125418

010

GEOPHYSICS, GEOLOGY AND ASSAY RESULTS

 JUNE 1988 EXPLORATION PROGRAMON THE
PARKIN TOWNSHIP - HICKS PROPERTY SUDBURY MINING DIVISION

FOR
PROPHET RESOURCES LTD.

[^0]Summary
Location and Access
Previous Work
Geophysical Surveys
Geological Survey
Conclusions and Recommendations
Certificate
Figure 1 - Index map - Parkin Township
2 - Claim map - Hicks Property
Table 1 - Sample locations and assay results
Back pocket - Drawing 1 - Geological Survey

- Drawing 2 - VLF EM Survey
- Drawing 3 - Magnetometer Survey
- Drawing 4 - Mag.-Gradient Map

PROPHET RESOURCES LTD。

FIGURE 1

SUMMARY

Geophysical and geological surveys were carried out over sixteen leased claims in Parkin Township optioned from G. Hicks by Prophet Resources Ltd. in June 1987.

Grid lines totalling 27.65 miles were cut at 200 foot intervals using the high voltage Ontario Hydro powerline as a base line. The powerline runs North 10 degrees West. This azimuth was used as project North, with perpendicular cut lines in nominal east-west directions. Stations were marked and readings taken at 50 foot intervals.

Outcrops along the grid lines were mapped and rock chip samples taken and assayed for gold, platinum and palladium. Results of the program were considered to be of encouraging and, on completion of the program, the option on the claims was dropped.

LOCATION AND ACCESS

The claims are located in lots 9,10 , and 11 , conc. III of Parkin Township. Parkin Township is located on the Eastern portion of the north boundary of the Regional Municipality of Sudbury. Access to the property is via paved road (Regional Road 84 - formerly Moose Mountain Mine Road) north from Capreol a distance of approximately 13 km . thence easterly a distance of approximately 5 km . by a 4×4 access road used for powerline construction and maintenance. This road crosses the property from the western edge to the eastern portion of the northern boundary.

PREVIOUS WORK

Previous work on the property included trenching and diamond drilling in 1964 and 1965. Diamond drilling consisted of 3 holes; \#1 - $115 \mathrm{ft} ., \# 2-103 \mathrm{ft}$. and \#3-137 ft. Best assay reported was from hole \#2-25 ft. -27.5 ft . (. 02 oz Au/Ton) *.

Grab samples from the trenches were reported to assay as high as $6.05 \% \mathrm{Cu}, 4.80 \%$ nickel, .336 oz/ton platinum group metals and . 19 oz $\mathrm{Au} /$ ton.*

GEOPHYSICAL SURVEYS

Magnetometer and VLF-EM surveys were run utilizing EDA Omni Plus instruments operated by Mr. Peter Bilinki of Sudbury. VLF transmitter station used was Annapolis, Md. - frequency 21.4 khz . Results were plotted by N.K. Germundson and R.K. Germundson of Sudbury. No magnetic highs which could be indicative of heavy pyrrhotite mineralization were found. A VLF crossover from line 52 N 13 W to line 42 N 2 W was

* data provided by S. Brennan, Callander, Ontario
interpreted as being a probable non bedrock conductor. A weak VLF crossover from line 36 N 6E to line 26 N 10E was interpreted as being of non-economic interest due to the absence of any mineralization in the outcrop in this area. Crossovers in the north-east portion of the property were interpreted as being non-bedrock conductors. Missing VLF data from the eastern portion of the grid on lines 12 N through 26 N was due to the VLF transmitter station not operating at the time of the survey and the existence of a time deadine not permitting a return to the property.

GEOLOGICAL SURVEY

Geological mapping of the surface outcrops and sampling of the outcrops was done by Mr. Peter Peschke of Onaping, Ontario. The geological map was plotted by N. Germundson. A total of 2.38 samples were taken and assayed for gold, plalimum arif palladtum. The highest assays were as follows:

- Gold - 468 ppt
- Platinum - 40 ppb
- Palladium - 25 ppb

Results were plotted on the geological map and are listed in Table I attached.

CONCLUSIONS AND RECOMMENDATIONS

The geologleal and geophysical survey failed to show where the previonsty reported high values in nickel, copper, gold and platinum group metals may have been derived. It was recommended lo Prophet Resources Ltd. not to continue the option agreement.

CERTIEICATE OF QUALIFICATION

I, Lloyd Joseph Bardswich do hereby certify:

1) that I am a mining engineer and reside at 1387 Orange Grove Drive, Sudbury, Ontario P3A 4 T9.
2) that I graduated from McGill University, Montreal, Quebec with a Master of Engineering (Mining).
3) that I have practised my profession for the past eighteen years.
4) that my Report On Geophysics, Geology and Assay Results in Parkin Township, Sudbury Mining Division, for Prophet Resources Ltd. is a product of:
a) Examination of data included in the report which was collected on the property concerned.

June 13, 1988
Sudbury, Ontario

TABLE 1
Hick's Property - Parkin Township
SAMPLE LOCATIONS \& ASSAY RESULTS

$\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$	Grid Location	Assay Results		
S1	L00, $6+50 \mathrm{~W}$	< 5	<15	<10
S2	L00, $10+25 \mathrm{~W}, 0+10 \mathrm{~S}$	7	<15	<10
S3	L00, $12+95 \mathrm{~W}$	<5	<15	<10
S4	L2N, $13+90 \mathrm{~W}, 0+055$	<5	<15	<10
S5	L2N, $10+75 \mathrm{~W}, 0+25 \mathrm{~S}$	< 5	<15	<10
S6	L2N, $4+00 \mathrm{~W}, 0+20 \mathrm{~N}$	7	<15	<10
S7	L2, $1+15 \mathrm{~W}$	15	<15	<10
S8	L4N, $4+50 \mathrm{~W}$	8	<15	<10
S9	L4N, $12+30 \mathrm{~W}, 0+05 \mathrm{~N}$	<5	<15	<10
S10	L6N, $10+50 \mathrm{~W}, 0+05 \mathrm{~N}$	8	<15	<10
S11	L6N, $9+50 \mathrm{~W}$	<5	<15	<10
S12	L6N, 8+ 15W	7	<15	<10
S13	L6N, $4+10 \mathrm{~W}, 0+25 \mathrm{~N}$	<5	<15	<10
S14	L6N, $0+50 \mathrm{w}, 0+45 \mathrm{~N}$	<5	<15	<10
S15	L8N, $1+85 \mathrm{~W}, 0+20 \mathrm{~N}$	< 5	<15	<10
S16	L8N, $2+60 \mathrm{~W}, 0+15 \mathrm{~N}$	< 5	<15	<10
S17	L8N, $4+20 \mathrm{~W}, 0+10 \mathrm{~N}$	31	<15	<10
S18	L8N, $9+90 \mathrm{~W}, 0+15 \mathrm{~S}$	< 5	<15	<10
S19	L8N, $11+10 \mathrm{~W}$	<5	<15	<10
S20	L8N, $12+10 \mathrm{~W}, 0+15 \mathrm{~N}$	< 5	<15	<10
S21	L8N, $11+80 \mathrm{~W}, 0+80 \mathrm{~N}$	<5	<15	<10
S22	L10N, $5+00 \mathrm{~W}, 0+30 \mathrm{~N}$	<5	<15	<10
523	L10N, $1+65 \mathrm{~W}, 0+20 \mathrm{~S}$	14	<15	<10
S24	$\mathrm{L} 12 \mathrm{~N}, 9+50 \mathrm{~W}, 0+85 \mathrm{~N}$	< 5	<15	<10
S25	L12N, $10+10 \mathrm{~W}$	<5	<15	<10

$\begin{gathered} \text { Sample } \\ \mathrm{No} . \end{gathered}$	Grid Location	Assay Results		
S26	$\mathrm{L} 12 \mathrm{~N}, 11+60 \mathrm{~W}, 0+25 \mathrm{~S}$	7	<15	<10
527	L14N, $11+60 \mathrm{~W}, 0+25 \mathrm{~S}$	5	<15	<10
S28	L14N, $10+95 \mathrm{~W}$	<5	<15	<10
S29	$\mathrm{L} 14 \mathrm{~N}, 8+65 \mathrm{~W}$	<5	<15	<10
S30	$\mathrm{L} 14 \mathrm{~N}, 4+40 \mathrm{~W}$	< 5	<15	<10
S31	L14N, $3+00 \mathrm{~W}, 0+05 \mathrm{~S}$	<5	<15	<10
S32	$\mathrm{L} 14 \mathrm{~N}, 0+50 \mathrm{~W}, 0+10 \mathrm{~S}$	<5	<15	<10
S33	L16N, $0+00$?, $1+00 \mathrm{~S}$	<5	<15	<10
S34	L16N, $0+25 \mathrm{~W}, 0+40 \mathrm{~S}$	<5	<15	<10
S35	$\mathrm{L} 16 \mathrm{~N}, 11+10 \mathrm{~W}, 0+05 \mathrm{~S}$	5	<15	<10
S36	L16N, $11+50 \mathrm{~W}$	25	<15	<10
S37	L16N, $13+40 \mathrm{~W}$	< 5	18	<10
S38	$\mathrm{L} 16 \mathrm{~N}, 14+60 \mathrm{~W}$	16	<15	<10
S39	L16N, $15+25 \mathrm{~W}, 0+25 \mathrm{~S}$	< 5	<15	<10
S40	L16N, $16+50 \mathrm{~W}$	< 5	<15	<10
S41	$\mathrm{L} 16 \mathrm{~N}, 18+50 \mathrm{~W}, 0+50 \mathrm{~N}$	< 5	<15	<10
S42	$\mathrm{L} 16 \mathrm{~N}, 21+50,0+25 \mathrm{~N}$	5	15	<10
S43	L18N, $22+10 \mathrm{~W}$	<5	<15	<10
S44	L18N, $20+102,0+10 \mathrm{~S}$	12	<15	<10
S45	L18N, $14+00 \mathrm{~W}$	<5	<15	<10
S46	L18N, $13+10 \mathrm{~W}$	48	<15	<10
S47	$\mathrm{L} 18 \mathrm{~N}, 6+80 \mathrm{~W}$	< 5	18	<10
S48	$\mathrm{L} 18 \mathrm{~N}, 3+35 \mathrm{~W}$	< 5	<15	<10
S49	L18N, $2+75 \mathrm{~W}$	< 5	<15	410
S50	L18N, $1+00 \mathrm{~W}$	< 5	<15	<10
S51	L20N, $2+00 \mathrm{~W}$	< 5	<15	<10
S52	L20N, $3+20 \mathrm{~W}$	<5	<15	<10

Sample No.	Grid Location	Assay Results		
S53	L20N, $9+10 \mathrm{~W}, 0+10 \mathrm{~N}$	< 5	<15	<10
S54	L20N, $10+35 \mathrm{~W}$	50	<15	<10
S55	L20N, $14+10 \mathrm{~W}, 0+10 \mathrm{~S}$	<5	<15	<10
S56	L2ON, $12+10 \mathrm{~W}, 0+10 \mathrm{~S}$	9	<15	<10
S57	L20N, $22+50 \mathrm{~W}, 0+25 \mathrm{~N}$	17	<15	<10
S58	L22N, $22+50 \mathrm{~W}, 0+15 \mathrm{~N}$	10	<15	<10
S59	L22N, $21+50 \mathrm{~W}, 0+05 \mathrm{~N}$	7	15	11
S60	L22N, $18+40 \mathrm{~W}, 0+10 \mathrm{~S}$	< 5	<15	<10
S61	L22N, $17+15 \mathrm{~W}, 0+15 \mathrm{~S}$	< 5	<15	<10
S62	L2.2N, $15+95 \mathrm{~W}, 0+20 \mathrm{~S}$	6	<15	<10
S63	L22N, $7+55 \mathrm{~W}, 0+20 \mathrm{~N}$	7	15	<10
S64	L22N, $3+50 \mathrm{~W}$	9	<15	11
S65	L22N, $1+00 \mathrm{~W}, 0+30 \mathrm{~N}$	7	<15	<10
S66	L22N, $0+00 ?, 0+35 N$	<5	26	<10
S67	$\mathrm{L} 24 \mathrm{~N}, 1+95 \mathrm{~W}, 0+20 \mathrm{~N}$	6	<15	<10
568	L24N, $4+10 \mathrm{~W}, 0+10 \mathrm{~S}$	8	<15	<10
S69	L24N, $6+00 \mathrm{~W}$	5	<15	<10
S70	L24N, $12+10 \mathrm{~W}$	11	<15	11
S71	L24N, $14+85 \mathrm{~W}$	<5	<15	<10
S72	L24N, 16 -65W	<5	<15	<10
ST3	$1.24 \mathrm{~N}, 18+00 \mathrm{~W}, 0+15 \mathrm{~S}$	<5	18	<10
S74	$\mathrm{L} 24 \mathrm{~N}, 19+50 \mathrm{~W}, 0+10 \mathrm{~N}$	<5	<15	<10
S75	L24N, $22+30 \mathrm{~W}, 0+10 \mathrm{~N}$	<5	<15	<10
S76	L24N, $24+00 \mathrm{~W}, 0+10 \mathrm{~S}$	< 5	<15	<10
577	L24N, $26+00 \mathrm{~W}, 0+50 \mathrm{~N}$	5	<15	<10
S78	L26N, $24+25 \mathrm{~W}, 0+10 \mathrm{~N}$	<5	<15	<10
S79	L26N, $23+00 \mathrm{~W}$	8	<15	<10

$\begin{gathered} \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$	Grid Location	$\begin{aligned} & \text { Assay Results } \\ & \text { Au } \mathrm{Pt} \end{aligned}$		
580	$\mathrm{L} 26 \mathrm{~N}, 19+00 \mathrm{~W}, \mathrm{O}+25 \mathrm{~N}$	<5	<15	<10
S81	$\mathrm{L} 26 \mathrm{~N}, 15+75 \mathrm{~W}, 0+05 \mathrm{~N}$	6	<15	<10
S82	$\mathrm{L} 26 \mathrm{~N}, 14+00 \mathrm{~W}, 0+40 \mathrm{~N}$	5	17	<10
S83	L26N, 11 + 90W	43	<15	<10
S84	L26N, $10+35 \mathrm{~W}$	<5	24	19
S85	L26N, $3+50 \mathrm{~W}$	6	<15	<10
S86	$1.26 \mathrm{~N}, 2+25 \mathrm{~W}$	<5	18	<10
S87	L26N, $1+00 \mathrm{~W}, 0+15 \mathrm{~N}$	< 5	<15	<10
S8H	L00, $2+25 E$	15	<15	<10
S89	L2N, $7+30 \mathrm{E}, 0+25 \mathrm{~N}$	< 5	<15	<10
S90	L2N, $5+75 \mathrm{E}, 0+10 \mathrm{~N}$	<5	<15	<10
S91	L2N, $1+00 \mathrm{E}$	< 5	<15	<10
S92	$\mathrm{L} 4 \mathrm{~N}, 0+50 \mathrm{E}, 0+20 \mathrm{~N}$	< 5	<15	<10
S93	L4N, $1+25 \mathrm{E}$	< 5	<15	<10
S94	L4N, $7+00 \mathrm{E}$	< 5	<15	<10
S95	$\mathrm{L} 4 \mathrm{~N}, 11+35 \mathrm{E}, 0+25 \mathrm{~S}$	< 5	<15	<10
S96	L6N, $0+50 \mathrm{E}, 0+15 \mathrm{~S}$	<5	<15	<10
S97	L6N, $10+00 \mathrm{E}, 0+10 \mathrm{~N}$	<5	<15	<10
S98	L6N, $23+50 \mathrm{E}$	< 5	<15	12
S99	L6N, $24+20 \mathrm{E}$	<5	<15	12
S100	L8N, $23+95 E, 0+95 S$	<5	<15	<10
S101	L8N, $23+70 \mathrm{E}$	<5	<15	<10
S102	L8N, $13+15 \mathrm{E}, 0+30 \mathrm{~N}$	<5	<15	<10
S103	L8N, $11+45 \mathrm{E}, 0+15 \mathrm{~N}$	<5	<15	<10
S104	L8N, $3+95 \mathrm{E}$	<5	<15	<10
S105	LION, $4+25 \mathrm{E}, 0+10 \mathrm{~N}$	<5	<15	14

Sample No.	$\begin{gathered} \text { Grid } \\ \text { Location } \end{gathered}$	Assay Results		
S106	L10N, $12+$ O0E, $0+25 \mathrm{~S}$	< 5	<15	14
S107	L10N, $22+85 \mathrm{E}$	<5	<15	10
S108	L10N, $24+40 \mathrm{E}$	25	<15	<10
S109	$\mathrm{L} 12 \mathrm{~N}, 25+15 \mathrm{E}, 0+25 \mathrm{~N}$	7	<15	<10
S110	L12N, $21+00 \mathrm{E}$	25	<15	<10
S111	L12N, $8+15 \mathrm{E}, 0+10 \mathrm{~S}$	7	<15	<10
S112	$\mathrm{L} 12 \mathrm{~N}, 6+45 \mathrm{E}$	8	<15	<10
S113	L14N, $0+95 \mathrm{E}, 0+50 \mathrm{~S}$	< 5	18	25
S114	$\mathrm{L} 14 \mathrm{~N}, 0+75 \mathrm{E}$	< 5	<15	<10
S115	$\mathrm{L} 14 \mathrm{~N}, 1+50 \mathrm{E}, 0+10 \mathrm{~N}$	<5	<15	<10
S116	L14N, $3+60 \mathrm{E}, 0+15 \mathrm{~N}$	< 5	<15	<10
S117	L14N, $7+50 \mathrm{E}$	<5	<15	<10
S118	L14N, $16+25 \mathrm{E}, 0+75 \mathrm{~N}$	< 5	<15	<10
S119	$\mathrm{L} 14 \mathrm{~N}, 19+00 \mathrm{E}, 0+45 \mathrm{~N}$	10	<15	<10
S120	L14N, $22+40 \mathrm{E}, 0+10 \mathrm{~N}$	<5	<15	<10
S121	L16N, $25+15 \mathrm{E}$	<5	<15	<10
S122	$\mathrm{L} 16 \mathrm{~N}, 22+85 \mathrm{E}, 0+40 \mathrm{~N}$	<5	<15	<10
S123	L16N, $19+95 \mathrm{E}$	<5	19	<10
S124	L16N, $19+00 \mathrm{E}$	5	<15	<10
S12.5	L16N, $17+25 \mathrm{E}, 0+15 \mathrm{~N}$	64	<15	<10
S126	L16N, 15 + 65E	<5	40	<10
S127	L16N, $14+85 \mathrm{E}$	< 5	<15	<10
S128	L16N, $6+90 \mathrm{E}$	5	<15	15
S129	L16N, $5+50 \mathrm{E}$	<5	<15	<10
S130	L16N, $3+35 \mathrm{E}, 0+20 \mathrm{~N}$	<5	19	<10
S131	L16N, $2+45 \mathrm{E}$	<5	<15	10

$\begin{gathered} \text { Sample } \\ \mathrm{No} . \end{gathered}$	Grid Location	Assay Results $\mathrm{Au}, \mathrm{Pt} . \mathrm{Pd}$		
S132	$\mathrm{L} 16 \mathrm{~N}, 1 \mathrm{M}+50 \mathrm{E}, 0+05 \mathrm{~N}$	< 5	<15	<10
S133	$\mathrm{L} 18 \mathrm{~N}, 0+60 \mathrm{E}, 0+25 \mathrm{~N}$	33	<15	<10
S134	L18N, $5+15 \mathrm{E}, 0+10 \mathrm{~N}$	5	<15	<10
S135	L18N, $7+00 \mathrm{E}$	43	<15	<10
S136	L18N, $20+95 \mathrm{E}$	17	<15	<10
S137	L20N, $22+50 \mathrm{E}$	468	<15	<10
S138	L20N, $12+10 \mathrm{E}, 0+15 \mathrm{~S}$	13	23	<10
S139	L2ON, $4+50 \mathrm{E}$	25	<15	<10
S140	L20N, $2+25 \mathrm{E}$	31	<15	<10
S141	L22N, $1+10 \mathrm{E}, 0+25 \mathrm{~S}$	75	<15	<10
S142	$\mathrm{L} 22 \mathrm{~N}, 5+30 \mathrm{E}, 0+10 \mathrm{~N}$	30	<15	<10
S143	$\mathrm{L} 22 \mathrm{~N}, 23+15 \mathrm{E}, 0+25 \mathrm{~S}$	5	<15	<10
S144	$\mathrm{L} 24 \mathrm{~N}, 23+75 \mathrm{E}, 0+50 \mathrm{~N}$	64	<15	12
S145	L24N, $21+$ OOE, $0+15 \mathrm{~S}$	20	<15	<10
S146	$\mathrm{L} 24 \mathrm{~N}, 19+35 \mathrm{E}, 0+15 \mathrm{~N}$	< 5	<15	<10
S147	L24N, $10+25 \mathrm{E}$	<5	<15	<10
S148	L26N, $0+60 \mathrm{E}, 0+90 \mathrm{~S}$	12	<15	<10
S149	L26N, $3+40 \mathrm{E}$	7	<15	<10
S150	L26N, 5 1 10E	80	<15	<10
S151	L26N, $7+50 \mathrm{E}$	17	<15	<10
S152	$\mathrm{L} 25 \mathrm{~N}, 19+75 \mathrm{E}, 0+15 \mathrm{~S}$	114	<15	<10
5153	L28N, $23+30 \mathrm{E}$	5	<15	<10
S154	L28N, $22+65 \mathrm{E}, 0+90 \mathrm{~N}$	11	16	12
S155	L28N, $15+$ OOE	9	21	<10
S159	L28N, $0+75 \mathrm{E}, 0+30 \mathrm{~N}$	8	<15	<10
S160	L28N, $9+45 \mathrm{~W}$	9	<15	<10
S161	L28N, $13+80 \mathrm{~W}$	23	<15	<10

Sample No.	$\begin{gathered} \text { Grid } \\ \text { Location } \end{gathered}$	$\begin{aligned} & \text { Assay Results } \\ & \text { Au Pt Pd } \end{aligned}$		
S162	L28N, $14+65 \mathrm{~W}, 0+15 \mathrm{~N}$	55	<15	<10
S163	L28N, $17+10 \mathrm{~W}, 0+10 \mathrm{~S}$	215	<15	<10
S164	L28N, $24+45 \mathrm{~W}$	21	<15	<10
S165	L30N, $21+50 \mathrm{~W}, 0+10 \mathrm{~N}$	8	<15	<10
S166	L30N, $14+00 \mathrm{~W}, 0+10 \mathrm{~N}$	5	<15	<10
S167	L30N, $9+00 \mathrm{~W}, 0+20 \mathrm{~S}$	23	<15	<10
S168	L3ON, $0+35 \mathrm{E}, 0+75 \mathrm{~S}$	8	<15	<10
S169	L30N, $3+75 \mathrm{E}$	18	<15	<10
S170	L3ON, $6+$ OOE	10	<15	<10
S171	L30N, $10+40 \mathrm{E}, 0+25 \mathrm{~N}$	<5	<15	<10
S172	L30N, $15+50 \mathrm{E}$	<5	<15	<10
5173	L30N, $19+50 \mathrm{E}, 0+15 \mathrm{~N}$	11	<15	<10
S174	L32N, $21+50 \mathrm{E}$	6	<15	<10
S175	L32N, $11+25 \mathrm{E}$	<5	<15	<10
S176	[.32N, $9+$ OOE	< 5	<15	<10
S177	L32N, $6+95 \mathrm{E}, 0+10 \mathrm{~S}$	11	<15	<10
S178	L32N, $5+75 \mathrm{~W}$	7	<15	<10
S179	L32N, $12+50 \mathrm{~W}, 0+15 \mathrm{~N}$	<5	<15	10
S180	$\mathrm{L} 32 \mathrm{~N}, 18+45 \mathrm{~W}, 0+50 \mathrm{~N}$	<5	<15	<10
S181	L32N, $21+00 \mathrm{~W}, 0+25 \mathrm{~S}$	10	<15	<10
S182	$\mathrm{L} 32 \mathrm{~N}, 16+75 \mathrm{~W}, 0+25 \mathrm{~S}$	11	<15	<10
S183	L32N, $11+25 \mathrm{~W}$	9	<15	<10
S184	L34N, $4+65 \mathrm{E}, 0+30 \mathrm{~N}$	131	<15	<10
S185	$\mathrm{L} 34 \mathrm{~N}, 9+80 \mathrm{E}, 0+10 \mathrm{~S}$	12	<15	<10
S186	L34N, $12+65 \mathrm{E}, 0+10 \mathrm{~S}$	<5	<15	<10

$\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$	Grid Location	Assay Results		
S187	$\mathrm{L} 34 \mathrm{~N}, 17+80 \mathrm{E}, 0+60 \mathrm{~N}$	74	<15	<10
S188	L36N, $10+50 \mathrm{E}, 0+20 \mathrm{~S}$	35	<15	<10
S189	L36N, $1+50 \mathrm{E}$	<5	<15	<10
S190	L36N, $6+10 \mathrm{~W}$	<5	<15	<10
S191	L36N, $13+25 \mathrm{~W}, 0+20 \mathrm{~S}$	<5	<15	<10
S192	$\mathrm{L} 36 \mathrm{~N}, 21+50 \mathrm{~W}, 0+40 \mathrm{~S}$	162	<15	13
519.3	$1.38 \mathrm{~N}, 2+00 \mathrm{E}, \mathrm{O}+30 \mathrm{~N}$	26	<15	10
S194	L38N, $9+95 \mathrm{~W}, 0+25 \mathrm{~N}$	5	<15	10
S195	L38N, $20+65 \mathrm{~W}, 0+20 \mathrm{~N}$	<5	<15	<10
S196	L40N, $29+10 \mathrm{~W}$	5	<15	<10
S197	L40N, $22+00 \mathrm{~W}$	20	<15	<10
S198	L40N, $1+25 \mathrm{~W}, 0+25 \mathrm{~N}$	10	<15	<10
S199	L40N, $4+50 \mathrm{E}, 0+50 \mathrm{~S}$	20	<15	<10
S200	L4ON, $6+50 \mathrm{E}, 0+50 \mathrm{~S}$	35	<15	<10
S201	$\mathrm{L} 40 \mathrm{~N}, 11+35 \mathrm{E}, 0+15 \mathrm{~S}$	< 5	<15	<10
5202	L38N, $16+50 \mathrm{E}, 0+20 \mathrm{~N}$	21	<15	<10
5203	L38N, $10+50 \mathrm{E}, 0+65 \mathrm{~N}$	11	<15	<10
S204	L42N, $9+303,0+15 \mathrm{~S}$	6	<15	<10
S205	$\mathrm{L} 42 \mathrm{~N}, 0+15 \mathrm{~W}$	24	<15	<10
S206	$\mathrm{L} 42 \mathrm{~N}, 9+60 \mathrm{~W}, 0+20 \mathrm{~N}$	< 5	<15	13
S207	L42N, $13+75 \mathrm{~W}$	6	<15	<10
S208	L42N, $21+50 \mathrm{~W}, 0+20 \mathrm{~S}$	<5	<15	<10
S209	L44N, $25+00 \mathrm{~W}$	< 5	<15	<10
S210	L44N, $22+75 \mathrm{~W}$	<5	<15	13
S211	$\mathrm{L44N}, 6+45 \mathrm{~W}, 0+50 \mathrm{~S}$	< 5	<15	<10
S212	L44N, $0+15 \mathrm{~W}$	< 5	<15	<10
S213	L44N, $5+20 \mathrm{E}, 0+20 \mathrm{~S}$	< 5	<15	<10

Sample NO	Grid Location	Assay Results		
S214	L44N, $9+25 \mathrm{E}$	<5	<15	<10
S215	L46N, $12+25 \mathrm{E}, 0+20 \mathrm{~N}$	15	<15	<10
S216	L46N, $8+60 \mathrm{E}, \mathrm{O}+20 \mathrm{~S}$	8	<15	<10
S217	$\mathrm{L} 46 \mathrm{~N}, 0+75 \mathrm{E}, 0+25 \mathrm{~S}$	< 5	<15	<10
S218	L46N, $12+00 \mathrm{~W}, \mathrm{O}+25 \mathrm{~N}$	<5	<15	<10
S219	L46N, $19+95 \mathrm{~W}$	<5	<15	<10
S220	L48N, $1+00 \mathrm{E}$	<5	<15	<10
S221	L48N, $23+00 \mathrm{~W}, 0+35 \mathrm{~N}$	< 5	<15	<10
S222	L50N, $7+70 \mathrm{~W}, 0+20 \mathrm{~N}$	<5	<15	<10
S223	L50N, $7+70 \mathrm{~W}, 0+20 \mathrm{~N}$	< 5	<15	<10
S224	L50N, $5+15 \mathrm{~W}$	21	<15	<10
S225	L50N, $8+50 \mathrm{E}, 0+15 \mathrm{~S}$	8	<15	<10
S226	$\mathrm{L} 50 \mathrm{~N}, 11+35 \mathrm{E}, 0+20 \mathrm{~S}$	12	<15	23
5227	$\mathrm{L} 52 \mathrm{~N}, 8+40 \mathrm{E}, 0+45 \mathrm{~S}$	8	<15	22
5228	$\mathrm{L} 52 \mathrm{~N}, 1+75 \mathrm{E}, 0+25 \mathrm{~S}$	9	15	17
S229	L52N, $24+60 \mathrm{~W}, 0+55 \mathrm{~S}$	10	<15	<10
S230	$\mathrm{L} 42 \mathrm{~N}, 10+90 \mathrm{E}, \mathrm{D}+50 \mathrm{~S}$	<5	<15	<10
S231	$\mathrm{L} 43 \mathrm{~N}, 14+45 \mathrm{E}, 0+45 \mathrm{~S}$	7	<15	<10
S232	L50N, $12+25 \mathrm{E}$	15	27	18
S233	L52N, $21+20 \mathrm{E}$	<5	<15	<10
S234	$450 \mathrm{~N}, 23+75 \mathrm{E}, 1+00 \mathrm{~S}$	5	<15	<10
S235	L48N, $18+50 \mathrm{E}$	9	<15	23
S236	L42N, $23+10 \mathrm{E}, 0+30 \mathrm{~S}$	6	<15	<10
S237	L40N, $19+75 \mathrm{E}, 0+20 \mathrm{~S}$	6	<15	<10
S238	L38N, $19+55 \mathrm{E}, 0+30 \mathrm{~S}$	<5	<15	<10

[^0]: L.J. Bardswich, P. Eng.

 Sudbury Geological Services Inc. December 28, 1988

