 & 6 \\
\hline LOW & & 75 & 1 & -4 & -5 \\
\hline -LOW & & 100 & 4 & -8 & -12 \\
\hline LOW & & 125 & 4 & -7 & -11 \\
\hline ( OW & & 150 & 6 & -11 & -17 \\
\hline CLOW & & 175 & 4 & -7 & -11 \\
\hline LOW & & 200 & -2 & -3 & -1 \\
\hline LOW & & 225 & -2 & 0 & 2 \\
\hline LOW & & 250 & -3 & 1 & 4 \\
\hline LOW & & 275 & -8 & 5 & 13 \\
\hline LOW & & 300 & \(-14\) & 7 & 21 \\
\hline LOW & & 325 & -10 & 6 & 16 \\
\hline - LOW & & 350 & -6 & 6 & 12 \\
\hline LOW & & 375 & -4 & -1 & 3 \\
\hline LOW & & 400 & -4 & 0 & 4 \\
\hline - LOW & & 425 & -8 & 3 & \(11^{\prime}\) \\
\hline LOW & & 450 & -7 & 2 & 9 \\
\hline LOW & & 475 & -6 & 2 & 8 \\
\hline LOW & & 500 & -6 & 1 & 7 \\
\hline - LOW & & 525 & -7 & 5 & 12- \\
\hline LOW & & 550 & -18 & 14 & \(32-\) \\
\hline LOW & & 575 & -38 & 33 & 71 - \\
\hline - Low & & 600 & -32 & 27 & 59 - \\
\hline LOW & & 625 & -16 & 12 & 28 - \\
\hline LOW & 5 & 650 & -15 & 10 & \(25-\) \\
\hline - LOW & & 675 & -13 & 7 & 20 - \\
\hline LOW & & 700 & -5 & 1 & 6 \\
\hline LOW & & 725 & -4 & -1 & 3 \\
\hline LOW & & 750 & -2 & -3 & -1 \\
\hline -1.OW & & 775 & 0 & -4 & -4 \\
\hline
\end{tabular}

OPERATOR: DAVID TRIVETT
COIL SPACING 75 FEET STATION SFACING 25 FEET

FEADING
\[
\begin{array}{r}
-15 \\
-23 \\
-21 \\
-14 \\
6 \\
1 \\
-12 \\
-8 \\
11 \\
15 \\
16 \\
20 \\
28 \\
19 \\
6 \\
-5 \\
-12 \\
-11 \\
-17 \\
-11 \\
-1 \\
2 \\
4 \\
13 \\
21 \\
16 \\
12 \\
3 \\
4 \\
11 \\
9 \\
8
\end{array}
\]

VLEM GEOPHYSICAL SURVEY
MAY 22-25 1992
-TRIVETT GEOLOGICAL EXPLORATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline LINE & & StATION & Fix & TX & READING \\
\hline Liw & & 775 & -1 & -2 & 1 \\
\hline L1W & & 750 & -4 & -2 & 2 \\
\hline L1W & & 725 & -4 & -1 & -3 \\
\hline -Liw & & 700 & 0 & -4 & 4 \\
\hline L1W & & 675 & 0 & -6 & 6 \\
\hline L1W & & 650 & 10 & -14 & 24 \\
\hline -L1W & & 625 & 17 & -22 & 37 \\
\hline LIW & & 600 & 10 & -17 & 27 \\
\hline LiW & 5 & 575 & 4 & -9 & 13 \\
\hline -L1W & & 550 & 0 & -2 & 2 \\
\hline LiW & & 525 & 4 & -4 & 8 \\
\hline Liw & & 500 & 10 & -10 & 20 \\
\hline L1W & & 475 & 7 & -9 & 16 \\
\hline - Liw & & 450 & 5 & -7 & 12 \\
\hline L1W & & 425 & 5 & -12 & 17 \\
\hline L1W & & 400 & 8 & -10 & 18 \\
\hline -LIW & & 375 & 10 & -10 & 20 \\
\hline L1W & & 350 & 7 & -10 & 17 \\
\hline L1W & & 325 & 4 & -5 & 9 \\
\hline - -1W & & 300 & 3 & -3 & 6 \\
\hline L1W & & 275 & 6 & -7 & 13 \\
\hline LIW & & 250 & 4 & -3 & 7 \\
\hline LiW & & 225 & \(\bigcirc\) & \(\bigcirc\) & 0 \\
\hline - LiW & & 200 & -5 & 3 & -8 \\
\hline L1W & & 175 & -13 & 11 & -24. \\
\hline LIW & & 150 & -9 & 6 & -15 \\
\hline - L1W & & 125 & 2 & -7 & 9 \\
\hline L1W & & 100 & 7 & -12 & 19 \\
\hline L1W & & 75 & 10 & -13 & 23 \\
\hline LiW & & 50 & 9 & -11 & 20 \\
\hline - Liw & & 25 & 6 & -8 & 14 \\
\hline L1W & & 0 & 1 & -5 & 6 \\
\hline L1W & & 25 & 0 & -4 & 4 \\
\hline - Liw & & 50 & 0 & -5 & 5 \\
\hline L1W & & 75 & 3 & -6 & 9 \\
\hline L1W & & 100 & 0 & -4 & 4 \\
\hline - Liw & & 125 & 0 & -3 & 3 \\
\hline -L1W & & 150 & -4 & -2 & -2 \\
\hline L1W & N & 175 & -5 & -3 & -2 \\
\hline L1W & & 200 & -2 & -2 & 0 \\
\hline - Liw & & 225 & -2 & -1 & -1 \\
\hline L.1W & & 250 & -5 & 4 & -9 \\
\hline L1W & & 275 & -8 & 6 & -14 \\
\hline - LiW & & 300 & -5 & 2 & -7 \\
\hline - 1 W & & 325 & -5 & 1 & -6 \\
\hline - 1 W & & 350 & -6 & 3 & -9 \\
\hline -Liw & & 375 & -6 & 3 & -9 \\
\hline L1w & & 400 & -1 & -1 & \(\bigcirc\) \\
\hline Liw & & 425 & 0 & 5 & -5 \\
\hline Liw & & 450 & -2 & -4 & 2 \\
\hline
\end{tabular}

RHODES TOWNSHIP
VLEM GEQPHYSICAL SURVEY
MAY 22-25 1992
-TRIVETT GEQLOGICAL EXPLORATIONS 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline - Line & \multicolumn{2}{|r|}{STATION} & Fix & TX & READING \\
\hline L2W & & 375 & -2 & -1 & 1 \\
\hline - L2W & & 350 & -5 & 2 & 7 \\
\hline L2W & & 325 & -4 & 2 & 6 \\
\hline L2W & & 300 & 2 & -1 & -3 \\
\hline - L2W & N & 275 & 0 & -2 & -2 \\
\hline - L2W & & 250 & 0 & -2 & -2 \\
\hline L2W & & 225 & 2 & -4 & -6 \\
\hline L2W & & 200 & -2 & 0 & 2 \\
\hline - L2W & & 175 & -2 & 0 & 2 \\
\hline L2W & & 150 & -6 & 3 & 9 \\
\hline L2W & & 125 & -7 & 4 & 11 \\
\hline - L2W & & 100 & -9 & 6 & 15 \\
\hline L2W & & 75 & -8 & 4 & 12 \\
\hline L2W & & 50 & -4 & 3 & 7 \\
\hline L2W & & 25 & -4 & 3 & 7 \\
\hline L2W & & 0 & -8 & 5 & 13 \\
\hline L2W & & 25 & -8 & 3 & 11 \\
\hline f. 2 W & & 50 & -3 & 0 & 3 \\
\hline \(1.2 w\) & & 75 & -10 & 7 & 17 \\
\hline L2W & & 100 & -6 & 5 & 11 \\
\hline L2W & & 125 & -5 & 2 & 7 \\
\hline L2W & & 150 & -7 & 3 & 10 \\
\hline L2W & & 175 & -2 & -1 & 1 \\
\hline L2W & & 200 & 0 & 1 & 1 \\
\hline L2W & & 225 & 0 & -2 & -2 \\
\hline - L2W & & 250 & 3 & -7 & -10 \\
\hline L2W & & 275 & -7 & 1 & 8 \\
\hline L2W & & 300 & -12 & 10 & 22 \\
\hline - L2W & & 325 & -20 & 18 & 38 \\
\hline L2W & & 350 & -19 & 20 & 39 \\
\hline L2W & & 375 & -13 & 11 & 24 \\
\hline L2W & & 400 & -6 & 2 & 8 \\
\hline L.2W & & 425 & -1 & -1 & 0 \\
\hline L2W & & 450 & -2 & \(\bigcirc\) & 2 \\
\hline L2W & & 475 & -9 & 7 & 16 \\
\hline - L2W & & 500 & -11 & 10 & 21 \\
\hline L2W & & 525 & -11 & 11 & 22 \\
\hline L2W & & 550 & 0 & 1 & 1. \\
\hline - L2W & 5 & 575 & -9 & 4 & 13. \\
\hline L2W & & 600 & -12 & 10 & 22 \\
\hline L2W & & 625 & -17 & 10 & 27 \\
\hline L2W & & 650 & -22 & 17 & 39 \\
\hline - L2W & & 675 & -12 & 11 & 23 \\
\hline 2W & & 700 & -6 & 2 & 8 \\
\hline - 2 W & & 725 & 0 & -4 & -4 \\
\hline - L2W & & 750 & -3 & -1 & 2 \\
\hline L2W & & 775 & -1 & 0 & 1 \\
\hline
\end{tabular}

OPERATOR: DAVID TRIVETT COIL SPACING 75 FEET STATION SPACING 25 FEET
_RICHARDSON LAKE PROJECT
RHODES TOWNSHIP
VLEM GEOPHYSICAL SURVEY
MAY 22-25 1992
--RIVETT GEOLOGICAL EXPLORATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline LIINE & \multicolumn{2}{|r|}{STATION} & RX & TX & READ ING \\
\hline L3W & & 775 & -3 & 0 & -3 \\
\hline L3W & & 750 & -4 & -2 & -2 \\
\hline LSW & & 725 & -2 & 0 & -2 \\
\hline L.3W & & 700 & 0 & -3 & 3 \\
\hline -L3W & & 675 & 10 & -15 & 25 \\
\hline L3W & 5 & 650 & 16 & -20 & 36 \\
\hline L3W & & 625 & 10 & -15 & 25 \\
\hline L3W & & 600 & 9 & -14 & 23 \\
\hline L3W & & 575 & 7 & -6 & 13 \\
\hline L3W & & 550 & 8 & -12 & 20 \\
\hline LSW & & 525 & 8 & -9 & 17 \\
\hline -L3W & & 500 & 3 & -5 & 8 \\
\hline LSW & & 475 & 4 & -7 & 11 \\
\hline L3W & & 450 & 1 & -3 & 4 \\
\hline -L3W & & 425 & 0 & -2 & 2 \\
\hline L3W & & 400 & 1 & -3 & 4 \\
\hline L3W & & 375 & 2 & -6 & 8. \\
\hline L3W & & 350 & -2 & -4 & 2 \\
\hline L3W & & 325 & 4 & -7 & 11 \\
\hline L3W & & 300 & 4 & -8 & 12 \\
\hline \% 3W & & 275 & 4 & -8 & 12 \\
\hline -3W & & 250 & 2 & -9 & 11 \\
\hline L3W & & 225 & 5 & -7 & 12 \\
\hline LSW & & 200 & -2 & -2 & 0 \\
\hline -L3W & & 175 & -2 & -1 & -1 \\
\hline L3W & & 150 & 2 & -1 & 3 \\
\hline L3W & & 125 & 2 & -4 & 6 \\
\hline L3W & & 100 & 1 & -6 & 7 \\
\hline L3W & & 75 & 0 & -5 & 5 \\
\hline L3W & & 50 & 2 & -2 & 4 \\
\hline L3W & & 25 & 2 & -4 & 6 \\
\hline -L3W & & \(\bigcirc\) & 3 & -5 & 8 \\
\hline L3W & & 25 & 2 & -5 & 7 \\
\hline L3W & & 50 & 1 & -2 & 3 \\
\hline - L3W & & 75 & -3 & 0 & -3 \\
\hline L3W & & 100 & -4 & 1 & -5 \\
\hline L3W & & 125 & -5 & 5 & -10 \\
\hline L3W & & 150 & -12 & 5 & -17 \\
\hline -L3W & & 175 & -11 & 8 & -19 \\
\hline L3W & & 200 & 0 & -3 & 3 \\
\hline L3W & & 225 & -4 & 3 & -7 \\
\hline -L3W & & 250 & -7 & 5 & -12 \\
\hline L3W & \(N\) & 275 & -2 & 0 & -2 \\
\hline L3W & & 300 & -2 & 0 & -2 \\
\hline L3W & & 325 & 3 & -4 & 7 \\
\hline - 3W & & 350 & 12 & -10 & 22 \\
\hline \& 3W & & 375 & 8 & \(-10\) & 18 \\
\hline L3W & & 400 & 7 & -9 & 16 \\
\hline -L3W & & 425 & 6 & -9 & 15 \\
\hline L3W & & 450 & 5 & -8 & 13 \\
\hline L3W & & 475 & 5 & -8 & 13 \\
\hline
\end{tabular}

OPERATOR: DAVID TRIVETT COIL SPACING 75 FEET STATION SPACING 25 FEET

\author{
RICHARDSON LAKE PROJECT \\ - HODES TOWNSHIP \\ ,LEM GEOPHYSICAL SURVEY \\ MAY Z2-25 1992 \\ -TRIVETT GEOLOGICAL EXFLORATIONS
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline -_INE & \multicolumn{2}{|r|}{STATION} & Fix & TX & READING \\
\hline L4W & & 475 & -8 & 8 & 16 \\
\hline - 4 WW & & 450 & -3 & 0 & 3 \\
\hline L4W & N & 425 & -2 & 0 & 2 \\
\hline L4W & N & 400 & 6 & -8 & -14 \\
\hline L4W & & 375 & 11 & -2 & -13 \\
\hline L4W & & 350 & 10 & -8 & 18 \\
\hline L4W & & 325 & 4 & -6 & -18 \\
\hline L4W & & 300 & 10 & -8 & -18 \\
\hline -L4W & & 275 & 9 & -10 & 19 \\
\hline L4W & & 250 & 2 & -3 & 5 \\
\hline L4W & & 225 & -2 & -2 & 0 \\
\hline -L4W & & 200 & \(-2\) & -2 & 0 \\
\hline L4W & & 175 & 0 & -2 & 2 \\
\hline L4W & & 150 & -4 & 3 & 15 \\
\hline L4W & & 125 & \(-10\) & 5 & 15 \\
\hline L4W & & 100 & \(-10\) & 6 & 16 \\
\hline L4W & & 75 & -2 & 0 & 2 \\
\hline - \(4 W\) & & 50 & -2 & -2 & 5 \\
\hline - -4W & & 25 & -2 & 3 & 5 \\
\hline L4W & & 0 & -8 & 4 & 12 \\
\hline L4W & & 25 & -9 & 9 & 18 \\
\hline L4W & & 50 & 0 & 3 & 3 \\
\hline L4W & & 75 & -1 & 0 & 11 \\
\hline L4W & & 100 & -6 & 5 & 11 \\
\hline L4W & & 125 & 0 & 2 & 2 \\
\hline -L4W & & 150 & -3 & 2 & 10 \\
\hline L4W & & 175 & -6 & 4 & 10 \\
\hline L4W & & 200 & -8 & 9 & 17 \\
\hline -L4W & 5 & 225 & 0 & -2 & -2 \\
\hline L4W & & 250 & 1 & -2 & -3 \\
\hline L4W & & 275 & 3 & -4 & -7 \\
\hline L4W & & - 300 & 2 & -2 & -4 \\
\hline -L4W & & 325 & 7 & -8 & -15 \\
\hline L4W & & 350 & -3 & 1 & 4 \\
\hline L4W & & . 375 & 0 & 2 & 2 \\
\hline
\end{tabular}

OPERATOR: DAVID TRIVETT
COIL SPACING 75 FEET
STATION SPACING 25 FEET

RICHARDSON LAKE PROJECT
THODES TOWNSHIP
LEM GEOPHYSICAL SURVEY
MAY 22-25 1992
TRIVETT GEOLOGICAL EXPLORATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline LINE & & STATION & FX & TX & READING \\
\hline L5W & & 25 & 2 & -3 & 5 \\
\hline -LSW & & 50 & 3 & -1 & 4 \\
\hline L5W & & 75 & 1 & 0 & 1 \\
\hline L5W & & 100 & 3 & -4 & 7 \\
\hline -L5W & & 125 & 4 & -7 & 11 \\
\hline L.5W & & 150 & 4 & -9 & 13 \\
\hline LSW & & 175 & 5 & -8 & 13 \\
\hline L5W & & 200 & 1 & -3 & 4 \\
\hline LSW & & 225 & 0 & -1 & 1 \\
\hline LSW & & 250 & -10 & 8 & -18 \\
\hline LSW & N & 275 & -9 & 6 & -15 \\
\hline -LSW & & 300 & -6 & 3 & -9 \\
\hline L5W & & 325 & -3 & 0 & -3 \\
\hline ( 5 W & & 350 & -4 & 1 & -5 \\
\hline - 25 W & & 375 & 3 & -1 & 4 \\
\hline L5W & & 400 & 5 & -3 & 8 \\
\hline L5W & & 425 & 7 & -4 & 11 \\
\hline
\end{tabular}

\author{
OPERATOR: DAVID TRIVETT \\ COIL SPACING 75 FEET STATION SPACING 25 FEET
}






(ธロ-टロ) ajGu* 7l!


\[
\begin{aligned}
& 100 . \\
& \dot{\Delta} \\
& \text { (1ロ-ट0) aן位 7)! ! }
\end{aligned}
\]




（ロ－20）aן位 子！！








The following is a series of originally generated VLEM profiles that were used for interpretation purposes during the generation of the Trivett Geological Exploration report to Bharti Engineering Associates Inc.

The various profiles were originally studied by David G.B. Trivett and then carefully scrutinized by Tony Insinna, a staff geophysicist with the Geology/Mining Department at Cambrian College of Applied Arts and Technology in Sudbury, Ontario.

At this time it is not possible to determine the validity of the interpretations, but the information notations may certainly be useful in further future more detailed geophysical type investigations.







F ( \(10-20\) ) , 15U甘 711









F* \((10-20)\) al6ut 711







Fr, \(\quad(10-ट 0)\) alsuy 7) 1


The following is a number of brief comments on the findings of the recent Vertical Loop Electromagnetic Survey (VLEM) put together by utilizing new information that was generated by means of carrying out exploration endeavours such as trenching and diamond drilling after the VLEM survey had been undertaken.

Certain intrusive type rocks such as quartz, feldspar, porphyries, metadiabase and metagabbro dykes may have variable intrusive dip direction components. Both surface and diamond drill core examinations have shown that these rocks have been locally sheared and contain a limited amount of sulphides with carbonate minerals and often a considerable amount of chlorite as a product of hydrothermal alteration solutions in shears, etc. it is quite possible that these features have characteristic responses but may be very difficult to identify and interpret. The geophysical responses observed across the survey grid area may be an obscure combination of both primary and secondary sources.

From the various types of field work carried out over the last few years, it is possible to draw a few conclusions that may help in identifying potential exploration targets.

The amphibolite rocks do not host, as yet, any appreciable sulphide horizons. The more mafic the rocks, i.e., primarily hornblende and plagioclase, the less abundant the sulphide content appears to be. In certain areas where the amphibolites appear to have a more intermediate composition, i.e. less hornblende, with plagioclase and possibly quartz, the rock may host disseminated sulphides or thin < 1 cm wide sulphide stringers, which are often associated with quartz carbonate and epidote bearing minerals.

These concentrations of disseminated to stringers of sulphides do not appear, or are not likely to show very strong geophysical responses.

Narrow magmatic or metasedimentary origin banded siliceous iron formation is known to occur with some minor sulphides within the amphibolites. It is thought that the iron formation generally has a thickness of less than 10 feet and there is some early evidence to suggest that the iron formation may have developed near the bottom of the more typical looking amphibolites, overlying amphibolites rocks that have a more intermediate composition. This iron formation appears to have a characteristic response which is quite traceable.

It is between the occurrences of the banded iron formation and the contact of the amphibolite felsic rocks to the north and northeast that there occurs the suspected intermediate rocks which host the sulphide stringers and some weak sphalerite-galena and chalcopyrite mineralization such as found at the "Langdon Showing". These mineralized rocks do not form in large enough concentrations with grain-grain connections to be very responsive. It is strongly suspected that any appreciable iron formation response would probably overprint any weak adjacent responses.

The iron formation-geophysical response may be useful as a possible subdividing marker horizon within
the amphibolites.

There is little doubt that these rocks occur at depth, but it is most likely that the best responses related to these geological features are likely to occur near the surface. The down dip continuation of these

Due to some on ground technical problems, line L 6 SE was not surveyed utilizing the VLEM

This mafic-felsic geological configuration is considered favourable as a potential base metal environment. Although at this time the base metal values obtained from surface and diamond drill hole rock and mineral samples have not been ore grade, some of the metal values obtained from the
samplings are considered anomalous.

The results obtained from various types of ground and airborne surveys including Mag, VLF-E, VLEM, soil geochemistry etc. would appear to indicate that there is a potential base metal bearing conductivemagnetic zone trending across the grid area, much of which has remained truly untested.

The second weaker parallel VLEM trend occurring south of the base line, as previously mentioned, is believed to be caused by the banded-siliceous magnetite iron formation with some minor pyritepyrihotite etc.

The narrow iron formation was excavated in the "Fault Trench" and was cut by drill hole RL-92-02 located about \(\mathbf{4 0 0}\) feet to the east. The position of the iron formation appears to occur at a specific horizon or stratigraphy level within the amphibolites and appears to be located a consistent distance outwards from the felsic metavolcanics and the associated anomalies, etc.

It would appear that the overall responses widen towards the southeast along strike and may be indicative of a thickening or the intercalating of one or more sequences of iron formation within the amphibolites. No such responses were located on lines from LO+00 to L \(4 \mathbf{W}\) because line lengths were not sufficient enough.

In conclusion, the results of the VLEM survey did well to compliment the results of the former survey work carried out on various parts of the BLMI property over the last couple of years. So far the work has only turned up strong pyrite-pyrrhotite with minor base metal mineralization, occurring within some very complex highly ahtered and deformed felsic metavolcanics. A large number, including some of the strongest responses have yet to be thoroughly explored, which may ultimately reveal the presence of base metals of ore grade concentrations.

It cannot be said that the work was totally unsuccessful. About \(\mathbf{7 5 \%}\) of the favourable strike length has yet to be tested. Any further work that would have to be carried over the existing geophysical anomalies would have to consist of more sophisticated and expensive exploration methods such as EM 37, frequency domain horizontal loop and more extensive diamond drilling.

Please refer to Figures 10 and 11 which depict the positions of the various grid lines and also show the location of the VLEM profile peak plots and anomaly trends.

Please note that all of the grid lines and the VLEM data profiles have been plotted on a large format \(\mathbf{1}\) inch = \(\mathbf{5 0}\) feet scale map located at the back of this report. Please refer to Map 2.

GRID LNE INDEX MAP
1991 VaLDDR GEEDPHUSICS LTEE.


1902 BLMI/TRIVETT GEOLTAKAL EXPLACATINNK


Figure 10

Vlem profile Peak plots.


RICHARDSON LAKE:


\subsection*{8.3 SURFACE TRENCH EXCAVATING}

During the period between mid May of 1992 and mid June of 1992 Bharti Laamanen Mining Inc. hired Laamanen Construction Limited to excavate a series of trenches at a number of predetermined locations along the strike of a potentially favourable metal bearing volcanogenetic horizon that had been identified by earlier exploration work.

Laamanen Construction provided the required manpower, equipment and support services required to carry out the excavating operations. Bharti Engineering Associates Inc. provided geological supervision necessary when excavating trenches to provide direction to the ongoing digging, etc.

A total of twelve (12) large trenches were excavated, generally orientated in the northeast to southwest direction and covering an estimated strike length of \(\mathbf{7 0 0}\) feet \(+/\)-.
The trenches that were excavated and mapped are identified as such.
\begin{tabular}{|l|l|l|r|}
\hline & Trench Name & Mapped By & Scale \\
\hline 1. & Black Hole Trench & Harold J. Tracanelli & \(1^{\prime \prime}: 20^{\prime}\) \\
\hline 2. & Fault Trench & Harold J. Tracanelli & \(1^{\prime}: 20^{\circ}\) \\
\hline 3. & Dead Bird Trench & Harold J. Tracanelli & \(1^{\prime \prime}: 20^{\prime}\) \\
\hline 4. & Hidden Trench & Harold J. Tracanelli & \(1^{\prime \prime}: 20^{\prime}\) \\
\hline 5. & Swamp View Trench & Harold J. Tracanelli & \(1^{\prime \prime}: 20^{\circ}\) \\
\hline 6. & Last Trench & Harold J. Tracanelli & \(1^{\prime \prime}: 20^{\prime}\) \\
\hline 7. & Pine Tree Trench - North Part & Harold J. Tracanelli & \(1^{\prime \prime}: 20^{\circ}\) \\
\hline 8. & Small Trench & David A. Langdon & \(1^{\prime \prime}: 25^{\prime}\) \\
\hline 9. & Pine Tree Trench - South Part & David A. Langdon & \(1^{\prime \prime}: 25^{\prime}\) \\
\hline 10. & Hill Trench & David A. Langdon & \(1^{\prime \prime}: 25^{\prime}\) \\
\hline 11. & Ridge Trench & David A. Langdon & \(1^{\prime}: 25^{\prime}\) \\
\hline 12. & Dog Leg Trench & David A. Langdon & \(1^{\prime \prime}: 25^{\prime}\) \\
\hline 13. & Long Trench - North Part & David A. Langdon & \(1^{\prime \prime}: 25^{\prime}\) \\
\hline 14. & Long Trench - South Part & David A. Langdon & \(1^{\prime \prime}: 25^{\prime}\) \\
\hline
\end{tabular}

Please refer to Figures \(\mathbf{1 2}\) through \(\mathbf{2 8}\) showing the various trench plans, sample locations, etc.

1992 Trenching and DIAmond
Drilling. Index map.




1

1

300236.
\(\angle 5,<0-5,69,38,86\)

< \(6,3002,540\), 644,1260 .
<6, \(2002,542,10,20\)

\(\qquad\)
\(-\quad\) SE.
NW.




hil Trenkh
SCNE: \(1^{11}=25^{\prime} \mathrm{Fr}\).



MAPPED BW DAVID ALANGDAN July IS,1092.




Pine tree trench North part SCALE: 1 " \(=20\) fT.





Ridge Trench
SCALE: \(I^{4}=25\) FT.


LAMNATED RHYOUTE FONI!
\(1 \%-2 \%\) PYRITE , TEACE CPY.
inaermediate feldspar porphley Dhee a barren quartl striswith sericite. 301983, \(\angle 5, \angle 0.5,21,2.6\).
FDODED
intermediate tuff, lapilu TUFF. SILLCA AIJ. \(1 \%\) PYRITE.


A FELSIC RHJOUTE ASH TUFF OR FLOVI
 SLICA ALTECATION.


301982 SILICA ALT. HINKC EPIDOTE
FELSIC RHYOLTE ASH TUFF. 1 \(10 \%\) DISS P \(\backslash R I T E\), PO.
INTERMEDIATE DJKE
- EPIDOTE ALT.

3" Massive pirite with GOSSAN ZONE


SAMPLING RESULTS
301982 vi.Rx.
301980 vi.ex.
2I' WIDE RUST ZONE PY. BANDS WITH
301990 EPIDNE AND QUAPTZ.
HighLY CARBONATES - SILICIFIED-CHERT. dolomite, Manganese, Magnesiuml AITERED FELSIC ROCK.
TUFFS, \(1 \%\) DISS PY, TR.CPN.
301989 DOLOMITE I N
ALTERED FE
\(3+00 E, O H S O N\)
\(301981<5,<05,192,18,36\).
\(301990<5,<0.5,48,12,64\).


MAPPED BY: DAVID A LAN/aDON July \(16,1992\).


SWAMP VIEW TRENCH
SCALE \(1^{\prime \prime}=20^{\prime}\) FT.
\[
\text { SCALE } I^{\prime \prime}=20^{\prime} F T
\]


All of the trenching was carried out on mining claim S-1095079. Please refer to Figure 12. Each of the twelve trenches were washed off and mapped at a scale of 1 inch to \(\mathbf{2 0}\) feet and \(\mathbf{1}\) inch to \(\mathbf{2 5}\) feet. The geological mapping of the trenches was carried out by Harold J. Tracanelli and David A. Langodon. At each trench various rock and mineral samples were collected, some of which were assayed for gold, multi-element ICP or whole rock major oxide analysis.

Each of the sample locations has been plotted onto the various trench plans, identified by a dot and a sample number. Where multi-element assaying has taken place on a sample, the results of the \(\mathbf{A u}\), \(\mathbf{A g}, \mathbf{C u}, \mathrm{Pb}\) and Zn in that particular order have been noted directly on the drawing. The sample results for materials subject to whole rock analysis have not been listed due to space restrictions.

For most of the trenches, the various rock types encountered have been noted directly on the trench plan. Various geological features such as alteration products, sulphide contents, structures, etc. were plotted on the trench plans.

For three of the trenches mapped, the rock type-lithologies were denoted by a number followed by a letter. Originally it was thought that this method of identifying the various rock types would work very effectively. As it turned out, the method proved very cumbersome due to the overall complicated nature of the rocks, the number and letter system quickly went into disuse. New findings and a realization of the complex nature of the rock relegated the need for a simple identification scheme. When more is learned of a particular rock type, etc., more detailed refinements can be made. In order to identify the various rock types by the number, letter rock identification codes, found on the trench plans for "Fault Trench", "Black Hole Trench" and the "Dead Bird Trench", a listing of the original geological legend developed for the purposes of identifying rock types, etc. on drafted plans, sketch, drill hole section, etc. has been provided.

As mentioned previously, the legend went into disuse. Because of the time that would have been involved in redrafting the three trench plans, it was decided they would remain as is and that the legend would be included within this section. The former geological legend immediately follows this page.

For trench location references, grid lines and cross line stations have been plotted onto each plan.

For most of the samples collected in the trenches, a series of sample descriptions identifying the sample number, location name, occasionally the grid co-ordinates and a brief discussion on the various components of the particular sample has been provided within this section. Unfortunately, over time some of the samples have gone missing. Following the sample identifications, the "Certificates of Analysis" from the trench samples has also been included within this section.
2.

Felsic Metavolcanic Unit
- Flows
- Volcanoclastics

2a. Bedded - Carbonate Metasediment?
2b. Massive - Semi-massive pyrite mineralization
2c. Strongly altered, somewhat visibly laminated rhyolite fiows and/or tuff deposits. Rock unit can be highly siliceous carbonated epidote and manganese altered.

2d. Laminated flows, probably intercalated with tuffaceous rocks.
2e. Very coarse grained rhyolite fragmental rock (lapilli tuff)? locally silica-carbonate altered.
2f. Rhyolite/crystal tuff with muscovite.
2g. Carbonate-silicate altered amygdabidal lava flows (recently determined to be an oolithic textured rock Feb. 1/92)
3.

Intermediate Metavolcanic Unit
3a. Massive to porphyritic dyke.
3b. Medium grained tuffs.
3c. Massive to visibly laminate-foliated flows and/or tuffs, noticeable chlorite alteration.

3d. Moderately to well laminated-foliated flows and/or tuffs which may host numerous thin stringers of sulphides (chalcopyrite, pyrite, zinc, lead, pyrihotite) with notable quart, chlorite, epidote and carbonate

3e. Interdispersed disseminated to semi-massive lenses or concordant seams of sphalerite associated with visible pyrite and chalcopyrite. Zn mineralization appears to have developed with quartz-carbonate-calorite rusting brown surface weathering.

3f. Andesite porphyry/andesite tuff?
3g. Coarse ihyolite lapilli tuff with lesser ityolite crystal tuff.
3h. Crystal tuff with visible quartz eyes

\section*{- Possible subunit}

4a. Massive to notably foliated flows and/or tuffs, amphibolites.
4b. Siliceous banded - magnetite iron formation, minor disseminated pyrite visible.

4c. Extrapolated contact between intermediate and mafic rocks.
5.

Mafic Intrusive Rocks
- Synvolcanic

5a. Metadiabase/Metabasalts
5b. Metagabbro
6.

\section*{Felsic Intrusive Rocks}

6a. Pink quartz feldspar porphyry
6b. Visibly altered Q.F.P. dyke - sill or stock.
7.

Undifferentiated Ianeous Intrusive Rocks

Sudbury Breccia

In conclusion, the surface trenching was successful in allowing the geologist to examine the favourable geological contact areas between the intermediate-mafic and felsic metavolcanics. In almost all of the instances the trenching progressed from the intermediate to mafic amphibolite rocks into the highly altered and deformed carbonate - siliceous - epidote - manganese and sulphide bearing felsic metavolcanic rocks. All of the rocks generally trend northwest to west and dip at moderate to shallow angles to the southwest. Sulphide mineralization of pyrite-pyrrhotite, sphalerite, galena and chalcopyrite were found to occur in both the intermediate amphibolites as well as the altered and deformed felsic flows, tuffs and metasedimentary rocks. Many sulphide bearing rock samples were collected for analysis. Various rock type samples collected were analyzed for the major whole rock oxides. This whole rock data will be very useful for future, more detailed studies yet to be undertaken.

The results of the numerous samples were somewhat disappointing. None of the samples collected returned any values that might be considered ore grade.

The highest gold value returned was 40 ppb , obtained from a sample collected at the "Black Hole Trench". Almost all of the gold values were found to be a low < 5 ppb.

The silver values generally occurred at the < \(\mathbf{0 . 5} \mathbf{~ p p m}\) range ( \(0.0146 \mathrm{oz} / \mathrm{ton} \mathbf{A g}\) ) to a rare high of \(\mathbf{4 . 5}\) ppm ( \(0.1314 \mathrm{oz} /\) ton Ag).

The best copper value obtained was \(1260 \mathrm{ppm}(0.1260 \% \mathrm{Cu})\) which was obtained from the "Black Hole Trench". The copper values appear to be quite variable, generally occurring within the low to mid hundreds of ppm range.

The highest lead and zinc values obtained were \(4230 \mathrm{ppm} \mathrm{Pb}, \mathbf{1 0 . 4 2 3 0 \% ~ P b}\) and 9660 ppm Zn \((0.9660 \% \mathrm{Zn})\) obtained from a grab sample of a highly mineralized altered felsic rock. The corresponding copper value for this particular sample was a very low 3 ppm. This sample was collected from the "Pine Tree Trench". An immediately adjacent chip sample across 22" +1 - ran 1780 ppm Pb \(\mathbf{( 0 . 1 7 8 0 \% ~ P b})\) and \(1520 \mathbf{p p m ~ Z n} \mathbf{~} \mathbf{0 . 1 5 2 0 \%} \mathbf{Z n})\). An additional mineralized sample ran 4350 ppm Pb \((0.4350 \% \mathrm{~Pb})\) and \(858 \mathrm{ppm} \mathrm{Zn}(0.0858 \% \mathrm{Zn})\). Most interesting is the fact that the copper values are very low.

A short distance to the east at the "Black Hole Trench" some high lead values of 2040 and \(\mathbf{3 9 9 0}\) ppm \((0.2040\) and \(0.3990 \% \mathrm{~Pb})\) and 3120 and \(7060 \mathrm{ppm} \mathrm{Zn}(0.3120\) and \(\mathbf{0 . 7 0 6 0 \%} \mathrm{Zn})\), were also found to contain 699 and 1260 ppm copper ( 0.0699 and \(0.1260 \% \mathrm{Cu}\) ) were found within and adjacent to the massive sulphide horizon immediately above the bedded carbonaceous metasediments.

Most of the significant metal values were found to occur at or near the altered felsic and intermediate amphibolite contact.
-
A more thorough detailed review will have to be carried out in order to determine the true significance of the assay returns.

Although no ore grade values were obtained, these are some of the reported values that are without question anomalous. Since such a small portion of the favourable potentially mineral bearing horizon has yet to be explored, both along strike and depth, there remains a strong possibility that mineral deposits could yet be discovered on the BLMI Richardson Lake Property.

The following is a complete listing and descriptions of various rock and mineral samplings that were collected from the excavated trenches that were mapped by Haroid J. Tracanelli, Project SupervisorExploration Geologist.

The various sample locations have been plotted on the \(1^{\text { }}-20\) feet trench drawings. Please note that within the sample descriptions there somehow occurs a couple of duplicate numbers. Number duplication may have unknowingly occurred in the field and went undetected until just recently.

Because with the sample descriptions, the general location of the sample was given, it is expected that this accidental number duplication should not pose any great problems. All of the field assay tags and the assay data can be found within this report for future reference and study.

Please note that the sample description format for samples 300212, 300212A, 3001212, 300213 and 300214 is somewhat different the majority of the samples. This was done in order to accommodate a certain discussion format that can be quite lengthy, and would not be appropriate for all the samples in this listing.

Sample 300201
Rock Type: Rhyolite lapilli tuff-breccia
The sample was collected at the "Pine Trench"
The specimen on a whole is a massive jumble of felsic rock fragments. On the weathered surface the rock has undergone bleaching to an off-white colour. On the freshly broken surface the overall rock is light green to grey coloured.

Generally the felsic rock is made up of a series of poorly sorted laminated or bedded flow or tuffaceous fragments which appear to have undergone some compaction and stretching, similar to the agglomerate deposits in the Benny Greenstone Belt. The fragments range in size from a fraction of an inch to several inches long and wide. The majority of the fragments are probably greater than about
 Almost all of the fragments appear to be composed of a fine grained very thinly laminated or bedded felsic rock. The lapilli fragments are set in a subaphanitic grey-green highly silicified ground mass matrix.

A considerable amount of silica has been remobilized into the rock in the form of sharply contacting semi-sinuous light grey quartz veins cross cutting the various sized fragments. Some of the smaller fragments have actually been incorporated within some of these veins. For the most part the veining appears to be aligned along the former long axis alignment of the lapilli fragments. Some of the veins do cross into fragments at acute angles to the general rock alignment. Most of the veining is discontinuous and have thicknesses ranging from \(0.10^{\prime \prime}\) to about \(1^{\text {" }}\) wide. Most of the veins range from \(0.10^{\text {º }}\) to \(0.20^{\text {² }}\). Overall the rock host traces of finely disseminated sulphide minerals.

This lapilli tuff-breccia occurs stratagraphically below the strongly carbonate-siliceous and epidote altered felsic rocks which are known to host various quantities of iron and base metal sulphides.

When the Sudbury Resident Geologist visited this particular sample site, he proclaimed that the rocks looked the same as those found on the Kidd Creek discovery outcropping.

There is little doubt of the significance of such a rock type, particularly as many important base metal sulphide deposits in the archean terrains are associated with coarse grained felsic pyroclastic rocks.

Sample 300202
Rock Type: Highly altered and deformed metavoicanic rock.
This sample was derived from the northem most bedrock exposure of the "Pine Trench".
North of this sample location the rock drops off into thick overburden. The obviously intense alteration etc. observed at this outcrop edge would clearly suggest that the rocks could easily be similarly altered immediately to the north and presently covered with overburden.

The rock is fine to medium grained, massive, light to medium apple green in colour. The original rock has been subject to very intense epidotization and silicification. The overall rock has been highly riddied with a series of closely spaced parallel dilatant fractures which appear to be trending in one general direction. Some weak localized brecciation and recementation appears to have taken place where a series of fractures converged or became so closely spaced that it was not possible for the rock to continue to support itself. Overall the altered rock was found to host very fine traces of chalcopyrite, sphalerite and pyrite.

Some thin red hematite oxide strainings associated with mottled spots to poorly formed dendritic forms of magnesium - manganese oxides have formed on fractures which cross cut the intense fracture network at acute angles. This would suggest at least two periods of fracturing or a single period of multiple orientation fracturing. Minor light blue coloured oxides appear to be associated with the
hematite staining and may be indicative of the breakdown of the very minor lead minerals within the rocks.

\section*{Sample 300205}

Rock Type: Felsic to intermediate thinly bedded tuff
This sample was taken from the "Pine Trench" only a short distance to the south of the coarse grained felsic pyroclastic, lapilli tuff breccia as described in Sample 300201.

The rock is medium grained, light green to yellow in colour, is very thinly but visibly bedded and/or foliated. The visibly structured rock appears to be primarily made up of about \(60 \%\) equigranular felsic minerals with \(\mathbf{4 0 \%}\) metamorphic dark green amphibole minerals irregularly dispersed throughout the rock.

Very thin portions of the apparently bedded rocks show what appears to be very thin \(<1\) mm pink to cream coloured glassy laminations which may be indicative of a thin very fluid flow or a thin contact-glassy layer at the bottom of an ignimbrite unit. Some of the green colour in the felsic component of the rock may be due to the presence of chlorite and/or epidote. For the most part it would appear that the light green waxy coloured amphiboles are probably actinolite. The amphibole minerals have developed somewhat compact, often overlapping rosettes, which are often aligned parallel to the general fabric of the rock.

It would appear that in some places the amphibole minerals probably replaced most of the original country rock. Some of the felsic portions of the rock were found to host trace amounts of disseminated inclusions of chalcopyrite, pyrite and pyrrhotite.

Minor folding of the rocks is evident. Grey to white coloured, sometimes rusty quartz, eye-shaped inclusions or mullions, have developed in the high stress areas of the folding. The quartz materials are enechelon lensoid shaped and are generally difficult to predict their position and overall concentrations.

A number of fractures which have developed concordant to the rock fabric and cross cutting the rock fabric are often coated with thin iron oxide rusting due to the breakdown of the sulphides and the amphibole minerals. Trace amounts of a light blue-white staining on a fracture surfaces may be indicative of traces of very fine lead minerals within the rock.

Since these fine grained rocks occur to the south of the lapilli rocks, it may be possible to speculate that the coarse pyroclastic rocks were deposited followed by the deposition of ash after the initial explosion and fallout of the coarse fractions. Because the rocks are currently dipping to the south, it is conceivable that the rocks are younging towards the south. It is expected that there will be considerable future debate with respect to the matter of younging direction in the near future.

\section*{Sample 300205A}

Rock Type: Amphibole altered felsic to intermediate tuffaceous rock This particular sample is the companion sample to 300205 as previously described.

Sample 300205A contains a considerable amount of light to dark coloured amphibole minerals associated with light green epidote.

Light grey coloured unstriated feldspars appear to have locally crystallized out of the amphibole epidote rich rock which may be due to an increase in metamorphic grade. There would appear to be very little doubt that the rock has been subjected to at least amphibolite grade metamorphism.

Sample 300206
Rock Type: Highly altered intermediate or felsic metavolcanic rock The sample was derived from the "Pine Trench"

The rock is a medium to fine grained light green to dark grey, very similar to samples 300205 and 300205A. This rock was found to host from \(1 \%\) to irregular sections of granular-like massive pyrite with possible trace amounts of pyrihotite, chalcopyrite, sphalerite and magnetite.

Upon the exposure to the atmosphere the sulphide minerals quickly break down to form white encrustations to tabular subvitreous gypsum and/or anhydrite. The host rock of the sulphides appears to be made up of silica-epidote and dark coloured amphibole minerals. This sulphide mineralization may represent the along strike continuation of the massive magnetite, minor sulphide horizon observed at the north end of the "Long Trench" Both the massive sulphides and magnetite occur within similar rock types which may be indicative of a facies change along strike. The surface weathering of the sulphides at the "Pine Trench" has resulted in the development of a strong easily distinguishable gossan-sulphide burn. The thickness of the sulphides has been measured at approximately \(\mathbf{2 4 "}^{\prime \prime}+1\) -

Sample 300207
Rock Type: Highly altered felsic metavolcanic rock.
This sample was obtained from the "Pine Trench"
The rock is medium to fine grained, massive, light green, Granny Smith apple green coloured. The rock has been highly silicified, epidotized and carbonated. The green coloration of the rock is primarily due to the presence of the intense epidote mineralization.

The rock was found to host from trace to \(\mathbf{1 0 \%}\) inclusions of fine to medium grained granular like crystals of pyrite, similar to the sulphides observed within sample 300211. Some minor silica remobilization appears to have taken place within the rock. Fractures developed within the rock have been coated within brown rusty oxides and sometimes show smearings of pyrite. This material is part of a larger intense alteration assembledge that has developed within the felsic metavolcanic rocks found on the BLMI Richardson Lake property.

Sample 300208
Rock Type: Highly attered and deformed felsic? metavolcanic rock This sample was derived from the "Pine Trench"

The rock is medium to coarse grained, reddish brown to light green-grey in colour and appears to be made up of somewhat alternating layers or bands of green-grey carbonate minerals, followed by reddish brown garnet-silica minerals. Within this particular sample approximately two-thirds of the materials appear to be made up of the garnet altered rock. The sample is noticeably very dense. Crude layers of a highly leached out material now consisting of mainly quartz, can be locally found, alternating or separating the carbonate-garnet altered portions of the rock. Carbonate minerals with a minor amount of sulphide minerals within the alternating layers were leached out, allowing for the development of the numerous voids and limonitic weathering. Very fine grained oval shaped inclusions of galena were observed within these thin bands, which may have been representative of a thin veneer of quartz-carbonate/feldspar rich tuff or metasediment, being deposited upon notably thicker successions of rhyolitic flows or calcareous muds.

The presence of the garnet alteration may be suggestive of a rock which was carbonate mineral rich prior to the various periods of deformation. In general many of the felsic looking carbonate-siliceous altered rocks in the alteration zone horizon may be representative of former metasediments.

In addition to some highly obvious signs of alteration, the rock shows signs of being highly fractured, both concordant and across the fabric of the rock. Many of these thin fractures were infilled with white to grey quartz which may also contain minor carbonate minerals. Occasionally fine cubes of galena may be present within these thin infillings and may have come about as a-result of the collection-remobilization and recrystallization of sulphides from the adjacent host rock.

Larger, easily visible, elongated inclusions of grey to white quartz formed concordant to the rock fabric, may be indicative of one or more periods of silicification-remobilization. A number of the thin veins observed concordant to the fabric show very distinctive contact zoning suggesting that the host rock was cold when the silica was emplaced or that vein materials partially digested the adjacent rocks, allowing for the vein contact areas to have slightly different chemical composition than the original vein matter.

It is possible to suggest that both primary and secondary alteration has taken place within the geology of the area. Trace amounts of light grey galena and light coloured resinous sphalerite are present within the particular sample. Due to the presence of the minor sulphides, in conjunction with the alteration of the carbonate minerals, rusty limonite with dark brown to black mottled spots to poorly formed dendritic patterns of magnesium-manganese coatings are commonly observed on exposed fracture surfaces.

Light cream coloured carbonate minerals are commonly observed along fracture surfaces associated with the intense fracturing as described previously.

Sample 300208
Rock Type: Highly altered and deformed metavolcanic
This sample has been collected from the "Pine Trench"

The sample is somewhat massive looking, fine to medium grained light brown to pink in colour. For the most part the rock has been highly carbonated with siliceous and gamet alterations. Small pieces of this particular rock tend to feel quite dense and this is thought to be due to the presence of the garnet. The garnet mineral alteration, which was identified in 1991 and forms as massive aggregate with almost littie or no actual crystal faces being developed.

Overall the rock appears to exhibit a crude fabric-layering with somewhat alternating carbonate, silica-carbonate-garnet segregations having been developed. Carbonate minerals that have been leached out of the rock leave behind silica relics.

A series of tight fractures have developed,some of which have been infilled with subvitreous light grey quartz. The fracture filled veins generally appear to cross cut the crude fabric, but veins also, although rarely follow parallel to the fabric. Occasionally these thin quartz veins will host minor galena mineralization. Many tight fractures have developed within the rock but don't appear to have any veining associated with them. It is strongly suspected that several movement events have taken place in the general area. The rock shows limonite with black fine globules of manganese oxides developed along fracture surfaces.

Sample 300209
Rock Type: Highly aitered and deformed felsic metavolcanic
This sample was collected from the "Pine Tree Trench"

The rock is very massive, fine to medium grained fleshy pink to rarer light grey-green in colour. The rock is both carbonated and silicified. It would appear that the original rock was initially carbonated followed by silicification which altered the rock in the form of an emplacement - flooding of silica or as in thin veins intruding the carbonate rich rock. It would appear that as a result of the silica
alteration, some of the carbonate minerals may have been leached out to form vug-like features which have been infilled with hexagonal stubby multi-facet quartz crystals. Thin coatings of bright orange, highly reactive carbonate minerals are commonly observed on fracture surfaces. It is possible that this rock may be representative of some type of a-felsic intrusive that was emplaced into the felsic metavolcanic rock.

\section*{Sample 300210}

Rock Type: Laminated felsic metavolcanic flow
This rock sample was obtained from the "Pine Trench"
The rock is fine grained, well laminated and/or foliated, pink to light green in colour. The rock is made up of a series of thin < \(\mathbf{1 ~ m m}\) to \(\mathbf{1 ~ m m}\) glassy visibly stretched out felsic bands which may represent a former felsic flow. Very minor amounts of dark coloured ferromagnesium minerals may be present within certain laminations - layers which impart a slightly darker colour.

For the most part the rock has been very highly silicified which makes it very difficult to break off a piece from the outcropping. Very tight localized fractures cross cutting the fabric of the rock are often coated with thin yellow-orange limonite and light grey-green chlorite or serpentinite. The rock generally hosts trace amounts of finely disseminated pyrite.

\section*{Sample 300211}

Rock Type: Rhyolite Tuff
This sample was collected from near the north end of the "Pine Trench"
The sample was derived from a large angular float that had been brought up while excavating in the thick overburden. As it turned out, it was not possible to penetrate the overburden and the work to extend the trench any further northwards was halted. Due to the overall shape of the boulder and the rock type, it was strongly suspected that the source of the float is probably directly below where it had been uncovered.

The rock is massive, equigranular fine grained, light grey in colour and appears to be made up of numerous rounded light coloured felsic fragments with lesser ferromagnesium mineral components.

The rock is very massive and shows no obvious signs of having plainer depositional features. The rock appears to be well sorted and compacted, if it is in fact a tuffaceous material.

Occurring within the equigranular rocks are a number of angular to subangular fragments of massive amorphous pyrite which measure from about \(0.20^{\prime \prime}\) to \(0.70^{\prime \prime}\) wide by \(0.6^{\prime \prime}\) to at least \(\mathbf{1 . 0 ^ { \prime \prime }}\) or greater in length.

It is possible to speculate that these chunks of massive pyrite were derived from a larger source of sulphide mineralization, but became dislodged from the main mass during a volcanic explosion. The incredibly fresh looking, knife sharp edged fragments appear to have been encapsulated within a material which contained no oxygen and therefore did not allow oxidation etc. to occur. For the most part the sulphide fragment host rock appears to have undergone some silicification. It is possible that during silicification the outer edges of some of the sulphide fragments may have been partially digested as can be observed.

A number of white to light grey cryptocrystaline irregular contact silica veins have intruded the tuffaceous rocks in various directions. The irregular shaped veins measure from < \(0.10^{\prime \prime}\) to a maximum of 0.40 wide. In a number of instances these narrow veins were responsible for dislocating and relocating small pieces of the original sulphide fragments. It would appear that the remobilized pyrite became coarser grained if it was incorporated within the silica vein.

It would be very interesting to know precisely where the massive sulphides originated. Although there are no base metal sulphides present, it should be kept in mind that most major base metal deposits and areas contain certain horizons which host barren massive pyrite or pyrihotite. If the location of the massive sulphides from the sample can be located, then it may be very possible to pinpoint the location of a base metal rich deposit.

Sample 300212
Rock Type: Metaargilite, Metasiltstone
This sample was derived from the "Pine Trench"
The sample is made up of a massive, fine grained medium green coloured metasediment. The vast majority of the rock mass is too fine grained to distinguish the precise mineral content. The largest detrital fragments observed within the sample measure up to \(2 / 60\) th of an inch and are made up of about \(\mathbf{1 \%}\) rounded to subrounded jet black quartz (obsidian glass) with minor lighter coloured quartzglass. Also, the rock hosts traces of highly angular light coloured striated plagioclase crystal fragments.

It is strongly suspected that the rock is generally composed of quartz-glass fragments with much lesser feldspar components. The metasediment rock breaks along shatter-like splintery-subconcoidal plains clearly suggesting that the rock consists of numerous quartz grains, or as been subject to some silicification alteration. Some minor chlorite alteration has been observed, imparting the green colour of the rock.

The metasedimentary rock has also been subjected to some tight-sharp fracturing which have been infilled with white to pink rhombic to granular-like calcite, associated with blue-green platy chlorite and a fine grained light brown brittle silicate? mineral and very minor limonite.

The fractures appear to form in a pinch and swell fashion, being somewhat discontinuous over any lengths. The fracture filling features do not appear to exceed about \(0.075^{\circ}\) thick. Micro fine grained inclusions of carbonate, chlorite and chalcopyrite including rare micro-thin stringers of chalcopyrite have been observed. The rock shows crude orthogonal jointing patterns which is somewhat typical for metasedimentary rocks.

It is important to note that this sample, including a few others, were derived from the unearthed glacial debris, while excavating was being carried out at the northern end of the "Pine Trench". The sampled material was derived from a large subrounded, chattermarked glacial boulder near what is believed to be the lower most debris horizon of the excavation.

It is estimated that the material was brought up from 10 t 12 feet below the surface. At the very north end of the "Pine Trench" the excavating did not reach the bedrock surface due to significant thickness of overburden, water inflow and extremely difficult to rip apart, white clay-sand hard pan. It is believed that the outcrop was only one or two feet below the hardpan, but quickly became beyond the reach of the backhoe machine. In the meantime several such metasediment boulders were brought up, broken open and carefully examined.

It was not until the same type of metasediments were found insitu on the "Hill Trench" that the significance of the original samples unearthed at the "Pine Trench" were realized.

What was found most unusual at the "Hill Trench" was that well rounded metasedimentary boulders were unearthed before the actual outcrop was exposed. The materials examined within the boulders and the outcrop were found to be identical in model composition, structures, etc. and clearty demonstrates the grinding and rounding of a boulder does not necessarily signify significant transport distances down ice, etc. In both the "Pine Trench" and the "Hill Trench" the metasediment boulders were found on the north side of significant north facing outcrops. It is conceivable that rocks were plucked from the insitu outcrops by the glaciers and then forced against, rolled around and ground down, without being able to cross over the steeply included obstruction.

It has been shown that there exists an metaargillaceous unit occurring befow the amphibolites and intercalated felsic metavolcanics at the "Hill Trench" As of yet, no such argillaceous unit has been identified at the "Pine Trench" although it is strongly suspected that one such unit may exist.

It is quite possible that one continuous unit exists between the two above mentioned trenches, but have been broken apart by faulting and/or folding. It is also possible that two separate units may exist while on the other hand no such unit may be present below the northern part of "Pine Trench" excavations. It is possible that various metasediment chunks may have been dragged northwards upon the retreat of the glaciers.

An important fact that may support a single continuous unit along strike between the two trenches is the presence of coarse grained fragmental rocks occurring directly above the insitu outcrop of the metasediments at the "Hill Trench". The fragmental rocks at the north end of the "Hill Trench" are dark coloured and are probably intermediate or even mafic in composition.

Near the northern extent of the exposed outcropping at the "Pine Trench", coarse grained felsic fragmental rocks occur and are positioned south or above where the original argillite boulders were encountered. From a field observation point of view it may be fairly easy to visualize a former continuous or semi-continuous unit of metaargillite occurring within or below the known felsic metavolcanics in the area.

It is important to note that at least certain parts of the metasediment, as has been depicted with several other samples, have undergone noticeable alterations which include minor pervasive chlorite alteration throughout the rock to a various degree of intensity of carbonate minerals with chlorite and copper sulphides.

In sample 300212 the rock hosts a few narrow carbonate-chlorite-chalcopyrite fracture filings. In sample 300212A the rock hosts abundant scattered very fine grained chalcopyrite with dark brown chlorite with little or no carbonate minerals along sharp fracture surfaces. Isolated feather-edged fracture fillings or inclusions of carbonate-chlorite-chalcopyrite and traces of light coloured quartz are known to occur in this sample although significantly less abundant than the former description.

Sample 3001212 shows very little evidence of fracture filling or sulphides, etc. with the exception of a couple of very minor rusting inclusions within the metasediment. The rock does contain a rare pearshaped dropstone of granite, being made up of pink orthoclase, grey quartz and altered green mica or chlorite. The dropstone measures about \(1^{\prime \prime}\) long by \(0.5^{-}\)wide.

Sample 3001212 shows noticeably more chlorite alteration than sample 300212, but shows about the same degree as that for sample 300212A.

Sample 300212 shows some of the most intense forms of alteration of all of the samplings so far collected for the argillaceous rocks. This rock has been highly riddled with numerous irregularly shaped white to cream coloured massive to rhombic calcite associated with numerous microfine grained black to dark green chlorite occurring within the carbonates, or on its own or associated with grey quartz.

The most abundant fracture infillings are carbonate with chlorite and considerably less quartz. The carbonate may contain microscopic sulphide minerals, while the chlorite altered host rock was found to contain small ( \(0.15^{-} \times 0.075^{\prime}\) ) angular to subangular inclusions of possible detrital fragments of fine grained pyrite.

Due to the intensity of the fracturing and subsequent mineral infillings, the material shows very strong deep weathering propagating from the network of fractures. The weathering has resulted in the development of dark brown to black manganese/magnesium alteration oxide minerals.

Sample 300214 consists of what appears to be a highly brecciated argillite which appears to have been fiooded by a light pink to light green glassy chert material. Visible remnants of argillite reveal the presence of carbonates-chlorite and chalcopyrite as so clearly observed within the above described samples. Sharp fracture surfaces have been coated with crude, very thin dendritic forms of magnesium or manganese minerals. One such fracture surface exarnined revealed the presence of dark coloured sulphides and a light blue oxide staining often observed around lead (galena) mineralization.

\section*{Sample 300215}

Rock Type: Highly altered and deformed felsic metavolcanic rock The sample was derived from the "Pine Trench"

The rock is generally fine to medium grained, very fight green to light brown in colour. The rock appears to have a somewhat crude depositional layering. For the most part each of the visible layers or units has been very strongly carbonate altered. The carbonate minerals are highly reactive to \(\mathbf{H C l}\) acid. Some of the alternating layers have been very strongly leached out to develop a fine grained brown magnesium-manganese coated sand material which is sometimes quite irregular in shape, between each of the more competent layers.

It would appear that the rock materials were deposited, contorted and/or broken apart prior to the development of the oxidized sandy materials. A large number of very thin, slightly dilated parallel fractures appear to cross cut the rock fabric. It would appear at this time that the fractures were developed prior to the breakdown-oxidization of the rock. Throughout the more competent sections the rock shows traces of fine grained light blue-grey galena. Thin films of light coloured grey to orange carbonate with irregular shaped mottied spots of dark brown to black magnesium or manganese oxides are present along irregular surfaced fractures which have been exposed to the weather processes.

It is not yet possible to determine the original composition of the rock due to the extreme alteration.

\section*{Sample 300216}

Rock Type: Highly altered and deformed metavolcanic rock
This sample was derived from the "Pine Trench"
The rock is medium to coarse grained light buff to cream coloured and is made up almost entirely of carbonate minerals. The highly carbonated rock appears to have been intruded by numerous micro thin hairline veinlets of silica minerals. Most of these veinlets measure less than \(0.01 \mathrm{~mm}+/-\). Some of the thicker visibly altered bands or more weathered out portions of the rock appear to have been originally made up of very fine grained brown to white laminated clay minerals. It appears as if these apparent clay laminations have been folded and broken apart.

Some deep weathering of the rock in localized areas within the sample has resulted in the development of medium to dark brown magnesium-manganese oxide minerals. It would appear that the least competent rocks possibly of metasedimentary origin were the first to be subjected to the effects of weathering. It is possible to speculate that more or less consistent calcareous muds were buried by thin veneers of clay. Unconsolidated clay minerals would be most vulnerable to weathering. The carbonate rich portions of the rock hosts trace amounts of finely disseminated light blue-grey galena. Minor limonite rusting is present on some of the fracture surfaces.

Sample 300217
Rock Type: Highly altered - deformed felsic metavolcanic
This sample was collected from the "Pine Trench"
The rock specimen is medium to fine grained, light green to apple green, to minor grey, totally carbonate altered, possibly a former felsic metavolcanic rock. The rock appears to be very crudely layered with the different green coloured carbonate more or less defining such layers. Each of these apparent layers is made up of massive equigranular carbonate minerals. Each layer is rather thin and does not appear to be any thicker than \(0.5^{\prime \prime}+/-\).

Within the highly carbonate rock there occurs minor amounts of fine grained light to dark brown quartz with darker coloured garnets and sphalerite. The sphalerite within these types of rock tends to be very light coloured due to the low iron content of the sulphide and the low iron content of the country rock, hydrothermal fluids, etc. Light brown or red coloured garnets have also been found within the rocks and may be indicative of amphibolite grade metamorphism.

The rock shows very obvious signs of deep weathering and carbonate dissolution-leaching. Very finely developed magnesium-manganese dendritic patterns with some minor yellow rusting can commonly be observed on irregular feature surfaces. Generally this rock material is part of the main carbonate-siliceous-epidote alterations zone within the felsic rocks on the BLMI Richardson Lake property.

\section*{Sample 300219}

Rock Type: Highly altered and contorted felsic metavolcanic - metasedimentary rock This sample was derived from the "Pine Trench"

This very altered and contorted rock appears to have originally been massive, fine grained, very light grey-green in colour.

It would appear that the original rock was very strongly carbonated, but also contained some minor silica components. The rock has been intensely fractured, which has allowed for the development of small scale brecciation within the rock. Due to the large number of openings developed within the rock, the rock has undergone intense deep weathering alterations resulting in the leaching out of the minerals and the development of dark brown to black magnesium-manganese oxides with lesser yellow to brown orange limonite. Some clay minerals appear to have developed. Locally the rock hosts from 1\% to 10\% maximum of fine grained irregularly shaped inclusions of steel blue galena and light purple sphalerite. The base metal mineralization is most evident in the least altered portions of the rock.

\section*{Sample 300220}

Rock Type: Highly altered and contorted felsic metavolcanic rock (possible rhyolite) This sample was obtained from the "Pine Trench"

The rock is fine grained, fleshy to light grey in colour and exhibits a highly deformed linear fabric. The rock has been highly silicified, but has also been subjected to some carbonatization.

For the most part the rock is very fine grained to cryptocrystaline. The crudely layered rock has been fractured and subsequently infilled with quartz. This particular rock may be indicative of a highly altered rhyolite flow or flow top, being deposited on top of a calcareous metasediment. The highly friable weathered rock on either size of the sample examined is very similar to the weathered carbonate metasedimentary rocks examined in other samples. The deeply weathered and leached rock can have coatings of dark brown to black magnesium - manganese oxides. The rock has been highly fractured, which has without question aided in the weathering of the rock. The rock was found to host trace amounts of sulphides.

\section*{Sample 300221}

Rock Type: Highly altered metavolcanic rock
This sample was derived from the "Pine Trench"
The rock is massive equigranular, medium to fine grained, light to medium Granny Smith green coloured, highly altered former metavolcanic rock.

The former rock has been altered with silica-carbonate, strongly altered with fine grained epidote minerals which have given the rock its characteristic green colour. The rock has been intruded by a few small quartz inclusions which are most likely due to some silica remobilization. The carbonate content within the rock seems to be variable, ranging from only tract to \(20-25 \%\). Some of the carbonate minerals have been leached out and a light brown residue has developed.

The highly altered rock has a large number of single direction parallel dilatant fractures, some of which appear to have remained opened, while others have been infilled with very fine grained carbonate minerals. At certain locations where a number of fractures have converged, very crude shaped quartz crystals were allowed to develop where space permitted.

Similar type vuggy quartz crystals were observed in some of the rocks in the immediate area of sample 300201. Quartz crystal vugs in the lapilli tuff - tuff unit in the \(\mathbf{3 0 0 2 0 1}\) area may be directly related to the quartz vugs observed within sample 300221.

Numerous dilatant cross cutting fractures being open or infilled with secondary minerals are commonly observed within most of the highly altered rocks within the felsic metavolcanic sequences on the BLMI Richardson Lake property.

Fractures developed within the overlying amphibolites with a similar orientation to the felsic fracture systems may be directly related and of the same age. The development of these intense fractures are thought to be related to certain tectonic events that occurred within the local and regional geological terrain.

Sample 300221
Rock Type: Highly altered and deformed felsic metavolcanic
The sample was collected from the "Pine Trench"

The specimen is quite massive, medium to lesser fine grained, Granny Smith apple green to light greygreen to lesser white grey where free quartz is present. The rock appears to have been highly silicified and exhibits the green coloration due to the presence of very finely disseminated epidote.

The overall rock appears to show the remnants of a former crude fabric or an alignment of mineral crystals or grains. Very fine grained cherty-like grey green wispy inclusions have been observed, appearing to be stretched out along a preferred orientation. The siliceous attered rock has been fractured and the fractures were infilied with grey vitreous quartz. Some of the quartz infilling has spread out into irregular shaped inclusions. Minor carbonate minerals appear to have been incorporated at the same time as the quartz. The quartz fracture fillings criss cross each other in all directions.

Very thin coatings of bright orange coloured carbonate (possibly ankerite) associated with hematite and magnesium-manganese staining can be observed on the surfaces of irregular fractures. The rock shows some voids developed in the rock, probably due to surface weathering and leaching. The rock hosts littie or no visible sulphide minerals.

Sample 300222
Rock Type: Mafic amphibolite
The sample was collected from the "Faut Trench"
The rock sample generally consists of a medium fine grained dark green to black amphibole rich rock with a well developed linear fabric. This amphibolite rich rock quite possibly represents a former basaltic rock. Well developed foliation plains appear to have developed parallel to the linear mineral fabric. The foliation surfaces show some minor evidence of thin smearing of chlorite, associated with fine grained thin smearings of pyrite, and often associated with limonite coatings.

This rock type is believed to occur some distance above the not very well defined limits of the intermediate composition amphibolitic type rocks.

Sample 300223
Rock Type: Mafic amphibolite
The sample was collected from the "Fault Trench"
This specimen is very much similar to sample 300222 previously described. Sample 300223 is predominantly fine to medium grained amphibole rich, but the amphiboles show the obvious pale green effects of chlorite alteration. The rock has well developed fracture plains parallel to the linear mineral fabric. These fractures probably represent the foliation stress lines.

Thin remobilized ribbons of vitreous grey quartz have developed concordantly to the general rock fabric. In sample 300222 no remobilized quartz was observed. The presence of quartz and chlorite in sample 300223 may indicate a local or regional increase in alteration from north to south, in the mafic metavolcanic rocks.

Well developed two directional sharp fractures cross cut the rock fabric. These fractures or joints have been coated with a rather thick coating of friable limonite rust. Overall the amphibolite rock was found to host only trace amounts of disseminated sulphides.

\section*{Sample 300224}

Rock Type: Felsic (Rhyolite) Breccia
The rock sample was obtained from a large round to subrounded boulder - fioat, discovered beneath a fallen down pine tree, adjacent to the "Fault Trench"

The original felsic rock has been highly brecciated, is very light green and is made up primarily of numerous highly angular multiple sized felsic, aphanitic fragments which appear to have been highly compacted. The fragments appear to measure from a fraction of an inch to several inches across. The fragments are made up of massive aphanitic felsic minerals suspected as being rhyolitic. The voids between the compacted fragments have been infilled with quartz-chlorite-possible serpentine, with lesser minor carbonates and trace amounts of fine grained chalcopyrite. It is difficult to determine with any degree of certainty where this particular material was derived. The overall mineralogy of the sample could easily place the origin of the materials in close proximity to where the sample was previously collected. In the "Fault Trench" immediately adjacent to the sample site, a section of about 40-60 ft. of the trench did not reach the subcrop due to the thickness of the overburden. It is strongly suspected that a fault occupies this low depression area which may also accommodate various brecciated rocks. It is possible that sample 300224 originated from the overburden filled depression area found at the "Fault Trench".

Sample 300225
Rock Type: Banded siliceous iron formation
The sample was taken from the "Fault Trench"
The sample is generally made up of a series of thin \(<0.10^{\circ}\) thick alternating bands of dark grey vitreous quartz with fine grained aggregate like magnetite minerals which is associated with a very fine grained aphanitic light apple green hard mineral, possibly an iron silicate.

The banded iron formation is believed to have been developed within mafic amphibolite rich rocks. There appears to be some evidence of remobilized quartz and rare think pink-orange coloured pinching out ribbons of feldspars with or without quartz. Minor chlorite alteration is present.

Within this particular specimen there appears to have been some gentle folding of the bands.
Along some of the observed bands, fine grained light tan coloured carbonate minerals have developed. Some differential weathering or leaching along or between specific bands appears evident which might suggest the weathering of carbonate minerals.

The rock is occasionally cross cut by sharp fractures which may host minor thin films or smearings of sulphides. Traces of fine disseminated sulphides may be randomly scattered throughout the rock.

For some time there has been considerable debate on the possible origin of the banded siliceous iron formations.

Burkhard O. Dressler, 1980, was not able to clearly differentiate a magmatic or sedimentary origin for the iron formations known to occur a short distance to the southwest. Some of the alternating bands of quartz almost appear to have a clastic-like texture with the quartz grains appearing to be fused together due to metamorphism.

An important question arises to the fact that, can an alternating magnetite (S.G. 5.2) quartz (s.G. 2.65) be magmatically segregated - layered within an intrusive or extrusive melt? At this time there has not been enough work carried out on studying the iron formations to determine their origins.

\section*{Sample 300225A}

Rock Type: Banded siliceous iron formation
This is a substitute sample collected from the same sample location on the iron formation as for sample 300225 at the "Fault Trench"

The sample is essentially the same as sample 300225 except that it shows a very well developed recumbent fold.

There does not appear to be any dislocating or fracturing of the magnetite and siliceous rich bands which might suggest ductile deformation. Both the magnetite rich and quartz rich bands are folded together suggesting that the quartz is primary and/or the rock has somehow been ductile folded following metamorphism. It is also possible that two or more periods of metamorphism could have also taken place.

Sample 300226
Rock Type: Amphibolite
This sample was collected from the north end of the "Fault Trench" over amphibolite rocks which are thought to have a more or less intermediate composition.

The rock is a crudely foliated medium to coarse grained black amphibolite. The amphibole minerals show some weak chlorite alterations. The amphibolite has been intruded by thin \(0.2^{\circ}\) to \(0.50^{\text { }}\) lenticular quartz with minor chlorite.

Both the amphibolite rock and the quartz inclusions host trace to \(1 \%\) pyrite, pyrrhotite and minor isolated chalcopyrite. Narrow \(0.05^{\prime \prime}\) to \(0.20^{\circ}\) marcasite-pyrite stringers cross cut the amphibolite fabric in one general direction. Most of these stringers run parallel to each other and may occur in concentrations of 3 to 5 per foot, possibly constituting a "Stringer Zone". Since the stringers at this location are made up of primarily marcasite, this is indicative of a low temperature environment which is somewhat contradictory temperature-wise to the sphalerite-chalcopyrite stringers found at the "Black Hole and the Long Trenches".

It is possible that two phases or pulses of hydrothermal sulphide solutions infilled fractures developed by whatever means within the country rocks.

If it were possible to show that the marcasite-pyrite and the sphalerite-chalcopyrite were genetically related, it may be possible to demonstrate or determine the directions in which fluids moved and relative ages of the various rocks that were being intruded.

Assuming that the mafic amphibolites exposed in the area were flat lying and resting upon the intermediate composition amphibolites, propagating hydrothermal fluids may have pushed up from below into fractures, etc. which could allow that the chalcopyrite-sphalerite-galena-pyrite would have crystallized first, following upwards to crystallize out the marcasite. This is by no means conclusive proof as to the younging direction, but would add more food for thought.

\section*{Sample 300227}

Rock Type: Silicified intermediate to felsic tuff
The sample was collected from the "Fault Trench"
The rock sample is fine to very fine grained light grey to light green equigranular textured intermediate to felsic rock being made up of primarily light coloured feldspars with possible quartz and finely scattered dark black ferromagnesium minerals making up the dark components. The minerals are often too fine grained to determine the species.

In the field the rock appears to be well but thinly bedded - laminated, to more massive looking, particularly where some structural or chemical alterations have taken place. The rock shows a more equigranular - granoblastic texture as opposed to a linear or foliated fabric, possibly suggesting a higher grade of metamorphism or noticeably different effects of the amphibolite grade metamorphism.

Overall, the rock appears to have been highly silicified, locally tightly brecciated and cross cut by narrow irregularly shaped - unidirectional light grey crytocrystaline pseudotachylite veins.

Some minor remobilized quartz inclusions and stringers with traces of pyrrhotite and chalcopyrite are known to occur within the rock type. This particular rock shows some large blocky jointing which is somewhat common for highly silicified rocks of such consistent grain size, etc.

Sample 300228
Rock Type: Silicified metasediment
This sample was obtained from an angular to subangular glacial fioat that was brought up while excavating at the south end of the "Swamp View Trench".

At this location the thickness of the overburden did not allow for the exposure of the subcrop and therefore did not allow for the determination of the possible origin of the material. As was clearly determined at the "Hill Trench" to the southwest, the metasedimentary boulders were only moved a very short distance from their source. In most instances the metasedimentary rocks were found in depressions and could not be moved out. These metasediments were plucked from their original outcroppings, but were trapped in the depression which ultimately lead to the milling and rounding of chunks during glaciation.

The rock is massive, fine grained, blue-green in colour and is made up of \(10 \%\) to \(15 \%\) highly angular to well rounded light to dark grey quartz fragments set within an aphanitic light blue green ground mass of felsic looking minerals. The largest fragment observed measured about \(0.005^{\circ}\) wide to \(0.10^{*}\) \(+/-\) long. Most of the visible fragments were found to measure from 0.0025 to \(<0.005^{=}\).

The rock was found to host trace amounts of finely disseminated chalcopyrite and lesser pyrite. Yellow to blue hued dark brown rusty oxides have developed on irregular fracture surfaces. Please refer to samples 300212, 300212A, 300213 and 300214 for further discussions on the metasedimentary rocks studied on the BLMI Richardson Lake Property.

\section*{Sample 300229}

Rock Type: Altered and deformed intermediate metavolcanic rock.
This sample was obtained from the "Swamp View Trench", very near where a series of strong fracture fillings of quartz-epidote and sulphides is known to occur.

The rock is generally fine to medium grained, grey to light green in colour and appears to be weakly but visibly foliated -bedded or laminated? The rock type appears to be composed of primarily quartz, feldspars and ferromagnesium minerals. The rock appears to have undergone some silicification.

Narrow primary lenticular bands of fine grained semimassive pyrite measuring from \(0.10^{\prime \prime}\) to \(0.20^{-}\) wide with trace to \(1 \%\) disseminated bomite-covelite with chalcopyrite are commonly observed. The texture - grain size, etc. of the lenticular pyrite is very similar to the apparent pyrite fragments studied within sample 300211 . Within sample 300229 irregular grey quartz inclusions with some minor green chlorite have been introduced into the rock which has resulted in additional alterations to have taken place. Remobilized sulphide minerals such as chalcopyrite, bornite, covelite, sphalerite and possibly pyrrhotite appear to be associated with the quartz inclusions. The presence of the sulphide minerals are commonly observed with yellow orange or brown limonitic weathering. The quartz inclusions with sulphides is believed to have developed concordantly to the original rock fabric. Most of the fractures within the rock are well coated with dark brown limonite rust.

\section*{Sample 300230 \\ Rock Type: Consolidated mylonite fault rock \\ Grab sample from the "Black Hole Trench"}

This sample is made up of numerous fine grained to coarse grained light to dark coloured rock fragments with secondary remobilized minerals. This mylonitic rock has developed within a narrow nearly north-south strike slip normal fautt. The mylonite fault rock ranges in thickness of less than \(1^{\text {² }}\) to a maximum of \(10^{-\prime}-12^{\prime \prime}+1-\)

As a result of this fault cross cutting the amphibolites and adjacent felsic metavolcanics, the rocks in the immediate fault area have become highly brecciated and often ground into a light grey to green coloured rock fiour with occasional sand size fractions being present. Subsequent to the original faulting episode, pink orthoclase feldspar and quartz rich materials were emplaced into the fault zone plains. The felsic replacement minerals consist primarily of quartz and feldspars and may represent a former narrow quartz feldspar porphyry dyke which was emplaced along a former plain of weakness. It appears evident that a second movement event took place, allowing for further mylonitization to take place. As a result of various movements, the quartz-feldspar minerals were somewhat altered to a porous tan-rusty clay-like material.

The overall mylonite rock appears to host very finely disseminated sulphides. Although the rock does not contain any acid reactive carbonate minerals, when subjected to HCl , a light green-curry yellow coloured precipitate results, particularly in the presence of the altered feldspar fraction of the mylonite rock.

Sample 300231
Rock Type: Intermediate amphibolite
The sample was collected from the "Biack Hole Trench"
The sample generally consists of a foliated arrangement of primarily linear to subacicular hornblende needles with alternating layers of thin granoblastic textured light green to grey plagioclase, with lesser fleshy pink orthoclase feldspars and minor quartz.

Some of the homblende needles appear to have undergone some limited chlorite alteration. Some of the lighter green amphibole minerals resemble actinolite.

Locally the rock in the sample area has been cross cut by narrow 2.5 mm to 5.0 mm maximum quartzchlorite and carbonate stringers which sometimes host chalcopyrite, sphalerite, pyrite, graphite with possible covelite and/or bornite. Within this particular sample no such stringers were observed but he rock specimen does host from \(3 \%\) to \(5 \%+/\) - fine disseminations to inclusions of pyrrhotite-pyrite with minor chalcopyrite and black jack sphalerite. The sulphide minerals can often be found in the presence of limonite associated with fracturing of the rock.

Some of the mineralization would appear to be primary, while cross cutting stringer veins are obviously secondary.

Evidence from the past field work would appear to suggest that there is a marked base metal enrichment in the intermediate compositional amphibolite rocks located above the amphibolite-felsic metavolcanic contact area. Most noteworthy of this is the "Langdon Showing" located a short distance to the west at the "Long Trench" and just south of the geologic contact. Some geochemical assaying information obtained from a couple of the recently drilled holes, particularly RL-92-02 and RL-92-03, would possibly suggest that the underlying altered felsic metavolcanic rocks are depleted in the base metal elements while the overtying amphibolites may in fact be enriched in metals.

Sample 300232
Rock Type: Semi-massive pyrite
This sample was obtained from a narrow massive to semi-massive south dipping sulphide horizon found immediately above the bedded carbonaceous metasediments at the "Black Hole Trench"

The sulphide zone ranges in thickness from \(1^{\prime \prime}\) to a maximum of \(6^{\circ}\) wide.
The sample is made up of medium to fine grained semi-massive pyrite with much lesser irregular inclusions of chalcopyrite, sphaterite, bomite and hematite. Much of the sphalerite and galena appear to be closely associated with the pyrite and can be difficult to observe. The sulphide minerals generally
occur within a fine to medium grained granular like felsic material which may represent a former felsic ash deposit, altered flow top, etc. Some parts of the hot rock appears to contain some minor carbonate and gypsum-anhydrite minerals, primarily as fine disseminations. Irregular shaped grey quartz inclusions or fragments occur within the sulphide mineralization. The quartz may host minor inclusions of sphalerite, chalcopyrite and specular hematite. At this location a microthin pyrite stringerveinlet was noted cross cutting the sulphide mineralization. Some weathering of the mineralization horizon has resulted in the generation of strong yellow limonite with dark brown to black geothite. The oxidized rusting materials commonly propagate along the many fractures developed within the rock.

\section*{Sample 300238}

Rock Type: Bedded Oolite
This sample was derived from "Dead Bird Trench"

The rock is somewhat poorly bedded, fine grained, light grey-buff to bands of light aquamarine colour. The rock clearly exhibits a well developed oolithic texture throughout and consists primarily of carbonate minerals as opposed to that described for sample 300240.

The spaces between the carbonate oolithic nodules appears to be light grey to clear in colour and may represent silica cement. Within some parts of the rock, some leaching has taken place, leaving behind non-acid reactive minerals. In general the rock hosts from trace to \(3 \%\) disseminated inclusions to wisps of light blue galena and light brown resinous sphalerite. Minor hairline grey silica veinlets are known to cross cut the bedded fabric of the rock. The surface weathering and weathering along open fractures has resulted in the development of brown coatings of magnesium-manganese oxides. The presence of both the oolites and the bedded carbonaceous metasediments in close stratagraphic proximity would suggest a shallow water deposition environment on a continental shelf behind some forms of barriers, which would have reduced the forces of wave actions, etc.

\section*{Sample 300239}

Rock Type: Highly altered myolite tuff?
This material was obtained from the "Dead Bird Trench"
The rock is medium to fine grained, light green to rarer light grey in colour, being made up primarily of equigranular quartz grains, taking on a kind of sugary-granular texture. The materials show crude bedding or layering, suggesting a tuffaceous origin. The green coloration of the rock may be due to the presence of microfine grained epidote minerals. Minor fine grained grey, remobilized silica appears to have developed concordantly to the bedded fabric of the rock. Throughout the sample there are numerous voids which have developed which may be indicative of the leaching out of carbonate or feldspar minerals within the rock. The rock also hosts \(10 \%\) to \(20 \%, 0.5 \mathrm{~mm}\) to 1.0 mm well developed striated pyrite cubes with traces of chalcopyrite. The sulphide mineralization appears to have developed concordant to the rock fabric, forming into more or less alternating concentrated layers. A number of very thin grey quartz veinlets cross cut the rock fabric. As a result of the breakdown of the sulphide minerals, thin coatings of limonite and tan to creamy coloured gypsum or anhydrite has developed on fracture surfaces.

\section*{Sample 300240}

Rock Type: Highly altered former calcareous metasediment
The sample was collected from the "Dead Bird Trench"

The rock is medium fine grained, medium to light green in colour and exhibits what appears to be thin up to 3 mm altemating light and dark coloured beds. At first glance the individual beds or layers appear to be quite massive, but upon closer examination it was shown that the rock has an oolitic
texture made up of many rounded to subrounded spheres which measure \(<1 \mathrm{~mm}\) across. These spherical shapes appear for the most part to have been highly compacted. Most of the ooliths observed were very light green in colour and have massive cryptocrystaline texture.

The spaces in between the ooliths have been infilled with a light green to dark grey glassy siliceous material. The presence of the oolitic texture would suggest that the rock represents a former calcareous mud or siltstone metasedimentary rock. Following the deposition of such metasediments, the carbonate rich rock has almost totally been replaced by silica. This silica altered rock was found to host from trace to \(\mathbf{2 \%}\) light coloured to light purple irregular inclusions of sphalerite associated with traces of galena, chalcopyrite and pyrite.

The host rock has been riddled with numerous parallel single direction fractures that cross cut the bedded fabric. These very tight fractures have been infilled with acid reactive carbonate minerals and minor quartz. Some of these fractures may also be coated with iron-magnesium or manganese oxides.

Some of the visible fractures were found to converge or cross cut each other at acute angles, but all generally following along a common trend.

Although the rock has been highly silicified, the surface of the outcropping shows the adverse effects of weathering. The surface of the outcropping appears to have undergone leaching. The leaching of surface rock has resulted in the development of dark brown to black magnesium or manganese oxides with lesser amounts of limonite. These mineral oxides followed down along some of the parallel fractures that had previously developed. This downwards propagation may have also contributed in the alteration of the surface rock.

The mapping of the surface geology within the trench would indicate that the oolitic rocks (calcareous) metasediments were intercalated within an altered felsic laminated or bedded flow or tuffaceous rock. The combination of fine grained muds being deposited with coarser grained ash volcanoclastics may be indicative of an aqueous to subaqueous environment.

Sample 300242
Rock Type: Highly altered felsic lapilli tuff
This sample was collected from the northeast end of the "Dead Bird Trench"
This sample is made up of a number of light pink fine grained aphanitic felsic rock (rhyolite) lapilli sized fragments measuring from \(0.2^{\prime \prime}-0.8^{\prime \prime}\) wide to greater than \(5^{\prime \prime}\) long. The felsic fragments appear to have been flattened and stretched out but do not appear to have been compacted together.

The fragments are set within a dark grey vitreous quartz rich ground mass which shows some evidence of hosting light green amphibole minerals. It is evident that the original lapilli fragment ground mass has been significantly silicified. Much of the rock including the fragments hosts from trace to a maximum of \(5 \%\) disseminated irregular inclusions of pyrite, pyrihotite with considerably lesser chalcopyrite, possibly bornite or covelite.

Irregular shaped quartz inclusions commonly intrude the lapilli tuff. A number of \(1 \mathrm{~mm} \times 3 \mathrm{~mm}\) long grey unstriated feldspar crystals appear to be associated with the quartz inclusions along their outer edges. In one instance it appears as if the feldspar crystal had intergrown with the quartz. Secondary alteration appears most evident within the quartz inclusions. Numerous open fractures have developed allowing for the emplacement of white yellow clay minerals associated with pyrite or marcasite, and dark sooty black chalcocite or altered pyrrhotite. Many of the rock fracture surfaces have been coated with dark brown rusting oxides.

\section*{Sample 300900}

Rock Type: Chlorite schist
This sample was derived from the extreme north end of the "Hill Trench" No analytical work was carried out on this particular sample.

The rock is fine to medium grained, earthy grey-green to dark brown in colour, highly friable chlorite schist rock. The schist is made up of primarily fine grained chlorite which appears to have been derived from the strong alteration of former amphibole bearing rocks. Dark brown to black coatings of magnesium oxides occurs with the remnant amphibole crystals, within somewhat open void-like features within the schist. Minor grey quartz and minor limonite inclusions occur within the schist and may be reminiscent of the components of the former rock. The minor quartz-rust inclusions appear to be aligned along the schistosity plains. At this particular sample site the trench was excavated within this chloritic schist material which has been weathered into a deep topographic gouge. This topographic low area at the north end of the "Hill Trench" may represent the trace of a known northwest trending fault which parallels the west shore of Richardson Lake. It was not possible to examine the whole width of the schistose rock due to the thickness of the overburden debris and a significant inflow of water.

The rocks which occur above or to the south of the chlorite schist are argillaceous metasediments, which in turn are overlain by coarse grained volcanoclastic metavolcanic rocks. It is not possible to determine the size fractions of the original host rock from which the chlorite schist was derived.

For the most part it is believed that the original rock was amphibole rich, although the schist could have also developed within the argillite rocks. Amphibole minerals could have somehow developed during the hydrothermal processes required to develop chlorite. Subsequent alteration of the amphiboles may have resulted during additional alteration periods associated with the faulting-schistose zone.

Very little exploration work has been carried out along this fault line which was identified on the ground by David A. Langdon, on claim S-1095080 and has ultimately been traced northwestwards to at least the end of the "Hill Trench" on claim S-1095079.

This evidently strong structure may have the potential of hosting potential gold mineralization and should be considered as a future exploration target.

The samples which appear missing within the sample descriptions are listed as follows. Some basic information on the sample and rock type was taken directly from the field notes.

In all of the instances the entire sample was submitted to the lab for analysis and no portions were retained for future study.

300237 - A representative sample was taken of the light brown clays which have infilled the tension gashes that developed within the carbonaceous metasediments immediately below the sulphide horizon at the "Dead Bird Trench".

300241 - A \(29^{\circ \prime}\) chip sample across highly aftered felsic metavolcanic rocks with coarsely disseminated pyrite with traces of pyrrhotite and chalcopyrite was taken from the northeast end of the "Dead Bird Trench".

\subsection*{8.3.1 SAMPLE DESCRIPTIONS FROM GEOLOGICAL MAPPING OF TRENCHES BY DAVID A. LANGDON}

The following is a series of sample descriptions that were taken from the field notes of David A. Langdon. A group of rock and mineral samples were collected during routine prospecting and geological mapping of some newly excavated trenches on the property in the early summer of 1992.

David Langdon was responsible for mapping and collecting representative samplings from the "Pine Trench, the Long Trench, the Hill Trench, the Small Trench, the Ridge Trench and the Dog Leg Trench-.

All of the rock and mineral samplings were subsequently submitted to Chemex Labs Ltd. in Toronto, Ontario and Vancouver, B.C. for single and multi-elemental analysis work including some selective whole rock major oxide element analysis. The complete listing of the analytical results can be found within the appendices of this report.

The samples have been listed in numerical order and wherever possible the grid co-ordinates and the trench name or area has been stated. The sample descriptions were ultimately compiled from the original notes and sketches collected from David Langdon's files shortly before his death in early August of 1992.

When compiling and finalizing the descriptions, a certain amount of editing was necessary. Wherever possible, all attempts were made to maintain the true meanings of the descriptions, etc.

At certain times the meanings or interpretations were unclear and because it is not possible to reconsult on what was observed, etc, a certain amount of speculation or conjecture may have been required. At times it was possible to fill in the missing or questionable gaps due to this Writer's intimate knowledge of a particular outcrop, trench sample, geological relationship, etc.

Immediately following some of the sample descriptions a series of comments have been made by this Writer and have been presented in an italicized type form for quick reference. Although some of the comments may not be directly applicable or totally necessary within the sample descriptions, it was felt that they may be useful as a friendly reminder to the reader of the various geological, structures, mineralogical aspects, etc.

It is quite probable that future, more detailed investigations such as thin sectioning, utilizing rock and mineral samplings taken from the field, will have to be carried out.

Sample 301951
\(0+81 E, 0+435\) at the "Long Trench" and Langdon Showing.
Diamond saws channel sample cut across 5.5 feet \(+/\) -
The sample was taken across a sulphide zone showing (Langdon Showing). The overall rusty-like rocks across the zone generally carry \(1 \%\) pyrite, trace pyrrhotite, trace chalcopyrite, \(\mathbf{1 \%}\) sphalerite and \(1 \%\) galena. The sulphide mineralization appears to be associated with intense silica and chlorite alteration of the host amphibolite rocks.

The most intense sulphide mineralization occurs over random inechelon, widths of up to \(6^{-}\)and consists of \(10 \%-15 \%\) sulphides, the majority being sphalerite. The estimated sulphides contained are \(\mathbf{8 \%}-10 \%\) sphalerite, \(1 \%-2.5 \%\) galena, trace \(-1 \%\) chalcopyrite, \(1 \%\) pyrite and trace to \(\mathbf{1 \%}\) pyrchotite. The sphalerite-galena mineralization is associated with concordant (primary) narrow quartz stringers \(1 / 8^{\prime \prime}\) to \(1 / 4^{\text { }}\) wide within an intensely chlorite altered amphibolite groundmass.

These basemetal bearing rocks occur above the felsic alteration zone, known to occur from \(\mathbf{7 5}\) to \(\mathbf{8 0}\) \(f\). to the south.

\section*{Sample 301952}
\(0+75 \mathrm{E}, 1+69 \mathrm{~S}\) at the "Long Trench"
Diamond saw channel sample cut across 4.0 feet +1 .
Sulphide and non-sulphide bearing stringer zone. The sample was cut across an area of intense quartzcarbonate joint infillings and narrow \(1 / 8^{\prime \prime}-1 / 4^{\prime \prime}\) quartz-carbonate stringers associated with \(1 \%\) pyrite, \(\mathbf{1 \%}\) pyrnotite, trace chalcopyrite, occurring within an intensely chloride altered amphibolite.

\section*{Sample 301953}
\(0+75 \mathrm{E}, 1+71 \mathrm{~S}\) at the "Long Trench"
Diamond saw channel sample cut across 4.0 feet \(+/\)-.
This sample consists of material very similar to that described in sample 301952. The major exception appears to be that the pyrite mineralization takes the form of exclusive massive stringers \(1 / 8^{-1}\) wide or as discontinuous mineralization found within quartz stringers.

Sample 301953 is a continuation across strike and is connected with sample 301952 immediately to the north.

\section*{Sample 301954}
\(0+75 \mathrm{E}, 1+75 \mathrm{~S}\) at the "Long Trench"
Diamond saw channel sample cut across \(2^{\prime \prime}-9^{-}+1-\)
The materials samples are the same as those sampled from 301952 and 301953.

\section*{Sample 301955}
\(0+75 \mathrm{E}, 1+72 S\) at the "Long Trench"
Diamond saw channel sample cut across 2.0 feet +1 -.
The materials sampled are the same as from 301954 being made up of intensely chlorite altered amphibolite. The noted difference is that sample 301955 contains \(1 \%\) pyrite and \(1 \%\) pyrthotite occurring as fine \(<1 / 8^{\prime \prime}\) massive but discontinuous stringers. The sulphide mineralization can also be associated with quartz stringers.

Sample 301956
\(1+25 \mathrm{E}, 0+76 \mathrm{~N}\) at the "Long Trench"
Diamond saw channel sample cut across \(4^{\prime \prime} \mathbf{4}^{\prime \prime}+/\)-.
The sample consists of an intensely silicified felsic rock (possibly a rhyolite ash tuff) with \(\mathbf{2 \%}\) to \(\mathbf{3 \%}\) pyrite occurring as fine narrow stringers \(1 / 8^{\prime \prime}+/\) - wide and as discontinuous lensoid features with trace pyrshotite occurring within the pyrite mineralization.

\section*{Sample 301957}
\(1+27 E, 0+78 N\) at the "Long Trench"
Diamond saw channel sample cut across 4.0 feet \(+/\)-.

The materials sampled are similar to 301956 except that sample 301957 contains no pyrohotite and no more than \(2 \%\) pyrite. The sulphides occur as individual mineral grains associated with narrow quartz stringers up to \(1 / 8^{\circ}\) wide, in addition to occurring within the intensely silicified country rocks.

Sample 301958
\(1+29 E, 0+80 N\) at the "Long Trench"
Diamond saw channel sample cut across \(4^{\prime \prime}-1^{\prime \prime}+1\) -
This sample generally consists of the same materials described for 301956 and 301957 . The intensely silicified felsic rock (possibly a fine grained rhyolite ash tuff) contains 3\% massive stringers up to \(1 / 8^{\text { }}\) wide to disseminations of epidote and \(2 \%\) pyrite. Individual narrow massive pyrite stringers are known to occur within the host rocks.

Sample 301959
\(0+49 E(?), 4+64 S\) at the "Small Trench"
Composite grab sample.
The sample consists of a well foliated, intensely chlorite, moderately silicified amphibolite, with \(\mathbf{3 \%}\) fine hair-like carbonate and/or feldspar stringers. Associated with the stringers are trace \(-1 \%\) pyrite. Pyrite mineralization was also found to occur within the amphibolite rocks hosting the stringers.

It is possible that the iron sulphides were remobilized from the amphibolites into narrow open fractures which may be initially associated with the mobilization event.

\section*{Sample 301960}
\(0+40 \mathrm{E}, 4+645\) at the "Small Trench" Composite grab sample.

This sample consists of an intensely chlorite altered amphibolite, (possibly an andesite). The rock has well defined foliation exhibited by aligned chlorite laths and tagles(?). Some portions of the rock may have a massive appearance due to the interlocking nature of the chlorite minerals. Trace pyrite occurs as dissmeninations throughout the rock.

The interlocking appearance of the chlorite minerals may be simply a manifestation of the interlocking nature of former amphibole minerals which have since undergone chlorite alterations.

Sample 301961
\(0+62 E, 5+60 S\) at the "Hill Trench"
Composite grab sample.
This sample consists of a green to black aphanitic (greywacke) and was found to contain traces of disseminated pyrite specks with the odd spec of angular shaped quartz. When struck with a hammer, the rock can be broken into sharp edged pieces displaying subconcoidal-like fracturing.

Further, much more thorough study has been undertaken with the sampled materials, which have shown that the materials can be most likely classified as meta-argillaceous mudstones-siltstones. These rocks are at this time the only exposed insitu Archean metasediments known to occur on the BLMI Richardson Lake Property.

It was also noted that besides containing pyrite, the rock also hosts trace amounts of chalcopyrite, galena and less obvious sphalerite, whcih appears to be most notably associated with inclusions or micro veinlets of rhombic-like carbonate minerals. The base metals mav have been deposit during certain fracturing metal infusion episodes cutting through the metasediments. The finely disseminated pyrite does not seem to be associated with fracturing and therefore may be primary, being possibly indicative of sulphide minerals being developed under anaerobic conditions within the metasedimentary rock.

The contact between the metasediment and the overlying rocks is quite sharp. A large north-west trending structure cross cutting through the general sample region has resulted in places in the total alteration of the metasediment to a highly fisal green-brown chlorite schistose rock.

Sample 301962
\(0+62 E, 5+605\) at the "Hill Trench"
Composite grab sample.
This sample consists of a sedimentary breccia (possibly conglomeritic), which is green in colour and has undergone moderate to chlorite and siliceous alteration. The rock was found to host 2\% subangular to rounded quartz fragments up to 1 cm wide, which are set within an aphanitic ground mass. The rock also hosts \(1 \%\) disseminated pyrite and trace disseminated chalcopyrite.

It is strongly suspected that the described rock is representative of a volcanoclastic-pyroclastic type rock, being made up of both mafic and felsic fractions.

Sample 301963
0 + 62E, 5 _ 75S, at the "Hill Trench"
Composite grab sample
This sample consists of massive medium grained equigranular gabbro (metagabbro). The rock is made up of \(\mathbf{1 0 \%}\) to \(15 \%\) interlocking feldspars with the remainder of the minerals being pyroxenes and amphiboles. The rock has also been moderately siliceously altered.

\section*{Sample 301964}

0 + 64E, \(5+74 S\) at the "Hill Trench"
Composite grab sample
This sample is believed to be a felsic metavolcanic, (possibly a myolite or dacite tuff). The rock is grey-green in colour and has been intensely silicified. The surface weathering of the rock allows for the clear observations and displaying of light green angular fragments (glass shards), set within a white-grey differentially weathered aphanitic ground mass.

These fefsic rocks examined are suspected as being the dislocated continuation of or remnants of those fefsic metavolcanic rocks clearly identified towards the northeast and being of the aftered felsic zone, currently under study. It is yet unknown how such similar felsic rocks could occur so far south of the main contact zone. It is suspected that these rocks were dislocated due to faulting and/or folding.

As a result of this deduction, a number of concerns in the future might fiave to be addressed.
It is possible that the meta-argillaceous rocks (memberl may be useful in part as a marker bed. It would appear at this time that these metasediments occur stratigraphically below the felsic assembledges. The contact between the metasediments and the overlying felsic and mafic rocks is sharp and probably represents a parallel or heterolithic unconformity. The apparent complicated arrangement of felsic to amphibolites, to mafic intrusives are due to post sedimentary depositional fauting episodes.

Of significant interest is the fact that no such argillaceous rocks were encountered in the four recent drill holes drilled from amphibolites through into felsic rocks to the north and north east in 1992.

Because three of the four holes drilled did not completely cut through the felsic unit, it was not possible to determine if a mudstone-sitstone occurs at the bottom of the unit. It is possible that the felsic rocks etc. observed at the "Hill Trench" may represent a totally separate felsic unit. This would seem highly unlikely since detail mapping in the area to the east and west has not conclusively identified any such separately thick unit.

The identification of a thickening sequence of felsic volcanoclastic and epiclastic rocks to the north and north west lends to the theory that the felsic rocks observed in the "Hill Trench" are one in the same, but have been faulted or folded into their present position.

Sample 301965
\(0+51 E_{6} 6+128\) at the "Hill Trench"
Composite grab sample
Sample taken from a sulphide bearing fault zone. The fault rock shows obvious signs of crushing or mylonitization. The rock is green with massive moderate chlorite and siliceous alterations with \(5 \%\) pyrite occurring as individual grains and trace disseminated chalcopyrite has been observed. It is thought that the fault zone may have incorporated blocks of metagabbro.

The fauft zone which has been noted cross cut all of the rocks in the immediate area.

\section*{Semple 301966}
\(0+53 E, 6+205\), in the "HFill Trench" area
Composite grab sample
This rock sample consists of a massive to poorly foliated fine grained to aphanitic amphibolite rock (possibly being a flow top of an andesite or basaltic rock). The rock generally hosts \(\mathbf{1 \%}\) disseminated pyrite throughout.

Sample 301967
\(0+28 E, 6+135\), at the "Hill Trench" area
Composite grab sample
This rock is an aphanitic grey-white, intensely silicified (possibly ihyolite-amphibolite-andesite), at a geological contact. The rocks show obvious signs of alteration with narrow 3 mm discontinuous dark grey bands,possibly representing flow structures. The rock hosts \(3 \%\) pyrite developed within fractures or as concordant bands, parallel to the original fabric of the rock.

Sample 301968
\(0+23 E, 6+985\), at the "HEII Trench"
Composite grab sample
This rock sample consists of a somewhat massive, medium grained, poorly foliated, green, intensely chlorite altered basalt? The rock hosts \(7 \%\) fine grained feldspars, set within an aphanitic amphibole rich ground mass.

Sample 301969
\(0+89 \mathrm{E}, 0+17 \mathrm{~N}\), at the "Long Trench"
Composite grab sample
This sample consists of black quartz. The black colour of the quartz may in part be due to possible irradiation or also as a result of the incorporation of dark coloured micro-fine grained minerals such as chlorite or biotite. The dark coloured quartz has numerous irregularly shaped voids as a result of the leaching out of carbonates and chlorites. It was noted that the rock hosted traces of pyrite and \(\mathbf{2 \%}\) chlorite within the vugs.

Close examination of several pieces of this unusually dark coloured quartz has shown that the quartz intruded into the surrounding metavolcanic rocks through a series of sharp edged but unidirectional set of fractures. The quartz masses are known to contain numerous inclusions of fine grained dark green chlorite and coarse grained white to cream coloured rhombic calcite.

At certain locations where the quartz is black, it would appear that a considerable amount of the chlorite and carbonate minerals have been leached out leaving large voids. Very fine grained irregular inclusions and possible micro veins of pyrite-pyrrhotite, chalcopyrite-galena and arsenopyrite are known to occur, although their concentrations can be quite eratic. Evidence of leaching of the sulphide minerals is evident in the form of rusty limonite-gossan patches where exposed on the surface.

Where the quartz is white, it would appear that very little or no leaching of the chlorite or carbonate mineral inclusions has taken place. Narrow quartz fracture fillings may carry light coloured epidote crystals with localized highly altered sooty pyrrhotite. Rusting surface patches are less evident in the white quartz areas obviously due to the reduced sulphide contents.

It has been noted that inclusions to narrow veins of grey to white quartz have been intruded into the black quartz suggesting two quartz emplacement events have taken place. It may also be possible to suggest that dark coloration of the quartz is simply a result of the partial alteration of the primary white quartz intrusion.

The secondary alteration of the original white quartz may also explain the leaching of the inclusions within the black quartz and not in the white quartz. Sulphide minerals may have remobilized and reconcentrated during the afteration process.

The numerous quartz veins with inclusions of chlorite and carbonates and the "so-called" sulphides stringers which often contain substantial quantities of quartz-carbonate or epidote are probably for the most part secondary and almost always cross cut the local geological fabric.

An interesting question arises as from where the sulphide minerals were derived from. It is quite possible that the sulphides within the quartz were derived from the adjacent host rocks. Due to the potentially favourable base metal environment contact between felsic metavolcanics and maficintermediate metavolcanics located to the north and updip of the secondary veins, it is certainly possible to speculate that the sulphides could have been derived from mineral rich rocks from below or possibly from above.

\section*{Sample 301970}
\(0+90 \mathrm{E}, 0+14 \mathrm{~N}\) at the "Long Trench"
Composite grab sample taken from the same vein material as described for sample 301969
At this location on the vein the quartz is white and rusty. The quartz hosts \(\mathbf{1 \%}\) pyrite, trace pyrrhotite and chalcopyrite occurring along fractures within the quartz.

Sample 301971
\(0+82 \mathrm{E}, 0+08 \mathrm{~N}\), at the "Long Trench"
Composite grab sample taken from the same vein materials as has been described for sample 301969
The sample consists of white rusty quartz with carbonate with \(\mathbf{2 \%}\) pyrrhotite and trace chalcopyrite occurring as infillings within vugs developed in the quartz. Very fine grained localized chlorite also occurs within the vugs.

For the most part it would appear that the minerals that were found to occur within the vugs have not undergone any appreciable leaching or alteration.

Sample 301972
\(0+91 E, 0+00\) at the "Long Trench"
Composite grab sample taken from the same vein materials as described for sample 301969
The sample consists of a white rusty quartz-carbonate vein with \(1 \%\) chalcopyrite, \(1 \%\) pyrite and \(1 \%\) pyrrhotite. \(2 \%\) fine grained chlorite occurs within weathered out carbonate vugs.

Sample 301973
\(0+91 E, 0+00\) at the "Long Trench"
Composite grab sample
The sample was taken off of a stringer zone associated with the main quartz body or intrusion. The quartz-carbonate stringers have been intruded into what is now an intensely chlorite altered amphibolite rock. Some parts of the exposed veins-stringers show mottled surface weathering due to the leaching of the carbonate minerals. The veins-stringers host trace pyrite-pyrrhotite and chalcopyrite.

Sample 301974
\(0+80 E, 0+27 S\) at the "Long Trench"
Composite grab sample
The sample is made up of a massive \(1^{\text {- }}\) wide pyrrhotite vein intruding into an amphibolite host rock. The sulphide mineralization is associated with gypsum (or anhydride). The contacts between the sulphides and host rock contain actinolite (or epidote).

The development of gypsum and/or anhydride minerals are most fikely due to weathering, resulting in the generation of sulphuric acid and sulphate minerals. The development of actinolite or epidote minerals at the contacts would have come about as a result of calcium rich hydrothermal fluids. These fluids were obviously rich in iron and sulphur, resulting in the crystallisation of the pyrrhotite. It would appear that the calcium minerals were deposited first followed by the sufphides.

Sample 301975
\(0+98 \mathrm{E}, 0+32 \mathrm{~N}\) at the "Long Trench"
Diamond saw channel sample cut across \(\mathbf{2 0}^{\prime \prime}-\mathbf{2 "}^{\prime \prime}+/\) -
The sample is a fine grained bedded carbonaceous mud or sand material. The carbonate rich metasedimentary rock is made up of numerous thin \(\mathbf{2 ~ m m}+1\) - alternating white to grey-black coloured layers which may represent former depositional beds. These layers or beds have undergone tight crenulated folding. The rock was found to host trace disseminated pyrite with lesser amounts of chalcopyrite.

The carbonaceous metasediments observed at this location were found to be quite continuous along strike, particularly towards the east and southeast. Immediately towards the west of this sample location, these bedded rocks somehow were truncated, cut off possibly by a fault. The quartz veins and masses described previously (samples 301969 to 301973 inclusive) are thought to occupy the suspected cross cutting fault. The apparent continuation of these carbonaceous rocks has been identified approximately \(3 / 4\) of a mile towards the west, south-west.

Highly similar bedded carbonaceous rocks have been observed with massive pyrite-pyrrhotite-sphalerite and galena on the Stromsholm showing in Botha Township, located approximately 5 miles east of the BLMI Richardson Lake property.

The crenulated folds observed within the rocks are thought to be related to soft sediment slumping or sloughing features. Currently it is though that the geologic pile-paleoslope faces more or less south. The now carbonaceous metasediments were deposited upon this paleoslope and subsequently slumped causing the semi or unconsolidated materials to become contorted and subsequently show exhibiting features like folding.

While the slumping took place, the sediments often incorporated chunks of the underlying country rocks. The layers or beds would become contorted and conform to the shape of the terrestrial block of rock. A number of structure measurements taken off of the folds would appear to indicate that the sediments might have slumped down into at least two parallel troughs that would have developed somewhat perpendicular to the depositional layering. These possible troughs may have developed as a result of a series of parallel faults cross cutting the soft sediments which allowed for gravity settling to take place. The observed doubly plunging folding-slumping may have also been caused by a localized doming effect of the rocks below etc.

Sample 301976
\(1+01 E, 0+30 N\) at the "Long Trench"
Composite grab sample
The sample consists of a well foliated chlorite-graphite bearing mud. The foliation within the altered rock has been defined by the alignment of chlorite with \(5 \%+/\) graphite also occurring along the foliation. 2\% sphalerite with \(1 \%\) galena occurs as fine disseminations primarily associated within white carbonate xenoliths or inclusions within the chlorite-graphite rich rock.

\begin{abstract}
Sample 301977
\(1+24 E, 0+56 \mathrm{~N}\) at the "Long Trench"
Composite grab sample
This sample consists of a white carbonated-silicified with 1\%-1.5\% very fine grained disseminated galena.

The materials sampled occur to the north or stratigraphically below the carbonaceous metasedimentary rocks previously described for sample 301975. Sample 301977 rocks are thought to represent felsic metavolcanic flows and/or tuffaceous rocks which have undergone severe forms of alteration by carbonate and silica minerals. Minor constituents of epidote and white striated feldspars (possibly albite) randomly occur in the general immediate area or unit. The rocks show signs of being contorted and folded. Alternating differentially weathered carbonate rich then silica rich layers or partings occur across the width of the unit.

Near the apparent bottom of the unit a very fine grained aphanitic carbonate rock resembling a carbonaceous mud has incorporated within its shards or chunks of the adjacent country rocks. It is possible that this rock is representative of a tuff mud slide - landslide like feature. More competent flows or tuff may have been laid down on top of this finer grained material. Rock fragments found within the finer grained carbonated materials were probably picked up during the initial movement stages, athough rock fragments from above could also have been incorporated into soft unsupporting unconsolidated materials below.
\end{abstract}

\author{
Sample 301978 \\ \(1+27 \mathrm{E}, 0+60 \mathrm{Ni}\) at the "Long Trench" \\ Composite grab sample
}

The sample consists of an epidote altered felsic metavolcanic rock (possibly a thyolite). The rock has undergone intense siliceous and epidote alterations with trace to \(\mathbf{1 \%}\) chalcopyrite, \(\mathbf{1 \%}\) pyrite as disseminations in addition to \(\mathbf{3 \%}\) gypsum or anhydride flakes developed as apparent stringer-like forms.

The rock type examined above usually shows remnants of foliations or primary laminations. Only in the extremely epidote altered portions of the rock does the fabric become totally obscured.

At the BLMI Richardson Lake property the epidote-siliceous altered felsic metavolcanics appear to always occur below the highly attered carbonate-siliceous felsic metavolcanics and the carbonaceous metasedimentary rocks.

In all of the known instances, the rocks were found to dip towards the south at angles usually in the range from \(40^{\circ}\) to \(60^{\circ}+/\) -

\section*{Sample 301979 \\ \(1+27 \mathrm{E}, 0+63 \mathrm{~N}\) at the "Long Trench" Composite grab sample}

This sample was collected at the contact between a narrow band ( \(6^{\prime \prime}-7^{\prime \prime}\) ) wide massive magnetite mineralization occuring within the epidote altered felsic metavolcanics. The rocks were found to be massive light green in colour and had been intensely siliceously altered with moderate epidote alterations. These contact rocks carry \(\mathbf{1 \%}\) pyrite and trace to \(\mathbf{1 \%}\) chalcopyrite.

Thin bands of magnetite mineralization often associated with manganese appear to be common within the foliated or laminated felsic metavolcanics below the carbonate altered rocks, etc.

There is some preliminary field evidence to suggest that the magnetite can grade into iron sulphide mineralization, suggesting a potential facies change. It is not yet possible to determine if the iron oxide and sulphide mineralization are magmatic or of sedimentary original. Both the magnetite and pyrite mineralization host accessary minerals such as epidote-silica and abundant secondary gypsum or anhydride. As a whole the magnetite hosts little or no sulphides, while the sulphides host little or no magnetite or pyrrhotite. The sulphides were also found to carry minor chalcopyrite. It may be important to note that there does not appear to be any relationship between magnetite-sulphide mineralization within the felsic metavolcanics and the massive-semi massive sulphides known to occur within the carbonaceous metasediments stratigraphically above.

At the "Long Trench" no massive sulphides occur at the top of the carbonaceous metasediments while a short distance to the west of the "Big Pine Trench" the member was not found and thought to have been truncated by faufting or folding.

The carbonaceous metasediments, thin to almost nothing at the "Ridge and Dog Leg Trenches" to the east but still the massive sulphides are found. At the "Dead Bird Trench" the metasediments thicken considerably and also hosts a massive sulphide horizon. The pinching and selling effects are probably due to folding.

Sample 301982
\(3+04 E, 0+76 N\)
Composite grad sample
This sample consists of a massive lime green coloured (epidote bearing) intensely silicified intermediatedyke.

This apparent intermediate composition dyke was found to concordantly intrude a well laminated and intensely silicified rhyolite flow.

There are some indications that there are chilled margins along the contacts of the dyke, apparently having appreciable quantities of epidote and silica. This intrusive rock may be similar or related to a similar but less altered intermediate composition dyke and/or sill found within the carbonaceous metasediments at the "Dead Bird Trench". These small scaled dykes or sills may be genetically related to a series of mafic to intermediate synvolcanic extrusive dykes or flow located in the southwest portion of the property noted on mining claim S-1095079.

Sample 301983
\(3+05 E, 1+02 N\) at the "Ridge Trench"
Composite grab sample
The sample was taken from and consists of light grey well laminated rhyolite flow with intense silica and localized epidote alteration. Laminations of silica were observed. The rock hosts \(\mathbf{1 \%}\) disseminated pyrite.

Some very tight drag folding of the laminated or foliated felsic rocks have been observed.
Barren quartz stringers with minor sericite, probably due to silica remobilization, have been noted. A number of joint features perpendicular to the rock fabric were found to host up to \(2 \%\) pyrite with trace amounts of chalcopyrite. The rusty surface exposures are quite common due to the weathering of the sulphide minerals.

\section*{Sample 301984}
\(3+05 \mathrm{E}, 1+12 \mathrm{~N}\) at the "Ridge Trench"
Composite grab sample
The sample consists of a somewhat massive, grey-green coloured, medium grained equigranular intermediate tuff. The matrix of the rock appears to contain rounded glassy fragments of quartz. Some chlorite is present in the rock.

Within the finer grained matrix materials the rock was found to host approximately \(7 \%\) angular to rounded fragments measuring up to 1.5 cm across. Some of the observed fragments are made up of fine grained amphibolites. The tuffaceous materials are quite massive looking and do not appear to have been moved about. The rock has been highly orthogonally jointed and was found to host \(1 \%\) disseminated granular pyrite.

Only a short distance to the west, near the north end of the "Pine Trench", a unit of very coarse rhyolite lapilli tuff or tuff breccia was observed. The presence of nearly undisturbed intermediate tuffs occurring near the same stratigraphic position as the coarse felsic tuffs might suggest at least two or more volcanic sources.

\section*{Sample 301985 \\ \(1+12 E, 1+76 N\) at the "Ridge Trench" \\ Composite grab sample}

The sample is a fine to medium grained grey coloured well laminated felsic ash tuff. The rock is primarily composed of rounded glassy quartz fragments with long black amphibole needles. The amphibolite needles are thought to occur in alternating layers which would clearly exhibit a planer fabric in the rock. The rock hosts trace amounts of disseminated pyrite.

The felsic rocks observed appear to have undergone a certain degree of foliation which has resulted in the development of a weak but evident phyllite schistose texture. The schistocity planes appear to show localized kink bands. The kinking would have likely occurred contemporaneously with folding of the adjacent rocks.

Because these rocks occupy a topographic low within a wet swampy area, it is thought that faulting may have caused some structural deformation within the rocks. The development of concordant quartz stringers or boudins may help to enforce the faut theory. No doubt if a fauft did occupy this topographically low area, then other more distance but adjacent rocks should have been affected.

\section*{Sample 301986}
\(1+20\) NE, \(0+635\) at the "Dog Leg Trench"
Composite grab sample
The sample consists of a bull white quartz vein intruding a silicified thyolite flow rock. The quartz vein was found to host \(1 \%\) pyrite, trace pyrrhotite and \(3 \%\) black-green wisps of chlorite. The rhyolite wall rocks have been intensely silicified (bleached) and host trace pyrite and trace chalcopyrite, occurr as disseminations along microthin fractures.

The quartz vein with the rusting sufphides occur at the same stratigraphic position as the massive sufphides observed at the "Ridge Trench", etc.

\section*{Sample 301987}
\(1+20 N E, 0+635\) at the "Dog Leg Trench"
Composite grab sample
The sampled material consists of a milky white to lime green (fresh surface) carbonate altered felsic metavolcanic rock, contacting a massive thyolite. The carbonate rock was found to host \(3 \%\) fine cubes of galena measuring \(<1 \mathrm{~mm}\), associated with \(1 \%\) to \(2 \%\) light "honey coloured" sphalerite. Some areas of this rock show localized green-like malachite staining possibly due to the leaching out of various copper complexes.

Much of this unit was buried by mud and rock debris while attempting to wash down soils from the hillside portions of this trench. It is thought that the mineralization is somewhat more extensive than has been depicted.

\section*{Sample 301988 \\ \(1+88 N E, L O+00 S\) at the "Dog Leg Trench" \\ Composite grab sample}

The sampled material consists of either a large fragment of, or an intercalated finger of the highly carbonated altered felsic metavolcanics within an intensely silicified laminated or foliated fhyolite flow or tuff.

The altered felsic rock is white to light green in colour and is both carbonate and siliceously altered. The rock also contains some minor bands of epidote. Sulphide minerals observed within the rock include 1\% disseminated pyrite, \(\mathbf{1 \%}\) fine grained disseminated galena and traces of sphalerite.

These rocks described above may correlate with some very coarse grained fragmental mega block rocks observed at the northeast end of the "Dead Bird Trench" which is immediately southeast along strike from the "Dog Leg Trench".

Sample 301989
\(1+05 \mathrm{E}, 0+54 \mathrm{~N}\) at the "Pidge Trench"
Composite grab sample
This sample is made up of felsic metavolcanic rhyolite rocks adjacent to the thin massive sulphides noted at the southwest end of the "Ridge Trench".

Generally the rock is fine grained black-grey in colour, crudely laminated (possibly foliated) to massive. The rock hosts \(1 \%\) finely disseminated pyrite.

\section*{Sample 301990 \\ \(1+06 E, 0+54 N\) at the "Ridge Trench" \\ Composite grab sample}

This sample was made up of a red rusty ochre coloured soil or highly disintegrated rock which is known to occur immediately below and contacting the massive sulphide mineralization that is associated with carbonaceous metasediments.

At a number of locations, particularly at the "Dead Bird and Black Hole Trenches", a limonitic to hematitic very fine grained soil (possible regolith?) has developed immediately below the massive sulphides. This iron-rich material has a fine sandy texture and may also contain some clay fractions. It would appear at this time that these sandy materials were deposited on the carbonaceous rocks prior to the deposition of the sutphides. The field studies have shown that the metasediments slumped down slope towards the south-southwest, at which time tensional gashes were developed in what is believed to have been a semi-consolidated metasediment.

The already deposited and slumped layer of sandy clay materials were allowed to infill the tensian gashes. Some of these openings extend outwards for lengths of 4 to \(6 \mathrm{ft} .+/\) and were infilled with yellow sand with minor clay or almost exclusively clay with minor sand fractions. The sulphides mineralization was thought to have been deposited upon the sand layer after the slumping and void infillings had taken place. No sulphide fragments were observed within the infilled voids which commenced with around bevel and terminated at a point some feet below the surface.

This type of feature may support the idea that the volcanic rocks in the area young towards the south, as many would believe. Without question, there is plenty of room for debate with respect to this matter.
```

Sample 301991
$1+03 \mathrm{E}, 0+80 \mathrm{~N}$ at the "Ridge Trench"
Composite grab sample across approximately 9 ft. of rock

```

This sample consists of a massive grey intensely silicified rhyolite as tuff or flow, with up to \(\mathbf{1 0 \%}\) pyrite scattered throughout the rock.

These highly sulphide bearing felsic metavolcanic rocks occur below the calcareous metasediments and the carbonate-siliceous-epidote attered felsic rocks and may correlate with the magnetite-sulphide horizons noted at the "Long and Pine Trench".

\section*{Sample 301992}

The sample description could not be located within the available information on file.






    :
1

은

\section*{CERTIFICATE OF ANALYSIS A9219141}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline  &  & \[
\left\lvert\, \begin{aligned}
& n \operatorname{ninvin} \\
& \nabla \vee \vee \vee \vee
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{array}{ll}
n \omega v i n \\
v \vee \vee v
\end{array}\right.
\] & \[
\left\lvert\, \begin{array}{ll}
n \sin \\
v \vee v
\end{array}\right.
\] &  &  & \[
\begin{aligned}
& \operatorname{singmin} \\
& \mathrm{v} v \mathrm{v} v \mathrm{v}
\end{aligned}
\] &  \\
\hline & I': & 11:19 & '1!'! & 1:191 & i'i'i & i'iti & 111: & 11: 1: \\
\hline &  &  &  &  &  &  & \[
\begin{aligned}
& \text { abaga } \\
& \text { NaNGN }
\end{aligned}
\] &  \\
\hline  &  Mnल氏口 0.00 으n애웅 &  &  &  &  &  &  &  \\
\hline
\end{tabular}







A9219254
\begin{tabular}{|l|l|}
\hline & \\
\hline
\end{tabular}

\subsection*{8.4 DIAMOND DRILLING}

The diamond drilling portion of the BLMI Richardson Lake Exploration Program-was carried out by Sparta Diamond Drilling of Connought, Ontario during the period from September 15, 1992 to October 5, 1992.

For the project Sparta utilized a BBS-2 hydraulic drill with a thin wall wireline drill string system.

A total of four diamond drill holes with an aggregate footage of 2,102 feet of AGBM 11.2 inch diameter) core was recovered from the property.

There were four diamond drill holes put down on mining claim S-1095079 and have been identified as follows:
\begin{tabular}{ll} 
RL-92-01 & \(-45^{\circ}\) to \(-40^{\circ}\) \\
RL-92-02 & \(-45^{\circ}\) to \(-45.5^{\circ}\) \\
RL-92-03 & \(-45^{\circ}\) to \(-47^{\circ}\) \\
RL-92-04 & \(-55^{\circ}\) to \(-56.5^{\circ}\)
\end{tabular}

Each of the above inclined holes were drilled in a nontheastward direction in an attempt to test the down dip extension of the highly altered and deformed sulphide bearing felsic metavolcanic rocks previously exposed in a series of surface trenches.

Please refer to Figure 29 which depicts the position of the drill holes in conjunction with the position of the surface trenches and dozer-skidder access trails.

The position of the four drill holes has also been plotted on the \(\mathbf{1}\) inch to \(\mathbf{5 0}\) feet Bharti Laamanen Mining Inc. VLEM Survey Plan (Map 2). Each of the holes has been drafted showing the vertical projections of the ends of each drill hole onto an assumed horizontal plane.

Each of the holes on the plan (Map 2) has been marked by their identification numbers, inclination of the hole and ultimate depth in feet.

All of the compiled drill log information was drafted at a scale of 1 inch to 50 feet to generate "Geological X-Sections".

1992 Trenching AND DIAMOND

-


Upon the completion of the drill core logging, a number of drill core lengths were split in half and subsequently submitted to Chemex Labs. Ltd. to be subjected to analytical procedures for Au, Ag, ICP32 and major oxide whole rock determinations. The various "Certificates of Analysis" provided from the lab have been included within this section.

From the diamond drill logs a series of geological cross sections were created of a scale of 1 " to 50 feet.

In conjunction with the geological cross sections, four separate cross sections were created showing the position of all collected samples as well as separate sections depicting the ICP geochemistry results for copper, lead and zinc drafted at a scale of 1 inch to 50 feet.

The remaining ICP-32 elements, gold, silver and the whole rock major oxides were not plotted and can easily be assessed by reviewing the attached assay certificates.

The copper, lead and zinc values were reported in parts per million (ppm) and have been plotted on the various sections with the units having a specific scale which has been depicted as a bar scale on each of the drawings.

Please refer to Figures \(\mathbf{3 0}\) through \(\mathbf{4 9}\) showing the various plotted drill hole information.

The results of the diamond drilling has shown that 3 out of the 4 holes put down cut through the intermediate to mafic amphibolite rocks and passed into the highly altered and deformed sulphide bearing felsic metavolcanic rocks.

The amphibolite rocks, for the most part, were quite consistent and were fairly predictable with respect to the minerology foliation plane, alteration, etc.

The contact between the amphibolites and the felsic rocks was more or less encountered at a predictable location. Some of the felsic rocks that were encountered below the contact were similar to those observed in the surface trenches, while there were other more unusual felsic metasedimentary-metavolcanic rocks lower in the holes that have never been observed on the present surface.

With respect to the results of the split core assaying, the results generally turned out to be quite low, particularty in sections that were expected to be meal bearing. Intermediate amphibolites in the upper portions of the drill holes appeared to show elevated metal values which may be due to the presence
of both primary and secondary sulphide minerals.

A lot of the generated assay data should be carefully assessed in the near future in an attempt to determine the various background and anomalous metal values.

\subsection*{8.4.1 DLAMOND DRILLNG SPECIFICATION INFORMATION}

Drilling carried out by:
Sparta Diamond Drilling, Connaught, Ontario
Principal Owners: Larry and Joeann Salo
Equipment used for the project:
Skid mounted Boyles Brothers 2 (BBS-2) hydraulic feed, powered by a 4 cylinder diesel engine.
Drill tower set up to accommodate a 10 foot pull.
Drill equipment mobilized using a Clark Timber Jack.
Drill string equipment used:
LongEar thin wall system rods, Fordia diamond bits, reaming shells and rear stabilizers, mounted on a 10 foot double tube core barrel with the overshot assembly for wire line use.

Rod system core size:
AGBM wire line @ 1.20 inch O.D. core
All inclusive driling costs per foot: \(\$ 12.00\)
Diamond Drill Runner: Larry Salo
Diamond Drill Helper: Ronald Crichton
Hole Drilling - Start and Completion Dates:
RL-92-01 September 15, 1992 to September 20, 1992
RL-92-02 September 21, 1992 to September 26, 1992
RL-92-03 September 27, 1992 to October 01, 1992
RL-92-03 October 021992 to October 05, 1992
Diamond Drill Hole Grid Line Co-Ordinates:
RL-92-01 \(3+86 \mathbf{W}, 1+39\) S
RL-92-02 \(0+22 E, 3+20 S\)
RL-92-03 \(3+02 E_{1} 1+93\) S
RL-92-03 BL \(0+00,1+85 \mathrm{SE}\)
Diamond Drill Hole Azimuth and Bearings
RL-92-01 014.5 \({ }^{\circ} \mathrm{Az} \quad \mathrm{N} 14^{\circ}-30^{\circ} \mathrm{E}\)
RL-92-02 014.5 \({ }^{\circ}\) Az N \(14^{\circ}-30^{\circ}\) E
RL-92-03 \(014^{\circ} \mathrm{Az} \quad \mathrm{N} 14^{\circ}-0^{\circ} \mathrm{E}\)
RL-92-03 \(039^{\circ} \mathrm{Az} \quad \mathrm{N} 39^{\circ}-0^{\circ} \mathrm{E}\)
Final Depth of Drill Holes:
\begin{tabular}{ll} 
RL-92-01 & \(532^{\prime}\) \\
RL-92-02 & \(522^{\prime}\) \\
RL-92-03 & \(524^{\prime}\) \\
RL-92-03 & \(524^{\prime}\)
\end{tabular}

Total footages drilled: \(\mathbf{2 1 0 2}^{\circ}\)
Total amount of casing sunk: \(6.0^{\circ}+\) /-

RL-92-03 \(0^{\prime}-45^{\circ}, 504^{\circ}-47^{\circ}\)
\begin{tabular}{|l|l|}
\hline \(0^{\circ}-104.8^{\circ}\) & \(-45^{\circ}\) \\
\hline \(104.8^{\circ}-209.6^{\circ}\) & \(-45.50^{\circ}\) \\
\hline \(209.6^{\circ}-314.4^{\prime}\) & \(-46.00^{\circ}\) \\
\hline \(314.4^{\circ}-419.2^{\circ}\) & \(-46.50^{\circ}\) \\
\hline \(419.2^{\circ}-524.0^{\circ}\) & \(-47.00^{\circ}\) \\
\hline
\end{tabular}

RL-92-04
\[
0^{\prime}-55^{\circ}, 524^{\prime}-56.5^{\circ}
\]
\begin{tabular}{|l|l|}
\hline \(0^{\circ}-104.8^{\circ}\) & \(-55^{\circ}\) \\
\hline \(104.8^{\prime}-209.6^{\circ}\) & \(-55.38^{\circ}\) \\
\hline \(209.6^{\prime}-314.4^{\prime}\) & \(-55.75^{\circ}\) \\
\hline \(314.4^{\circ}-419.2^{\circ}\) & \(-56.13^{\circ}\) \\
\hline \(419.2^{\circ}-524.0^{\circ}\) & \(-56.50^{\circ}\) \\
\hline
\end{tabular}

Diamond drill holes were put down on mining claim S-1095079.
Dates the drill hole logging was completed.

RL-92-01 October 15, 1992
RL-92-02 November 27, 1992
RL-92-03 December 4, 1992
RL-92-03 December 11, 1992
The core logging was carried out by:
Harold J. Tracanelli
Exploration Geologist, BLMI Richardson Lake Project
BEA/BLMI staff employee
Present location and condition of diamond drill core:
Upon completion of the logging, certain sections of the diamond drill core were split in half and submitted to the laboratory for assay determinations, etc. The core is securely stored in wooden core boxes in wooden core racks located in the Laamanen Construction Ltd. yard at 129 Fielding Road, Lively, Ontario.

For further diamond drill related information, please contact Harold J. Tracanelli at 705-682-3211 during normal business hours.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Drill Hole No. \\
RL-92-01
\end{tabular} & \multicolumn{2}{|l|}{Date Logs Submitted: January 15, 1993} &  &  & No. of Pages in Log:
\[
10
\] \\
\hline \begin{tabular}{l}
Company Name: \\
Bharti Laamanen Mining Inc.
\end{tabular} & Property Name: Richardson Lake & \begin{tabular}{l}
Township: \\
Rhodes Township
\end{tabular} &  &  & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
N.T.S. Refrence No.: \\
41-1/14 Edition 2, Venetian Lake, Ontario
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Drill core stored at: \\
Laamanen Const., 129 Fielding Rd., Lively, Ontario, POM 2EO
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Project Supervisor: \\
Harold J. Tracanelli
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Employer: \\
Bharti Engineering Associates Inc. \\
131 Fielding Rd., Lively, Ontario, POM 2EO
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Diamond Drilling Company: \\
Sparta Drilling
\end{tabular}} & \begin{tabular}{l}
Runner-Supervisor: \\
Larry Salo
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Helper: \\
Ronald Crichton
\end{tabular}} & Equipment Type: BBS-2 \\
\hline \begin{tabular}{l}
Date Drill Hole Started: \\
Sept. 15, 1992
\end{tabular} & \begin{tabular}{l}
Date Drill Hole Completed: \\
Sept. 20/92
\end{tabular} & Azimuth of Drill Hole:
\[
014.5^{\circ}
\] & Total Length of Drill Hole: 532 ft . & \begin{tabular}{lc} 
Dip of Drill Hole \\
Collar & \(\circ\) \\
\(0^{\prime}\) & \(-45^{\circ}\) \\
\(532^{\prime}\) & \(-40^{\circ}\) \\
\hline
\end{tabular} & Drillhole Co-ordinates:
\[
3+86 W, 1+39 S
\] \\
\hline \begin{tabular}{l}
Drill Core Logged by: \\
Harold J. Tracanelill
\end{tabular} & \multicolumn{2}{|l|}{Drill Core Logging Completed: October 15, 1992} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Major Lithological Units: \\
Mafic to felsic metavolcanis with minor metasediments
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Objectives of the diamond drilling exploration: \\
To explore the depth extent of the mafic-felsic contacts for volcanogenetic massive sulphide type deposits (VMS)
\end{tabular}} \\
\hline
\end{tabular}







\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & Footage & & & & & & & & & & & Foota & & & \[
\begin{aligned}
& \text { RL-92-01 } \\
& \text { Page } 8 \\
& \hline
\end{aligned}
\] \\
\hline From & To & Rock Type & Des & tion & & & & & & & \begin{tabular}{l}
Sample \\
No.
\end{tabular} & From & To & Sample Length & Analytical Procedures \\
\hline 411.0 \({ }^{\prime}\) & 489.0' & Wolded folaio tuff with no lapllll fragments. & &  & \[
\begin{aligned}
& \text { ined } \\
& \text { a fole } \\
& \text { abrlo } \\
& \text { A. } 80 \\
& \text { been }
\end{aligned}
\] &  &  &  &  & fic tohed & & & & & \\
\hline & & &  & \begin{tabular}{l}
of \\
. 44 ite ot. Ther \\
have \\
hare \\
ace be the laste?
\end{tabular} &  &  &  &  &  & \begin{tabular}{l}
and \\
of \\
of the \\
pink- \\
rom \\
oe.
\end{tabular} & & & & & \\
\hline 489.0' & 497.95 & Porphyrtic andesite. & \begin{tabular}{l}
Mod \\
The with from port tuff with moe diree Infill \(\qquad\)
\end{tabular} &  &  &  &  &  &  & \begin{tabular}{l}
caser \\
r \\
on the sharp \\
d. \\
are \\
ins \(\qquad\)
\end{tabular} & & & & & \\
\hline 497.95' & 505.0 \({ }^{\prime}\) & Felalo tuff, some welding, Interflow tuff & \begin{tabular}{l}
Med \\
valibly \\
area \\
low \\
mat \\
not
\end{tabular} &  &  &  &  &  &  & \begin{tabular}{l}
ing \\
aot \\
The \\
mbrite \\
nit \\
tuff is
\end{tabular} & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 111 & 1 & 1 & 1 & 1 & 1 \\
\hline & Footage & & & & Footag & & & RL-92-01 Page 9 \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline B05.0' & 522.0' & Porphyritlo andesite. & \begin{tabular}{l}
Medium to fine grained, green to progresalvaly Incressing to salmon red-brownish colour with Inoreasing depth. The andesite flow hots trace to \(1 / 2 \%\) pyritechalcopyrte with rare random inolusions of ohaloopyrite in remobilized veins orose outting the flow. \\
(5) 505.0-511.6' green andesite inoreasing in the vielble porphyry content from 808' to \(185.6^{\prime}\). There are numerous thin unldireotional yellow green felaic epldote volne with some groy oarbonate quartz orose outting the rock. The rook hoste treoe diseeminated pyrite. \\
- \(511 . \mathbf{0}^{\prime}\) - E17.6' Dearease in the foldepar porphyries has been noted. There le an increase in the intensity of fine yollow-green folaic voine, including the aterting of narrow quartz-carbonate selmon red (hematite altered faldapars)? with eome ohlorite. \\
(5) \(512.6^{\prime} \cdot 0.4^{n \prime}\) oarbonate-quartz-apidote needies with ahlorite inoluaione and traees of red feldspars © \(24^{\circ}\) T.C.A. \\
(4) 514.0' - 0.05" red feldapar-oalolte bearing quartz voin (3) \(15^{\circ}\) T.C.A. \\
(7) B17.0' 0.3" - 0.4" white rhombic oaloite-red feldapar - ohlorite - quartz voin (:) \(27^{\circ}\) T.C.A. There le notleeable increase in the rednese of groundmass towards B17.6'. \\
Thle section of rock hoate trace - 1/2\% dieseminated pyrite. \\
© \(517.0^{\prime}\) - 827.0' - well developed medium gralned red to brownish porphyry, intruded by numeroue thin green felsie velns and eeveral white rhombio oaleitesalmon red feldepar, green chlorite voine with lescer quartz. The minerals ahve formed as irregular or streaky masses and devoloped sharp outting contaoting velne. 80 me of the velne contain seame or irragular inclusions of fine grainad pyrlto-ohaloopyrlte. \\
© 518.8'1.3" coarse grained oalaits-pink-red faldspar ahlorite trace quartz with a thin seam of pyrite along a freoture vein © \({ }^{(9)} 12^{\circ}\) T.C.A. \\
The vein croes outs fine grained green felsic visible breocia veinlets. The green felaie veine ocour © \(\mathbf{6 5}^{\circ}\) T.C.A. Some minor carbonete minerale in the voine. \\
© 519.9 thin 0.1 Irregular salmon red apar vein \(15^{\circ}\) T.C.A. +1 - \\
© \(521.4^{\prime} 0.7^{\prime \prime}\) oharp contect, red feldepar-grey oarbonate green ohlorite voin with minor groy quartz ooours © \(20^{\circ}\) T.C.A. \\
A thin \(<\mathbf{0 . 2 ^ { \prime \prime }}\) red foldepar veln parallel to the \(\mathbf{8 2 1 . 4}\) ' voins hoite erratio fine grained inoluaions of ahaloopyrite meacuring about \(0.3^{\prime \prime} \times 0.18^{\prime \prime}\) eorose.
\end{tabular} & 67105 & \(518.0^{\prime}\) & \begin{tabular}{l}
523.5' \\
528.3'
\end{tabular} & 8.8' \({ }^{\prime \prime}\) & Au-877 \\
\hline
\end{tabular}

\(\left.\begin{array}{llllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Drill Hole No. RL-92-02 & \multicolumn{2}{|l|}{Date Logs Submitted: January 15, 1993} &  &  & No. of Pages in Log:
\[
14
\] \\
\hline \begin{tabular}{l}
Company Name: \\
Bharti Laamanen Mining Inc.
\end{tabular} & Property Name: Richardson Lake & \begin{tabular}{l}
Township: \\
Rhodes Township
\end{tabular} & \[
\begin{aligned}
& \text { Clam Number: } \\
& \text { S } 1095079
\end{aligned}
\] &  & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
N.T.S. Refrence No.: \\
41-1/14 Edition 2, Venetian Lake, Ontario
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Drill core stored at: \\
Laamanen Const., 129 Fielding Rd., Lively, Ontario, POM 2EO
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Project Supervisor: \\
Harold J. Tracanelli
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Employer: \\
Bhart Engineering Associates Inc. 131 Fielding Rd., Lively, Ontario, POM \(2 E O\)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Diamond Drilling Company: \\
Sparta Drilling
\end{tabular}} & \begin{tabular}{l}
Runner-Supervisor: \\
Larry Salo
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Helper: \\
Ronald Crichton
\end{tabular}} & Equipment Type:
BBS-2 \\
\hline \begin{tabular}{l}
Date Drill Hole Started: \\
Sept. 21, 1992
\end{tabular} & \begin{tabular}{l}
Date Drill Hole Completed: \\
Sept. 28/92
\end{tabular} & Azimuth of Drill Hole:
\[
014.5^{\circ}
\] & Total Length of Drill Hole: 522 ft. & Dip of Drill Hole, Collar
\[
\begin{array}{ll}
0^{\prime} & -45^{\circ} \\
522^{\prime} & -44.5^{\circ} \\
\hline
\end{array}
\] & Drillhole Co-ordinates:
\[
0+22 E, 3+20 S
\] \\
\hline \begin{tabular}{l}
Drill Core Logged by: \\
Harold J. Tracanelli
\end{tabular} & \multicolumn{2}{|l|}{Drill Core Logging Completed: November 27, 1992} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Major Lithological Units: \\
Mafic to felsic metavolcanis with minor metasediments
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Objectives of the diamond drilling exploration: \\
To explore the depth extent of the mafic-felsic contacts for volcanogenetic massive sulphide type deposits (VMS)
\end{tabular}} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Footage} & & & & \multicolumn{2}{|l|}{Footage} & & \multirow[t]{2}{*}{\begin{tabular}{l}
RL-92-02 \\
Page 2 \\
Analytical \\
Procedures
\end{tabular}} \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & \\
\hline 66.6' & 68.7' & Masolve amphibolites & \begin{tabular}{l}
Maselve, mottled green-grey to moderate chlorite altered, poseible light green remnante of porphyries (basalt flow?) hae been noted. From 68.7' - 87.4' a light grey green intermadiate amphlbolite boing weakly follated with fine dies. to irregular Inclusione of pyrite and chaloopyrite was examined. \\
68.2' - 68.7' there le vielbly follated to breooiated masaive amphlbolite with some loan banded fron formation. There is some strong but thin pyrite arose outting atringore developed in the iron formation.
\end{tabular} & & & & & \\
\hline 88.7 \({ }^{\prime}\) & 72.65' & Banded iron formation & Fine to medium gralned alternating bands of magnetle with moderately altered ahlorit-amphibole mineral bands. Some of the alternating bands of the iron formation are quite sillieeous looking. The iron formation oarries from trace to 7\% +/ dises. to irragular inolusion and miero thin fracture fillinge of pyrite throughout. & 57110 & 88.70' & 72.88' & 3.95' & \[
\begin{aligned}
& \text { Au } 877 \\
& \text { ICP } 32
\end{aligned}
\] \\
\hline 72.85' & 78.80' & Massive amphibotite & Fine gralned, mottled light green-groy with poselble former porphyritio rook showing moderate chlorite alteratione of the amphiboles. A moderate \(0^{\prime \prime}\) breoole zone was noted in the section. The breocia has been well healed and ocours immediately below Iron formation rooke. & & & & & \\
\hline 78.50' & 78.35' & Follated amphibolite & Thin oonoordent seame of pyrite throughout , thin oaloite fraoture fillinga. Core badly broken at contaot between F.G. amphibolites and fine grained intermediate metavolcanio. & & & & & \\
\hline 78.35 \({ }^{\prime}\) & 78.80' & Altered intermediate metavolcanio & \begin{tabular}{l}
Fine grained weakly foliated pink-brown to light green tinge, posalbly being an altered andesite flow? \\
There has been noted minor salmon red apotting near broken conteot whloh has been intruded by minor quartz-earbonate velns. The rook hoste trace diss. pyritechalcopyite.
\end{tabular} & & & & 1 & \\
\hline 78.80' & 83.75' & Intermediate amphibolite & Fine gralned gray to light green very wall foliated or laminated and intruded by many thin fine gralned felslo-carbonate fraoture fillinge. The rook oontains fine dias. pyite to very thin conoordant seams up to \(<0.2\) inch thick which crose veins of pyrite. The follation angle was measured \({ }^{-5} 81.0^{\prime}\). 78 \({ }^{\circ}\) TCA. & & & & & \\
\hline 83.8' & 92.5' & Follated mafio to intermediate amphibolite & The emphbolites have been intruded by numerous irragular shaped grey quartz Inclusion. Freotures devaloped in the inolusions are filled with fine grained pyrite. The amphbolite rook is orons out by the occasional thin epidote - pink flesh colourad felaic velne © \(35^{\circ}\) TCA. & & & & & \\
\hline 92.5' & 102.0' & Mafic amphlbolite & \begin{tabular}{l}
Dark green with several crose outting epidote-fleshy-brown to green felsio material voine. \\
© 94.9 - 97.6 viaible Increase in graln elze and falsic content but the roak atill remaine foliated. The amphibolite containa \(\mathbf{1 \%}\) - 2\% irregular diss, pyritepyrrhotite. Vialble brown-green alteratione to ohlorite/blotite were noted.
\end{tabular} & & & & & \\
\hline \(97.4{ }^{\prime}\) & 101.4' & Amphibolite & The rook le weakly foliated - \(80^{\circ}\) TCA. The follation le crose out by thin 0.10 . 0.20 inch vainlate of quartz-apidote and pink foldepare. The rock hoste trece dise. pyrite. & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & \(\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\) & 1 & 1 & 1 & 1 & 1 \\
\hline Footage & & & & & Foota & & & \[
\begin{aligned}
& \text { RL-92-02 } \\
& \text { Page } 4 \\
& \hline
\end{aligned}
\] \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 132.0' & \(134.4{ }^{\prime}\) & Altered amphibolite & Medium to fine grained grey to green amphlbollte rooke which have been somewhat contorted and Intruded by numerous white-green folsie to pink orthoolese-epldote-amphibole incluaions and needle rioh voins whioh often host disseminated minor pyrite with some minor diseeminated chaleopyrite. Some minor mloro thin sulphide vains have been observed without epldote or feidapars ete. Some large well devaloped aryatale of apldote and amphibole minarala remobilized into rosette featurea (aphorellila forma?) were noted. & & & & & \\
\hline 134.4' & \({ }^{136.81}{ }^{\prime}\) & Well follated amphibolite with felaio interbanda & \begin{tabular}{l}
The roak ahowe to be eomewhat well foliated © \(80^{\circ} \cdot 82^{\circ}\) TCA. \\
The amphbolite rooke are separated by thin, maximum \(\mathbf{8}^{\prime \prime}\) very fine grained light grey to pink felsla bands. Thase bands oontein finely dieseminated pyrite with traces of ohaloopyrite. Cross outting aulphide valne and ( \(<0.10^{n}+/\) ) carbonquartz with pyrite and ohaloopyrite inclusions were observed in folsios.
\end{tabular} & & & & & \\
\hline 138.81' & 148.0' & Well foliated mafio amphibolites (maflo) foliated & Moderatoly well foliated with lesser fine grained amphibolites whith are evident from about 142'-144.8'. The fine grained amphibolite resembles fine grained alternating bedded rooke such as tuffe. Above 142' suoh as from 136.8' 142.0' \(+/\) coarse gralned amphibolites appear to have apherilitic texture with acioular amphbboles boing aligned somewhat paraliel to the apparent foliation. Pyite with ohaloopyrite are often smeared along the foliation plaine associated with irragular thin \(<0.20^{\prime \prime}\) etringore of pyrite with lose ohaloopyrite with light green felsio matariale, oross out the foliation at or very near to or along the oore axis. Minor thin quartz-oarbonate veine have formed ooncordent to follation at 142.3'. Bedly broken up coarte gralned oryatale of apldote with Phomble calelte and quartz with 1.2\% dieseminated pyrite-triee oheleopyrite were noted. & & & & & \\
\hline 146.0' & 164.8' & Poorly foliated Amphibolite & \begin{tabular}{l}
Dark grey to llght green oreamy yallow coloured moderatoly to poorly follated with suspected local atrong porphyroblantic textured amphibolite. Near the top of the seotion there are a oouple of very thin fine grained mafio amphlbolites followed by a more conaletent intermedlate looking rock. The follation or laminated features ocour © \(85^{\circ}-90^{\circ}\) TCA and are made up of alternating loyers of light and dark coloured materials measuring \(<\mathbf{0 . 1 0 ^ { \prime \prime }}\). The rook aarries trace amounts of diseeminated inolusions of pyrite. \\
The rook varies from being weakly to atrongly porphyroblaatic having an estrmated 2\% - 10\% porphyroblants of oream yallow colour and having a rounded to aubrounded shape. The porphyroblaste appear to be allgned paraliel to foliation and have an avarage alze \(0.1^{\prime \prime} \cdot 0.2^{n}+1\) wide and \(0.6^{n} \times 1.1^{\prime \prime}\) long. The top conteot of the unit is visibly gradational while the bottom - lower conteot appears somewhat sharper. \\
The contects between the intermediate porphyroblastle rooks and lower fine gralned amphlbolite le marked by a \(\mathbf{2 . 0} \mathbf{0}^{\text {n }}\) voln -like festure of white to oream oarbonate with olive green aetinolite-tremolite needles. The veln also hoste \(1 / 2 \%\) - 1\% dissaminated pyrte with trace brown aphalerite and galena.
\end{tabular} & & & & 1 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Footage} & & & & Footag & & & RL-92-02 Page 6 \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 189.7' & \(288.40^{\circ}\) & Moderately to highly daformed follated to massive intermediate amphibolites. & \begin{tabular}{l}
The rooke within this seotion show a varying degree of being contorted and being subjected to various mineralogloal alteratlons. These rooke are found above the known lower folsele matavoleanio unlte and are probably made up of flowe and tuffaceous matavoleanic rocks. In pleces the rooke are saparated by thin Interbede of laminated folalo metavoloanics, are often brecoiated, Intruded by thin quartz-oarbonate-faldspar volns and/or irregularly shaped Inolusions. 8ome of the finar grained more mafio looking rooks appear to have alternating dark or light green layere suggeating a former bedded depositional history. \\
Varlous seatlone which oontain more light ooloured falslo minerale are often found to oontaln auhadrall-anhedral growthe of black or green amphlbole minerals. At some locations the amphibolte rocks are vielbly interbedded with folele rocke, containing vialble olastic fragments, possibly boing tuff unite. These unite generally measure less than 1-2 ft. In thickness. In some seotione the fine gralned mafio looking rooks contain from \(\mathbf{8}\)-10\% miorofine grained porphyries or porphyroblaste of a ailvery-white mineral, possibly being sericite or altered plagioolase foldepars. These festures may be indicative of former amygdaloldal flows. Looally the rook hae undergone visible weak to strong ohlorite alteration. Pyrite with minor amounts of ohaloopyrite, pyrrhotite, brown and purple aphalerite and micro fine galene oan be as disseminated graling, Inclusione along epeoifio fractures or es mioro thin freeture filled voinlete. Loosily where follations remain vialble, the rooke show olear evidence of folding having taken place. Some highlights of the seotlon are presented as follows: \\
Generally from 201.7' to 206.9' the amphibole rooks show signe of ohlorite alteration in the form of veining, aseoclated with pyrite and ohaloopyrite. \\
(-) 201.7' to 202.6' < 0.10-0.50 dark green ohlorite veine with Irregular shaped olongated inolusions of pyrrhotite and thin seams of ohalcopyrite within a silloeous section of intermediate motavoloanles (amphibolites). \\
(4) 203.1' to 203.45' Fine grained pink felsio band with fine amphibole neades. The rook hoste trace fine dieseminated pyrite. \\
203.75' to 208.8' Chlorite alteration in the massive to vain-like form with a weak to highly ohloritized rooke. Some tight breacia within the seotion has been noted.
\end{tabular} & & & & 1 & Au \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 11 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & & & & & & & & \multicolumn{2}{|l|}{Footage} & & \[
\begin{aligned}
& \text { RL-92-02 } \\
& \text { Page } 7 \\
& \hline
\end{aligned}
\] \\
\hline From & To & Rock Type & \multicolumn{8}{|l|}{Description} & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline & & & \multicolumn{8}{|l|}{\begin{tabular}{l}
(-1) 218.8' \(\mathbf{2 2 2 . 0}\) groy mauvish coloured somewhat allloifled intermediate rook. The rook is weakly follated © \(75^{\circ}\) TCA with orose outting fraoture fillinge of mioro fine and oryatal form pyrite. 1-3\% Inolusione, ditseminatione and seoondary mioro veinlote of fine grained pyrite-pyrhotite, trace ohaleopyrite are known to ocour. There are some short seotione of tight breociation healod up with falsolo mioro voinlote and materiale. \\
© 223.70' \(\mathbf{~ 2 3 1 . 0}\) ' Alternating light-dark green follated rock possibly boing a former tuff. The fabrio of the rock was measured - 80-85 TCA. There are numeroue grey etretohed out quartz boudine. \\
- 231.0' \(\mathbf{2 3 4} \mathbf{3}^{\prime}\) This portion of the rook is made up of \(\mathbf{1 5 \%}\) - 50\% + / l light to dark green, anhedral to sub euhedral Intergrowthe of amphlbole minerale within a oream-woliow aphanitio rook. The rook appeare to be weakly foliated with rare loaalizod thin \(<0.10^{\prime \prime}\) white oarbonate valne with fine pyrite. The rook carries 8\% to 7\% Irregular inalusions of pyrrhotito-pyrite with traoes of light-dark brown aphalarite to yollow ohaleopyrite. \\
 intruded by irrogular quartz-foldspar inolusione with trace fine dissominated ohaloopyite. There le some vielble alteration of the felsle rook with fine greined ohlorito, telo and/or earioite mion. \\
(5) 234.8' - 239.4' 8lightly altered fine grained folaio arystal tuff to localized lapilli tuff at about the \(\mathbf{2 3 7}+\boldsymbol{+}\). The apparent tuff unit oontalne a oouple of narrow miore folded bands of amphlbolite rock. The unit oarries trace to \(1 \%+1\) - fine grained dieseminated to mioro fracture fillinge of pyrite-chaleopyrite.
\end{tabular}} & 57117 & 218.8' & 222.0' & 3.20 & ICP. 32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Footage} & \multirow[t]{2}{*}{Rock Type} & \multirow[t]{2}{*}{Description} & \multirow[t]{2}{*}{Sample No.} & \multicolumn{2}{|l|}{Footage} & \multirow[t]{2}{*}{Sample Length} & \multirow[t]{2}{*}{\begin{tabular}{l}
RL-92-02 \\
Page 8 \\
Analytical Procedures
\end{tabular}} \\
\hline From & To & & & & From & To & & \\
\hline & & & \begin{tabular}{l}
-5 239.4-262.3' Dise, aulphide-stringer siliofifiod zone with a madium to coarse gralned intermediate amphibolite whioh hae been altered by some notioeable eiliofication with some minor carbonate-epidote seations often containing Irregular blue groy quartz inclusione. The seotion hoete an eatimated trace to 15\% fine grained inclusions and disseminations of pyrite with lessar pyrrhotite and even lesser ohaloopyrite. Very sharp but ainuous \(<0.10^{\prime \prime}-0.30^{\prime \prime}+1\) atringere orose out moderately devoloped follation of the rook. The foliation of the rook was meacured © 80-820 TCA +1-. The aulphides appear to have formed oonoordant, primary with the amphibolite and dieoordantly ae secondary atringers in multiple direations crose outting amphibolites. Sulphide minerale also oocur within Irregular quartz Inciusions. \\
- \(253.45^{\prime}\) 1.0"-1.5" narrow, Irregular oontact pink oarbonate veln with quartz and treos - 2\% diseeminated pyrite, bleok sphalortte. \\
- 256.0' - 258' There ocoure (i) well follated fine grained black to green intermadiate amphibolite measured © \(75^{\circ}-78^{\circ}\) TCA. Distinct amorphous (fine grained) primary pyrito had developed concordantly to the follation, Locellzed mloro fracture fillinge of pyrite also orose out follation. \\
(4) 269.95' - 260.35' irregular conteoting © 40 \(^{\circ}\) - 45 \({ }^{\circ}\) T.C.A. whlto-grey quartz with pink cream feldspar and lesser carbonate with trace ahlorite. The rock hoste trace pyrite-pyrrhotite and ohaloopyrite.
\end{tabular} & \[
\begin{aligned}
& 67118 \\
& 67118
\end{aligned}
\] & \[
\begin{aligned}
& 239.40^{\prime} \\
& 245.85^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 245.85^{\prime} \\
& 252.30^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 6.45^{\prime} \\
& 6.45^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ICP-32 } \\
& \text { ICP-32 }
\end{aligned}
\] \\
\hline & & & - 200.35' - 298.2' brecoiation of highly follated to nearly masaive intermediate amphibolitee. The freoturing of the rook ranges from very weakly breoolated to very intensely breooiated. The breocia infilling vaine conslat mainly of afine grained light green folsio materiale. Trace to \(1 \%\) disesminated pyrite with chaloopyrite oceura randomly throughout the seotion. some prebrecoia quartzoarbonate laminatione, veine or inolusione, some ailliofioation-carbonatization of breoela in places, some chlorite alteration aleo noted. & 57120 & 293.2' & 298.2' & \(5.0{ }^{\circ}\) & ICP-32 \\
\hline & & & (5) 296.0' + 1 - remnants of the former follation within the breoolated rook ocour \(88^{\circ}\) TCA. & 57121 & 298.2' & 302.65 \({ }^{\prime}\) & 4.45' & ICP-32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 11101 & 1 & 1 & & 1 & I \\
\hline \multicolumn{2}{|l|}{Footage} & & & & Footage & & & \[
\begin{aligned}
& \text { RL-92-02 } \\
& \text { Page } 9 \\
& \hline
\end{aligned}
\] \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 288.2' & 314.4' & Intence epldote-allioeous-oarbonate-sulphide-ahlorite alteration zone & \begin{tabular}{l}
298.2' - 299.2' fine grained groy ach-tuff with vialble fine grained oryptocryataline elongated fragmente. Vielble mioro fine grained sulphide garments ocour within the ash tuff. Trace to \(1 \%\) coarse disceminated pyrite, pyrihotite and trace chaloopyilte ware noted. Vialble alliceous-carbonated fine gralned biotite alterations within the breoole on elther slde of the ash unit were aleo noted. \\
© 299.2' - 302.65' Weakly to etrongly green epidote with ohlorite allioeouscarbonate alteration of what formerly appeare to heve been a well taminated felsio metavoleanio rook. Alteration progresses from fine gralned black ohlorite at the top 1.2-1.5 feet of the upper ecotion. \\
The ohlorite-minor carbonate alteration appears to dle out to coaree gralned pink orthoolase with fine grained grey quartz and large epldote Inclusions (formerly altered peg voln or eyenite voin 0.7 Inches thlok). The feldepare and quartz host trace amounte of amorphous galena, traoe pyrite below the feldepar quartz. The falsie rooke show remnante of foliation -689-70 TCA \(+/\). Looally there is an inoreased intenalty of epidote alteration with \(\mathbf{9 \%}\) to \(\mathbf{3 \%}\) pyite with traoes of ohalcopyrite. Throughout this seotion the rook has been well oontorted, being subjected to some brecelation, with the injeation of felalc-epidote-quartz and oarbonate veins orose outing in multidireotions. \\
© 302.65-303.3' this seation is mede up of fine grained cream yellow to light gray massive equigranular falsie matavoloanio, whloh shows some vary amall soale movement-stretohed out features. This seotlon of the rook hoste minor grey-irregular shaped quartz Inclusions. The rook le mainly slliceous with minor earbonate alteration, and hoste \(\mathbf{3 . 4 \%}\) finely disseminated red-brown spheleritetraoes fine pyrite. \\
303.3' - 305.2' Intense faulted-breoolated yellow-grey finely laminated felele metavoloanic rook. The brecciated rook containe numerous shaped, angular to subangular fragmente boing a maximum of \(0.8^{\prime \prime}\) long by \(0.4^{\prime \prime}\) wide. The rook has been Infilled with considerable white-grey quartz. Fine grained green ohlorite, plak-orange fine grained feldapars, traces of carbonate, sarioite and/or talc minerals. Trace fine sulphides ocour withln the rook. The most intense breccia was noted from 303.3' to 304.45'. \\
301.2'-307.8' oryptooryataline to very tine grained light grey to green to rarely fleah ooloured bedded-layered-atretohed out-wlepy felsle ash tuff-lapilll tuff. Most of the tuff fragmente are mioro sized although the largest atretched out fragment measures over 2.5". Almoat all of the tuff fragmente are felaio and glasey although some rare treces of fine grained eulphide fragmente have been noted. Trace - 3\% coarse distorted oublo pyrite appeare to have been introduced into the tuff. The tuff has probably undergone some welding. The bedding layering otc. oosurs : \(66^{\circ}, 45^{\circ}\) and \(54^{\circ}\) TCA. Obvious locelized folding olumping of materiale during teotonic evente appeare to have taken place.
\end{tabular} & \begin{tabular}{l}
\[
57122
\] \\
57123
\end{tabular} & 302.65' \({ }^{\prime}\) & 303.3'
\[
307.9^{\prime}
\] & 0.65 & \[
\begin{aligned}
& \text { ICP-32 } \\
& \text { ICP-32 }
\end{aligned}
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 &  & 1 & 1 & & 1 & 11 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & \multicolumn{2}{|l|}{Footage} & & \[
\begin{aligned}
& \text { RL-92-02 } \\
& \text { Page } 11 \\
& \hline
\end{aligned}
\] \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline & & & © 328' - 330' Fine grained Intermediate magaolaate ocour within fine grained tuff. The large cleste show dietinct prior alteration with numerous fine grained atringers of black ahlorite and/or blotite with minor quartz Inoluelone and traee to \(\mathbf{1 \%}\) disseminated inolualons of pyrite. Some eeotions of the tuff unit show obvioue welding thinly aharply laminated alternating light to dark ooloured layers. & 27125 & 327.90' & 330.70' & 2.80' & ICP-32 \\
\hline 330.70' & 347.6' & Maselve folsic lapilli tuff & \begin{tabular}{l}
Light to dark grey, fine to medium grained quartz rich with fine ohlortio matrix with randomly distibuted highly unsorted pyroolastio fragmente measuring from \(<0.10^{n}\) to greater than \(\mathrm{B}^{\text {n }}\). The matrix of the tuff le diatinotivaly massive with only very minor thin \(<\mathbf{6}^{n}\) Interruptione of fine grained green layered-wispy mudank tuff roaks. The inter mud-ash tuffe ehow massive flne gralned ohlorte alteration. Many of the pyroolaste are made up of felsio-quartz-quartz/feldapare (resembling fine greined granitea), with the oocaclonal large fragment of light groy to green medium to fine grained intermediate rooks in the lower most seotion of the unlt whloh may represent an intermediate blast followed by more falalo oompocition fallout. Finely diaseminated pyrite have been noted within the tuff unit-matrlx. Rare ohaloopyrite-pyite inolusione have been noted in tome of the emall feloio-quartz fragments. \\
(5) \(330^{\circ}+1 \cdot 0.10^{\prime \prime} \cdot 0.15^{n \prime}\) thick black masalve chloride voin in tuff © 45 \(^{\circ}\) TCA.
\end{tabular} & & & & & \\
\hline 347.5' & 348.75 & Maselve felalo tuff & Fine grained, light fleshy pink coloured, highly silloeous, only very weakly follated? The contacte are very sharp with the adjacent rooke (.) \(60^{\circ}\) TCA for the upper contect and *) BO TCA for the lower contact. The rook hoste trace to \(\mathrm{B} \%\) fine-very well disseminated oubic pyrlte with traces wiepy green ohlorite. & 57128 & 347.50' & 348.75' & \({ }^{1.25}\) & ICP-32 \\
\hline 348.75' & 348.30' & Intermediate to felsic tuff & The rook is fine grained dark green with mioro fine ohlorite alteration. There are visible emall \(<0.20^{n}\) - \(0.4^{n \prime}\) fragmente - atretohed out within the matrix. The suff le probably welded. The rook hoste traces of fine grained dieseminated ohalcopyrite inolualone. & & & & & \\
\hline 348.30 & \(3^{352.0}{ }^{\prime}\) & Maceive metasandatones & \begin{tabular}{l}
Medium fine greined light oream-green ooloured equigranular quartz rioh rock with fragmente up to 0.10 inches. \\
357.6' There ooours a \(0.4^{\text {n }}\) thiok coarser grained quartz, pink feldepar <arkosio> member immediately in oontaot with a thin < \(2^{\text {n }}\) chlorite altered pyrociantio muddy ash unlt. Thie may Indioate posdble grading of metasediments up the drill hole.
\end{tabular} & & & & & \\
\hline 382.0' & \(365.0^{\prime}\) & Weakly follated or bedded felaio tuff or motasediment & Dark grey to pink, very fine grained, velbly siliceous with evidence of weak bedding or follation ooouring © \(\mathbf{2 5}^{\circ}+/-\) TCA. Fractures have developed along these planes. Very thin ilbbons of yellow, fine gralned felele materiale were noted. & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 . & 1 & 1 . & 1 & 1 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & & & & & & & & \multicolumn{2}{|l|}{Footage} & & \[
\begin{aligned}
& \text { RL-92-02 } \\
& \text { Page } 12 \\
& \hline
\end{aligned}
\] \\
\hline From & To & Rock Type & \multicolumn{8}{|l|}{Description} & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 385.0' & \({ }^{357,8}\) & Matanarkese & \multicolumn{8}{|l|}{\begin{tabular}{l}
Medium fine grained, pink-orange to fleehy coloured. The rook oonalate of at least \(80 \%\) plnk feldspar olasts up to \(0.20^{\prime \prime}\) acrose with the remaining materials being made up of light grey-white quartz and what look to be very weak bedding appeare ovident at \(35^{\circ}\) TCA. The rook is somewhat fractured and weakly breeelated upper contect. The lower conteot was mensured (-) \(35^{\circ}\) TCA and le seml gradational and ooneordant with apparent depositional features observed within the lower-following unite. The coareest grain sized foldepare are found at the lower contact area, euggesting greding oceurs in the up hole direotion. \\
Rock oan be intruded by thin < \(0.3^{\prime \prime}\) subvitreous remoblized quartz veine -quartz-ohlorite volne with fine grained diseeminated to irregular incluslone and ohaloopyrite erratloally diatributed throughout.
\end{tabular}} & 57127 & 355.0' & 367.8' & 2.8' & ICP. 32 \\
\hline 368.8' & 370.2' & Metasandotone & \multicolumn{8}{|l|}{Medium to coarse grained, llght green to light yollow rook whioh showe evidence of phyaical grading into arkosio matasediments over short lengthe < \(1.0^{\circ}\). The grading is somewhat gradual from one rook type to the other. The largest olaste appear to be made up of aubvitreous quartz, oream ooloured folele and feldapare whloh show to be rounded to aubrounded for the quartz, and angular to subrounded for the foldapare. The largest fragment measures \(1.10^{\prime \prime} \times 0.30^{\prime \prime}\). The matasediment is made up primarly of quartz within a fine grained yellow coment. Looelly dark green mafio minorale oan be found dieseminated throughout the rook. The mineral olacts appeer to be bedded of somehow allgned at about \(35^{\circ}\) TCA. Sharp frectures ocour along these apparent planes while oharply out fraotures run perpendioular to the apparent bodding fractures.} & & & & & \\
\hline 370.2' & 432.6' & Metaerkose & \multicolumn{8}{|l|}{Medium to coarse grained, raroly aubconglomeritio, dark-light pink, llght plnkgreen arkose bolng mede up of primarily foldeppare and quartz olaste with minor thin Interbeds of greded light green matesandatone with apparent badding © \(35^{\circ}\) - \(45^{\circ}\) T.C.A. Large \(1.0^{\prime \prime} \cdot 1.5^{n}\) white aubvitreous round to aubround quartz elante oan be found throughout the rook. A fow rare purple subangular fine grained fragmente measuring \(0.25^{\prime \prime} \times 0.2^{\text {" }}\) were noted in the lower seetion of unit. Finely disseminated stubby black-green maflo minerals are also soattered throughout the seotion. At several loontions in the seation there are numerous Intruding thin \(0.10^{\prime \prime}-2.0^{\prime \prime}\) thlok light white quartz veine with bleok-green ohlorite. Some ohlorite was found to replace former lath-needie form orystals assoolated with fine grained epldote with the ohlorite and amorphous magnetite. Minor oabonates and up to \(1 \%\) fine grained irregular ahaped inclusions of ohaloopyrite with lesser pyrite ooour within veins or isolated inolusione within the arkose. The veining and mineralization ware probably derived from the intruding diabase-gabbro intruding from below matasediment.} & 300087 & 422.45 \({ }^{\prime}\) & 428.00' & \({ }^{\text {8.65 }}\) & \[
\begin{aligned}
& \text { ICP. } 32 \\
& \text { A. } 12
\end{aligned}
\] \\
\hline & & & & \(0^{\prime} \cdot 43\) diabe fio and bably & \[
\begin{aligned}
& \text { Highlyly } \\
& \text { motapa } \\
& \text { to collto }
\end{aligned}
\] & \[
\begin{aligned}
& \text { fiod } \\
& \text { dyke, } \\
& \text { folale } \\
& \text { onteo }
\end{aligned}
\] & \[
\begin{aligned}
& \text { oly br } \\
& \text { rook } \\
& \text { ale ar } \\
& \text { amorp }
\end{aligned}
\] & od or vory nt \(\qquad\) &  & with the look. and & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Footage} & \multirow[t]{2}{*}{Rock Type} & \multirow[t]{2}{*}{Description} & \multirow[t]{2}{*}{Sample No.} & \multicolumn{2}{|l|}{Footage} & \multirow[t]{2}{*}{Sample Length} & \multirow[t]{2}{*}{\begin{tabular}{l}
RL-92.02 \\
Page 13 \\
Analytical Procedures
\end{tabular}} \\
\hline From & To & & & & From & To & & \\
\hline 432.6' & 456.0 & Altered metadiabaec, matagabbro & \begin{tabular}{l}
Fine to medium grained dark gray-bluiah-green. Muoh of the original faldsparferromagnesium mineral textures have been somewhat loat to strong brecola and ehlorite alteration effeote. Some frech material does remain. The mont prominent alteration is due to the breociation of the dyke. Breooia fragmente and resultant voids have been infilled with a light green eryptooryataline fatalo material. Trace oubie pyrite oan be found in the breoolated seotions. The upper contect la marked by atrong healed breociation with vilble metasediment? xenolithe with weak to more prevalent masaive ohlorte alteration with lense-like and dieseminated inolusione of chaloopyrite. Upper contect has been measured - \(85^{\circ}\) - \(66^{\circ}\) TCA. The lower oonteot le sharp and is marked by \(0.2^{\text {n }}\) irregular earbonate veln at \(10-12^{\circ}\) TCA. No xenolithe above were obeerved at the lower oonteot. \\
-432.6' - 435.75' Highly brecoiated to maesive ehlofte altered metediabasegabbro dyke rook with 2-3\% fine grained diecontinuous leneo-like inolusione to finoly dieseminated ohalcopyrite with trace pyrite. The oheloopyrite inolusions afe alligned at about \(50^{\circ}\) TCA.
\end{tabular} & 87128 & 432.8' & 435.73' & 3.15' & ICP-32 \\
\hline 460.0' & 468.6' & Folsicie lapllil tuff & Vory fine grained, llght cream-yellow-grey, dark grey green coloured, generally vary glassy. The tuff has been very highly contorted and contains a highly varlable size fraotion of olaste from glasay to magaolaats-blocke measuring almost 3 ft . acrose. The large megaciasts conelat of quartz, mata arkose, metosandatone, metadiabase-gabbro. In the finer grained tuff fractiona, fine grained oryatele and minaral grains of pyrite with chaloopyrite ocour within the matrix or within apeolfle amall pyroolasts throughout the unit. Some of the olast appears to have rime of sulphides. & & & & & \\
\hline & & <lower tuff oonteot fault zone \(>\) 486.5' 468.6 & (4) 468.5' - 468.0' Lapillt tuff has been out off? by a series of fault rolated freotures devoloped batween the tuffe and the metacandatones. The fraetures socur at about \(25^{\circ}\) TCA. The numerous freotures appear to have aligned the fragmented rooke of the tuff along the axis of the freotures and/or contaot looation. Some of the fraoture genorated rook segmente appenr to have undergone some notioeable leaching. The frnoture surfaces are altered with yellow to light green sericite and/or tale. & & & & & \\
\hline 408.6' & 522.0' & Meselvo metesandatone & \begin{tabular}{l}
Medium to fine grained light green to yellow ooloured highly equigranular texture raok of primarlly quartz graine with a fine grained yollow oement. The rook appeare to be quite masalve but is highly planer fractured whloh in some inotanoes may represent formor bodding, i.e. \(42 ⿻^{\circ}\) TCA © 472.5', \(37^{\circ}\) TCA at 496.5', \(40^{\circ}\) TCA at \(517^{\prime}+1\). Many of the frectures are often coated with thin yellow-green to silver telo and/or seriolte. Highly angular to rounded very fine grained butter yellow ooloured olaste oan regularly be seen in amall pereontages \(<1 \%+1\) - throughout the unit. \\
475.4' 478.1' Fine grained light green folsice ash-breocla Interlayered unit within the metasendstone contacte ls marked (3) \(31^{\circ}\) TCA. The rook shows layering and contorting as was observed in lapilli tuff from footages 456.0' 488.8'. Overall thie thin unit is quite similar in colour to the adjacent metesandatone. No sulphidee were obsorved in the tuff matrix.
\end{tabular} & 300088 & 506.0' & 512.0' & 6.0' & A-12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Footag & & & & & & & & & & & Foota & & & & \[
\begin{aligned}
& \text { RL-92-02 } \\
& \text { Page } 14 \\
& \hline
\end{aligned}
\] \\
\hline From & To & Rock Type & Description & & & & & & & Sample No. & From & To & & Sample Length & Analytical Procedures \\
\hline 522.0' & & End of hole RL 92.02 & & & & & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Drill Hole No.
RL-92.03 & \multicolumn{2}{|l|}{Date Logs Submitted: January 15, 1993} &  &  & No. of Pages in Log:
\[
13
\] \\
\hline \begin{tabular}{l}
Company Name: \\
Bharti Laamanen Mining Inc.
\end{tabular} & \begin{tabular}{l}
Property Name: \\
Richardson Lake
\end{tabular} & \begin{tabular}{l}
Township: \\
Rhodes Township
\end{tabular} & \begin{tabular}{l}
Claim Numbe \\
S 1095079
\end{tabular} &  & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
N.T.S. Refrence No.: \\
41-1/14 Edition 2, Venatian Lake, Ontario
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Drill core stored at: \\
Laamanen Const., 129 Fielding Rd., Lively, Ontario, POM 2EO
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Project Supervisor: \\
Harold J. Tracanelli
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Employer: \\
Bharti Engineering Associates Inc. 131 Fielding Rd., Lively, Ontario, POM 2EO
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Diamond Drilling Company: \\
Sparta Drilling
\end{tabular}} & \begin{tabular}{l}
Runner-Supervisor: \\
Larry Salo
\end{tabular} & \multicolumn{3}{|l|}{\begin{tabular}{l|l} 
Helper: & Equipment Type: \\
Ronald Crichton & BBS-2 \\
\hline
\end{tabular}} \\
\hline \begin{tabular}{l}
Date Drill Hole Started: \\
Sapt. 27, 1992
\end{tabular} & \begin{tabular}{l}
Date Drill Hole Completed: \\
Oct. 01/92
\end{tabular} & Azimuth of Drill Hole:
\[
014^{\circ}
\] & Total Length of Drill Hole: 524 ft . & Dip of Drill Hole, Collar
\[
\begin{array}{ll}
0^{\prime} & -45^{\circ} \\
524^{\prime} & -47^{\circ} \\
\hline
\end{array}
\] & Drillhole Co-ordinates:
\[
3+02 E, 1+93 S
\] \\
\hline \begin{tabular}{l}
Drill Core Logged by: \\
Harold J. Tracanelli
\end{tabular} & \multicolumn{2}{|l|}{Drill Core Logging Completed: December 4, 1992} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Major Lithological Units: \\
Mafic to felsic metavolcanis with minor matasediments
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Objectives of the diamond drilling exploration: \\
To explore the depth extent of the mafic-felsic contacts for volcanogenetic massive sulphide type deposits (VMS)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & 11 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & & & & & & & & \multicolumn{2}{|l|}{Footage} & & RL-92-03 Page 1 \\
\hline from & To & Rock Type & \multicolumn{8}{|l|}{Description} & \begin{tabular}{l}
Sample \\
No.
\end{tabular} & From & To & Sample Length & Analytical Procedures \\
\hline \(0{ }^{\prime}\) & \(0 \cdot\) & No oasing was required & \multicolumn{8}{|l|}{Diamond drill hole RL-82-03 was oollared direotly on top of an amphibollte outcropping. This diamond drill hole is currently making water.} & & & & & \\
\hline \(0^{\prime}\) & \(16^{\prime}\) & Follatad or leminated Intermediate matavoloanles (ash-tuff)? & \multicolumn{8}{|l|}{\begin{tabular}{l}
Fine grained very thinly foliated or laminated <0.10" thiok © \(85^{\circ}\) T.CA. Some parte of the eection are obvlously altered and are therefore noticably or nearly maseive in appearance. Much of the rook is grey to light green to light grey-brown. Locally there are a couple of thin coarser grained amphibolite seotions within the intermediate rooks. \\
Irregular shaped quartz fibbons, boudine, fine dieseminated and irregular pyrite, pyrrhotits, ohaloopyrite with some minor sphalerite atringors commonly ooour in this seotion, hence identified as the possible down dip extenaion of the sulphide atringer zone as mapped in the surface trenohing program in 1982. \\
(4) 0-2' vielble mioro to macro brecoie of grey-green Int. vole. Rocks © 3.1' thin patchy small rusty sulphide grains - inclusions with thin \(0.2^{\prime \prime}\) quartz ribbons-veins. \\
(5. \(6.2^{\prime} \cdot 11.0^{\prime}\) finely disesminated to lenses, of stratform amorphous pyrite with traces of ohaloopyrite, to irregular shaped stringers of fine grained to amorphous pyrite with leseer pyrite-ohalcopyrite atringers to thin ahaloopyrite atringere throughout. Sulphide minerals often associated within amphibole mineral rioh rook to laminated foliated lighter coloured intermediate rooks. \\
Sulphides also assoolated with some gray to subvitreous white quartz, with strong ohlorite alteration (dark green coloured). Good evidence for prlmary and eseondary oulphlde deposition. Pyrite and quartz with ohlorite formed concordant to foliationlaminations (primary?), pyrite, pryite-chaloo, chaloo atringera \(x\)-out fabrio (secondary) \\
© 11.0'-16.0' F.G. Maselve to weakly foliated-laminated in rare instances, light brown to grey green coloured rooks - poselble fine grained blotite-chlorite after ampholes visible fabrle © about \(13^{\prime}=55^{\circ}\) T.CA. \\
Rocke intruded by numeroue ribbone to tear dropped shoped subvitreous white to blue groy quartz ooncordant to the remnante of the plainer fabrie lsome with oream colours spar) () \(52^{\circ}\) T.C.A. and \(45^{\circ}\) T.C.A. respectively. \\
Occasional visible rosettes, acicular needies of amphibole minerals (horneblenda) rate thin \(<0.10^{\prime \prime}\) eulphide etringers assoclated with the \(45^{\circ}\) T.C.A. fractures. Trace to minimum 2\% disseminated Inolusions of pyrrhotite with possible pyrite.
\end{tabular}} & 57129 & 6.2' & 11.0 & 4.80' & ICP. 32 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & 1.1 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & & & & & & & & \multicolumn{2}{|l|}{Footage} & & RL-92.03
\[
\text { Page } 3
\] \\
\hline From & To & Rock Type & \multicolumn{8}{|l|}{\begin{tabular}{l}
Description \\
(7) 54.8' - 55.6' light groy-green sharp oontected freoture brecoia veine infilled with fine felsio minerale with traoes of aulphide inclusions - breceia ocoure within a fine grained amphibolite at about \(23^{\circ}\) T.C.A.
\end{tabular}} & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 85.9' & 57.5' & Weakly follated intermadiate matavoloanio llean iron formation) & \multicolumn{8}{|l|}{Fine grained weakly foliated \(89^{\circ}-90^{\circ}\) T.C.A. derk grey in oolour, rocke separated by thin mioro ribbons of felsic materials as well as thin \(0.1^{\prime \prime}-0.2^{\prime \prime}\) fine grained bands of magnetite. Rooke intruded by 1 "irregular quartz inolusions with \(3-6 \%\) finely dieseminated pyrrhotite-pyrite at bottom oontaot of rook where a thin 3 inch laminated felsio-breoolated rook has been observed.} & & & & & \\
\hline 57.5' & \({ }^{61.55}{ }^{\prime}\) & Well folitated intermedlate Mafic amphibolite & \multicolumn{8}{|l|}{Medium to fine gralned, gray to groen colourod foliation © 8 8-90 \({ }^{\circ}\) T.C.A. Numerous thin < \(1.0^{\text {n }}\) gray-blue quartz inolusione concordent to follation especially near lower part of sootion. Finoly dieseminated pyrite-pyrrhotite and leseer chaloopyrite with chlorite alteration rime quartz inolusione.} & & & & & \\
\hline 61.55' & 64.8' & Moderately altered of intermediate metavaleanios Pyrr-Py-Pbs & \multicolumn{8}{|l|}{\begin{tabular}{l}
Fine grained, light to rarely dark green, weak remnant of former follation-laminations (-5) \(85^{\circ}-80^{\circ}\) T.C.A. Massive to weakly follated. Rooke have undergone silieifioation and breoolation with the introduation of light green epidote-pink iron carbonate with poselbly feldspare and minor sold reactive oarbonato. The rock unit carries from treces to up to a looalized maximum of \(\mathbf{2 5 - 3 0 \%}\) disseminations to opldote valns with pyrihotite, galena, pyrite with muoh lesser amounts of chaloopyrite and traoes of aphalerite. \\
(© 63.25' - 63.9' most highly ooncentrated sulphide looasion having 25\%-30\% galena - pyrite within a nearly maselve epldote-quartz rloh Rooke. Pyrrhotite with minor ohaloopyrite appears more commonly on aither aides of the thin galena mineralization.
\end{tabular}} & 57131 & 81.55 & 84.80 & \({ }^{3.25}\) & ICP-32 \\
\hline 64.8' & 70.0' & Weakly altered intermediate metavoleanios & \multicolumn{8}{|l|}{\begin{tabular}{l}
Well follated fine gralned, brown to light green very thinly <0.01" foliated of laminated Rocks \(80^{\circ}-90^{\circ}\) TCA, not notioeably allilified. \\
© 64.8' - 88' distinotive 30\% - 50\% brown (blotito) alteration of former falsicamphibole mineral host rock - \(\mathbf{5 . 7 \%}\) ooarse diasiminated pyrrhotite. Posalble biotitesericite derived from alterations of fine grained amphiboles and pyroxene minerals. \\
(4) 68.0' \(\mathbf{7 0}\) 70 light grean foliated, little or no brown alteration, several fine grained pink to light green folsolo velns as freature fillinge \(0.05^{\prime \prime} \cdot 0.02^{\prime \prime}\) thick © \(20^{\circ}\) to \(3^{\circ}\) TCA. Minor quartz infillings with traces of pyrrhotite and sphalarite \(x\)-stal inolusions.
\end{tabular}} & 57132 & 84.8' & 70.0' & 5.20' & ICP-32 \\
\hline 70.0' & 79.2' & Weakly foliated mafio amphibolites & \multicolumn{8}{|l|}{Fine to much lessar medlum grained amphlbole rioh rooke © \(85^{\circ} .90^{\circ}\) T.C.A. Rooks have been intruded by a fow thin <0.1" x-cutting felelo veinlette, rare aulphlde astingere with quartz and yellow-green apidote inclualons. Trace fine disceminated pyrite within the rooke. © 79' weak alteration of hornblende to pyroxene minerale.} & & & & & \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 111101 & 1 & & & 1 & 1 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & \multicolumn{2}{|l|}{Footage} & & \[
\begin{aligned}
& \text { RL-92-03 } \\
& \text { Page } 7 \\
& \hline
\end{aligned}
\] \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 170.4 & 173.3' & Chlorite Altered Intermediate Rooks & \begin{tabular}{l}
Very weakly foliated, fine grained, light green to green, visibly chlorite altered throughout, come possible isolated rounded feldspars and finely diseeminated white apeckled felsio minerale as possible reliet porphyries or amygdules. The rooks have been mildly fractured to form miorothin - anestomosing network of whispy to sineous vains of felsic minerale with brown epidote and some minor ohlorite. \\
(4) 173' strong but narrow \(<0.5^{n}\) thick gray quartz with massive to rhombio carbonate (oalcite).
\end{tabular} & 57136 & 170.4' & 173.3' & 2.90' & ICP-32 \\
\hline 173.3' & 179.8' & Chlorite altered and brecciated Intermediate rock & \begin{tabular}{l}
Moderately to well foliated, fine grained light green to grey ooloured rock has in places undergone severe brecoition and contortin of the visible folitation. The rock has been weakly to very atrong brecciated with Infillinge of quartz-oarbonate, light to dark grean to brown ohlorite, epidote, pink to light ooloured faidepars, all of which host maseive coarse gralned diseminations to large Irregular inclusions to vainiete of pyrrhotite-with lesser ohaloopyrite. \\
(1) \(173.3^{\prime}\) - \(175.8^{\prime}\left(2.60^{\prime}\right)\) most intense breceia with pyrrhotite-chaloopyrito-oarbonate-quartz epldotes. \\
 foliation of adjacent altered rooke. Apparent breoola dyke conslate of an elongated fragment of a fine grained gray massive metasediments or tuffaceous rooks, within a matrix of very fine grained green ground mass. The metasediment-tuff olast measures \(1^{\prime \prime}\) wide by \(2.3^{\prime \prime}+1\) - long. Other smaller fragments are visible. This materlal may have been derived from the same materials that are known to ocour only 3 feet further down the hole. This ocourrence may be representative of a former soft sedimentary dyke posalbly upwelling into semi-oonsolidated tuffe or matasedimente.
\end{tabular} & \[
\begin{aligned}
& 57137 \\
& 57138
\end{aligned}
\] & \[
\begin{aligned}
& 173.3^{\prime} \\
& 178.0^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 178.0^{\prime} \\
& 179.8^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 2.70^{\prime} \\
& 3.80^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ICP. } 32 \\
& \text { ICP-32 }
\end{aligned}
\] \\
\hline 179.8' & 182.8' & Felalo to intermediate mate-sediment or tuffaceous rock: & \begin{tabular}{l}
Massive, fine grained medium grey In oolour, for the most part massive but there are some very faint remnente of foliation-bedding at about \(60^{\circ}\) T.C.A. The rook unit has been finely fractured - tightly breoolatad and infilled with numerous fine grined falsic to epldote-carbonate bearing vains having a max, thiokness of 0.5". Most of the vaine are \(<0.01^{\prime \prime}\) thick and \(x\)-out in all directions (anaatomosing). No apparant ohlorite alteration le visible - although some possible siliolfication la suspeoted. \\
The end of this seotion marke the beggining of the Intermediate-Mafio/Felsic contact alteration zone
\end{tabular} & 67138 & 179.8' & 182.8' & \(3.00{ }^{\prime}\) & ICP-32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Footage} & & & & \multicolumn{2}{|l|}{Footage} & & RL-92-03 Page 8 \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 182.8' & 212.8' & Highly folded and oontorted earbonaceous metasediments & \begin{tabular}{l}
Fine to madium grained light to dark grey. The rook generally fanges from very thinly bedded <0.05" to lese commonly masaive. The rook is made up of primarlly carbonate grains with lessor quertz materials. This oarbonate riah unit often has orractically diatributed fragmente of angular to subangular light to dark grey quartz fragments. A number of large pounded to subangular exotlo fine greined green foraign rook fragmente up to \(4.5^{\prime \prime}\) - \(\mathbf{5}^{n}\) eaross oan be observed within the unit. The rooks appear to have been molded around the rook and quart2 fragments, olearly euggeating a soft unconeolidated deposition. Some of the rock fragments have been altered as a result of eacondary oarbonate vein remobilization, baginning from the outer adge of the rook fragment and pinching out towarde Ite interior. Veine do not oross over inte the carbonate - metased - tuff rock? The rook shows very erratic folding and twisting, poesible soft sediment slumping apisodes. Structural folding features were measured at:
\[
184^{\prime} 81^{\circ} \text { TCA, } 194^{\prime} 48^{\circ} \text { TCA, 204' 88-80 }{ }^{\circ} \text { TCA and 212' } 68^{\circ} \text { TCA }
\] \\
The rock hoste treces of finely disesminated pyrite-pyrrhotite and rare thin bedding ooncordant tulphide seams. \\
183.0'-189.0' 1-2\% light brown-yellow anhedrel garnat oryatale of inolusiona developed within a masaiva light grey oarbonate rioh rook. \\
\(\mathbf{2 1 0 . 0} \mathbf{0}^{\prime}-\mathbf{2 1 2 . 6}{ }^{\prime}\), strong \(\mathbf{1 \%}\) to massive garnet altaration as irregular shaped inclusions aligned along former bedding or depositional layaring of the aarbonated rooks. Garnete range in colour from light to dark brown to light off-fed to rarely bright yollow. Garnete oan aleo be assooiated with oerbonate-allica, ultrafine disaeminated galena within a thin leolated band of massive amphbola mineral neades altering to chlorite-hosting bright yellow garnate (aggragate like forme, no oryatale vielble).
\end{tabular} & \begin{tabular}{l}
57140 \\
57141 \\
57142 \\
57143 \\
57144 \\
57145
\end{tabular} & \begin{tabular}{l}
182.8 \\
189.0 \\
194.8 \\
199.8 \\
204.0 \\
210.0
\end{tabular} & \begin{tabular}{l}
189.0 \\
184.8 \\
189.8 \\
204.0 \\
210.0 \\
212.6
\end{tabular} & \[
\begin{aligned}
& 6.20^{\prime} \\
& 5.80^{\prime} \\
& 5.00^{\prime} \\
& 4.20^{\prime} \\
& 6.00^{\prime} \\
& 2.80^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ICP-32 } \\
& \text { ICP-32 }
\end{aligned}
\] \\
\hline 212.6' & 219.6' & Wall foliated silicified fesicic mata-volcanic (semi-massive sulp. 20ne) & Well foliated or laminated, fine grained, light brown to grey, silloifled rocke with some minor carbonate which has undargone some alteration to light brown-red garnet, with dark green to black quartz foliation iaminations observed © \(75^{\circ}\) TCA. Much of the foliation laminations has been obsoured due to the extensive silioasulphide alteration. The rock hosts an estimated \(10 \%\) to massive pyrite, with lesser pyrihotite and traces of chaloopyrite. The sulphides moat commonly oocur in the diaseminated form or massive replacement as obsorved at about 215'-216' footage. Massive sulphides oocur as fine grained aggregates or at an agglomeration of poorly developed orystal grains. Numerous voids which ware posslbly once infilled with yellow garnet or possibly epidote occurs within the massive sulphides. A minor amount of the sulphides ocour as esecondary atringere \(x\)-cutting foliation-lamination of hont rocke. & 57148 & 212.8' & 219.6' & \(7.00^{\circ}\) & ICP. 24 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Footage} & & & & \multicolumn{2}{|l|}{Footage} & & RL-92-03 Page 10 \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 282.7' & 284.8 & Sillicified mataeandetonel arkose & Medium fine grained, light grey-yollow to looally white rook altered due to the intrualion of an irregular mase to more of less dietinotive volne(e) of white to greyblaok quartz with white to light pink rhomble oarbonate, Irregular Inolualons of fine grained green chlorite, yellow-green needies of apidote and posalbie amphibole intergrowthe. Trace - 1/2\% fine grained emearings and diseominations of ohaloopyrite within the quartz-oarbonate minerala. Contects of the units appear to have undergone some shearing and infilling with fine grained green felsio minerals. & \[
\begin{aligned}
& 57077 \\
& 57078
\end{aligned}
\] & \[
\begin{aligned}
& 282.7^{\prime \prime} \\
& 284.8^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 264.8^{\prime \prime} \\
& 267.0^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 2.10^{\prime} \\
& 2.20^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ICP. } 32 \\
& \text { ICP.32 } \\
& 877 \cdot A u
\end{aligned}
\] \\
\hline 284.8' & 398.2 & Motagabbro dyke & \begin{tabular}{l}
Medium to coaree grained mottled texture of white-green to black where alteration has taken place. The upper oontect of the dyke showe a somewhet sharp but significant shearing and bracoiation © \(85^{\circ}\) T.C.A. Tha lower contact le rather shatp © \(38^{\circ}\) TCA with some remobilized peoudotachylite material inplaced at contaot with lappill tuffe below. Overall the dyke le massive but has been randomlylocally altered by a number of thin light green vary fine grained psoudoteohylite remobilization vaine and atringors orose cutting or looalized shearing the rock in numerous directions. A few thin carbonate voins-sharp joint infilinge ocour. in the upper portion of the dyke the rock is most notloeably altered by ohearing sterting from the upper contact and extending for approximately some \(55 . \mathbf{0}^{\prime}+1\) outwards or down the hole from the contaot. The shearing appears to have varying Intenaitios. \\
The shearing has allowed the rock to undergo weak to moderate alteration with fine gralned bleck biotite, trace to \(2 \%\) dies. graine and inolusione of ohalcopyrite, minor quartz/quartz-carbonate Inolusions in places. Rare localized sulphide stringers were found to ocour. \\
(4) 284.8' \(\mathbf{3 1 8 . 0}\) ' shear zone with weak to moderate shearing appoars to be aligned along possible shearing-stress plains averaging about \(50^{\circ}\) TCA. \\
© 284.8' - 287.2' weakly sheared matagabbro with numerous micro thin pseudotachylite-apidote veins, with minor looallzed more intensoly altered blotite floh rock. Minor looalized grey-blue quartz with trace to \(2-3 \%\) dies. to irregular inolusion and lesser atringers of pyrite-ohalcopyrite were observed. \\
(4) 287.2' - 311.7' moderatoly most intense aheared rook with moderate blotite alteration, with trace to \(3 \%\) diseemineted to irragular shaped inalusions of ohelcopyite-pyrrhotite and pyrite. Lesear pyrite-ohaloopyrite ocour in minor quartz/quartz-carbonate voins oross outting the matagabbro. \\
(2) 311.7'-318.0' evidence of weak shearing, decreases towards the 318 footage with the remobilization of multiple thin peoudotaohylite veins betng most intense near 311-312 footege. Little of no biotite, some alteration by chlorite-talc with irregular shaped grey quartz and vellow carbonate inclusiona from about 314.0'318.0'. Trace to \(1 \%\) finely dise. Irregular to oubic pyrite in localized areas. Increase in ohlorite altoration from \(314^{\prime}\) towarda 318', Beyond 318' fresh matagabbro, no vaining and no chlorte alterations.
\end{tabular} & \[
\begin{aligned}
& 57078 \\
& 57798 \\
& 57080 \\
& 57081
\end{aligned}
\] & \begin{tabular}{l}
\(287.2^{\prime}\) \\
293.3' \\
299.4' \\
305.5'
\end{tabular} & \begin{tabular}{l}
293.3' \\
299.4' \\
305.5' \\
311.7'
\end{tabular} & \[
\begin{aligned}
& 6.10^{\prime} \\
& 6.0^{\prime} \\
& 6.10^{\prime} \\
& 8.20^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ICP. } 32 \\
& \text { ICP.32 } \\
& \text { ICP. } 32 \\
& \text { ICP. } 22
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & I & & 1 & 1 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & & & & & & & & \multicolumn{2}{|l|}{Footage} & & RL.92-03 Page 11 \\
\hline From & To & Rock Type & \multicolumn{8}{|l|}{\begin{tabular}{l}
Description \\
© 380.5' - 381.75' moderately to atrongly brecolated and sheared matagabbro, \(62^{\circ}\) T.C.A. Shearing plaine have been infilled with mioro thin ribbone of white-light green oarbonate minerale. Noticeable inorease in the number of pseudotachylite voine towerde the lower conteot of the matagabbro dyke. Probably rolated to fracture filling during the oooling down periods of the metagabbro dyke.
\end{tabular}} & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 398.2' & 405.8' & Felsic lapilll tuff - ash tuff matrix. & Con colo mafl set to fe & fine umar rmedi ath tut , min & do ga b aio fr rix. bonat & \(y\) sillo of s ll nte 0 of th tale &  &  & hite-y othe tuff up, surfac & greenish gn onte are bly due & & & & & \\
\hline 405.8' & 407.45 & Matagabbro dyke. & Alt sha of me &  & sam apilli hylit repr &  &  &  &  & ble oration Thle below. & & & & 1 & \\
\hline 407.45' & 410.8' & Felsio lapilli tuff with an ask tuff matrix & Cont num mot sulp allow frag stret frag with & pos unso atone Man hem are out P are grained &  & \begin{tabular}{l}
\(y\) fine \\
BCa \\
Som \\
te look d and \\
ail and \\
red and \\
matrix \\
within
\end{tabular} & od to gular the fros if the orted pear netr ffs. & \begin{tabular}{l}
y ligh \\
d frag \\
nts \\
e par \\
out b \\
or \\
hin oe
\end{tabular} & to ta fine melte Into affin out. te fr & \begin{tabular}{l}
oen with alude \\
(ded) \\
e. The \\
being \\
lapililt \\
fillings
\end{tabular} & & & & & \\
\hline 410.6' & 412.5' & Motegabbro dyke & Mod 284 low thin with & \(\gamma\) tres 398. teot dotac dyke &  &  &  &  & at foo mew num es ty & s, dulating mloro oocur & & & & & \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Drill Hole No. \\
RL-92-04
\end{tabular} & \multicolumn{2}{|l|}{Date Logs Submitted: January 15, 1993} &  &  & No. of Pages in Log:
\[
9
\] \\
\hline \begin{tabular}{l}
Company Name: \\
Bharti Laamanen Mining Inc.
\end{tabular} & Property Name: Richardson Lake & \begin{tabular}{l}
Township: \\
Rhodes Township
\end{tabular} & Claim Number:
\[
\text { S } 1095079
\] & & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
N.T.S. Refrence No.: \\
41-1/14 Edition 2, Venetian Lake, Ontario
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Drill core stored at: \\
Laamanen Const., 129 Fielding Rd., Lively, Ontario, POM 2EO
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Project Supervisor: \\
Harold J. Tracanelli
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Employer: \\
Bhartl Engineering Associates Inc. \\
131 Fielding Rd., Lively, Ontario, POM 2EO
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Diamond Drilling Company: \\
Sparta Drilling
\end{tabular}} & \begin{tabular}{l}
Runner-Supervisor: \\
Larry Salo
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Helper: \\
Ronald Crichton
\end{tabular}} & Equipment Type:
BBS-2 \\
\hline Date Drill Hole Started:
\[
\text { Oct. 02, } 1992
\] & \begin{tabular}{l}
Date Drill Hole Completed: \\
Oct. 05/92
\end{tabular} & Azimuth of Drill Hole:
\[
039^{\circ}
\] & Total Length of Drill Hole: 524 ft . & Dip of Drill Hole, \(\begin{array}{ll}\text { Collar } & 0 \\ 0^{\prime} & -55^{\circ} \\ 524^{\prime} & -56.5^{\circ}\end{array}\) & Drillhole Co-ordinates:
\[
B L O+00,1+85 S E
\] \\
\hline \begin{tabular}{l}
Drill Core Logged by: \\
Harold J. Tracanelli
\end{tabular} & \multicolumn{2}{|l|}{Drill Core Logging Completed: December 11, 1992} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Major Lithological Units: \\
Mafic to felsic metavolcanis with minor metasediments
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Objectives of the diamond drilling exploration: \\
To explore the depth extent of the mafic-felsic contacts for volcanogenetic massive sulphide type deposits (VMS)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 110101 & 1 & J & 1 & 1 & 11 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & \multicolumn{2}{|l|}{Footage} & & \[
\begin{aligned}
& \text { RL-92-04 } \\
& \text { Pg. } 1 \\
& \hline
\end{aligned}
\] \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline \(0^{\prime}\) & & & The diamond drill hole was oollared direotly on top of an amphibolite outcropping. & & & & & \\
\hline \(0^{\prime}\) & 6.8' & Well folliated amphibolites & Medium to ooarse grained, dark green to light white apeokled to atreake of a light ooloured mineral (foldspar) alligned with follation. Foliation was measured at about \(67^{\circ}\) TCA at footage \(6.4^{\prime}+/\). The rook appears to have undergone further alteration to develop ooarse grained proxene mineral porphyroblaste throughout the section. Occasional thin quarta or quartz-oarbonate vainlet ooour crose outting or parallel to follation. Rare thin \(<\mathbf{0 . 1 0 ^ { n }}\) sulphide atringere were observed. & & & & & \\
\hline 6.8' & 13.0' & Well foliated emphibolites & \begin{tabular}{l}
Fine grained llght green to mottled black and white rook. Some well developed discing of the oore with surfaces coated with limonite and beginning to show aigne of some ohlorite alteration. The section was Interbedded with a couple of very fine grained light grey bande of laminated of foliated Intermediate to felalo rock. \\
(Folsio bands) © 8.7' \(9.0^{\prime}\) and \(9.35^{\prime}\) - 9.75'. Amphlbolite section orose cut by a fow thin \\
\(<0.10^{\circ}\) to \(0.20^{\prime \prime}\) felsio voinlets and rare sulphide atringers. The rook shows signe of localized ahlorite alteration with trace dieseminated pyrite being observed.
\end{tabular} & & & & & \\
\hline 13.0' & 46.0 \({ }^{\circ}\) & Amphibolite with felsic to intermediate Interunita. & \begin{tabular}{l}
Vory fine to medium grained moderately altered well foliated to nearly massive looking amphbolite rook with numerous thin interbede of very fine grained grey to pink coloured felaic to intermediate rooks which can be pyrite-pyrhotite and chaloopyrite bearing. The entire unit showe some chlorite alteration with weak to etrong concentratione of fine grained eeriolte with needle growthe of black amphiboles. In most places the rock is well follated but the foliation angles can be variable from \(88^{\circ}\) TCA © \(13^{\prime}, 48^{\circ}\) TCA © \(21^{\prime}, .70^{\circ}+1 /\) TCA © 4 \(^{\circ} 2^{\prime}\). This olearly suggests folding has taken placs. Tight dragfolding is visible in the lower parts of the section. Irregular inolusione of quartz with feldapare are fairly oommon within the soction. A 3.4 ft . quartz vain and a narrow altered intermediate to mafio metadyke orose out the amphibolite host rooke. Much of the host rook carries from trace to upwards of 15\% sulphides which most often include pyrite, with lesser pyrrhotite, ohaloopyrite and with visible treses of bornite and/or oovalite?. The sulphides were found to oocur as fine disseminations, minor highly rusty stringers or as finely developed vuggy irregularly shaped inclusions. For the most part the section le too highly complex to break out each of the individual minor unite. \\
© 36.9'-40.5' white to opaque quartz vein with the contacts measured at 58 \(60^{\circ}\) TCA. The vein appears to ocour concordant to apparent foliation. Several irregular shaped, cooked up fine grained, (ellioified), dark green amphibolite xenolithe are present near lower half of the vein and developed fractures in the upper half of the voin which, have been partially coated with amall aemi-well davalopad ootahedral pyrite oryatale along orthogonal fractures (3) \(45^{\circ}\) TCA. The fractures are sharp to expanded, open and both host pyrite mineralization.
\end{tabular} & 57083 & \begin{tabular}{l}
23.0' \\
38.9' \\
40.5'
\end{tabular} & \begin{tabular}{l}
29.1' \\
40.5' \\
48.0'
\end{tabular} & \begin{tabular}{l}
\(6^{\prime} 10^{\prime}\) \\
1 \\
3.80' \\
5.50'
\end{tabular} & \begin{tabular}{l}
ICP-32 \\
ICP-32 877 Au ICP. 32
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & & & & & & & & \multicolumn{2}{|l|}{Footage} & & \[
\begin{aligned}
& \mathrm{RL}-92-04 \\
& \mathrm{Pg} .3
\end{aligned}
\] \\
\hline From & To & Rock Type & \multicolumn{8}{|l|}{Description} & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 68.4' & 88.7' & Poorly follated amphibolites & \begin{tabular}{l}
Coa and and been alter pyro pres about mat 0.60 pyri pyri and \\
Qua rook found chal ohal
\end{tabular} & mod cola wh of mine The - 82 000 088. m ohe lons lorite und ite. Ite \(m\) &  & \(y\) fine rook tele. ault o from inera ely d The fr Wid zation rhotit alte with disse etrin & od lig rook ouple introd orite ear to od 0 ran uros \(t\) frac me \(m\) bee of am and oss 0 &  &  & \begin{tabular}{l}
ole has visible \\
n of folsic of hast gers \\
o ak was有 te.
\end{tabular} & 57087 & 81.4' & 86.1' & 4.70' & ICP-32 \\
\hline 88.7 & 121.5' & Poorly to well follated amphibolite & \begin{tabular}{l}
Fine folia TCA abou carb dies are inar dis \\
- 9 \(85^{\circ}\) © 1 \\
© 10 \\
© 9 fillin have to 1 chal
\end{tabular} & \begin{tabular}{l}
of 70 \\
\(18 '\) \\
7' - \\
ted \\
nt fro \\
In gr \\
87. \\
with \\
fold \\
righ \\
101.4 \\
quar \\
intru \\
ite.
\end{tabular} & \begin{tabular}{l}
dark \\
There \\
The \\
depar \\
tite, P \\
out 11 \\
der 00 \\
no gral \\
diese \\
al sop \\
amph \\
the thin \\
nation
\end{tabular} & \begin{tabular}{l}
, occ \\
-, 86 \\
ibollt \\
iona \\
21.5 \\
W8 80 \\
onco \\
leshy, ed oh ic of n mio \\
sect onate ic ban inolu
\end{tabular} & lly mo (e) 10 has b voins, ohaloo oak b to to lami yrite. ibolito. ting bseo ohlo he vai of py &  & \begin{tabular}{l}
with m A seve host fil ulphid vidil on. \\
folsl \\
host \\
Ineral nelus and \(m\)
\end{tabular} & able \(78^{\circ}\) from artzgers & \begin{tabular}{l}
300070 \\
57088 \\
300064
\end{tabular} & \begin{tabular}{l}
113.0' \\
97.0' \\
118.5'
\end{tabular} & \begin{tabular}{l}
\(101.4^{\prime}\) \\
\(121.5^{\prime}\)
\end{tabular} & 5.60'
4.40'
\[
3.00^{\prime}
\] & \begin{tabular}{l}
A. 12 ICP-32 \\
ICP-32 ICP. 32
\end{tabular} \\
\hline 121.5' & 122.3' & ayenite vein or dyke & Fles cutt The dise oove mor whit & k to li the fol hide 0 The mal de termed &  &  & mode lites. to 10 aloop to me rock &  &  & \begin{tabular}{l}
TCA. \\
n \\
on the grey 10
\end{tabular} & 57089 & 121.5' & 122.3 \({ }^{\circ}\) & \[
\begin{array}{r}
0.80^{\circ} \\
\quad
\end{array}
\] & \[
\begin{aligned}
& \text { IPC. } 32 \\
& 877 \mathrm{Au}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & & & & & & & & \multicolumn{2}{|l|}{Footage} & & \[
\begin{aligned}
& \text { RL-92-04 } \\
& \text { Pg. } 4
\end{aligned}
\] \\
\hline From & To & Rock Type & \multicolumn{8}{|l|}{Description} & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 122,3' & 135.7 & Follated to somi masoive felaic to intermediate tuff & \multicolumn{8}{|l|}{\begin{tabular}{l}
Fine grained light to dark grey to orsam ooloured nearly massive to visibly follated-bedded and/or laminated rocks. The rook fabrio has been measured © \(65^{\circ}\) TCA © 124', \(80^{\circ}\) TCA © 135'. The rook is made up of a serles of thin alternating bands of light to darker coloured minerals appearing to be made up of numerous equigranular light coloured felsic fragments. The seotion has been tightly fractured and infilled with a micro fine grained felsio materials along a general praforred orientation of \(15^{\circ}\) TCA. Some fraeture fillings also developed with miero breccia concordant to subconoordantly with plainer fabrio of the rock. Some irregular inclusions of quartz with fracture amearings of pyrite common in eeotion have been observed. \\
The rook unit was found to host from traee to 7\% fine grained pyrrhotite with minor chaleopyrite developed conoordant to the fabric. The rook has not been carbonated, poseibles silloiflcation has oooured. Fine grained irregular pyrte stringers with locally ocourring thin dark ooloured ohlorite rich oonteote orose out planer fabric © about \(10^{\circ}-15^{\circ}\) TCA. It would appear that the event responaible tor the oross cutting fracturing and folsio infilling also was responelble for the empleosment of pyrite with ohlorite fracture fillings ocouring at \(10^{\circ} .15^{\circ}\) TCA. (The host rook is thought to be ohlorite poor). The contaot between the tuffaceous rooks and the nearly masalve oarbonaceous rooks appears to be somewhat gradational, increasing from aillios rich to carbonate rioh. There appears to be a marked incresse in the sulphide (pyrrhotito-pyrite) content in association with the dovolopment of light pink to brown ooloured orystal grain aggregates of garnete. Some elongated fragmente or inoluaione of grey quartz are present within the carbonaoeous rooke near the transitional like contaot.
\end{tabular}} & \begin{tabular}{l}
57090 \\
57091
\end{tabular} & \[
\begin{aligned}
& 122.3^{\prime \prime} \\
& 129.0^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 129.0^{\prime \prime} \\
& 135.7^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 6.7 \\
& 6.7
\end{aligned}
\] & \[
\begin{aligned}
& \text { ICP- } 32 \\
& \text { CCP. } 39
\end{aligned}
\] \\
\hline 135.7 & 148.0' & Bedded oarbonaceous metasediment &  & \begin{tabular}{l}
ned, ll d, carb arbon 145.0 \\
out the ar fore wor \(0^{n}\) nor thi ak frag
\end{tabular} &  & \begin{tabular}{l}
very \\
minor \\
mea \\
ber of amin n 00 hav rined Th
\end{tabular} &  &  &  & \begin{tabular}{l}
rials. \\
\(47^{\circ}\) \\
quart2 \\
rock \\
to \\
ration. \\
the \\
ins into
\end{tabular} & \[
\begin{aligned}
& 57092 \\
& 57093
\end{aligned}
\] & \[
\begin{aligned}
& 135.7^{\circ} \\
& 141.9^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 141.9^{\circ} \\
& 148.0^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 6.2^{\prime} \\
& 6.1^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IPC.} 32 \\
& \mathrm{ICP.} 32
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \multicolumn{2}{|l|}{Footage} & & & & & & & & & & & \multicolumn{2}{|l|}{Footage} & & \[
\begin{aligned}
& \text { RL-92-04 } \\
& \text { Pg. } 5
\end{aligned}
\] \\
\hline From & To & Rock Type & \multicolumn{8}{|l|}{Description} & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 148.0 & 152.1' & Clay altered falsic rook & \multicolumn{8}{|l|}{\begin{tabular}{l}
Very fine to fine grained, white to light cream brown, with visible alternating lighter to darker ooloured layers aligned at about \(64^{\circ}\) T.C.A. \\
The rook section shows some very strong locelized bright white olay alteration. The olay alteration appears in the maseive form or as velnlike or isolated tear dropped shaped patterne in the rook. In the more ooncentrated clay alteration areas voids aimilar to those found in travertine can be seen. Generally the olay alteration probably ocours throughout the entire seetion taking the form of finely disseminated olay minerals. Rare quartz veina wore found to intrude the altered rook (9) about \(10^{0} .15^{\circ}\) T.C.A. The progression from the clay altered rook to the bedded carbonaceous rook appears to be somowhat gradetional.
\end{tabular}} & 57094 & 148.0' & 152.1 & 4.10' & ICP-32 \\
\hline 152.1 & \({ }^{156.2}\) & Bedded earboneceous metasediment & \multicolumn{8}{|l|}{This section is the same as the section desoribed from footages 135.7'-148.0' with minor vialble increases in diseaminatad pyrhotite as from \(135.7^{\prime}-148.0^{\prime \prime}\) sootion.} & 57095 & 152.1' & 155.2' & \(3.10^{\prime}\) & ICP. 32 \\
\hline 155.2' & 164.7 ' & Strongly altered folsio matavolcanic rooks & \multicolumn{8}{|l|}{Fine greined offwhite-cream, light brown to dark green highly altered and visibly contorted felele matavoloanio rock with visible silliofication and localized olay alteration, with travertine like volds being similar to that described from footages 148'-152.1'. The rock is masaive to very thinly laminated and/or follated, which shows a high degree of folding. The rock shows both sillioffiastion with minor oarbonitization and olay alteration. The overall mineralogy of this section is probably quite complex. Localized sharp jagged quartz fragmente or alterad inclusions have been noted within the unit. There are poseible intergrowthe and inclusion like features of grean-grey feldspar oryatale (ollgoclase) and white olay minerale. Carbonate minerale are cream-light brown to rarely apple green or turquolee coloured. There is also possible minor epidote alterations. Some locallzed tight oarbonate-quartz fraoture fillinge oceur © \(8^{\circ}-10^{\circ}\) T.C.A. Some of the measured laminations - follations ocour © \(30^{\circ}\) T.C.A. © \(160^{\circ}+1-5^{\circ} 5^{\circ}\) T.C.A. 164.7'. Traces of finely disseminated sulphides have been noted.} & 57098 & 156.2' & 184.7 & \(9.50{ }^{\prime}\) & ICP-32 \\
\hline 184.7' & 172.8' & Beddod oarbonaceous metasedimente & \multicolumn{8}{|l|}{Same section as desoribed from footages 135.7' - 184'. There are very little or no rook fragments. The rook is more oonsistently bedded but shows aigns of folding and contorting. The rook hoate trace up to 15\% finely disseminated and thin bande \(0.05^{\prime \prime}-0.20^{\prime \prime}\) of pyrrhotite. Localized frectures ocour © \(10^{\circ}\) T.C.A. with minor infilling with thin fine grained pyrite minerallzetion.} & \begin{tabular}{l}
57097 \\
57099
\end{tabular} & 184.7
\(169.45^{\prime}\) & \(169.45{ }^{\prime}\)
172.8 & 4.75
3.35 & \[
\begin{aligned}
& \text { ICP-32 } \\
& \text { ICP-32 }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline て\＆•dう & ． 96 ＇\(\varepsilon\) & ． \(\mathrm{E}^{\prime}\)＇86 & ．06＇681 & t90008 & \begin{tabular}{l}
 \\
－о⿰⿱⺈⿵⺆⿻二丨⿱刀⿰㇒⿻二丨冂刂） \\
 \\
 \\
 －42 \(\frac{10}{}\) s． \\
 \\
 \\
 \\

\end{tabular} &  & ．s＇ع6 61 & ， 7 ＇68 1 \\
\hline 2¢－dכI & ， \(\mathrm{SO}^{\prime} 1\) & ．07＇68 & ，s8＇88！ & ع9000\％ & \begin{tabular}{l}
 \\

\end{tabular} & 240wipasezow snoeosuoques poppog & ，\(\dagger 681\) & ，98＇88 \\
\hline ヶて－dO1 & ، 98 & ．s8＇88！ & ．0＇08 & 250008 & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
ouoz oplydne \\

\end{tabular} & ， \(\mathbf{S c}\)＇88 \({ }^{\text {l }}\) & ．0＇08 \\
\hline \[
\begin{aligned}
& \tau \varepsilon-d \rho \mid \\
& \tau \varepsilon-d \geqslant
\end{aligned}
\] & \[
\begin{aligned}
& 09 ' \theta \\
& \hline 00 \text { '00 }
\end{aligned}
\] & \[
\begin{aligned}
& 0.086 \\
& .0666
\end{aligned}
\] & \[
\begin{aligned}
& x^{\prime} \cdot 6 \angle 1 \\
& , 8^{\prime} z<6
\end{aligned}
\] & \[
\begin{aligned}
& 001<9 \\
& 880<9
\end{aligned}
\] & \begin{tabular}{l}
 \\
 －жшея pesse \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
（6ед｜ㅇㄴㅂ） \\
 \\
 pur posoiv
\end{tabular} & ．0．98 & ．8＇2＜6 \\
\hline \begin{tabular}{l}
\({ }^{80} \mathrm{~m}^{2} \mathrm{pes} 0 \mathrm{~J}_{\mathrm{d}}\) \\

\end{tabular} & 418407 aldues & O1 & wods & \[
\begin{array}{r}
\text { 'ON } \\
\text { өldwes }
\end{array}
\] & uolldujused & od \(\chi_{\perp}\) YOOY & 01 & \％ \\
\hline \[
\begin{array}{r}
9 \cdot \sigma_{d} \\
+0-z 6 \cdot 7
\end{array}
\] & & & 908100」 & & & & & 8e100」 \\
\hline 1 & 1 & 1 & 1 & 1 &  & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 11 & 11101 & 1 & 1 & 1 & 1 & 1 \\
\hline Footage & & & & & Footag & & & \[
\begin{aligned}
& \text { RL-92.04 } \\
& \text { Pg. } 7 \\
& \hline
\end{aligned}
\] \\
\hline From & To & Rock Type & Description & Sample No. & From & To & Sample Length & Analytical Procedures \\
\hline 193.35' & 232.65' & Intermediate to falsio tuff. & Fine grained light grey to very light green tinge, very diecreatly leyered (bodded) or foliated at about \(70^{\circ}\) TCA. The rock is equigranular with eome possible light white fregmente being visible. The unit has been interbedded with a soft, mottled textured dark green rock which may represent fine grained ash or mudash layers in a more consietent type of ash fall. The upper conteote between the equigranular rock and the chlorite altered rook appeare to have been eroded, auggested pre-depositlonal weathering. The lower contact appeare to be quite sharp. These ash-ash mud units oceur randomly throughout the seotion and vary in thleknese from as little as \(1.3^{\mathrm{n}}\) to approx. 1.0 ft . thlok. Irregular shaped round-like quartz inolusions commonly oceur within the unit. Quartz eometimes hosts fine grained diseeminated pyrite-pyrrhotite with mueh lese oheloopyrite observed. Minor thin fracture fillings with or without minor sulphides cross out rock. & 300055 & 193.35' & 199.0' & 6.65' & ICP. 32 \\
\hline 232.65' & 235.48' & Epldote-ellioocarbonate altered felalo flow (Rhyollte) & \begin{tabular}{l}
Fine grained, apple groen to dark grey to rare bands of black, moderately well laminated and/or follated at \(80^{\circ}\) TCA. The rook has been well altered with apldote, ooarse rhomblo caloite inoluaions and veine with grey to blue quartz inclusions and looalized Irregular chlorite alteration was obeorved. The rook has been highly fraatured in all direotions and infilled with fine felsie minarale. The rock hosts from trace to up to 5\% dieseminated pyrite with lesser ohalcopyrite. \\
The < \(0.05^{n}\) carbonate-green chlorite croas eutting vains were measured orose outting the rook at about \(15^{\circ}\) T.C.A.
\end{tabular} & 300056 & 232.65' & 235.48 & 2,80 & \[
\begin{aligned}
& \text { ICP-32 } \\
& 877 \mathrm{AU}
\end{aligned}
\] \\
\hline 235.45 \({ }^{\prime}\) & 243.3' & Silicified falsio mata-volcanio (quartz-feldepar porphyry) & Fine grained, pink to pink-brown maselve to very weakly foliated, moderately to highly altered felsic rock which appears to be a former porphyritic rock, posslbly a quartz-feldepar prophyry. The rook has been Intensely fraotured in all direotions In which these fractures have been infilled with quartz, epldote-fine grained ohlorite and carbonate minerals. Sharp joints © \(35^{\circ}, 48^{\circ}\) and \(10^{\circ}\) T.C.A. have been coated with thin hematite, possibly derived as a result of the breakdown of Iron from the matagabbro dyke immediately below and intruding the metavolcanio rooks. The iron minerale could have peroolated from below as a result of oapillary reaotiont. The overall rock appears to host little or no visible sulphides. & 300057 & 235.45' & 243.3' & 7.85 & \[
\begin{aligned}
& \text { ICP- } 32 \\
& 877 \mathrm{Au}
\end{aligned}
\] \\
\hline 243.3' & 375.0' & Matagabbro dyke & Medium grained, mottled white to green/black dyke rook. The upper contaot with matavoloanios has been highly jointed-fractured undergoing alteration with ahlorite and several yollow-green pseudotachylite voins. Many of the fractures near the contact ares have been coated with red hematite, calelte with some minor sulphides and serpentinite. Hematite coatinge on the joint surface are evident down to about \(283 \mathrm{ft} .+1\). The joints ocour (4) about \(20^{\circ}-25^{\circ}\) T.C.A. Random epidote segregations occur as velns within the matagabbro. Minor ahearing with carbonate-chlorite and minor sulphides oocur in the metagabbro. & 300059 & 243.3' & 249.0' & \(5.70^{\circ}\) & IPC-32 \\
\hline
\end{tabular}







\(-i\)


S.




AMP.
- Fel-int. interUNITS. TR-15\% PY, PO,CPY
- TR BOC or Cov. BEECIATED AMPH.
FELSIL INTER BANDS
- Mubr Zn, Pb, PY, Pipr (P)

Poorly to Well

\section*{FOUATED AMPH.}

FELSIC-InTERMEDIATE TUFF Metavor anik SLLCIFIED FELSIC 2 SSEMI MOSSIVE-MASSIVE SULP. ZONE Metanolcanic (rhyOute) purite - Purrhotite CARBONACEDUS METASED
FEISIC FLOU'S OR THFFS

\section*{InTERMEDIATE TO FELSIC}

TUFFS. SULCIFIED FELSIC RXZ RHYOLTE FOVI (QFP)

GEDLOGICAL X-SECTION.
THRU. RL-92-04.

Metasandstone

LAPLUL-BOMB TUFF.
metasandstone
S24' END of HOLE

Figure 45





Please refer to the attached "Certificates of Analysis" for all of the diamond drilling assay results.

 A9226717 I
TO: I I I
BHARTI LAAMANEN MINING INC.
131 FIELDING RD., P.O. BOX 700
LIVELY, ON
POM 2EO
Project:
Comments:
92-5000-004
ATTN: HAROLD TRACANELLI











\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \multicolumn{7}{|l|}{CERTIFICATE OF ANALYSIS} & \multicolumn{3}{|l|}{A9226343} & & \\
\hline 8NPPIP & \[
\begin{aligned}
& \mathrm{PRE} \\
& \text { COD }
\end{aligned}
\] & up &  & \[
\begin{gathered}
\text { Ag } \\
p p p i n
\end{gathered}
\] & \[
\underset{*}{\lambda 1}
\] & \[
\begin{gathered}
\text { Ap } \\
\text { ppa }
\end{gathered}
\] & \[
\begin{gathered}
\text { Ba } \\
\text { gim }
\end{gathered}
\] & \[
\underset{\text { ppo }}{80}
\] & \[
\begin{array}{r}
\text { B1 } \\
\text { ppa }
\end{array}
\] & \[
{ }_{c}^{c}
\] & \[
\begin{gathered}
\text { cd } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\text { co } \\
\text { pprem }
\end{gathered}
\] & \[
\begin{array}{r}
\text { Cr } \\
\mathrm{pr}
\end{array}
\] & \[
\begin{gathered}
\text { cu } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{r e n}_{\mathrm{K}}
\end{gathered}
\] & \[
{ }_{p}^{a n m}
\] & \[
\begin{gathered}
\mathrm{gq} \\
\mathrm{ppm}
\end{gathered}
\] & K & Lap & \(\underset{*}{\text { M }}\) & \[
\underset{\text { ppm }}{\substack{\text { ma }}}
\] \\
\hline 57076 & 205 & 226 & --..- & 0.2 & 2.82 & 4 & 20 & < 0.5 & <2 & 0.52 & < 0.5 & 18 & 225 & & 3.04 & < 20 & < 1 & 0.22 & 20 & 2.38 & \\
\hline 57077 & 205 & 226 & & < 0.2 & 0.61 & 2 & < 10 & < 0.5 & \(<2\) & 2.51 & < 0.9 & 10 & 241 & & 1.41 & < 10 & \(<1\) & 0.22 & -10 & \({ }^{2} .38\) & 365 \\
\hline 57078 & 205 & 226 & & 0.4 & 2.69 & 6 & & 6.0 & <2 & 2.27 & < 0.5 & 81 & 48 & 18 & 7.42 & 10 & -1 & 0.70 & - 10 & 1.96 & 445 \\
\hline 57079 & 208 & 226 & & 0.2 & 2.82 & 8 & 20 & < 0.5 & -2 & 1.51 & < 0.3 & 107 & 68 & 21 & 6.97 & 10 & < 1 & 0.51 & < 10 & 2.08 & 395 \\
\hline 57080 & 205 & 226 & ---.- & 0.4 & 3.00 & 4 & 70 & < 0.5 & <2 & 1.42 & < 0.9 & \({ }_{88}\) & 43 & 511 & 9.69 & 10 & & 1.42 & < 10 & 2.17 & 330 \\
\hline 37081 & 205 & 226 & <0.0005 & 0.2 & 4.25 & 10 & 100 & < 0.5 & < 2 & 1.86 & < 0.5 & 98 & 40 & 111 & 9.46 & 20 & 1 & 1.90 & - 10 & 3.07 & 605 \\
\hline 37082 & 205 & 226 & & < 0.2 & 3.69 & 12 & & < 0.3 & <2 & 1.90 & < 0.5 & 249 & 97 & 133. & 6.83 & & & 0.96 & - 10 & 2.92 & 935 \\
\hline 57102 & 205 & 226 & <0.0005 & 0.2 & 2.08 & 2 & 20 & 0.5 & <2 & 5.33 & 0.5 & 3 & 72 & 25 & 0.66 & - 10 & \(<1\) & 0.13 & < 10 & 0.58 & 685 \\
\hline 57102 & 205 & 226 & <0.0003 & < 0.2 & 1.79 & <2 & 20 & 0.8 & - 2 & 0.40 & < 0.5 & 14 & 101 & 14 & 2.04 & 10 & < 1 & 0.15 & 70 & 1.52 & 245 \\
\hline 57103 & 205 & 226 & <0.0005 & < 0.2 & 1.70 & <2 & 50 & 0.5 & < 2 & 2.11 & < 0.5 & 2 & 164 & 10 & 0.92 & < 10 & <1 & 0.28 & 30 & 1.13 & 450 \\
\hline 57104 & 205 & 226 & <0.0005 & 0.2 & 1.90 & <2 & 40 & 7.0 & 2 & 3.85 & 0.5 & 2 & 111 & 62 & 0.86 & < 10 & < 1 & 0.43 & 20 & 0.87 & 325 \\
\hline 57208 & 205 & 226 & <0.0005 & < 0.2 & 2.79 & & 30 & < 0.5 & -2 & 2.85 & < 0.5 & 26 & 142 & 245 & 2.68 & < 20 & < 2 & 0.22 & 20 & 2.52 & 475 \\
\hline 57106 & 205 & 226 & <0.0005 & < 0.2 & 2.45 & <2 & 30 & < 0.5 & -2 & 3.55 & \(<0.5\) & 11 & 144 & 9 & 2.03 & - 10 & < 1 & 0.13 & - 10 & 1.15 & 480 \\
\hline 57107 & 205 & 226 & <0.0005 & < 0.2 & 2.20 & -2 & 20 & < 0.5 & <2 & 1.81 & < 0.5 & 12 & 31 & 206 & 6.10 & - 10 & <1 & 0.16 & - 10 & 1.09 & 700 \\
\hline 57108 & 205 & 226 & & 0.4 & 2.56 & 4 & 40 & < 0.5 & < 2 & 2.56 & < 0.5 & 34 & 100 & 140 & 6.37 & - 10 & \(<1\) & 0.38 & - 20 & 1.68 & 820 \\
\hline 571 & 205 & 226 & ----- & 0.2 & 2.42 & < 2 & 30 & < 0.5 & <2 & 2.53 & < 0.5 & \({ }^{33}\) & 39 & 223 & 6.74 & - 10 & < 1 & 0.30 & - 10 & 1.32 & 830 \\
\hline 57110 & 205 & & <0.0005 & 0.2 & 1.63 & & 70 & < 0.5 & & 2.28 & & & 173 & & & - 10 & & 0.72 & - 10 & 0.93 & 350 \\
\hline 57121 & 205 & 226 & & < 0.2 & 2.37 & ¢ & 40 & < 0.5 & < 2 & 2.33 & < 0.5 & 35 & 108 & 205 & 5.74 & < 10 & -1 & 0.50 & -10 & 1.64 & 765 \\
\hline 37112 & 205 & 226 & & 0.2 & 2.18 & 10 & 20 & < 0.5 & <2 & 1.85 & < 0.5 & 34 & 68 & 133 & 5.57 & -10 & < 1 & 0.34 & -10 & 1.47 & 700 \\
\hline 37113 & 205 & 226 & & 0.2 & 2.74 & , & 40 & < 0.5 & < 2 & 2.13 & < 0.5 & 37 & 80 & 170 & 6.57 & - 10 & <1 & 0.39 & - 10 & 1.75 & 790 \\
\hline 57114 & 208 & 226 & & 0.6 & 2.73 & <2 & 20 & < 0.5 & < 2 & 2.23 & < 0.5 & 24 & 69 & 237 & 7.02 & 10 & <1 & 0.24 & - 10 & 1.78 & 875 \\
\hline & 205 & 226 & <0.0003 & 2.4 & 2.04 & & - 10 & < 0.5 & & 1.92 & \(<0.5\) & 186 & 67 & 725 & 10.60 & -10 & & 0.08 & - 20 & 1.13 & 515 \\
\hline 57126 & 205 & 226 & & - 0.2 & 2.75 & <2 & 20 & < 0.5 & <2 & 2.20 & < 0.5 & 29 & 72 & 209 & 6.24 & -10 & -1 & 0.25 & -10 & 1.80 & 325 \\
\hline 37117 & 205 & 226 & & 0.4 & 1.91 & 4 & 20 & 0.5 & < 2 & 2.70 & < 0.5 & 23 & 110 & 186 & 3.79 & <10 & -1 & 0.36 & < 20 & 1.13 & 575 \\
\hline 37118 & 203 & 226 & & 0.6 & 2.11 & 2 & 60 & < 0.5 & <2 & 1.74 & \(<0.5\) & 33 & 93 & 268 & 3.41 & < 10 & < 1 & 0.45 & - 10 & 1.28 & 2003 \\
\hline 57119 & 205 & 226 & -..-- & 0.6 & 2.02 & & & < 0.5 & & 2.65 & 0.5 & 77 & 103 & 233 & 5.29 & - 10 & & 0.38 & & 2.36 & \\
\hline 57120 & 205 & 226 & --..- & < 0.2 & 2.04 & 6 & 10 & 0.5 & \(<2\) & 1.64 & < 0.5 & 19 & 108 & 63 & 2.92 & < 10 & <1 & 0.18 & - 10 & 1.31 & 685 \\
\hline 57122 & 205 & 226 & & 0.4 & 1.80 & & 20 & 1.0 & \(<2\) & 1.87 & \(<0.5\) & 28 & 140 & 79 & 2.61 & -10 & < 1 & 0.20 & 10 & 2.20 & 565 \\
\hline 37122 & 205 & 226 & & < 0.2 & 2.97 & < 2 & < 20 & 2.5 & < 2 & 3.27 & < 0.5 & 7 & 92 & 11 & 1.69 & -10 & -1 & 0.03 & < 20 & 0.71 & 490 \\
\hline 57123 & 205 & 226 & & 0.2 & 2.17 & , & 10 & < 0.5 & <2 & 0.70 & < 0.5 & 17 & 176 & 13 & 3.57 & 10 & < 1 & 0.11 & 10 & 1.53 & 703 \\
\hline 37126 & & 226 & & & & & & & & & & & 108 & & 3.35 & & & 0.37 & & & \\
\hline 57125 & 205 & 226 & & 0.2 & 3.21 & 2 & 60 & < 0.3 & < 2 & 1.26 & < 0.5 & 29 & 109 & 10 & 6.23 & 10 & - 1 & 1.85 & 20 & 1.93 & 353 \\
\hline 7126 & 205 & 226 & & < 0.2 & 0.63 & 2 & 10 & < 0.5 & < 2 & 0.46 & < 0.5 & 26 & 245 & 118 & 1.41 & < 10 & -1 & 0.24 & - 20 & 0.35 & 145 \\
\hline 57227 & 205 & 226 & & 0.2 & 0.59 & 4 & 10 & < 0.5 & \(<2\) & 0.25 & < 0.5 & 37 & 208 & 53 & 1.02 & - 20 & - 1 & 0.13 & - 20 & 0.22 & 103 \\
\hline 57128 & 205 & 226 & & 0.2 & 3.91 & 6 & 10 & < 0.5 & < 2 & 0.99 & < 0.5 & 31 & 179 & 1570 & 6.59 & 10 & < 1 & 0.34 & - 10 & 3.23 & 630 \\
\hline 57129 & & & & & 2.00 & & & & & & & & & & & & & 0.19 & d 10 & 1.20 & \\
\hline 37130 & 205 & 226 & <0.000 & 0.4 & 1.45 & & < 10 & < 0.3 & < 2 & 1.36 & & 27 & 235 & 70 & 3.73 & < 10 & -1 & 0.04 & - 10 & 1.02 & 465 \\
\hline 57131 & 203 & 226 & & 4.4 & 2.63 & - 2 & 40 & 0.5 & 8 & 1.89 & < 0.5 & 35 & 8 & 58 & 3.79 & - 10 & < 1 & 0.12 & - 10 & 1.24 & 575 \\
\hline 37132 & 205 & 226 & & 0.4 & 2.91 & 10 & 90 & 0.5 & < 2 & 1.86 & 0.5 & 24 & 170 & 52 & 4.90 & < 10 & < 1 & 1.52 & < 10 & 2.13 & 705 \\
\hline 57133 & 205 & 226 & -...- & 0.4 & 2.60 & <2 & 70 & 0.5 & < 2 & 2.85 & < 0.5 & 21 & 100 & 63 & 4.67 & < 10 & <1 & 0.95 & - 10 & 1.97 & 735 \\
\hline
\end{tabular}
CERTIFICATE OF ANALYSIS A9226343
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 9802T & \[
\begin{aligned}
& \text { PR } \\
& \text { COI }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Mo } \\
& \text { ppr }
\end{aligned}
\] & \%a & \[
\begin{gathered}
\text { sid } \\
\text { ppo }
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{p} \\
\mathrm{pp}
\end{array}
\] & \[
\begin{gathered}
\mathrm{pb} \\
\mathrm{pg}
\end{gathered}
\] & \[
\begin{array}{r}
8 b \\
\text { ppm }
\end{array}
\] & \[
\begin{gathered}
\mathbf{s c} \\
\text { g }
\end{gathered}
\] & \[
\begin{array}{r}
8 \mathrm{r} \\
\mathrm{gm}
\end{array}
\] & Wín & \[
\begin{gathered}
\text { pI } \\
\text { ppam }
\end{gathered}
\] & \[
\begin{array}{r}
0 \\
\text { ppim }
\end{array}
\] & \[
\underset{\mathrm{p}}{\mathrm{v}}
\] & \[
\begin{array}{r}
\text { Hpm } \\
\hline
\end{array}
\] & \[
\begin{array}{r}
88 \\
\text { ppa }
\end{array}
\] & \\
\hline 57076 & 208 & 226 & <1 & 0.06 & 31 & 490 & 4 & 2 & - & 15 & 0.20 & \(\leqslant 10\) & < 10 & 74 & -10 & 50 & \\
\hline 57077 & 205 & 226 & <1 & 0.04 & 27 & 70 & 2 & 2 & 2 & 17 & 0.07 & -10 & < 10 & 31 & -10 & 22 & \\
\hline 37078 & 203 & 226 & \(<1\) & 0.08 & 61 & 350 & 12 & 4 & 34 & ! & 0.25 & \(\leqslant 10\) & \(\leqslant 10\) & 356 & - 10 & 30 & \\
\hline 37079 & 205 & 226 & <1 & 0.12 & 76 & 400 & 8 & 4 & 43 & 5 & 0.25 & < 10 & < 10 & 323 & - 10 & 48 & \\
\hline 57080 & 205 & 226 & 11 & 0.04 & 71 & 380 & 12 & 2 & 36 & 6 & 0.23 & - 10 & < 10 & 458 & - 10 & 58 & \\
\hline 37081 & 203 & 226 & 1 & 0.03 & 84 & 320 & 14 & 4 & 39 & 6 & 0.24 & \(\leqslant 10\) & \(\leqslant 10\) & 434 & - 10 & 80 & \\
\hline 37082 & 208 & 236 & \(\leqslant 1\) & 0.03 & 76 & 280 & 12 & 2 & 21 & 24 & 0.29 & \(\leqslant 10\) & \(<10\) & 250 & \(\leqslant 10\) & 100 & \\
\hline 37102 & 203 & 226 & \(\leqslant 1\) & 0.02 & 6 & 90 & 128 & 2 & 1 & 36 & 0.02 & -10 & -10 & 3 & - 10 & 98 & \\
\hline 57102 & 205 & 226 & 25 & 0.02 & 13 & 130 & 8 & <2 & 3 & 16 & 0.02 & 10 & -10 & 13 & - 10 & 54 & \\
\hline 37103 & 205 & 226 & 3 & 0.07 & 6 & 60 & 30 & 2 & 2 & 35 & 0.03 & 10 & < 10 & , & - 10 & 76 & \\
\hline 37104 & 205 & 226 & 3 & 0.02 & - & 40 & 54 & < 2 & 2 & 37 & 0.04 & < 10 & < 10 & 1 & < 10 & 98 & \\
\hline 37105 & 209 & 226 & 2 & 0.09 & 28 & 960 & 8 & 2 & 5 & 100 & 0.20 & < 10 & < 10 & 73 & - 10 & 60 & \\
\hline 37106 & 205 & 226 & \(\leqslant 1\) & 0.07 & 21 & 900 & 8 & 2 & 4 & 97 & 0.18 & < 10 & \(\leqslant 10\) & 58 & < 10 & 46 & \\
\hline 37107 & 205 & 226 & 1 & 0.20 & 8 & 820 & 12 & 2 & 14 & 11 & 0.28 & - 20 & < 10 & 123 & < 10 & 70 & \\
\hline 37108 & 203 & 226 & \(\leqslant 1\) & 0.26 & 67 & 740 & 16 & 4 & 20 & 24 & 0.43 & < 20 & - 10 & 132 & < 10 & 108 & \\
\hline 37109 & 205 & 226 & 1 & 0.27 & 26 & 830 & 14 & 2 & 20 & 17 & 0.42 & \(\leqslant 10\) & \(<10\) & 96 & \(\leqslant 10\) & 110 & \\
\hline 87110 & 205 & 226 & <1 & 0.10 & 22 & 580 & 22 & < 2 & 4 & 28 & 0.10 & < 20 & < 10 & 37 & < 10 & 108 & \\
\hline 37112 & 205 & 226 & 4 & 0.22 & 41 & 610 & 8 & 2 & 18 & 25 & 0.45 & < 10 & -10 & 153 & - 10 & 134 & \\
\hline 57112 & 205 & 226 & <1 & 0.18 & 29 & 540 & - & 2 & 15 & 14 & 0.35 & < 10 & - 10 & 151 & < 10 & 84 & \\
\hline 37113 & 205 & 226 & 2 & 0.17 & 33 & 540 & 10 & 2 & 14 & 18 & 0.39 & < 10 & < 10 & 154 & < 10 & 226 & \\
\hline 87114 & 205 & 226 & 12 & 0.20 & 43 & 640 & 12 & 4 & 28 & 17 & 0.12 & < 20 & < 10 & 293 & < 10 & 138 & \\
\hline 57115 & 205 & 226 & 271 & 0.09 & 113 & 600 & 26 & 4 & 11 & 39 & 0.31 & < 10 & < 10 & 110 & < 10 & 70 & \\
\hline 37116 & 205 & 226 & 6 & 0.18 & 34 & 530 & 12 & 2 & 17 & 24 & 0.14 & < 10 & < 10 & 174 & - 20 & 124 & 1 \\
\hline 37117 & 205 & 226 & 7 & 0.12 & 48 & 300 & 18 & 2 & 12 & 33 & 0.29 & 10 & < 10 & 100 & < 10 & 100 & \\
\hline 57118 & 203 & 226 & 1 & 0.14 & 57 & 570 & 18 & 2 & 13 & 24 & 0.35 & < 10 & < 10 & 144 & \(<10\) & 72 & \\
\hline 37119 & 203 & 226 & 7 & 0.17 & 74 & 490 & 32 & 2 & 13 & 20 & 0.32 & \(<10\) & \(\leqslant 10\) & 138 & \(<10\) & 264 & \\
\hline 37120 & 205 & 226 & 5 & 0.08 & 43 & 340 & 14 & 2 & 8 & 55 & 0.23 & < 10 & - 10 & 72 & < 10 & 62 & \\
\hline 37121 & 205 & 226 & 20 & 0.02 & 60 & 580 & 94 & 2 & 5 & 70 & 0.16 & < 10 & < 10 & 38 & \(<10\) & 154 & \\
\hline 57122 & 205 & 226 & 3 - & 0.01 & 17 & 30 & 18 & 2 & 1 & 100 & 0.03 & < 10 & - 20 & 13 & < 10 & 12 & \\
\hline 57123 & 205 & 236 & \(\leqslant 1\) & 0.07 & 38 & 400 & 8 & 4 & 9 & 24 & 0.13 & <10 & - 10 & 73 & -10 & 46 & \\
\hline 37124 & 208 & 226 & < 1 & 0.04 & 66 & 250 & 52 & 2 & 7 & 96 & 0.17 & < 10 & - 10 & 66 & < 10 & 52 & \\
\hline 57125 & 205 & 226 & 1 & 0.10 & 40 & 450 & 12 & 2 & 14 & 44 & 0.29 & \(<10\) & < 10 & 126 & - 10 & 60 & \\
\hline 51126 & 205 & 226 & 1 & 0.12 & 12 & 110 & 2 & \(<2\) & 2 & 14 & 0.04 & < 10 & - 10 & 23 & -10 & 12 & \\
\hline 57127 & 205 & 226 & 6 & 0.10 & 16 & 60 & 4 & <2 & 2 & 14 < & 0.01 & 10 & 30 & 14 & < 10 & 8 & \\
\hline 37128 & 203 & 226 & < 1 & 0.07 & 97 & 210 & 12 & 2 & 12 & 15 & 0.21 & \(<10\) & - 10 & 142 & < 10 & 72 & \\
\hline 57129 & 205 & 228 & 2 & 0.17 & 41 & 570 & 14 & \(<2\) & 12 & 40 & 0.27 & \(<10\) & \(\leqslant 10\) & 99 & \(\leqslant 10\) & 72 & \\
\hline 57130 & 205 & 226 & 2 & 0.10 & 45 & 180 & 24 & 2 & 10 & 27 & 0.22 & \(<10\) & < 10 & 94 & < 10 & 52 & \\
\hline 37131 & 205 & 226 & 9 & 0.09 & 32 & 400 & 1535 & 2 & 7 & 47 & 0.30 & < 10 & - 10 & 84 & < 10 & 116 & \\
\hline 37132 & 205 & 226 & < 1 & 0.12 & 68 & 430 & 26 & 4 & 12 & 31 & 0.30 & -10 & \(<10\) & 123 & -10 & 108 & \\
\hline 57133 & 205 & 226 & 10 & 0.17 & 53 & 370 & 4 & 4 & 12 & 16 & 0.33 & < 20 & < 20 & 140 & < 10 & 136 & \\
\hline
\end{tabular}
1
1
\begin{tabular}{|c|c|c|c|}
\hline 1 & 1 & & ) \\
\hline \multirow[t]{2}{*}{To:} & \multicolumn{3}{|l|}{BHARTI LAAMANEN MINING INC.} \\
\hline & \multicolumn{3}{|l|}{131 FIELDING RD., P.O. BOX 700 LIVELY, ON POM 2EO} \\
\hline & oct : ments: & \[
\begin{aligned}
& \text { 92-500-004 } \\
& \text { ATTN: H. TI }
\end{aligned}
\] & 004 . TRACANELLI \\
\hline \multicolumn{4}{|l|}{CERTIFICATE OF AN} \\
\hline
\end{tabular}

4
\begin{tabular}{|c|c|}
\hline  &  \\
\hline ス쿧․ oinisio &  \\
\hline
\end{tabular}
\(\square\)









\subsection*{9.0 CONCLUSIONS}

All of the work which was carried out on the BLMI Richardson Lake Property in Rhodes Township which included prospecting - geology, geophysics, surface trenching and diamond drilling and has resulted in the generation of a significant amount of useful exploration data.

By carefully reviewing the generated data it has been possible to determine or conclude that certain volcanogenetic sequences trending across the BLMI property may have the potential to host mineral deposits.

The various types of work that have been carried out have indicated the along strike and down dip presence of highly altered and deformed felsic metavolcanic rocks which host disseminated to strataform massive sulphides horizons of pyrite-pyrrhotite with lesser amounts of sphalerite-galena and chalcopyrite.

Although most of the assay retums were not overly encouraging, it was shown through the surface trenching and diamond drilling parts of the program that the overall geological makeup is far more complex than originally thought.

The overall geological makeup is such that it may represent or is indicative of an environment where volcanogenetic massive sulphide mineral deposits might be found. Further, more detailed investigations utilizing all of the available generated data will have to be carried out in an attempt to assess the full potential of this significant property.

\subsection*{10.0 RECOMMENDATIONS}

The evaluation of the exploration program data and conclusions would clearly suggest that additional, more advanced exploration work should be undertaken along those identified favourable areas on the BLMI property in an attempt to fully assess the mineral potential.

The next stage of work that would have to be carried out on the property might consist of a more advanced diamond drilling program consisting of 5000 to 10000 feet. It is believed that it would be most advantageous to test the down dip extension of the favourable horizon from the \(\mathbf{5 0 0}\) to 1000 foot level. More advanced forms of geophysics such as "Down the Hole EM" surveys may be attempted.

Before any more serious, highly expensive forms of exploration should be carried out, it may be most advantageous to carry out detailed academic type work utilizing the local University and the geologicalgeophysical staff members at the O.G.S., MND \& M, etc.

At this point in time there is a great amount of information available that should be carefully assessed. The careful assessment of the data shall allow for the most effective means of identifying potential targets and possibly giving a better change for an increased success rate.

The following are copies of the original assay tags that were written up in the field etc. subsequent to a sample being collected and bagged. Each of the samples was submitted for assaying to Chemex Labs Ltd.

Copies of the assay request forms have also been included. The inclusion of this type of information could be very useful in the future as a quick reference source, if and when attempts are made to reevaluate the report data, etc.

The following samples were collected by:

Harold Tracanelli
David A. Langdon
Harold Tracanelli
Harold Tracanelli
Harold Tracanelli

300201 to 300242 from surface trenches
301951 to 301992 from surface trenches
300051 to 300071 from diamond drill core
57076 to 57100 from diamond drill core
57101 to 57150 from diamond drill core

A total of \(\mathbf{1 8 0}\) samples were collected for the purpose of assaying during the \(\mathbf{1 9 9 2}\) Richardson Lake Program.

The David A. Langdon "ART" samples as are found within the body of this report are not listed here within this appendix.

It is believed that no such tags were written up for these samples, although the sample numbers, locations, etc. would probably have been recorded within his field book. David Langdon's field book along with some of his notes were not recovered after his death in August of 1992.

In addition, those samples collected by Gabriel Valenzuela and Efrain Gonzalez (Cambrian College Attachments) during their geological investigations of the southem and northwestem parts of mining claim S-1095079, have not been included in this appendix but have been listed within the "Prospecting and Related Geological Investigations and Evaluations".

Some thought was given to conducting assaying procedures on the Langdon/Valenzuela and Gonzalex samples, but due to the unforseen circumstances, this work was not carried out.

The following is a listing of the assay tags which correspond to the trench mapping carried out by Harold J. Tracanelli, Exploration Geologist.

№ 300202 H

DATE: hely/5/92
CORE SIZE: \(\qquad\)
DRILHOLE: \(\qquad\)
FOOTAGE: \(\qquad\)
Remarks: Rep Gab Hi l
ASSAY: Ag. Au. Cu, Mo, Pb, Zn, Sn. Hg .
OTHER: \(\qquad\)
ROCK GEOCHEM. \(\square\)

№ 300204 H

DATE: *ply \(/ 5 / 92\)
CORE SIZE: \(\qquad\)
DRILHOLE: \(\xrightarrow{\text { al 2 }}\)
FOOTAGE: gab Rep remarks: \(\qquad\)
 OTHER: \(\qquad\) ROCK GEOCHEM. D
\(\qquad\) № 300206 H
core size: \(\qquad\) DRILHOLE: Chunksoner \(g^{4 t}\) FOOTAGE: \(\qquad\) REMARKS: HIT ASSAY: \(\mathrm{Wg}, \mathrm{Au}, \mathrm{Cu}, \mathrm{Mop}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). OTHER: \(\qquad\) ROCK GEOCHEM.D


\section*{№ 300213 H}

\(\varepsilon\)

\section*{Chemex Labs Ltd.}

212 Boodstamak Avenue North Vandoower B.C. .vJJ 2 C

DATE: \(\qquad\)
CORE SIZE: Caót abundant DRIL LHOLE: Sille ified ghz:-carb FOOTAGE: Cly-py brecianictased remakis




16

\section*{№ 300215 H} Chemex Labs Ltd. 212 Brooksbank Avenue North Vancouver, B.C. V7J \(2 C 1\)
 DATE: Luly \(15 / 92\)
CORE SIZE:
DRIL \(H\) 位: Exdedive Ginaboar
footage:
tremarks:
ÄSSAY: \(\mathrm{Ag}, \mathrm{Au}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(W_{3}, U_{3} U_{\mathbf{n}}, A s, S b, B i, T e\).
OTHER:
ROCK GEOCHEM.D

\section*{№ 300217 H}


Chemex Labs Ltd.
212 Brookstank Avenue
North Vancoower. B. . .vTJ 2 CT

bate: luby \(15 / 92\)
CORE SIIE:
DRILHOLE: grabstimple. Masawe
:FOOTAGE: epadok hech lock
REMARKS: with desolight roloursed
ASSAY: \(\mathrm{Ag}, \mathrm{Au}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\),


\section*{OTHER:}

ROCK GEOCHEM. \(\square\)

\section*{№ 300214 H}

Chemex Labs Ltd.
212 Eroodsbank Avemue
 Ph. (004) 984-0221 Telex 04-352597 DATE: - buly \(15 / 92\) CORE SIZE: leaot a bundaal DRILLHOLE: haldff pom watear FOotage: filled french remarks:
ASSAY: Ag. Au, Cu, Mo. Pb, Zn, Sn, Hg. \(W_{3}, U_{3} U_{6} A s, S b, B i\), Te.
OTHER:
ROCK GEOCHEM.

\section*{№ \(300216 \quad \mathbf{H}\)}
 Chemex Labs Ltd. 212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04352597 DATE: Lely \(15 / 92\)
CORE SIZE: sedectrus hach grado DRILLHOLE: grahe with visibl footage: Remarks: \(\qquad\)
ASSAY: Ag, Au, Cu, Mo, Pb, Zn, Sn, Hg , WO, U, U, As, \(\mathrm{Sb}, \mathrm{Bi}\), Te.
OTHER:


ROCKGEOCHEM.L

\section*{№ 300218 H}

10Chemex Labs Ltd. 212 Broolasbank Avenue North Vancouver, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04352597 DATE: \(\frac{\text { bely } 15 / 92}{}\)
CORE SIZE:
DRILHOLE: Coavis chip-channel
FOOTAGE: over \(2 z^{\prime \prime} 1\)-oxche
REMARKS:
frobleno

ASSAY:

> Ag, Au, Cu, Mo, Pb, Zn, Sn, Hg, WO\(_{3}, ~ U, U_{2}, ~ A s, ~ S b, ~ B i, ~ T e . ~\)

OTHER:
ROCK GEOCHEM.D




\section*{\&N 300237 H}

عC̈hemex Labs Lid.:212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1 Ph. (604) 984-0221 - Telex 04-352597
دȦṪE:
Sóne size: \(\qquad\)
गRILHOLE: - in uryerer. is

- REMARKS: Souffide zonr

ASSAY: Ag, Au, \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(\mathbf{W O}_{\mathbf{3}} \mathrm{U}_{\mathbf{3}} \mathrm{U}_{\mathbf{0}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
- other:

ROCK GEOCHEM.

\section*{№ 300239 H}

Chemex Labs Ltd.
212 Brookstanak kuvenue
Notit Vancoowner. B.c. VIJJ 2 C1
Phi (coat 9eat 0221 teler 043535957
MATE:
TORE SIE: Clarse dis cubie गпІL НоLE: focerregular form 19
 ammarks: bock. - granchar asSay: \(\mathrm{Ag}, \mathrm{Au}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\),

отнеR: ligge clip oer \(B^{\prime \prime}-94\)
ROCK GEOCHEM.

\section*{№ 300241 H}

0Chemex Labs Ltd.
212 Brooksbank Avenue
North Vancouver, B.C. V7J 2C1 Ph. (604) 904-0221 Telex 04-352597 JATE: Juby \(16 / 92\) OORE SIZE: CGarsly hop pyante jinutole: woth trina pyir-cpy =OOTAGE: chipsample oner 2911 REMARKS:
ASSAY: Ag, Au, \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(W_{3}, U_{3} U_{5}, A s, S b, B i, T e\).
OTHER:
ROCK GEOCHEM. \(\square\)

\section*{№ 300238 H}
 Chemex Labs Ltd. . 212 Brooksbank Avenue North Vancouver, B.C. V7J 2Ci Ph. (604) 984-022i Telex 04-352597
 गRILHOLE: in o whits fo girnint
 REMARKS: PC.Chepaer \(7^{\prime \prime}\) ASSTAY: Ag, Au, Cu, Mo, \(\mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). \(W_{\mathbf{W}}, \mathrm{U}, \mathrm{U}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
OTHER:
ROCK GEOCHEM. \(\square\)

\section*{№ 300240 H}

e
Chemex Labs Ltd.
212 Brooksbank Avenue
Norti Vancouver, B.C. V7J 2C1
 SATE: July \(16 / 92\) SORE SIZE: PIght green coloured PRILHOLE: Carb ollared Reculth =ootage: fudy dion gel \(\ddagger\) light REMARKS: Loney 6 lowed sph gatb ASSAY: Ag. Au, Cu, Mo, \(\mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). \(W_{3}, U_{3} U_{s}, A s, S b, B i, T e\).
OTHER:
ROCK GEOCHEM.

\section*{№ \(\mathbf{3 0 0 2 4 2} \mathbf{H}\)}

عChemex Labs Ltd.
212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1 Ph (604) \(984-0221\) Telex 04352597 دATE: \(\frac{\text { dulfy } 16 / 92}{\text { debere }}\) SORE SIZE: Shlphide beanvz 20-20. íaluHOLE: Xy insilicufedalt \(=O O T A G E\) Coasse grdenad aEmARKS: pyrclantice fock ASSAY: Ag, Au, Cu, Mo, Pb, Zn, Sn, Hg, \(W_{3}, U_{3} U_{4}, A s, S b, B i, T e\).
OTHER:

The following is a listing of the assay tags which correspond to the trench mapping carried out by David A. Langdon, Assistant Exploration Geologist.
№ 301952 H


\section*{Chemex Labs Ltd.}

212 Brooksbank Avenue
North Vancouver, B.C. V73 2C1 Ph. (604) 984-0221 telex 04-352597
DATE: 92-07-14 CORE SIZE:
 DRILLHOLE: FOOTAGE: \(\frac{(1)-N \angle N H E L}{}\) REMARKS
 ASSAY: Ag. Au, Cu, Mo, Pb, \(\mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). \(\mathrm{WO}_{3}, \mathrm{U}_{3} \mathrm{U}_{\mathrm{s}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
OTHER:
ROCK GEOCHEM.
i№ \(\mathbf{3 0 1 9 5 4 ~ H}\)

Chemex Labs Ltd.
212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1 Ph. (504) 984-0221 Telex 04352597
DATE: \(\qquad\)
CORE SIZE:
DRILLHOLE:

ASSAY: Ag, Au, Cu, Mo, Pb, Zn, Sn, Hg, \(\mathrm{WO}_{2}, \mathrm{U}_{3} \mathrm{U}_{\mathrm{t}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
OTHER: ze ofl3
ROCK GEOCHEM. \(\square\)
№ 301956


\section*{Chemex Labs Ltd.}

212 Brooksbank Avenue North Vancouver, 8.C.V7J 2C1 Ph. (604) 984-0221 Teler 04352597
DATE: \(a_{2}-n 7-14\)
CORE SIZE:
- DRILLHOLE:

ASSAY: Ag, Au, Cu, Mo, Pb, Zn. Sn. Hg . \(W_{3}, U_{2} U_{1,} A s, S b, B i, T e\).
OTHER: \(\qquad\)
ROCK GEOCHEM.
№ \(301951 \quad \mathbf{H}^{V}\)
 Chemex Labs Ltd. 212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04-352597 DATE: \(\frac{92-07-14}{\text { CORE SIZE: } 993: K P-96}\) DRILLHOLE:
 REMARKS: Of8iE \(n+435\) ? ASSAY: Ag. Au, Cu, Mo, Pb, \(\mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(\mathrm{WO}_{3}, \mathrm{U}_{3} \mathrm{U}_{3}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}\), Te.
OTHER:
ROCK GEOCHEM.

 -
№ 301958 H


Chemex Labs Ltd.
212 Brooksbank Avenue
North Vancouver, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04352597
DATE:
\[
92-07-14
\]

CORE SIZE:
 REMARKS:
\(\qquad\) ASSAY: Ag, Au, Cu, Mo, Pb, Zn, Sn, Hg.
 OTHER: 493

ROCK GEOCHEM.

\section*{№ 301960 H}


Chemex Labs Ltd.
212 Brooksbank Avenue
North Vancouver, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04-352597 DATE: 92-07-


FOOTAGE: \(\frac{\operatorname{Sanf} A S ~}{459}\)
REMARKS:
ASSAY: \(\mathrm{Ag}, \mathrm{Au}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(W_{3}, U_{2} U_{0}, A s, S b, B i, T o\).
OTHER: A-12 wrPDLEROCK ROCK GEOCHEM.

E

\section*{№ 301962 H}


Chemex Labs Ltd.
212 Brooksbank Avenue North Vancouver. B.C. V7J 2C1 Ph. (604) 564-0221 Telex 04-352597
SATE:
SORE SIZE:
\(\frac{92-\cap y-15}{\frac{A-12}{\prime 2}}\)

ASSAY:
\[
\text { Ag. Au, Cu, Mo, Pb, Zn, Sn, } \mathrm{Hg} \text {, }
\] \(W_{3}{ }_{3} \mathrm{U}_{3} \mathrm{U}_{\mathrm{s}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}\), To.
OTHER: A-12 w ROLE ROCK
ROCK GEOCHEM. 图

\section*{№ 301957 H}


\section*{Chemex Labs Ltd.}

212 Brooksbank Avenue
North Vancouver, B.C. V7J 2C1 Ph (604) 9840221 Telex 04-352597

DATE: \(\qquad\)
CORE SIZE:

ASSAY: Ag. Au, \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\).

OTHER: -793
ROCK GEOCHEM.
№ 301959 H


Chemex Labs Ltd.
212 Brooksbank Avenue
North Vancouver, B.C. V7J 2C1 Ph. (604) 904-0221 Telex 04-352597 912-07-15
SATE:
\(\qquad\)
CORE SIZE:
DRILLHOLE: Conabsole GrAB
FOOTAGE: \(\frac{0!6!S}{0 a 5 \operatorname{sal} \text { impact }}\)
REMARKS:
ASSAY: Ag. Au, \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(W_{2}, \mathbf{U}_{3} \mathrm{U}_{\mathrm{s}} \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\). OTHER: 493
ROCK GEOCHEM.


\section*{Chemex Labs Ltd.} 212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04-352597
SATE: \(\frac{x \geq-97-15}{12-12}\) SORE SIZE: \(\qquad\)
DRILLHOLE:
FOOTAGE: \(\qquad\)
REMARKS:
ASSAY: Ag, Au, Cu, Mo, Pb, Zn, Sn, Hg, \(\mathrm{WO}_{3} \mathrm{U}_{2} \mathrm{U}_{\mathrm{n},} \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
OTHER: AA A 12 WHOLE RACK ROCK GEOCREM.


\section*{№ 301972 H}

\(\varepsilon\)
Chemex Labs Ltd.
212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1 Ph. (604) 904-0221 Telex 04-352597
JATE: \(\qquad\)
CORE SIZE:
DRILLHOLE: GRAF REM*RTZ

REMARKS
Ag, Au, Cu, Mo, Pb, Zn, Sn, Hg. \(W_{3} \mathbf{O}_{3} \mathrm{U}_{3} \mathrm{U}_{\mathrm{s}} \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
OTHER: 143

ROCK GEOCHEM.

\section*{№ 301974 H}

\(\square\)
Chemex Labs Ltd. V
212 Brooksbank Avenue
North Vancouver, B.C. V7J 2C1 Pht. (504) 984-022i Telex 04352597
JATE: \(\qquad\)
CORE SIZE:
DRILLHOLE:
FOOTAGE:
\(\qquad\)
REMARKS:


ASSAY:
\(\mathrm{Ag}, \mathrm{Au}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), WO \(_{1} \mathrm{U}_{2} \mathrm{U}_{2}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
OTHER:
9.9

ROCK GEOCHEM. []


Chemex Labs Ltd.
212 Brooksbank Avenue
North Vancouver, B.C. V7J 2Ci Ph. (604) 984-0221 Telex 04-352597
VTE:
92-07-15
JRE SIZE:

OOTAGE:
EMARKS: \(0+89 \% \quad D+17 N\)
SSAY: Ag)Au, Cu, Mo, Pb, Zn, Sn. Hg.
\(\mathrm{WO}_{3} \mathrm{U}_{\mathrm{i}} \mathrm{U}_{\mathrm{n}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
गTHER:
143
ҰOCK GEOCHEM. \(\square\)


\section*{Chemex Labs Ltd.}

212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04-352597
JATE: \(\qquad\)
CORE SIZE:
DRILLHOLE:


FOOTAGE:


REMARKS:
ASSAY: Ag, Am \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). \(\mathrm{WO}_{2} \mathrm{U}_{3} \mathrm{U}_{\mathrm{s}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}\), Te.
OTHER:
ROCK GEOCHEM.

\section*{Chemex Labs Ltd.}

212 Brooksbank Avenue North Vancouner, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04-352597
JATE: \(\qquad\) 9.2-9)-16

CORE SIZE: CONG TRENCH
DRILLHOLE:
FOOTAGE: CrLMnD च Tr \(77.5 n\)
 REMARKS: \(\qquad\)
ASSAY: Ag, Au, Cu, Mo, Pb, Zn, Sn, Hg, \(\mathrm{WO}_{3}{ }^{-} \mathrm{U}_{3} \mathrm{U}\). As, \(\mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\). ice-q
OTHER:

\section*{-}

ROCK GEOCHEM.

\section*{№ 301978 H}

EChemex Labs Ltd. 212 Brooksbank Avenue North Vancouner, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04-352597
DATE: 92-07-16 CORE SIZE: LONG TRENCH
 FOOTAGE: li27E g169N REMARKS:
ASSAY: Ag, Au, \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(\mathbf{W O}_{30} \mathrm{U}_{3} \mathrm{U}_{\mathrm{n}}, \mathbf{A s}, \mathbf{S b}, \mathrm{Bi}, \mathrm{Te}\).
OTHER:
ICRY)

\section*{ROCK GEOCHEM.}
```

-

``` № 301980 H


\section*{Chemex Labs Ltd.}

212 Brookshank Avenue North Vancouver, B.C. V7J 2Ci Ph. (504) 984-0221 Telex 04352597
JATE: A7-Aㄱ-16

CORE SIZE: R2 DEL :...... JRILLHOLE: \(3+03 \mathrm{E}, 0+55 \mathrm{~N}\) FOOTAGE: REMARKS: \(\qquad\)
ASSAY: \(\mathrm{Ag}, \mathrm{Au}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(\mathrm{WO}_{3}, \mathrm{U}_{3} \mathrm{U}_{\mathrm{c}} \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
OTHER: A-12 WTMLE RAOK ROCK GEOCHEM. 圆

\section*{Chemex Labs Ltd. \\ 212 Brookshank Averue North Vancouver, B.C. V7J 2Ci Ph (604) 984-0221 Telex 04352597 n?-n7-15} JATE:
CORE SIZE:
DRILLHOLE: O+18E 0+32N FOOTAGE: 2' \(^{\prime}\) ' Channol rarb REMARKS: mud-sand fr.dise no ASSAY: AgAl. Cu, Mo, Pb, \(\mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(W_{0} \mathrm{U}_{3} \mathrm{U}_{\mathrm{n}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
OTHER: 993
ROCK GEOCHEM.

\section*{№ 301977 H}
 Chemex Labs Ltd. 212 Brooksbank Avenue North Vancouver. B.C. V7J 2C1 Ph. (604) 984-0221 relex 04-352597 DATE: \(12-97-16\) CORE SIZE: LONG TRENCM DRILLHOLE: CARBONATZONE FOOTAGE: ज. \(\mathrm{n} / \mathrm{A}\) DISS Ga REMARKS: \(\qquad\)
ASSAY:
Ág. Au, \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). \(W_{2} \mathrm{U}_{3} \mathrm{U}_{\mathrm{c}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
OTHER:
致 \({ }^{2}\)
ROCK GEOCHEM.

\section*{№ 301979 H}


Chemex Labs Ltd. L
212 Brooksbank Averue
North Vancounver, B.C. V7J 2C1
Ph. (604) 984-0221 Telex 04-352597
JATE:
CORE SIZE:
\(\frac{\text { COAG } 92-07-16}{\text { CONG 5RENCM }}\)

FOOTAGE:
REMARKS: \(\qquad\)
ASSAY: Àg. Aú, \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). \(W_{3}, U_{3} U_{4}, A s, S b, B i, T e\).
OTHER: \(\qquad\)
ROCK GEOCHEM. \(\square\)



\section*{№ \(301982 \quad \mathbf{H}\)}

Chemex Labs Ltd．
212 Brooístbank Avenue North Vancouver，B．C．V73 2C1 Ph．（604）984－0221 Telex 04－352597

JATE： \(\qquad\)
CORE SIZE： 3 LaUE O＋76N
JRILLHOLE：GCACAFIUTSIL ＝OOTAGE：
REMARKS： A－ 12

4SSAY：Ag，Au，Cu，Mo．Pb，Zn，Sn， Hg ． \(W_{3}{ }_{3}, U_{3} U_{2}, A s, S b, B i, T e\).
OTHER：A 12 WMOLE RACK ROCK GEOCHEM．审

\section*{№ 301984 H}


Chemex Labs Ltd． 212 Brooksbank Avenue North Vancouver，B．C．V7J \(2 C 1\) Phi（604）984－0221 Telex 04－352597． JATE： \(92-07-16\)
CORE SIZE：H S⿹\zh26灬trench JRILHOLE：RT＊TUFF／ASTTUFT footage： \(1+\) OSE, \(1+12 \mathrm{~N}\)
remarks： \(\qquad\)
```

ASSAY: Ag, Au, Cu, Mo, Pb, Zn, Sn, Hg,
WO_, U, U,.As, Sb, Bi, Te.
OTHER: A-12 WHVIALE RA\&f
ROCK GEOCHEM.自

```

\section*{№ 301986 H \(V\)}
 Chemex Labs Litd．
 Ph（E00）Seato221 Thetax 04335859
JATE： 92－0）－16
SORE SIZE：DOG LEG TRENCM
JRILLHOLE：BLLe hTITE RT 2 S＇Roacte
\(=\) OOTAGE： \(\bar{\sim} 1 \% \rho_{y}\)
TEMARKS： \(1+20\) NE 0635
assar：Ag．Aus \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\) ， \(W_{3}, \mathrm{U}_{3} \mathrm{U}_{\mathrm{s}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{T}\) ．
OTHER： \(993-A_{4}\)
ROCK GEOCHEM．

\section*{Chemex Labs Ltd．}

212 Brooksbank Avenue
North Vancouver，B．C．V7J 2C1 Ph．（604）984－0221 Telex 04352597
JATE： 912－07－16 SORE SIZE： \(\qquad\)
JRILLHOLE：
\(3+5 E \quad O+S T N\)
 REMARKS：
ASSAY：Ag Al，Cu，Mo，Pb， \(\mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\) ， \(W_{3}, \mathrm{U}_{3} \mathrm{U}_{5}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\) ．
OTHER：943
ROCK GEOCHEM．\(\square\)
№ 301983 H

cChemex Labs Ltd． 212 Erooossaank Avenue Noatit Vanocowner．B．C．VTJ \(2 C 1\)

Jate： 92－07－16 SORESIIE：REDGE TRENEH JRILHOLE：3＋OSE，HO2N REOTAGE：\(\frac{\text { GRAS OR RM！Flow }}{\text { REMARS：}}\) ASSAY：Ag，Au， \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\) ．
 OTHER： 993 －AM
поск яеоснем．

\section*{№ 301985 H}


Chemex Labs Ltd．
212 Enoonstank Avenue
Nortit Vanacowner B．B．VIJJ \(2 C 1\) Pht（500）500－ 0221 thex 04352597
Jate：021－177－16
sore size：
 गRILHOLE： rencroytir： ＝OOTAGE：
REMARKS：
\(\qquad\) ASSAY：Ag．Au，Cu，Mo，Pb，Zn，Sn， Hg ．

OTHER：A－12 WMDLE R：ACK
воск Gеоснем．하


The following is a listing of the assay tags which correspond to the drill core logging and sampling of drill holes RL-92-01, RL-92-02, RL-92-03 and RL-92-04. The sampling was carried out by Harold J. Tracanelli, Exploration Geologist.


№ \(300058 \quad \mathbf{H}\)
Chemex Labs Ltd.
212 Brooksbank Avenue
North Vancouver, B.C. V7J 2C1
Ph. (604) 984-0221 Telex 04-352597
DATE: \(\qquad\)
CORE SIZE:
DRILHOLE: \(\overline{R L 92-04}\)
footage: \(293.4-295.5\)
REMARKS: \(\qquad\)
ASSAY: Ag, Au, Cu, Mo. Pb, \(\mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). \(W_{3}, \mathrm{U}_{3} \mathrm{U}_{\mathrm{N}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{To}\). OTHER: \(1 C D-32\)
ROCK GEOCHEM. \(\square\)
….....-................................
№ 300059 H
TChemex Labs Ltd. 212 Brooksbark Avenue North Vancouver, B.C. V7S 2C1 Ph. (604) 904-0221 telex 04-352597
\(\qquad\) CORE SIZE: \(\qquad\)
DRILHOLE: \(\overline{R L Q 2-04}\)
\(\qquad\) REMARKS: \(\qquad\)
ASSAY: Ag, Au, Cu, Mo, \(\mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\),
OTHER:


Co
№ 300060 H
- Chemex Labs Ltd. 212 Brooksbank Avenue North Vancouver, B.C. V7J 2Ci Ph. (604) 984-0221 Telex 04-352597
DATE: Dec 10/92
\(\qquad\)
CORE SIZE: \(\qquad\)
FOOTAGE: \(\qquad\) REMARKS: \(\qquad\) ASSAY: Ag, Au, Cu, Mo, Pb, \(\mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(\mathrm{WO}_{3}, \mathrm{U}_{3} \mathrm{U}_{\mathrm{p}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{To}\).
OTHER:
 ROCK GEOCHEM.D

№ 300062 HChemex Labs Ltd. 212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1 Dementia
DATE: \(\qquad\) CORE SIZE: \(\qquad\) DRILLHOLE: RLGZ-04 FOOTAGE: \(503.0-509.0\) REMARKS: \(\qquad\) ASSAY: Ag, Au, Cu, Mo, Pb, \(\mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). WO \(, U_{3} Y_{0}, A s, S b, B i . T_{e}\)
\(\qquad\) ROCK GEOCHEM. \(\square\)

№ 300063 H
© Chemex Labs Ltd. 212 Brooksbank Avenue

TATE: \(\qquad\)
sORE SIZE: \(\qquad\)
\(=\) OUTAGE: SO9.0-514:8
\(\qquad\)
ASSAY: Ag. Au, \(\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\), \(W_{3}, U_{3} U_{0} . A s, S b, B i, T e\).
\(\qquad\)
ROCK GEOCHEM. \(\square\)
№ 300065 H
- Chemex Labs Ltd.

212 Brooksbank Avenue
North Vancouver, B.C. V7J 2C1
Ph. (604) 984-0221 telex 04-3520597
date: Dec \(15 / 92\)
core size: grab sample
DRILLHOLE:
FOOTAGE: Int-mofece potrusiup
REMARKS: \(\qquad\)
ASSAY: Ag, Au, Cu, Mo, \(\mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). \(\mathrm{WO}_{3}, \mathrm{U}_{3} \mathrm{U}_{\mathrm{s}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
\(\qquad\) ROCK GEOCHEM.D


ROCK GEOCHEM. \(\square\)
№ 300064 H
\(\mathcal{E}\)
Chemex Labs Ltd. 212 Brookstbank Avenue North Vancouver, B.C. V7J 2C1 Ph (604) 584-0221 Telex 04-352597
DATE: \(\qquad\)
CORE SIZE: \(\qquad\)
DRILLHOLE: \(\qquad\)
FOOTAGE: \(\qquad\)
REMARKS: \(\qquad\)
ASSAY: Ag. Au, Cu, Mo, Pb, Zn, Sn. Ho.


ROCK GEOCHEM. \(\square\)
- 40

№ \(300066 \quad \mathrm{H}\)
T Chemex Labs Ltd.
212 Brookshank Avenue North Vancouver, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04-352597
DATE:


CORE SIZE: \(\qquad\) DRILLHOLE: RL92-01 FOOTAGE: \(523 \cdot 6-528 \cdot 3\) REMARKS: \(\qquad\)
ASSAY: Ag, Au, Cu, Mo, Pb, \(\mathrm{Zn}, \mathrm{Sn}, \mathrm{Hg}\). \(W_{3} \mathrm{U}_{3} \mathrm{U}_{\mathrm{t}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).
\(\qquad\) ROCK GEOCHEM. \(\square\)
№ 300068 H


Chemex Labs Ltd. 212 Brooks bank Avenue North Vancouver, 8.C. V7J 2C1

DATE: \(\qquad\) CORE SIZE: DRILLHOLE: \(p(9 q-0\) ?
FOOTAGE: \(\qquad\) REMARKS: \(\qquad\)
ASSAY: Ag, Au, Cu, Mo, Pb, Zn, Sp. Hg. \(\mathrm{WO}_{3}, \mathrm{U}_{3} \mathrm{U}_{0}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}\). \(\mathrm{IG}^{2}\).
OTHER: \(\qquad\)
ROCK GEOCHEM.
\(\qquad\)

№ 300070 H

E
Chemex Labs Ltd. 212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1 Ph. (604) 984-0221 Telex 04-352597 -
SATE: \(\qquad\)
SORE SIZE: \(\qquad\)
JRILLHOLE: \(\frac{\mathrm{Fi} \text { Ciz-04 }}{1}\)
=OUTAGE: \(\qquad\) \(13.0-13.6\)
REMARKS: \(\qquad\) ASSAY: Ag, Au, Cu, Mo, Pb, Zn, Sn. Hg. \(W_{3}, \mathrm{U}_{3} \mathrm{U}_{\mathrm{e}}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Te}\).


ROCK GEOCHEM. \(\square\)





\(c^{\prime}\)



Sample A \(=57098\)
sane Dee 10/92 Paee \(172 \cdot-179.4\) mam ki 92-04

Description..
\(\qquad\)
\(\qquad\)
Assay for \(1 \subset p-32\)


Dase Dee 10/92 pace \(\mathrm{RL} 92-0.4\) mand \(16.1 .45-172 \cdot 6\). Dosacivion.
\(\qquad\)
Aservor ICP -32




Datect \(30 / 92\)
place RL92-0?
\[
\text { wiath. } 12: 90-15: 00
\]

Descripion.....................
\(\qquad\)
\(\qquad\)
Asay For Au/C.C.
\(\{\)





\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{28}{|l|}{\multirow[t]{13}{*}{}} \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}



(

\(c^{\prime}\)

```


[^0]: 1 Dressler, Burkard, O., 1980, Pg. 2, 3.

[^1]: 2 Dressler, Burkhard, O., 1980, Pg. 2

[^2]: 3 Thomson, J.E., Nov. 29, 1949. Correspondence to J.A. McClasky (Toronto, Ontario) and Thure Holmstrom (Benny, Ontario), 2 pages.

 4 Cosec, M.
 August 9, 1991. Correspondence and assay data to Harold J. Tracanelli, 2 pages

