01180-029.

0M29 . PE25 . P. 80

63.3937

41009NE0004 63.3937 HUFFMAN

010

AN EVALUATION OF THE JEROME MINE 1980

Prepared for G. F. Ross, P.Eng. February, 1980

by

Prospection Limited 904 - 80 Richmond StreetWest Toronto, Ontario M5H 2C7

Page

Ø10C

.

TABLE OF CONTENTS

I	INTRODUCTION	1
II	SUMMARY	3
III	CONCLUSIONS ,	7
IV	DESCRIPTION OF DEPOSIT AND MINE	9
	Introduction Location Access History of Exploration & Mining Existing Facilities Geology Previous Mining & Milling	9 9 9 11 12 13
v	ORE RESERVE POSSIBILITIES	14
VI	EXPLORATION POSSIBILITIES	16
VII	PRODUCTION COSTS Introduction Summary of Costs Details of Costs	19 19 20 21
VIII	ECONOMICS	22
	Cash Flow Projections Breakeven Gold Prices Implications of Discovering Additional	22 24
	Reserves of 300,000 Tons Comments on Operating Alternatives	24
	Available at Jerome	26

APPENDICES

Ż

H

1911년 - 1949년 1911년 - 1911년 1911년 - 1911년

÷,

Cost	Details	1	-	16
List	of Claims			
Prope	erty Map			

I. INTRODUCTION

The Jerome Mine near Sudbury was operated intermittently during the years 1941 through 1945 producing approximately 56,800 ounces of gold and 15,100 ounces of silver.

At the closure of the mine in 1945 (caused mainly by the wartime lack of labour) the mine had a reported, in situ, ore reserve of 345,00 tons at 0.19 oz./ton gold.

The report presented here was undertaken by Prospection Limited to evaluate the possibilities of now re-establishing an economic operation at Jerome. Because of the limited amount of detailed information on the mine's operational history, particularly the location, distribution and grades of the remaining reserves, it follows that some of the data used as the basis for the study is uncertain. Nevertheless, the conclusions of the report are believed to be valid within the limits of the order-of-magnitude, appraisal, type of study required at this time.

The report concentrates on two main aspects of the Jerome evaluation:

- The validity of the 1945 mine reserve figures stated at the time to be 345,000 tons at 0.19 oz. Au per ton; the efforts and costs required to substantiate them; and the chances of finding additional ore in the mine area and surroundings.
- Following from 1 above, the costs and economics of an operation based on the existing and, if possible, additional reserves.

/2.

The report has involved a thorough study of all existing data on the mine, its reserves, etc., obtained from Mr. R. A. MacGregor and others, plus the published company Annual Reports and Ontario Department of Mines records.

It should be stressed here that the costs developed in this report for mining at Jerome are not based on detailed estimating. The capital costs in particular will vary according to the actual conditions encountered on site. On the other hand the operating costs (which are relatively the most critical area) are felt to be better defined estimates.

The Jerome Mine property is owned by E. B. Eddy Forest Products Ltd., Ottawa, Ontario, a wholly-owned unit of George Weston Limited, Toronto, Ontario. This property is under option as of October 31, 1979 to G. F. Ross, P.Eng.

/3.

II. SUMMARY

The Jerome gold deposit was discovered in 1938 and brought into production at a mill rate of 500 t.p.d. in 1941. Over the next 5 years the mine operated intermittently until closure in 1945 by which time approximately 56,800 ounces of gold and 15,100 ounces of silver had been recovered.

The gold mineralization occurred as a series of shoots in a shear zone structure near the contact of an intrusive porphyry body with the surrounding metasedimentary rocks. The ore was mined by shrinkage stoping in widths averaging around 10 to 20 ft. with occasional 40 ft. wide swells.

Access to the mining areas was by means of a 1100 ft. deep shaft, leading to haulage drifts on five levels servicing the stopes and development workings over a maximum strike length of nearly 3,500 ft.

Because of a lack of skilled labour, the operation shut down in 1945 at which time the company put the remaining mine reserves at 345,000 tons of 0.19 oz./ton gold. Over the following years the mine workings were allowed to flood and in 1956 a fire destroyed most of the surface facilities including the mill.

No mining or exploration work was done on the property until 1974 when a limited surface drill programme was done in an attempt to verify at least some of the mine reserves of 345,000 tons recorded in 1944/45 plans.

Prospection Limited has now examined all the available information on the Jerome Mine from the 1941/45 mining and the 1974

/4.

Page 4.

exploration periods and from this believes there is sufficient evidence to suggest that the 1945 figures can be reliably accepted as approximate indications of the mine's actual potential. It is estimated from the few underground mine drawings still existing, that most of these reserves probably are to be found in the unstoped (but developed) areas both to the east and west of the central stope workings, with the remainder likely occurring as pillars or remnants in stope backs, etc.

There is, furthermore, the possibility of discovering additional tonnages of gold mineralization of ore tenor either as extensions or parallel zones in the area of the existing mine workings and also to depth following the easterly plunging porphyry - metasediment contact which is apparently the most favourable area for gold occurrence. There may also be some chances of gold mineralization occurring nearer surface immediately to the east of the existing underground drifts.

However, even though near-surface tonnages are found, this is unlikely to alter the fact that any mining operation contemplated at Jerome will in the end have to incorporate the assumed 345,000 tons underground reserves which will have to be redefined before mining starts. This will require a dewatering programme to be followed by sampling and other geological work, all of which could cost \$500,000 or more depending on the conditions encountered on site.

Assuming the reserve is available for mining, an evaluation was made of establishing an operation at three rates of 100, 200 and 300 t.p.d. (i.e. based on 345,000 tons at 0.19 oz./ton).

Page 5.

Based on previous mining experience, shrinkage mining of the ore is envisaged with rail haulage and hoisting of material in the existing but renovated, shaft. Milling would be straight cyanidation with recoveries around 90% to 95%.

Based on the assumed 345,000 ton reserve of 0.19 oz./ton gold, the costs and economics of the three operating rates are estimated (in order-of-magnitude terms) as follows:

	Costs		
Rate (t.p.d.)	Total Dev. & Capital Costs (\$ M)	<u>Operating</u> \$/ton ¹	Costs Total ² (\$ M)
100	4.2	83	27.20
200	7.1	59	19.4
300	9.8	49	16.1

1. For mining, milling and surface (directs and indirects).

 Over total mine life, milling 328,000 tons (i.e. tons recoverable from mining).

Net Cash Flows (at U.S.\$700, based on estimated costs above)

Rate (t.p.d.)	Total Net Cash Flow (\$ M)
100 200 200	15.5 20.4

1. No account taken of financing, or working capital or taxes.

/6.

Page 6.

Breakeven Gold Price

Rate (t.p.d.)	Breakeven (U.S.\$)	Price/oz. (Can.\$)
100	470	546
200	396	461
300	387	450

Assuming an additional 300,000 tons at 0.19 oz./ton are found that can be used to extend or expand the existing operation, (this is only an assumption at this time), the following figures are estimated:

Net Cash Flow (at U.S.\$700)

Rate (t.p.d.)

200

A Maria

Total Net Cash Flow (\$ M) 47

Breakeven Gold Price

Rate	Breakeven	Price/oz.
(t.p.d.)	(U.S.\$)	(Can.\$)
200	331	385

A study of custom milling the ore at a mill in the Timmins area (e.g. Pamour), 120 miles away, indicates that although there is no clear-cut advantage in custom milling the ore, it might still be worth considering in the early stages of mining.

/7.

III. CONCLUSIONS

Based on an appraisal of the limited information available on the Jerome deposit and mine, and the estimated costs and economics as summarized, Prospection Limited concludes that:

- Based on the plans, etc., examined the reserves of 345,000 tons at 0.19 oz. Au/ton reported to be on hand when the mine closed in 1945 can be reasonably accepted as existing in the underground mine but can in no way be more accurately categorized until defined by further drilling, sampling, etc.
- 2. Although there is the possibility for finding additional reserve tonnages near surface, particularly in the eastern mine area, the best chance of developing a worthwhile venture in the shortest time is likely to arise from concentrating efforts on the underground area where there is a potential of 345,000 tons at 0.19 oz. Au/ton and good possibilities of additional discoveries at depth or in extensions to existing zones.
- 3. An operating capacity of around 200 t.p.d. appears to provide the best combination of costs and economic return based on preliminary data and analysis. An increase in capacity to around 300 t.p.d. might be possible later in the operation's life if additional reserves were discovered.

/8.

4. Although custom milling does not offer any clear advantage over milling on-site, it could be a consideration in the early stages of the operation.

IV. DESCRIPTION OF DEPOSIT AND MINE

1. Introduction

Since the Jerome Mine shut down in 1945, almost all the mine records, maps, assays, reserve outlines, etc., have gone missing. The information given here on geology, mining, etc., is therefore based on the limited information available on the underground mine, grades, etc.

2. Location

As shown in Figure 1, the Jerome Mine is located in Osway/Huffman Townships, approximately 100 miles northwest of Sudbury. The nearest settlement to the mine is the town of Ramsay, 10 miles to the south on the C.P.R. railway line.

The mine lies on the south shore of Lake Opeepeesway.

3. Access

The mine is accessible by a number of gravel roads, the shortest being a 10 mile route from Ramsay. At present this road is thought to be in fair shape, although some clearance and culvert work will probably be needed for passage of vehicles.

Access by air is possible via Opeepeesway Lake.

4. History of Exploration and Mining

The Jerome gold deposit was discovered in 1938, and explored in greater detail over the next 2 years both on surface and underground.

/10.

.

Access underground was by means of a 3-compartment shaft sunk to a depth of 500 feet by August 1939, with drifting on the 200, 350 and 500 ft. levels continuing into 1940.

Exploration continued to 1941 when a decision was made to establish a mining operation at 500 t.p.d. The shaft was deepened to 835 feet, levels driven at 650 and 800 ft. and ore and waste passes established for shrinkage mining of the ore.

Ontario Department of Mines reports record that the mine operated intermittently from 1941 through 1945 with the following results:

		Head Grade	Reserves at ye	(dilute) ar end
Year	Tons Milled	ozs./ton	Tons	ozs./ton
1940	-	-	663,910	0.172
1941	58,824	0.182	618,948	0.172
1942	168,628	0.189	?	?
1943	107,608	0.185	213,442	0.18 (?)
1944	Shaft deepening	to 1,100 ft.	295,373	0.199
1945	No milling, only	development	345,000	0.19
			and the second	
Totals	335,060	0.186	345,000	0.19

Total gold recovered from operations 1941-1945 was approximately 56,800 ounces plus approximately 15,100 ounces of silver.

The operation was closed down in 1945, according to the reports because of lack of labour. The 1945 report states that the exploration and development work (mainly to the east of the shaft) disclosed some new ore and extensions, but "nothing of major importance was encountered".

/11.

Mine workings completed to 1945 are recorded as follows:

Drifts	å	crosscuts	24,425	ft.
Raises			3,402	ft.
Shaft			1,100	ft.

In addition, diamond drilling completed to 1945 was:

Underground: 1,082 holes for 47,300 ft. Surface: 102 holes for 38,150 ft.

In February 1974, a surface drilling programme was undertaken with the principal aim of confirming the shallower portions of ore shoots lying to the east of the shaft, as recorded on original mine drawings.

As discussed and described more fully in Chapter V, the 17 holes drilled in the Jerome zone succeeded in approximately confirming the recorded ore shoots down to the 350 ft. level.

In addition, exploratory drilling (2 holes) indicated the main Jerome structure to be open at both ends but with very low grades, around 0.05 ozs./ton. Drilling in the <u>South Zone inter-</u>sected the shear zone structure but no significant mineralization was reported.

5. Existing Facilities

In 1956 a fire destroyed the headframe and almost all of the surface facilities except some housing units which were later bought and renovated by a timber company, Eddy Forest Products Ltd., to accommodate some of their personnel (15 families).

/12.

There are no other buildings on the property, although the foundations of the original mill, shops, etc., should be in usable condition. The mine workings have been allowed to flood to the shaft collar. Based on the ore tonnage removed and the existing mine workings, there could be approximately 50 million gallons of water in the mine down to the 1100 ft. level.

When the mine was operating, hydro power is reported to have been supplied from Shiningtree but this line has now been dismantled to a point 18 miles away from the mine.

6. Geology

The Jerome mine occurs in an area of PreCambrian sedimentary and intrusive rocks cut by later dyke rocks.

Ore has been mined from shoots in an arcuate, plunging, N.W.-S.E. striking shear zone, known as the Jerome zone, at or near the carbonate sediment/porphyry contact. The mineralized vein material is mapped as easterly-plunging, discontinuous shoots up to 100-200 ft. along strike and in widths varying from 5-10 ft. up to 40 ft. Dips are shown to be generally vertical or steeply to the south.

A number of post-vein faults are recorded on original mine drawings generally lying at low angles to the ore shoots.

In addition to the Jerome zone, a sub-parallel "South Zone" was mapped approximately 425 ft. to the south. Diamond drilling to date has not encountered significant grade material in this shear zone structure.

In both the Jerome and South zones, the gold generally occurs with pyrite and tetrahedrite in silicified, vuggy material.

7. Previous Mining & Milling

Based on the limited data available, ore appears to have been mined in widths of around 10 ft., with occasional 20-40 ft. wide areas. While shrinkage mining methods were reported to be generally successful, some problems apparently arose from the widespread low angle faulting which led to "a good deal of stope preparation" in some areas.

No problems in milling the ore is reported from 1941-1945 records. Recoveries of 90%-92% are recorded.

V. ORE RESERVE POSSIBILITIES

There are said to be 345,000 short tons of ore grading 0.19 oz. Au per ton (assumed dilute) remaining in the area of the present underground workings which extend over an approximate length of 3,400 ft. and to a maximum depth of 1,100 ft.

This estimated reserve can not be corroborated or categorized by block or level location due to the absence of pertinent mine records, which have been lost over the years since the mine closed. However, a good perception of the approximate location of the ore that was mined and the ore remaining at the time of shut down (1945) can be gleaned from a longitudinal section, a copy of which occurs in the 1948 C.I.M.M. edition of "Structural Geology of Canadian Ore Deposits".

This longitudinal section indicates that the bulk of the mining (shrinkage stoping) was generally centrally located, from surface down to the 650 ft. level, with developed or partially developed ores remaining to the west and east respectively.

In terms of widths and grade the general disposition and character of the ores mined and the probable ores remaining can be surmised from a series of level assay plans, which were prepared in 1974 (reportedly from original data) by Mr. R. A. MacGregor of Sault Ste. Marie and made available to Prospection Limited for this study. These level plans indicate strongly that stoping was done mainly in areas where the gold bearing mineralization was widest, with widths in excess of 40 ft. shown in some locations. This observation, coupled with the longitudinal section mentioned above, leads to the conclusion that the vertical outlines of the stoped

/15.

JEROME GOLD MINES LTD

SECTION ALONG VEIN ZONE N. 56° W.

SCALE lin.=200 ft.

Traced by PROSPECTION LIMITED TORONTO Feb. 1980

0 Granodiorite

ore probably do closely approximate operational limits before shut down (aggregating some 335,000 tons of production).

Therefore there is also a good probability that the outlines of the un-mined ore shown on the longitudinal section approximately represent the general disposition of the recorded 345,000 tons existing reserve. This supposition is supported by the limited assay plans available which show drift, crosscut and underground diamond drill sample results of significance, especially beyond the indicated stoped limits. It is further supported in probably a more convincing way by the results of the 1974 surface diamond drill investigations. Thirteen holes drilled to investigate the eastern un-mined reserves above the 350 ft. level confirmed the general disposition of the indicated ore zones with mineralized and unmineralized intersections more or less as expected.

It is therefore considered that there is a good possibility that the underground reserves can be substantiated.

The probable tenor of this reserve, said to be 0.19 oz. Au per ton (assumed dilute) can also be reasonably accepted with confidence based on available data.

The assay plan of the 500 ft. level, which has been arbitrarily chosen for study, especially in areas beyond the indicated stopes, contains mineralized zones with the following tenors:

/17.

	Length (ft.)	Avg. Width (ft.)	Oz. Au/Ton (uncut)
West Zone	108	2.14	0.22
	33	3.28	0.28
	144	4.65	0.26
East Zone	67.5	4.16	0.16
	48	3.3	0.195
	65	4.6	0.205
	147	5.8	0.22
	88.5	3.2	0.22
	325	10.5	0.27
	1026	6.13	0.25

From a review of the assay plans for the 200 and 350 ft. levels more or less the same conditions prevail for mineralized zones outside of the stoped areas. Complete assay plans for the 650 ft. level were not made available to Prospection.

The 1974 surface drill holes with "ore" intersections between the surface and the 200 ft. level and between the 200 and 350 ft. levels gave averages (uncut) of 0.27 oz. Au/ton over 6.0 ft. and 0.36 oz. Au/ton over 6.2 ft. respectively.

Although Prospection feels that the stated 345,000 ton reserve at 0.19 oz. Au/ton (assumed dilute) grade probably exists within the present underground workings, it must be emphasized that before any serious exploitation plans be undertaken, this reserve must be confirmed by underground sampling. This sampling would entail both channel sampling in the drifts and limited underground diamond drilling.

VI. EXPLORATION POSSIBILITIES

An appraisal of the available geological data on the Jerome deposit and mine, suggests that the most promising area to explore for additional reserves than can quickly contribute to the potential of the mine is the immediate mine area itself, especially to the east of the stoped areas. This region presents possibilities of extending or finding additional mineralization to depth and also of outlining other ore zones along strike of the vein, which is known to extend at least 1,000 ft. beyond the present workings to the shore of Opeepeesway Lake.

The best exploration target areas are to depth along the easterly-plunging porphyry/sediment sheared contact and in the area to the east of the 500 ft. mine level where previous drilling records show values from "vein - no values" to 1.27 ozs. Au per ton (uncut) over 2.7 ft. (Average of 4 intersections is 0.37 oz. Au/ton over 5.1 ft.)

There may also be exploration possibilities along strike of the known shear zones beyond the immediate mine area but a discovery in these outlying areas would not necessarily enhance the potential of the existing indicated reserves if independent mine access were needed.

The exploration of the most promising area of interest could be done from both the surface and underground.

Surface explorations might involve limited geophysical surveying (Induced Polarization) combined with limited diamond drilling to probe anomalous areas to the east of the mine area.

/18.

Underground diamond drilling is believed to be the most practical approach in the circumstances as it offers the best opportunity of quickly outlining additional reserves.

The assay plans available show mineralized zones both in the drifts and in the walls and in many cases immediate drill targets present themselves from either the lack of drilling or inadequate drilling. The known sinuous and poddy nature of the ore zones suggests that many more are likely to be found in this manner.

Therefore, considering the good potential for establishing the indicated 345,000 ton reserve and the possibilities for discovering additional ore it is suggested that the most judicious exploration approach will be to concentrate work underground around the existing mine workings.

This of course entails dewatering but even if additional ores are found from surface, which is not a certainty, the same condition will ultimately apply in order to establish a mining operation.

The estimated costs involved in proceeding with the underground sampling programme to corroborate the existing reserves which must precede an exploration programme are as follows:

Dewatering - dealt with elsewhere in this report.

2.	Sampling - labour (3 mos.)	\$ 45,000
3.	Sample preparation & assay	\$ 10,000
4.	Diamond Drilling - underground 2,500 ft. @ \$15.00/ft.	\$ 40,000
5.	Crew Maintenance & Transportation, etc.	\$ 22,000
	Contingency	\$ 8,000
	Total	\$ 125,000

It is conceivable that in the course of this programme additional ores could be outlined. This then would lead to an expansion of surface and underground exploration for more ore, the cost of which it is impossible to predict with any precision at this time but which could with development acrue to something like one million dollars.

2

/20.

VIII. PRODUCTION COSTS

1. Introduction

Based on the assumption that there is in fact an existing reserve of 345,000 tons at 0.19 ozs./ton gold (dilute) available for mining at Jerome as described in the previous chapter, preliminary estimates have been made for the development, capital and operating costs.

The calculations are based on:

- (i) Three alternative mill capacities, 100, 200 and 300 t.p.d.
- (ii) Shrinkage mining of ore which was reported to be successful when the mine operated.
- (iii) Rail haulage and shaft hoisting of ore.
- (iv) Straight cyanidation milling. Based on the company records, recoveries in the 90%-92% range were previously attained.

Order-of-magnitude costs for the 100 and 300 t.p.d. rates have been estimated in some detail and used to construct a graph of costs versus capacity in order to arrive at the figures for the 200 t.p.d. case, as shown on the following page.

For all capacities, the summarized costs are given within a range in order to reflect the preliminary, order-of-magnitude nature of the estimates.

JEROME MINE

Costs vs. Capacity

Prospection Limited Feb 1980

2. Summary of Costs

(a) <u>Development</u> (all capacities)

Dewatering		\$220,000
Sampling & underground exploration		125,000
Additional D.D.H. (mining)		50,000
Shaft & drift rehabilitation		150,000
Total Development Costs (+ 100,000)	say	\$550,000

Note: These costs will vary according to actual conditions encountered on site.

Thous.)

(b) <u>Capital</u> (in \$ M)

	100 <u>t.p.d.</u>	200 <u>t.p.d.</u>	300 <u>t.p.d.</u>
Infrastructure & surface			
facilities	1,000	1,700	2,200
Mine Equipment	600	1,000	1,500
Mill	2,000	3,800	5,500
<u> Total Capital Costs - say</u>	3,600	6,500	9,200

(c) Operating (\$/ton milled)

	100	200	300
	<u>t.p.d.</u>	<u>t.p.d.</u>	t.p.d.
Direct:			
Mine	29.4	26	23.3
Mill	<u>11.5</u>	8	6.9
Sub-Total Direct	40.9	34	30.2
Indirect:			
Surface, Mine, Mill	42.2	25	18.3
Total - Direct & Indirect	83.1	<u>59</u>	48.5
say	<u>\$83/ton</u>	59	\$49/ton
	(+ \$8)	(+ \$6)	(+ \$5)

3. Details of Costs

The detailed assumptions and calculations used to arrive at the above costs can be found in the appendix to this report, as follows:

Exploration	Pages	.1	to	4
Capital Costs:	Pages	5	to	10
Operating Costs:	Pages	11	to	16

/23.

Page 23.

VIII. ECONOMICS

1. Cash Flow Projections

Based on the assumed existing reserves of 345,000 tons at 0.19 oz./ton gold, and the costs as summarized in the previous Chapter, cash flow projections have been made for the three alternatives (100, 200 and 300 t.p.d.), as detailed in the table on page 24.

The revenue figures are based on operating parameters as follows:

Total Mine Reserves:
(assumed cut & dilute)345,000 short tons at 0.19 oz. Au/tonMining Recovery:Assumed to be 95% to allow for losses
in un-mined pillars, remnants, etc.Therefore, mined &328,000 short tons at 0.19 oz. Au/ton

Milling Recovery: Assumed at 92%, based on 1941-45 records (could possibly be nearer 95% today)

Recoverable Gold:

milled tonnage:

57,400 ounces

(No account taken of small silver content reported from 1941-45 operations.)

Mine lives for the three alternatives would be as follows:

100	t.p.d.	9.4	years
200	t.p.d.	4.7	years
300	t.p.d.	3.1	years

/24.

JEROME MINE

CASI	I FLOW	PROJECT	IONS
(i.e.	before	taxes,	etc.)

					Total	Net
Gold Pr	ice/Oz.	Capacity	Total Costs	(C.\$ M)	Revenue	Cash Flow
U.S.\$	Can.\$	(t.p.d.)	Dev. & Capital	Operating	<u>(C.\$ M)</u>	(C.\$ M)
400	465	100	4.15	27.20	26.7	- 4.65
		200	7.05	19.40	26.7	+ 0.25
		300	9.75	16.10	26.7	+ 0.85
500	580	100	4.15	27,20	33.3	+ 1.95
500	500	200	7.05	19.40	33.3	+ 6.85
		300	9.75	16.10	33.3	+ 7.45
600	708	100	4.15	27.20	40.2	+ 8.85
		200	7.05	19.40	40.2	+13.75
		300	9.25	16.10	40.2	+14.35
700	815	100	4.15	27.20	46.8	+15.45
		200	7.05	19.40	46.8	+20.35
		300	9.75	16.10	46.8	+20.95

Note: No allowance made for financing costs or working capital.

Page 24.

۲

The resulting total net cash flow at approximately today's gold price (of U.S. \$700) is summarized as follows (excluding costs of financing, taxes and working capital):

<u>Gold Pr</u>	ice/Oz.	Rate	Total Net Cash Flow
U.S.\$	Can.\$	<u>(t.p.d.)</u>	(\$ M)
700	815	100	+ 15.45
(near t	oday's	200	+ 20.35
pri	ce)	300	+ 20.95

2. Breakeven Gold Prices

The prices of gold at which the three alternative operations would approximately breakeven (on the assumed existing reserves) have been calculated as detailed in the Table on page 26 and are summarized as follows:

Rate	Breakeven Gold Price/Oz.		
(t.p.d.)	<u>U.S.\$</u>	Can.\$	
100	470	546	
200	396	461	
300	387	450	

3. Implications of Discovering Additional Reserves of 300,000 Tons

An evaluation was made assuming an additional tonnage of 300,000 tons is found in the mine area (i.e. at depth, in extensions or parallel zones), at the same grade as the existing reserves, i.e. 0.19 oz. gold per ton (dilute). This would then give a total reserve of 645,000 tons at 0.19 oz. Au/ton, or at 95% recovery, a mined and milled tonnage of around 612,000 tons. At a mill recovery of 92%, approximately 110,000 ounces of gold could then be feasibly recovered.

JEROME MINE

BREAKEVEN GOLD PRICES

		Exi 3	sting Res 45,000 To	erves ns	Existing Reserves plus additional = 645,000 Tons Total
Cap	acity (t.p.d.	100	200	300	200
Min	e Life (years	9.4	4.7	3.1	8.8
1. 2.	Rehabilitation & Dewatering (\$ M)) Exploration & Development (\$ M))	550	550	550	1,550 ¹
3.	Capital Costs/ton (\$ M)	3,600	6,500	9,200	6,500
	Operating Cost/ton (\$/ton)	83	59	49	562
4.	Total Operating Cost (\$ M)	27,200	19,400	16,100	34,300
	Total Costs (1+2+3+4)		26,450	25,850	42,350
	Total Tonnage	345,000	345,000	345,000	654,000
	Total Ozs. Au Recovered	57,400	57,400	57,400	110,000
	Breakeven Au Price (Can.\$) " Au " (U.S.\$)	546 470	461 396	450 387	385 331

- Note 1 Extra \$1,000,000 for discovery and development of new reserves, shaft deepening, etc.
- Note 2 Operating cost for larger tonnage taken at 95% of \$59 = \$56.

/27.

Page 26.

Page 27.

As before, for the assumed existing reserves, operating profit and breakeven price were calculated this time for the expanded reserve of 645,000 tons. Only the costs for the 200 t.p.d. alternative were considered in this case with an additional \$1,000,000 being allowed for (hypothetical) discovery and development costs for the additional reserve.

The results are summarized as follows:

Net Cash Flow

Gold Price/Oz.		Rate	Net Cash Flow
U.S.\$	Can.\$	<u>(t.p.d.)</u>	(C.\$ M)
700	815	200	47.3

Breakeven Gold Price

	Break	even
Rate	Gold Pr	ice/Oz.
<u>(t.p.d.)</u>	U.S.\$	Can.\$
200	331	385

4. Comments on Operating Alternatives Available at Jerome

Based on the analyses above, the following comments are made on the possible operating alternatives available at Jerome:

(a) For the existing reserves assumed (345,000 tons), an operating rate of around 200 t.p.d. is indicated to be the most suitable. Relative to the other alternatives studied, this rate appears

/28.

.

to provide the most favourable combination of total net cash flow and costs with a breakeven gold price of U.S.\$396.

- (b) In practice, the mine could start operating at 200 t.p.d. with a possible expansion to 300 t.p.d. if additional reserves were found.
- (c) If an additional reserve of 300,000 tons is added to give a total of 645,000 tons at 0.19 oz. Au/ton, the resulting cost figures suggest that no advantage would be gained in an expansion from 200 to over 300 t.p.d.
- (d) Custom milling at the Pamour mill 120 miles away might be a possibility depending on timing and the condition of the forestry roads around Jerome. Trucking to Pamour would cost around \$10.00 per ton (today's dollars) and custom milling \$15.00 per ton (almost exactly as estimated for Jerome). Savings at Jerome for a 200 t.p.d. operation would be around \$3.8 million since no mill would be needed, leaving total capital costs of \$2.7 million (development, surface and mine).

In other words, total additional operating
(trucking) costs of \$10.00 x 328,000 =
\$3.3 million would be balanced against a saving
of \$3.8 million.

/29.

(d) Continued.

> Therefore custom milling might be a consideration in the early stages of the operation.

> > All of which is respectfully submitted.

G. W. GOT . W. Goettler, P.Eng. ARIO PRUVINCE ONT ۵F W. HILL William Hill, P.Eng. POLINCE OF ONTARIO

PROSPECTION LIMITED.

Toronto, Canada. February 14, 1980.

APPENDICES

, \$5-.

2

Transformer and the

s,

Cost Details Property and Claim Details Property Map

1
1. EXPLORATION COSTS

SUMMARY

		<u> </u>
(A)	Dewatering	220,000 🔨
(B)	Sampling and underground exploration/ sampling/D.D.H.	. 125,000
(C)	Additional D.D.H. (for on-going mining)	50,000
(D)	Shaft & mine rehabilitation	150,000 🛁
	TOTAL	\$545,000
	say	\$550,000
		(+ 100,000)

Note: These costs are preliminary estimates based on the limited information available. Actual costs will depend on conditions encountered on site.

/2.

EXPLORATION COSTS DETAILS

(A) Dewatering

Dewatering to 800 ft. level assumed as first step.

Possibly 30 million gallons to be pumped out.

Say, 400 g.p.m. = 500,000 gals./day is possible. Therefore will require 60 days work.

From Contractor, costs per day:

Labour, supplies & Equipment

\$3,000/day for 60 days

Allow 25% contingency

\$180,000 \$220,000

(also to include mobilization, demobilization, etc.)

Note: This cost possibly could be reduced if the work were done by the company; this would also have the advantage of providing some pumps, generators, etc., for later use if mining takes place.

\$ 45,000

Exploration Cost Details (cont'd)

(B) Sampling and Underground Exploration

Labour/month:

2 Geologists - \$ 6,000 4 Samplers/Helpers - 6,000 plus burdens

\$ 10,000 Sample Preparation/Assay say \$ 5,000 Vehicles Rental, Fuel Crusher Sample Preparation Facilities \$ 2,000 \$ 15,000 Accommodation & Travel Diamond Drill: Limited programme of 2,500 ft. 2,500 x \$15/ft. \$ 40,000 say \$117,000 Total Plus Contingency \$125,000 say

\$14,400 for 3 mos., say

 (C) Additional D.D.H. (assuming mining decision taken)
 2,500 ft. @ \$15/ft.
 \$ 40,000
 Plus misc. geological supplies & services
 \$ 10,000
 Total
 (Supervision in Mining Costs)

/4.

Exploration Cost Details (cont'd)

(D) Shaft & Drift Rehabilitation

Assume shaft rehabilitation to 1100 ft. level.

- since under water for 30 years, timbers assumed in fair condition.
- therefore allow $\frac{100}{ft} = \frac{10,000}{ft}$

Drifts, Crosscuts:

Piping, etc., elsewhere.

- allow \$35,000 for clearing drifts, slashing, etc.

Therefore, preliminary cost, say

\$150,000

(The actual cost will depend upon conditions encountered in the mine.)

2. CAPITAL COSTS

SUMMARY

			\$ Thous.		
			100 t.p.d.	200 <u>t.p.d.</u>	300 t.p.d.
(A)	Infrastructure & Surface Facilit	ies	1,000	1,700	2,200
(B)	Mine Equipment		600	1,000	1,500
(C)	Mill & Tailings		2,000	3,800	5,500
	TOTAL	say	3,600	6,500	9,200

Note: The costs for the 100 t.p.d. have been estimated as shown on the following pages.

The costs for both the 200 and 300 t.p.d. cases have been derived from the 100 t.p.d. figures by factoring, combined with spot checks on the costs of some major items.

It should be stressed that the costs are preliminary estimates only and are of an order-ofmagnitude nature. Therefore the actual costs will change according to conditions encountered on site.

/6.

Page 6.

CAPITAL COST DETAILS

(A) Infrastructure & Surface Facilities (i) Road Rehabilitation & Site Preparation Since road reported to be in fair shape, little work expected, say \$2,000/mile for grading, culverts, etc. i.e. \$2,000 x 10 miles \$20,000 Site Preparation (concrete pads & \$30,000 \$ 50,000 foundations from 1945 assumed good) allow (ii) Buildings No foundations required. Assume little concrete work. Prefab. roof and wall sections needed for: \$50,000 Mi11 25,000 Office Shops 10,000 Additional Camp/Cookery 15,000 Explosives Storage 15,000 Miscellaneous (fan housing, etc.) 15,000 \$130,000 (iii) Generators & Electrical (Surface) Total connected power required for 100 t.p.d. = 750 h.p. (mine 300 h.p.; mill 450 h.p.) \$150,000 Generator and back-up Electrical Installation \$250,000 100,000 (shaft, hoist, pumps) (iv) Headframe & Hoisting Hoist 85-100 h.p. \$75,000 Headframe 25,000 \$100,000

Infrastructure & Surface Facilities (cont'd)

(v)	Compressors		
	Consumption (peak) - 1200 c.f.m.		
	2 z 600 c.f.m. compressors		\$120,000
(vi)	Surface Fans/Air Heating		
	Main Fan 75-100 h.p. Air Heater	\$ 50,000 25,000	\$ 75,000
(vii)	Fuel Storage & Miscellaneous Items		
	Since only 100 miles N.W. of Sudbury minimum fuel storage expected.		
	Allow for 25,000 gals. storage Miscellaneous Items	\$ 20,000 10,000	\$ 30,000
(viii)	Miscellaneous Surface Facilities and Installation		\$100,000
Sub-To	tal Infrastructure & Surface Facilities		\$855,000
	Add Contingency 15%	say	\$1,000,000

(B)	Mine	Facilities & Equipment		
	(i)	Drill Equipment		
		No. of Stopes Operating (100 t.p.d.) = 2 Stope Preparation = 2		
		Allow for 12 jacklegs/stopers @ \$2,000 per machine	\$ 24,000	
		Spares, etc.	16,000	\$ 40,000
	(ii)	Haulage Equipment		
		Assume stoping/preparation on 2 levels.		
		2 locomotives @ \$25,000 each 2 loaders @ \$30,000 each 10 cars @ \$2,000 each	\$ 50,000 40,000 20,000	
		Miscellaneous	20,000	\$130,000
	(111) Piping, Railing, etc.		
		Rail - 2,600 ft. @ \$20 Piping - 6,000 ft. @ \$5 (avg.)	\$ 40,000 30,000	\$ 70,000
	(iv)	Underground Ventilation		
		6 Fans @ \$5,000 Tubing - 2,000 ft. @ \$5 Miscellaneous Electrical	\$ 30,000 10,000 10,000	\$ 50,000
	(v)	Pumping		
		2 Main Pumps 75 h.p. 4 Others Pipe, fittings	\$ 4,000 6,000 2,000	\$ 12,000
	(vii	.) General Supplies		
		Lamps, tugger, hoist, etc.		\$ 20,000

,

/9.

Page 9.

Mine Facilities & Equipment (cont'd)

1

for the support

(vii)	Surface Vehicles & Miscellaneous Accessories		\$200,000
<u>Sub-To</u>	\$600,000		
	Add Contingency 15%	say	\$750,000

/10.

Page 10.

(C) <u>Mill</u>

and a strategy of the strategy

(i)	Main Equipment			
	Crushing & Screening Grinding & Thickening Cyanidation Gold Recovery	\$200,000 300,000 150,000 100,000	\$	750,000
(ii)	Tailings Disposal		\$	750,000
<u>Sub-</u> T	otal Mill		\$1	,500,000
	Add 15% engineering, etc. Add Contingency 15%	say	\$1 <u>\$2</u>	,725,000 ,000,000

3. OPERATING COSTS

SUMMARY

					\$/Ton Milled			·
						100	200*	300
						<u>t.p.d.</u>	t.p.d.	<u>t.p.d.</u>
(A)	Direc	t						
	(i)	Mine	-	labour supplies		19.5 3.9		13.8 3.5
		Stope	-	preparation development		5.0 1.0		5.0 1.0
		<u>Sub-To</u>	tal	Mine		29.4	26	23.3
	(ii)	Mi11	-	labour supplies		5.5 6.0		2.74 4.2
		Sub-To	tal	<u>Mill</u>		11.5	8	6.94
		Sub-To (Mine	tal and	DIRECT Mill)		40.9	<u>34</u>	<u>30.24</u>
(B)	Indir	ects						
		Labour Supplie	S			27.80		11.80 7.5
		Sub-Tot	al	INDIRECTS		42.15	25	18.30
	TOTAL	DIRECT	/IN	DIRECTS		83.05		48.54
				say		83	59*	49

*Estimated

/12.

Page 12.

DETAILED OPERATING COSTS

				\$/	Ton Milled	
		6 days mining; 7 d	lays milling at	100 t.p.d.	200 t.p.d.	300 <u>t.p.d</u> .
(A)	Dire	ect Costs				
	(i)	Mining				
		Labour:				
		Shrinkage prod. t (at \$12.50/hr. x = \$150/day/man)		10	12	14
		Stoping - Cost/to - Cost/to	on mined on milled	15.0 18.0	12.5 15.0	10.7 12.8
		Plus haulage		1.5	1.3	1.0
		Supplies:				
		Drill Blast Muck Ground Support) Timber)	1.0) 0.8) 0.3) 3.9 1.8)	3.90	3.70	3.50
		Stope Preparation		5.00	5.00	5.00
		Development - allow	7 1.0	1.00	0.70	0.50
		Total Direct Mining	3	29.40	25.70	22.80

Direct Costs (cont'd)

		\$	/Ton Mille	ed
	6 days mining: 7 days milling at	100	200	300
	· ····································	t.p.d.	t.p.d.	<u>t.p.d.</u>
(11)	Milling			
()				
	Labour (Hourly)			
	No. of men	8		12
	Avg.\$2,000/month One year \$/ton	16,000 192,000 5.5		24,000 288,000 2.74
	Supplies			
	Crushing/grinding \$/ton	3.50		2.50
	Reagents \$/ton	1.50		1.20
	Miscellaneous \$/ton	1.00		0.50
	Sub-Total Supplies \$/ton	6.50		4.20
	Total Direct Mill Cost	<u>11.50</u>	<u>8.0</u> *	<u>6.94</u>
	Total DIRECT COSTS	40.90	34.0	30.24

*Estimated

ŧ.,

/14.

(B)	Indi	rec	t Co	sts

			No. Required		Total Cost \$/Month	
			100	300	100	300
		<u>\$ Month</u>	t.p.d.	<u>t.p.d.</u>	<u>t.p.d.</u>	t.p.d.
(i) <u>Lab</u>	our					
Supervis	ion:					
Mine -	Mgr./Supt.	3,500	1	1		
	Eng./Geol.	3,000	1	1		
	Surveyor	2,500	1	1		
	Captain	2,500	1	1		
	Bosses	2,000	2	4		
	Sub-Total		6	8	15,500	19,500
Mill -	Supt.	3,500	1	1		
	Eng.	3,000	1	1		
	Foremen	2,500	2	2		
	Sub-Total		4	4	11,500	11,500
Other:						
Labour	- hoist/cage	2,000	4	4		
	underground	1,500	4	6		
	mill	1,500	2	4		
	Sub-Total		10	14	17,000	23,000
Matco	- underground	2 500	3	4		
mille	mill	2,500	2	2		
	. 1 1	2,300	-	-	10 500	15 000
	Sub-Total		5	b	12,500	15,000
Surfac	e - Camp	1,500	3	5		
	General	1,500	3	5		
	Assay	2,000	1	1		
	Sub-Total		· 7	11	11,000	17,000
	Totals		<u>32</u>	<u>43</u>	67,500	86,000

Indirect Costs (cont'd)

	Т	otal Cost	(\$)
	100 t.p.d.	200 <u>t.p.d.</u>	300 t.p.d.
Totals, plus burdens @ 20%	81,000		103,000
Yearly Cost (\$)	972,000		1,238,400
Tons milled/year	35,000		105,000
Total Indirect Labour Cost/Ton	27,80	16.00*	11.80

*Estimated

Indirect Costs (cont'd)

	100 t.p.d.	200 t.p.d.	300 t.p.d.
(ii) <u>Supplies</u>			
Power Generation:			
Power required (h.p.)	750		1,750
(Mine (Mill	300 450		550) 1,200)
Kw.Hr./year	4.2x10 ⁶		9x106
Cost/Ton (\$)	5.7		2.9
Camp:			
No. of Men	50		75
Cost/day @ \$15 Cost/year	750 230,000		1,125 350,000
Cost/Ton (\$)	6.6		3.4
General Mine, office (\$)	0.75		0.50
Pumping, electrical etc, assume	0.50		0.35
Level maintenance & ground control	0.15		0.10
Ventilation supplies	0.40		0.15
Underground const./grouting, etc.	0.25		0.10
Total Indirect Supplies	14.35	9.0*	7.50
Total INDIRECT COSTS	42.15		<u>18.30</u>

*Estimated

Toronto, Canada. February 12, 1980.

PROPERTY AND CLAIM DETAILS

The property consists of 63 patented mining claims owned by Eddy Forest Products Ltd., located in Osway and Huffman Townships, District of Sudbury, Ontario, as shown in the location map attached overleaf. The property is at present under option to Mr. G. F. Ross, P.Eng., as of October 31, 1979.

The claims are designated as follows:

~S29951	to	29952	inclusive	2	claims
- \$31758	to	31759	inclusive	2	claims
- S32069	to	32077	inclusive	9	claims
- 532113	to	32121	inclusive	9	claims
- \$32157	to	32162	inclusive	6	claims
- S32215	to	32216	inclusive	2	claims
~ \$32218	to	32227	inclusive	10	claims
⁻ S32242				1	claim
- S32261	to	32269	inclusive	9	claims
- S32316				1	claim
- \$32364	to	32369	inclusive	6	claims
~S32386	to	32387	inclusive	2	claims
S32395				1	claim
S33640	to	33642	inclusive	3	claims
			Total	63	claims

In addition, the surface rights only are held on claim S32318 and a half interest in the surface rights only of claim S32317. Both these claims are patented to surface rights only.

Water-covered areas are held under licences of occupation.

CERTIFICATE OF QUALIFICATION

I, WILLIAM HILL, residing at R.R. #2, Rockwood, Ontario, certify that:

- I am a mining engineer graduated from the University of Toronto with a degree of Bachelor of Applied Science in 1958 and have practised my profession since graduation.
- 2. I am a Registered Professional Engineer and Consultant of the Province of Ontario.
- 3. I have no interest in, nor do I expect to have interest in, directly or indirectly, the Jerome Mine.
- 4. This report is based on data made available by Mr. George Ross. No examination has been made of the property.

DATED at Toronto, this 14th day of February, 1980.

OM29-7E25-7-80

41009NE0004 63.3937 HUFFMAN

020

JEROME MINE

PROGRESS REPORT

SEPTEMBER 1980 - JANUARY 1981

то

MR. BRIAN McDONOUGH, President

BRIDGEVIEW RESOURCES INCORPORATED

R. J. GRAHAM, P.Eng. Consulting Geologist 872 Ski Club Road North Bay, Ont., P1B 8E5 Tel: (705) 472-2085

PROGRESS

During the period September 1980 - January 1981, extensive exploration and mine rehabilitation was carried out on the Jerome Mine Property. Surface trenching and stripping, 23 miles of line cutting, magnetometer, V.L.F.E.-M and induced polarization surveys were followed by a surface diamond drilling program. This aggregated 2710 feet of BQ diamond drilling in 9 holes to verify previous drilling results for ore-reserve purposes, and to evaluate a series of induced polarization and magnetic low anomalies. It is highly significant that the previously known ore-shoots are all clearly defined as magnetic low anomalies. Of great importance is the fact that a series of unexplored magnetic low anomalies lies close to the mine workings. The exploration implications are enormous. The drilling results were generally excellent, the best being 0.22 oz Au/ton over 62 feet in J80-8 and it is recommended by the undersigned that 32 holes be drilled for a total of 6,650 feet to assess the remaining untested magnetic low anomalies.

Underground, the Jerome Mine was dewatered to the 200 foot level, and representative check-sampling was carried out by the undersigned to verify ore-blocks documented by the previous operators. The results showed that these oreshoots are present with good grades and widths. (See "Summary of underground sampling"). It is recommended that dewatering of the mine be continued to provide access for sampling of the other levels. (See attached longitudinal section).

Construction on surface was hampered by unprecedented cold weather over long periods of time, but the following significant work was done.

A 40' x 60' steel shop was built, also a compressor house, generator building, coreshack and corelogging facility with fluorescent lighting. The hoist foundation was poured, with all necessary steel work, and the shaft collar was rebuilt. Eight sets of timber were replaced at the top of the shaft, and filling of a surface open-cut with waste rock was started.

Senior supervisory personnel were W. Manderstrom, Mine Manager, P. Brown, Exploration Manager, R. J. Graham, Consulting Geologist.

The drilling Contractor was Barron Diamond Drilling of Haileybury.

Construction and exploration were carried out during appalling winter conditions and Messrs. Manderstrom and Brown are to be commended for their diligent work.

SUMMARY OF DIAMOND DRILLING RESULTS

Nine B.Q. holes were drilled from surface for a total of 2710 feet.

J80-1, -90° to 247 feet. At 24E and 1+25S. To test an 1.P. anomaly. (Best assay 0.01 oz. Au/ton over 2.5 feet from 114.5 - 117.0). J80-2, -45° to 348 feet. At 8E and 4S. To test an 1.P. anomaly. (Best assays 0.12/18.5' from 199.0-217.5 and 0.42/3.0' from 303.0-306.0). J80-3, -45° to 354 feet. At 2E and 5+50N. To test an 1.P. anomaly (No samples taken). J80-4, -45° to 354 feet. At 2E and 5+50N. To test an I.P. anomaly (No samples taken).

J80-4, -45° to 196 feet. At 7+50E and 1+30N. To test a mag. low. (Best assays 0.16/25.0' from 71.0' - 86.0' and 0.11/20.5' from 108.5 - 129.0, or 0.08/58.0' from 71.0' - 129.0').

J80-5, -70° to 307 feet. At 7 + 50E and 1+30N. To test a mag. low. (Best assays 0.07/31.2' from 164.3' - 195.5' and 0.12/22'5 from 224.5' - 247'0' or 0.06/82.7' from 164.3 - 247.0').

J80-6, -45° to 247 feet. At 10+50E and 1+30N. To test a mag. low. (Best assays 0.15/8.0' from 105.0' - 113.0' and 0.09/9.0' from 127.0 - 136.0 or 0.08/31.0' from 105.0' - 136.0').

J80-7, -70[°] to 317.0'. At 10+50E and 1+30N. To test a mag low. (Best assay 0.09/17.5 from 221.5'/239.0').

J80-8, -45° to 437.0'. At 6+30E and 0+80S. To test a mag low. (Best assay 0.22/62.0' uncut, or 0.16/62.0' cutting a high erratic to 1.0 oz; from 356.0' - 418.0').

J80-9, -34° to 257.0'. At 23E and 0+30S. To test a mag. low. (No significant values).

In short, 3 holes were drilled to test induced polarization anomalies. One hole (J80-2) returned ore-grade assays. 6 holes were drilled to test magnetic low anomalies, and 5 returned ore-grade values over wide stoping widths.

The obvious correlation between gold ore and magnetic low anomalies is remarkable. This was not known prior to this exploration program by Bridgeview.

Magnetic low anomalies recommended for drilling

 Lines 18W-14W at 1+00N. Peak low 40 gammas. This is above a known oreshoot on the 200 foot level. Six holes, each 250 feet long, are recommended to verify width and grade. 2. Lines 12W-10W in lake off north edge of small island at 12+00N. Peak low -430 gammas. This could be drilled from the island but would necessitate a helicopter move. Two holes each 250 feet long are recommended to assess the ore potential.

4/

- 3. Lines 12W-10W at 1+50S. Peak low 22 gammas. One 250 foot hole on line 11+00W is recommended.
- 4. Lines 4W-2W at 4+50S. Peak low -20 gammas. Can be drilled from shore with one 300 foot hole.
- 5. Line 4W at 5+00S to Line 2W at 9+00S. This is a strong -20 gamma anomaly some 100 feet in width and a 500 foot strike length. This could be tested from shore with a 650 foot hole.
- 6. Lines 1E-5E at 0+75N and 2+50N respectively. Peak low -200 gammas. This warrants two 250 foot holes.
- Lines 4E-6+50E at 0+25N-1+00N. Peak low -100 gammas. Three holes of 250 feet each are recommended.
- 8. Lines 4E-7E at 1+50S-2+100S. Peak low -770 gammas. This is an excellent target, 50 feet wide and 300 feet in length, and three holes each 200 feet long are recommended.
- Lines 6E-13E at 2+N. Peak low -90 gammas, 40 feet wide. This was drilled in the present program, and the results follow:
 Line 6+30E, hole 8 -45⁰ 0.16 oz. Au/ton over 62.0 feet.

Line 7+50E, hole 4 -45° 0.08 oz. Au/ton over 58.0 feet. hole 5 -70° , 0.06 oz Au/ton over 82.7 feet. Line 10+50E hole 6 -45° 0.23 oz Au/ton over 3 feet and 0.09 over 9.0 feet. hole 7 -70° 0.09 oz Au/ton over 17.5'

This indicated ore zone should be further tested with six holes aggregating 1000 feet.

- 10. Lines 8E-16E at 1+50 2+00S. Peak low 40 gammas. This is 60 feet wide, and requires three 200 foot holes for evaluation.
- 11. Lines 14-26E from 2+00N to the Base Line at 24E. Peak low -210 gammas. Needs one 150 foot hole on line 15E.
- 12. Lines 7-10E at 55 and 6+505. Peak low is 10 gammas. This is a good target, and warrants testing with one 200 foot hole to evaluate this 30 foot wide anomaly.
- 13. Lines 28-38E (still open to E). Peak low 200 gammas. Anomaly width is 300 feet. Merits one 300 foot hole from the shore.
- 14. Lines 23-31E at 6+005 and 8+005. Peak low 50 gammas. This is 200 feet wide, and could be tested with a 350 foot hole from the shore.

To summarize, fourteen surface drill targets, with excellent exploration potential for gold lie in favourable geology, within reach of the underground workings. The strength and width of these anomalies warrants drill testing, as substantial additions to the presently indicated ore might be possible.

SUMMARY OF UNDERGROUND SAMPLING

Contraction of

 Thirteen representative samples were taken by the undersigned from the 200 foot level. Assays were carried out by Bell White at Haileybury and were double checked by them.

Only one of the samples was not ore-grade. The underground examination showed that the sulphide contest of the ore is generally 1% or less, and the best gold values are intimately associated with dark grey quartz, carrying graphite and molybdenite.

Dilution by sloughing is predicted to be minimal when production is resumed as the wallrock is very competent.

A tabulation of the excellent sampling results follows:

Sample No	. Width Ft.	oz Au/ton	Remarks
7040	2	0.18	Face of west drift
41	2	0.19 <u>0.15/6.0'</u>	
42	2	0.09	
43	6	0.13	Back, 6' east of west drift face
44	5	0.19	West stope breast 15' above track 10' east of west drift
45	2	0.31	face
46	5	0.60	8' below track in raise to 350
47	5	0.40	12' below track in raise to 350
48	7	0.03	East stope breast 10' above track
49	0.3	0.36	Character sample of steep stringer near raise to 350 level
50	15	0.13	Slash at drift elevation.
51	-	0.17	Drift muck representing 400' of stoping at a minimum of 10' width.
7052	-	0.17	Drift muck representing 300' of stoping at a minimum of 10' width.

PROFESSIO RECISTER STATE 22 GINEER GRAHAM PROLINCE OF ONTARD

7/

BRIDGEVIEW RESOURCES INC.

									Page	1 of	3
Townshi	l p		Claim		Length	Dip	AZ E	levati	on T	ests	
Osway					<u> </u>	90		•			
Locatio	on 24E	1+2	55								
Started	3		Completed			Core		Contra	actor	Barr	ons
Logged	by P.	Brown	n					4	+····		••••••••••••••••••••••••••••••••••••••
From	То	Des	cription		*	No.	From	То	Ft	Au	Average
0	16	Cas	ing			3012	88.5	90.5	2.0	0.01	1
14	38	Con ch1	glomerate da oritic with	rk gro	een, erable	3013	90.5	94.0	3.5	TR	
	1	wel dar	l rounded to k grey, pale	sub-a green	angular n.	3014	94 · o	96 • 0	2.0	0.005	
38		Gen	erally aphan pebbles to	itic : 3". Ma	fragments	3015	96 • 0	98.3	2.3	0.002	
		to	strongly magnet	netic ite ci	through-	3016	98.3	99.2	0.9	0.002	
		to men	1/8". Some of ts/pebbles at	f the re rin	frag- nged by	3017	114.5	117.0	2.5	0.01	
		fin sul	e euhedral p phide content	yrite. t less	. Overall s than	3018	130.5	131.2	0.7	TR	
		1/2 ⁴ epi	%. Consideral dote. N.B. at	$ble_{t} = 20$	oizite/- B' the	3019	15500	156.5	1.5	0.002	
		pebl dran numl more magn At core	bles/fragment matically red bers and the e like a gray netics don't 49' weak oper e axis.	ts are luced rock ywacke chang i sean	in becomes e. (The ge). n, 45 ⁰ to	3020	216.0	220 ·o	4.0	0.002	
62	63	Weal cont	k shear 60 ⁰ t formable fine	co CA, e euhe	, local edral PY.						
63	64	1%	fine euhedral	PY							1
65	66	One dise axie	1/2" streak seminated PY	of 20 30° t)% 20 core						
66	67	1-3° 1/2' CA, (no blet diss sube stro core	% fine euhedr ' quartz stri sulphides) a oby 2" patch seminated euh euhedral PY a ong open slip e axis.	al PY nger lso o of he nedral djace 15	and one 50° to one avily and ont to to						
75	82	Oper core core at	n fault slip e at very sma e axis. Weak 90° core ax	rolli 11 an slick is.	ng along gle to ensides						

HOLE NO.J-80-1.

BRIDGEVIEW RESOURCES INC.

Page .2. of 3...

From	То	Description	No	From	То	Ft	Au	Average
88.5	90.5	Two open 1/2" seams 60° to CA, vuggy + 3% fine PY and one 1/2" quartz stringer, 60" to CA with 3-5% fine euhedral PY, and hairline QC stringers 35-40 to CA.						
90.5	92.0	Less than $1/2\%$ fine PY and scattered hairline. Q.C. thread veins $35 - 40^\circ$ to C/A.						
92.0	94.0	1% fine PY and scatt QCths as above.						
94.0	96.0	1% fine PY and scatt QCths as above.						
96.0	98.3	1% fine PY scatt QCths as above.						
98.3	99.2	2-5% fine euhedral PY and 1/8" PY 30".						
		N.B. at 102 one 1/8" grain of CPY.						
		N.B. at 102.2 strong open fault slip 25 ⁰ to CA Slickensides ell to CA, i.e. V						
		N.B. at 104 strong open fault slip 40 ⁰ to C.A.			•			
114.5	117.0	2-3% fine euhedral PY and occ black tourmaline crystals. Several low angle slips in this section.						
		N.B. at 126' blebby areas of tourmaline Crystals.					·	•
130.5	131.2	One 1/2" Qtz carb stringer 35° to CA - 1% PY. Numerous	·					
155.0	156.5	open slips 35 - 50° to CA. Five 1/4" QC threads, with 2-5% fine PY, and greater						
Logged	to 199'	than 1% PY (Much Less mag towards end).						
at	204.3	Vuggy cb slip 25 ⁰ to C/A - carb/py/gpi.						
207.5	210	45 to 50 [°] to C/A open vuggy Cb veins less than 1/8" at 212 1/8" pink Cb 40 [°] to C/A					-	
i		slickensides and fine py						

HOLE NO. J-80-1

BRIDGEVIEW RESOURCES INC.

Page .3. of .3.

From	То	Description	No	From	То	Fť	Au	Average
216.2	220	3/4" carb vein down core + 5 TO 10% euhedral py + GRAPHITE FLAKES. Some Red Hematatite stain.						
Hematit at	228	1/8" pink cb vein 40 [°] to C/A. 1/2" pebbles seen and still magnetic, py content about 1%.						
at	244	Irregular Qtz CB STRINGER PLUS PY SOME CPY.						
247.3		END OF HOLE						
16/Dec.	1980	P. Brown						
					1			
			·			, ,		• • •
							1	

HOLE NO. J-80-2

2

BRIDGEVIEW RESOURCES INC.

Toursh	10	Clair	l enn+h	nin	<u>م</u> ۲ (lave+ h	rage on T	I OT	f
	14		Length	45		LIGVALI		UB - 42	0
Locatio	on 8+00	E 4+00S	I			· · · · · · · · · · · · · · · · · · ·		0 - 42	
Starte	8	Completed		Core		Contr	actor	Barro	ns
Logged	by P.	Brown							
From	То	Description		No.	From	То	Ft	Au	Average
0	16	J-80-2 Casing			161.5	164.0			
16	35.9	Carbonated sheared Crushed? dissem cp	sediment? y, py some	3021			2.5	TR	
		hematite. Slips $45^{\circ}/50^{\circ}$ to C	/A. Narrow Less than	3022	164	169	5	.005	
]	1/2% sulphides. NO	N-MAGNETIC	3023	169	174	5	.005	
35.9	54	Strongly sheared 6 C/A euhedral py 40.8 cb veining 55	5 to 75° to 75°	3024 3025	174 179	179 184	5 5	TR .01	
		some cpy		3026	184	189	5	.005	
54	117	Sheared Granodiori ritic 1/2 to 1% eu	te porphy- hedral	3027	189	194	5	.005	
		pyrite. Shearing 40 Core badly broken a) to C/A. until 118.5.	3028	194	199	5	.035	
		114-15 pink.	•	3029	199	204	5	.07	
		Begins to get magne	etic at 107'	3030	204	229	5	.11	
117		Conglomerate/magnet ing 45° to C/A 128	tic shear- 5 pink 0 to C/A.	3031	209	213	4	.08	
		135.5 open vuggy ca veins.	alcite	3032	213	217.5	4.5	.075	
		Magnetic to 176'. 161.5 becoming shea	ared 70% to	3033	230	233.	.3.	.005	· · -
		C/A and pale in col Graphitic seams.	our.	3034	244	246	2	.025	
		175 - 175.8 at 173	py and	3035	303	306	3	.415	
		some graphite.		3036	246	251	5	TR	
		at 161.5. Some mari	ng starts posite	3037	251	256 _.	5	TR	
		stringers at all ar	igles.	3038	256	261	5	TR	
188	232.5	Pale gray crushed g rite at 197.8. Gree	ranodio- en maripo-	3039	261	266	5	TR	
		site 70° to C/A cru brecciated gray qua	ished irtz	3040	266	271	5	TR	
		sections and bluish sections.	coloured	3041	271	276	5	TR	

HOLE NO.J-80-2.

BRIDGEVIEW RESOURCES INC.

~

	1	1					Page 🖓	5. of 5
From	То	Description	No	From	То	Fť	Au	Average
at 232.5	209.9	Rusty fracture 50 ⁰ to C/A. Weakly magnetic pink section.	3042	276	281	5	TR	
202,0		Magnetic still gray but paler sections in places at 250'	3043	281	286	5	.02	
		qtz vein plus tourmaline at shallow angle to core.	3044	286	291	5	TR	
		3/4 to 1" wide. Minor white cb a little cpy.	3045	291	296	5	.005	
255.7	270	paler section.	3046	296	301	5	TR	
271.7	273.2	Pink section with qtz/cb and tourmaline stringers. Numer-	3047	301	303	3.0	.005	
		stringers at all angles to		(303	306	0.41	oz/te	n)
		At 286 higher by content BUT	3048	306	309	3	TR	
		MAINLY VERY LOW.	3049	309	312	3	TR	
304.5 310	305	Bluish gray qtz. 2"_Qtz tourmaline + cpy vein	3050	312	316	4	TR	
		35 ⁰ to C/A. Pink from 309 - 315.5. Some magnetite	3051	316	319	3	TR	
		crystals.	3052	319	322	3	TR	
335		Quartz tourmaline + cpy vein 15 ⁰ to C/A at 342 some	3053	322	326	4	TR	
24.0		magnetite.	3054	326	329	3	R	
348		END OF HOLE	3055	329	334	5	.01	
			3056	334	339	5	TR	
			3057	339	344	6	TR .	
						1		
			•					
	1 1	1	1	I	I	1		,

HOLE NO. J-80-3.

BRIDGEVIEW RESOURCES INC.

							Page	1 of	.2
Townsh	1p	Claim -	Length	Dip	AZ	Elevati	<u>on · - · · T</u>	ests	
<u>Osway</u>			<u> </u>	45	S			354 - 4	420
Locati	on 2E	5 + 50N							
Starte	d	Completed		Core		Contr	actor	Barron	16
Logged	<u>by</u> Р.	Brown		+	·····		+		1
From	То	Description		No.	From	То	Ft	Au	Average
0	11								
11	89	Grey and pink conglor 1/4 to 1" fragments. Q.v's 40° to C/A + py spec. 16 - 33 pink. Fine co less than 1/8". 47.5-84 pink non magn Rusty seam at 56'. 60 66-68 rusty and broke	nerate - At 21-22 y, cpy, onglom netic.) to C/A.						
89	117	Porphry (Jerome porph 1/8" qtz clasts. Py of fine xtals and on sli magnetic. Badly fract broken.	nyry?) cpy in ips. Non cured and						
117	164	Pink conglomerate, oc py. seams. 1/2 to 1% places. Magnetic incl 127-128 sample. 153-156 - 1% py	ccasional py. in usions?						
164	183	Badly broken and fine porphry	Py 1%						
183	232	Pinkish conglomerate.							
213	215	Lamprophyric intrusic lost in vuggy hole.	on water						
216.5	217	Qtz vein + cpy.							
232	260	Greenish colour.							
at	243	QV + tourmaline.							
260	269	Pinkish							
269	270	Greenish + numerous q 45 ⁰ to C/A.	tz vein						

HOLE NO. J-80-3

BRIDGEVIEW RESOURCES INC.

Page ...? of .?.

From	То	Description	No	From	То	Fť	Au	Average
288	354	Greenish + numerous qtz vein.						
306	308	Qtz cb stringers 45 ⁰ to C/A.	1					
354		END OF HOLE						
No sam	ling to	date.						
								-
				•	•			
								•
			i					
,								
	i	Ι	Į	I	ł	1	1	

HOLE NO. J-8Q-4

.

BRIDGEVIEW RESOURCES INC.

Toursk		Claim	Length	Din	A7 5	lavath	rage on T	I OT .	•4 • •
Oswa	v		196	45		.icvatn		$\frac{6313}{96'-40}$	$-1/2^{\circ}$
locati	on 7+50	E 1+30N							
Starte	d	Completed	T	Core		Contr	actor	Barror	18
Logged	by P.	Brown	······						
From	То	Description		No.	From	То	Ft	Au	Average
		Casing driven 8	1	3058	16.5	20	3.5	TR	
0	5 or			3059	20	25.	5.5	R	
0	6	Rusty seams - b	roken ground.	3060	25.5	30.5	5.0	TR	
5		Med to dark gre	y non-magnetic iorite r to	3061	30.5	35.9	5.0	TR	
		solid rock. Py Some milky blui	content low. sh guartz/cb	3062	35.5	40.5	5.0	TR	
		stringers 1/8" grey larger qua	20'-30 paler rtz/cb veining	3063	40.5	45.5	5.0	TR	
		30° to 55° to C - 80% qtz/cb 24	/A 21-22 '-25 1" qtz cb	3064	45.5	50.5	5.0	TR	
		vein 20° to C/A 27-29 Rusty fra	ctures and blue	3065	50.5	57	6.5	.005	
		qtz. Fault - 15	⁰ to C/A.	3066	57	63	6.0	.055	
41	42	Pale grey 1/4" to C/A.	bluish qtz 60 ⁰	3067	63	66	3.0	TR	
52	54	Heavy qtz cb ma	terial.		bro	core ken vu	oniy.a g grou	nd 12"	lost!!)
57		Main .blue qt	z and cb zone	3068	66	71	5.0	.025	
		begins. Numerou and stringers g	s qtz/cb vein s reater than	3069	71	76	5.0	.05	
		1/8" at all ang	les to C/A.	3070	76	81	5.0	.175	
72	88	Much blue mater sheared and carl	ial strongly bonated	3071	81	86	5.0	.235	
		82.5 heavy blue	grey.	3072	86	90	4.0	.05	
01	104	Paddiah aalaurat	grey.	3073	90	95	5.0	TR	
71	104	graphite? + py.	97.5 rusty	3074	95	9,7	2.0	.025	
109	129.3	Heavy blue grey	and carb - ore	3075	97	102	5.0	.005	
107		zone! #2.		3076	102	108.5	6.5	.005	
		112.5 0.7' grey	blue.				-		
	ł								

BRIDGEVIEW RESOURCES INC.

고문

Page² of²

				_		P	age 🐍	. of	
From	То	Description	No	From	То	Fť	Au	Average	
129.3		Darker grey and more py. Many small stringers. 30° to 60°	3077	108.5	110.5	2.0	.145		
		to C/A. Most 45° to C/A.	3078	110.5	114	3,5	.36		
		141- tourmaline, in qtz/cb.	30 79	[·] 114	115	1.0	.045		
165.5		$3^{"}$ qtz vein + tourmaline 60° to C/A.	3080	115	120	5.0	.025		
		184-5 tourmaline in qtz cb	3081	120	125	5.0	.035		
		vein.	3082	125	129	4.0	.07		
	196	191-196 pink colouration. END OF HOLE	3083	129	131.5	2.5	.00	I	
			3084	131.5	136.5	5.0	TR.		
							·		
			·. ·						
				•					
			•	•	•	•	•		
	Page 1 of								
--------	-----------	---	---------------------------------------	------	-------	---------	-------------	-------	-----------------
Townsh	1p -	Claim	Length	Dip	AZ	Elevati	<u>on 1</u>	ests	
Osway	1			70	N			307 -	70 ⁰
Locati	on 1+30	<u>0N 7+50E</u>							
Starte	d	Completed		Core		Contr	actor	Barr	ons
Logged	by P.	Brown	·····	•			-1	-	·
From	То	Description		No.	From	To	Ft	Au	Average
0	1.5	Casing		3085	4.3	5.3	1.0	TR	
1.5	29.6	Dark grey grano-d	iorite weakly	3086	20	25	5.0	TR	
		magnetic. 2.7 1/2" qtz cb v	ein 40 ⁰ to	3087	25	29.6	4.6	TR	
		C/A. 3.3 1/4" qtz cb v	ein 80 ⁰	3088	29.6	32.2	2.6	.025	
		4.6-5.2 qtz rich 6.3 1/4" qtz cb v	section ein 30 ⁰ to C/A	3089	32.2	37.0	4.8	TR	
		6.8, 6.9, 7.1 qtz 1/8" 60° to C/A	cb stringers	3090	37	42	5.0	.005	
		12.5 1/4" qtz cb 60° to C/A	+ tourmaline	3091	42	47	5.0	.005	
		12.8 1/2" rusty q to C/A	tz vein 50°	3092	47	52	5.0	TR	
		Paler grey 11.5-1 intrusion	8. at 14" 1"	3093	52	57	5.0	TR	
		19.5-20.5 broken	& rușty fault.	3094	57	67	10.0	.005	
29.6	32.2	Qtz cb vein & blu breccia.	ish Qtz fault	3095	67	77	10.0	.005	
32.2	35	As 1.5 to 29.6 30	⁰ top 20 ⁰ to	3096	77	78	11.0	.005	
		C/A bottom. Rusty	top contact.	3097	78	88	10.0	TR	
35	45	Numerous small st through core. Non	ringers all magnetic 45'	3098	88	98	10.0	TR	
35	117.8	onward. Grey weakly magne	tic grano-	3099	98	108	10.0	TR	
		38.5-39 rusty fra	e stringers. ctures.	3100	108	117.8	9.8	TR	
		43.6-44 Qtz cb +	tourmaline	7053	117.8	122	4.2	TR	
		00 to U/A.	veining atz	7054	122	133	11.0	TR	i
		cb vein at $-63-6$ 66.0. 72.0. 76.0.	3.2, 64.3-4,	7055	133	143	10.0	TR	
		20° to C/A and 70	to C/A.	7056	143	153	10.0	.005	
117.8	120	Brecciated zone b 55° to C/A 124-5	egins. Contact rusty & qtz	7057	153	156	3.0	TR	
		vein.	 -	7058	156	157.5	1.5	.005	
	ł	1	1		[1 1		1 1	

BRIDGEVIEW RESOURCES INC.

Page 2. of 2.

From	То	Description	No	From	То	Ft	Au	Average
					1	1	1	[
120	163.8	Greyish + qtz cb veins many pinkish colour 128-130, 139.5-144.0 at 137 weak	7059	157.5	164.3	7.2	TR	
		magnetic.	7060	164.3	166.3	2.0	.005	
		cb veining.	7061	166.3	170.6	4.3	.12	
164.3	181.3	Sheared zone + blue cb/qtz c/b Contact 50° to C/A.	7062	170.6	173.0	2.4	.02	
at	173	Good sulphides with blue qtz.	7063 7064 7065	173 1 78·3 181.3	178.3 181.3 185.5	5.3 3.0 4.2	0.09 .10 .10	
181	181.3	Bluish qtz 30° to C/A.	7066	185.5	195.5	10.0	.035	
181.2	197	Heavy narrow stringers in altered zone.	706	195.5	205.5	10.0	.005	
197	207	Few stringers.	7068	205.5	215.5	10.0	.005	
207	223	Heavy stringers at all angles	70 69	215.5	224.5	9.0	.005	
		to C/A 40 , 45 ⁻ , 60 ⁻ . 220-221 tourmaline in	7080	224.5	229.5	5.0	.135	
	stringers.	707¢	229.5	232.0	2.5	.19		
223	251.5	Bluish qtz. & cb veins brecciated.	7072	232	237	5.0	` 015	
237	250	Angular blue qtz in carb	707 3	237	242	5.0	.12	
		matrix. More white carb than bluish qtz.	7074	242	247	5.0	.135	
251.5		Contact zone - contorted.	707 5	247	251.5	4.5	.025	
251.5		Dark grey grano-diorite + 1	707 6	251.5	256.5	5.5	rr	
		veins. Weakly magnetic in places. May be low grade	707 7	256.5	261.5	5.0	rr I	·
			· ·					
	307	END OF HOLE						
	ļ							
	I	1					ł	

Townsh	In	Claim la	enath	Din	A7 I	Elevati	on 1	lests	
Oswa	ay			45	N			,	
Locati	on 10)+50E 1+30N			al an		a na sa		
Starte	d	Completed		Core		Contr	actor	Bar	rons
Logged	by P	Brown		*******		+	******	-	
From	То	Description		No.	From	То	Ft	Au	Averag
2	6	(Casing run to 10').	•	10201	36	37	1.0	TR	
6	10	Pink grano-diorite + to	ourma-	10202	52.5	53.5	1.0	TR	
		line.		10203	64.9	66.0	1.1	.045	
10	31 Greyish green. A few cpy specks and some py. with		y h	10204	66	72.5	6.5	.005	
		45° to C/A also 60° and	40 & 70°.	10205	72.5	73.5	1.0	.015	
		Weakly magnetic. 16.4-5 qtz cb vein 70°	to C/A	10206	73.5	79	5.5	.005	
		+ tourmaline. 17.2-3 pale yellow carb	in	10207	79	81	2.0	.005	
		tension fraction 10° to 22.1 1/2" qtz vein 50°	C/A. to C/A.	10208	81	83.5	2.5	.005	
		28.1 1/2" qtz vein 50° + tourmaline + rusty fr	to C/A acture.	10209	83.5	85	1.5	.06	
31	44.5	5 Pinkish colour fine py greater than 1/2%. Some narrow qtz veins, bluish, e.g. at 36.2	greater	10210	85	91	6.0	.005	
			10211	91	95	4.0	.02		
		1/4" qtz + tourmaline 7 C/A.	0 [°] to	10212	95	105	10.0	.005	
44.5	56.2	Grey colour at 58 appea	rs	10213	105	108	3.0	.23	
		bedded li K e fine conglo	m.	10214	108	113	5.0	.01	
56.2	56	Pink colour cpy in tens fractures 5 to 10° to C	ion /A also	10215	113	117.5	4.5	.01	
		disseminated cpy.		10216	117.5	122	4.5	.01	
56	66	Greyish colour.		10217	No	ample	this	Number	
65.2	66	Blue qtz cb vein 40° to blue qtz brecciated.	C/A	10218	122	127	5.0	.005	
66	95	Pink colour. Specularit	e in	10219	127	130.5	3.5	.12	
		seams 30 [°] to C/A. Few s cpy dissem throughout.	pecks Breccia-	10220	130.5	134.5	4.0	.045	
		ted seams. 78.3-5 brecciated blue	qtz in	10221	134.5	136	1.5	.11	
		cb vein 40° to C/A + 1% heavy patches.	py in	10222	136	139	3.0	.005	
				•		1			

Daga	2	. E	2
rage		OT	

							Page	. of
From	То	Description	No	From	То	Ft	Au	Average
		79.6-80.5 brecciated blue qtz	10223	139	145	6.0	.005	
		and heavy py 35° to C/A at 82 open vug + py + cb 35° to C/A.	10224	145	149	4.0	.005	
		83.7-85 brecciated blue qtz 50° to C/A.	10225	149	155	6.0	.005	
		89-89.4 qtz tourmaline vein + cpy 40° to C/A.	10226	155	161.5	6.5	TR	
		94-9 brecciated blue qtz and heavy py.	10227	161.5	167.5	6.0	.005	
107	107.6	Brecciated blue qtz 56° to	10228	167.5	173.5	6.0	TR	
		C/A. Also 1" solid blue 1% sulphide.	10229	173.5	177	3.5	.005	
		veins at all angles. Mainly	10230	177	180	2.0	TR	
117.5	118.5	45 . Brecciated blue qtz + cb.	10231	216	223	7.0	TR	
128	129	Brecciated blue qtz.						
134	135	Heavy solid vein material. Brecciated and recemented.						
139.2		Green mariaposite spot.						
134.5	177	Solid "vein" material at 176 40° to C/A.						
177		Pink highly siliceous with small qtz tourmaline veins + cpy, also magnetic spots qtz veins 35 to 60° to C/A.						
203	228	Jerome porphyry ? + heavy py + magnetic patches.					·	
229.5	240	Greenish grano-diorite?						
240	247	Pink grano-diorite and black magnetic patches.						
247	-	END OF HOLE						
	l				1			

								Page	l of ,	.2
Townsh	İp		Claim	Length	Dip	AZ	Elevati	on 1	lests	
Osway	,	.		_	70	N			317 -	74
Locati	on 1	0+50E	1+30N						+	
Starte	<u>d </u>		Completed		Core		Contr	actor	Barr	ons
Logged	by 1	P. Bro	own		1	<u> </u>	1	1	1	1
From		Des	cription		No.	From	То	Ft	Au	Average
0	4.5	Cas	ing		10232	74.5	75.5	1.0	TR	
4.5	16.6	Pin	k magnetic gra zito?) Magneti	no-diorite	10233	95.5	96.5	1.0	.015	
			ely disseminat	ed py.	10234	119	120	1.0	TR	
16.6	20.6	0.6 Fractured and infilled by greenish material (lamprophy- ric).		10235	141.5	143.5	2.0	TR		
				10236	205	207	2.0	.005		
		Nume 65 ⁰	Jumerous qtz veins 1/8 to 1/4" 5 ⁰ to C/A mainly. A few at		10237	207	214	7.0	TR	
		35~	•		10238	214	216.5	2.5	.005	
32	33	Grey	y section + qt	z veins.	10239	216.5	221.5	5.0	.045	
42	52	Grey 30	y section + qt to C/A.	z stringers	10240	221.5	223	1.5	.01	
59	63	Incl	lusions in gra	no-diorite.	10241	223	229.5	6.5	.115	
		Diss thro	sem cpy, py ma oughout.	gnetite	10242	229.5	231	1.5	.01	
74.5	75.5	Qtz	cb + sulphide	s.	10243	231	239	8.0	.09	
95	96	2% I	Py + cpy QV's	30°70°45°.	10244	239	247	8.0	.005	
95.5	96.5	1 to) 1% ру, сру а	lso an	10245	247	252	5.0	.015	
	}	incl	usion into he	avy py.	10246	252	260	8.0	.055	
119	120	fine blue	e stringers of e qtz some py	brecciated in cb matrix.	10247	260	267	7.0	.01	
141.5	143.5	Qtz	cb seams + py	, сру.	10248	267	271	4.0	.03	
142	151	Grey	section.		10249	271	273.	2.0	.01	
166	178.5	Gree	enish grey sec to 204.	tion. Magne-	10250	273	278	5.0	.01	
206	207				10251	278	283	5.0	.005	
200	207	py +	t zone open & graphite.	vuggy + cb +	10252	283	288	5.0	.005	

BRIDGEVIEW RESOURCES INC.

Page .2. of .2.

From To Description No From To Ft Au Average 207 Greyish 4 qtz cb + brecciated blue qtz. 10253 288 293 5.0 .015 215 216 Heavy blue qtz. 10255 298 202 4.0 .005 222 3 Heavy blue qtz. 10255 298 202 4.0 .005 230 31 Heavy blue qtz. 10256 303 308 5.0 TK 247 297.9 Vein zone with brecciated blue qtz Mo52 + Py. 10259 313 1.0 TK 252 260 27, + py. 10259 313 316 3.0 TK 297.9 312 Grey grano-diorite qtz veins at steep angles 70-80° to C/A. Non magnetic - may assey. 10259 313 316 3.0 TK 317 END OF HOLE Integration of the							•	aye	• 01 • • •
207 Creyish 4 qtz cb + brecciated slue qtz. 10253 288 293 5.0 .015 215 216 Heavy blue qtz. 10255 298 202 4.0 .005 222 3 Heavy blue qtz. 10255 298 202 4.0 .005 220 3.1 Heavy blue qtz. 10256 303 308 5.0 TR 230 3.1 Heavy blue qtz. 10257 308 312 4.0 TR 247 297.9 Vein zone with brecciated blue qtz MoS ₂ + py. 10258 312 313 1.0 TR 252 260 27. + py. 10259 313 316 3.0 TR 297.9 312 Some brecciated blue qtz. 10259 313 316 3.0 TR 312 313 Some brecciated blue qtz. 1.0 I.0 I.0 I.0 I.0 317 END OF HOLE I.0 I.0 I.0 I.0 I.0 I.0	From	То	Description	No	From	То	Ft	Au	Average
215 216 Heavy blue qtz. 10254 293 298 5.0 .02 222 3 Heavy blue qtz. 10255 298 202 4.0 .005 230 31 Heavy blue qtz. 10256 303 308 5.0 TR 247 297.9 Vein zone with brecciated blue qtz. 10258 312 313 1.0 TR 252 260 2% + py. 10258 312 313 1.0 TR 297.9 312 Grey grano-diorite qtz veins at steep angles 70-80° to C/A. Nom magnetic - may assey. 10259 313 316 3.0 TR 312 313 Some brecciated blue qtz. 10 10 10 10 10 317 TO OF HOLE NO menterial and assey. 10 10 10 10 10 10 10 317 END OF HOLE Index in the state of t	207		Greyish + qtz cb + brecciated blue qtz.	10253	288	293	5.0	.015	
222 3 Heavy blue qtz. 10255 226 4.0 .003 230 31 Heavy blue qtz. 10256 303 308 5.0 TR 247 297.9 Vein zone with brecciated blue qtz. 10258 312 313 1.0 TR 252 260 2% + py. 10259 313 316 3.0 TR 257.9 312 Orey grano-diorite qtz veins at steep angles 70-80° to C/A. Non magnetic - may assey. 10259 313 316 3.0 TR 297.9 312 Some brecciated blue qtz. 10259 313 316 3.0 TR 297.9 312 Some brecciated blue qtz. 10259 313 316 3.0 TR 297.9 312 Some brecciated blue qtz. 10259 313 316 3.0 TR 312 313 Some brecciated blue qtz. 10 10 10 10 10 10 317 END OF HOLE Independent in the second in the s	215	216	Heavy blue qtz.	10254	293	298	5.0	.02	
230 31 Heavy blue qtz. 10257 308 312 4.0 TR 247 297.9 Vein zone with brecciated blue qtz. MoS2 + py. 10258 312 313 1.0 TR 252 260 2% + py. Crey grano-diorite qtz veins at steep angles 70-80° to C/A. Non magnetic - may assey. 10259 313 316 3.0 TR 312 313 Some brecciated blue qtz. END OF HOLE Intervention of the steep angles role of the steep anglesteep angles role of the	222	3	Heavy blue qtz.	10255	303	308	4.0	.005 TR	
247 297.9 Vein zone with brecciated blue qtz MoS ₂ + py. 10258 312 313 1.0 TR 252 260 2% + py. 10259 313 316 3.0 TR 297.9 312 Grey grano-diorite qtz veins at steep angles 70-80° to C/A. Non magnetic - may assey. 10259 313 316 3.0 TR 312 313 Some brecciated blue qtz. Image: Some brecciated blue qtz. 317 Image: Some brecciated blue qtz. 317 Image: Some brecciated blue qtz. 317 Image: Some brecciated blue qtz. Image: Some brecciated blue qtz. Image: Some brecciated blue qtz. Image: Some brecciated blue qtz. Image: Some brecciated blue qtz. Image: Some brecciated blue qtz. Image: Some brecciated blue qtz. Image: Some brecciated blue qtz. Image: Some brecciated blue q	230	31	Heavy blue qtz.	10257	308	312	4.0	TR	
252 260 2% + py. 297.9 312 Grey grano-diorite qtz veins at steep angles 70-80° to C/A. Non magnetic - may assey. 312 313 Some brecciated blue qtz. 317 END OF HOLE	247	297.9	Vein zone with brecciated blue qtz MoS ₂ + py.	10258	312	313	1.0	TR	
297.9 312 Grey grano-diorite qtg veins at steep angles 70-80° to C/A. Non magnetic - may assey. 312 313 Some brecciated blue qtz. 317 END OF HOLE	252	260	2% + py.	10259	313	316	3.0	TR	
312 313 Some brecciated blue qtz. 317 END OF HOLE	297.9	312	Grey grano-diorite qtz veins at steep angles 70–80 ⁰ to C/A. Non magnetic – may assey.						
317 END OF HOLE	312	313	Some brecciated blue qtz.						
	317 —		END OF HOLE						
	-								

ownsh	ip	Claim	Length	DIP	AZ E	Elevati	on	l es t ŝ	
Osway				45	N			437'44-	·1/2°
ocati	on 6+3	30E 0+80S						•	
tarte	d	Completed		Core		Contr	actor	Barr	ons
ogged	by ¹	P. Brown				4			6
rom	То	Description		No.	From	То	Ft	Au	Averag
0	51	Overburden (Casing to	52')	10260	69	77	8.0 (cpy	Tr	
51	58.4	Pink grano-diorite.	i i	10261	77	82	seam) 5.0	TR	
62	65 Qtz tourmaline vein in core & 30° to C/A also		n side of o cpy at	10262	82	87	5.0	.005	
		63.		10263	87	91.5	4.5	.005	
58.4		at 63	through	10264	116	121	5.0	.005	
		out greater than 1%.	y through-	10265	126	127	1.0	TK	
58	58.5	Qtz cb + fine py.		10266	132	137	5.0	TR	
73	74	Cpy in qtz vein 45° to	D C/A.	10267	137	140	3.0	TR	
59	83	Numerous qtz (bluish) + carb veins 45 & 60	veining to C/A.	10268	140	145	5.0	.005	
	01 *			10269	150.5	152	1.5	.005	
60	91 ^	sulphide.	qtz line	10270	154	156	2.0	.005	
16	120.5 *	Blue qtz breccia in C/	A. Rock	10271	156	162	6.0	.01	
		altered.	iere	10272	205.5	208	2.5	.005	
32	135	Greenish + blue qtz &	carb.	10273	211	212.5	1.5	.005	1
40	144.5	Greenish + blue qtz &	carb.	10274	242.5	251.5	9.0	.005	
		py.	u rrne	10275	251.5	257	5.5	.005	
51	152	Blue qtz breccia in ca	irb.	10276	257	258.5	1.5	.005	
54.5	156	Qtz vein + tourmaline. atz veins 1/4" everv 3	Grey -	10277	267	268.5	1.5	.01	
50		50° to C/A W 80°.		10278	268.5	274	5.5	.01	
		Qtz veins 10% + of to Py.	tal 1/2%	10279	27.7	287	11.0	.005	
				10280	287	297	10.0	.005	
				Í0281	297	307	10.0	.005	

BRIDGEVIEW RESOURCES INC.

		1		•			Page 2	of .2.
rom	То	Description	No	From	То	Ft	Au	Average
196	186	Weakly magnetic. Pyritic	10282	351.5	356	4.5	0. 005	
		core with qtz veins, e.g. 205.5-208, 211-212.5, 243-260.	10283	356	360.*	4	0.09	
243	260	Veining 45° to C/A and 65° to	10284	360	368	8	0. 02	
		C/A.	10285	368	373.5	5.5	0. 01	
267	309	Veining 45 [°] to C/A and 65 [°] to C/A.	10286	373.5	381	7.5	0. 30	
309		Pinkish and qtz veins have	10287	381	382.*	1.0	4.41	
		cpy & tourmaline. Magnetic section.	10288	382	384.5*	2.5	0.565	
321		Greenish + qtz veins.	10289	384.5	390	5.5	0,26	
356	418 .0	Heavy 'vein' material. Blue	10290	390	395	5.0	0.11	
		qtz breccia zone. Zone approx 45° to C/A to 60°.	10291	395	402.5	7.5	0.07	
360		VG in black section.	10292	402.5	405	2.5	0. 045	
381	286	VG specks 1/8" max in black	10293	405	413	8	0.11	
116	110	sections.	10294	413	410.5	3.5	0.055	
410 410 A	410	VG in black sections.	10295	410.5	410	1.5	0,07	
410.0	457	veining.						
437 —		-END OF HOLE						
					1			
	:							

		UNID	OLTICA NEODON		101		Page	$1 \text{ of } \frac{2}{3}$	
Townsh	ip	Claim	Length	Dip	AZ 1	Elevati	on" "	Tests	
Osway	<u>· · · · · · · · · · · · · · · · · · · </u>			45	N			257-43 ⁰	
Locati	on 23+0	DOE 0+30S			ماسميمماسه				
Starte	d	Completed		Core		Contr	actor	Bar	rons
Logged	by P.	Brown							
From	То	Description		No.	From	То	Ft	Au	Average
0	7	OV Casing to 12	۰.	10296	12	15.5	3.5	.025	
7	30	Conglomerate mag	gnetic -	10297	15.5	22	6.5	TR	
		10% at $14'-15'$. 2% CDV + DV. Spe	Qtz cb vein +	10298	22	27	5.0	TR	
		on slip faces, t C/A & 50° to C/A	panding 45° to A near fault	10299	27	30	3.0	TR	
		23-24 1/2" magne	etite vein 5 ⁰	10300	30	32	2.0	TR	
		to C/A.		10301	32	35	3.0	TR	
30	63.4	Sheared grano-di with py blue qta	lorite grey 2 & qtz cb	10302	35	39	4.0	.005	
		veining banded 3	50° to C/A.	10303	39	46.5	7.5	TR	
		55-62 tourmaline	e + py in seams.	10304	46.5	53	6.5	.005	
		Py seams 35° & 6 green mariposite	Py seams 35° & 60° to C/A. Some green mariposite.	10305	53	58	5.0	TR	
63.4	74.4	Pinkish grano-di	orite magnetic.	10306	58	63.5	5.5	TR	
		68-71.0 carb/gre	ey section.	10307	82.5	88	5.5	TR	
		71-2 Qtz tourmaline stringer down core + cpy.	10308	88	90.6	2.6	.005		
74.4	90.7	Grey carbonated	grano-diorite	10309	102.5	107	4.5	R	
		+ py less than 1 stringers 50° to	% also qtz cb C/A. Light	10310	114	115	1.0	.005	
		grey sheared + p green mariposite	y + blue qtz &	10311	118.5	120.5	2.0	.005	
	90.7	Contact 40 ⁰ to C	/A. Magnetic	10312	133	134	2.0	.005	
		(weak) pinkish g qtz tourmline +	rano-diorite cpy vein grey	10313	156	162 _.	6.0	TR	
		samples.		10314	162	167	5.0	TR	
101	102	2" qtz tourmalin C/A.	e vein 35 ⁰ to	10315	174	175	1.0	TR	
120	120.3	Qtz breccia + py hedrite.	, cpy tetra-	10316	175	179	4.0	.005	
133	4	Qtz breccia + cp	y tetrahedrite.				8		

BRIDGEVIEW RESOURCES INC.

Page .². of .².

From	То	Description	No	From	То	Ft -	Au	Average
1 52		Rock becomes pinkish. Much fine sulphides.	10317	182.5	183.5	1.01	0.01	
Sedimen 175	ts 80	Greyish section + brecciated blue qtz. Moderate blue qtz + py zones.	10318		216	10.0	ιĸ	
at	196	Rusty fault zone.						
201	205	Strong fault zone + specular hematite in slips.						
205		Magnetic pink, specularite in slips dissem cpy, py. Milky blue q.v's 30 ⁰ to C/A.						
257 —		END OF HOLE						
		Dip Test 50 ⁰ to C/A.						
			,			, i		
		•						·
								*
ł	1	ł	1	1]	ł	

BRIDGEVIEW RESOURCES INC.

ASSAYS OF EDDY HOLES

Eddy #6				
From	То		No.	oz/ton Au.
353.7	358.7		10319	.01
358.7	363.8		10320	.035
3 69.6	375.5		10321	.015
375.5	379.7		10322	.005
3 79.7	383		10323	.005
383	389		10324	.005
389	393		10325	TR
Eddy #14				
804	807	** blue qtz	10326	005
807	812	qtz cb	10327	.01
812	817	qtz cb	10328	.01

.

OM88-PE83-P-81

at c

COMPLETE HOLE IN CONGLOMERATE USUALLY <1% py BUT NARROW SECTIONS >3% SULPHIDE.

BRIDGEVIEW RESOURCES INC.
JEROME PROJECT, ONT.
J-80-1 LOCATION LINE 24+00E,1+25S DIP 90°
Scole: 1 inch = 50 feet
P. A.R. BROWN , Geologist

	BRIDGEVIEW RESOURCES INC.
ſ	JEROME PROJECT, ONT.
ſ	J-80-3
	LOCATION 2+00E, 5+50N
	DIP -45°S, 42° at 354'(LOOKING WEST)
Ē	Scole: 1 inch = 50 feet
ð.	P. A.R. BROWN , Geologist

0M88-81

B	RIDGEVIEW RESOURCES INC.
	JEROME PROJECT, ONT.
	J-80-4
	LOCATION 7+50E, 1+30N
	DIP 45°N
_	
	Scale: 1 inch = 50 feet

 	_		_			
Scale:	1	inch	:	50	feet	
 	-			-		

P.A.R. BROWN , Geologist

ĝ

OH88-8)

J-80-6	
OVERBURDEN	
PINK GRANODIORITE	FDOTAGE oz/ton
	83.5 - 85.0 0.06
SOME SPECULARITE	
AND BRECCIATED BLUE QTZ SECTIONS	105 -108 0.23
	<127 -130.5 0.12
	130.5 - 134.5 0.045 134.5 - 136.0 0.11
	PIRK GRANODIURITE
	JEROME PORPHYRY
	PINK GRANODIORITE
	× 247'

BRIDGEVI	EW RESOURCES INC.
JERON	ME PROJECT, ONT.
	J-80-6
LOCAT	ION 10+50E, 1+30N
	DIP 45°N
Scale	1 inch = 50 feet

OM 88-BI ! J-80-7 - OVERBURDEN HORIZONTAL SHEARED GRANODIORITE FOOTAGE oz/ion 0.045 216.5 - 221.5 221.5 - 223 10.0 0.115 223 - 229.5 229.5-231 - 229.5 - 231 - 231 - 239 - 239 - 247 - 247 - 252 - 252 - 260 - 260 - 267 - 267 - 271 0.01 0.09 0.005 0.015 0.055 0.01 0.03 BLUE OTZ VEIN ZONE WITH BRECCIATED BLUE OTZ [>] 317' BRIDGEVIEW RESOURCES INC. JEROME PROJECT, ONT. J-80-7 LOCATION 10+50E, 1+30N DIP 70°N, at 317,74° Scale: 1 inch = 50 feet 1291 P.A.R. BROWN , Geologist

OMBB-BI

	BRIDGEVIEW RESOURCES INC.					
	JEROME PROJECT, ONT.					
	J-80-9					
	LOCATION 23+00E, 0+30S					
DIP 45°N, 43° at 257'(LOOKING WEST)						
	Scale: 1 inch = 50 feet					
_	P. A.R. BROWN . Geologist					

J-80-9

. . . .

10

ie:

àr 1

JEROME MINE

AZIMUTH 124

SCALE

FEET

5

ACFESSI Longitudinal Ore Section MINING R.J. GRAHAM 100 200 300 Rffraha Ce or 0 Jan 10 81

OM 29 - PE25 - P-80

41009NE0004 63.3937 HUFFMAN

030

PATERSON, GRANT & WATSON LIMITED/CONSULTING GEOPHYSICISTS Suite 1214, 111 Richmond Street West, Toronto, Canada M5H 2G4 Telephone: (416) 868-0888 Telex: 06-22633

April 7, 1981

Bridgeview Resources Inc. 10 Adelaide St. E. Suite 20 Toronto, Ontario M5C 1J3

Attn: Mr. Brian McDonough

Re: Geophysical Surveys, Jerome Mine

Dear Sirs,

This letter refers to ground geophysical surveys carried out on the Jerome Mine Property, Osway Township, Ontario, for Bridgeview Resources Inc. during the latter part of 1980. Specifically, the following surveys were performed:

1. IP/Resistivity Survey; Drawing No. P-427-1.

2. VLF-EM Survey; Drawing No. P-427-2.

3. Ground Magnetometer Survey; Drawing No. P-427-4.

The first two surveys were performed by the firm of Mertens & MacNeill; the magnetometer survey was carried out by Mr. P.A.R. Brown. Compilation and interpretation of the surveys was undertaken by Paterson, Grant & Watson Limited in December 1980, with the assistance of geological material provided by Bridgeview Resources and after discussions with Messrs. George F. Ross, P.A.R. Brown, Robert J. Graham, W.R.L. Torrance and G.W. Goettler (Prospection Ltd.). The results of this interpretation are shown in Drawing No. P-427-3.

In general, neither the IP/Resistivity nor the VLF-EM results showed any direct correlation with the known mineralized veins. Instead, they appear to reflect, for the most part, zones of shearing near the contact of the syenite porphyry and the Ridout Series metasediments. Several of these zones are outlined in Drawing No. P-427-3. Zones R-1, R-2 and C-3 are given high priority as potential gold-bearing structures. Three diamond drill holes were recommended to investigate these features, as follows:

DDH-1, Line 24E, 1+20S (vertical) DDH-2, Line 8E, 4+00S (inclined 45^ON) DDH-3, Line 2E, 6+50N (inclined 45^OS)

These holes were drilled in January-February 1981 and it is understood that sulphide mineralization, with some gold values, was encountered in each hole.

Although the gold-bearing veins in the segnite porphyry failed to produce an electrical response, probably because of heavy silicification, a correlation with zones of low magnetic intensity is apparent. A combination of magnetic and electrical surveys would be of considerable value in future exploration in this area.

Yours very truly, PROFESSIONA REGISTER PATERSON, GRANT & WATSON LIMITED N. R. PATERSON POLINCE OF ONT Norman R. Paterson, Ph.D., P.Eng. Consulting Geophysicist

NRP/yh

230

OM 29- PE25 P 80

- -----

.

.

260
