

41114880029 001181 1658

TOWNSHIP: Hess

DIAMOND DRILLING

÷Ē.

REPORT No.: 19

WORK PERFORMED BY: Cominco Ltd.

CLAIM NO.	HOLE NO.	FOOTAGE	DATE	Note
S 471072	He 3-3-77	327.0	Aug/77	(1)
	Toral: 104	327.0	1	

NOTES: (1) #85-81

010

FORM S22	690' East		
1+10N	DIAMOND	DRILL REPORT	August 7, 1977
RAST 1+5UE			Angust 11, 1977
ELEV. Surface			PURPOSE OF
Collar @ 60° - no other	PROPERTY MIRON OPTIC	N - HESS #3 GROUP	under DDH \$1
tests_	6-471072 Ex Core	Hess Township	

12.

FROM

0

3

	S-471072 Ex Core	ness lownship Dri				lled by: Wm. Manderstrom		
		CORE SAMPLES						
то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE	
J	Casing.						Nushn	
182.5	Espanola formation - a mixture of						Nore: Only THE	
	limey siltstone and carbonate sand or re-						FIRST 120' FAVE	
· · · · · · · · · · · · · · · · · · ·	crystallized (?) carbonate mud.						been filed for	
	The siltstones are fine grained and						Assessment persona	
	thinly bedded, varying in colour from dark							
	lime green, to grey green, grey brown and							
	putty shades. Both the siltstones and							
	carbonate sections react strongly with HCl.	-						
					1	1		

	limey siltstone and carbonate sand or re-	F. KST 120 TAVE
	crystallized (?) carbonate mud.	been filed for
	The siltstones are fine grained and	Assessment persona.
	thinly bedded, varying in colour from dark	K.
	lime green, to grey green, grey brown and	
	putty shades. Both the siltstones and	
	carbonate sections react strongly with HCl.	
	The carbonate phases whether they be	
	carbonate sands or recrystallized carbonate	
	mudsare somewhat granular in texture	
	producing a salt and pepper appearance to	IRELEIV-
	the core. These units vary from light to	
	dark grey, green grey and brown grey in	A.M.
	colour. Bedding within these units is very	
	poorly developed to nonexistent. Mineral-	۵
•	ogically, the carbonate sections are almost	
	wholly composed of carbonate - in some	
	coarser grained horizons minute 'eyes' of	
	quartz(?) and carbonate (average 1 mm) are	
	visible. Occasionally, an odd lenticular	1
	fragment of siltstone may be found in these	
	carbonate sands.	

DIAMOND	DRILL	REPORT
---------	-------	--------

1 States	*	1 × 1	
2	•		

PROPERTY MIRON OPTION - HESS #3 GROUP

Hess Township

NORTH	
EAST	
ELEV	
AZIM,	_
DIP	_

CORE SAMPLES τo FROM DESCRIPTION DESCRIPTION OF SAMPLE RECOV. WIDTH ASSAY FROM TO Metamorphism does not appear to be much (if any) of a contributing factor to the granular nature of these carbonate sands. Thus, it appears to follow, that some variation in the type or direction of source material is needed to achieve an assemblage of interbedded carbonate sand and fine silt units. Sulphides in this zone are very minor in amount, usually finely disseminated but occasionally smeared along bedding planes. Pyrite is the almost exclusive 'ulphide mineral. Fracturing in the silty-sand sequence consists of scattered fine stringers of calcite normally at a shallow angle to the <u>CONCRY</u> LILIVE core. Banding in the silt-carbonate sand A.*. sequence is quite variable along the core as: @ 13' - 37°; @ 18' - 40°; @ 22' - 35°; <u>e 28' - 45°; e 38' - 45°; e 58' - 40°;</u> \$ e 60' - 35°; e 65' - 35°; e 72' - 25°; **e** 89' - 25°; **e** 96' - 35°; **e** 122' - 42°; $0.136' - 50^{\circ}; 0.164' - 60^{\circ};$ and the lower

FORM	\$22

NORTH __

EAST

AZIM.

DIP ____

DIAMOND DRILL REPORT

RIVIJAHN	NUPP	

PUNFOSE OF

.

HOLE

PROPERTY MIRON OPTION - HESS #3 GROUP

Noce Township

-

			Hess Township					
FROM	TO	TO DESCRIPTION		c	ORE SAMPL	E3		
			FROM	то	RECOV.	WIDTH	ASSAY	
•		contact e 182.5 - 60° .						-
		Top determinations from the banding				L	- 	
		are somewhat tentative since grain					44 ·	
		gradations, cross beds, etc. are not well						
		developed. Although the evidence is weak,						
		tops appear to be up the hole to a point						
		around 125' - after that point where the				 		
		bedding angles steepen, tops are suggested						
		to be down the hole.						
		The base of this sequence, beginning						
·.		at 178.2, grades a dark lime green in						•
		colour before entering a fragmental zone						
		from 180-182.5. The fragmental zone						
		((breccia? or erosional unconformity(?)))						
		consists of erratic whitish to pale green,						EUDBURY
		subangular fragments of limestone in a						REDEVED
		fine, variably chloritic limey siltstone						
		matrix.						
		Sections of lost core: 50-52; 73.3-						7-61910/1112/12/01/1516
		75.5; 87.2-87.8; and 119-121.2.						Á
182.5	317.7	Contact at 60° to Espanola limestone -						
		the creamy to greyish white and white		· ·				
		limestone seen in both DDH's 1 and 2.						

PORM S22

•

NORTH .

EAST ____

AZIM.

DIP_

DIAMOND DRILL REPORT

- 01

4.

E.

. 5

PHILIPED

.

HOLE _____

PROPERTY____MIRON OPTION - HESS #3 GROUP

Hess Township

				c	ORE SAMPL	C 9			
7RQM	10	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE	
		Near the upper contact the limestone							
	ļ	is pale greenish to greyish in colour for		 					
	ļ	about 3.5' (to 186). After 186, the							
	<u> </u>	limestone is lighter and more porcelainous							
		in appearance.							
		The limestone is fairly well fractured							
· ••-		with fine seams of brownish to yellowish		<u></u>					
		sericite and dark green chlorite. Similar							
		alteration minerals occur along some of							
•		the bedding planes within the limestone.						· · · · · · · · · · · · · · · · · · ·	
		Fine stringers of calcite are present, but							
		are not abundant near the top of the							
		limestone.							
		Carbonate (calcite) does become							
		significant, however, approaching a fault						in commence	
		zone that runs along the core from 297.5							
		to 309. The fault zone is marked by 2 to							
		5 mm of mud-gouge locally cemented with							
		calcite. Surrounding the fault zone the							
		limestone is strongly fractured, brecciated							
	1	and injected with masses of calcite.						· ·	
		Previous to the fault zone (beginning at							
		286.5), there is a sharp increase in							
· · · · · · · · · · · · · · · · · · ·		fracturing with associated chlorite							

FORM 522

NORTH .

ELEV, ____

DIP ...

DIAMOND DRILL REPORT

Alter a start and a start a start	444.8 S	1.1.1	3-11
Service and the service of the servi			
	100 C	Sec	

	200	- ÷ · ·	•
 urfost of	·	i.e.	-

HOLE ...

PROPERTY MIRON OPTION - HESS #3 GROUP

Hess Township

FROM	TO		CORE SAMPLES						
	10			то	RECOV.	WIDTH	ASSAY		
		sericite alteration. In approaching the							
		gouge zone the fracturing increases and							
		localized breccia horizons are common.	2	1					
-		The bedding in this area becomes extremely	215	218		3		ISt - neg. sulph.	
	1	contorted and often trends subparallel to	218	221		3		" - very minor Pb py cp	
		the core axis. The first wide stringer of	221	222.5		1.5		" - 7% Pb cp pv	
		carbonate is noted just previous to the	222.5	225		2.5		" - 3-5% Pb pv cp	
		fault gouge.							
		After 309 (end of gouge), the lime-				·			
		stone is cut by wide stringers of carbonate							
		with the remaining limestone being weakly							
		brecciated and showing highly contorted							
		bedding.							
		Previous to the area disturbed by							
		faulting the bedding in the limestone is						DEAL	
		fairly regular. A gradual steepening of							
		the angle to the core axis is quite evident,							
		however, as: @ 185' - beds @ 60°; @ 212' -						A.M.	
		65°; @ 218' - 70°; @ 245' - 70°; @ 269' -							
		75° and by $280-285' - 85^{\circ}$.						8	
		In comparison with the two previous							
		holes, there is an increase in the sulphide							
		content here. Pyrite, chalcopyrite,							
		galena, sphalerite and pyrrhotite(?) can							

NORTH	 	
EAST	 	
ELEV		
AZIM		
DIP	 	

VIARIVAN NAILL ALEVAL

FURFORE OF

HOLE ----

PROPERTY____MIRON OPTION - HESS #3 GROUP

Hess Township

N- 38-

	 DESCRIPTION		C	DRE SAMPLI	CS.		
FROM	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
	be found erratically along the core. The						
	heaviest concentrations of sulphides tend	265	270		5		Ist - tr py cp
	to occur in vuggy patches or along intense	270	271		1		* 10% Pb Zn py cp
	fracturing with accessory sericite-chlorite	271	275		4		" tr Pb Zn py
	as at: 194.4 - fracturing w. py; 200.6 -						
	vuggy w. py; 220 - vuggy w. py; 221.8-222.4						
	intense fracturing with carbonate PbS, py, cp	285	290		5		LSt - minor py cp
	224.2 - fracturing py, Pb; 270.6-271 - vuggy	290	292		2		" minor py cp
	w. CO3, Pb, Zn, py; 289.8-290.1 fracturing w.	<u>292</u>	293		1		" 78 ру ср
	py.cp,po; 292-292.5 fracturing heavy	293	295		2		* tr py cp
	sericite, py, cp; and @ 313.5 few blebs cp				- 1		
	in a CO ₃ str. Other scattered occurrences						
	of sulphides may be found but the above	300	305		5		Fault zone - minor py
	sections are examples of the greatest						
	concentrations.						
	Through the area of faulting and mud	310	315		5		LSt - 80% CaCO3 - minor py cp
	gouge, the only sulphide noted was pyrite						
	in isolated blebs. These pyritic blebs						······································
	normally occur marginal and subparallel to						
	the mud gouge. The fault would certainly						RELEIVE
	not appear to be a source for the lead-zinc						
	-chalcopyrite mineralization scattered						A.M.
	elsewhere in the limestone.					[
	Lost core in limestone at: 304.5-306.	5.					λ

NO EA: ELI AZI DIF	NTH ST EV IM	PROPERTY	PTION -	HESS	KI #3 GROU	P	COMMENS FINISHED FURPOSE HOLE	67
				Не	ss Town	ship		
FROM	то	DESCRIPTION		70	ORE SAMPL			DESCRIPTION OF SAMPLE
		mb. laws contact of the limestone is						
····-		The lower contact of the limestone is					 	
	 	along a carbonate stringer from 317,2-317.7					 -	
		Lower contact of the stringer is at 75°.						
	221 0	Contact to a unit of breccia, frag-						
31/./	321.0	mental conglomerate(2) as seen in DDH						
		Up to 319.8 the rock is a fine sand to						
	1	silt, banded at 75° and variably carbona-						
	+	tized. After 319.8 this unit is generally						
		fragmental with a bit of fine grained						······
		granite(?) from 321.1-321.7 (contacts						
		broken).						
- <u> </u>	1	The evidence does not appear to be			+		[j-	
	1	conclusive to suggest whether or not the						A. T.
		adjacent granite is older or younger than			· · ·			
		the preceding sedimentary suite.				1	· 1	4
		Fragments in this section vary from						
		angular to subrounded - the granite frag-						
		ments being of both types. Some of the						
		angular fragment types include - yellowish						-
		brown sericitic types; black, fine grained						
		types; brownish limey types (derivation??);						
		and the odd calcite fragment.						

FORM	\$22	

DIAMOND DRILL REPORT

ORTH		 	
AST	 	 	
LEV	 	 	
ZIM		 -	
1P		 	

MIRON OPTION - HESS #3 GROUP PROPERTY_

HOLE __ Hess Township CORE SAMPLES

COMMENCED FINISHED PURPOSE OF _

8.

	1							
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		Fragments range from 1 mm to 2 cm in size.						
		The fine grained granitic section	[
	1	suggests intrusion but there is no evidence						· · ·
		of chilling on the adjacent sediment-brecci	a.					
		On the other hand the bedding and the						
		lineation of the angular fragments are						
		conformable with the overlying limestone.						
		In re-examining DDH #1 the contact						
		unit shows definite conformable sedimentary						
		banding. Further, in hole #1, the contact						
		zone is carbonatized while the granite is	; i					
		not, and the granite is not finer grained						•
		at the contact.	1					
		In this hole the contact zone is						
		variably carbonatized, and the adjacent						
		granite is carbonatized only in regular						
		open fracture patterns. The granite here						
		does show a weak sense of being finer						
		grained near the contact, however.						
		Unfortunately, there are no inclusions of						
		foreign material within the granite to						
		yield a more conclusive interpretation.						
		·····			1	1		

	ORTH ASY LEV, ZIM, IF	PROPERTY_MIRON O	PTION -	HESS	3 GROU	P	COMM FINISH FURFO HOLE	ED
				He	ss Town	ship		
FROM	то	DESCRIPTIÓN	FROM	то	RECOV.	KS WIDTH	ASSAY	DESCRIPTION OF SAMPLE
321.8	327	Broken, irregular contact to granite.						
		The granite is medium to coarse grained						
······································		and greyish with approximately 55% pale						
<u></u>		greenish to pinkish and white feldspar,						
		35-40% clear to greyish quartz and 5-10%						
		hornblende-biotite.			1			
			325	327		2		Granite - for U308 bckg.
		·	ļ					
<u></u>								
······	327	END OF HOLE						
. <u> </u>	-							
			· ·					Dr. P (Ding
							1	HOLINGER MINES LIMITED
		· · · ·	1					
			1					I IIIIIIIII, UAIARIU
			 	1	1 .			
مى غايق مى اللغ بالي مى بين مى بين م الغ الغاية		· · · · · · · · · · · · · · · · · · ·	1	A.S		•		· · · · · · · · · · · · · · · · · · ·
			t		·	1		· · · · · · · · · · · · · · · · · · ·

Form 70-2			•			and a transmission and a second a	.
	•••	HOLLI	GFR HINES LI	DUTED	• T		ľ '
		Groche	alcol Lah. J	inners	•	•	
• From	Hollinger			Date.	September	.17	1.00
	• • • • • • • • • • • • •		• • • • • • • • • • • • •	Extra	action	•••••	
Analyst				,, Fraci	tion used -	100 Mesh 80 Nesh	
	Geo	chem resul	ts for Hes	s #3 Group	T		
Sample No.	Ng - ppb	Cu - pra	Zn - pŗm	Ni - pra	Ag - ppm	РЪ – ррл	Au
HE3-2-77							
40-45		70	143 ·		4	1090	Tr.
45-46.5		20	319		2		Ťr.
				· · · · · · · · · · · · · · · · · · ·			[•
40-45 (A	g repeat in	oz. = 0.1	5)		·		
HE3-3-77					•		
215-218		20	66		<1	265	Nil
218-221		33	116		<٠1	475	
221-222.5		213	235		13	26500	Tr.
222.5-225		100	2025		< 1	705	Nil
265-270		37	209		3	595	Tr.
270-271		135	11050	•	4	6550	Tr.
271-275		54	325		< 1	1050	Nil
285-290		248	265		<1	295	
290-292		1490	191	•	< 1	130	•
292-293		4225	257	-	3 .	210	Tr.
293-295		285	212		<1	95	Tr.
300-305		· 55	165	•	N.D.	120	NII
310-315		527	1050		1	. 305	Tr.
325-327	0.001% Uz	08	· · · ·				>
				•			-1
221-222.5	(Ag repeat	in oz. =	0.52)			•	•
270-271	(Ag repeat	in oz. =	0.13)	7			
				1 4 2 2	19.00 A	·	
				1	STARY IS		•
			;	L'anne d'	100 D/		
			•		2101 21		
	·	· · ·			19/		
·			·		h		
ł	I						
Page		•					

PLAN. Or HE'3-1-77 DON HES.E- 77 SUDBURY RECEIVED HE3.3-77 SEP 29 1981 v-HESS TWP 7,8,9,9,1,12,2,2,8,4,5,6 Scale 1" = 400 117 N NES-5-77 - 690'----HE3-2-77 Q/~ HE3-1-77 783'-SUDBURY MINING DV. RECEIVED 1052 516 905' SEP 1 8 1931 S 471072 7131917011112111213141516 â HE 5-2-77 HE3.3.77 HE 3-1-77 Aug 5/77 July 30/17 A.g 7/27 STATIO Aug 11 /07 Aug 6/27 Aug 2/27 FINISHED . 81 " EX .81" . 81" DID of Cond 327 120 (so and 120' LENGTH 180' - 450 Dip 450 - 60 " 1510 Az 151° 294. WA MANDERSTROM CINTANCIIC Box 429 TEMAGIAN,

Dre 10/01 Mare 4/77

MUNSTER TWP. I

MONCRIEFF TWP. M.869