

REPORT ON THE 2002 DIAMOND DRILLING PROGRAM, PARKIN TOWNSHIP, SUDBURY, ONTARIO FOR CHAMPION BEAR RESOURCES LTD.

41115SW2048 2.25334 PARKIN

Date January 8, 2003 Toronto, Canada Watts, Griffis and McOuat Limited Consulting Geologists and Engineers

010

TABLE OF CONTENTS

1. INTRODUCTION
2. CHAMPION BEAR RESOURCES LTD
3. PROPERTY DESCRIPTION AND LOCATION
4. ACCESSIBILITY
5. PHYSIOGRAPHY
6. INFRASTRUCTURE AND LOCAL RESOURCES5
7. GEOLOGICAL SETTING
8. EXPLORATION TARGET9
9. PREVIOUS WORK 10
10. 2002 DIAMOND DRILLING PROGRAM 18
11. RECOMMENDATIONS
12. CERTIFICATE
13. SOURCES OF INFORMATION

1.0 INTRODUCTION

Champion Bear Resources Ltd. recently completed three diamond drill holes, totalling 695 meters, to test both airborne and ground I.P. geophysical targets associated with the Parkin diorite "offset dyke" on its 100% owned Parkin Property located northeast of Sudbury, Ontario. Drilling was conducted for a period of 14 days from October 24th to November 6th, 2002. Two holes were drilled specifically to evaluate the Parkin "offset dyke" for its potential to host Ni-Cu-PGE mineralization. The host dyke has been traced by previous operator's for a strike length of more than 5 kilometers over Champion Bear Resources Ltd. (herein referred as CB) two claim blocks.

This report summarizes the results of the drill program and provides some recommendations for additional work.

2.0 CHAMPION BEAR RESOURCES LTD.

Champion Bear is a mineral exploration company focused exclusively on the historically prospective regions of Ontario. The company has assembled a large land position in the Dryden and Sudbury areas, totalling over 15,500 hectares. The Corporation's primary target is platinum group metals and to a lesser extent polymetallic base metal, pegmatite-hosted tantalum deposits and gold.

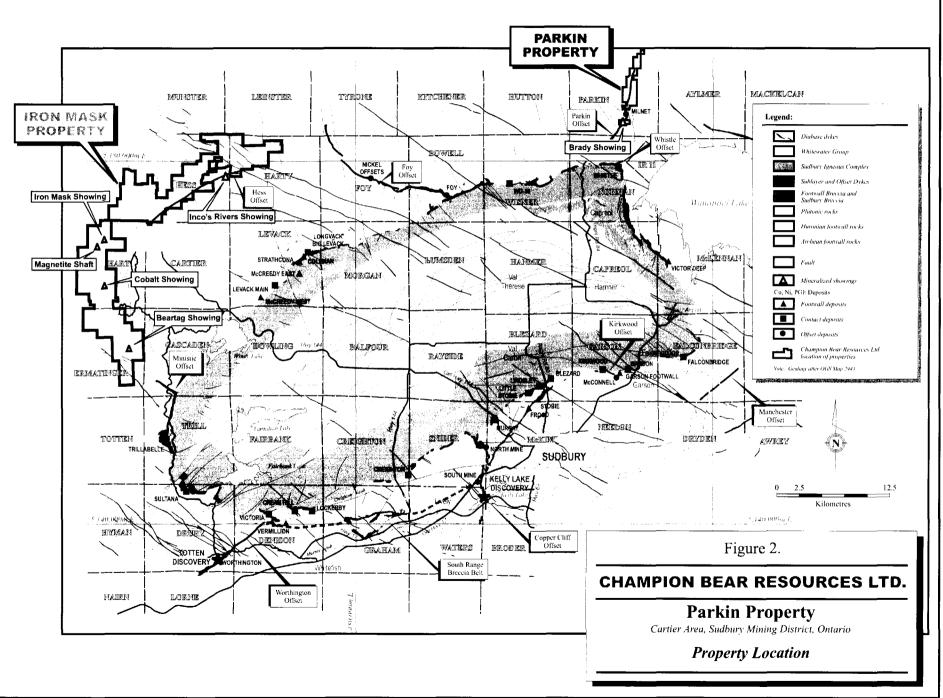
3.0 PROPERTY DESCRIPTION AND LOCATION

The current Parkin Property consists of two claim groups, one containing 64 contiguous unpatented mining claims (112 claim units), and the other containing 2 leased claims (3 claim units), both in south-central Parkin Township. The claims covering a total area of approximately 1830 hectares (Figure 1).

Date January 8, 2003 Toronto, Canada

Pursuant to an agreement between John Brady and Champion Bear dated as of September 30,1998, as amended December 20, 1999 and August 2, 2000 (the "Parkin Agreement") Champion Bear acquired a 100% interest in the Parkin Property in consideration for 108,000 Common Shares. The Parkin Agreement provides that the claims are subject to a 2.5% Net Smelter Return, 60% of which may be acquired by Champion Bear for \$1.5 million at any time until the claims have been put into production. Pursuant to the Parkin Agreement an advance royalty of \$6,000 is payable on March 30th and September 30th in each year that the claims have not been put into production or have not been reconveyed to John Brady, which advance royalty payments are deductible from future Net Smelter Return royalty payments.

In October, 2003, CB announced that it had acquired an undivided 100% interest in 16 unpatented mineral claims contiguous to the north of the existing Parkin Property. The Company acquired theses mineral claims to explore for the possible northern extension of the Parkin Offset Dyke which is present on its Parkin Property.


The owner (Mr. J. Brady) of the mineral claims will be paid \$10,000 and issued 25,000 common shares of CB as soon as the TSX Venture Exchange approves the transaction. In addition, the owner of the mineral claims will be paid \$5000 and issued 45,000 common shares of CB on or before October 4, 2003 provided that CB is satisfied, in its sole discretion, that there is potential for economic mineralization on the claims. The owner of the mineral claims has retained a 2% NSR, 1% of which may be repurchased by Champion Bear for \$750,000 prior to the commencement of production.

4.0 ACCESSIBILITY

The Parkin Property is located in south-central Parkin township about 65 km northeast of Sudbury (Figure 2). Access to the property is by Regional Road 80 for a distance of 18.3 kilometers north from Sudbury to the town of Val Therese. From there, Regional Road 80

Date January 8, 2003 Toronto, Canada

CBA_EXP \ CBA_007_IronMask_Prop_Loc.cdr Last revision date: Monday, 3 June 2002

Watts, Griffis and McOuau

leads easterly for a distance of 6.7 km to the junction with Regional Road 84. Regional Road 84 goes north for a distance of about 7 km to the Town of Capreol. From Capreol, all weather gravel roads proceeds northeasterly past Inco's Whistle Mine. A north-south logging road crosses the claim group north of Malbeuf Lake.

5.0 PHYSIOGRAPHY

The Sudbury area is located within the Canadian Shield. The topography is typical of this part of the Canadian Shield and is that of a dissected plateau sloping gently south toward Lake Huron and Georgian Bay. Total relief in the area is about 150 m, and local relief is limited to 30 to 60 m.

Rocky hills alternate with depressions filled with glacial deposits and swampy ground. In some areas, particularly in the western part of the area, rock exposure is poor because of an extensive cover of glacial till, sands, and gravel. The area is located just south of the drainage divide between the Hudson Bay and Great Lakes watersheds and consequently most drainages are limited to fairly small streams and rivers. During Pleistocene glacial erosion and deposition, the drainage pattern became disrupted and consequently there are numerous small lakes and ponds.

Very little of the land in the area is suitable for agriculture, except in the centre of the Sudbury basin. There is little marketable timber and most of the area is forested by mixed species, predominantly second growth.

6.0 INFRASTRUCTURE AND LOCAL RESOURCES

The city of Sudbury is a major centre with a population of about 90,000 (164,000 in the Regional Municipality of Sudbury). The area has a long mining history. As home to both Inco Limited and Falconbridge Limited, the Sudbury area is the western world's largest producer of nickel and the location of the largest fully integrated mining complex in the world.

Date January 8, 2003 Toronto, Canada

Over 300 companies involved in mining related activities offer expertise covering all areas of underground hardrock mining and environmental rehabilitation. There is particular expertise in land reclamation and mine rehabilitation. The area is also home to the Centre in Mining and Mineral Exploration Research, the Laurentian University Mining Automation Laboratory, the Mineral Exploration Research Centre, the Geomechanics Research Centre, the Canadian Mineral Industry Research Organisation, Central Analytical Services, and the Mining Innovation Rehabilitation Applied Research Corporation.

Ontario's Ministry of Northern Development and Mines is also based in Sudbury with its 236,000 square foot laboratories. Canmet also maintains a laboratory specializing in mine backfill technology and the Industrial Research Assistance Program of the National Research Council is located at Laurentian University. The Northern Ontario Research Centre for Advanced Technology Inc. is based at Cambrian College.

7.0 GEOLOGICAL SETTING

REGIONAL GEOLOGY

The geology of the Sudbury area has been studied extensively, as it hosts one of the largest nickel-copper deposits in the world, as well as being the site of a meteorite impact. There is still debate about many aspects of the geology. The following synthesis of the geology is derived from WGM's review of the available literature.

The Sudbury area is located in the southern Canadian Shield in the eastern part of the Southern geologic province. It is located at the contact between the Archean rocks of the Superior Province and the Early Proterozoic Huronian rocks of the Southern Province. The area lies about 10 km north of the Grenville Front, which marks the northern limit of the Grenville Province.

Date January 8, 2003 Toronto, Canada

The geology of the area is dominated by the Sudbury Structure, which is now generally accepted to be a deformed crater structure resulting from a major meteorite impact about 1,850 Ma ("million years"). The Sudbury Structure is a 60 by 27 km oval basin structure comprised of three components:

- An outer zone up to 80 km wide consisting of fractured and locally brecciated and partially melted Archean and Proterozoic rocks which have been affected by the Sudbury Impact and intruded by offset dikes related to the Sudbury Igneous Complex ("SIC").
- The SIC, an intrusion or melt sheet, which is now exposed in the form of an elliptical collar around the Sudbury Basin. The SIC is divided geographically into a North Range. South Range and East Range.
- Whitewater Group sediments of the Onaping, Onwatin, and Chelmsford Formations which have been deposited within the basin.

The Sudbury impact structure is bounded to the north by Archean rocks. The Archean rocks are dominated by plutons and gneisses with lesser amounts of greenstone, which date at about 2,700 Ma. Late Archean tectonometamorphism (2,640 Ma) produced the Levack Gneiss Complex and the associated anatectic granitoid rocks. The area was then intruded by the northwest trending Matachewan dyke swarm about 2.450 Ma. Gabbroic intrusions southwest and west of the Sudbury Structure (the East Bull Lake and Shakespeare-Dunlop Intrusions) are believed to be cogenetic with the lowermost volcanics of the Huronian Supergroup and are dated at about 2,490–2,450 Ma.

Huronian sedimentation and volcanism continued to about 2,200 Ma, largely to the south of the Sudbury area. The sediments were derived from the Archean Superior Province to the north. All of the rocks were intruded by the extensive Nipissing Diabase sill-dyke system about 2,200 Ma.

The Sudbury Meteorite Impact event affected a large area both inside and outside the current limits of the Sudbury Basin. Estimates of the original diameter of the impact structure range up to 150 to 225 km. The impact resulted in the formation of a radial and concentric pattern of offset dykes and zones of pseudotachylyte within the surrounding Archean and Proterozoic rocks.

The Archean and Proterozoic rocks surrounding the SIC have also been intruded by what are called "quartz diorite" or "offset dykes". Two major varieties of these dykes have been recognized: radial and concentric. The radial dykes appear to stem from the norite and/or sublayer and extend into the footwall rocks in a radial pattern with respect to the SIC. The concentric dykes may be related to ring faults and may either be connected to the norite/sublayer or represent accumulations of melt rock formed associated with pseudotachylyte formation. The Hess concentric offset in Foy Township stems from the radial Foy offset dyke. After its formation the Sudbury Structure and adjacent rocks were affected by the Penokean orogeny, variously dated at between 1,700–1,900 Ma. Northwesterly directed thrusting during this orogenic event is believed to be responsible for northwest-southeast shortening of the SIC and Sudbury Basin, contributing to its current elliptical shape.

PROPERTY GEOLOGY

The property is located approximately three kilometres north of the SIC within Precambrian rocks of the Superior Province. The southern claim block lies mainly within the Parkin Greenstone Belt, a belt of mafic to felsic Archean metavolcanics. Intermediate to mafic metavolcanic rocks are present in the southwestern corner of the south claim block. The central part of the south block is dominated by felsic metavolcanic rocks and Nippissing diabase. The metavolcanic rocks generally trend northwest-southeast. Dips are sub-vertical. The metavolcanic rocks are intruded by a number of metagabbroic dykes. Mississagi quartzite, which unconformably overlies the older Archean rocks is present in the northeastern part of the south block.

The Parkin quartz diorite offset dyke, which is widely believed to represent the faulted extension of the Whistle offset dyke, trends across the centre of the south claim block at azimuth 33° (Figure 3). The dyke has a width of about 50 m. Dips are generally thought to be subvertical to steep to the southeast. The dyke contains both massive quartz diorite as well as quartz diorite breccia. Compositions of the quartz diorite are consistent with average compositions for North Range quartz diorites.

A four and a half kilometre long section of the Parkin offset dyke trends at about N15°E across the northern claim block. The offset dyke here is between 30 to 90 m wide and dips steeply east at 85°. The dyke is medium grained quartz diorite with characteristically small amphibole needles. Both inclusion-bearing and inclusion free phases are present. Chilled margins are typically less than 20 cm thick. The dyke is cut by a number of 300° trending faults and diabase dykes, particularly in the sourthern part of the claim group. Significant offsets of the dyke are noted in this area. There may also be a bifurcation of the dyke here. Zones of Sudbury Breccia and anatexite are noted associated with the dyke.

Host rocks for the dyke on the northern block are Huronian sediments of the Cobalt embayment, largely argillite of the Gowganda Formation. Conglomerates of the Bruce Formation and quartzites of the Serpent Formation are present on the southern part of the north block. High gold values (up to 63 g Au/t) have been obtained from narrow quartzcarbonate veins within the offset dyke on the north block. The elevated nickel values associated with this mineralization (up to 1.08% Ni) suggest a relationship to the SIC related mineralization commonly found in the offset dykes. Minor disseminated pyrrhotitechalcopyrite mineralization of this latter type is also locally present.

8.0 EXPLORATION TARGET

Two potential exploration targets exist on the Parkin Property:

- 1. Ni-Cu-PGE mineralization associated with disseminated to massive sulphide zones within the "Parkin Offset Dyke" of diorite composition and,
- 2. Au within sulphide mineralized quartz-carbonate veins which cross-cut the dyke.

The dyke is considered a part of the intrusive sub-layer of the SIC and is comprised of quartz-diorite and quartz-diorite breccia. Nickel-copper and precious metal sulphide ores of the Sudbury Basin are associated with this rock type. The dyke trends across the company's north and south claim blocks. This radial dyke is believed to originate from the norite and/or sublayer and extend into the footwall rocks in a radial pattern with respect to the SIC.

The potential to locate an economic Ni-Cu and precious metal (Pt/Pd/Au) deposit on one or both of CB's Parkin Township properties remains high. The former Milnet Mine is located on the Parkin offset dyke between CB's north and south claim blocks. From 1952-54, the mine produced 157,755 tons of ore grading 1.49% Ni, 1.54% Cu, 0.087 o.p.t. Pd, 0.066 o.p.t. Pt and 0.027 o.p.t. Au.

The Parkin offset dyke is widely believed to represent the faulted extension of the Whistle Offset dyke. Inco's Whistle Mine, located on the Whistle Offset in Norman Township near the SIC contact, is estimated to contain 5 million tonnes of ore that is thought to grade about 1.30% Ni and 0.20% Cu.

FNX Mining Company Inc. (FNX-TSX) and Dynatec Corportation (DY-TSX) recently reported their best drill hole intersections to date (January 17, 2003 Press Release) on their Norman Property, which intersected significant copper-nickel-platium-palladium-gold mineralization within the Whistle (Parkin ?) Offset Dyke (Table 1).

Hole Number	Intersection Length (m)	<u>Cu (%)</u>	<u>Ni (%)</u>	<u>TPM (g/t)</u>
FNX4087	37.68	0.8	0.1	4.1
	10.46	1.6	0.2	6.7
FNX4088	43.14	2.8	0.3	2.0
	6.71	8.5	0.4	5.3
FNX4089	160.43	2.0	0.3	2.5
including:	41.13	5.1	0.3	4.7
including:	16.04	1.8	1.1	6.1
including:	3.05	5.3	5.3	6.4

Table 1 - Highlights of the Norman 2000 Deposit

Notes for Table:

- The length reported are intersection lengths; true widths are interpreted to be approximately 50-60% of the intersection lengths reported.
- Cu = copper; Ni = nickel; Pt = platinum; Pd = palladium; Au = gold
- TPM = total precious metals defined as Pt + Pd + Au
- g/t = grams per metric tonne.

Drilling by the same joint venture group last year on the Victoria Property intersected significant copper-nickel-platinum-palladium and gold values; mineralization in a quartz diorite offset dyke environment located at the contact of the Sudbury Basin and Worthington Offset Dyke. In November, 2002, the group announced the discovery of the "Powerline Deposit" on their Victoria Property also reported to contain copper-nickel-platinum-palladium and gold mineralization hosted in a offset dyke environment (Table 2). The deposit may occur within a northeast extension of the Worthington Offset Dyke which hosts several Cu-Ni precious metal deposits, including Inco's Tottem Deposit located six kilometers to the southwest of the Powerline Deposit.

Date January 8, 2003 Toronto, Canada

<u>Hole Number</u>	Intersection (m)	<u>Cu (%)</u>	<u>Ni (%)</u>	<u>TPM (g/t)</u>
FNX 1110	5.70	0.6	1.6	5.0
	3.14	1.7	1.8	1.5
FNX 1113	12.90	6.7	1.3	13.3
Including:	6.31	10.8	1.4	24.4
FNX 1114	7.29	4.6	1.6	9.1
FNX 1115	2.56	2.9	1.8	7.9
FNX 1116	3.69	1.1	1.1	3.7
FNX 1122	4.67	3.2	1.1	5.0

Table 2 - Highlight of the Powerline Deposit Discovery (Victoria Property)

Notes for Table:

- The lengths reported are drill intersected core lengths.
- Cu = copper; Ni = nickel; Pt = platinum; Pd = palladium; Au = gold
- TPM = total precious metals defined as Pt + Pd + Au
- g/t = grams per metric tonne.

9.0 **PREVIOUS WORK**

PARKIN SOUTH CLAIM BLOCK - "BRADY SHOWING"

CB's Parkin South Claim Block is comprised of three claims, S693958, S693959 and S693960 and has been extensively explored since the late 1940's. Exploration activities have included establishing an exploration grid, geological mapping, ground geophysics and surface stripping and channel sampling. Much of the exploration activities have been concentrated on the 80 meter long "Brady Showing" where the Parkin Offset Dyke is exposed in outcrop. Approximately 0.5 kilometers of dyke trends across the property at a general strike of 035 degrees and dips steeply east. Prior to completing the recent diamond drill program, 93 drill holes have explored the offset dyke at the Brady Showing and along strike towards the northeast; the majority of holes were drilled in the vicinity of the

Date January 8, 2003 Toronto, Canada

showing.

From 1947 to 1954, exploration activities by Jonsmith Gold Mines Ltd. led to the discovery of Ni-Cu bearing quartz diorite offset dyke at the Brady Showing (formally the "Burton Showing") and development of the Milnet Mine around one kilometer to the north northeast. Mineralization consists of pyrite, pyrrhotite, pentlandite and chalcopyrite. Eleven holes (101 to 111) drill tested dyke at the showing and along strike to the northeast; drill logs and assay data are not available.

In 1983, Nearctic Resources Ltd. drilled eight vertical holes (518m); holes NR1-83 to NR8-83. All holes intersected diorite rock (offset dyke?). Assay data is missing on the log sheets. However, a 1983 Northern Miner press release states that hole NR1-83 returned 1.8% Cu, 0.62% Ni and 0.02% Co in base metals and the hole assayed 0.77 oz of Au, 0.43 oz of Ag, 0.02 oz of Pt and 0.015 oz of Pd per ton over a core length of 2.3 meters (7.5 feet). Nearctic Resources Ltd. drill tested the dyke to a maximum vertical depth of 124 meters and an average depth of around 60 meters. Four, or 50 per cent, of the holes drill tested the dyke under a vertical depth of 50 meters from surface.

Inco (1985) re-assayed portions of Nearctic's drill core (51 samples). The best hole intersection was NR1-83 that returned 6.79 % Cu and 1.75 % Ni (see Table 3, below).

<u>Hole</u>	<u>Cu (%)</u>	<u>Ni (%)</u>	<u>Co (%)</u>	<u>Pt</u>	<u>Pd</u>	<u>Au</u>	Sample Length (m)
				<u>(o.p.t)</u>	<u>(o.p.t.)</u>	<u>(o.p.t.)</u>	
NR1-83	6.79	1.75	0.05	0.017	0.031	Nil	0.15
NR3-83	0.41	1.02	0.04	0.026	0.024	0.003	1.28
	0.30	1.36	0.06	0.027	0.008	0.003	0.92
NR7-83	Nil	3.74	0.06	0.018	0.026	Nil	0.31

Table 3 - Best Intersections (Inco), Re-sampled Nearactic drill cores

Date January 8, 2003 Toronto, Canada

In 1986, Falconbridge Limited drilled fourteen holes (833m); holes P37 to P50. There may also be a hole P51 (location unknown). Each of these holes intersected dyke rock over a strike length of 140 meters but reported low grade Ni/Cu assays. The best intersection was from hole P49 which returned 0.12% Cu, 0.06% Ni, 0.19 g/t Pt, 0.16 g/t Pd and 0.16 g/t Au over a sample length of 4.6 meters. However, some sample lengths were up to 9.2 meters (30 feet) resulting in extreme sample dilution. In fact, over 76 percent of the sample lengths exceeded 3.0 meters (10 feet) in length. Therefore, narrow zones of significant grade mineralization may be present but have not yet been identified. Several of the holes contained sporadic 0.5 to 3.0 percent sulphide mineralization.

Drilling tested the dyke to a maximum vertical depth of 73 meters and an average depth of 30 meters. Twelve, or 86 percent of the holes drill tested the dyke to a depth of less than 50 meters from surface.

Prophet Resources Ltd. (1987-88) conducted geological mapping, a ground magnetometer/VLF-EM survey, channel sampling and drilling which tested the Brady Showing and it's northeastly extension. The best channel sample returned 0.79 o.p.t. Pt (10.57 g/t) and 0.049 o.p.t. Pd (1.52 g/t) over 0.92 meters.

Drilling consisted of 49 vertical percussion holes (868.7m: holes R1-R11, 88-1 to 88-20, 88-102 to 88-117, C1,C2) and 6 diamond drill holes (629m; holes 87-1 to 87-6). Cuttings were collected and assayed for Au, Pt, Pd, Ni and Cu. There is no record that the drill cuttings (rock chips) were logged. Percussion hole R3 returned 0.43% Cu and 1.67% Ni over a sample length of 4.1 meters. Hole 88-108 returned 1.4% Cu, 2.0% Ni, 3.33 g/t Pt, 2.21 g/t Pd and 0.87 g/t Au over 2.0 meters. Other best assay intersections are tabulated below, see Table 4.

 Table 4 - Best Percussion Hole Intersections by Prophet Resources Ltd.

Hole	<u>Cu (%)</u>	<u>Ni (%)</u>	<u>Pt (g/t)</u>	<u>Pd (g/t)</u>	<u>Au (g/t)</u>	Sample Length (m)
Date Jar	nuary 8, 20	003			Watts,	Griffis and McOuat Limited
Toronto	, Canada			Consult	ing Geologists and Engineers	

88-4	0.34	0.17	0.21	0.26	7.30	2.04
88-9	1.01	0.06	4.42	1.67	1.26	1.01
88-112	1.49	1.80	1.05	0.97	0.27	2.04
88-114	1.95	1.39	1.68	1.41	0.98	3.05

None of the diamond drill holes returned any significant assays although minor sulphide mineralization was intersected; hole 87-1, up to five percent patches of pyrrhotite and chalcopyrite in offset dyke.

In 1990, **BP Canada, Selco Division**, drilled three deep holes totalling 1093 meters; holes V73-90-1 to V73-90-3; also known as BP1-3. All three holes intersected offset dyke. No sulphide mineralization was intersected and the drill logs did not contain any assay data.

WMC International Limited (1985) conducted a geological mapping and grab sampling program using Inco's 1:2500 scale maps resulting in the following list of observations:

- The offset dyke typically dips 85 degrees to the east and Sudbury breccia is often found along the contact margin.
- Inclusion-bearing quartz diorite cuts inclusion free quartz diroite; inclusions derived dominantly of Gowganda Formation argillite, quartzite of the Lorraine Formation and mafic metavolcanics of the Superior Province.
- The inclusion-bearing quartz diorite generally contains 1-5 percent blebby chalcopyrite/pyrrhotite mineralization.
- The quartz diorite varies from 0-60 meters in width and is typically 30-40 meters thick.

- Mineralization is restricted to the inclusion-bearing quartz diorite whereby the intensity of mineralization is proportional to the number and size of the inclusions.
- At the Brady Showing, massive sulphide is observed up to 1.0 meter in length over a strike length of 70 meters. It is associated with an inclusion-bearing quartz diorite that cuts an inclusion-free quartz diorite.
- The number and size of the inclusions increase towards the massive sulphide pods. The number of mafic inclusions also increase.

Sampling confirmed the potential for ore grade mineralization in the quartz diorite dyke; sample CR103756 assayed 1.46% Ni, 1.75% Cu, 0.21% Co, 0.69g/t Au, 19.7 g/t Ag, 0.56 g/t Pt and 0.38 g/t Pd. Sample CR103757 of massive sulphide containing chalcopyrite, bornite with lesser amounts of pyrrhotite and pyrite assayed >15% Cu, 2.18 g/t Au, > 50 g/t Ag, >10 g/t Pt and 0.46 g/t Pd.

Two sulphide-bearing quartz-carbonate (ankerite) veins hosted within quartz diorite rock assayed >10 g/t gold (samples CR-103862, CR-104056). The presence of Ni (1.08%) in one vein sample suggests that the gold mineralization may be related to nearby Ni-Cu PGE mineralization.

Champion Bear Resources Ltd.

The Brady Showing was cleared by CB to relocate previous channel sample locations. A new exploration grid was established to tie in previous survey's and drilling programs. A 2.7 meter channel sample across the northern edge of the showing in massive sulphides confirmed the results of the previous operator's; the sample assayed 9.2 g/t Pt, 4.3 g/t Pd, 1.57 g/t Au, 11.2% Cu and 0.63% Ni.

A partial longitudinal section was constructed showing pierce point intersections of significant mineralization within the Parkin Offset dyke.

In 1998, nine holes (597m) were drilled to test the mineralization potential of the offset dyke; holes P1 to P9. All nine holes were collared in the offset dyke drill testing the dyke to a maximum vertical depth of 114m (average depth was 39 meters). Seven, or 78%, of the holes tested the dyke to a vertical depth of 50 meters from surface. The best drill hole intersection was hole P7 which returned 2.53% Ni , 0.48% Cu and 2.49 g/t (Au+Pt+Pd) over a sample length of 1.2 meters. Hole P4 returned the highest combined Au/Pt/Pd assay of 4.3 g/t.

In January/February, 2001, an I.P. gradient array survey was conducted by Eastern Geophysics and data interpreted by Matrix Geotechnologies Ltd.. Some high priority drill targets were identified.

A second drill program was undertaken in January, 2001. Four holes, totalling 1311 meters, were drilled; holes P12-P14, BP2X. There were no significant assay returns. Hole BP2X was the deepest hole drilled on the property testing the dyke mineral potential to a vertical depth of 770 meters.

The author, accompanied by Mr. John Brady (prospector) visited the Brady Showing on July 11, 2002 - part of the compilation work program conducted by Watts, Griffis and McOuat. A GPS was used to locate the showing; UTM 0509935E, 5184499N (NAD83). Pods of disseminated to massive sulphides were observed within highly gossaned quartz diorite dyke rocks. These pods appear to pinch and swell along strike. A grab sample of massive sulphide-bearing dyke rock was submitted for assay (sample 27916: UTM 0509933E, 5184461N). The sample contained massive chalcopyrite and minor pyrrhotite and pyrite; mineralization similar to the sample described by WMC International Limited (1985) - sample CR103757. Assays returned >10% Cu, 0.08% Ni, 0.26% Pb and 0.32% Zn. The sample also contained 33.2 g/t Pt, the highest Pt assay value obtained on the

Date January 8, 2003 Toronto, Canada

property to date!

On July 9, 12 and 15th, eleven drill holes comprising 469.9 meters of core were examined by the author to review and confirm rock lithologies, observe the nature of the quartz diorite dyke and determine if additional core splitting was required. Overall, the author was in agreement with the rock lithologies described in CB's drill logs with the exception of hole P12 (interval 73.9 to 78.0m) where a unit described as a porphyritic dacite tuff more closely resembles a medium grained diorite rock. Seven additional samples were split from holes P12 (samples 27901-27903) and P14 (samples 27907-27910) for analysis. The samples did not contain any significant precious or base metal concentrations confirming the low grade intersections observed within adjacent CB split core samples.

PARKIN NORTH CLAIM BLOCK

Early exploration on the Parkin North Claim Block focused on gold mineralization. Electromagnetic and geological surveys, were reportedly undertaken in 1956 by **Canadian All Metals Exploration Limited**, results of their work are not recorded.

In 1968, R.E. Bazinet drilled two shallow holes (26m) which intersected argillite. Drill logs for their holes are not available. Additional gold exploration was conducted by L.G. Phelan in 1970 (prospecting), Decade Exploration in 1972 (overburden sampling), and Ike Burns who flew an airborne magnetic survey in 1978. In 1981, H. Barry used magnetic and VLF-EM surveys to trace the quartz diorite dyke in which he exposed gold-bearing cross cutting carbonate veins by power stripping. That same year, North Dennison Mines completed a resistivity survey over the four westernmost claims.

In 1985, John Brady carried out additional stripping and trenching to expose the dyke in search of Cu, Ni and PGE. That same year, Falconbridge Ltd. drilled four holes (666m) along a 700 meter section of the dyke; holes P52 to P54. The holes drill tested the dyke to a vertical depth of 33 meters. No significant Cu/Ni were intersected and Pt/Pd values were

Date January 8, 2003 Toronto, Canada

less than 60 ppb. The highest Au value obtained was 330 ppb. Again, many sample lengths were excessive and would result in extreme dilution of narrower, higher grade zones (if present). For example, sample QE 55155 in hole P-55 was 11.3 meters (37 feet) in length. Overall, greater than 80% of the samples exceeded 6 meters (20 feet) in length.

Inco Gold (1988-89) conducted a geological mapping program, a ground magnetometer and VLF-EM survey, a limited I.P. survey and a small diamond drilling program. Geological mapping traced the quartz diorite dyke over a strike length of 4.3 kilometers. The dyke ranges in width from 15 to 50 meters, strikes 010 to 015 degrees and dips +/- 80 degrees east. The magnetic and electromagnetic surveys did not show the trace of the dyke across the property. An I.P. survey, centered on the dyke, was carried out from grid lines 1500S to 2700S. Data

showed no I.P./resistivity responses characteristic of the dyke - I.P. data was not located in the CB files.

The dyke was drill tested by two diamond drill holes (267m) to a maximum vertical depth of 100 meters; holes 79502 and 79503. Hole 79503, a vertical hole, collared and ended in quartz diorite dyke rock. Cu/Ni values did not exceed 940/450 ppm and Pt/Pd values were below the detection limit. A quartz-carbonate vein containing pyrite hosted in the dyke rock assayed 12.5 g/t Au over a length of 0.3 meters.

John Brady carried out some trenching activity in 1992 to further explore the dyke.

In 1995, WMC International Ltd. carried out a Dighem airbonrne geophysical survey (magnetics;VLF-EM/Resistivity/UTEM). Data was presented at a scale of 1:10,000. They also conducted a geological mapping and sampling program (1:2500) using the Inco's geology map as a base. No follow-up exploration targets were identified.

Champion Bear Resouces Ltd.

CB carried out two drill programs on the southern portion of the claim block from 1999 to 2001. Neither program encountered any significant Ni, Cu, PGE or Au mineralization.

In 1999, the company drilled two holes (255m). Hole P10 did not intersect the dyke but, instead, drilled through barren metasedimentary rocks - siltstones, quartzites and conglomerates. Hole P11 had no significant assay returns and tested the dyke to a vertical depth of around 100 meters.

In 2001, hole P15 (391m) was collared approximately 40 meters south of CB's property claim boundary on claim S647603, drilling north northeast into CB's claim S854517. Cu/Ni values did not exceed 0.302/0.072 % and total precious metal TPM values were below 0.1 g/t. Many Pb/Zn assays appear to be missing from the drill log. The dyke was tested to a vertical depth of 340 meters.

In January/February, 2001, two companies conducted ground geophysical survey covering the same general area. Matrix Geotechnologies Ltd. performed an I.P. survey (gradient array and dipole-dipole) - field work performed by Eastern Geophysics. No priority drill targets were identified. Eastern Geophysics also conducted a 3-D Borehole Pulse EM survey on CB's drill hole P15 - their data requires interpretation.

On July 11, 2002, the author, accompanied by Mr. John Brady, visited two outcrop exposures of quartz diorite dyke adjacent to the access road - part of the compilation work program conducted by Watts, Griffis and McOuat. Each site was located using a GPS. At WP27 (UTM 0510955E, 5189351; NAD 83), the dyke contained numerous, randomly oriented, mafic and granitic inclusions. The dyke was massive in appearance, contain only trace amounts of disseminated sulphides and appeared somewhat silicified. According to Mr. Brady, a galena-bearing quartz vein had been sampled from this location (not located) and the sample reportedly assay 0.5 o.p.t. Au. There has been no further exploration work at this location. At WP28 (UTM 0510977E, 5189423N) the dyke was massive with no

Date January 8, 2003 Toronto, Canada

visible inclusions.

A field investigation to explain an airborne EM anomaly was also undertaken the same day. WP24, located at UTM 510190E, 5186450N (NAD83), marks the location of the anomaly and a point where offset dyke should outcrop. The area was extensively traversed and no outcrop was located. The area is covered by thick overburden and there are numerous floats of silicified metasediments. The anomaly is located on high ground on the flank of a hill that steeply drops off 10-15 meters to the west. Although the source of the anomaly was not identified, it most likely resides in the quartz diorite dyke.

10.0 2002 DRILLING PROGRAM

Three diamond drill holes, totalling 695 meters were completed on the Parkin Property from October 24, 2002 to November 6, 2002 (Table 5). Two holes totalling 489 metres were drilled on the Brady South claim block to test IP targets defined using "Quantitative Section Methodology". The third hole was drilled approximately 2.5 kilometres to the north on the Parkin South claims to test an AeroTEM airborne electromagnetic anomaly.

Hole Number	Bearing (degrees)	Dip (degrees)	Northing (x)	Easting (x)	Depth (meters)	Claim Number
Brady South						
BS-16-02	305	-65	5184417	510038	291.0	693959
BS-17-02	303	-50	5184492	510378	198.0	693960
Parkin North						
PN-01-02	250	-50	5186492	510275	206.2	1211020

TABLE 52002 Diamond Drilling Program

Date January 8, 2003 Toronto, Canada

(x)UTM Coordinates NAD 83 Zone 17

Drilling was conducted by St.-Lambert Drilling out of Rouyn-Noranda, Quebec. All holes were drilled with NQ core, acid tests were taken at 50 metre intervals and casing was left in the hole and capped to allow for down hole geophysical testing and deepening of the holes if required. GPS coordinates of all collar locations were recorded and the collar tied into the exploration grid.

The drill core was logged and split at Champion Bear's Sudbury field office under the on site supervision of the author, a qualified person. Drill core was logged and section for sampling were split with a mechanical splitter to retain half of the sampled section for future verification and testing (if required). Sample lengths of between 0.5 and 1.5 m were used. Lengths were adjusted as necessary, to respect geological and/or mineralization contacts.

The samples for assaying were sealed in plastic sample bags and delivered personally to Activation Laboratories in Ancaster, an ISO accredited laboratory (see assay reports, attached). A total of 335 samples were assayed for Pt (ppb), Pd (ppb), Au (ppb), Ag (ppm), Cd (ppm), Cu (ppm), Mn (ppm), Mo (ppm), Ni (ppm), Pb (ppm), Zn (pm) and S (%). Eight samples were selected for additional trace element geochemical analysis (hole BS-16-02) see Appendix.

HOLE BS-16-02

Hole **BS-16-02** (Figure 4) successfully tested an IP target located at a vertical depth of 200 metres and down dip of shallow mineralization encountered in previous near surface exploration on the Brady South exploration grid. The target, which was identified using "Quantitative Section Methodology", indicated the possibility of disseminated mineralization starting below 150 metres and increasing towards 200 metres, the depth limit

of the IP survey. The hole drilled at an angle of -65 degrees cored mostly "offset dyke" material, with the odd mafic dyke, for its entire length of 291.0 metres.

The main inclusion bearing section containing disseminated sulphide mineralization, ranging from 1 to 5%, was encountered from 169 to 249 metres. Chalcopyrite blebs and disseminations were present between 172 and 236 metres in association with pyrite and pyrrhotite. Anomalous Cu, Ni, Pd, Pt and Au values four to five times above background, were encountered over 22 metres of core length from 180 to 202 metres. The section assayed 253.7 ppm Cu, 294.4 ppm Ni, 19.3 ppb Pd, 19.6 ppb Pt and 10.5 ppb Au, with the best 1.2 metre section from 187.8 to 189.0 metres assaying 399 ppm (0.04%) Cu, 474 ppm (0.05%) Ni, 31 ppb Pd, 31 ppb Pt and 17 ppb Au. This hole confirms that inclusion bearing offset dyke hosting disseminated chalcopyrite bearing sulphide mineralization containing elevated Cu, Ni and PGE's is present at depth below previous drilling, as predicted by the IP. The anomalous mineralization encountered is consistent with the model of a disseminated halo present up dip and around many offset dyke ore bodies.

HOLE BS-17-02

Hole **BS-17-02** (Figure 5) was drilled approximately 350 metres northeast of hole BS-16-02 to test a shallow IP anomaly located 300 to 350 metres east of the offset dyke, in an area underlain by mafic volcanic and intrusive rocks and metasediments. The hole was drilled, to test the likelihood of this stratigraphic package, to host massive sulphide Cu, Pb, Zn deposits of volcanogenic affinity.

The upper 107 metres are predominantly interlayered gabbro and mafic volcanics. The section from 35 to 39 metres contains 2 to 5% pyrite and up to 1% chalcopyrite, locally. The 5.2 metre section from 35 to 40.2 metres assayed 506.6 ppm Cu, 567.0 ppm Ni, 15.1 ppm Pb and 112.4 ppm Zn. A volcanic tuff unit, encountered from 107.1 to 113.1 metres contains 5-10% sulphides. The sulphides are locally semi-massive averaging 15 to 40%

Date January 8, 2003 Toronto, Canada

over core lengths of 0.1 to 0.6 metres dominantly pyrite with minor chalcopyrite (trace pyrrhotite). The 6.0 metre section from 107.1 to 113.1 assayed 186.1 ppm Cu, 87.6 ppm Ni, 57.4 ppm Pb and 218.4 ppm Zn and included a 0.4 metre section of 79 ppm Cu, 117 ppm Ni, 159 ppm Pb and 509 ppm Zn.

HOLE PN-01-02

Hole **PN-01-02** (Figure 6) tested the previously announced AeroTEM anomaly on the north claim block. The hole is located approximately 130 metres north of previous CB hole No. P-11. The drilling encountered a new area of PGE bearing mineralization along the offset dyke. The hole which collared in diorite "offset dyke" traversed 42.4 metres (from 18.7 to 61.1 metres) of inclusion bearing dyke material with up to 10% disseminated, chalcopyrite bearing, sulphide mineralization (dominantly pyrrhotite and pyrite). The 20 metre section from 29 to 49 metres assayed 401 ppm Cu, 474 ppm Ni, 34 ppb Pd, 37 ppb Pt and 12 ppb Au. A one metre section from 39 to 40 metres returned 699 ppm (0.07%) Cu, 944 ppm (0.09%) Ni, 65 ppb Pd, 83 ppb Pt and 17 ppb Au (the most enriched PGE content reported from drilling on the northern block to date). The hole remained in offset dyke for its entire length of 206.2 metres. The hole also traversed a highly sheared fault zone from 120.2 to 167.1 metres. Characteristic blocky core with local oxidized, chloritic, talcose and rubbly sections of up to two metres length diminished with depth.

11.0 RECOMMENDATIONS

PARKIN SOUTH CLAIM BLOCK - "BRADY SHOWING"

• The zone of mineralized "offset dyke" intersected by drill hole BS-16-02 remains open to depth and along strike to the south. A follow-up program including down-hole geophysical surveying to test for deeper and off hole targets and follow-up drilling in the immediate area is recommended.

- Anomalous Zn and Pb values, several times background levels, present within the sulphide-bearing tuffs intersected by drill hole BS-17-02 indicates a possible presence of a volcanic massive sulphide environment. Further investigation of this stratigraphic horizon along strike and at depth should be.
- All sulphide-bearing quartz-carbonate veins that cross-cut the quartz diorite dyke should be sampled to evaluate their gold potential.
- Crone PEM and/or downhole IP survey's should be considered for each of the BP Canada (1990) drill holes to allow testing of most of the strike length of the dyke to locate potential sulphide deposits to a depth of around 770 meters; holes V73-90-1 to 3 (BP1-BP3).
- All existing I.P. data should be re-examined to determine if any other viable drill targets exist.
- Hole P15's 3-D Borehole Pulse EM survey data requires interpretation.
- Drill testing of the southern claim block is limited to numerous shallow holes. Over 80 percent of the holes drill tested the offset dyke of a depth of less than 50 meters. The potential to discover new mineralized zones may occur at depth.
- Additional drilling should be carried out to better define the geometry of the dyke and identify any swells or flexures which may act as traps for mineralization.
- A new longitudinal section should be constructed of the "Brady Showing" integrating the new diamond drill hole BS-16-02. A second dyke thickness section should be constructed and contoured to determine changes in dyke geometry which may identify

Date January 8, 2003 Toronto, Canada

structures controlling the mineralization. A third section, identifying both the percentage and types of sulphide mineral phases should also be considered as the presence of chalcopyrite appears important in locating elevated PGE mineralization. The combination of these maps should help significantly to identify new drilling targets.

• It is uncertain if narrow, high grade intersections were missed by Falconbridge Ltd. (1986) drill program due to extreme sample dilution caused by excessive core sample lengths submitted for analysis. Some additional drilling may be required at locations along the dyke that were only drill tested by Falconbridge in order to verify the low grade intersections.

All or portions of CB's drill core is presently in storage at the company's Sudbury office; holes BS-16-02, BS-17-02, PN-01-02, old drill holes P1-P6, P8-P9, P11-14 and BP2X. Very little room exists to accommodate storage of drill core from future drill programs. Old drill core should be removed for storage elsewhere before a major phase of drilling commences.

- A self potential (SP) test survey should be carried out over the immediate area adjacent to the Brady Showing where known sulphide mineralization occurs. Data can then be evaluated to determine it's effectiveness as a quick cost effective exploration tool to explore for other mineralized zones along strike; to possibly define additional drill targets.
- There is no record that CB nor any previous operators conducted any systematic soil sampling program. A soil survey, centered along the offset dyke, should be conducted. The survey should include elements such as Au, Cu, Ni, Co, Pb, Zn and Ag. This survey will also involve re-establishing portions of the old grid to tie in previous exploration activities on the property.

- A number of samples of sulphide mineralized dyke, including massive sulphide rock, should be examined for their As content to determine if As can be used in the soil geochemical survey as a pathfinder element.
- Samples collected by Nearctic Resources Ltd (1983) and WMC International Limited (1985) demonstrate that silver (Ag) concentrations ranging from 13.37 g/t to >50 g/t can occur in association with Ni-Cu mineralized dyke. Many of the previous operators, including CB, have largely ignored the economic potential for silver on the property. Additonal samples should be collected across the Brady Showing to evaluate it's Ag potential. Depending on results, all future samples should be analyzed for Ag.
- An effort should be undertaken to plot all significant drill core assays on CB's drill hole sections. It is uncertain, at this time, if the drill hole data has been computerized. All data should be entered into a digital database and plans and sections generated.
- Assay results are missing from portions of CB's drill logs; hole P7 (sample 11) and hole BP2X (samples 7574, 9575-9578). These assays should be entered onto the log sheets.

PARKIN NORTH CLAIM BLOCK

 Neither the mineralization, nor the nature of the fault material encountered in hole PN-01-02 account for the AeroTEM conductor. The fact that the drill hole is located in a swampy area and that 15 metres of casing was required to collar the hole possibly explains why this area had not previously been discovered. Follow up work including down hole geophysics and additional drilling is recommended to further explore this new area of anomalous mineralization within the offset dyke early in 2003.

- All sulphide-bearing quartz-carbonate veins that cross-cut the quartz diorite dyke should be sampled to evaluate their gold potential.
- The use of a self potential survey to locate potential exploration targets in the north claim block will depend on the success of the Brady Showing test survey results.
- The quartz diorite dyke in the northern claim block remains vastly unexplored. Drill testing is limited to only to six diamond drill holes. Four of these holes drill tested the offset dyke only to a vertical depth of 33 meters. The potential to discover new mineralized zones may occur at depth and along strike.
- All existing I.P. data should be re-examined to determine is any other viable drill targets exist.
- Additonal drilling should be carried out to better define the geometry of the dyke and identify any swells or flexures which may act as traps for mineralization.
- It is uncertain if narrow, high grade intersections were missed by Falconbridge Ltd. (1986) drill program due to extreme sample dilution caused by excessive core sample lengths submitted for analysis; holes P52 to P54. Some additional drilling may be required to verify their low grade intersections.
- There is no record that CB nor any previous operators conducted any systematic soil sampling program. A soil survey, centered along the offset dyke, should be conducted. The survey should include elements such as Au, Cu, Ni, Co, Pb, Zn, Ag and possibly As. This survey will also involve re-establishing portions of the old grid to tie in previous exploration activities on the property.

- An effort should be undertaken to plot all significant drill core assays on CB's drill hole sections. It is uncertain, at this time, if the drill hole data has been computerized. All data should be entered into a digital database and plans and sections generated.
- Missing assay data for sample 999 (hole P10), Cu/Ni assays for hole P11 (sample 10596) and Pb/Zn assays for hole P15 should be located and entered onto the drill log.
- The total strike length of the dyke may exceed 6 kilometers in length. The dyke was mapped originally by Inco covering a distance of 4.3 kilometers. WMC International believed that the dyke was terminated in the north by a northwest trending fault. This assumption appears to have been made because no dyke has been mapped to date north of the fault structure. However, an examination of Inco's geology map does show that dyke rock could still trend north of the fault without detection through an area of extensive Lorraine Formation quartzite and quartz-feldspar arenite outcrop. If this is the case, an additional 1.6 kilometers of dyke may outcrop on the property for a total strike length of at least 6 kilometers.

An assessment file search should be conducted on the new ground acquired adjoining the Parkin North claim block. All information should be added to the WGM compilation map and summarized in a short report.

12.0 CERTIFICATE

To Accompany the Report Entitled REPORT ON THE 2002 DIAMOND DRILLING PROGRAM PARKIN TOWNSHIP, SUDBURY, ONTARIO FOR CHAMPION BEAR RESOURCES LTD. dated January 8, 2003

I, Paul A. Dunbar, do hereby certify that:

- 1. I reside at 64 Massey Drive, Charlottetown, Prince Edward Island, C1E 1X8.
- 2. I graduated from the University of Waterloo, Waterloo, Ontario in 1983 with a B.Sc. in Earth Sciences (Honours Applied Earth Sciences, Co-operative Program), and from Laurentian University of Sudbury, Ontario in 1989 with a M.Sc. in Geology and have been practicing my profession continuously since 1979.
- 3. I am a member in good standing with "The Association of Professional Geoscientists of Nova Scotia" since June, 2000.
- 4. I am an Associate Geologist of Watts, Griffis and McOuat Limited, a firm of consulting geologists and engineers, which has been authorized to practice professional engineering by the Professional Engineers Ontario since 1969.
- 5. I am a qualified person for the purpose of this report.

- 6. I was the drill geologist for this project. Work included spotting holes, logging and sampling the core, supervising the core splitting by Kirk Pascoe and dispatching samples to the laboratory for assay in Ancaster.
- 7. I have no personal knowledge as of the date of this certificate of any material fact or change which is not reflected in this report.
- 8. I have worked extensively in the Archean terrain of Eastern Canada and for companies as a exploration geologist in search of economic gold and base metals; including geological mapping of the Sudbury Basin. These companies include Noranda Exploration Company Limited, International Thunderwood Explorations Ltd., Aur Resources, Esso Minerals as well as the Ontario Geological Survey.
- 9. I previously worked on this property; work included field visits to the property and extensive compilation work reviewing all previous work on the property.
- 10. I have prepared and written this report.
- 11.I do not own, directly or indirectly, nor do I expect to receive, any interest in the properties or securities of Champion Bear Resources Ltd., or any associated or affiliated companies.
- 12.I have prepared this technical report in conformity with generally accepted Canadian mining industry practice.

Janthan

Paul A. Dunbar, M.Sc., P.Geo.

Watts, Griffis and McOuat Limited Consulting Geologists and Engineers

13.0 SOURCES OF INFORMATION

Compilation Work: Champion Bear Resource Ltd. - Parkin Township Properties-Sudbury, Ontario, September 2, 2002: Watts, Griffis and McOuat Limited, Consulting Geologists and Engineers, report by Paul Dunbar, 13 pp..

Report on the Eagle Rock and Separation Rapids Properties, Northwestern Ontario and The Parkin and Iron Mask Properties, Sudbury Area for Champion Bear Resources Ltd., October 26, 2000: Watts, Griffis and McOuat Limited, Consulting Geologists and Engineers, 167 pp.

Fort Knox Mining Company Inc. website: http://www.fnxmining.com/fnx/homelw.php

System for Electronic Document Analysis and Retrieval (SEDAR) website: http://www.sedar.com/issuers/company issuers c en.htm

APPENDIX:

1) DRILL LOGS

2) ASSAY CERTIFICATE

Sheet1

PROPERTY Parkin So LOCATION (GRID): L200N, 1 UTM: 17T 0510038E, 5184417N (NAE DATES DRILLED: October 24, 2002 to DRILLED BY: St. Lambert Drilling	D 83), Claim 693959 October 28, 2002	o - 131 samples VERT. DEPTH	COLLAR ELEV: 50.00 102.00 150 00 201.00 250.00 291.00	65.00 degrees 66.00 degrees 66.00 degrees 66.00 degrees 67.00 degrees	Parkin AZIMUTH: DIP @ COLLAR: FINAL LENGTH: VERT. DEPTH: HORIZ. REACH: CORE SIZE: CORE SIZE: CORE DIAM: SURFACE LE LOCATION SKE	NTS 305 -65 291 NQ TCH	HOLE NO.	BS-16-02 UND
WATER SOURCE:	Malbeuf Lake	LENGTH OF WATER	LINE: 300m					

LOGGED BY:	Paul Dunbar	SIGNATURE:		DATE:		P	AGE ONE	OF				HOLE NO.	BS-16-02
From (m) To (m)	Description		Sample Number	From (m) To (m)	Width (m)	Cu	Ni	Pb	Zn	Pt	Pd	Au	
0.00 3.00	Casing												
3.00274.803.004.30	"Parkin Offset Dyke Rubble zone, core bi core fragments	e" roken-up, mostly diorite, minor granite,											
4.30 5.00	large feldspar crysta	netic, no visible sulphides, no inclusions Is (1-2 mm in diameter), arbonate stringer veins (<4 mm wide) at rall 1% veined											
5.00 9.80	vein with epidote @ Locally, chlorite spot chlorite rich, random No visible sulphides, Lower contact (9.8m	ls, 1-2 mm in diameter a fractures infilled with epidote (<1mm wide)											
9.80 10.56	Massive Diorite Light grey, no visible	e sulphides, local carbonatization @ 10.3 meters											

Sheet1

Lower contact (10.56 m) marked by 1 cm quartz-carbonate vein

10.56	11.00	Mafic Dyke As described from 5.00 to 9.80 meters											
11.00	274.80	 Massive Diorite (Odd Inclusion) Light grey, fine to medium grained (variable), non-magnetic, zones of epidote development in fractures tracy pyrite, some blue quartz grains visible in diorite Occassional quartz-carbonate stringer vein @ 19.6, one mafic inclusion (1 cm wide), weakly zoned 19.90 to 27.70 overall, 2-3% scattered angular to sub-angular mafic inclusions (<1 cm in diameter) Occassional narrow zone of feldspar alteration, ie @ 27.7 m over a zone 0.5 meters wide, also @ 20.7 m over a 5 cm core length Many random fractures infilled with epidote, quartz carbonate stringers, minor chlorite fracture fillings Evidence of a secondary foliation along the core axis (as observed chlorite shistosity) 34.10 to 34.72 zone of intense epidotization @ 34.10, 8 cm quartz-epidote vein at 53 deg. to C.A. trace py @ 36.0, epidote development over 3.0 cm @ 45.5 m. 1mm quartz-carbonate irregular stringer vein, trace py 43.00 to 45.30 pink K-feldspar development sometimes concentrated with quartz carbonate veins ie. @ 43.80 at 45-60 deg. to C.A. @ 45.62m, <1mm seam containing 5.10% py, trace cpy @ 62 deg. to @ 45.76, 2.5 cm mafic inclusion (random orientation) 48.13 to 49.75 pinkish K-atteration (?) and concentrated epidote development @ 15 deg to C.A. 49.40 to 49.75 rather massive light green epidote 51.00 to 51.37 pink K-feldspar (?) alteration, contact at 51.0 occurs @ 14 deg. to C.A. @ 38 deg. to C.A. 	C.A.										
51.37	83.50	Inclusional Diorite Grey-green, 2-5% inclusions in massive medium grained diorite Inclusions < 1 cm in diameter Dominantly felsic inclusions, chlorite seams locally, epidote veined in stringers and patches @ 69.10, one mafic 3 cm clast, no sulphides @ 67.65, 0.50 cm quartz-carbonate bleb, trace py @74.60, 2.5 cm chlorite mafic clast @ 75.45, 4.0 cm mafic clast @ 76.22, 1 cm white quartz, minor carbonate, quartz vein at 65 deg. to C.A., no visible sulphides	6009 6010	52.00 53.00	53.00 54.00	1.00 1.00	12 12	47 44	3 -2	41 47	-5 -5	4	-2 -2
83.50	105.60	Massive Diorite, Odd InclusionFine to medium grained, very few inclusions (scattered)91.20 to91.5790.95 to95.10intense K-alteration (pink), no clasts, no sulphides91.52 to93.00extremely pink, 2-3% py, locally	6011 6012 6013 6014	90.00 90.95 91.52 92.00	90 95 91.52 92.00 93.00	0 95 0 57 0.48 1.00	35 34 30 15	44 32 45 38	4 2 -2 4	55 77 43 36	-5 -5 -5 -5	-4 -4 -4	3 -2 -2 -2
			6015 6016	93.00 94.10	94.10 95.10	1.10 1.00	13 10	47 48	3	51 49	-5 -5	1 4 4	-2 -2 -2

			99.50 100.90	K-alteration (?), mottled apprearance @99.4, 0.5 cm quartz vein @ 23 deg. to C.A. one 0.5 cm chlorite seam, trace py white quartz bleb and 1 cm quartz vein @ 28 deg. to C.A. no inclusions, more fine grained	6017	99.90	100.90	1.00	11	59	-2	76	-5	-4	6
105.60	120.00	1-2% quartz Pink K-alter	1.37 to 83 c-carbona ation (?) d ink (K) alt	.50, 2-3% inclusions, locally le stringer veined occurs throughout interval eration, weak over 1.0 meter medium erained, odd inclusion	6018	105.60	106.60	1.00	12	48	4	53	-5	-4	-2
		105.00 10	100.00	medium grained, odd inclusion 1% quartz-carbonate veining (3-4 mm)	6018	105.60	108.00	1.40	12	49	5	53	-5	-4	-2
		113.00 to	113.60	local pink (K) alteration associated with quartz-carbonate veining @ 40 deg to the C.A. and 23 deg to C.A @113.53, 1 cm vein associated with epidote and chlorite	6020	113.00	113.60	0.60	36	45	4	53	.5	-4	5
120.00	133.00		ium grain eration, m	ed, no inclusions ottled patches, throughout interval											
		122.50 to 123.20 to @126.15		Core broken-up (shear zone ?) Shear zone @ 30 deg. to C A. 1.5 cm quartz vein @ 55 deg. to C.A.	6021	126.00	126.30	0.30	18	41	-2	52	5	-4	6
		U			6022	131.00	132.00	1.00	17	40	-2	48	.5 .5	4	-2 -2
					6023 6024	132.00 132.50	132.50 133.00	0.50 0.50	17 24	33 32	5 8	38 35	-5 -5	4	-2
133.00	142.35	infilled with o upper conta some sectio Trace py @ No inclusion @132.40m,	brecciate epidote a ct (133.00 ns resem 133.85 m is K-alterati	d (random fractures), fractures nd minor pink K-alteration (?), 0m) @ 23 deg. to C A., ble fine grained diorite 1 on @ 20 deg. to C.A. stringer vein, sub-parallel to C.A.	6025	133.00	134.00	1.00	145	49	8	118	-5	-4	9
142.35	154.35	Massive Did Medium gra 147.00 to 150.50 to	ined, grey 147.20	r-green diorite, overall <1% py very fine grained diorite quartz veined, pink (K) alteration upper contact of vein @ 30 deg. to C.A. lower vein contact @ 47 deg. to C A.	6026	148.40	149.40	1.00	105	60	3	71	-5	-4	-2
		@154.35, tra 149.40 to 1		lower contact 1-2% disseminated py	6027	149.40	150.40	1.00	45	64	7	74	-5	-4	-2
		150.40 to 1		heavily quartz veined	6028 6029 6030	150.40 150.60 151.60	150.40 150.60 151.60 152.60	0.20 1.00 1.00	118 53 54	41 67 64	6 15 12	46 77 70	-5 -5 -5	-4 -4 -4	8 -2 -2
		152.60 to 1	154.35	fine grained, quartz-carbonate fractured veined	6031 6032	152.60 153.00	153.00 154.35	0.40 1.35	55 54	64 68	7 16	78 81	-5 -5	-4 -4	-2 -2

154.35 249.00 Inclusional Diorite

Medium grained, grey-green, overall 1-2% inclusions,

5-10% inclusions (le	ocally)											
•	n diameter, dominantly felsic (some granitic)											
clasts, minor mafic												
Gradational upper (
,, ,	nate stringer veined (1-3mm) @ 30-40 deg.											
	quartz with silica flooding adjacent to veins											
154.00 to 169.00	Nil to trace disseminated sulphides	6033	154.35	155.00	0.65	59	65	-2	71	-5	-4	3
		6034	155.00	156.00	1.00	56	69	5	67	-5	-4	-2
		6035	156.00	157.00	1.00	66	65	12	72	-5	-4	-2
		6036	157.00	158.00	1.00	67	69	10	71	-5	-4	-2
		6037	158.00	159.00	1.00	69	88	9	63	-5	5	7
		6038	159.00	160.00	1.00	72	86	2	64	-5	-4	2
		6039	160.00	161.00	1.00	86	104	23	81	9	-4	2
		6040	161.00	161.40	0.40	65	76	8	70	-5	-4	-2
161.40 to 164.00	fine grained diorite	6041	161.40	162.00	0.60	50	72	7	77	-5	-4	2
@162.4, core rubbl	ed, 1-2% py, locally	6042	162.00	163.00	1.00	57	78	17	73	-5	-4	-2
@163.0, minor qua	rtz-carbonate veined @15-28 deg. to C.A.	6043	163.00	164.00	1.00	62	73	10	65	-5	-4	-2
165.57 to 165.00	core rubbled	6044	164.00	165.00	1.00	58	73	9	63	-5	-4	2
165.33 to 166.30	core rubbled	6045	165.00	166.00	1.00	71	87	2	69	-5	-4	2
		6046	166.00	167.00	1.00	74	80	з	79	5	4	26
168.0 to 168.05	oxidized zone, no visible sulphides	6047	167.00	168.00	1.00	87	85	-2	72	-5	5	3
		6048	168.00	169.00	1.00	136	125	6	66	11	8	6
169.00 to 170.00	1-2% py, locally											
170.00 to 171.00	1% disseminated py	6049	169.00	170.00	1.00	138	180	8	77	15	13	7
171.00 to 171.70	<1% py	6050	170.00	171.00	1.00	113	116	5	70	6	7	3
		6051	171.00	171.70	0.70	104	120	7	72	8	8	з
171.70 to 236.00	"Chalcopyrite (Cpy) Zone"											
	Overall, trace to 1% cpy											
171.70 to 172.70	1-2% py, trace cpy	6052	171.70	172.70	1.00	134	165	10	78	7	10	5
172.70 to 173.10	trace sulphides	6053	172 70	173.10	0 40	99	120	10	78	-5	7	3
173.10 to 174.07	<1% py	6054	173.10	174.07	0.97	118	141	7	72	8	9	5
174.07 to 174.09	quartz vein	6055	174.07	174.09	0.02	25	21	7	26	-5	-4	-2
174.09 to 175.09	5% quartz veined @ 37 deg. to C.A.	5056	174.09	175 09	1.00	76	92	8	68	-5	5	4
175.09 to 176.00	trace sulphides	6057	175 09	176.00	0.91	122	139	11	81	11	12	5
176.00 to 177.00	trace sulphides	6058	176.00	177.00	1.00	127	137	142	93	8	9	6
177.00 to 177.35	1% py/po	6059	177.00	177.35	0.35	127	170	11	76	9	12	6
177.35 to 178.35	2-3% po, py, trace cpy, 5-10% inclusions	6001	177.35	178.35	1.00	121	127		73.1	12	9	7
				110.00	1.00					••	·	•
178.35 to 179.00	<1%py, trace cpy	6060	178.35	179.00	0.65	121	152	8	69	9	11	4
179.00 to 180.00	<1% py	6061	179.00	180.00	1.00	122	138	178	93	5	8	5
180.00 to 181.00	<1% py, trace cpy	6062	180.00	181.00	1.00	207	247	7	82	17	19	31
181.00 to 182.00	<1% po, py, 2-3% locally	6063	181.00	182.00	1.00	216	292	21	100	21	20	8
182.00 to 183.00	trace py	6064	182.00	183.00	1.00	200	224	23	97	13	14	6
183.00 to 184.00	<1% po	6065	183.00	184.00	1.00	180	215	13	101	14	17	8
184.00 to 185.00	<1% po, py	6066	184.00	185.00	1.00	252	388	15	111	22	24	9
185.00 to 185.40	<1% py	6067	185.00	185.40	0.40	289	321	24	118	20	18	10
	- F)											
185.40 to 186.80	very fine grained mafic dyke (?) or diorite, brecciated, 5-10% quartz-carb. veined, 1-2% py, po, trace cpy											
185.40 to 186.00	<1% po, cpy	6068	185.40	186.00	0.60	301	387	2	95	23	25	11
186.00 to 186.80	<1% po, cpy	6069	186.00	186.80	0.80	247	314	7	87	25	20	13
186.80 to 187.80	2-3% py, po, trace cpy	6070	186,80	187.80	1.00	218	288	5	73	15	15	8
186.80 to 189.00	3-4% po	6071	187.80	189.00	1.20	399	474	5	80	31	31	17
	one over 2 cm sealed with guartz-carb. veins							-		••	•••	
189.00 to 190.00	3-5% po, odd bleb of cpy	6002	189.00	190.00	1.00	391	442		78.7	40	29	13
	· •											

		diorite inclusions (5-10 cm in diameter)											
190.00 to		1-2% po, py, locally, one 1 cm quartz vein	6072	190.00	191.00	1.00	434	314	10	156	22	21	14
191.00 to	192.00	1-2% po, minor cpy	6073	191.00	192.00	1.00	15 9	166	5	78	14	9	6
192.00 to	193.00	3-5% po and cpy, diss. and blebs 5% inclusions	6003	192.00	193.00	1.00	423	362		69.1	28	28	31
193.00 to	193.50	3-5% po, py, trace cpy blebs and patches less than 5% inclusions	6004	193.00	193.50	0.50	259	284		80.5	19	11	7
193.50 to	194.50	1-2% disseminated po, py, locally	6074	193.50	194.50	1.00	280	336	10	72	22	19	9
194.50 to	195.50	1-2% disseminated po, py, locally	6075	194.50	195.50	1.00	223	291	15	78	24	22	7
195.50 to	196.50	1-2% po, locally	6076	195.50	196.50	1.00	153	181	-2	71	8	10	5
196.50 to	197.50	<1% po	6077	196.50	197.50	1.00	128	141	4	71	9	9	4
197.50 to	198.00	5-10% inclusions, odd mafic, odd patch	6005	197.50	198.00	0.50	204	218		69.3	15	15	8
		of sulphides (py, po, trace cpy)							_		_	. –	
198.00 to		<1% po	6078	198.00	199.00	1.00	308	309	7	79	17	17	9
199.00 to	200.00	1-2% po, two large inclusions (< 3 cm)	6079	199.00	200.00	1.00	211	255	7	77	17	18	6
200.00 to	201.00	2-3% po, <1% cpy	6080	200.00	201.00	1.00	202	289	8	73	17	23	6
201.00 to	202.00	2-3% ро, ру	6081	201.00	202.00	1 00	193	305	6	77	21	20	7
202.00 to	203.00	2-3% ро, ру	6082	202.00	203.00	1.00	193	210	2	72	14	13	5
203.00 to	204.00	2-3% ро, <1% сру	6083	203.00	204.00	1.00	166	210	8	74	11	12	5
204.00 to	205.00	blebs of cpy in seams, overall 2-3%	6006	204.00	205.00	1.00	227	208		77.9	19	14	8
		cpy, po, py, 5-10% inclusions (odd mafic)										-	-
205.00 to		<1% po	6084	205.00	206.00	1.00	146	152	10	72	11	8	6
206.00 to		<1% po, py	6085	206.00	207.00	1.00	177	185	4	73	25	15	6
207.00 to		1-2% po, py, locally	6086	207.00	208.00	1.00	146	153	4	68	6	9	7
208.00 to		1-2% ро, сру	6087	208.00	209.00	1.00	173	272	3	65	20	19	14
209.00 to	210.00	<1% po	6088	209.00	210.00	1.00	126	129	8	79	13	11	3
210.00 to	211.00	<1% po,cpy	6089	210.00	211.00	1.00	117	145	10	74	10	11	5
211.00 to	212.00	<1% po,cpy	6090	211.00	212.00	1 00	173	210	9	73	10	25	8
212.00 to	213.00	2-3% po, <1% cpy, locally	6091	212.00	213.00	1 00	112	131	7	65	8	8	3
213.00 to	214.30	<1% po	6092	213.00	214.30	1.30	101	116	10	64	-5	7	2
	0.1F 00	2 2 1 1 1 1 1 1 1 1 1 1											
214.30 to		2-3% of py, po, few inclusions	6007	214.30	215.00	0.70	144	215		63.6	17	13	29 8
215.00 to	210.00	3-4% inclusions, minor po, py, no cpy	6008	215.00	216.00	1.00	144	138		60.4	10	14	0
216.00 to	217.00	<1% po	6093	216.00	217.00	1.00	100	122	8	62	10	10	4
217.00 to		<1% po	6094	217.00	218.00	1.00	181	221	12	63	10	20	13
218.00 to		<1% po, py	6095	218.00	219.00	1.00	122	176	7	71	7	12	3
219.00 to		1-2% po, trace cpy, locally	6096	219.00	220.00	1.00	101	113	9	69	7	7	4
220.00 to		<1% po	6097	220.00	221.00	1.00	103	123	9	65	5	11	3
221.00 to		3-4% po, <1% cpy, locally	6098	221.00	222.00	1.00	81	82	8	64	- 5	5	2
222.00 to		<1% po	6099	222.00	223.00	1.00	89	83	13	72	-5	5	2
		<1% po, py	6100	222.00	223.00	1.00	98	99	9	68	-5	5	3
							90 90		3	66	-5	7	4
224.00 to		trace po	6101	224.00	225.00	1.00		127		66			5
225.00 to	220.00	2-3% ру, <1% ро	6102	225.00	226.00	1.00	154	199	9		11 9	13 10	
		8 88/ 48/											8
	227.00	2-3% ро, <1% сру	6103	226.00	227.00	1.00	124	110	10	57	-		
227.00 to	227,00 228.00	<2% po, py, trace cpy	6104	227.00	228.00	1.00	94	117	6	66	6	9	4
227.00 to 228.00 to	227.00 228.00 229.00	<2% po, py, trace cpy <1% po	6104 6105	227.00 228.00	228.00 229.00	1.00 1.00	94 100	117 123	6 7	66 72	6 6	9 9	з
227.00 to 228.00 to 229.00 to	227.00 228.00 229.00 230.00	<2% po, py, trace cpy <1% po <1% py	6104 6105 6106	227.00 228.00 229.00	228.00 229.00 230.00	1.00 1.00 1.00	94 100 103	117 123 116	6 7 5	66 72 69	6 6 6	9 9 7	3 3
227.00 to 228.00 to 229.00 to 230.00 to	227.00 228.00 229.00 230.00 231.00	<2% po, py, trace cpy <1% po <1% py 1-2% po, py, trace cpy	6104 6105 6106 6107	227.00 228.00 229.00 230.00	228.00 229.00 230.00 231.00	1.00 1.00 1.00 1.00	94 100 103 161	117 123 116 115	6 7 5 6	66 72 69 65	6 6 6 11	9 9 7 9	3 3 4
227.00 to 228.00 to 229.00 to 230.00 to 231.00 to	227.00 228.00 229.00 230.00 231.00 232.00	<2% po, py, trace cpy <1% po <1% py 1-2% po, py, trace cpy 1-2% po, py, trace cpy	6104 6105 6106	227.00 228.00 229.00 230.00 231.00	228.00 229.00 230.00	1.00 1.00 1.00	94 100 103 161 104	117 123 116 115 142	6 7 5 6 6	66 72 69 65 64	6 6 11 7	9 9 7 9 7	3 3 4 4
227.00 to 228.00 to 229.00 to 230.00 to 231.00 to 232.00 to	227.00 228.00 229.00 230.00 231.00 232.00 233.00	<2% po, py, trace cpy <1% po <1% py 1-2% po, py, trace cpy	6104 6105 6106 6107	227.00 228.00 229.00 230.00	228.00 229.00 230.00 231.00	1.00 1.00 1.00 1.00	94 100 103 161	117 123 116 115	6 7 5 6	66 72 69 65	6 6 6 11	9 9 7 9	3 3 4
227.00 to 228.00 to 229.00 to 230.00 to 231.00 to	227.00 228.00 229.00 230.00 231.00 232.00 233.00	<2% po, py, trace cpy <1% po <1% py 1-2% po, py, trace cpy 1-2% po, py, trace cpy	6104 6105 6106 6107 6108	227.00 228.00 229.00 230.00 231.00	228.00 229.00 230.00 231.00 232.00	1.00 1.00 1.00 1.00 1.00	94 100 103 161 104	117 123 116 115 142	6 7 5 6 6	66 72 69 65 64	6 6 11 7	9 9 7 9 7	3 3 4 4
227.00 to 228.00 to 229.00 to 230.00 to 231.00 to 232.00 to 235.42 to	227.00 228.00 229.00 230.00 231.00 232.00 233.00 249.00	<2% po, py, trace cpy <1% po <1% py 1-2% po, py, trace cpy 1-2% po, py, trace cpy 1-2% po, py, trace cpy 1-2% po, py "Transitional Zone" - odd inclusion	6104 6105 6106 6107 6108 6109	227.00 228.00 229.00 230.00 231.00 232.00	228.00 229.00 230.00 231.00 232.00 233.00	1.00 1.00 1.00 1.00 1.00 1.00	94 100 103 161 104 99	117 123 116 115 142 105	6 7 5 6 6 5	66 72 69 65 64 72	6 6 11 7 -5	9 9 7 9 7 5	3 3 4 2
227.00 to 228.00 to 229.00 to 230.00 to 231.00 to 232.00 to 235.42 to 233.00 to	227.00 228.00 229.00 230.00 231.00 232.00 233.00 249.00	<2% po, py, trace cpy <1% po <1% py 1-2% po, py, trace cpy 1-2% po, py, trace cpy 1-2% po, py, trace cpy 1-2% po, py "Transitional Zone" - odd inclusion <1% po, trace cpy	6104 6105 6106 6107 6108 6109 6110	227.00 228.00 229.00 230.00 231.00 232.00	228.00 229.00 230.00 231.00 232.00 233.00 233.00	1.00 1.00 1.00 1.00 1.00 1.00	94 100 103 161 104 99 125	117 123 116 115 142 105	6 7 5 6 5 5	66 72 69 65 64 72 70	6 6 11 7 -5 20	9 9 7 9 7 5	3 3 4 2 3
227.00 to 228.00 to 229.00 to 230.00 to 231.00 to 232.00 to 235.42 to	227.00 228.00 229.00 230.00 231.00 232.00 233.00 249.00	<2% po, py, trace cpy <1% po <1% py 1-2% po, py, trace cpy 1-2% po, py, trace cpy 1-2% po, py, trace cpy 1-2% po, py "Transitional Zone" - odd inclusion	6104 6105 6106 6107 6108 6109	227.00 228.00 229.00 230.00 231.00 232.00	228.00 229.00 230.00 231.00 232.00 233.00	1.00 1.00 1.00 1.00 1.00 1.00	94 100 103 161 104 99	117 123 116 115 142 105	6 7 5 6 6 5	66 72 69 65 64 72	6 6 11 7 -5	9 9 7 9 7 5	3 3 4 2

							Sheet1								
		235.42 to 23 236.00 to 23 237.00 to 23 238.00 to 23 239.00 to 24 240.00 to 24 240.00 to 24 246.00 to 24 247.00 to 24	37.00 38.00 39.00 40.00 46.00	<1% py, trace cpy trace po <1% po trace py trace po 1-2% po, py locally <1% po, trace cpy	6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124	235.42 236.00 237.00 238.00 240.00 241.00 242.00 242.66 243.70 245.00 246.00 247.00	Sheet1 236.00 237.00 238.00 239.00 240.00 241.00 242.00 242.66 243.70 245.00 245.00 246.00 246.00 246.00 248.00	0.58 1.00 1.00 1.00 1.00 1.00 0.66 1.04 1.30 1.00 1.00	122 91 74 68 75 64 63 68 82 77 86 121 118	176 108 70 102 99 78 65 78 85 85 88 192 97	9 14 7 12 5 9 -2 8 7 5 9 7 5 9 7	63 68 60 68 63 70 65 64 59 57	17 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	14 7 -4 5 5 -4 -4 -4 -4 -4 16 6	4 3 2 2 2 4 2 2 4 2 2 2 4 2 2 3 6 4
		248.00 to 24		<1% po	6125	248.00	249.00	1.00	91	95	5	58	5	9	6
249.00	274.80	Little epidote (@266.06, 1 cl @271.37, qua	edium gri phides, 1 developr m quartz artz-carb	-2% quartz-carbonate veined											
		249.00 to 25	52.00	no visible suphides	6126 6127 6128	249.00 250.00 251.00	250.00 251.00 252.00	1.00 1.00 1.00	37 68 83	62 68 69	10 12 8	55 79 56	-5 -5 6	-4 -4 4	3 -2 -2
274.80	291.00	massive, 3-5% to the C.A. @ 275.45, 1 c Fractured loca From 289.00 t	% quartz- cm quartz ally, fract to 291.00 th epidot	ed dyke (very f.g. diorite ?) carbonate veined locally @ 45 to 55 deg z-carbonate vein @ 38 deg. to C.A ures filled or sealed with epidote 0, "breccia zone" with fractures sealed e <1% py disseminations	6129 6130 6231	288.00 289.00 290.00	289.00 290.00 291.00	1.00 1.00 1.00	182 152 159	43 49 50	-2 -2 6	89 89 89	-5 -5 -5	-4 -4 -4	9 4 5

PROPERTY Parkin Su LOCATION (GRID): L450N, 3 UTM: 17T 0510378E, 5184492N (NAC DATES DRILLED: October 28, 2002 to DRILLED BY: StLambert Drilling	October 31, 2002	COLLAR ELEV: DEPTH: 50.00 102.00 150.00 291.00	TWP. OR AREA Parkin CLAIM NO: DATUM: ETCH TESTS: AZIMUTH: ETCHED: DIP @ COLLAI 50.00 degrees FINAL LENGT 50.00 degrees VERT. DEPTH 49.00 degrees CORE SIZE: CORE DIAM: SURFACE DRILLHOLE LOCATIO	H 198 : H: NQ	HOLE NO.	BS-17-02
WATER SOURCE:	Sump in swamp next to drill setup LENGTH OF	WATERLINE: 20m				
	Capped casing which was left in the hole and by original labe sufficient water for drilling? No possible strike extension of an Induced Polarization (I.P.) anom ed sulphide mineralization in a mafic dyke unit and a mafic volc	aly identified on line 400N				

LOGGEE	BY:	Paul Dunbar	SIGNATURE:		DATE:			f	PAGE O	NE OF				HOLE NO.	BS-17-02
From (m) To (m)	Description		Sample Number	From (m)	To (m)	Width (m)	Cu	Ni	Pb	Zn	Pt	Pd	Au	
0.00	1.50	Casing													
1.50	28.10	Non-magnetic, foliat to C.A., trace dissen carbonate veins (15- 1.50 to 4.70	n to coarse grained, massive ion developed locally @ 20 to 30 deg. ninated py, fractures sealed with quartz- 20%) - random @ 47, 68, and 56 deg to C.A. finer grained gabbro, locally dioritic (?) in appearance, lower contact @ 44 deg. to C.A. ed with hematite oxidation large milky white quartz vein @ 60 deg to C.A. 2 deg to C.A.	6132	26.16	26.72	0.56	155	66	25	43	-5	5	5 3	
28.10	42.70	Mafic Dyke Grev/green													

Grey/green 28.10 to 29.10 inclusions along contact, angular to sub-

angular (<1 cm), volcanic & sed. in origin @33.70, more inclusions over 0.1m @37.10, more inclusions over 0.1m 35.0 to 39.20 Sulphide Zone 1-5% py, <1% cpy, locally - disseminated 35.00 to 35.50 35.00 35 50 0.50 709 620 15 106 14 15 11 3-5% py, trace cpy 6133 35.50 to 36.00 2-3% py 6134 35.50 36.00 0.50 365 557 6 92 14 17 7 28 19 23 19 36.00 to 37.00 1.00 851 640 136 4-5% py, <1% cpy 6135 36.00 37.00 37.00 to 38.10 <1% py, trace cpy 6136 37.00 38.10 1.10 389 530 12 98 15 17 8 38.10 to 39.20 3-5% py 6137 38,10 39.20 1.10 342 649 21 116 15 16 7 39.20 to 40.20 1.00 442 423 5 114 15 18 9 39.20 40.20 no visible sulphides 6138 42.70 76.82 Mafic Volcanic Massive, fine grained flow (?), evidence of flow breccia @ 46.9 m Green, abundant chlorite Overall, low py concentration -disseminations locally 20-30% white quartz-carbonate stringer veins and patches mending fractures, less than 1% py can occur in association with veins @44.5, 1 cm quartz-carbonate vein @ 24 deg to C.A., trace cpy 44.40 0.40 61 -5 -2 6139 44 80 69 9 84 -4 77 11 6140 54.00 54.50 0.50 220 312 6 10 3 1.50 75 13 54 -5 5 6 74.00 to 74.50 20% guartz-carbonate veined with 1-2% 6141 74.00 74.50 138 pyrite locally @76.82, irregular lover contact 74.82 80 10 Gabbro Same as 1.50 to 28.10 m 80.10 83.12 Mafic Volcanic Same as 42.70 to 74.82 <5% guartz-carbonate stringer veined Lower contact (83.12m) @ 14 deg. to C A. 83.12 107.10 Gabbro Same as 1.5 to 28.10 83.12 to 85.40 99 8 55 10 -2 30-40% quartz-carbonate veined 6142 83.40 84.40 1.00 136 7 less than 1% disseminated by 6143 84.40 85.40 1.00 37 115 10 61 6 9 -2 85.40 to 107.10 less than 5% veined Lower abrup contact @ 107.1m 6144 106.10 107.10 1.00 63 145 11 113 8 9 -2 107.10 115.10 Mafic Volcanoclastic Tuff Grey/black 107.10 to 115.10 "Sulphide Zone' - py, trace po, cpy Lower contact (115.10) abrupt @ 40 deg to C.A. 107.10 to 107.20 15-20% disseminated py 6145 107.10 107.20 0.10 468 156 514 90 6 5 -4 14 107.20 to 108.18 -5 -2 1-2% py and cpy (cpy- 30% of Sul. seams) 6446 107.20 108 18 0.98 -4 427 108 29.2 207 @107.85, 4mm seam of massive py and cpy 108.18 to 109.00 @108.18, sulphide seam @ 55 deg to C.A. 108,18 109.00 0.82 -5 5 8 6147 177 102 181 259 weakly layered and brecciated zone

3-5% py, @ 108.90 po and cpy visible and

			there is a tuff layer @ 51 deg to C.A.											
			quartz-carbonate veins seal fractures											
		109.00 to 109.40	2-3% py, rather massive sulphides, locally layering @ 30 to 43 deg to C.A.	6148	109.00	109.40	0.40	79	117	159	509	-5	-4	-2
		109.40 to 110.00	massive sulphide zone - 30-40% py in layers and disseminations, core split parallel	6149	109.40	110.00	0.60	401	133	84.1	184	8	7	4
			to C.A., layering @ 58 deg. to C.A.							_		_		
		110.00 to 110.43	tuff, poorly layered, less than 1% py	6150	110.00	110.43	0.43	41	142	5	236	-5 -5	-4 -4	2 -2
		110.43 to 111.75 111.75 to 112.35	5-10% py 30-40% py - disseminated and massive	6151 6152	110.43 111.75	111.75 112.35	1.32 0.60	74 2 146	25 3 69 2	193 279	160 126	-5 -5	-4	-2
		111.7510 112.55	sulphide layer at 112.15 over 5 cms	0152	111.15	112.55	0.00	140	092	2/9	120	-0		'
		112.35 to 113.06	3-5% ру	6153	112.35	113.06	0.71	32 2	774	2 46	245	5	6	-2
		113.06 to 114.00	15-20% py, locally, trace cpy	6154	113.06	114.00	0.94	122	819	28 7	119	-5	-4	3
		114.00 to 115.10	5-7% py, locally	6155	114.00	115.10	1.10	16	34	4	129	-5	-4	-2
115.10	115.45	Quartzite		6156	115.10	115.45	0.65	35	27	12	112	-5	-4	-2
115.45	117.05	Mafic Volcanoclasti Same as 107.10 to 1												
		Grey/black 115.45 to 116.30	tuff fragments up to 3/4 cms, <1% py	6157	115.45	116.30		18	92	11	149	-5	4	-2
		116.30 to 117.05	3-5% disseminated py @ 116.50 over	6158	116.30	117.05		102	92 69	12	207	-5	-4 -4	2
			0.2 meters											
		@117.05, contact @	32 deg to C.A.											
117.05	122.30	Quartzite												
			() alteration, less than 1% py	6159	117.05	118.00	0.95	33	58	4	86	-5	-4	-2
		Bedding @ 25 to 27 d abrupt lower contact	0	6160	121.80	122,30	0.50	25	33	-2	25	-5	-4	-2
		abrapt totter contact	(122.0000)	0100	121.00		0.00	20	00	-	23	•	-	-
122.30	126.60	Mafic Volcanoclasti	c Tuff (?)											
		Fine grained @122.55, 3-5% py lo	cally over 2 cmc	6161	122.30	122.80	0.50	242	146	3	79	7	7	9
		W122.33, 3-3 % py 10	cally over 2 cms	6162	122.30	122.00	0.90	86	140	7	104	6	6	4
												_		
126.60	129.40	Quartzite Brossisted recemble	o "Cudhuu Pi-"	6163	126.60	127.31	0.71	32	81	8	57	-5 -5	-4	-2
		 Brecciated, resemble Matic volcanic tuff (sa 	ame as 115.45 to 117.0) infilling fracture	6164 6165	127.31 128.40	128.40 129.40	1.09	26 36	48 49	11 10	74 94	-5 -5	-4	-2 -2
		in quartzite, trace py	and as 113.45 to 111.69 mining vacute	0100	120.40	123.40	1.00	50	45	10	34	-5	-	-2
129.40	133.30	Mafic Volcanoclasti	c Tuff (?)											
		Same as 122.30 to 12	26.60											
		129.40 to 130.40	2% py, silicified from 128.40 to 129.40 -	6166	129.40	130.40	1.00	20	66	4	117	-5	-4	-2
		130.40 to 131.00	heavily quartz veined (30-40%), <1% py 3-7% py, locally	6167	130.40	131.00	0.60	56	47	10	142	-5	-4	-2
		131.00 to 132.00	2-3% py, locally	6168	131.00	131.00	1.00	110	69	7	129	-5 -5	4	-2
		132.00 to 133.30	locally silicified, 2-3% py in sil. section	6169	132.00	133.30	1.30	89	101	2	101	6	7	-2
133.30	175.95	Mafic (Basalt) Eleve	(2)											
133.30	175.95	Mafic (Basalt) Flow (Light grey/green, mas												
			te stringer veined @ 64, 77 and 78 deg to C.A.											
		Trace py												
		@137.60, brecciation	over 5 cm	6170	133.30	134.30	1.00	155	65	4	140	-5	-4	4

6171 143.00 144.00 1.00 90 51 6 162 -5 -4 -2 143.00 to 144.00 3-4% py in seams 47 10 181 -5 -4 -2 144.00 to 145.00 144.00 145 00 1.00 101 3-4% py in seams 6172 164.50 to 165.50 3-4% py in seams 6173 164.50 165.50 1.00 121 13 7 146 -5 -4 -2 Core Box #39 (169.90 to 174.30) - Drillers dropped core box - same as 133.30 to 169.90 175.95 188.70 Quartzite Same as 117.05 to 122.30 176.10 to 177.30 mafic tuff unit Bedding (foliation) @ 30-50 deg to C.A. 1.5 cm quartz vein at 182.80m -2 88 2 49 -5 -4 186.40 to 186.70 quartz veined 6174 186.40 186 70 0,30 33 186.70 to 188.70 brecciated 188.70 198.00 Mafic (Basalt) Flow (?) Same as 133.3 to 179.95 6175 191.00 191.00 to 192.00 3-5% disseminated py 192 00 1.00 158 256 5 94 -5 -4 4 192.00 193.00 1.00 41 289 3 89 -5 -4 -2 192.00 to 193.60 50% fractured, fractures infilled 6176 .4 -2 384 -2 95 -5 with guartz-carbonate veins 6177 193.00 193.60 0.60 66

198.00 198.00 END OF HOLE

PROPERTY Parkin No LOCATION (GRID): L3081S, 1	156W		COLLAR ELEV:	TWP. OR AREA Parkin CLAIM NO: DATUM:	NTS	HOLE NO.	PN-01-02
UTM: 17T 0510275E, 5186492N (NAD	•			ETCH TESTS: AZIMUTH:	250		
DATES DRILLED: November 1, 2002 to	November 6, 2002		DEPTH:	ETCHED: DIP @ COLLAR			
DRILLED BY: St Lambert Drilling			50.00	5			
•	aboratories Ltd.) in Ancaster, Ontario	•	100.00	5			
OVERBURDEN: CASING LENGTH		VERT. DEPTH	150 00	5			
CASING DRILLED:	15 meters		206.00	····, · · · · · · · · · · · · · · · · ·	NQ		
CASING RECOVERED: No				CORE DIAM:			
DESCRIPTION OF OVERBURDEN:				SURFACE		UNDERGROUND	
				DRILLHOLE LOCATION	N SKETCH		
DRILL CUTTINGS COLLECTED?	No						
WATER SOURCE:	Small pond adjacent to drill site	LENGTH OF WATER	RLINE: 60m				
	Capped casing which was left in this sufficient water for drilling? orne EM anomaly and mineralization of sulphide mineralized inclusional qu	No potential of the "Parkin Offset Dy					

LOGGED	BY:	Paul Dunbar	SIGNATURE:		DATE:			F	PAGE O	NE OF			I	HOLE NO.	PN-01-02
From (m)	To (m)	Description		Sample Number	From (m)	To (m)	Width (m)	Cu	Ni	Pb	Zn	Pt	Pđ	Au	
0.00	15.00	Casing													
15.00 15.00 15.00	206.20 15 75 18 70	"Parkin Offset Dyke" Core ground-up Massive Diorite Light grey/green, fine no inclusions, trace p 1-2% pyrite @ 18 58 3-5% white quartz-can transitional lower cont	to medium grained, yrite, non-magnetic over 1.0 cm rbonate stringer veins @ 40-50 deg. to C A.	6178 6179 6180	15 75 16.70 17.70	16 70 17 70 18 70	0 95 1 00 1 00	38 67 48	110 162 115	12 10 11	82 82 83	11 -5 -5	6 -4 4	-2 -2 -2	
18.70	61 10	with 10-15% angular 1 20% mafic inclusions, mostly po, <1% cpy (j	rained, massive, non-magnetic to sub-angular inclusions (< 0.5 cm), locally, , rest felsic, overall, 5-10% sulphides po-cpy association), locally some py z-carbonate veined @ approx. 50 deg. to C.A.												

18.70 61.10 Cpy observed throughout interval

		e clast @ 19.8											
18.70 to	20.00	3 to 5% po, cpy	6181	18 70	20.00	1.30	167	252	45	122	13	17	4
20.00 to	32.00	5 to 10% sulphides, mostly po blebs,	6182	20 00	21.00	1.00	159	208	. 3	86	9	13	5
		patches and dissemintations, <1% cpy	6183	21 00	22.00	1.00	152	181	8	91	12	11	6
26.90 to	27.55	fine grained diorite	6184	22 00	23 00	1 00	132	150	18	100	6	8	3
			6185	23 00	24 00	1.00	143	182	12	87	6	9	3
			6186	24 00	25 00	1.00	159	235	9	80	16	15	5
4 cm maf	ic clast @	25.56m	6187	25 00	26 00	1.00	125	176	25	82	8	10	3
_			6188	26 00	26 90	0 90	99	138	55	142	8	8	2
2 cm qua	rtz vein @	27.18m	6189	26 90	27.55	0 65	80	184	73	199	10	15	-2
			6190	27 55	28 50	0.95	143	234	12	81	13	15	3
			6191	28 50	29 00	0.50	156	268	7	68	18	17	4
			6192	29 00	30 00	1.00	251	425	29	126	25	40	10
1 cm qua	rtz vein @	30.04m	6193	30 00	31 00	1.00	410	435	104	254	23	27	7
			6194	31.00	32 00	1.00	314	417	16	72	22	22	9
32.00 to	33 00	15 to 20% sulphides	6195	32 00	33 00	1.00	661	662	8	72	64	42	13
33.00 to	34.00	10 to 15% po. 1-2% cpy	6196	33 00	34 00	1 00	487	580	10	69	46	38	13
34.00 to	35.00	8 to 10% po, cpy	6197	34 00	35 00	1.00	499	649	3	67	60	49	12
35.00 to	36.00	5 to 10% po, cpy	6198	35.00	36.00	1.00	574	584	7	66	38	39	20
36.00 to	37.00	10 to 15% po, py, cpy	6199	36 00	37 00	1.00	417	449	8	54	34	34	10
37.00 to	38.00	10 to 15% po, py, cpy	6200	37.00	38.00	1 00	452	499	11	66	32	30	11
38.00 to	39.00	10 to 15% po, py, cpy	4501	38 00	39 00	1.00	403	455	20	59	35	34	14
39.00 to	40 00	10 to 15% po, py, cpy	4502	39.00	40.00	1.00	699	944	15	61	83	65	17
		large mafic clast @39.08m											
40.00 to	41.00	10 to 15% po, py, cpy	4503	40 00	41 00	1.00	353	411	9	54	31	29	8
41 00 to	42.00	5 to 10% py, po, cpy	4504	41 00	42 00	1.00	229	439	18	71	17	21	7
		1 cm quartz vein @ 41 1m											
42.00 to	43.00	5 to 10% po, cpy	4505	42 00	43 00	1.00	217	203	43	98	18	13	16
43.00 to	44 00	5 to 10% po, cpy	4506	43 00	44 00	1 00	224	188	22	60	20	16	6
		two large mafic clasts @ 43.08 and 43.07											
		meters, clasts < 4 cms in diameter											
44.00 to	45 00	5 to 10% py, po, cpy	4507	44 00	45 00	1 00	264	262	19	62	19	18	8
45.00 to	46 00	5 to 10% po, cpy	4508	45.00	46.00	1.00	468	620	15	66	44	40	14
46.00 to	47.00	10 to 15% po, cpy	4509	46.00	47 00	1.00	381	482	23	79	32	34	9
		3 cm diameter diorite clast @44.63m											
47.00 to	48.00	10 to 15% po, cpy	4510	47 00	48 00	1 00	411	462	19	83	35	35	11
48.00 to	49.00	10 to 15% po, cpy	4511	48.00	49 00	1 00	307	368	22	101	18	25	12
		large mafic clasts @48 3 and 48.6m											
49.00 to	50.40	10 to 15% po, cpy	4512	49 00	50 40	1 40	279	347	24	89	32	26	8
50.40 to	55.30	Non-inclusional diorite											
		fine grained, locally silicified,											
50.40 to	51.40	3 to 4% po, cpy	4513	50 40	51 40	1 00	195	210	8	52	13	17	13
50.40 10	51.40	two large inclusions @ 51 35m	4010	50 40	5140	1.00	190	210	0	52	15	17	15
51.40 to	52.20	5 to 7% po, cpy	4514	51 40	52 20	0.80	158	201	28	81	13	17	6
52.20 to	53.10	5 to 7% po, cpy	4514	52.20	52 20	0.90	158	239	39	112	17	16	7
52.20 10	33.10		4010	JZ.20	33 10	0.90	170	239	39	112	17	10	'
53 10 to	54.00	1 mm quartz-carbonate vein with cpy trace subbide	4616	£2 10	54 00	0.00	150	175	0	85	7	9	3
54.00 to	54.00 54.70	trace sulphide	4516 4517	53 10 54 00	54 00 54,70	0 90 0.70	158 135	175 179	9 23	85	7 12	12	8
54.00 to	54.70 55.30	2 to 3% po.cpy 5 to 7% po. py. cpy	4517	54 00 54 70	55 30	0.60	135	209	23	87 96	27	27	11
54.70 to 55 30 to	56 00	5 to 1% po, py, cpy 5 to 10% po, trace cpy	4518	54 70 55 30	55 30 56 00	0.60	130	209 176	23	96 93	24	15	5
56.00 to	57.00	2 to 3% po	4519	55 30 56 00	56 00	1.00	150	152	20	93 76	24 5	10	4
50.00 10	57.00	2 10 3 % 90	4520	30.00	57.00	1.00	191	1.52	~~~	70	5	10	-

		57.00 to 58.00 2 to 3% py, po. trace cpy 58.00 to 59.00 2 to 3% py, po 59.00 to 60.00 2 to 3% po, trace cpy 60.00 to 60.10 2 to 3% po, py, trace cpy	4521 4522 4523 4524	57.00 58.00 59.00 60.00	58.00 59.00 60.00 61.10	1 00 1 00 1 00 1 10	164 130 128 95	218 173 166 91	24 19 12 31	94 69 55 61	17 8 11 -5	14 12 11 5	5 4 5 5
		Lower contact of inclusional diorite @ 50 deg. to C.A.											
61.10	72.80	Massive Diorite (Medium Grained) Grey, non-magnetic, no inclusions, trace sulphides 3 to 5% quartz-carbonate veined, locally, @ 45 to 60 deg to C.A.											
		1.0 cm quartz-carbonate vein @ 61 15m @ 50 deg. to C.A. @65.70, 1 mm quartz-carbonate vein with cpy @ 70.07m, 1-2% py/cpy in 1 0 mm wide fracture	4525 4526 4527 4528 4529	61 10 62 00 63 00 64 00 65 00	62.00 63.00 64.00 65.00 66.00	0 90 1 00 1 00 1 00 1 00	99 85 61 79 258	109 75 67 90 210	12 16 26 57 87	55 50 62 168 104	6 -5 -5 -5 17	9 -4 -4 7 25	3 2 3 2 21
72.80	74.80	Massive Diorite (Very Fine Grained) Non-magnetic, no inclusions 1-2% quartz-carbonate veined Lower contact abrupt @ 30 deg. to C.A. (May represent chill margin of diorite)											
		@72.50, 1mm massive sulphide seam (fracture filled with po, trace cpy)	4530	72.40	72.60	0 20	368	302	12	49	32	33	11
			4531	78.73	78 98	0 25	67	80	11	38	-5	-4	-2
74.80	120 20	Massive Diorite (Coarse Grained)Non-magnetic, no inclusions2-3% quartz-carbonate veined, locally78.7 to78.98fine grained section @ 40 deg. to C A@78 9m, 7 cm quartz-carbonate vein vein occurs @ 40 deg to C A.85 5 to85 885 5 to96 2596 02 to96 2598.60 to98 90fine grained section @ 16 deg. to C A100.35 to105 20medium grained diorite section 10-15% quartz-carbonated veined (<0 75 @ 43 to 51 deg. to C A + irregular veins105.20 to147 00	4532 cm)	100.36	101 36	1 00	84	102	17	61	-5	-4	-2
120.20	167 10	"Fault Zone" in Massive Diorite Same as 74 80 to 120 20 Blocky ground - core rubbled in sections up to 2 0 meter lengths Shear fabric present in some semi-massive sections 120.30 to 120 40 core oxidized 120.4 to 122 30 "Intensely Sheared" 120.4 to 127 80 shearing @ 53, 61 and 71 deg to C A no visible sulphides 127 80 to 128 60 epidote developed sub-parallel to C A trace sulphides	4533 I	121.30	122 30	1 00	162	99	12	49	-5	-4	4

		131.90 to134.68core extremely fractured (random) trace cpy @ 132 10 m147.00 to161.50coarse grained massive diorite161.50 to162.70extremely fractured core	4534	132.00	132.20	0.20	49	29	17	14	-5	-4	-2
167.10	206.20	Massive Diorite (Coarse Grained) Non-magnetic, no inclusions 170 60 to 171 30 40% irregular quartz-carbonate veined in fine grained diorite	4535	170 60	171 30	0.70	27	76	15	32	17	17	-2
206.20	206.20	END OF HOLE											

Quality Analysis...

Innovative Technologies

Invoice No.: 26036 Work Order: 26202 Invoice Date: 27-NOV-02 Date Submitted: 08-NOV-02 Your Reference: PARKIN Account Number: 3587

WATTS GRIFFIS AND MCOUAT LTD SUITE 400, 8 KING STREET EAST TORONTO, ON M5C 1B5 ATTN: JOE HINZER

CERTIFICATE OF ANALYSIS

228 ROCK(S) (PREP.REV3.2)

were submitted for analysis.

The following analytical packages were requested. Please see our current fee schedule for elements and detection limits.

REPORT 26036 CODE 1E PKG - AQUA REGIA ICP (AQUAGEO.REV

REPORT 26036 RPT.XLS CODE 1C-EXPL - FIRE ASSAY-ICP-OES REPORT 26036 BRP.XLS CODE 1C-EXPL - FIRE ASSAY ICP-OES REPORT 26036 CRP.XLS ULTRATRACE1 - AQUA REGIA ICP/MS

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

CERTIFIED BY :

DR E.HÓFFMAN/GENERAL MANAGER

ACTIVATION LABORATORIES LTD.

26036RPT.XLS

Contact: J. Hinzer

Actiabs PGE (1C) EXP Job #: 26202		Report#: 260	036	Client: WGM			
Sample ID:	Sample Wt(g)	Pd ppb	Pt ppb	Au ppb			
6195	30	42	64	13			
6196	30	38	46	13			
6197	30	49	60	12			
6198	30	39	38	20			
6199	30	34	34	10			
6200	30	30	32	11			
4501	30	34	35	14			
4502	30	65	83	17			
4503	30	29	31	8			
4504	30	21	17	7			
4505	30	13	18	16			
4506	30	16	20	6			
4507	30	18	19	8			
4508	30	40	44	14			
4509	30	34	32	9			
4510	30	35	35	11			
4536	30	11	12	6			
Blank	30	-0.1	-0.1	-1			
Control Material UMT-1	2	105	143	49			
Control Material WMG-1	2	377	712	108			
Certified Data UMT-1		106	129	48			
Certified Data WMG-1		382	731	110			

Certified By:

Daw Olfma

D. D'Anna, Dipl. T. ICPMS Technical Manager, Activation Laboratories Ltd.

This report shall not be reproduced except in full without the written approval of the laboratory Unless otherwise instructed, samples will be disposed of 90 days from the date of this report Date Received: 11-Nov-02

Date Reported: 21-Nov-02

26036CRP.XLS

Actiabs Ultratrace 1 Job #: 26202 Trace Element Values Are in Parts Per Millio	on unle:	ss oth		Reporta se indica			ve Val			nt: WG lot Det		it That			ict: J. ł	linzer	r													
Values = 999999 are greater than working ra	ange of	finstru Be	imen B	t. Na%	Ma%	A194	K 9/	Ca%	v	Cr	Mo	Fe%	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Rb	Sr	v	Zr	NÞ	Mo	40	64	Im	e-
Sample ID: 6145	44 2	07	_	0 023			0.90		- 88	233	1120			156	468				22 3		67.7	113	95	59	-01	1 10	Ag 1.08	Cd 03		Sn 0.36
6146	29.5	04	-	0 043				1 44	96		990			108	427		9.52	01	24	0.4		28 1	10.3	16.8			0.50	0.7		0.33
6147	31.9	05		0.039				5 30		81.6				102	177	259	10.3	02	06	0.4			97	49	01	3 52	0.50	1 1		0.33
6149	37 5	0.7		0.025			1.66	163	109	236	1520		34.4	133	401			03	12	2.1	109	127	6.1		-0.1	1.31	0.55	03		0.30
6151	27.7	04	•••	0.022		3.82		1.65	24		2120			25.3	742			02	05	05		85 5	19	44	-01	0.72	0.09	-01	-	0.24
6152	19.2	0.7	-	0 029				2.82			2120		89.2		146	126		02	-01	2.2		56 6	30	44	-01	2 25	0.00	-01		0.29
6153	44 3	0.6	-	0 022					69	112	3220		20.4		32.2			0.2	04	0.5			2.5	• •			-0.05	-01		0.14
6154	24.4	0.7		0.023				3 61		63.4	2520		32.7		122	119		02	11	16		55 0	33				-0.05	-01		0.31
6154 Rep	25.4	06	4	0 021		3.07	173	3.38		62.5	2360		32.0		121	117		0.2	07	16		41 1	29	-	-01		-0.05	-01		0.24
6154 PULP DUP	23 9	07		0 023				3 36		62 2	2390		30 8		121	115	7.24	02	04	16		50 6				1.10				0 29
Control Material GXR-6	25 9	09	4	0 064	0 42	7.69	1 16	0 17	167	81.4	1050	5.58	13 7	23 9	65 4	120	18 0	-0 1	247	03	62 1	35 5	63	130	-0.1	1.16	0 23	01	0 06	0 52
Control Material GXR-2	476	11	18	0 125	0 50		0 64	0.65	38		1030	1.73	86	16.9	75.5			-01	14 0			86 3	97	77	1.7	0.81	178	38	0 04	0 52
Control Material GXR-1	48	08	10	0.038		0 33		0.77	70		900			41 2	1200		4 25	12	413	15 8	20	192	26 3	82	01	18 6	34.1	29	0 85	13.2
Control Material GXR-4	10.2	14	3	0.110	1 60	2 90	1 79	0.83	74	57 2	137	2.98	14.6	39.9	6570	69 7	116	04	102	57	92 7	79 3	118	7.2	0.2	324	3.60	-0 1	0 21	2 89
Cert Data GXR-6	32.0	1.4									1,007			27	66		35	•	330		90	35	14	110	7.5		1.3	1	0.26	
Cert Data GXR-2	54.0			0.556				0.93	52	36	1,007		8.6	21	76	530	37	-		0.61	78	160	17	269	11	2.1	17		0.252	
Cert Data GXR-1	-			0.052					80	12		23.6			1,110		13.8	-			14	275	32	38	0.8	18	31	3.3	0.77	
Cert Data GXR-4	11.1	1.9	4.5	0.564	1.658	7.20	4.01	1.01	87	64	155	3.09	14.6	42	6,520	73	20	-	98	5.6	160	221	14	186	10	310	4	0.86	0.27	5.6

Certified By:

na R

D. D'Anna, Dipl. T. ICPMS Technical Manager, Activation Laboratories Ltd.

This report shall not be reproduced except in full without the written approval of the laboratory Unless otherwise instructed, samples will be disposed of 90 days from the date of this report Date Received 11-Nov-02

Date Reported 26-Nov-02

26036CRP.XLS

Actiabs Ultratrace 1 Jo Trace Element Values Ar Values = 999999 are gre	TE .																					
Sample ID:	Sb	Te	Cs	Ba	La	Ce	Nd	Sm	Eu	ть	Yb	Łu	Hf	Та	W	Re	Au PPB	TI	Pb	Bi	Th	U
6145	4.78	0.41	3.1	16.6	21.9	41.6	19.1	3.7	1.0	0.4	0.8	0.1	0.1	-0.05	0.3	0.003	4.0	0.76	51.4	1.88	07	0.2
6146	0.22	0.03	4.8	289	25.5	510	22.2	4.2	09	04	10	0.1	0.3	-0.05	0.2	0.002	-0.2	0.61	29.2	0.15	6.0	16
6147	0.75	0.04	6.1	239	11.9	24.5	12.5	2.5	0.7	03	1.1	0.2	0.1	-0.05	0.3	0.003	2.6	0.88	181	0.12	1.4	03
6149	0.52	0.32	5.9	18 2	7.0	15.0	7.9	1.8	0.5	0.2	05	-0 1	-0.1	-0.05	0.2	0.002	2.1	1.30	84.1	1.14	02	-01
6151	0.17	0.14	8.4	62 1	83	15.4	5.8	10	0.3	-0.1	0.2	-0.1	0.1	-0 05	0.2	0.001	4.2	0.96	19.3	0.29	11	0.2
6152	0.20	0.46	7.8	31.0	7.5	14.2	5.7	1.0	0.3	0.1	0.3	-0.1	0.1	-0.05	-0.2	0.001	53	1.16	27.9	0.46	0.6	02
6153	0.13	0.12	15.9	109	6.8	13.3	5.5	1.1	0.3	01	03	-01	-0.1	-0 05	-0.2	-0 001	3.0	1.81	2.46	0.16	07	01
6154	0.14	0.40	8.3	28.5	66	12.8	5.6	1.0	0.3	01	0.4	-0.1	-01	-0 05	-0.2	0.002	5.9	1.44	28 7	0 53	07	0.2
6154 Rep	0.14	0.44	8.5	34 5	6.3	12.4	5.3	1.0	0.3	01	0.3	-0 1	-01	-0.05	-0.2	0 003	4.0	1.46	28.7	0 54	0.7	02
6154 PULP DUP	0.14	0.46	8.0	29.9	6.4	12.3	5.2	1.0	03	0.1	0.3	-0 1	-0.1	-0 05	-0.2	0.002	3.8	1.41	27 1	0 53	0.7	0.2
Control Material GXR-6	1.06	-0.02	3.6	1020	12 7	35 0	11.4	2.3	0.5	03	07	01	0.3	-0.05	-0.2	-0 001	68 4	1 80	104	0 20	3.9	08
Control Material GXR-2	19 8	0.29	4.3	1180	22 2		17.1	31	05	0.4	0.8	01	01	-0 05	-0.2	0.001			672	0 29	41	16
Control Material GXR-1	78.7	15.9	31	367	69		6.9	2.6	06	0.7	2.3	03	0.1	-0 05	156	0.005	3350		780	1710	16	32 3
Control Material GXR-4	2.41	0.85	2.5	24.9	61.4	108	39 6	62	13	05	8 0	01	02	-0 05	96	0.178	462	2 82	44 9	20 4	18.1	5.0
Cert Data GXR-6	3.6	0.018		1,300		36		2.67	0.76	0.415	2.4	0.33	4.3		1.9	-	95	2.2		0.29	5.3	1.54
Cert Data GXR-2	49	0.69	5.2				19	3.5	0.81	0.48	2.04	0.27	8.3	0.9	1.9	-	36	1.03	690	0.69	8.8	2.9
Cert Data GXR-1	122		3	750	7.5	17	18	2.7		0.83				0.175	164	-	- •		730	1,380	2.44	34.9
Cert Data GXR-4	4.8	0.97	2.8	1,640	64.5	102	45	6.6	1.63	0.36	1.6	0.17	6.3	0.79	30.8	-	470	3.2	52	19	22.5	6.2

Aqua Regia Extraction Analysis: Code 1E

SAMPLE		۸~	Cd	Cu	Mn	Мо	Ni	Pb	Zn	S
SAMPLE		Ag							ppm	
6009		ppm -0.2	ppm -0.5	ррт 12	ррт 307	ppm 4	ppm 47	ppm 3	41	% 0.007
6010		0.2	-0.5	12	313	-2	47	-2	41	0.007
6011		0.2	-0.5	35	437	·2 3	44	-2	55	0.004
					-	4		2	77	
6012		-0.2	0.5	34	591		32			0.007
6013		·0.2	0.5	30	348	2	45	-2	43	0.016
6014		0.2	-0.5	15	308	2	38	4	36	0.092
6015		-0.2	0.5	13	360	2	47	3	51	0.029
6015	/R	-0.2	-0.5	11	361	2	46	2	49	0.027
6016		0.2	-0.5	10	519	-2	48	4	49	0 018
6017		0.2	0.5	11	458	·2	59	·2	76	0.022
6018		0.2	0.5	12	355	3	48	4	53	0.007
6019		0.2	0.5	12	337	2	49	5	53	0.005
6020		0.2	-0.5	36	362	3	45	4	53	0.016
6021		0.2	0.5	18	431	3	41	2	52	0.050
6022		0.2	0.5	17	340	3	40	-2	48	0 010
6023		0.2	-0.5	17	274	2	33	5	38	0.014
6024		0.2	0.5	24	301	3	32	8	35	0.015
6025		0.2	0.5	145	798	3	49	8	118	0.059
6026		0.2	0.5	105	616	5	60	3	71	0 062
6027		02	0.5	45	713	3	64	7	74	0.095
6028		02	0.5	118	438	2	41	6	46	0 071
6029		04	0.5	53	678	3	67	15	77	0.059
6029	/R	0.2	05	53	686	6	69	9	74	0 063
6030		0.2	0.5	54	601	5	64	12	70	0.087
6031		0.2	0.5	55	677	2	64	7	78	0.061
6032		0 2	05	54	852	4	68	16	81	0 102
6033		0 2	05	59	691	4	65	2	71	0.084
6034		0.2	0.5	56	603	4	69	5	67	0 076
6035		0.2	0.5	66	484	6	65	12	72	0.101
6036		0.2	05	67	514	4	69	10	71	0 072
6037		0 2	-0.5	69	517	3	88	.9	63	0.123
6038		0.2	0.5	72	561	3	86	2	64	0.099
6039		32	0.5	86	599	3	104	23	81	0.136
6040		0 2	0.5	65	627	7	76	8	70	0.089
6041		0 2	0.5	50	762	3	72	7	77	0.089
6042		0 2	-0.5	57	847	4	78	17	73	0.089
6042	R	0 2	05	57	838	2	76	17	72	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6043	· N	0 2	05	62	670	5	73	10	65	0 106
6044		-0.2	-05	58	661	2	73	.0	63	0 0 30
6045		0.2	0.5	71	605	4	87	2	69	0 0 3 4
6045		0.2	0.5	74	680	-2	80	3	79	0 0 3 4 0 0 4 1
6046		-0.2	0.5	87	684	5		2	72	
							85			0.089
6048		02	05	136	666	3	125	6	66	0.133
6049		0.2	0.5	138	795	3	180	8	77	0 253
6050 C051		0.2	0.5	113	757	5	116	5	70	0 130
6051		-0.2	0.5	104	679	4	120	7	72	0 152
6052		-0.2	-05	134	709	5	165	10	78	0 185
6053		0.2	0.5	99	779	5	120	10	78	0 1 1 2
6054		0.2	-0.5	118	828	5	141	7	72	0 181
6055		-0.2	0.5	25	874	-2	21	7	26	0.037
6056		0.2	0.5	76	942	4	92	8	68	0.124
6056	∕R	·0.2	-0.5	77	988	2	99	11	70	0 126
Clients are ac	tused to r	htain area	us for An	100 000	and Pha	5000 pc	on dua t	n notent	ىلىلەغ ات	ht- problems

Clients are advised to obtain assays for Ag>100 ppm and Pb>5000 ppm due to potential solubility problems. Values for Cu, Ni, Zn, Mo greater than 1% should be assayed if accuracy better than+7-10-15% is required. Values above 1% are for informational purposes only and should not be relied upon for promotional or ore reserve calculations. Assays are recommended for this purpose.

Sulphur will precipitate in samples containing massive sulphides

Adreene L Bittau B & C.Chem ICP Jochnical Manager

Negative values indicate less than the detection limit 99999 indicates greater than 10%

Aqua Regia Extraction Analysis: Code 1E

									_	
SAMPLE		Ag	Cd	Cu	Min	Мо	Ni	Pb	Zn	S
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
6057		-0.2	0.5	122	646	3	139	11	81	0.177
6058		0.2	0.5	127	706	6	137	142	93	0.124
6059		0.2	-0.5	127	674	5	170	11	76	0.229
6060		-0.2	0.5	121	630	5	152	8	69	0.184
6061		-0.2	0.5	122	689	4	138	178	93	0.119
6062		0.2	0.5	207	575	4	247	7	82	0 294
6063		0.2	-0.5	216	622	7	292	21	100	0.416
6064		-0.2	-0.5	200	652	4	224	23	97	0.166
6065		-0.2	0.5	180	636	4	215	13	101	0.254
6066		0.2	-0.5	252	629	2	388	15	111	0.443
6067		0.2	0.5	289	691	3	321	24	118	0.398
6068		0.2	0.5	301	879	-2	387	2	95	0.446
6069		0.2	-0.5	247	1068	·2	314	7	87	0.337
6070		0.2	-0.5	218	690	3	288	5	73	0.386
6071		0.3	0.5	399	619	5	474	5	80	0.596
6072		0.2	0.5	434	721	4	314	10	156	0.504
6073		0.2	0.5	159	705	3	166	5	78	0 182
6074		0.2	05	280	568	5	336	10	72	0 420
6075		0.2	05	223	478	3	291	15	78	0.368
6076		0.2	0.5	153	484	4	181	-2	71	0 228
6077		0.2	05	128	518	5	141	4	71	0 205
6078		02	-05	308	524	3	309	7	79	0 369
6078	∕R	0.2	05	242	526	3	313	10	76	0 362
6078	źń	0.2	-0.5	211	538	2	255	7	77	0 312
6080		-0.2	0.5	202	519	4	289	8	73	0 342
		-02	0.5	193	538	4	305	6	77	0 431
6081		02	0.5	193	529	5	210	2	72	0.274
6082 6083		0.2	-0.5	193	518		210	8	74	0 242
			0.5	146	488	5	152	10	74	0 242
6084		0.2	0.5	140	519	3	152	4	73	0.235
6085		02	0.5		429	4	153	4		0.235
6086		0.2		146					68	
6087		0.2	0.5	173	420	3	272	3	65	0.335
6088		-0.2	0.5	126	432	4	129	8	79	0 150
6089		-0.2	-0.5	117	456	5	145	10	74	0 201
6090		0.2	05	173	478	3	210	9	73	0 272
6091		0.2	05	112	433	4	131	7	65	0 165
6092		0.2	05	101	455	5	116	10	64	0138
6092	7 R	-0.2	0.5	99	447	3	116	12	66	0 1 4 2
6093		02	05	100	462	5	122	8	62	0 150
6094		0 2	05	181	489	5	221	12	63	0 270
6095		0.2	05	122	552	3	176	7	71	0 201
6096		-0.2	-0.5	101	478	4	113	9	69	0138
6097		02	-0.5	103	478	5	123	9	65	0 1 3 1
6098		-0.2	05	81	482	6	82	8	64	0110
6099		0.2	0.5	89	518	4	83	13	72	0 089
6100		0.2	0.5	98	485	4	99	9	68	0 1 2 5
6101		0.2	0.5	90	550	б	127	3	66	0146
6102		-0.2	0.5	154	563	4	199	9	66	0 284
6103		0.2	0.5	124	561	3	110	10	57	0 153
6104		-0.2	05	94	552	4	117	6	66	0.130
6105		0.2	0.5	100	605	5	123	7	72	0139
6105	∕R	0.2	-0.5	97	572	3	120	9	70	0.135
6106		-0.2	0.5	103	554	4	116	5	69	0.146
6107		-0.2	0.5	161	524	6	115	6	65	0.147
6108		0.2	0.5	104	543	3	142	6	64	0.200
6109		0.2	-0.5	99	572	3	105	5	72	0.122
6110		0.2	0.5	125	536	4	167	9	70	0.267

Activation Laboratories Ltd. Work Order No. 26202 Report No. 26036

Aqua Regia Extraction Analysis: Code 1E

Aqua Nebia	2/10/000		, , , , , , , , , , , , , , , , , , , ,							
SAMPLE		Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	S
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
6111		·0.2	0.5	93	551	6	101	3	66	0.120
6112		-0.2	0.5	122	563	4	176	9	63	0.274
6113		-0.2	-0.5	91	589	4	108	14	68	0.161
6114		0.2	-0.5	74	555	5	70	7	60	0.105
6115		.0.2	0.5	68	562	4	102	12	68	0.111
6116		0.2	0.5	75	528	5	99	12	62	0.146
6117		0.2	0.5	64	605	3	78	5	63	0.093
6118		0.2	0.5	63	540	4	78	9	70	0.107
6119		0.2	0.5	68	479	3	65	-2	59	0.077
6119	/R	0.2	0.5	68	505	5	68	·2	61	0.076
6120	/11	-0.2	0.5	82	536	3	78	8	60	0.088
6121		-0.2	-0.5	77	606	3	85	7	65	0.093
6122		0.2	-0.5	86	594	4	88	5	64	0.098
6123		-0.2	0.5	121	544	5	192	9	59	0.243
		-0.2	0.5	118	470	3	97	7	57	0.153
6124						4	95	5	58	
6125		-0.2	0.5	91	506					0.094
6126		0.2	05	37	508	5	62	10	55	0.050
6127		0.2	0.5	68	507	4	68	12	79	0.075
6128		0 2	05	83	452	5	69	8	56	0 090
6129		0.2	05	182	573	6	43	-2	89	0 041
6130		-0.2	05	152	636	3	49	-2	89	0.052
6131		-0 2	0.5	159	666	4	50	6	89	0.110
6132		0.2	05	155	641	-2	66	25	43	0 023
6133		02	05	709	1257	4	620	15	106	0 649
6134		02	05	365	1097	3	557	6	92	0 453
6135		0.4	1.0	851	1092	5	640	28	136	0 661
6136		0.2	05	389	1008	3	530	12	98	0 386
6137		0.3	05	342	1105	8	649	21	116	0.375
6138		0.2	05	442	1399	2	423	5	114	0.141
6139		0.2	0.5	61	1372	-2	69	9	84	0 023
6140		0.2	0.5	220	1272	·2	312	6	77	0 358
6141		0.2	0.5	138	611	-2	75	13	54	0.157
6142		0.2	05	136	659	-2	99	8	55	0.026
6142	/R	0.2	0.5	131	703	-2	110	5	64	0 0 3 0
6143		0 2	0.5	37	704	-2	115	10	61	0 013
6144		0 2	05	63	1200	6	145	11	113	0 165
6148		0.2	1.5	79	1101	5	117	159	509	0 542
6150		0.2	05	41	1556	4	142	5	236	0 297
6155		0.2	05	16	1932	3	34	4	129	0 1 2 4
6156		02	05	35	824	3	27	12	112	0 202
6157		02	05	18	1092	5	92	11	149	0 0 36
6158		-0.2	05	102	1043	3	69	12	207	0 428
6159		02	0.5	33	692	4	58	4	86	0 077
6160		0.2	0.5	25	258	3	33	-2	25	0 007
6161		0.2	0.5	242	818	4	146	3	79	0.288
6162		-0.2	0.5	242 86	1012	4	140	7	104	0.200
						2				
6163		0.2 0.2	05	32 26	544 437	4	81	8	57 74	0 026
6164	(0		0.5				48	11		0 053
6164	∕R	0.2	0.5	24	421	-2	49	11	76	0 052
6165		-0 2	05	36	507	4	49	10	94	0 072
6166		-0.2	05	20	859	-2	66	4	117	0.106
6167		0.2	0.5	56	1167	2	47	10	142	0 590
6168		02	0.5	110	1240	3	69	7	129	1 092
6169		0.2	0.5	89	898	5	101	2	101	0 350
6170		0.2	0.5	155	1078	3	65	4	140	0.134
6171		-0.2	·0.5	90	1234	6	51	6	162	0 302
6172		-0.2	-0.5	101	1255	6	47	10	181	0.256

Activation Laboratories Ltd. Work Order No. 26202 Report No. 26036

Aqua Regia Extraction Analysis: Code 1E

- - -									
SAMPLE	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	S
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
6173	-0.2	-0.5	121	1333	7	13	7	146	0.437
6174	0.2	0.5	33	580	·2	88	2	49	0.028
6175	0.2	0.5	158	613	-2	256	5	94	0.440
6176	0.2	0.5	41	760	4	289	3	89	0.145
6177	-0.2	0.5	66	858	3	384	·2	95	0.241
6177 /R	0.2	0.5	69	837	-2	385	5	98	0.245
6178	0.2	0.5	38	1072	-2	110	12	82	0.074
6179	0.2	0.5	67	819	-2	162	10	82	0.224
6180	-0.2	0.5	48	804	2	115	11	83	0.099
6181	0.2	0.5	167	565	5	252	45	122	0.292
6182	0.2	0.5	159	623	4	208	3	86	0.232
6183	0.2	0.5	152	601	3	181	8	91	0.202
6184	-0.2	0.5	132	634	3	150	18	100	0.183
6185	0.2	0.5	143	647	6	182	12	87	0.184
6186	0.2	0.5	159	696	4	235	9	80	0 269
6187	0.2	0.5	125	671	3	176	25	82	0.186
6188	0.2	0.5	99	544	5	138	55	142	0 1 3 7
6189	0.2	0.5	80	751	2	184	73	199	0 1 2 0
6190	0.2	0.5	143	583	2	234	12	81	0 259
6191	0.2	0.5	156	505	3	268	7	68	0 242
6191 /R	0 2	05	158	522	4	274	5	69	0 239
6192	-0.2	0.5	251	514	3	425	29	126	0 477
6193	0.4	0.8	410	578	5	435	104	254	0 408
6194	0.2	0.5	314	532	4	417	16	72	0 413
6195	03	0.5	661	530	5	662	8	72	0 638
6196	0.2	0.5	487	539	5	580	10	69	0 546
6197	0 2	0.5	499	481	3	649	3	67	0 608
6198	-0.2	0.5	574	537	4	584	7	66	0 567
6199	0.2	0.5	417	546	3	449	8	54	0.513
6200	0.2	0.5	452	540	4	499	11	66	0.597
4501	0.2	-0.5	403	590	4	455	20	59	0.557
4502	0.3	0.5	699	557	4	944	15	61	1 076
4503	0.2	0.5	353	548	4	411	- 15	54	0 491
	0.2	0.5	229	598	-2	439	18	71	0.603
4504 4505	0.2	0.5	229	557	- 2	203	43	98	0.803
4506	-0.2	0.5	224	559	3	188	22	60	0 2 5 5
4507	0.2	0.5	264	560	-2	262	19	62	0 2 3 5
4508	0.2	05	468	585	5	620	15	66	0 721
					4		23	79	
4509	0.3	-05 -05	381	533	4	482 462	19	83	0 561 0 562
4510	0.2		411	623			22		
4511 4511	0.2	05	307	604	6	368		101	0 406
4511 /R	02	05	311	614	-2	358	24	99	0 403
4512	02	0.5	279	640	-2	347	24	89	0 4 3 9
4513	0.2	05	195	888	2	210	8	52	0 328
4514	0.2	-0.5	158	982	2	201	28	81	0 336
4515	-0.2	-05	170	734	-2	239	39	112	0 312
4516	0.2	-05	158	732	-2	175	9	85	0.169
4517	0.2	0.5	135	789	-2	179	23	87	0 271
4518	0.2	0.5	180	761	2	209	23	96	0 353
4519	-0.2	0.5	130	656	3	176	28	93	0 268
4520	0.2	0.5	151	596	3	152	22	76	0 171
4521	0.2	0.5	164	610	3	218	24	94	0 292
4522	-0.2	0.5	130	653	3	173	19	69	0 242
4523	-0.2	0.5	128	680	4	166	12	55	0 197
4524	0.2	0.5	95	612	3	91	31	61	0.084
4525	0.2	0.5	99	717	-2	109	12	55	0.120
4525 /R	-0.2	0.5	115	726	2	110	13	55	0.120

Aqua Regia Extraction Analysis: Code 1E

SAMPLE	Ag	Cd	Cu	Mn	Mo	Ni	РЬ	Zn	s
	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ррт	%
4526	-0.2	-05	85	611	3	75	16	50	0 078
4527	-0.2	-0.5	61	625	2	67	26	62	0 065
4528	-0.2	-05	79	622	5	90	57	168	0 080
4529	-02	-0.5	258	632	-2	210	87	104	0 173
4530	02	-05	368	426	3	302	12	49	0 245
4531	-0.2	-05	67	708	-2	80	11	38	0 036
4532	-0 2	-05	84	964	-2	102	17	61	0 017
4533	-02	-05	162	1163	-2	99	12	49	0 047
4534	-02	-0.5	49	223	-2	29	17	14	0 027
4535	-0 2	-0.5	27	1080	-2	76	15	32	0.008
4536	-0 2	-05	168	791	-2	217	26	63	0 229
6038 PULP DUP	-0 2	-05	64	560	4	73	9	51	0 090
6068 PULP DUP	-02	-05	297	861	-2	349	13	76	0 453
6068 PULP DUP /R	-0 2	-05	294	847	-2	339	7	75	0 435
6098 PULP DUP	-02	05	82	507	4	76	16	57	0 108
6128 PULP DUP	-0 2	-05	81	466	3	65	16	48	0 094
6166 PULP DUP	-02	-05	19	759	-2	56	10	94	0 110
6196 PULP DUP	02	-05	432	471	2	509	9	55	0 541
4526 PULP DUP	-0 2	-05	85	579	4	79	15	54	0 077
4536 PULP DUP	-02	-05	170	774	4	202	25	62	0 22 1
GXR-6 cert	1.3	(1	66	1008	2.4	27	101	118	0.016
GXR-6	02	-05	76	1063	5	32	104	129	0 019
GXR-2 cert	17	4.1	76	1008	(2.1	21	690	530	0.031
GXR-2	18 5	44	84	1057	3	20	735	557	0 037
GXR-1 cert	31	3.3	1110	853	18	41	730	760	0.257
GXR-1	26 3	22	1071	785	20	39	612	625	0 213
GXR-4 cert	4	(.86	6520	155	310	42	52	73	1.77
GXR-4	33	-0 5	6209	134	283	50	44	79	1 993

Note Certificate data underlined are recommended values, other values are proposed except those preceded by a "(" which are information values Barite gabnite chromite cassiterite zircon, sphere and magnetite may not be totally dissolved

Sample VI(g) P4 ppb A uppb 6009 30 4 5 -2 6010 30 4 5 -2 6011 30 4 4 5 -2 6013 30 4 4 5 -2 6014 30 4 4 5 -2 6015 30 4 4 5 -2 6016 30 4 4 5 -2 6017 30 4 4 5 -2 6019 30 -4 -5 -2 6021 30 -4 -5 -2 6022 30 -4 -5 -2 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6026	Actiabs PGE (1C) EXP	Job #: 26202	Report#: 260			Client: WGM	Contact: J. Hinzer
6010 30 -4 -5 -2 6011 30 -4 -5 -2 6013 30 -4 -5 -2 6014 30 -4 -5 -2 6015 30 -4 -5 -2 6016 30 -4 -5 -2 6017 30 -4 -5 -2 6018 30 -4 -5 5 6019 30 -4 -5 5 6020 30 -4 -5 5 6021 30 -4 -5 -2 6022 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6026 30 -4 -5 -2 6026 30 -4 -5 -2 6031 30 -4 -5 -2 6033	Sample ID:	Sample Wt(g)	Pd ppb	Pt ppb	Au ppb		
6011 30 -4 -5 -2 6013 30 -4 -5 -2 6014 30 -4 -5 -2 6016 30 -4 -5 -2 6016 30 -4 -5 -2 6017 30 -4 -5 -2 6018 30 -4 -5 -2 6019 30 -4 -5 -2 6020 30 -4 -5 -2 6021 30 -4 -5 -2 6022 30 -4 -5 -2 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6031 30 -4 -5 -2 6033 <	6009			-5	-2		
6012 30 -4 -5 -2 6013 30 -4 -5 -2 6015 30 -4 -5 -2 6016 30 -4 -5 -2 6017 30 -4 -5 -2 6019 30 -4 -5 -2 6019 30 -4 -5 -2 6020 30 -4 -5 5 6021 30 -4 -5 -2 6022 30 -4 -5 -2 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6031 30 -4 -5 -2 6033 30 -4 -5 -2 6034 <t< td=""><td>6010</td><td>30</td><td>-4</td><td></td><td>-2</td><td></td><td></td></t<>	6010	30	-4		-2		
6012 30 -4 -5 -2 6013 30 -4 -5 -2 6015 30 -4 -5 -2 6016 30 -4 -5 -2 6017 30 -4 -5 -2 6019 30 -4 -5 -2 6019 30 -4 -5 5 6021 30 -4 -5 5 6022 30 -4 -5 -2 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6031 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6035 <td< td=""><td>6011</td><td>30</td><td>-4</td><td>-5</td><td>3</td><td></td><td></td></td<>	6011	30	-4	-5	3		
6013 30 -4 -5 -2 6014 30 -4 -5 -2 6016 30 -4 -5 -2 6017 30 -4 -5 -2 6018 30 -4 -5 -2 6020 30 -4 -5 -2 6022 30 -4 -5 5 6021 30 -4 -5 6 6022 30 -4 -5 -2 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6033 <td< td=""><td></td><td>30</td><td>-4</td><td>-5</td><td>-2</td><td></td><td></td></td<>		30	-4	-5	-2		
6014 30 -4 -5 -2 6015 30 -4 -5 -2 6017 30 -4 -5 6 6018 30 -4 -5 -2 6019 30 -4 -5 -2 6020 30 -4 -5 5 6021 30 -4 -5 -2 6022 30 -4 -5 -2 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6026 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6036 30 -4 -5 -2 6036 <td< td=""><td></td><td></td><td>-4</td><td>-5</td><td>-2</td><td></td><td></td></td<>			-4	-5	-2		
6015 30 -4 -5 -2 6016 30 -4 -5 6 6017 30 -4 -5 6 6018 30 -4 -5 -2 6020 30 -4 -5 5 6021 30 -4 -5 5 6022 30 -4 -5 -2 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6033 30 -4 -5 -2 6034 3			-4	-5	-2		
6016 30 -4 -5 -2 6017 30 -4 -5 -2 6019 30 -4 -5 -2 6020 30 -4 -5 -2 6021 30 -4 -5 -2 6022 30 -4 -5 -2 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6031 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6036 30 -4 -5 -2 6036 <				-5	-2		
6017 30 -4 -5 6 6018 30 -4 -5 -2 6020 30 -4 -5 5 6021 30 -4 -5 5 6022 30 -4 -5 5 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6030 30 -4 -5 -2 6031 30 -4 -5 -2 6033 30 -4 -5 -2 6036 30 -4 -5 -2 6036 30 -4 -5 -2 6036 3				-5	-2		
6018 30 -4 -5 -2 6019 30 -4 -5 5 6021 30 -4 -5 6 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6026 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6030 30 -4 -5 -2 6031 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6034 30 -4 -5 -2 6036 30 -4 -5 -2 6038 <td< td=""><td></td><td></td><td></td><td>-5</td><td>6</td><td></td><td></td></td<>				-5	6		
6019 30 -4 -5 -2 6020 30 -4 -5 6 6021 30 -4 -5 6 6022 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6030 30 -4 -5 -2 6031 30 -4 -5 -2 6033 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6033 30 -4 -5 -2 6034 30 -4 -5 -2 6035 30 -4 -5 -2 6036 30 -4 -5 -2 6038 <td< td=""><td></td><td></td><td></td><td>-5</td><td>-2</td><td></td><td></td></td<>				-5	-2		
6020 30 -4 -5 5 6021 30 -4 -5 -2 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6030 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6033 30 -4 -5 -2 6031 30 -4 -5 -2 6033 30 -4 -5 -2 6034 30 -4 -5 -2 6035 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 -4 -5 -2 6041 <t< td=""><td></td><td></td><td></td><td>-5</td><td>_2</td><td></td><td></td></t<>				-5	_2		
6021 30 -4 -5 6 6022 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6030 30 -4 -5 -2 6031 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6036 30 -4 -5 -2 6036 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 -4 -5 -2 6040 30 -4 -5 -2 6041 <t< td=""><td></td><td></td><td></td><td>-5</td><td>-2</td><td></td><td></td></t<>				-5	-2		
6022 30 -4 -5 -2 6023 30 -4 -5 -2 6024 30 -4 -5 -2 6025 30 -4 -5 -2 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6030 30 -4 -5 -2 6031 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6036 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 5 -5 7 6038 30 -4 -5 -2 6040 30 -4 -5 2 6041				-J E	5		
6023 30 -4 -5 -2 6024 30 -4 -5 9 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6029 30 -4 -5 -2 6030 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6034 30 -4 -5 -2 6035 30 -4 -5 -2 6036 30 -4 -5 -2 6036 30 -4 -5 -2 6043 30 -4 -5 -2 6041 30 -4 -5 -2 6042 <t< td=""><td>6021</td><td></td><td></td><td>-5</td><td></td><td></td><td></td></t<>	6021			-5			
6024 30 -4 -5 -2 6025 30 -4 -5 9 6026 30 -4 -5 -2 6027 30 -4 -5 -2 6028 30 -4 -5 -2 6030 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6033 30 -4 -5 -2 6034 30 -4 -5 -2 6035 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 5 -5 7 6038 30 -4 -5 -2 6041 30 -4 -5 -2 6042 30 -4 -5 -2 6044				-5	-2		
6025 30 -4 -5 9 6026 30 -4 -5 -2 6028 30 -4 -5 8 6029 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6033 30 -4 -5 -2 6034 30 -4 -5 -2 6035 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 -4 -5 -2 6038 30 -4 -5 -2 6041 30 -4 -5 -2 6041 30 -4 -5 -2 6044 30 -4 -5 -2 6045 30 -4 -5 -2 6046 30 -4 -5 -2 6046 30 -4 -5 -2 6046 30 -4 -5 -2 6046 30 -4 -5 -2 6048 30 -4 -5 -2 6046 30 -4 -5 -2 6046 30 -4 -5 -2 6047 30 5 -5 3 6051 30 7 -5 3 <				-5	-2		
6026 30 -4 -5 -2 6027 30 -4 -5 8 6029 30 -4 -5 -2 6030 30 -4 -5 -2 6031 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6033 30 -4 -5 -2 6036 30 -4 -5 -2 6036 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 -4 -5 -2 6038 30 -4 -5 -2 6040 30 -4 -5 -2 6041 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 -2 6044 30 -4 -5 -2 6044 30 -4 -5 -2 6046 30 -4 -5 -2 6047 30 -4 -5 -2 6048 30 -4 -5 -2 6046 30 -4 -5 -2 6047 30 -4 -5 -2 6051 30 -4 -5				-5	-2		
6027 30 -4 -5 -2 6028 30 -4 -5 8 6029 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -2 6033 30 -4 -5 -2 6034 30 -4 -5 -2 6035 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 5 -5 7 6038 30 -4 -5 2 6040 30 -4 -5 2 6041 30 -4 -5 2 6042 30 -4 -5 2 6043 30 -4 -5 2 6044 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 3 6051 30 -7 6 3 <t< td=""><td>6025</td><td></td><td></td><td>-5</td><td>9</td><td></td><td></td></t<>	6025			-5	9		
602830-4-58602930-4-5-2603130-4-5-2603230-4-5-2603330-4-5-2603430-4-5-2603530-4-5-2603630-4-5-26037305-57603830-4-5-2603930-492604130-4-5-2604230-4-5-2604330-4-5-2604430-4-5-2604530-4-5-2604630-4-5-2604730-4-52604830-4-52604630-4-52604630-4-52604730-63604830811604930131576050307636051308836052307-53				-5	-2		
602930-4-5-2603030-4-5-2603130-4-5-2603330-4-5-2603430-4-5-2603530-4-5-2603630-4-5-26037305-57603830-4-52604030-4-52604130-4-52604230-4-52604330-4-52604430-4-52604530-4-5260463045266047305-5360483081166049301315760503076360513088360523010753				-5	-2		
6030 30 -4 -5 -2 6031 30 -4 -5 -2 6032 30 -4 -5 -3 6034 30 -4 -5 -2 6035 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 5 5 7 6038 30 -4 -5 2 6039 30 -4 -5 2 6040 30 -4 -5 -2 6041 30 -4 -5 -2 6041 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 -2 6044 30 -4 -5 -2 6044 30 -4 -5 -2 6044 30 -4 -5 -2 6044 30 -4 -5 -2 6044 30 -4 -5 -2 6046 30 -4 -5 26 6047 30 5 -5 3 6050 30 7 6 3 6051 30 7 6 3 6051 30 7 7 5 6053 30 7 7 5				-5			
6031 30 -4 -5 -2 6032 30 -4 -5 -2 6033 30 -4 -5 -2 6034 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 5 -5 7 6038 30 -4 9 2 6040 30 -4 9 2 6041 30 -4 -5 -2 6041 30 -4 -5 -2 6041 30 -4 -5 -2 6042 30 -4 -5 -2 6044 30 -4 -5 -2 6044 30 -4 -5 -2 6044 30 -4 -5 -2 6044 30 -4 -5 -2 6046 30 -4 -5 -2 6046 30 -4 -5 -2 6046 30 -4 -5 -2 6046 30 -4 -5 2 6047 30 5 -5 3 6051 30 7 6 3 6051 30 7 6 3 6053 30 7 7 5				-5	-2		
6032 30 -4 -5 -2 6033 30 -4 -5 3 6034 30 -4 -5 -2 6035 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 5 -5 7 6038 30 -4 -5 2 6039 30 -4 -5 2 6040 30 -4 -5 2 6041 30 -4 -5 2 6043 30 -4 -5 2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 -4 -5 2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 -4 -5 2 6045 30 -4 -5 2 6046 30 -4 -5 2 6048 30 -4 -5 2 6048 30 -4 -5 2 6048 30 -4 -5 2 6048 30 -4 -5 2 6050 30 7 6 3 6051 30 7 6 3 6053 30 7 -5 3				-5	-2		
6033 30 -4 -5 3 6034 30 -4 -5 -2 6035 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 5 -5 7 6038 30 -4 9 2 6040 30 -4 -5 -2 6041 30 -4 -5 -2 6042 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 -2 6045 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6048 30 8 11 6 6049 30 13 15 7 6050 30 7 6 3 6051 30 7 7 5 6053 30 7 7 5				-5	-2		
6034 30 -4 -5 -2 6035 30 -4 -5 -2 6036 30 -4 -5 -2 6037 30 5 -5 7 6038 30 -4 9 2 6039 30 -4 9 2 6040 30 -4 -5 -2 6041 30 -4 -5 -2 6042 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6048 30 -4 -5 2 6046 30 -4 -5 2 6048 30 -4 -5 2 6048 30 -4 -5 2 6048 30 -4 -5 2 6050 30 7 6 3 6051 30 7 6 3 6051 30 7 -5 3 6053 30 7 -5 3				-5	-2		
603530-4-5-2603630-4-5-26037305-57603830-4-52603930-492604030-4-5-2604130-4-5-2604230-4-5-2604330-4-5-2604430-4-52604530-4-5260463045266047305-5360483081166049301315760503076360513088360523010756053307-53				-5			
6036 30 -4 -5 -2 6037 30 5 -5 7 6038 30 -4 -5 2 6039 30 -4 9 2 6040 30 -4 -5 -2 6041 30 -4 -5 -2 6042 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 4 5 26 6047 30 5 -5 3 6048 30 8 11 6 6049 30 13 15 7 6050 30 7 6 3 6051 30 7 7 5 6053 30 7 -5 3			-4				
6037 30 5 -5 7 6038 30 -4 -5 2 6039 30 -4 9 2 6040 30 -4 -5 -2 6041 30 -4 -5 2 6042 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6048 30 -4 -5 2 6048 30 -4 -5 2 6050 30 7 6 3 6051 30 8 8 3 6052 30 10 7 5 6053 30 7 -5 3	6035		-4		-2		
6037 30 5 -5 7 6038 30 -4 -5 2 6039 30 -4 9 2 6040 30 -4 -5 -2 6041 30 -4 -5 2 6042 30 -4 -5 -2 6043 30 -4 -5 2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 5 26 6047 30 5 -5 3 6048 30 8 11 6 6049 30 13 15 7 6050 30 7 6 3 6051 30 8 8 3 6052 30 10 7 5 6053 30 7 -5 3	6036	30	-4	-5	-2		
6038 30 -4 -5 2 6039 30 -4 9 2 6040 30 -4 -5 -2 6041 30 -4 -5 2 6042 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6048 30 -4 5 26 6048 30 -5 -5 3 6048 30 7 6 3 6051 30 7 6 3 6052 30 10 7 5 6053 30 7 -5 3	6037	30	5	-5	7		
6039 30 -4 9 2 6040 30 -4 -5 -2 6041 30 -4 -5 2 6042 30 -4 -5 -2 6043 30 -4 -5 2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 -5 2 6046 30 -4 5 26 6047 30 5 -5 3 6048 30 8 11 6 6049 30 13 15 7 6050 30 7 6 3 6051 30 8 8 3 6052 30 10 7 5 6053 30 7 -5 3		30	-4	-5			
6040 30 -4 -5 -2 6041 30 -4 -5 2 6042 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 4 5 26 6047 30 5 -5 3 6048 30 8 11 6 6049 30 13 15 7 6050 30 7 6 3 6051 30 8 8 3 6052 30 10 7 5 6053 30 7 -5 3			-4	9	2		
6041 30 -4 -5 2 6042 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 4 5 26 6047 30 5 -5 3 6048 30 8 11 6 6049 30 7 6 3 6051 30 8 8 3 6052 30 10 7 5 6053 30 7 -5 3				-5	-2		
6042 30 -4 -5 -2 6043 30 -4 -5 -2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 4 5 26 6047 30 5 -5 3 6048 30 8 11 6 6049 30 13 15 7 6050 30 7 6 3 6051 30 8 8 3 6052 30 10 7 5 6053 30 7 -5 3			-4	-5	2		
6043 30 -4 -5 -2 6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 4 5 26 6047 30 5 -5 3 6048 30 8 11 6 6049 30 13 15 7 6050 30 7 6 3 6051 30 8 8 3 6052 30 10 7 5 6053 30 7 -5 3				-5	-2		
6044 30 -4 -5 2 6045 30 -4 -5 2 6046 30 4 5 26 6047 30 5 -5 3 6048 30 8 11 6 6049 30 13 15 7 6050 30 7 6 3 6051 30 8 8 3 6052 30 10 7 5 6053 30 7 -5 3				-5	-2		
604530-4-5260463045266047305-5360483081166049301315760503076360513088360523010756053307-53				-5	2		
60463045266047305-5360483081166049301315760503076360513088360523010756053307-53				-5	2		
6047305-5360483081166049301315760503076360513088360523010756053307-53				-J 5			
60483081166049301315760503076360513088360523010756053307-53				J E			
6049301315760503076360513088360523010756053307-53							
60503076360513088360523010756053307-53							
6051 30 8 8 3 6052 30 10 7 5 6053 30 7 -5 3			13				
6052 30 10 7 5 6053 30 7 -5 3			1	6			
6053 30 7 -5 3				8	3		
				7	5		
6054 30 9 8 5					3		
	6054	30	9	8	5		

Contact: J. Hinzer

Sample ID:Sample Wt(g)Pd ppbPt ppbAu ppb60553045-260563012115605730121156058301296606030119460613085560623014136606330202186064301413660653024229606630252311606830202513607030151586071303131176072302122246073309946074301817660753022247607630131456077309946078301314560763013145608130202176082301113360863012115608730111336086301214560873011133608630127360873011133	Actiabs PGE (1C) EXPJob	#: 26202	Report#: 260	036B	Clie	ent: WGM
6055 30 -4 -5 -2 6056 30 5 -5 4 6057 30 12 11 5 6058 30 9 8 6 6060 30 11 9 4 6061 30 8 5 5 6062 30 14 13 6 6064 30 14 8 6 6066 30 24 22 9 6066 30 25 23 11 6066 30 21 22 9 6071 30 15 15 8 6071 30 21 22 14 6073 30 21 22 14 6074 30 19 22 9 6075 30 22 24 7 6076 30 17 17 6 <tr< th=""><th></th><th></th><th></th><th></th><th>Au ppb</th><th></th></tr<>					Au ppb	
6056 30 5 -5 4 6057 30 12 11 5 6059 30 9 8 6 6060 30 11 9 4 6061 30 11 9 4 6061 30 11 9 4 6062 30 19 17 31 6062 30 20 21 8 6064 30 24 22 9 6065 30 25 23 11 6068 30 22 14 6 6069 30 21 22 14 6070 30 15 15 8 6071 30 21 22 9 6075 30 22 24 7 6076 30 10 8 5 6076 30 17 17 9						
6058 30 9 8 6 6059 30 12 9 6 6061 30 11 9 4 6061 30 11 9 4 6062 30 19 17 31 6063 30 20 21 8 6064 30 14 13 6 6065 30 14 8 6 6066 30 24 22 9 6067 30 16 20 10 6068 30 20 25 13 6070 30 15 15 8 6071 30 31 31 17 6072 30 21 22 14 6073 30 9 9 4 6074 30 19 22 9 6075 30 23 17 6 6076 30 10 8 5 6076 30 1		30	5	-5		
6058 30 9 8 6 6059 30 12 9 6 6061 30 11 9 4 6061 30 11 9 4 6062 30 19 17 31 6063 30 20 21 8 6064 30 14 13 6 6065 30 24 22 9 6066 30 25 23 11 6066 30 20 25 13 6070 30 15 15 8 6071 30 31 31 17 6072 30 21 22 9 6075 30 29 9 4 6073 30 19 22 9 6076 30 19 22 9 6076 30 17 7 9 6076 30 17 7 9 6076 30 1	6057	30	12	11	5	
6059 30 12 9 6 6060 30 11 9 4 6061 30 19 17 31 6063 30 20 21 8 6064 30 14 13 6 6065 30 17 14 8 6066 30 24 22 9 6067 30 15 15 8 6066 30 20 25 13 6070 30 15 15 8 6071 30 31 31 17 6072 30 21 22 14 6073 30 19 22 9 6074 30 19 22 9 6075 30 23 17 6 6074 30 10 8 5 6076 30 13 14 5 6081 30 23 17 6 6082 30		30	9	8		
6060 30 11 9 4 6061 30 19 17 31 6063 30 20 21 8 6064 30 14 13 6 6065 30 14 13 6 6066 30 24 22 9 6067 30 18 20 10 6068 30 25 23 11 6069 30 20 25 13 6070 30 15 15 8 6071 30 31 31 17 6072 30 21 22 9 6073 30 9 9 4 6074 30 19 22 9 6075 30 22 24 7 6076 30 17 7 9 6077 30 9 9 4 6078 30 17 7 6 6080 30 23 17 6 6081 30 20 21 7 6084 30 13 14 5 6084 30 15 25 6 6086 30 9 6 7 6086 30 11 13 3 6086 30 15 25 6 6086 30 11 13 3 6086 30 12 10 8 6097 </td <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td>			12			
6061 30 8 5 5 6062 30 19 17 31 6064 30 20 21 8 6064 30 14 13 6 6065 30 17 14 8 6066 30 24 22 9 6067 30 18 20 10 6068 30 25 23 11 6070 30 15 15 8 6071 30 21 22 14 6073 30 9 9 4 6074 30 19 22 9 6076 30 19 22 9 6076 30 19 9 4 6073 30 9 9 4 6074 30 12 17 7 6076 30 10 8 5 6077 30 9 9 4 6078 30 12 11 5 6080 30 23 17 6 6081 30 12 11 5 6083 30 15 25 6 6086 30 9 6 7 6086 30 11 10 8 6091 30 25 10 8 6084 30 11 10 4 6084 30 12 7 3 6095 <t< td=""><td></td><td>30</td><td>11</td><td>9</td><td>4</td><td></td></t<>		30	11	9	4	
6062 30 19 17 31 6063 30 20 21 8 6064 30 14 13 6 6065 30 24 22 9 6066 30 24 22 9 6067 30 18 20 10 6068 30 25 23 11 6069 30 20 25 13 6070 30 15 15 8 6071 30 31 31 17 6072 30 21 22 9 6073 30 19 22 9 6075 30 10 8 5 6076 30 10 8 5 6076 30 10 8 5 6076 30 12 11 5 6078 30 12 11 5 6082 30 15 25 6 6084 30				5		
6063 30 20 21 8 6064 30 14 13 6 6066 30 24 22 9 6067 30 18 20 10 6066 30 25 23 11 6069 30 20 25 13 6071 30 15 15 8 6071 30 21 22 14 6073 30 9 14 6 6074 30 19 22 9 6075 30 22 24 7 6076 30 10 8 5 6077 30 9 9 4 6078 30 17 17 9 6079 30 13 14 5 6080 30 12 11 5 6081 30 12 11 5	6062	30	19	17	31	
6064 30 14 13 6 6065 30 17 14 8 6066 30 24 22 9 6067 30 18 20 10 6068 30 25 23 11 6069 30 20 25 13 6070 30 15 15 8 6071 30 21 22 14 6073 30 19 22 9 6075 30 22 24 7 6076 30 10 8 5 6077 30 9 9 4 6078 30 17 7 6 6080 30 23 17 6 6081 30 23 17 6 6082 30 15 25 6 6083 30 15 25 6	6063	30	20	21	8	
6065 30 17 14 8 6066 30 24 22 9 6067 30 18 20 10 6068 30 25 23 11 6069 30 25 13 6070 30 15 15 8 6071 30 31 31 31 17 6072 30 21 22 14 6073 30 9 14 6 6074 6076 30 19 22 9 6076 30 10 8 5 6 6076 30 10 8 5 6077 30 9 9 4 6 6 6 6 6 6 6 6 6 7 6 <		30	14			
6066 30 24 22 9 6067 30 18 20 10 6068 30 25 23 11 6069 30 20 25 13 6070 30 15 15 8 6071 30 31 31 17 6073 30 9 14 6 6074 30 19 22 9 6075 30 22 24 7 6076 30 10 8 5 6077 30 9 9 4 6078 30 17 7 9 6079 30 18 17 6 6080 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 8 3 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
6067301820106068302523116069302025136070301515860713031311760723021221460733091466074301922960753022247607630108560773099460783017179607930181766081302021760823013145608330152566086309676086301920146088301110560893025108609130251086092307-526093301010460943020101360953077460963077460973011536096307746097305-526098305-52						
6068 30 25 23 11 6069 30 20 25 13 6070 30 15 15 8 6071 30 31 31 17 6072 30 21 22 14 6073 30 9 14 6 6074 30 19 22 9 6076 30 10 8 5 6077 30 9 9 4 6078 30 17 7 9 6080 30 23 17 6 6081 30 20 21 7 6082 30 13 14 5 6083 30 15 25 6 6084 30 8 11 6 6085 30 15 25 6 6086 30 11 13 3 6089 30 11 10 5 6089 30 <td< td=""><td></td><td></td><td></td><td></td><td>10</td><td></td></td<>					10	
60693020251360703015158607130313117607230212214607330914660743019229607530222476076301085607730994607830171796080302317660813020217608230131456083301211560843081166085301113360883011133608930251086091308836092307-5260933012736096307746097305-526099305-52					11	
6070 30 15 15 8 6071 30 31 31 17 6072 30 21 22 14 6073 30 9 14 6 6074 30 19 22 9 6075 30 22 24 7 6076 30 10 8 5 6077 30 9 9 4 6078 30 17 17 9 6079 30 18 17 6 6080 30 20 21 7 6081 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 19 20 14 6088 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 12 7 3 6096 30 12 7 3 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 5 2 6099 30 5 5 2 6099 30 5 5 2						
6071 30 31 31 17 6072 30 21 22 14 6073 30 9 14 6 6074 30 19 22 9 6075 30 22 24 7 6076 30 10 8 5 6077 30 9 9 4 6078 30 17 17 9 6078 30 18 17 6 6080 30 23 17 6 6081 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 11 13 3 6099 30 25 10 8 6091 30 8 8 3 6092 30 7 7 4 6094 30 20 10 13 6096 30 7 7 4 6097 30 11 5 3 6096 30 5 -5 2 6099 30 5 -5 2 6099 30 5 -5 2	6070		15			
6072 30 21 22 14 6073 30 9 14 6 6074 30 19 22 9 6075 30 22 24 7 6076 30 10 8 5 6077 30 9 9 4 6078 30 17 17 9 6079 30 18 17 6 6080 30 23 17 6 6081 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 10 10 4 6094 30 20 10 13 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2 6099 30 5 -5 2 6099 30 5 -5 2 6099 30 5 -5 2						
6073 30 9 14 6 6074 30 19 22 9 6075 30 22 24 7 6076 30 10 8 5 6077 30 9 9 4 6078 30 17 17 9 6079 30 18 17 6 6080 30 23 17 6 6081 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 9 6 7 6086 30 9 6 7 6087 30 11 13 3 6086 30 9 6 7 6087 30 11 13 3 6086 30 9 6 7 6087 30 11 13 3 6089 30 11 10 8 6091 30 8 8 3 6092 30 12 7 3 6094 30 20 10 13 6095 30 12 7 3 6096 30 7 7 4 6097 30 5 5 2 6099 30 5 5 2 6099 30 <t< td=""><td></td><td></td><td>21</td><td>22</td><td>14</td><td></td></t<>			21	22	14	
6075 30 22 24 7 6076 30 10 8 5 6077 30 9 9 4 6078 30 17 17 9 6079 30 18 17 6 6080 30 23 17 6 6081 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 11 13 3 6089 30 11 13 3 6091 30 8 8 3 6092 30 7 7 4 6093 30 12 7 3 6096 30 7 7 4 6097 30 11 5 3 6096 30 7 7 4 6097 30 5 5 2 6099 30 5 -5 2 6099 30 5 -5 2		30	9	14	6	
6076 30 10 8 5 6077 30 9 9 4 6078 30 17 17 9 6079 30 18 17 6 6080 30 23 17 6 6081 30 20 21 7 6082 30 113 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 11 13 3 6088 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 -5 2 6093 30 12 7 3 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2	6074	30		22	9	
6077 30 9 9 4 6078 30 17 17 9 6079 30 18 17 6 6080 30 23 17 6 6081 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 9 6 7 6086 30 9 6 7 6087 30 19 20 14 6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 75 2 6093 30 12 7 3 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2	6075	30	22	24		
6078 30 17 17 9 6079 30 18 17 6 6080 30 23 17 6 6081 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 19 20 14 6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 20 10 13 6092 30 12 7 3 6093 30 11 5 3 6094 30 20 10 13 6095 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2	6076		10	8	5	
6079 30 18 17 6 6080 30 23 17 6 6081 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 19 20 14 6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 -5 2 6093 30 12 7 3 6094 30 20 10 13 6095 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2	6077	30	9	9	4	
6080 30 23 17 6 6081 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 19 20 14 6088 30 11 13 3 6089 30 11 13 3 6089 30 25 10 8 6091 30 25 10 8 6092 30 7 -5 2 6093 30 10 10 4 6094 30 20 10 13 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2	6078					
6081 30 20 21 7 6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 19 20 14 6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 -5 2 6093 30 10 10 4 6094 30 20 10 13 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2						
6082 30 13 14 5 6083 30 12 11 5 6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 19 20 14 6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 -5 2 6093 30 10 10 4 6094 30 20 10 13 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2						
6083 30 12 11 5 6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 19 20 14 6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 25 10 8 6092 30 7 -5 2 6093 30 10 10 4 6094 30 20 10 13 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2						
6084 30 8 11 6 6085 30 15 25 6 6086 30 9 6 7 6087 30 19 20 14 6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 -5 2 6093 30 10 10 4 6094 30 20 10 13 6095 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2						
6085 30 15 25 6 6086 30 9 6 7 6087 30 19 20 14 6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 -5 2 6093 30 10 10 4 6094 30 20 10 13 6095 30 7 7 4 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2						
6086 30 9 6 7 6087 30 19 20 14 6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 -5 2 6093 30 10 10 4 6094 30 20 10 13 6095 30 12 7 3 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2						
6087 30 19 20 14 6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 -5 2 6093 30 10 10 4 6094 30 20 10 13 6095 30 12 7 3 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2						
6088 30 11 13 3 6089 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 -5 2 6093 30 10 10 4 6094 30 20 10 13 6095 30 12 7 3 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2 6099 30 5 -5 2						
6089 30 11 10 5 6090 30 25 10 8 6091 30 8 8 3 6092 30 7 -5 2 6093 30 10 10 4 6094 30 20 10 13 6095 30 12 7 3 6096 30 7 7 4 6097 30 11 5 3 6098 30 5 -5 2						
609030251086091308836092307-5260933010104609430201013609530127360963077460973011536098305-526099305-52						
6091308836092307-5260933010104609430201013609530127360963077460973011536098305-526099305-52						
6092307-5260933010104609430201013609530127360963077460973011536098305-526099305-52						
60933010104609430201013609530127360963077460973011536098305-526099305-52						
609430201013609530127360963077460973011536098305-526099305-52						
609530127360963077460973011536098305-526099305-52						
60963077460973011536098305-526099305-52						
60973011536098305-526099305-52						
6098 30 5 -5 2 6099 30 5 -5 2						
6099 30 5 -5 2						
					2	
6100 30 5 -5 3					2	
	6100	30	5	-5	3	

Actiabs PGE (1C) EX	PJob #: 26202	Report#: 26	036B		Client: WGM	Contact: J. Hinzer
Sample ID:	Sample Wt(g)	Pd ppb	Pt ppb	Au ppb		
6101	30	7				
6102	30	13	11	5		
6103	30	10	9	8		
6104	30	9	6	4		
6105	30	9	6	3		
6106	30	7	6	3		
6107	30	9	11	4		
6108	30	3 7	7	4		
6109	30	5	-5	4		
		19	-3	3		
6110	30	19	20			
6111	30		-5	3		
6112	30	14	17	4		
6113	30	7	-5	3		
6114	30	-4	-5	2		
6115	30	5	-5	2		
6116	30	5	6	2		
6117	30	-4	-5	4		
6118	30	-4	6	-2		
6119	30	-4	-5	-2		
6120	30	-4	-5	2		
6121	30	-4	-5	-2		
6122	30	-4	-5	3		
6123	30	16	8	6		
6124	30	6	-5	4		
6125	30	9	5	6		
6126	30	-4	-5	3		
6127	30	-4	-5	-2		
6128	30	4	6	-2		
6129	30	-4	-5	9		
6130	30	-4	-5	4		
6131	30	-4	-5	5		
6132	30	5	-5	3		
6133	15	15	14	11		
6134	30	17	14	7		
6135	30	23	19	19		
6136	30	17	15	8		
6137	15	16	15	7		
6138	30	18	15	, 9		
6139	30	-4	-5	-2		
6140	30			-2		
		11	10	3		
6141	30	5	-5	6		
6142	30	10	7	-2		
6143	30	9	6	-2		
6144	30	9	8	-2		
6148	30	-4	-5	-2 2		
6150	30	-4	-5	2		

•

Contact: J. Hinzer

Actlabs PGE (1C) EXPJob #: 26202		Report#: 260)36B	(Client: WGM
Sample ID:	Sample Wt(g)	Pd ppb	Pt ppb	Au ppb	
6155	30	-4	-5	-2	
6156	30	-4	-5	-2	
6157	30	-4	-5	-2	
6158	30	-4	-5	2	
6159	30	-4	-5	-2	
6160	30	-4	-5	-2	
6161	30	7	7	9	
6162	30	6	6	4	
6163	30	-4	-5	-2	
6164	30	-4	-5	-2	
6165	30	-4	-5	-2	
6166	30	-4	-5	-2	
61 67	30	-4	-5	-2	
6168	30	-4	-5 -5	-2 -2	
61 6 9	30	4	-5 6	-2 -2	
6170	30	-4	-5	-2	
6171	30	-4 -4	-5 -5	4 -2	
	30	-4 -4	-5	-2	
6172 6472		-4 -4	-5	-2	
6173	30		-5	-2	
6174	30	-4	-5	-2	
6175	30	-4	-5	4	
6176	30	-4	-5	-2	
6177	30	-4	-5	-2	
5178	30	6	11	-2	
6179	30	-4	-5	-2	
5180	30	4	-5	-2	
5181	30	17	13	4	
5182	30	13	9	5	
5183	30	11	12	6	
5184	30	8	6	3	
5185	30	9	6	3	
5186	30	15	16	5	
5187	30	10	8	3	
5188	30	8	8	2	
5189	30	15	10	-2	
6190	30	15	13	3	
5191	30	17	18	4	
5192	30	40	25	10	
5193	30	27	23	7	
5194	30	22	22	9	
4511	30	25	18	12	
1512	30	26	32	8	
1513	30	17	13	13	
4514	30	17	13	6	
515	30	16	17	7	
1516	30	9	7	3	
N10	30	Э	(3	

Actiabs PGE (1C) EXPJob #: 26	202	Report#: 260)36B	C	lient: WGM	Contact: J. Hinzer
Sample ID:	Sample Wt(g)	Pd ppb	Pt ppb	Au ppb		
4517	30	12	12	8		
4518	30	27	27	11		
4519	30	15	24	5		
4520	30	10	5	4		
4521	30	14	17	5		
4522	30	12	8	4		
4523	30	11	11	5		
4524	30	5	-5	5		
4525	30	9	6	3		
4526	30	-4	-5	2		
4527	30	-4	-5	3		
4528	30	7	-5	2		
4529	30	25	17	21		
4530	30	33	32	11		
4531	30	-4	-5	-2		
4532	30	-4	-5	-2		
4533	30	-4	-5	4		
4534	30	-4	-5	-2		
4535	30	17	17	-2		
6145	30	-4	5	14		
6146	30	-4	-5	-2		
6147	30	5	-5	8		
6149	30	7	8	4		
6151	30	-4	-5	-2		
6152	30	-4	-5	7		
6153	30	6	5	-2		
6154	30	-4	-5	3		
Blank	30	-0.1	-0.1	-1		
Control Material UMT-1	2	105	129	48		
Control Material WMG-1	2	373	708	101		
Certified Data UMT-1		106	129	48		
Certified Data WMG-1		382	731	110		

Certified By:

Daiis Afma

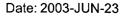
D. D'Anna, Dipl. T. ICPMS Technical Manager, Activation Laboratories Ltd.

This report shall not be reproduced except in full without the written approval of the laboratory. Unless otherwise instructed, samples will be disposed of 90 days from the date of this report Date Received: 11-Nov-02

Date Reported: 25-Nov-02

Work Report Summary

Tra	insaction No:	W0370.	00560		S	tatus:	APPI	ROVED			
Recording Date: 2003-APR-01			Work Done from:		2002-SEP-01						
Ар	proval Date:	2003-JL	JN-13			to:	2003	-JAN-08			
Cli	ent(s):										
	11694	\$5 CI	HAMPION BE	AR RESOU	RCES LTD.						
	30422	25 13	311870 ONTA	RIO INC.							
Su	rvey Type(s):										
	,		ASSAY		PDRILL						
We	ork Report Det	ails:									
Cla	aim#	Perform	Perform Approve	Applied	Applied Approve	Ass	ign	Assign Approve	Reserve	Reserve Approve	Due Date
G	7070028	\$54,204	\$54,204	\$0	\$0		\$0	0	\$54,204	\$54,204	
S	1163243	\$0	\$0	\$1,200	\$1,200		\$0	0	\$0	\$0	2007-MAR-01
s	1199043	\$0	\$0	\$1,600	\$1,600		\$0	0	\$0	\$ 0	2009-JUL-17
S	1211020	\$30,000	\$30,000	\$1,200	\$1,200	\$10,	800	10,800	\$18,000	\$18,000	2007-MAR-30
s	1211386	\$0	\$0	\$800	\$800		\$0	0	\$0	\$0	2007-MAY-27
S	1244497	\$0	\$0	\$800	\$800		\$0	0	\$0	\$0	2005-OCT-02
s	1249703	\$0	\$0	\$4,800	\$4,800		\$0	0	\$0	\$0	2004-MAY-22
s	3004244	\$0	\$0	\$1,600	\$1,600		\$0	0	\$0	\$0	2005-AUG-12
	_	\$84,204	\$84,204	\$12,000	\$12,000	\$10,	800	\$10,800	\$72,204	\$72,204	
Ex	ternal Credits:		\$0								
Re	serve:										
		\$7	72,204 Res	erve of Worl	< Report#: W0	370.00	560				
		(\$1	0,718) App	lied by W03	70.00587 2003	B-APR-	04				
		\$6	61,486 Tota	I Remaining							


Status of claim is based on information currently on record.

411155W2048 2.25334 PARKIN

900

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

CHAMPION BEAR RESOURCES LTD. 2005-9TH STREET, S.,W., CALGARY, ALBERTA T2T 3C4 CANADA Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.25334 Transaction Number(s): W0370.00560

Dear Sir or Madam

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

Yours Sincerely,

Sheila Lessard (for) Ron Gashinski, Senior Manager, Mining Lands Section

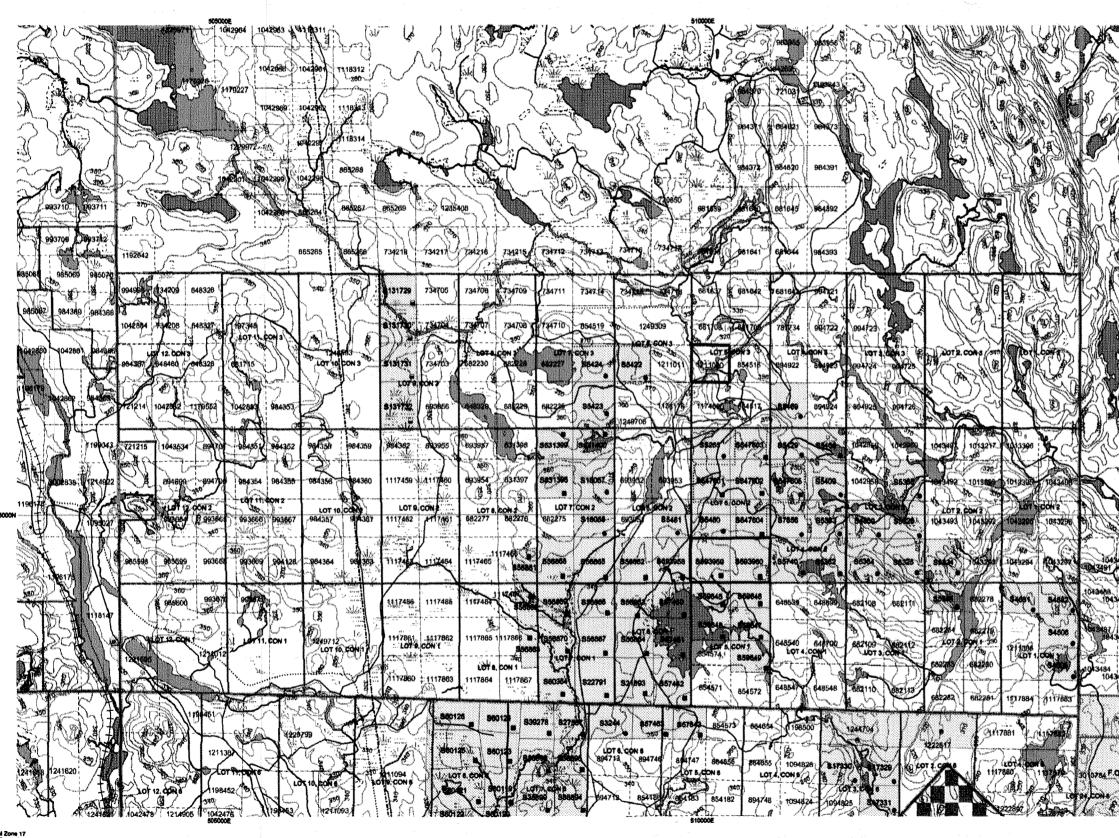
Cc: Resident Geologist

John Gregory Brady (Agent)

Champion Bear Resources Ltd. (Assessment Office)


Assessment File Library

Champion Bear Resources Ltd. (Claim Holder)


1311870 Ontario Inc. (Claim Holder)

PARKIN

200

UTM Zone 17 5000m prid

Those wishing to stake mining claims should consult with the Provincial Mining Recorders' Office of the Ministry of Northern Development and Mines for additional information on the status of the lands shown hereon. This map is not intended for navigational, survey, or land this determination purposes as the information shown on this map is complete from various sources. Completeness and accuracy are not guaranteed. Additional information may also be obtained through the local Land Titles or Registry Office, or the Ministry of Natural Resources.

General Information and Limitations Context Information:

Context Information: Toil Free Map Datum: NAD 83 Provincial Mining Recorders' Office Tel: 1 (888) 415-9845 ext 578bjecton: UTM (6 degree) Willed Green Miller Centre 933 Remsey Leke Road Fax: 1 (877) 670-1444 Sudbury ON P3E 685

This map may not show unregistered land tenure and inte land including certain patents, leases, essements, right o flooding rights, leaness, or other forms of disposition of ri interest from the Crown. Also certain land tenure and ian that restrict or prohibit free entry to stake mining daims m illustrated.

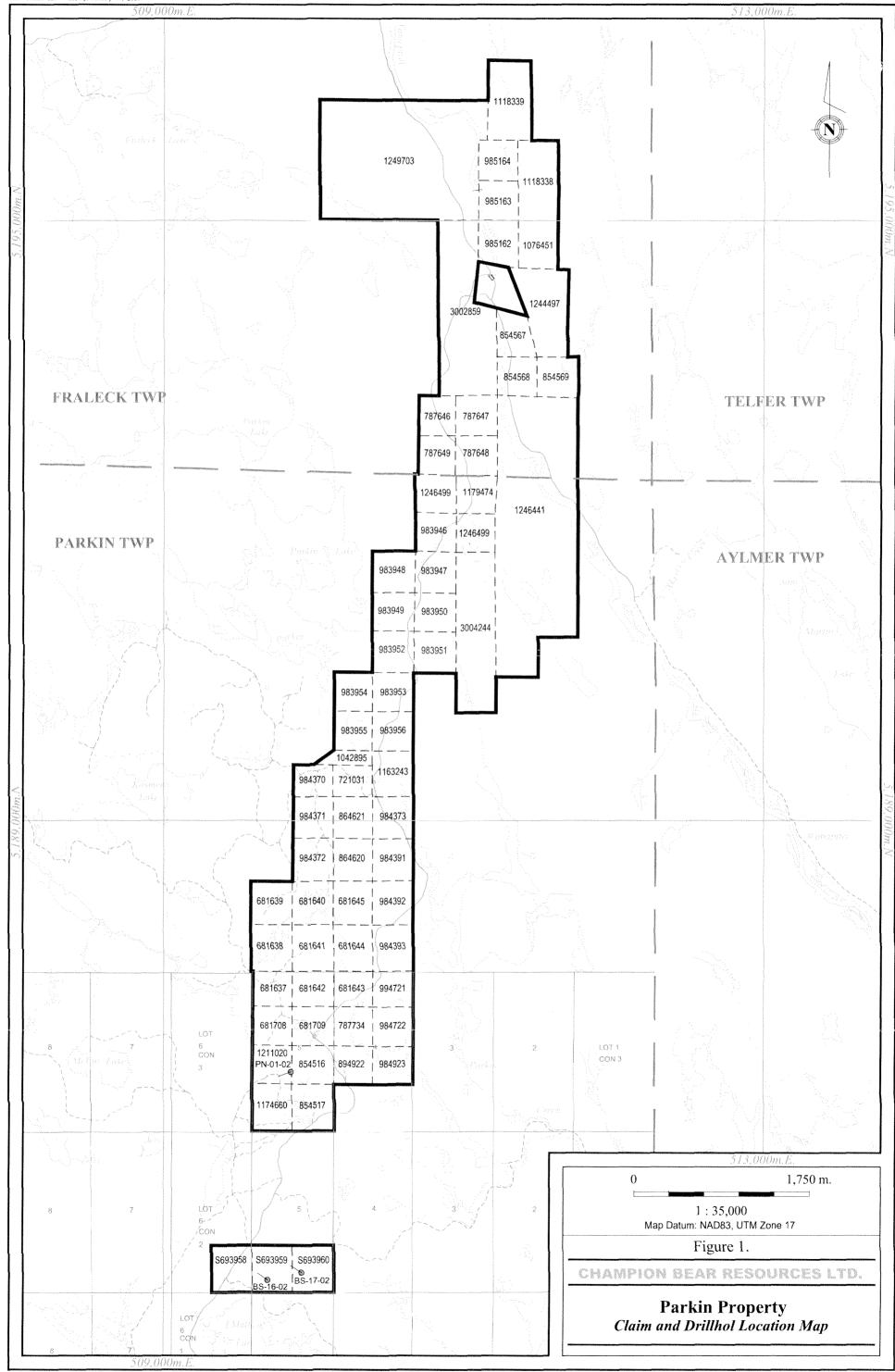
iers' Office

on shown is derived from digital data available in the i The inform

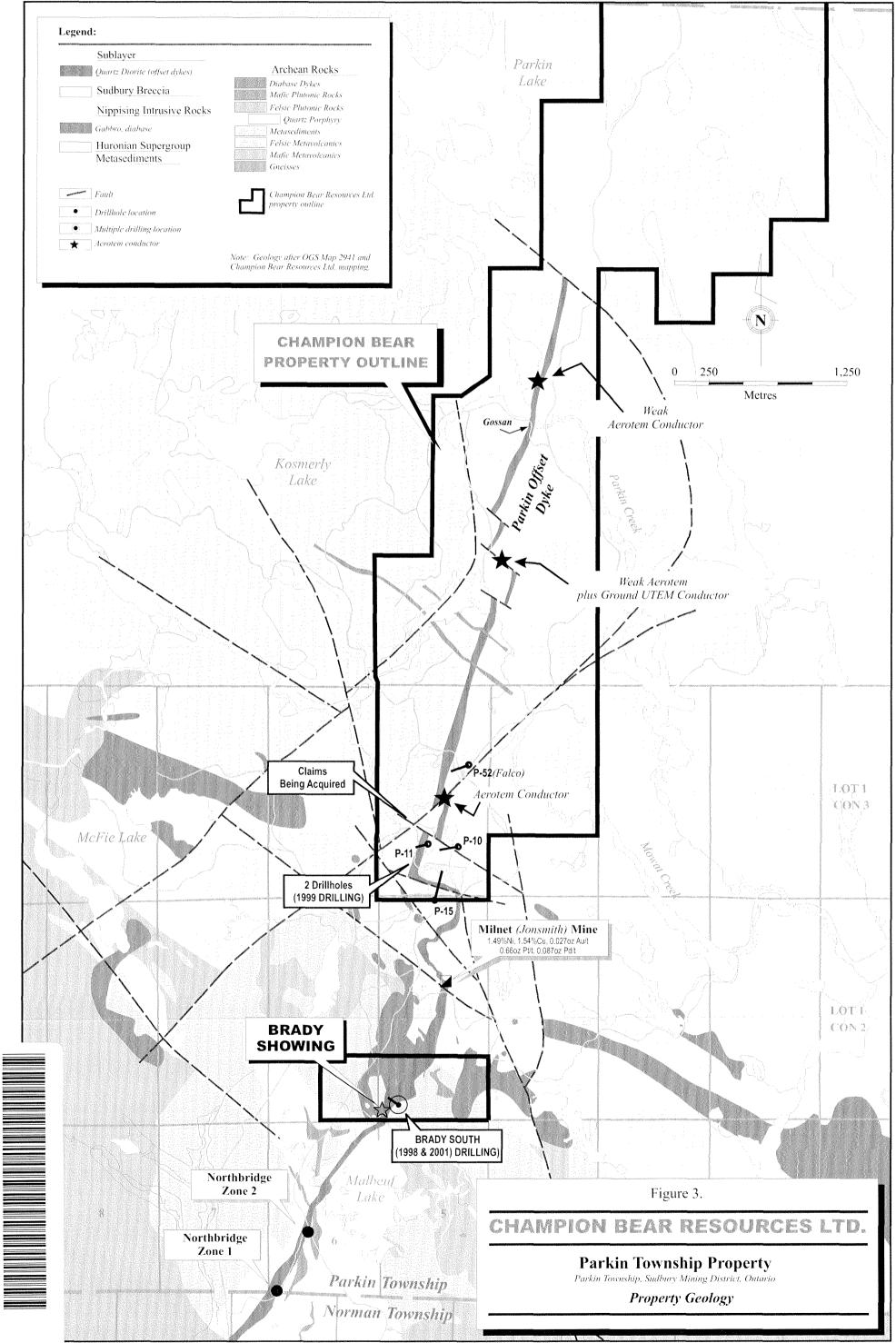
Sudbury ON P3E 685 Home Page: www.mndm.gov.on.cs/MNDM/INES/LANDS/mile

PLAN G-2915 VISIONS Sudbury SUDBURY SUDBURY SUDBURY SUDBURY SUDBURY SUDBURY Burlace And Mining Rights Burlace Rights Only Mining Rights Only Burlace Rights Only Cance of Occupation Burlace Rights Only Burlace Rights Only
Sudbury SUDBURY SUDBURY SUDBURY SUDBURY SUDBURY arrid Tenure Burlace And Mining Rights Burlace Rights Only Burlace Rights Only Burlace Rights Only Burlace Rights Only Burlace Rights Only Burlace Rights Only Burlace Rights Only Cance of Occupation Surface And Mining Rights Burlace Rights Only Cance of Occupation Comparison Comparison Comparison Comparison Comparison Conter in Council (Not open for stable Watter Power Lasse Agreement Watter Power Lasse Agreement
reshcid Patent
reshcid Patent
Burface And Mining Rights Burface Rights Only Durface Rights Only Burface Rights Only Uses Not Specified Surface Rights Only Burface Rights Only Uses Not Specified Order in Council (Not open for stabler Mining Rights Only Water Power Lasse Agreement Water Power Lasse Agreement
Burface Rights Only Mining Rights Only Mining Rights Only Burface And Mining Rights Burface Rights Only Mining Rights Only Uses Not Specified Surface And Mining Rights Burface Rights Only Uses Not Specified Burface Rights Only Land Use Permit Order in Council (Not open for stabler Water Power Lasse Agreement Water Power Lasse Agreement
Mining Rights Only escebuld Patent Burface And Mining Rights Burface And Mining Rights Mining Rights Only Cance of Occupation Uses Not Specified Surface And Mining Rights Burface Rights Only Land Use Permit Mining Rights Only Land Use Permit Mining Claim Mining Claim
assektid Patert
Burface And Mining Rights Burface Rights Only Mining Rights Only Conce of Occupation Uses Not Specified Surface And Mining Rights Burface Rights Only Mining Rights Only Land Use Permit Mining Chipts Only Mining Chipts
Burface Rights Only Mining Rights Only Mining Rights Only Uses Not Specified Surface And Mining Rights Surface Rights Only Mining Rights Only
Mining Rights Only cance of Occupation Uses Not Specified Surface And Mining Rights Burface Rights Only Mining Rights Only Land Use Permit Code in Council (Not open for stabling Water Power Lasse Agreement Water Power Lasse Agreement
Leance of Occupation Uses Not Specified Surface And Mining Rights Burface Rights Only Mining Rights Only Mining Rights Only Land Use Parmit Order In Council (Not open for stablin Water Power Lasse Agreement Water Power Lasse Agreement
Uses Not Specified Surface And Mining Rights Surface Rights Only Mining Rights Only Mining Rights Only Land Use Permit Croler In Council (Not open for atakin Water Power Lasse Agreement Water Double Lasse Agreement
Surface And Mining Rights Surface And Mining Rights Surface Rights Only Mining Rights Only Land Use Permit Mining Chem Mater Power Lasse Agreement Mater Power Lasse Agreement
Burtace Rights Only Burtace Rights Only Mining Rights Only Land Use Permit Land Use Permit Order In Council (Not open for atskin Water Power Lasse Agreement Water Power Lasse Agreement
Burtace Rights Only Burtace Rights Only Mining Rights Only Land Use Permit Land Use Permit Order In Council (Not open for atskin Water Power Lasse Agreement Water Power Lasse Agreement
Mining Rights Only Land Use Permit Order In Council (Not open for stakin Water Power Lease Agreement Mater District C 3 shining Cleim
Land Use Permit Lend Use Permit Ter Order In Countil (Not open for stable Water Power Lasse Agreement Water Court Shining Cleim
Order in Council (Not open for stakin Water Power Lasse Agreement (initiation =) bining Cleim
Water Power Lesse Agreement
Mining Cleim
1234567
Filed Only Mining Claim
LAND TENURE WITHDRAWALS
1234 Areas Withdrawn from Disposition Mining Acta Withdrawel Types Soriece And Mining Rights Withdrawel Warm Warm Warm Warm Warm Warm Warm Warm Soriece And Mining Rights Only Withdrawel Order in Council Withdrawel Types Soriece Rights Only Withdrawel Warm Warm Warm Warm Soriece Rights Only Withdrawel Warm Warm Ware in Council Withdrawel Types Warm Warm Soriece Rights Only Withdrawel Warm Ware Rights Only Withdrawel Warm Ware Rights Only Withdrawel Warm Ware Rights Only Withdrawel
1.1km
18
V83 S.R.O. md.mndm.gov.on.ce/Claime/Cf_Claims/clm_ ENSE OF OCCUPATION 14927 SEC.35 W-2 7/11/76 MRO 7588 vol.9 Mining rights of the 4/83 M&S 188539

04348

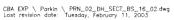

F.O.

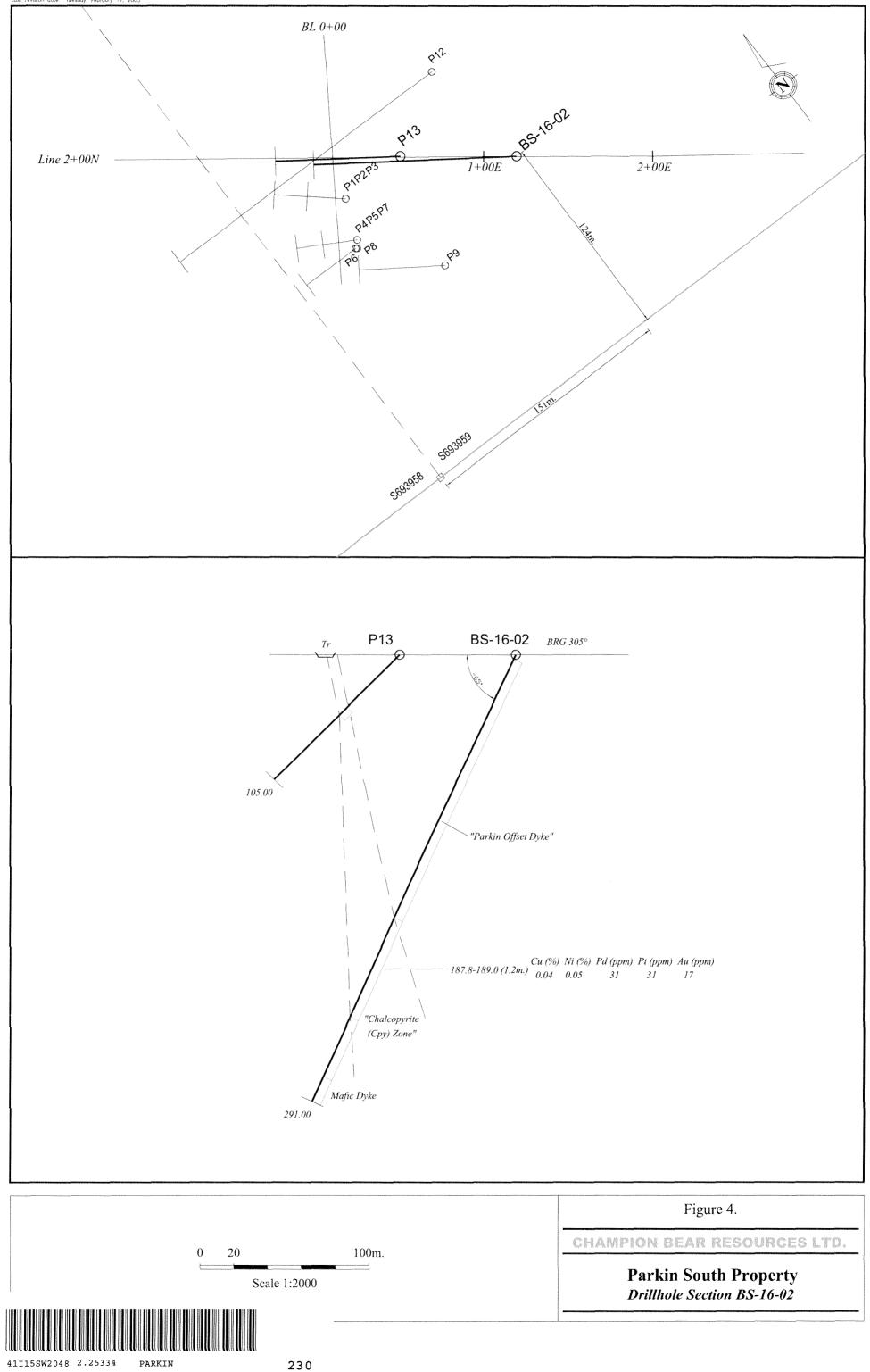
41115SW2048 2.25334 PARKIN

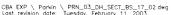

210

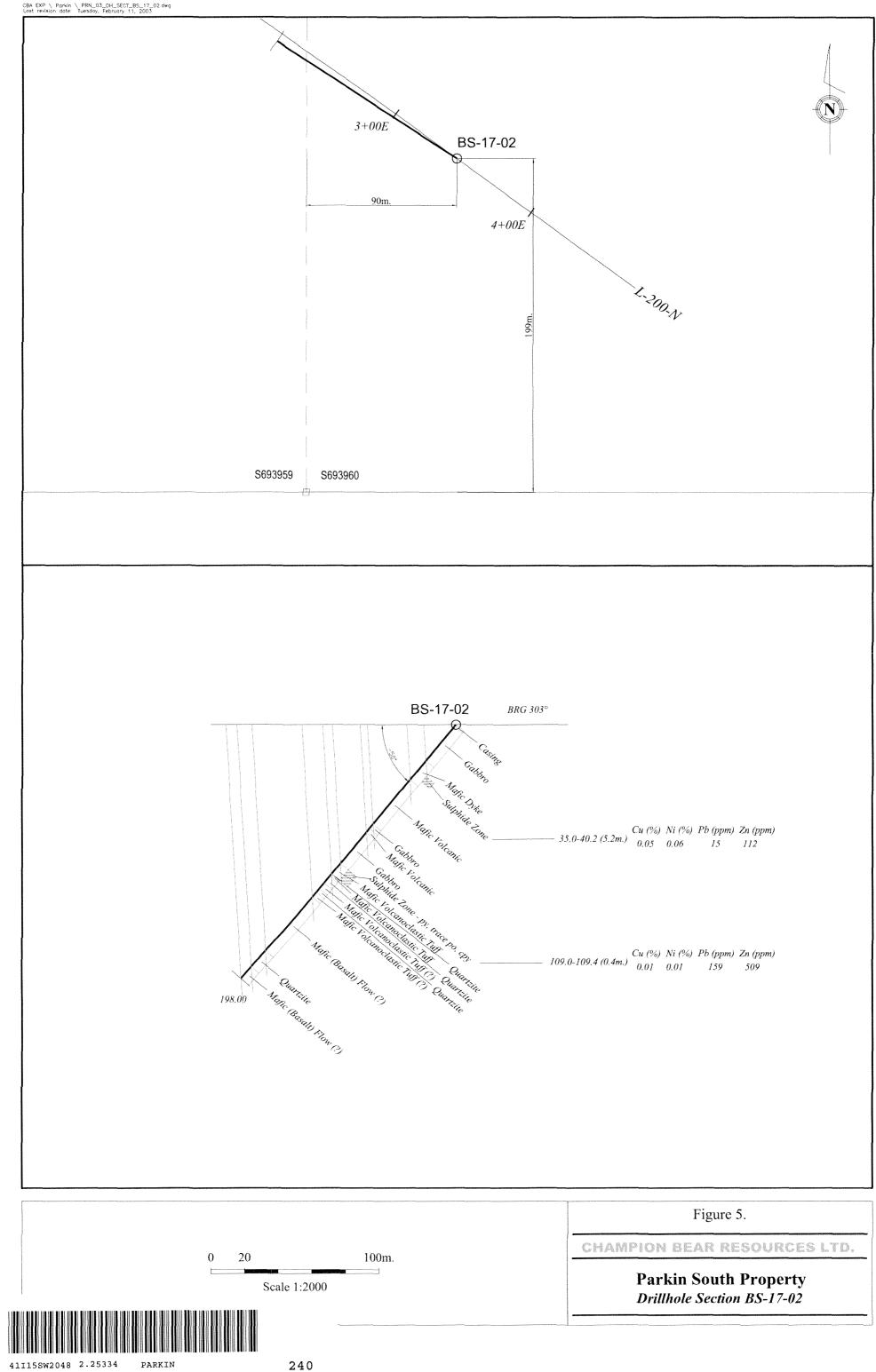
CBA_EXP \ Parkin \ PRN_04_Claims_Map_NewCLM.dwg (Parkin Claims + DH Loc) Last revision date: Tuesday, January 11, 2003

Watts, Griffis and McOuat

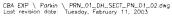

CBA_EXP / CBA_05_Parkin_Property.cdr (*Property_Geol*) Last revision date: Thursday, 15 August 2002

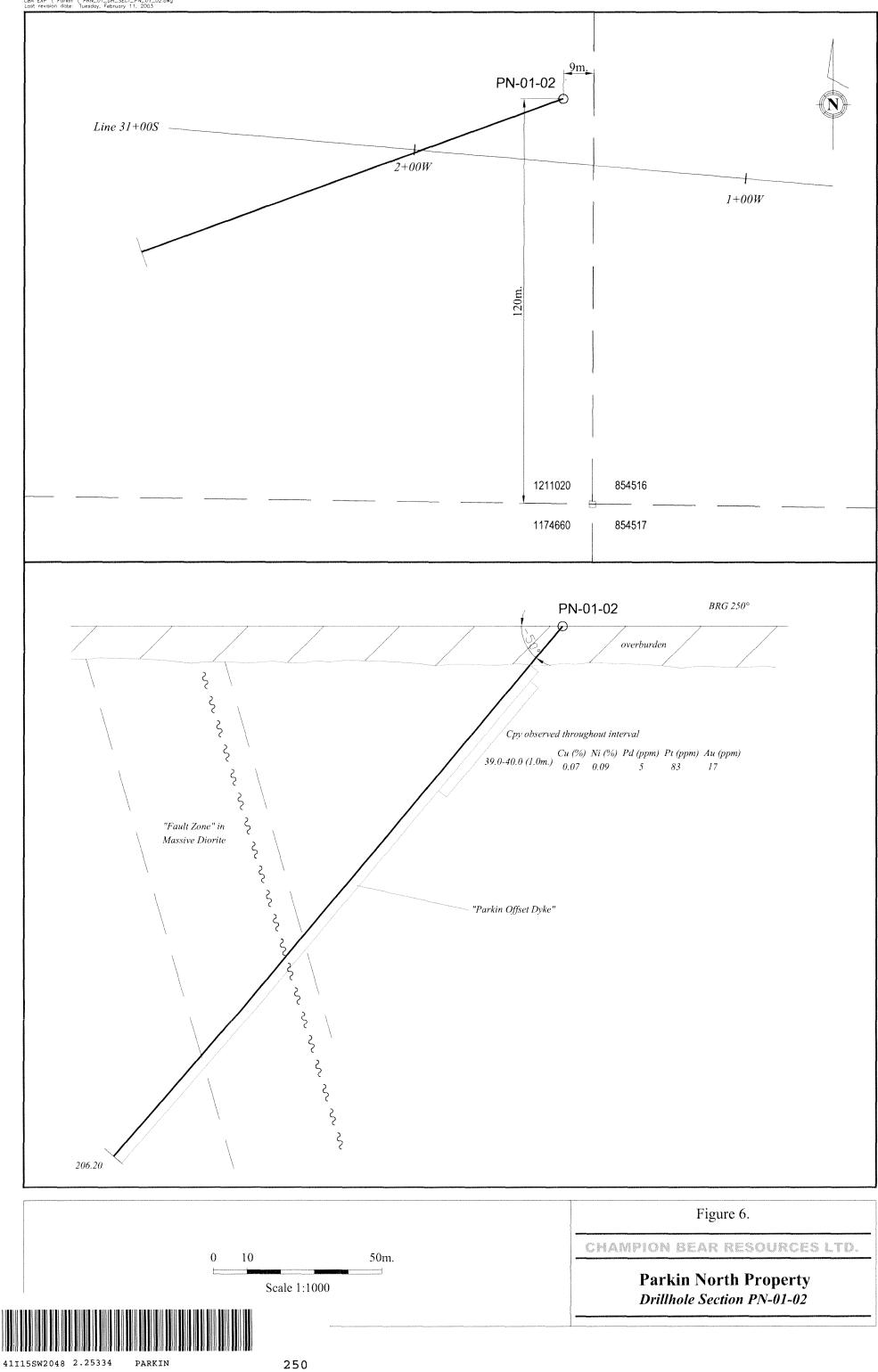



41I15SW2048


2.25334

PARKIN





Watts, Griffis and McOuat

