REPORT ON THE PROPERTY OF JONSWITH GOLD MINES LIMITED
PARKIN TOWNSHIP - DISTRICT OF SUDBURY.

REPORT ON THE PROPERTY OF JONSMITH GOLD MINES LIMITED

PARKIN TOWNSIIP - DISTRICT OF SUDBURY.

INTRODUCTION:

Encouraged by grab-sampling which assajed well in nickel, copper, platinum, gold nnd ellver, the Directors of this Company recently undertook a short preliminary progran of diamond drilling and surface examination on their property in the Sudbury District. The primary aim was to corroborate the grab-sampling and to provide data with which to estimate the extent and nature of further work. The following report deals wit: the results of this program and with recommendations regarding the next stages of development.

LOCATION AND PHYSICAL ASPECTS:

The Jonsmith property consists of 24 mining claims covering portions of Lots $3,4,5,6$ and 7, in Concessions 2 and 3, Parkin. Towriship, District of Sudbury, ontario. (See accompanying Claim Plan - Figure "D".) Throe more have recently beon staked. It lies some eight miles north-northeast of Capreol, and 22 miles northnortheast of surbury. Access is gained by 6.2 miles of
improved road from Capreol in tho dirootion of uilnot followed by approximately 5 miles of tote road to the present camp. Small aircraft can land in 20 minutes from Sudbury on a smali lake one half mile south of the property. The C.N.R. transcontinental line passes alons the Vermilion river 3 mides to the east of the boundary. Good timber and water are plentiful on the ground.

REI, ATIONSIIIP OF JONSMITH PROPERTY TO GENERAL SUDBURY GEDLOGY

The Sudbury besin possesses economio significance too well-known for descriptiontore. It consists of a boat-shaped mass of igneous rock lying above a stecply tilted serios of sedimenta and volcanics, and overlain by a sories of lightly disturbed, almost horizontal sodiments. The ignsous basin itself is about lit miles thick, 36 miles long and 27 miles broad; it, takes the 8 mm of a gontio syncilino so that only the rim is exposed on surface. The outer shell of the basin consists of norite - a basic differentiate, and the inner sholl of micropegmatite - an acid difforentiate. Because of its association with many massive ore deposits, the norite is often referred to as thanickel eruptivo. 'The ores of nickel, oopper, platinum, gold, etc. are found either in bays uround the margin
of the norite, or in "offsets" -. dike-like tongues which protude outwerd from the basin. On aurface only two of tho offsots (Foy and Copper Cliff) are actually continuaus with the norite of the main body. Although variablo from place to place, the avorago composition of the rock in the offsets approaches that of the norite and it is notewo thy that all of the offsets embrace numerous bodies of braccia.

Representatives of the offset deposits are Worthington, Frood, Stoblo, Vormilion, Copper Cliff, Viotoria minos, and of tho basin deposits, Croighton, Gertrudo, Kurray and Falconbridge.

Cortain low iomporaturo lead-zino doposits occur in the sediments of the interior of tho basin.

The south boundary of the Jonainth property 1103 2d miles from the nor theast corner of the niokel omptive, at which point tho frisistio oro onposit oocurs. In this vicinity also, Ontario Nickel Mines Ltd., recentiy reported developnent of 300,000 tons of ore averagins 1.30% nickel, anil 0.50% copper covering a striko length of 800 foot to a depth of 600 fert.

Traversing Farkin Towrship in a northwestsoutheast direction, there are several dike-ilke bodies of
basic in erusive rock which are genorally regarded as basic offsets from the Sudbury basin and the se have boen mappt. as suoh.

Bodies of hoavy sulphide minercilization similar in composition and habit to the Sudbury ores and containing combined values of ore grade in niokol, copper, platiaum side zold occur within basjc ajko-rocks on the Jonenath claina.

LOSAL G:OLOCY

The long axis of the Jonsulth block of claims oxtends for approximately $23 / 4$ milos along the northwestsoutheast strike of a suries of sedimontary rocks. Underlying the ediments and forming the bedrock of the southwost third of the propenty is a banci of zroonstono (vory old volcarice and intrusives). The osntact of a largo granite atock with tho igresuatore paraliols tho lonis axis of the cinis blocle about 2 rille to the southorst. Soveral tengues of basic rock of the offeot tgpe intude tho sodimentis muraled to their sivitus. Abois is, of tho area is covered by glacial overburden, and it is intoresting to note that Inrgo sond ami gruyal plains ocour in tho oranito country to the cast. At Milnot, 30 mo 3 各 milos oust, an attempt is eurrently boing mado to dovelop placor gold roservos for dredge operation.

The gold here is reported to occur in gravel beds near the Vermilion River.

In this present program, two areas on the ground have been explored to a very limited extent by diamond drill. These are referred to hereinafter as Zone No. 1 and Zone No. 2.

ZONE NO. 1
Exposures consist of two old rock trenches in the east central part of patented claim S 5265 (see figures B and D). Heavy pyrite, pyrrhotite, pentiandite, chalcopyrite mineralization occurs in tongues of comparatively fresh diorite. The structure is very complex and it is apparent that the diorite is not a continuous dike, but occurs rather as a sories of fingors, which strike in a generally northwesterly direction. Where cut by diamond drill holes 1t has a near-vertical dip. It is intruded betweon the contact of a somewhat contorted band of limestones on the southwest and a series of cherty quartzites on the northoast. A zone up to 30 feot thick of highly silicified breccia has been doveloped in the quartzite along the contact betweon it and the diorite, and locally, there are inclusions of this breccia within the diorite. The breccia is well mineralized with very finely dissominated, barren pyrite.

The ore mineralization occurs in solid masses and lacey networks in the massive, unsheared diorite - probably relatod in distribution to certain Nat jointing and to bends and irregularities in the form of the intrusives.

In Trench No. 1 , the Ienticular body of mineralization has a length of about 50 feot and a maximum width of about 20 feet. Throe drlil holes, some 30 feet (vertioal) bal ow this trench, gave the following results: (See Flgure "E").

Hole No. 1.
21.4 feet of core length assaying

Nickel	-1.76%
Copper	-1.68%
platinum	$-0.13029 . /$ ton
Gold	$-0.0302 s . /$ ton.

($\$ 28.85$ combined value per ton at present market price.)

Hole No. 2
24. 2 reet core length assaying

$$
\begin{array}{ll}
\text { N1ckel } & -1.42 \% \\
\text { Copper } & -1.44 \% \\
\text { Platinum } & -.1202 \mathrm{~s} . / \text { ton } \\
\text { Gold } & -0.0602 \mathrm{~s} . / \text { ton }
\end{array}
$$

(${ }^{2} 28.85$ combined value per ton at present market price.)

Hole No. 3
This hole passed about 15 feot off
the southeast ond of the surface mineralization and the diorite in it was found to contain very littie mineralization.

In trench No. 2 the surface mineralization forms a tapering wedge some 80 feet long and 15 feet wide at the base of the wedge. Three drill holes about 40 feot bolow this trench gave tho following results:

Hole No. 4
23.9 reet of core length assaying

$$
\begin{aligned}
& \text { N1ckel } \\
& \text { Copper } \\
& \text { platinum } \\
& \text { Cold }
\end{aligned}=\left\{\begin{array}{l}
\text { Assays not } \\
\text { avaliable at } \\
\text { the tme of } \\
\text { writing. }
\end{array}\right.
$$

The mineralization in this hole is mainly concentrated within 3.2 feet of core and low values were obtained by the necessity of including, in the composite sample, scattered mineralization, which assayed well in gold alone, in two places. $\left(\frac{\$ 8.40}{2.51}\right.$ and $\left.\frac{\$ 26.80}{1.7 T}\right)$

Hole No. 5
This hole, in the northwestern end of the trenoh, cut no riorite and no mineralization of the ore type. This suggests a southeastorly rake.

$$
\text { Holo No. } 6
$$

A 7t foot length of mineralized diorite was sampled together with fallily good minoralization in the
silicified breccia, separated by 10 feet of barren breccia. This whole section of 32.2 reet core length assayed

N1ckel	-0.78%
Coprer	-0.75%
Platinum	$-0.0602 \mathrm{~s} . /$ ton
Gold	$-0.0102 \mathrm{~s} /$ /ton

($\$ 12.84$ combined value at present market prices.)

NOTE
In all of these boles, the core in the mineralizod zones was split in short samples in the usual way, and assayed first for gold. Later, in order to obtain a more accurate assay of the four metals, composite samples wore mado up from allquot parts of each sample within a given zono.

No attempt to channel sample the surface of this zone was made since surface oxydation would preclude the possibility of a representative sample. However, some grab sami les wore taken of the better looking material which gave values in N1ckel, up to 1.40%; Coppor 4.88\%; Platinum . $05 \mathrm{ozs}$. ; and Gold 0.45 ozs.

A small amount of old test-pitting (Trencch 3)
was dono in claim S 42676, starting about 100 reat southeast along the strike from No. 2 Trench. Here the geology is ontirely different. A number of barron quartz ladder-veins out transversely across a highly carbonatized rock which iles
between two horizons of limestone. Two diamond drill holes were put down under this trench and though one of them out nearly 30 feet of quartz-carbonate, (presumably a vein paralleling the hole) nothing of economic interest was found.

It should be noted that in the case of the mineralized diorite there is an almost complote lack of quartz and carbonato.

ZONE NO. 2
U_{n} surface this consists of a small amount of old rock work and stripping in claim S 39838. An undulating contact atrikes west-northwestorly betwoen limestone on the northeast and highly silicified breccia on the southwest. Within the ilmestone and near this contact, a very irregular strike-vein of quartz is exposed for about 50 foot, with a maximum width of 5 to 6 reet. Off the southeast end two trenches show that it eithor terminates or pinches to insignificant width. On surface the vein is open to the northwost. A large number of straight, parallel stringers branch off the main vein in a southwesterly direction giving a "half-reather" pattern to the quartz. (See Fig. C) One of these is a little wider then the ost and apparently the tronching follows this, racher than the main leader vein.

Lenses of heavy galena-sphalerite mineralization
with minor amounts of pyrite and chalcopyrite are found locally In the quartz, and the breccia is well mineralized with finely disseminated pyrite with occasionally a littie coarse pyrite and arsenopyrite. The quantity of galena and sphalerite present in the lenses is intriguing but not to the degree that mining of lead and zinc might be considered. However, grab sampling of the better mineralization here, gave values up to $\$ 8.05$ in gold, with some silver and it was hoped that this might prove worth while.

Four drill holes under this trench met with discouraging rosults. Although tho quantity or quartz veln-matter intersected corresponded with that on surface, the galenasphalerite mineralization was found in only two short sections. In hole N_{0}. $10,2.7$ feet or quartz with galena, sphalerite, chalcopyrite and purite assayed $\$ 3.50$ in gold, and 2.30 ozs. in s!lver. Hole $N_{0} .11$ cut 10 inches of quartz with other stringers containing a littio arsenopyrite, chalcopyrito, galona and pjrrhotito which assayed $\$ 5.25$ in gold over 2.0 reet. Casual channol sampling in this vein zone gave the rollowing assays in gold.

Value
Traco
$\$ 0.70$
Trace
$\$ 9.80$
Trace
$\$ 1.40$

Fidth
8.0 reet 8.0 reet 6.0 reet 0.0 reot 5.0 reet 6.0 reet

A fifth drill hole was almod in the opposite direction across a narrow swamp. This cut limestone strata and
finally passed through an unmineralized contact into a massive groy rock, probably quartzite, but possibly a variant of the diorite in which the cepper-nickol mineralization is round in Zone No. 1.

CONCLUSION
The reature or groatest interest on this property lies in Zone No. 1 , where two lenses of copper - niokel platinum - gold mineralization are found. The sumface exposure of these two lenses has a combined area which indicates roughly 100 tons per vertical root.

Of the six drill holes intended to intersoct this zone (as nearly as possiblo at right anglos to the strike and dip), four cut through mineralization of ore grade and with as rollows:-

Hole	Core				
Number	Length.	N1 ckol	Coppor	Platinum	Gold
1	21.4 rt .	1.76\%	1.68\%	0.13023.	0.03 ozs.
2	24.2 ft .	1.42\%	1.44\%	0.12028.	0.0602 s .
4	13.9 ft .	Assays	ot jet av	1lable. Co	mb. values
6	32.2 ft .	0.78\%	0.75%	0.06 ozs.	0.01 0zs.

Of the other two holes, one passod through unmineralized host-rock and the other out none of the host-rock.

Tho iifnoralogy and genoral characteristics of these bodios, although they are small, boars striking resomblance to the ores of the Sudbury nickel oruptive and are
associated with basic dike-like tongies of rock of the wellknown offset type. Similar basic dikes strike morthwastorly through the property and very littie exploratory work has been done along this striko.

Under tho foregoing circumstancos, it is highly desirable that further work be carried out along the strike of this No. 1 Zono. Tho results alroady obtalnod from a very short program indicate roasonably good prospects of locating other bodies of nickol-copper - platinum - gold ore. RECOMMENDATIONS
1.

Since magnotic pyrrhotite forms such a prominont part of tho minoralization, thoro can bo littie doubt that a magnetometer survey would indicate anomalous magnetic intonsitios In the vicinity of such bodios. It is recommonded that a base lino be cut northwestorly through the property and that a (Vortical type) magnetometer survoy be carried out, taking readings at 100 foot intervals along ines 200 feot apart, at right angles to the base line.
2.

On complotion of this survoy, diamond driliing should be carried out in accordance with the anomalous magnotic pattern. It 13 of course, not possible to estimate the rootage that may be required until the survey is completod.

It should bo stated that the prosont tote road from the Capreol-milnet road to the comp is almost usoless, at
present, for freighting purposes. Although much of the road is suitable for trucks, there is perhaps $\frac{2}{4}$ to $\frac{1}{6} \mathrm{mile}$ of swamp, which makes it almost impassable, oven for horses. The geophysical survey will not require much freighting and it is suggested that this party be supplied by air, and that the road and camp situation be dealt with, when the diamond drilling situation develpps.
E. G. BISHOP and W. P. CORKING

June 27th, 1947
Haileybury, Ontario.

020
MICKEL-COPIEK YKOLEETY
of
JONS:ITH GOLD MINES,LTD.
Bherin TOMWMIX

MISTORY MID IETVLOFAENT

In 1949 Jonsmith Gold Mines,Ltd. held a blook of 30 mining clains in lots 3-7, Concessions 2 and 3, parkin township. The property lies about 8 miles north-northeast of Capreol on the Canadian National railway and is reached by approximately 5 miles of tote road from ililnet station.

Interesting values in nickel, copper, and precious metals were obtained fron surfact grab samples of sulpnide mineralization. mis led the company to undertake a program of surface work and diamond drilling in 1947. Thirteen holes, aggregating 1670 feet, were drilled at that time. A magnetometer survey of the property was also made.

ACKNOKLEDGMENTS

The following summary has been prepared from the maps and report on the property prepared by W.P. Corking, consulting geologist, in Juns 2947. These were kindly furnished by the Company. The writer bas not visited the property.

GEOLOGY

The general geology of Parkin township is shown on Map No. 410 of the Ontario Department of Mines. The south
boundary of the Jonsmith property lies $2-5$ miles north of the Whistle mine, located on the northeast corner of the Sudbury nickel irruptive. The long axis of the Jonsmith block or claims extends for approximately $2 \frac{1}{4}$ miles alone the northwosterly-coutheasterly trending series of bedimentary rocks. Several tongues of basic rook of the Sudbury nickel imuptive "offset" type intrude the sediments paraliel to their strike. Two areas on the property, referred to as the No. 1 and No. 2 zones, have been explorec by diamond cirilling.

NO.I ZONS

chis is represented on the surface by two old rock trenches in the east centizi. part oi claim S-5265 erd lio. 3 trench on claiki $5-42676$ (see Fig.). At trenches No. 1 and No. 2 heavy pyrite, pyrihoiste, pentilandito, and chalcupyrite mineralization oocurs in tongugs of coruparatively fresh diorite. The diorite occurs as a serios of fingers intruded botween a contorted band of limestone on the southwest and dierty quartzita on the north east; A zone of highly silioifled brecoia, up to 30 feet in width, has been developed in the contact zone of the quartzite; looally there are inclusions of this breooia within the diorite. The ore minerailzation oocurs in solid masses and lacy networks in the massive diorite. In trenoh No. 1 the lenticular body of mineralization has a length of 50 feet and a maximum width of 20 feet. In trenoh $N 0.2$ the surface mineralization is wedge-shaped, being 80 feet in length and 25 feet wide at the base of the wedge. At trench No. 3 the gaology is quite different. Here a number of quartz ladder veins out across a highly
carbonatized rook whjch lies between two horlzons of limestone.

Drilling Results. A sumary of drililing results at trenoh No. l, as given in the zeport by W.P. Corking, is listed below. The location of the holes is shown on Fig. . The intersections were about 30 feet below the trench.

Hole No.	$\frac{\text { Core Length }}{\left(\mathrm{f}^{\prime} \theta \mathrm{e}\right)}$	$\frac{\text { Nickel }}{\text { (yer cent) }}$	$\frac{\text { Copper }}{(p e r \operatorname{cent})}$	$\frac{\text { platinum }}{\text { (oz/ton) }}$	$\frac{\text { oold }}{(027 \text { ton })}$
2	21.4	2.76	1.68	0.13	0.03
2	24.2	1.42	1.44	0.12	0.06
3	1 1:	littl	- miruereli	ation.	

Holaf lyos. 4,5 , and 6 were arilled under trench No.2. Hole No. 4 showad 13.2 font of minernjized core but most of the minorydizetion wes concerirated within $3 . \dot{C}$ feet. At two places In this sample gold assayg of $\$ 8.40$ per ton over 2.5 feet and $\$ 16.80$ per ton over 1.7 reat ($\xi 01 d$ valued at $\$ 35.00$ per ounce) were obtnined. Hole Ho. 5 cut no minomilafition of the ore type. In hole No. 6, 32.2 feet of core assey od 0.78 per cent niokel, 0.75 per cent copper, 0.06 ounces platinum por ton and 0.01 ounces eold per ton. Holes 7 and 8 did not show any values.

NO. 2 ZONL
The surface showing at No. 2 zone consists of a suell amount of old rock work and stripping on claim s-39838. This iies about 4200 feet north west or No. 1 zone. It consists of a quarte vein that 18 exposed for 50 feet along the strike and has a maximum width of 6 feot. Stringers of quartz branoh from the main vein. Lenses of heavy galena-sphalerite mineralization
and minor amounts of pyrits and chalcopyrite are found locally in the quartz. Grab samples of the mineralized material show gold values on assay. Six holes were drilled into this vein but revealed only non-comercial values in gold and silver.

The mine underground is serviced by a three compartment shaft, to a depth of 475 feet, with levels at the 190', 300', and 465' horizons. The shaft compartments are all 5'0" x 6'0". Compartment \# 1 , the skip compartment, is serviced by a 2 ton automatic dumping slip. Compartment \# 2, the cage compartment, services men and material. Compartment \# 3 is the manway compartment and power services way, with $6^{\prime \prime}$ compressed air, $2^{\prime \prime}$ water, two $3^{\prime \prime}$ pump discharged, two $2^{\prime \prime}$ level drain lines and the necessary power cables.

Drifts and crosscuts on the three levels totalled 1,955.0 lineal feet, 610.0 feet on the 190° level, 630^{\prime} feet on the 300' level, and 715' on the 465' level at the time Jonsmith Mines Limited took over the underground operation. The aforementioned work was by Milnet Mines Limited, just that necessary to extract the indicated \#1 and \#2 ore bodies.

A loading pocket station at the 425^{\prime} horizon plus ore pass raises to the 190 level, services the broken ore.

Emplty stopes provide partial waste disposal, the remaining waste is decked to surface.

The mine water is pumped from the 465 pump station and averages 100 gallons per minute. Most of this water is made in the top 100.0 feet of the mine openings, with little or no water made on the 465 horizon.

GEOLOGICAL DATA AND ECONOMIC POSSIBILITIES

Jonsmith Mines Limited is located in Parkin Township, approximately four miles north of the northeast corner of the Sudbury Basin.

A quartz diorite dyke, the Norman-Parkin offset inrudes the property for more than a mile and it is along this dyke that ore deposits have been found.

The dyke is similar geologically and mineralogically to several others which radiate outwar from the rim of the Basin and which are the host rocks for several producing mines. Typical of these are the Nickel offsets Mine on the north side of the Basin; the Copper Cliff No.l and No. 2 and the Evans Mines on the south side and the Worthington Mine along the Worthington offset. The Frood Mines occurs along a quartz diorite dyke which is parallel to the rim of the Basin. The Whistle Mine, two miles south of Jonsmith Mines is a deposit along the NormanParkin offset and was formerly a producer of Nickel-copper ores. It is now owned by the International Nickel Company who plan to resume operations in the near future.

The Norman-Parkin offset on the Jonsmith Mines property is a quartz diorite dyke from forty feet to five hundred feet in width and strikes in a northeast direction for 4,000 feet where it bends to the northwest. It was along this northwest limb that the two ore bodies occur. The present surface surveys only extended a few hundred feet northwest of the mine workings and there is a suggestion that the dyke resumes its original course and continues for three claims to the north boundary of the property.

As in the other mines in the Sudbury area the ore occurs in breccia zones the result of either faulting or foldings. On the Jonsmith property the breccia zones were caused by northwest trending faults which shattered the quartz diorite host rock sufficiently to provide favourable receptacles for nickel bearing sulphides.

This breccia is also found in the Burton showing near the south boundary of the property where diamond drilling has revealed a nurrow but high grade nickel-copper zone and where deeper drilling is now in progress.

The area north of the shaft warrants complete investigation to determine whether the northwest trending faults intersect the intrusive along the assumed northerly extension and produce favourable breccia zones.

The deeepst level, the 465 foot horizon has a geological pattern similar to that on surface and it is highly probable that this will continue to depth. Thus the possibilities of locating new ore bodies below the 465 feet level are very favourable.

From the geological aspect the whole length of the dyke is prolific prospecting ground for nickel-copper deposits. At present a length of 5,200 feet has been mapped and there are indications that it continues for another 5,000 feet to the north boundary of the property.

Along the mapped portion of the dyke several anomalous zones were indicated by a magnetic survey and these corresponded to the areas outlined by a geochme.cal survey. These anomalies are probably signficant indications of sulphide zones and warrant detailed investigation.

Milnet Mines Ltd. - Development and Production
Prior to 1952 Jonsmith Mines Limited completed a partial geological surface survey of their property and had outlined by closely spaced diamond drill holes the \#1 and \#2 ore bodies. Subsequently Milnet Mines Ltd. leased a block of ground 1000 feet $x 500$ feet to 500 feet in depth, embracing \#l and \#2 ore bodies, for the purpose of mining the nickel-copper ore contained in this bjock.

During 1952 Milnet Mines constructed the aofresaid surface and underground plant and purchased the necessary equipment. Shaft sinking and the level stations were completed by Oct. 31, 1952. Development of the 190° and 300^{\prime} levels was started with the first ore delivereries to Falconbridge Nicekl Mines Ltd. in the latter part of Dec., 1952. Development of and production from the \#l and \#2 ore bodies from 465 level to surface continued to completion as of July 18, 1954. In Feb. 1954 Milnet Mines shipped to Falconbridge Nickel Mines 13,035 dry tons of ore with plant at approximately 80% of its hoisting capacity.

The \#1 ore body as mined by Milnet Mines extended from surface to 350 feet below surface. The surface outcrop was 60 feet in length. The longest stoping length was 240 feet; the average stoping length was 120 feet. The surface outcrop of \#2 ore body was 50 feet in legnth; the average stoping length was 55 feet. This vein structure persisted to below the 465^{\prime} horizon. Stoping was completed from the 400^{\prime} horizon to surface, below this the vein structure was below shipping grade, that is nickel 1.00%, copper 1.00%.

Milnet Mines Limited from Dec. 15, 1952 to July 18, 1954, mined and shipped to Falconbridge Nickel Mines a total of 157,755.70 dry tons of nickel, copper and precious metals ore. This ore assayed - nickel l.49\%, copper 1.54% (to date); gold 0.027 oz., platinum $0.066 \mathrm{oz} .$, palladium 0.087 oz . and combined iridium, rhodium, and ruthenium 0.0032 oz . (to the end of Apr. 1954, the latest avaialbel assays)

Total contained metals in the above 157,755.70 dry tons were as follows :

Nickel		date)		4,711,119.0	lbs.
Copper		date)		4,846,847.0	lbs.
Gold	(TO	Apr.	30/54)	3,834.5	Oz
Platinum				9,299.6	oz.
Palladium		"		12,234.4	OZ.
Iridium,					
Rhodium \&					
Ruthenium	1	")	457.7	oz.

Total recoverable metals in the above $157,755.70 \mathrm{dry}$ tons were as follows.

Jonsmith - Current Exploration and Development

On July 19, 1954, Jonsmith Mines Limited purchased the surface and underground plant and equipment from Milnet Mines Limited.

On the same date Jonsmith resumed lateral work northwest and southeast on the 300^{\prime} level, and southwest on the 465^{\prime} level along strike of the favourable diorite. Underground diamond drilling at 50 foot intervals to probe the full width of the favourable diorite was started.

Jonsmith recently completed surface geological magnetic, electro-magnetic, and geochemical surveys on part of the Jonsmith Mines holdings; on receipt of this, sufrace diamond drilling was started on the "Burton shwoings". Other favourable areas are to be dimaond drilled on completion of the drilling in the "Burton Shwoing" area.

A report by C. E. Bowker, Aine Manager, dated August l0th, 1954 estimated that to thoroughly prespect the favourable diorite along its known strik length and to 1,000 feet plus in depth would require an additional $\$ 850,850.00$. As this amount of money is not avaialable to Jonsmith Mines Limited, monetary asssistance was sought from the Materials Division of Emergency Procurmenat Services, Washington, D.C., U.S.A.

After discussions with offirials of the above Division on Sept. 3, 1954, they suggested a more comprehensive report and to break the above exploration and development program into projects. The rating or priority of the projects to the bidrectly related to the speed of possible nickel ore deliveries.

Projects - Priority and Costs.

Project \#1

(a) Decpen the shaft to $1,000^{\prime}$ horizon, cutting three levels at 175' intervals.
(b) Drift out the favourable diorite on these three new levels, completing as a minium 2,000 feet of drifting and crosscutting on each of the new levels.
(c) Diamond drill the 640', 815', and 990' horizons at close intervals.

The estimated cost of Project \#l is as follows :
(a) Deepen the shaft to $1,000^{\prime}$ horizon with stations at 175^{\prime} intervals; shaft, station,s and pump - 635 feet @ $\$ 210.00$ per ft .
 ohuft, to a depth of 475 rect, with lovels at thu 190% 300\%, eni 465 luripons. Tas chaft cucpurtentes arc all 59-0n x 6-0". Compartrini fil, the ci: 1.7 cuopartacat, 10 ouivicea ij
 compartant, eorvicos gin and faturial. Comjarinent fh, is iso Earexty conairtount and powat bervicu bay, witio c" oar.prusecd ais, $2^{\prime \prime}$ butur, two $3^{\prime \prime}$ fiap dischargub, two $2^{\prime \prime}$ level drain linca ont the nucusoury pomar cibles.
irlits und orosscuto on the thrue luvala totalua 1.955 .0 jixeul fect. 610.0 reet on tisu 2901 leval, 630.0 feet on tie

 k) Li:3:0: thu indleates il and fe ore bodico.
 ralsus to the 170 letul, services the troxus orv.

 ysice :ath an tac 465 Lerlean.

 :1itay bosha.

A gauriz dioritu gyko, the iorcon-"urikin ofrast intridus the propariz for moro than a mild and it io clonc thin dyke thet ore Jejuslta dutu dien found.

The dytin 13 olallar cologically and matraloilcally to ocroral oisors inich rajlale outmard frow the rial of the zagin ant rilich are tho boat rocto for buveral procicins cinuo.
 or tho rasir; tic Coppor cilfr rio. 1 and Ro. 2, und the evena "f:ecs on the gouth oldu and the vorthineton winc aloor tho Forthimiton ofrout. ino frood !ilno oocura along u guarir.
 inlatio $\because 2 n o$, th milon ouath of Jonomith ininco do duposit alone the jorman-partin offoct and wae romorly o oducur of nickul-c.jpjur orso. It 10 now swned by thu Intu: local

roptcribur 7th, 17354.
Olu ingexn-"urion offact on tho Jonswith linces propurty 1s a cisutz diosite dytu from forty fuci to ilvu bunsret rut In width an: ctrivio in u nortiombi itruotion for 4, GOU fuet
 1imb that the two ore bodics oceir. Thu arvocnt burfuce ourveys

 of thu proporty.
$\therefore 3$ in the otider ainej in tido viluty area thw ore jecira 1: brcecia zoncs Ebu ruault of olthor rudtine or roidice. on the Jonoast: proporty tho breccla zonus ners cusud ty
 host mer surfladintly to nrovide fivonrable reconeicluo for nionel bur.rin: ayiphiduo.

This tricole in alow foun: In the furton bitalng nour tav

 fevoarublv bruecdis zona.

 aregent a luncen of 5,200 sust han buen eunged end literu aru 1:010:10ns thet it continues for onatuer jobico rcet to the north buavery or inc propur:y.

Ione : manect portion of the aydu ecviral anomalous

:rior to 1952 Jonsaith Jinua linitud completed a purchal

 in thil: bloct.

EnM: 2952 :11nut inines construoisd the aroresal: surfece ard unsuserouns jlont ens prucbesan th: ruceosary equaprent.

 the ilret or 3-livirles to yaloonbriage rionel inne it: in. the lostir part ot wa. 1252. avoloprent of sn? oruduotion

 aisoped to tiscontride filckul :18en 23,035 dry inna of ore alta the plont. : toproximately 80 of its nolstion cuasofty.

The fi oru body co sined by lilnot mines uxtunded from gurgecu t 350 reut buluw axiraoc. The ourfecu ontorop was 62 fuct in: leacth. finc lonecot atoping luath ras 240 rute the averuse otoolns longth ais 120 ruet. The sirceco outoros
 deneth was 55 fiout. Thin vain otruoture porsiaten to bujow tile 465 nurizan. topiree wes coniluthd irusi the 4CO burizon to aurfince, buloa tilis thu velia structury wat bulow shipilac ETuTE, Wet 10 ricsill 2.00\%, copper 2.00%

110t 1ron ilmatid froo ico. 15, 1952, to July 18, 1954,

 Lates. avidiablu arosyo).

atin racoviribje ractula in the atove 2.7 .755 .70 ary tons suse as rollowa:

$: 10$ cel	(to Aate)	163.
coper	(10 dicte)	3,762,967.0 105.
Sold	(60 ijxr. 30/54)	932. 7 uz.
ydatirum		$5.16 \% 90{ }^{\text {a }}$.
「allmidua	,	7.655 .302.
111410:		1.6.3. 3 .
hotius, d		
Buthoutua	1 *	285.9 02.

Tantrith-Current goretion and Fuvi=lopiant

 : jritic..

 firijling at 50 fost inturvala to probe the full indin of the revourable Ajorite sag sturted.

Jonerfth rucunty completon burface evolowleal, rawnoide,

 "howinge" arca.

$\because r a d e t=1$
 1751 Inquvals.
(b) airt out the rovourabjo diearitu on the be thrus new duvela,
 cating on cecil of then nut luvila.
(c) forman arill the 6A69, 315\%, and 930 motizons at clasu Interva?s.

The welnatiol cost of :'roject il ia an fold:ns:
(a) count the shett to 1,000 horlzon with otationo ai 175, intuydaj sideft, sijetiona, and surj - 635 rect a j210.00 pur it.

* For enlargement see: Prokn-0034,\#5*

Fig 2

NOTE: THE FOLLOWING PETRESENTS H. WILSONt
 Procekry.

JONSLITM SMMPLRS

Caloulations for Averabe orede or No. 1 Oroshoot.

Beotion	Ares	Length	Tope	Cu.s.	$\underline{T} \times$	N1.8	Tx	Pt.oys.	즈요:
					S 8	1.24	25,090.4	0.111	2,326.56
36-8-5	5,240	40	20,960	1.88			78,811,8	0.126	6,729.65
4-2s oto.	9,370	57	53.00	2.09	111,684,8	1.67	70,012.2		8, 281.88
				3.17	101,586.8	2.67	88,546.8	0.233	,261.32
3-45-42	5,340	60	32,040				, 033	0.148	4,146.37
2-8-40	4,280	68	28,036	2.11	30,113.8	0.8\%			282.74
	1.080	36	3,672	2.40	8,818.3	1.39	3,204.1	0.077	
		8814	258,097	2.88	\$16,531.0	1.58	218,885.9	0.188	17,746.52

No. 1 Orebody
No. 2 Orebody

138,097	2.80	316,331.0	1.58	218965.0	0.188	17,746.58
34,000	2,38	45,686.3	1.27	43,780.7		
172,697	2.10	362,017.3	1.58	262,466.6		

Cal oulationa tor Arerage Grado of 10 . \& Ore ghoot.

Seotion	Area	tons	Cu.S	Tx	81.4	9 5
2	358	710	8.47	1,783.70	0.98	660.30
3	350	680	2.88	1,861,00	0.80	389.40
8	1,048	2,090	1.80	3,762.00	1.68	3;44.80
4	2,180	4,250	2.27	1,978.50	0.80	3,400.00
8	8,798	12,590	0.93	10,778.70	0.02	10,346.90
6	3,265	6.330	1.33	8,418.00	2.18	13,709.40
7	2,925	5,800	2.51	8,833.60	2.30	7.008 .00
8	1,860	8,180	1.80	5,816.00	1.26	3,931.80
		34,500	2.38	45,886.30	1.27	43,780.70

gocals

No. 2 Orebody		188,097	2.80	326,331.00	2.88	218,883.90
8	*	34,600	2.88	46,686.30	2.27	48,780.70
Total		272,697	8.10	362,017.30	1.58	262,466.60

Caloulations for irorage orede of seotions - Ho. 2 orebody.

\therefore Bection	Hole Mo.	Length	Ques	\$xL	H1. 8	SxL	
288	8-1	19.0	1.72	32.87			
	3-2	3.0	4.71	32.87	0.73 0.08	$\begin{aligned} & 13.87 \\ & 00.38 \end{aligned}$	\%
		84.0	2.85	88.48.	0.59	14.28	
	$8-1$	30.0	1.47	44.10	1.02	30.60	
		35.0	2.08	72.80	8.10	76.65	
		65.0	1.80	116.90	1.65	207.85	
4	Su5	4.0	1.08	40.04	0.47	20.68	
	8-6	62.0	1.08	84.86	2.14	20.68 89.84	
\%	3-18	25.0 80.0	0.89	10.35	0.78	69.64 11.40	
	$\begin{array}{r} 8-28 \\ =17 \end{array}$	$\begin{array}{r}30,0 \\ \hdashline \quad 11.9\end{array}$	1.53	45,90	0.59	27.70	A125 A
3,		12.0.	1.81	82.044	0.85	10.18	
		282.8	1.17	289.09	0.60	129.44	
0	S-7	46.0	0.46	21.16	0.38	17.48	
	$8-8$$8-17$	65.0	1.20	78.00	1.85	100.75	
		78.0	1.00	70.00	1.04	88.18	
	$8-17$ 47	47.3	2.38	02.91	2.07	80.61	
	8623	72.0	0.64	48.08	0.43	30.98	
		309.3	0.93	287.18	0.91	881.90	
6	S-8		0.81	31.69	, 2.33	$51 . E 7$	
	S-10	74.0	2.72	127.88	2.82	808.03	
	$\begin{aligned} & S-10 \\ & 8-24 \end{aligned}$	35.0	2.53	53.55	1.20	44.10	
		38.0	0.89	38.04	$\underline{2.70}$	07.80	
		184.0	1.35	244.46	2.18	401.85	
7	$\begin{aligned} & S-18 \\ & S-14 \\ & 8-25 \end{aligned}$	25.0	2.33	20.98	0.35		
		43.0	0.88	36.08	0.88	\$7. 84	
		Q4.85	1.87	$\underline{158.02}$	2.88	141.96	
		142.5	2.81	214.28	2.30	285.05	
8	$\begin{array}{r} 8-28 \\ 48 \\ 3-27 \end{array}$	42.8	0.67	28.48			
		48.0	1.81	81.45	1.88	71.10	
		49.0	$\underline{2.76}$	235.84	1.50	73.80	
		136.5	1.80	248.17	1.26	272.65	

Recalculating Croelman Areragea - JONSIITH Sampling

Ho. 2 Ore 20yo.
Platinum

Hote 802		
208	5.0	1.91
809	b. 0	1.83
210	8.0	1.44
	15.0	1.73

| Role | 8.3 | |
| :--- | :--- | :--- | :--- |
| 218 | 8.0 | 8.71 |
| 218 | 5.0 | 1.87 |
| 814 | 8.0 | 2.48 |
| 215 | 5.0 | 0.16 |
| 228 | 8.0 | 0.48 |
| | 25.0 | 1.47 |

0.29
2.00
0.90
0.73

2.13
1.63
2.09
0.28
0.09
1.08

日010	$8-4$	
217	5.0	0.73
818	5.0	1.87
810	5.0	2.58
280	5.0	2.22
281	5.0	1.23
282	5.0	3.91
283	5.0	2.00
	35.0	8.08

0.41
1.19
1.10
3.20
0.90
1.29
4.82
2.10

Hole 3-5

239	10.0	0.48	4.80	0.15	2.50	10.0	0.005	. 680	10.0	0.035	350
840	5.0	0.38	1.80	0.45	2.25	8.0	0.018	. 060	8.0	0.007	. 035
241	6.0	2.35	15.90	1.04	6.24	6.0	0.088	. 688	6.0	0.050	. 300
	2 Si 0	1.08	22.30	0.47	9.99	21.0	0.059	1.238	21.0	0.033	. 685

256	8.0	0.88	4.40	0.55	2.75
257	5.0	0.40	2.45	0.57	8.85
858	B.0	0.45	8.18	0.20	1.80
280	5.0	0.28	2.40	0.30	1.80
260	7.5	0.51	2.38	0.20	1.08
	27.5	0.46	18.78	0.38	10.36

[^0]| Sample Ro. | Yeot | Cu. | \$ $\times 2$ | H1. | \$ $\times 1$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Holoceor | | | | \cdots | | |
| 868 | 13.0 | 2.09 | 5.45 | 1.82 | 6.10 | |
| 268 | 5.0 | 1.21 | 0.05 | 1.03 | 5.18 | |
| 267 | 3.0 | 1.00 | \$.00 | 019 | 0.95 | |
| 268 | 5.0 | 0.58 | 2.80 | 0.15 | 0.75 | |
| 208 | 10.0 | 0.71 | 7.20 | 0.88 | 8.80 | |
| 270 | 10.0 | 0.70 | 7.00 | 0.64 | 6.40 | |
| 871 | 5.0 | 1.18 | 3.80 | 2.36 | 11.80 | |
| 272 | 5.0 | 0.67 | 3.35 | 5.80 | 28.00 | |
| 873 | 5.0 | 2.39 | 21.95 | 4.54 | 28.70 | |
| 276 | 5.0 | 3.07 | 29.85 | 8.25 | 21.85 | |
| 275 | 8.0 | 0.83 | 4.28 | 0.81 | 1.65 | |
| | 68.0 | 1.20 | 78.20 | 1.85 | 100.95 | |
| B010 809 | | | | | | 18.0' to 33.0° |
| 277 | 8.0 | 0.78 | 3.80 | - 2.86 | 14.30 | |
| 278 | 5.0 | 1.02 | 8.10 | 0.00 | 4.80 | |
| 279 | 7.0 | 0.78 | 5.04 | C. 5.5 | 8.05 | |
| Hole $\mathrm{S}-10$ | 27.0 | 0.81 | 13.74 | 2.33 | 22.65 | 14.0 ' |
| 283 | 5.0 | 1.70 | | 3.08 | | 14.0' to $70.0{ }^{\prime}$ |
| 254 | 5.0 | 1.50 | | 1.78 | | |
| 285 | 6.0 | 1.48 | | 2.57 | | |
| 288 | 0.0 | 1.77 | | 0.22 | | |
| 289 | 5.0 | 2.23 | | 0.45 | | |
| 288 | 5.0 | 1.23 | | 0.58 | | |
| 289 | 8.0 | 1.78 | | 0.28 | | |
| Hole 8-12 | 85.0 | 1.53 | | 2.2E | | |
| 290 | 8.0 | 0.91 | | | | |
| | | | | 0.62 | | |
| E01 | 5.0 | 0.09 | | 0.18 | | |
| 292 | 5.0 | 8.09 | | 0.38 | | |
| | 15.0 | 1.33 | | 0.35 | | |
| $\frac{30108-18}{294}$ | | | | | | 109.0' to 258.0° |
| | | | 12.30 | 0.35 | 3.30 | |
| | 20 | 0.8 | 9.40 | 0.20 | 2.00 | |
| | 0.0 | 0.95 | 4.78 | 0.92 | 4.60 | |
| 297 | 8.0 | 0.95 | 4.75 | 1.62 | 7.80 | |
| 298 | 5.0 | 0.44 | 8.20 | 1.87 | 7.85 | |
| 299 | 5.0 | 0.38 | 1.90 | 0.79 | 8.95 | |
| 300 | 3.0 | 0.34 | 2.68 | 2.83 | 8.49 | |
| | 4.5 .0 | 0.86 | 36.98 | 0.68 | \$7.79 | |

Sample Ro.	Yeet	Qu.	\$12	M1.	2×2	
Ho20 8-16						81.00 to 225.0'
301	5.0	1.41	7.05	5.03	, 28.28	
302	5.0	2.32	23.05	10.13	80.65	
303	5.0	2.48	7.10	2.72	8.60	
304	8.0	2.50	7.50	0.91	4.85	
308	B. 0	0.54	2.70	1.24	6.80	
308	5.0	0.80	3.00	3.04	18.80	
307	b. 0	0.34	1.70	6.08	8.01	
308	8.0	0.92	4.80	3.49	17.45	
309	5.0	1.88	6.40	1.42	7.10	
310	8.0	0.86	4.50	0.68	4.40	
811	6.0	1.07	8.38	1.70	- 8.98	
312	8.0."	1.28	0.20	1.78	-8.00	
313	8.0	2.00	10.00	3.21	16.05	
314	0.0	8.80	89.00	3.83	10:18	\cdots
515	4.0	4.81	20,84	3.33	13.38	
	74.0	1.78	187.09	2.82	208.68	
BoSe 6-17						33.0^{\prime} to $192.0{ }^{\prime}$
317	10.0	0.70	7.00	0.64	6.40	
318	10.0	0.90	9.00	0.68	6.80	
310	10.0	0.24	1.40	0.15	2.50	
820	10.0	0.48	4.80	1.12	11.80	
321	10.0	0.50	B. 80	1.45	14.50	
382	10.0	0.68	8.60	0.88	8.60	
383	10.0	2.46	24.60	0.37	3.70	
384	5.0	3.66	18.30	4.27	P0. 88	
325	4.0	2.33	Q. 38	2.28	8.64	
	79.0	2.00	78.92	1.04	82.19	
B020 Sn 18						85.00 to 98.00
327	B. 0	0.81		0.61		
388	5.0	0.64		2.42		
389	E. 0	0.61		0.84		
	18.0	0.69		0.76		
Hole E-20						$28.0{ }^{\prime}$ to 43.0^{\prime}
350	6.0	2.24		0.48		
331	8.0	3.80		1.34		
338	B.0	2.88		0.07		
	28.0	8.47		0.93		
Hole S-22						122.0' to 262.0'
335	10.0	1.51		0.80		
334	10.0	1.80		1.07		
355	10.0	1.28		0.18		
	30.0	2.53		0.50		

 Ho.

Hole 8-27

306.0^{\prime} to 355.0'

309	4.0	1.01	4.04	8.06	21.84
390	8.0	7.98	39.90	2.44	12.80
391	5.0	2.00	14.50	1.88	0.40
392	D.0	1.01	5.05	0.16	0.80
373	8.0	3.99	19.98	2.75	8.78
394	5.0	1.89	0.45	0.30	1.80
305	5.0	0.81	2.85	0.24	0.70
898	5.0	3.07	15.35	3.88	28.90
397	5.0	8.88	11.40	1.48	7.10
598	E. 0	2.62	13.20	0.84	4.20
	49.0	8.76	135.29	1.50	73.38

77	3.8	0.84	3.19
	3.8		
78	2.5	0.61	0.77
	8.5	0.47	3.90

Holo \#19
87
88

If .30 mubstitutod for annays in holo 10 out averages become

Lodoux P. M. Aseaye - Bole Ko. 35.

Samplo 70.	Yoet	Pt. D20.	028. ${ }^{\text {L }}$	Au, oze.	Oxe, \times L
142	11.4	0.19	2.168	0.04	.456
143	20.5	0.04	1.280	$n 11$	
144	5.5	$0.12{ }^{\text {a }}$. 660	nil	
145	17.0	0.03	. .510	$n 11$	
146	22.9	0.03	. 774	nil	
147	19.4	0.00	1.746	0.00	2.746
140	17.2	0.25	2.500	0.39	6.708
140	6.5	0.09	. 880	0.12	. 780
	1.10 .4	0.045	10.138	0.081	9.690

Woighted Average analysin - Componite Somplos No. 1 Orebody.

Tons	Ozs.Au/ton 4 \&.Cu.	\$81.	\& Pe.	S8.	\& 8108	Sinsol.
138,097	. 039 . 8. 28	1.43	16.90	9.		49.40

Analyas	8	Chaloupyrite S	Pontianditos	Pryrhotito 8	Xxcess 8
cu.	2.28	2.26			
N1.	1.43		2.43		
Fe.	18.00	2.00	2.73	8.05	4.18
3.	9.91	2.25	2.34	5.28	
< or ore	30.50	0.55	6.50	25.33	4.28

Total sulifidez $=30.50$ less excese fu. (4.22) = 26.30% of orn.

Elev. Collar
Datum.
Date Started......luLy $22 \ldots 1$.
Date Completed..AuG… <2
Drilled by -- Lowcy<ar
logged by

Footage		Formation	Sample Number	Sample Width	Gold Sample	$\begin{gathered} \text { Gold } \\ \text { Sludge } \end{gathered}$	Remarks
From	- 10						
0	582						
582	728	LNAESONE - - , - ESAANOLA)					
228	1038		$P \in N T$				
		GRECLRTION					
		A section feoct 200 To kNo fl MonE					
		- MRS RAMOS: THE MPPEARENCE OL					
		ad? to araput coctc flovelunes.					
		1038 Ere of Hock.					
		NO ATNERQLIED SELVONS					No L-sctoce~6
						.	

Date of Examination

The Presidont and Directors, Jonsmith Gold Mines Limited, 17 Queen St. East, Toronto, Ontario.

Gentlemen:

Herewith my Report on the Property of your Company in Parkin Township, District of Sudbury, covering the recent programe of development carried out under my direotion.

Yours very truly,

WPC/TM
E. G. Bishop and
W. P. Corking.

MONETA PORCUPINE MINES. LIMITED
 (nO PERSONAL LIABILIty)

SUITE 1808 320 BAY STREET

TORONTO 1, ONT.

Dr. J. E. Thompson, Ontario Department of Mines, Parliament Blags., Toronto, Ont.

Dear Ed:

I attach Hal Wilson's calculations for the tonnages and grade of No. 1 and No. 2 orebodies on the property of Jonsmith. I an also sending you Wilson'g surface plan and his vertical sections. These are the only copies I have available of the plan and sections, so I may ask to have then back. In my opinion, Wilson has been ultra-conservative in estimating the tonnage. In my figures, after allowing for reasonable extensions of the oreshoot, I arrived at a figure of 180,460 tons with a grade of 2.09% copper and 1.55% nickel. Allowing for 10\% dilution, this would be $i * 8,506$ tons. In calculating grade I have assumed that the dilution would not contain any metals, and I have also reduced the copper values by 12 percent and the nickel by 4 percent. to take care of what I consider may be posbible errors in core splitting. On the basis of these figures I arrive at a grade of $1,68 \%$ copper and 1.35% nickel, with 0.10 oz . platinum and 0.04 oz . gold. I might say that I think this would be the minimum grade, and I would expect that it mould be somewhat higher.

If there is any other information you require, I would be most pleased to supply it to you. All of our technical information is available for your inspection.

Encl:.
/A

F. R. Burton

(Coped on August 24, 1966)

The President and Directors Jonsmith Mines Ltd.
Room 906
3.1 Bay Street

Toronto, Ontario
Gentlemen:-
Enclosed is the report on Jonsmith Mines ltd. along the lines suggested by officials of U. S. Division of Emergency Procurement Services.

The Jonsmith Mines Ltd. is comprised of/ 29 claims, approximately 1160 acres, in the Township of Parkin, Concession II and lII, Lots 2 to 7, District of Sudbury, Province of O.tsrio, Canada, Sudbury Mining Division. The property is approximately 10 miles north of the town of Capreol situated on the northeast rim of the Sudbury Basin.

The property is service d by paved roads and railroad to Capreol, thence by good gravel roads to the mine property proper. Electric power is supplied by llydro-Electric Power Commission of Ontario by 8.8 miles of 44.000 volt transmission line, owned by the mine and built in 1952 at a cost of $\$ 104,000.00$. Power is supplied at $\$ 45.00$ per K. W. year.

PARKIN-0034,\#4

[^0]: - Rot weightod.

