REPORT PROJPCT 3

OP91-427 \& 428
 December, 1991

Project 3 of OPAP submissions of Earl J. Lalonde (OP91-428) and Fred Q. Barnes (OP91-427), covering the townships of Osway, Mallard and Huffman, Porcupine Mining Division was undertaken in the field between 16 June and 27 September, 1991. The southwest corner of contiguous Eric Township was covered as part of the Project 3 and a one day examination of iron formation and related base metal occurrences in Blamey and Cunningham townships, 30 km to the west was made as a guide to possible occurrences in project 3 area.

All work was of a prospecting nature. The expected targets were, firstly gold, and secondly base metals as found at the old Shunsby property in central north Cunningham township.

Prospecting is hampered by heavy overburden over much of the area, and exceptionally thick moss cover on outcrops. These features favour the forest industry which is the main employer in the district. As a consequence of the thick moss cover, a good deal of outcrop stripping was required on traverse lines, and particularly to expose rusty and siliceous zones along strike, once found.

Initially, prospecting was undertaken over outcrop areas adjacent to navigable water courses, motor roads and old roads which allowed easy access. The prospecting difficulties, as outlined above, however, finally altered our approach from primarly one of easy access to one of selecting potential trends and zones as interpreted from known showings and bedrock geology.

This latter approach, adopted in September, was much more fruitful in the end by our discovery of a mineralized quartzcarbonate zone with significant auriferous sulphides. Unfortunately, the discovery was made in the final few days of our venture when we were forced to suspend operations. staking and additional work along the discovery zone is warranted for 1992. The confidentiality of this information is therefore of prime importance in our 1992 prospecting plans.

Location and Access
The area covered was Project 3 of the 1991 OPAP submission and covered parts of Osway (G3243), Mallard (G1171), Huffman (G3232) and Eric townships, Porcupine Mining Division, Sudbury District.

The all-weather road system is shown on the Provincial Topographical Series, at a scale of 1:100,000, on Gogama (41P/NE) Ridout (410/NE) covering Project 3, and Chapleau (410/NW). An eastwest private (Eddy Co.) gravel road connects Highway 144 to Highway

667 at Sultan. It passes Project 3 to the south where two roads, in Edith Township trend northerly in the area. These are the Cordes Creek road which accesses Esther, northwestern Osway, and Mallard townships, ending at Rush Lake; and the Jerome Mine road which corsses Fingal and southern Osway townships, ending at the Jerome Mine on the south shore of Opeepeesway Lake. The Cordes Creek road has been upgraded by the Eddy co. to a haul road for cutting in southeast Mallard, southwest Eric and northwest Huffman townships.

Geology

Five geological series maps are available for Project 3 area. Map 1949-2 of Osway by W.W. Moorhouse; P2369 Jerome west of Osway and Esther, $P 2370$ Jerome East of Huffman and Arbutus both by G.M. Siragusa; Map 2503 Cunningham and Garnet, Map 2504 Benton and Mallard both by G.M. Siragusa. Although we would disagree with both authors as to rock types and contacts locally because of our more detailed examinations and strippings, we found the geological records of great value. The Moorhouse interpretation of contacts in Osway we found in general more accurate than that of the subsequent geological work. Access to much of Osway township and the number of active mining companies in the area were both greater at the time of the Moorhouse survey.

We feel the geology, both lithologic and structural is much simpler and open than the recorded data suggest because of lateral facies changes and initial dips. In general however, Project 3 is underlain by mafic and intermediate volcanic rocks, trending northwest and steeply dipping to the southwest, a picture presented by both published authors. We would agree that there is far more waterlain material present in parts of the section than indicated and more now-volcanic detritus.

Work Done

All work done was of a prospecting nature with much moss stripping in general traversing along roads, trails, shorelines and inland from these access points. Trenching and pitting for samples was along mineralized zones which were located from blazed, chained and flagged compass lines. Thirty-three samples were taken as grabs and line chips described under Sample List. All assaying was done by Activation Laboratories Ltd., using neutron activation analysis. The package consisted of analyses for gold and thirty-four other elements. Certificates af analysis along with detection limits are attached to the Sample List.

Trenching and pitting along, or measured from, chained compass lines are located on separate plans. A General Map of Project 3 shows the areas prospected, chained compass lines, and sample locations.

A daily log of prospecting activities is attached as Prospecting Daily Log.

Expenditures

Project 3 time estimate was 136 man days whereas approximately 70 man days were spent. A breakdown of costs as estimated and approximate actual is given in Table I

The higher than estimated cost per man day is primarily the result of mileage costs. The extra mileage resulted from better than expected road access which meant few camp moves, and more frequent-than planned-returns home due to a decision to sell out in southern Ontario and move north.

A breakdown of expenditures is given on the attached Detailed List of Expenditures by participant.

Results and Recommendations
Although numerous quartz-carbonate veins were found and some sampled, assay results were not significant although well above background levels. Some waterlain sediments within the basic volcanic section are carbonaceous and rusty weathering. At points where quartz stringers permeate these beds, higher gold values were returned from the samples, such as 26105 through 26107. These occurrences are local however, and are not believed to be part of any through-going structural system. The origin of the gold is unknown. An example of this stratified type of mineralization is that at Vichaw Lake within the intermediate volcanic suite and just below the clastic sediments, more accurately shown on the Moorhouse map. These occurrences would appear to have little economic significance (SEE detailed sample map Vichaw Lake).

Of greater importance is mineralization associated with through-going structural features, although, again, apparently related to a specific volcanic unit and following the lithologic trend. More sulphide mineralization is found in this type, and quartz and carbonate veining is widespread and undoubtediy introduced. Gold values are much higher even though sub-economic in the samples we were able to recover from pits (SEE detailed sample plan Wiener Lake).

This latter type of occurrence is similar to that of the Polfrog Explorations discovery, Denomme-Ross et al, of Foleyet. The Polfrog prospect is a kilometre east of the Opeepeesway River in south Mallard township on the south side of the Rush Lake road.

Iron formation appears to be poorly developed in the Opeepeesway Lake area and no base metals were found related thereto (Shunsby type).

It is recommended that claims be staked at wiener Lake and further work done. The Wiener Lake discovery was made two days prior to departure and pitting was only begun on the day of departure from the area. Work should consist of mapping, magnetometer and VLF surveys and prospecting, followed up with

E10:

1

2
3
4
5
6
7
8

9

 10 11 1213
14
15
16.
17.

18
19
20

READY
backhoe trenching where warranted, along with sampling.
Further reconnaissance prospecting should also be undertaken in the general area to find other mineralized zones. Checking for iron formation should be made at the appropriate stratigraphic position in order to find base metals, giving due regard to the observations of Siragusa in his Garnet Lake report.

1 H		I	J	SAMPLE LIST		M	N	0	
2									
3	0	Sample	Type	Rock	Mineral	PPBAL			
4		26105	Grab	Sed	carb	257			
5		26106	G	Schist	qtzcarb	21			
6		26107	ChipiFt	Sed	carb	25			
7		26108	G	Tuff	carb	25			
8		26109	G	BIF	none	6			
9		26110	G	BIF	none	6			
10		26111	G	Jerame	qtzcarb	11100			
11		26112	G	SedSchist	vqtz	5			
12		26113	G	same	none	5			
13		26114	G	same	vqtz	5			
14		26115	G	same	Fe	5			
15		26116	G	same	FeBrown	10			
16		26117	G	Schist	qtz	5			
17		26118	G	SedSchist	carb	5			
18		26119	G	Schist	carbRust	16			
19		26120	C1.5Ft	same	same	9			
20		26121	G	same	same	22			
20-935-91		$1: 20$ AM					NUM		
M40:									
H		I	J	K	L	M	N	0	
21		26122	G	same	same	14			
22		26123	G	SedSchist	same	5			
23		26124	G	Tuff	none	5			
24		26125	G	Schist	qtaRust	151			
25		26126	G	same	same	5			
26		26127	G	same	Py	68			
27		26128	G	Gabbro	qtzPy	5			
28		26129	G	Schist	sameCarb	17			
29		26130	G	same	qtz	50			
30		26131	G	same	qtz	5			
31		26132	G	same	qtzearbPy	37			
32		26133	1	same	qtzPbCuPy	174			
33		26134	G	same	qtzearb	5			
34		26135	G	same	samePy	5			
35		26136	G	same	qtzPy	385			
36		26137	G	same	same	4520			
37									
38									
39									
40									
28-fact91		$1: 20$ AM					NUM		

GEOLOGY a SAMPLE LOCATIONS
SCALE
$1: 4000$ or lin. 333.3 ft .
(a)

Symboler
T.

Tuff
Gb. Sabber

Sch. SAhint

Sed.
Cgl. Sedimente
I.F.

Conglomerate
51.
dron Formation
ss. sietstone
;

- 26106 Sample Location
- mina shaft

ACTLABS

ACTIVArivis LABORATORIES LTD

Invotce No:	3226	
	Work Order:	3225
Invoice Date:	$15-0 C T-91$	
Date Submitted:	30-SEP-91	
Your Reference:	NONE	
	Account Number:	398

E.J. LALONDE BOX 116
CAPREOL, ONT.
POM 1HO
ATHN: E.J. LALONDE

CERTIFICATE OF ANALYSIS

INAA package, elements and detection limits:

AU	5.	PPB	AG	5.	PPM	AS	2.	PPM	BA	100.	PPM
BR	1.	PPM	CA	1.	$\stackrel{5}{8}$	CO	5.	PPM	CR	10.	PPM
CS	2.	PPM	FE	0.02	8	HF	1.	PPM	HG	1.	PPM
IR	5.	PPB	MO	5.	PPM	NA	500.	PPM	NI	50.	PPM
RB	30.	PPM	SB	0.2	PPM	SC	0.1	PPM	SE	5.	PPM
SN	0.01	$\stackrel{8}{8}$	SR	0.05	\%	TA	1.	PPM	TH	0.5	PPM
U	0.5	PPM	W	4.	PPM	ZN	50.	PPM	LA	1.	PPM
CE	3.	PPM	ND	5.	PPM	SM	0.1	PPM	EU	0.2	PPM
TB	0.5	PPM	YB	0.05	PPM	LU	0.05	PPM			

忿罗点空		
$\widehat{\widehat{\circ} \mathrm{S}}$		D n
㳫思	＊ 9	$+$
ヘニニ	꾸ㅈㅜㅗ	$\mathbf{~}$
－ 0 －		$\stackrel{+}{i}$
कis）	쿨	9
－会	꿀	F
		$\stackrel{0}{\square}$
¢ 5 ¢	\pm	\bigcirc
os．	予至	$\stackrel{+}{+}$
	70	－
Ancos	옹	－
ぶここ	꿏	4
术盛㐌	끄픔	＋
¢心灾こ	굮 9	
－\％	꿏즐	\％
－合會 co en en	꿒뭉	
NNO显品采	꿏	$\begin{aligned} & 0 \\ & 7 \\ & 0 \\ & 0 \end{aligned}$
岛县家	꿏ㄷ	I
式出今世然	∞－喜	N 0 0 0
		010 0 0 7 \square
		N 0 W
	：	
\cdots		

LEIF：

RICHARDSON:
ATIKOKAM
minimg oivision
THUNDEF BAY
Mo mites/ ReGIStRy oivision
KERORA/RANY FiVER
Ministryof Lond

O"Hoccemaer.io3:
Uuma vanano \cdots
PROUECT"2

ABEAS WITHDRAWN FROM DISPOBITIION

