REPORT PROJECT 3

QP92-193. $194 \& 195$

November, 1992
Project 3, opeepeesway Lake area, was undertaken in 1992 by Earl J. Lalonde (OP92-193), Ered Q. Barnes (Op92-194) and Norman Efrth (OP92-195). The field program began June 14 and continued through september 28 with an interruption, covering most of August, when direction of the work was affected for want of assay results.

The 1992 program was centred at Wiener Lake, Huffman township where auriferous pyritic mineralization had been discovered at the close of field operations in 1991. The program was, however, more far ranging, particularly to the southeast along the general trend of Opeepeesway mineralization in Arbutus, Potier, Yeo and the southeast corner of Huffman townships. Parallel mineral zones to the southwest, through the area of the Jerome mire were also examined but much of this trend, particularly in Osway and Esther townships is held under mining leases or claims in good standing.

The 1992 program utilized geophysics, both electromagnetic (Crone Radem VLF) and magnetic (Geometrics proton magnetometar). Sampling methods were also expanded from rock grabs and channel chip to include vegetation, humus, and soil and owerburden taken with shovel and screened. (minus 12 mesh) as well as by auger with a ten-foot reach. The most detailed topographic maps available from the Ministry of Natural Resources as well as airborne Vif and geologic reports of the same miristry were also employed.

Extensive overburden and heavy moss cover on outcrops again hampered exploration as mentioned in the 1991 final submission, however, these conditions were somewhat ameliorated through the use of geophysical instrumentation and the soil auger.

Location and Access

The area covered was project 3 of the 1991 and 1992 OPAP submission and incluqed parts of Osway, Mallard, Huffman, Eric, Esther, Arbutus, Potier and Yeo townships, Porcupine Mining Division, Sudbury District.

The all-weather road system is shown on the Provincial Topographical Series, at a scale of 1:100,000, on Cogama (4lE/NE), Ridout (410/NE), Chapleau (410/NN), Biscotasing (410/SE) and Westree (41P/SW). An east-west private (Eddy Co.) gravel road connects Highway 144 to Highway $6 \in 7$ at Sultan. It passes profect. 3 to the south from whence several roads, in Edith, Arbutus, Alcona, Smuts and Invergarry townshies trend northerly to the work area. These are the Cordes Creek road which accesses Esther, northwestern Osway, and Mallard townships, ending at Fush Lake; the Jerome Mone
road which crosses Fincal and southern Osway townships, ending at the Jerome Mine on the south shore of Opeepeesway Lake; Arbutus and New Arbutus roads through Arbutus township access Arbutus, lufeman and potier townships; Yeo road (no road sign) through Smots and reo accesses the same area as the Arbutus roads as weli as yeo township; Chester road through Invergarry and Chester with cross roads connecting with Yeo road. The Cordes Creek road has been upgraded by the Eddy Co. to a haul road for current cutting in southeast Mallard, southwest Eric, northeast osway and northwest. Huffman townships.

Geology

Several geological series maps are available for project ? area. Map 1949-2 of Osway by W. W. Moorhouse; 22369 Jerome west of Osway and Esther, P2370 Jerome East of Huffman and Arbutus both by G.M. Siragusa; Map 2503 Cunningham and Garnet, Map 2504 Benton and Mallard both by G.M. Siragusa; and Map 44 g (1935) of soveral townships by H.C. Laira. Although we would disdfee wjth both latter authors as to rock types and contacts locally because of our more detailed examinations and strippings, we found the geological records of great value. The Moorhouse interpretation of contacts in Osway we found in general more accurate than that of the subsequent geological work. Access to much of osway township and the number of active mining companies in the area were both greater at the time of the Morrhouse survey. The basic grasp of the geology expressed by Laird we found to be more incisive than any of the subseguent workers inspite of, or perhaps because of the rcconnaissance nature of his work.

Work Performed

All work done was of a prospecting nature with moss stripping in traverses along roads, trails, shorelines and inland fron these access routes. Numerous paced traverse lines were run in what were considered potential discovery areas both with VLF and magnetometer on occasion. VLF traverses were run soparately with hip chain and flagging at 25 metre intervals. The VLF traverses were tollowed up with detailed procpecting and various sampling methods where anomalies were indicated. VLF and other chained and blazed control lines are plotted on separate sheets with geophysical profiles. Sample locations and control traverse lines are shown on the two regional work sheets. The wostern sheet, developed in 1991, has been wedated with 1992 results.

Certificates of analysis are attached to the Sample fist. A daily log of prospecting activities and final submission work is aiso attached as prospecting Daily Log 1992.

Very Low Frequency Electromagnetic Investigations

To help define the known mineralized zone previously located in the northwest corner of Huffman township and also to use as an aid in additional reconnaissance prospecting a Crone EM VLF instrument was leased for approximately six weeks.

In these investigations traverses were carried out normal to the regional strike using compass and chain technique for control, and employing Cutler, Maine as the primary transmitter station (22.0 KHz) VLF-EM readings were taken at 25 metre intervais with two parameters being measured at each station.

1. Dip argle in degrees of the magnetic field component, from the horizontal of the major axis of the polarization ellipse, detected by a minimum of the field strength meter and read from an inclinometer with a range of +/-1 . The VLF field is normally horizontal (0 dip). The dip angle measurement is independant of the strength of the field.
2. Field strength (total or horizontal) of the magnetic component of the VIF fiela (amplitude of the major axis of the polarization ellipse), measured as a per cent of normal fiald strength established at a bare station. Accuracy as 28 depending upon signal.

The location of the 25 traverses are zhown on the base map and the VLF EM data obtained are presented in profile Eorin.

In some instances where the causitive source of an Em conductor could not be determined due to overburden cover, geochemical samples (humus or vegetation) were taken for analyeis at the conductor axis location.

At one of these locations (Line 4) analytical results for gold were considered to have some signifance so a detailed VLF EM survey was carried out.

An east west baseline, 300 metres long was cut out, and cross lines were extablished at 100 metre spacing. Using chain and compass contral, stations were established at 25 metre intervals. In all 85 stations were occupied.

The results of the survey are presentod in erofile and fraber Filter form.

The zone of considered interest is ar east-west striking weat conductor, some +300 metres long. As there is no outcrop in list immediate area some additional geowhomical amples werd taken.

Of note is the fact that the 1991 minerairaed zone
investigated gave no indication of a VLF EM response.

Geochemical Sampling

To assist in the evaluation of electromagnetic conductors covered by overburden, humus and/or vegatation geochemical samples were thaken across the trend of the conductor. These samples were subsequently analysed by Instrumental Neutron Activation Analysis (INAA) for gold and thirty-three other elements.

In all some 68 humas, vegetation geochemical samples were taken.

The analytical results obtained are presented on the vaf EM profile maps.

Expenditures

Expenditures as sumarizen here cover joint time spent and moject expenses. They do not include track travel and any special individual orarges. Expenditures by individuals (attached) cover joint project expenses split thee ways, individual time spers, truck and any special expenses.

Juint time was estimated at $\$ 20,000$ whereas actual time totalled $\$ 18,550$. Joint expenses were estimated at 513,000 with 9.650 as the actual total, on $\$ 3,216$ each.tindividaf vachle chayge.

A breakdown of ioint expenditures follows with the estimete for each in brackets:

Supplies: included food and other, the latter being principally batteries, propane and naptha fuels. Expenditurns totalled $\$ 1.724(\$ 2400)$.
Telephone, typing, printire totalled ezolt last 239 ($\$ 225$).
Assays: 138 samples were taken. somewhat more than estimatof, and resulted from the need to indirectly sample for anomalous mineralization. Humus, vegetation, auger and basal till sampling accounted for most of the samples taken. Because of overburden problems, area sampling of basal till down glaciation from favourable areas, and humus, vegetation and auger sampling over VLF EM anomalies was considered the only lead to daentifying sites for mechanical stripping, draling and/or detailed mapping and prospecting. Assay billings and shipping charges were $\$ 1958.52$ (4200).

Contract: funds wer allocated for magnetometer surveying by student help and for mechaniozl strippins. Magrotmeter readings were mainly in conjution with VLF EM profiling to detect bedrock changes. No grid suavys were performed. Phe
student also took and sieved basal till samples and hand stripped the wiener Lake occurrence found lite in tho 1991 field season. Contract chatges were $\$ / / 60$ ($\$ 6500$). Mechaniial stripping was not warranted.

Rentals: rental costs were for a twenty-two (22) foot trailer and a radon VIF EM. A geometwico 6816 proton magretometfor max ayailable in field equipment and was not charged. The tiailer permitted quick setup and moves, was most comfortable doriay cold and adverse weather, and had facilities for sat ary storage and office space. It was available to us for May through September although snow and ice conditions persictod unusually late and field work was delayed until eacly Junt.

Equipment such as a truck mounted brake control device for the trailer, a machine shop fabricated auger and a hip chain purctaced during the season are not included in expenses, nor is field gear including boats and motors.

Results and Recommendations

There are two types of stratiform rockis in which mineral deposits may be found in Project 3 area. An oldea, essentialy volcanic series contains what are probabiy the majority of potentially viable economic deposits, and a yuncier, totally sedimentary series which has most of the showinge thal lave received exploration attention.

The volcanic rocks consist of basic to aciaic volcanio flum hosting vein type and shear zone auriferous deposits such as the Kenty in swayze township and the Burton in Esther tovnship. The Burton gives a moderate vif reponse whereas the kerty gives rono.

The sedimentary series has a base generally of pelites followed by ironstones of hematite, magnetite, pyrite or carbonts cement with much detrital material. Many of the ironstones giva a VLF response and are of varying thickness and composition iocally. They are a few feet to tens of feet thick. commonly, they host quartz veins with minor sulphides of ixon, copper, ainc and lead, and, in such esses return appreciable spot gold values. mh:ae include those occurrences found last year, as well as the ferland and Polfrog prospects. In the writers opinion, these occurrencus, although relatively widespread, are most unlikely to have economir potential. The vein quartz, sulphides and gold values appear to be indigenous to the chemical sediment and a differentiatee thereof. The upper part of the sedimentary series is conglomerate.

The Eurton showing shear projects southeast towards the Jerome Mines where mineralization cocurs within the conglomeratec of the sedimentary series.

Because of overburden problems, exploration for base motal
deposits is pretty well guided by geophysics and a number of roles have been drilled by major companies based on airborne EM and Mag surveys. The holes are in geologically favourable areas of acid volcanic rocks. Neither hole sites nor cores could be found, nor was there outcrop at these locations. Further airborne axploration might be done at 100 metre spaced flight lines over favourable areas insofar as some volcanogenic sulphide deposits have a small cross section and plunge steeply. Financing this type f exploration is generally outside the finencial capabilities of of ap participants.

The goverment sponsored airborne VLF survey did not appear to outline favourable structure in Eroject 3 area. Although much checking was done on the ground with the kadem unit and outrrops evamined, the VLF anomalies appeared to be responses to lake and bog sediments, identified as peat and clay with the auger. A group of three vegetation samples (2902-2904) shipped as part of abatch, returned high gold values. Because such samples have a higher than usual radiation period to give detection to a tenth of app, it is suspected that the values reported are erroneous by one or two decimal points. The elants covered 6 to more than 9 feet of peat, followed by clay. None of the follown auger samples of underlying clay gave any encouragement. These values can be seen on the vif profiles run on an extensive survey of wiener Lake South, initiated because of returns from 2902, 3 and 4.

The wiener Lake showing was stripped and sampled (2613820140). No extension of the occurrence could be found although a number of similar situations were located more or less along strike.

Results from the 1992 program clarified the reasons for past exploration but held little encouragement for bacic prospecting techniques or for economical viable discovery in the ironstones which appear to have received the bulk of past wort. The aciulc volcanic areas hold some promise for the prospectur insofar as auriferous mineralization similar to the Kenty is essentially undetectable by geophysical means, and numerous guarta veins do have local gold values of significance where accomapied by sulphides. This was verified by grab sample 8903.

An added difficulty to effective exploration is the slomnss of assay returns. The program was halted in August because assays had not been received for about 100 samples shipped. Tre last batch were delivered directly to the assayer dnd yet the assay rocuats took 34 days, received November 3.

PRQJECT 3 - OPEEPEESWAY AREA

PROSPECTING DAILY LOG 1992
(Participant days by Harnes, Eirth, Lalonde)

June	1-3		Waiting on word of snow, ice and road conditions.
June	9		Barnes departed Burlington for Blind River; odometer 000300 .
June	10		prepared field equipment and arranged trailer rental.
June	11		Brake wiring not same as trailer; trailer and truck to garage. Lalonde arrived at Blind River from Capreol.
June	13		Trailer brake working; got fuels and last of supplies.
June	14	(BL)	Barnes and Lalonde to Mallard Twp.; setup, and later cheked work site.
June	15	(BL)	Barnes and Lalonde to Wiener Lake, Huffman Twp. and started control line towards Little Rice Lake; prospected.
June	16	(BL)	Barnes and Lalonde ran balance of control line to $71+37$ feet. Met Reno Pressacco, Noranda Exploration, Timmins in bush. Prospected.
June	17	(BL)	Barnes and Lalonde worked roads in Eric and Huffman Twps. for geology and mineralization.
June	18	(BL)	Rain overnight; Barnes and Lalonde re: examined Polfrog showing; prospected control line, Huffman Twp. around $50+00$.
June	19	(BL)	Rain to noon. Barnes and Lalonde to Fawn Twp. and worked Dore road for iron formation. Firth and student assistant arrived in evening from Burlington.
June	20	(BFL)	Orientation for Firth and student; all four prospected south end of Rae Lake, Eric Twp. and recut prottage Rae to opeepeesway Lakes.

June	21	(BFL)	All four to Wiener Lake; prspected and ran magnetometer on control line.
June	22	($\mathrm{BFI}^{\text {I }}$)	Al1 four to Wiener Lake; lo Little Rice Lake; along portage which ends at Blood Sucker Lake; prospected; did not find iron formation.
June	23	(BFL_{5})	Lalonde and Firth to Rice Lake where 40 foot wakly magnetic iron formation found. Barnes and student took 19 soil samples and laid them out to dry.
June	24	(FFL)	Rain. Reviewed reports, got claim maps, supplies, boots, hip chain and ordered VLF from Crane, Toronta.
June	25	(BFL)	Barnes and student quartered and sieved soil samples and latter assisted Lalonde and Firth and Wiener Lake showing which was stripped and channel sampled.
June	26	(BFL)	Student ran magnetometer at Wiener Lake; Lalonde and Firth extended control line to the northwest and prospected. Harnes prospected in area of showing and to the northwest. Got VLF at Highway 144 from night bus to Timmins.
June	27	(BFL_{4})	Rain overnight. Ran magnetometer ami VLF on roads in prosepctive areas; prospected minor anomalies. Firth on VLF, student on magnetometer.
June	28	(AFLL)	Scattered showers; reduced geophysical readings; examined claim maps for area north of Sultan with geology. Some VLf road sections. All involyed. Lalonde to Capreol in p.m.
June	29	(HF)	Firth and student doing geophysical profiling at Wiener Lake. Harnes prospected Rae lake area.
June	30	(BF)	Firth and student doing geophyizical profiling, Wiener Lake. Barnes prospecting iron formation SW osway iwp.
July	1	($\mathrm{BF}^{\text {\% }}$)	Fixth, Barnes and student prospected Wiener Lake; in afternoon to Cunningham Twp. Shunsby showing. To Sultan and called Lalonde on road map from Nordada

Exploration.

July	2	(BF)
July	3	(BF)
July	4	(BFL)
July	5	(BFL)
July	6	(FL)
July	7	(FL)
July	8	(FL)
July	9	(FL)
July	10	(FL)
July	11	(FL)
July	12	(FL)
July	13	(FL)
July	14	(FL)

All three to Wiener Lake to prospect. In p.m. to Northwest arm, Opeepeesway Lake to see feldspar porphyries.

Rain during day. Reduced geophysical data and plotted profiles. Lalonde arrieved in p.m.

All four to Yee and Arbutus Twos. for reconnaissance of geology and possible extentions of mineral zones from Huffman Twp. Prepared for camp move.

Rain in a.m. but moved trailer to little Rugh River, Arbutus Twp. In p.m. Darnes left with student for Sudbury and H ind River. Tire blow out on rough roads.

Lalonde and Firth prospecting North Arbutus Iwp.

Lalonde and Firth to Wiener lake and ran VLF profiles for South Wiener conductor extypision. Later to Cepway Point, opeepeesway Lake and ran VLF piofiles for a conductor.

Lalonde and Firth prospected NE Arbutus and SE Huffman Twps. Later to Yeo road and Moore Lake.

Lalonde and Firth ran line 9 VLF a km east of Camp Lake in Huffman and Potier Twps. on projection of ironstone.

Lalonde and Firth extended line 9 with VLF and magnetometer to the north and line 10 between Camp and Canoe Lakes.

Lalonde and Firth ran lines 12 and 13 with VIf on west shore of opeepeesway Lake on extension of the Jexone prophyry.

Prospected from roads in camp Lake area.
Prospected and ran VLF line 14 west of Camp rake. Got a gossaned shear and sampled.

Worked ironstone south and west of Camp

Lake with the VLF.

July	1.5	(F1,)	Prospected west of Camp Lake along ironstone and gossan shows.
July	16	(FL.)	Lalonde and Firth again prospected in northern Arbutus Twp. until rain in afternoon. Reduced geophysical data at camp.
July	17	(FL)	Lalonde and firth found a pyritic ironstone a mile south of Camp Lake; prospected and sampled.
July	18	(FL)	Lalonde and Firth prospected west of Camp Lake in Huffman and Potier Twps.
July	19	(FL)	Put in a control line on pyritic ironstone found on Juiy 17 and prospected.
July	20	(FL)	Lalonde and Firth prospected southwest corner of Potier. Showers in afternoon. Barnes axrived with supplies in the afternoon and firth left for Sudbury in the p .m.
July	21	(DI,)	Barnes and Lalonde to sonthwest Osway Twp. to see iron formation and volcanics. To Sultan for mail. Assays not in mail. To Arbutus Twp. to see showings located by the VI.P in July.
July	22	(BL)	Barnes and Lalonde to Dismal and Arbutus 40ps. by canoe to examine shore outcrops. Fahes.
July	23	(BI.)	Barnes and Lalonde examine geology, particularly ironstone occurrences, some discovered by Vh.F in Huffman, Arbutus and potier Twps. Long day; back in camp after dusk.
July	24	(BL)	Barnes and Lalonde to Windy Lake to prospect volcanics and ironstones. In p.m. to Gogama for 20,000 scale maps of this area.
July	25	(BL)	Barnes and Lalonde to north ent of Arbutus Lake. Prospecting.
July	26	(BL)	To sultan for assay date $k 0$ mail. Mel. OGS people at mail; had come from foleyet

July

August

August 2 (BFL)

September $\quad 9$

September 9 (BL)

September 10 (BL)
where doing regional soil sompling. Later to Arbutus Lake for further prospecting. We moved canoe from Arbutuss to Windy Lake.

Barnes and Lalonde Lo Camp Lake, Huffman Twp. and worked ironstone.

We examined VLF conductors in respect to stratigraphy and ironstone in Huffman and Potier I'wps. Later Lo Schist and Moore Lakes area. GSC truck and two occupants on road. Camp at dusk.

Barnes and Lalonde to Ferland and polfrog showings Mallar\# Twp. to compare wich Arbutus - Huffman showings. Firth anirved in afternoon and had organized his work for next day.

A11 three to northeastern Esther Twp. to sec rock types for possible prospecting and examined Burton showing. Later to Wiener Lake to prospert where Firth had a VLF anomaly.

All three to Jerome Mine to look at porphyries on Jerome point. Later to Windy Lake, Arbutus Twp. to compare with similar rock types.

All three to Windy Lake and prospected Windy, Potier and stony Lakes from canoe.

All three prospected granite contact westward from Windy Lake. Decided could not plan further work without assays from samples sent to assayer over a month aco. Parked camp and left with trailer in p.m.

Barnes departed Burlington, drove to Blind River, gathered equipment ready for next day.

Drove to mileage 13, Mallard Twp., set trailer and examined new roads with halonde. The strike at Fddy Forest Products was over in August and the work crews are starting back to work.

Barnes and Lalonde re-sampled points where high assays reported from earlier

			sampling.
September	11	(BI.)	Barnes and Lalonde prospected along new road in northwest Huffman and northeast Osway Twps. where airbonide VLF anomaly projects.
September	12	(BL)	By canoe to Rae and Mallard Lakes; prospected shore outcrops.
September	13	(BL)	Rain in morning, reviewed geologic reports. In afternoon Barnes and Ealonde did shoreline of wiener hake ant inlamd where firth had indicated a VIf anomaly.
Septemiser	14	(BL)	Rain in morning, manned soil sampling. In afternoon, Hiznes and ralonde fo Wiener Iake with soil auger.
September	15	(BL)	Lalonde and Barnes prospected Osway and Esther Twps. near mileage 4. Located old trenching and a gossan zone. Firth arrived in the p.m.
September	16	(BFL)	Rain in morning. Reviewed significint humus samples taken by Firth at wiener South. Ran VIF over an earliee anomaly.
September	17	(BFI.)	Firth ran VIf at sample 8703 and Barnes and Lalonde took auger samples across an anomaly. At west end of wiener Lake, the VLf anomaly sampled by auger but peaf to a depth of 10 feet. Found new gossan at dusk.
September	18	(BFL)	Prospected and extended ironstone found a km northwest of Wiener Lake. Channel sampled. Firth ran VLp profiles.
September	19	(BFL)	Firth profiled VRF anomalies at south Wiener - Garnes and Lalonde prospected and took auger samples.
September	20	(BFL.$)$	Coninined on South Wiener with VIr from control lines; prospected and auger sampled.
September	21	(BFL)	Fixth to South Wiener for humas and plant samples. Baynes and halonde to perland showing to do VLF profiling. Also to northeast Esther "wp. to run VLef profiles for extension of the Burton showing.

September	22	(BFL)	A11 Hhes to Camp Lake to auger sample VLF anomaly on line 10 which had a humus anomaly. Prospected; got compass deflection.
September	23	($\mathrm{BFL}^{\text {a }}$)	All three to new road northeast corner of Osway Twp. Got VLF anomaly about 300 feet west of creek on airborne VLF anomaly extension. Prospected. Re-ran VLF on Polfrog showing on return to camp.
September	24	(BFL)	Firth to South Wiener with VLF Barnes and Lalonde to west of the north end of Arbutus Lake. Found much ironstone ass extension of material around Camp Lake. Sampled.
September	25	(BFL)	All three to Swayze Twp. to examine rock types associated with the Kenty Mine. Did VLf profiling.
Septeraber	26	(BFL_{4})	Firth again to South Wicner to complete his geophysical survey and sampling. Barnes and Lalonde to central west Mallard Twp. to find evidence of olit Anaconda drilling. Examined fel:it: volcanic llows and prospected gurtz veining.
September	27	(BFL)	Heavy rain. Compiled dala, labelled samples and packaged them for the assayer. Decided to end the program.
September	28	(BFL)	Gathered equipment from South Wiener, cleaned camp site, packed and left in the afternoon. Rain on and off.
September	29	(AFL.)	Lalonde and Barnes in Bl ind River; half day repairing, cleaning and storiog equipment.
September	30	(BL)	Lalonde and Barnes in Blind River; half day on equipment.
October	2		Lalonde departed for Capreol, Barnes for Burlington.
Final Subi	Ss		Days spent on final submission during October and November vary in timing wilh

participant and is included in individual expenditure summaries as a straight five (5) days each.

SAMPLE LIST

Sample	Type	Date	Mineral	PPB AIL.	Notes
2902	Vegetation	June	N/A	15.4	
2903	Vegetation	June	N/A	43.7	
2904	vegetation	June	N/A	6.3	
2905	Vegetation	June	N / A	1.6	
2906	Vegetation	June	N/A	2.1	
2907	Vegetation	June	N/A	1.5	
2908	Vegetation	June	N/A	0.9	
2909	Vegetation	June	N/A	1.0	
2910	Vegetation	June	N/A	0.8	
2911	Humus	July	N/A	2	
2912	Humus	July	N/A	- 1	
2913	Humus	July	N/A	2	
2914	Humus	July	$N /$ A	$\cdots 1$	
2915	Humus	July	N/A	2	
2916	Humus	July	N/A	$\cdots 1$	
2917	Humus	July	N/A	$\because 1$	
2918	Humus	July	i/ A	-1	
2919	Humus	July	N/A	2	
2920	fiumus	July	N/A	1	
2921	Humus	July	N / A	2	
2922	Humus	July	N/A	1	
2923	Humus	July	N/A	\cdots	
2924	Humus	July	N/A	$\therefore 2$	
2925	Humus	Juiy	N / A	-1	
2926	Humus	July	N/A	2	
2927	Humus	July	N/A	2	
2928	Huraus	July	N/A	3	
2929	Humus	July	N/A	9	
2930	Humus	July	N / A	2	
2931	Humus	July	N/A	2	
2932	Humus	July	N/A	2	
2933	Humus	July	N/A	1	
2934	Humus	July	N/A	$\therefore 1$	
2935	Humus	July	N/A	1	
2936	Humus	July	N/A	-1	
2937	Humus	July	N/A	$\times 1$	
2938	Humus	July	N/A	2	
2939	Humus	Juiy	N/A	<1	
2940	Humus	July	N/A	<1	
2941	Humus	July	N/A	$\cdots 1$	
2942	Humus	July	N/A	2	
2943	Humus	July	N/A	$\bigcirc 3$	
2944	Humus	July	N/A	$\therefore 1$	
2945	Humus	July	N / A	8	
2946	Humus	July	N / A	2	
2947	Humus	July	N/A	<1	
2948	Humus	July	N / A	2	
2949	Vegetation	Sept.	N / A	0.8	

Sample	qupe	Date	Mineral	PPB AU.	Notrs
2950	Vegetation	Sept.	N / A	2.1	
2951	Vegetation	Sept.	N / A	0.1	
2952	Vegetation	Sept.	N/A	0.6	
2953	Vegetation	Sept.	N/A	0.6	
2954	Humus	Sept.	N/A	1	
2955	Humus	Sept.	N/A	2-1	
2956	Vegetation	Sept.	N / A	0.6	
2957	Vegetation	Sept.	N / A	0.7	
2958	vegetation	Sept.	N/A	0.7	
2959	Vegetation	sept.	N / A	0.6	
2960	Vegetation	Sept.	N / A	0.4	
2961	Vegetation	Sept.	N/A	0.5	
2962	Vegetation	Sept.	N / A	0.6	
2963	Vegetation	sept.	N/A	0.9	
2964	Vegetation	Sept.	N/A	Missing	
2965	Vegetation	sept	N/A	0.6	
2966	Vegetation	Sept.	N/A	0.6	
2967	Humus	Sept.	N/A	$\cdots 1$	
2968	Humus	sept.	N/A	<1	
2969	Vegetation	Sept.	N/A	$\cdots 1$	
8701	Till	June	Basal	6	
8702	Till	June	Basal	-2	
8703	Till	June	Basal	60	
8704	Ti11	June	Basal	$\therefore 2$	
8705	Till	June	Basal	5	
8706	Till	June	Basal	$\because 2$	
8707	Till	June	Basal	4	
8708	Till	June	Basal	6	
8709	Til1	June	Basal	5	
8710	Till	June	Basal	2	
8711	Till	June	Basal	$\therefore 2$	
8712	Till	June	Basal	-2	
8713	Gill	June	Basal	$\cdots 2$	
8714	Till	June	Basal	- 2	
8715	Till	June	Basal	4	
8716	Till	June	Basal	4	
8717	Till	June	Basal	<2	
8718	Till	June	Basal	<2	
8719	Till	June	Basal	<2	
8720	Till	Sept.	Basal	6	8703
9721	Auger	sept.	Clay	$\bigcirc 2$	8703
8722	Auger	Sept.	Clay	5	8703
8723	Auger	sept.	Clay	$\bigcirc 2$	
8724	Auger	Sept.	Clay	6	
8725	Auger	sept.	Clay	8	
8726	Auger	Sept.	Clay	$\checkmark 2$	
8727	Auger	Sept.	clay	$\cdots 2$	
8728	Auger	Sept.	Clay	$\bigcirc 2$	
8729	Auger	Sept.	Clay	- 2	

Sample	Type	Date	Mineral	PEB Au.	Notes
8730	Auger	sept.	Clay	-2	2902
8731	Auger	sept.	Clay	<2	2903
8732	Auger	sept.	peat	N/S	2904
8733	Auger	Sept.	Peat	$\therefore 2$	
8734	Auger	Sept.	Peat	<2	
8735	Auger	sept.	Peat	4	
8736	Auger	Sept.	Peat	5	
8737	Auger	sept.	Peat	$\therefore 2$	
8738	Auger	Sept.	Peat	-2	
8739	Auger	sept.	Sand	- 2	
8740	Auger	Sept.	Sand	-2	
8741	Auger	sept.	Sand/Clay	2	
8742	Auger	Sept.	Sand/pbls	5	
8901	Grab	Sept.	Gb \& Qtz.	$\therefore 5$	126127
8902	Grab	Sept.	Iron St.	- 5	
8903	Grab	sept.	Acid Vol py.	2490	
9351	Grab	July	Iron St.	- 5	
9352	Grab	July	Iron St.	$\bigcirc 5$	
9353	Grab	July	Iron St.	-5	
9354	Grab	July	Iron St.	$\therefore 5$	
9355	Grab	July	Iron St.	- 5	
9356	Grab	July	Iron St.	- 5	
9357	Grab	July	Iron st.	-5	
9358	Grab	July	Iron St.	22	
9359	Grab	July	Iron St.	- 5	
9360	Grat	july	Iron st.	38	
9361	Grab	July	$\begin{gathered} \text { Vol. Schist } \\ \& \text { Carb. } \end{gathered}$	$\therefore 5$	
9362	Grab	sept.	Alum. Chert	<5	
26138	Channel (3.6')	June	Schist, qtz. carb.	1470	Wiener
26139	$G r a b$	June	Schist, gtz. carb.	4890	Wiener
26140	Channel (3.0')	June	Schist, gtz. carb.	112	wiener
26141	Grab	June	Iron st.	19	
26142	Grab	July	rron St.	102	
26143	Grab	July	Iron St	9	
25144	Grab	July	Iron St.	<5	
26145	Grab	July	ironst.	\cdots	
26146	Grab	July	Iron st.	10	
25147	Grab	July	Ironst.	8	
26148	Grab,	Ju. Y	Iron St.	11	
26149	Channel (6')	July	Vol. Schist	$\bigcirc 5$	
26150	Channel (2.5')	July	Vol. Schist	90	

ACTLABS

ACTIVATION
LABORATOREES LTD
4254
4244
Invoice Date: 10-AUG-92
Date Submitted: 22-JUL-92
Your Reference: NONE
Account Number: 186

J. FIRTH
:74 JUNIPER AVE 3URLINGTON, ON ,7L 2T3

CERTIFICATE OF ANALYSIS

NAA package, eiements and detection limits:

AU	0.1	PPB	AG	0.3	PPM	AS	0.01	PPM	BA	5.	PPM
BR	0.01	PPM	CA	0.01	\%	CO	0.1	PPM	CR	0.3	PPM
0	0.05	PPM	FE	0.005	年	HF	0.05	PPM	HG	0.05	PPM
IR	0.1	PPB	K	0.001	8	MO	0.05	PPM	(NA)	0.5	¢ph
NI	2.	PPM	RB	1.	PPM	SB	0.005	PPM	SC	0.01	PPM
SE	0.1	PPM	SR	10.	PPM	TA	0.05	PPM	TH	0.1	PPM
U	0.01	PPM	W	0.05	PPM	2N	2.	PPM	LA	0.01	PPM
CE	0.1	PPM	ND	0.3	PPM	SM	0.001	PPM	EU	0.05	PPM
TB	0.1	PPM	YB	0.005	PPM	LU	0.001	PPM			

IEPORT 4254B - PKG 2A

Activation Laboratories Itd. Work Order: 4244 Report: 4254

Sample deecription	$\begin{array}{r} \mathrm{AU} \\ \mathrm{PPB} \end{array}$	$\underset{\text { PpM }}{\mathrm{AG}}$	$\begin{array}{r} \text { AS } \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{BA} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{BR} \\ \mathrm{PPM} \end{array}$	$C A$	$\begin{array}{r} \text { Co } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{CR} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Cs} \\ \mathrm{PPM} \end{array}$	$F E$	$\begin{array}{r} \mathrm{HF} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { HG } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{IR} \\ \mathrm{PPB} \end{array}$	$\frac{\pi}{8}$	$\begin{array}{r} \text { MO } \\ \text { PPM } \end{array}$	$\stackrel{N A}{\mathrm{PPM}}$	$\begin{array}{r} \text { NI } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{RB} \\ \mathrm{FPM} \end{array}$	$\begin{array}{r} \text { SB } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{SC} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { SE } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{SR} \\ \mathrm{PFM} \end{array}$	TA PPM	$\begin{array}{r} \mathrm{TH} \\ \mathrm{PF} \end{array}$
2902	15.4	<0.3	0.35	65	2.4	0.38	0.3	2.7	0.13	0.057	0.26	<0.05	<0.3	0.182	<0.05	5015	$\because 3$	<1	0.070	0.37	<0.1	<10	<0.05	0.1
2903	-43.7	<0.3	0.35	50	4.6	0.73	0.3	1.2	0.11	0.036	0.07	<0.05	<0.1	0.150	<0.05	I86	<2	4	0.062	0.10	<0.1	$\leqslant 10$	<0.05	<0.
2904	3.3	<0.3	0.20	110	2.8	0.93	0.2	0.9	0.08	0.030	<0.05	0.18	<0.1	0.143	<0.05	113	<2	3	0.051	0.09	<0.1	23	<0.05	<0.1
2905	1.6	<0.3	0.32	110	2.7	0.86	0.2	0.9	0.08	0.030	0.08	<0.05	<0.1	0.148	<0.05	181	<2	2	0.038	0.09	<0.1	<10	<0.05	<0.1
2906	2.1	<0.3	0.32	99	2.9	0.66	0.2	0.8	0.06	0.032	<0.05	<0.05	<0.1	0.156	0.24	153	<2	4	0.046	0.09	0.4	<10	<0.05	<0.1
2907	1.5	-0.3	0.41	70	4.3	0.80	0.3	1.1	0.06	0.038	0.11	0.17	0.1	0.121	0.14	137	<2	2	0.056	0.10	<0.1	<10	<0.05	<0.1
2908	0.9	-0.3	0.47	77	4.3	0.34	0.3	1.3	0.15	0.040	0.08	0.09	$=0.1$	0.169	<0.05	148	<2	5	0.071	0.12	0.3	<10	<0.05	<0.1
2909	1.0	<0.3	0.35	56	4.3	0.79	0.2	1.0	<0.05	0.031	0.08	0.09	<0.1	C. 158	<0.05	117	<2	3	0.045	0.09	0.3	<10	<0.05	<0.2
2910	0.3	0.3	0.23	76	4.1	0.78	0.3	0.6	0.08	0.028	0.05	0.09	<2.1	0.151	<0.05	109	<2	3	0.047	0.08	0.2	<10	<c. 05	<0.1

Activation Laboratories Ltd. Work Order: 4244 Report: 4254

Sample description	$\underset{\text { PPM }}{\mathbf{u}}$	$\underset{\mathrm{PPM}}{\mathrm{~W}}$	$\begin{array}{r} 2 \mathrm{~N} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { LA } \\ \text { PEM } \end{array}$	$\begin{array}{r} \text { CE } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { ND } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{SM} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { EU } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { TB } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{YB} \\ \mathrm{FPM} \end{array}$	$\begin{array}{r} \mathrm{LU} \\ \mathrm{PPM} \end{array}$	Mass g
2902	<0.63	<0.05	30	0.50	1.1	0.5	0.075	<0.05	<0.1	0.042	0.007	1.550
2903	<0.01	<0.05	51	0.42	0.6	<0.3	0.054	<0.05	<0.1	0.022	0.005	4.110
2904	<0.01	<0.05	41	0.35	0.4	<0.3	0.040	<0.05	<0.1	0.020	0.003	4.470
2905	<0.01	<0.05	39	0.35	0.8	<0.3	0.043	<0.05	<0.1	0.021	0.005	3.720
2906	<0.01	<0.05	33	2. 34	0.7	<0.3	0.041	<0.05	<0.1	0.026	0.004	4.620
2907	<0.01	<0.05	34	0.42	0.6	0.4	0.053	<0.05	<0.1	0.029	0.006	5.280
2908	<0.01	<0.05	45	0.50	0.8	<0.3	0.061	<0.05	<0.1	0.036	0.001	4.420
2909	0.04	<0.05	42	0.39	0.7	<0.3	0.046	<0.05	<0.1	0.029	0.005	5.450
2910	<0.01	<0.05	38	0.34	0.6	<0.3	0.042	<0.05	<0.1	0.018	0.003	4.520

Sample description	$\begin{array}{r} \mathrm{AU} \\ \mathrm{FPB} \end{array}$	$\begin{array}{r} \text { AG } \\ \text { FIN } \end{array}$	$\begin{array}{r} \text { AS } \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { BA } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{BR} \\ \mathrm{PPM} \end{array}$	${ }_{8}^{C A}$	$\begin{array}{r} \text { CO } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{CR} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { CS } \\ \text { PPM } \end{array}$	FE	$\begin{gathered} \mathrm{HF} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{HG} \\ \text { PFM } \end{array}$	$\begin{array}{r} I R \\ \mathrm{PPB} \end{array}$	$\begin{gathered} \mathrm{MO} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{NA} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{NI} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{RH} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SB} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SC} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SE} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SR} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{TA} \\ \mathrm{pPM} \end{array}$	$\begin{array}{r} \mathrm{TH} \\ \mathrm{FPM} \end{array}$	$\begin{gathered} \mathrm{u} \\ \mathrm{pph} \end{gathered}$
2911	2	<2	1	<100	8	2.1	3	<1	<0.5	0.37	<0.5	0.5	<5	<0.5	287	20	<20	0.1	0.2	<2	<100	<0.5	<0.5	<0.1
2912	<1	<2	1	<100	7	1.8	<1	1	<0.5	0.20	<0.5	<0.5	<5	<0.5	233	<10	<20	0.1	0.1	<2	<100	<0.5	<0.5	<0.1
2913	2	<2	<1	<100	6	1.9	<1	1	<0.5	0.15	<0.5	<0.5	<5	<0.5	284	<10	<20	0.1	0.2	<2	<100	<0.5	<0.5	<0.1
2914	<1	<2	2	<100	9	2.0	<1	<1	<0.5	0.30	<0.5	<0.5	< 5	<c. 5	257	<10	<20	0.1	0.2	<2	$\leqslant 100$	<0.5	<0.5	<0.1
2915	2	<2	2	<100	9	2.0	3	2	<0.5	0.31	<0.5	<0.5	<5	<0.3	319	<10	<20	0.2	0.2	<2	<100	<0.5	co. 5	<0.1
2916	<1	<2	1	<100	6	2.1	<1	1	<0. 5	0.27	<0.5	<0.5	<5	0.9	334	<10	<0	0.2	0.2	<2	<100	<0.5	00.5	0.1
2917	<1	<2	2	<100	10	2.0	1	<1	<0.5	0.28	c). 5	<0.5	< 5	<0.5	224	<10	<20	0.2	0.1	<2	<100	<0.5	<0.5	<0.
2918	<1	<2	1	<100	7	1.8	1	<1	<0.5	0.37	<0.5	<0.5	< 5	<0.5	302	<10	<20	0.1	0.1	<2	<100	<0.5	<0.5	<0.1
2919	2	<2	2	<100	12	1.9	2	1	<0.5	0.37	<0.5	< 0.5	< 5	0.7	249	<10	<20	0.1	0.1	<2	<100	<0.5	<0.5	<0.1
2920	1	<2	<1	230	8	3.2	4	2	<0.5	0.06	<0.5	<0.5	< 5	<0.5	410	<10	<20	0.1	0.2	<2	<100	<0.5	<0.5	<0.1
2921	2	<2	<1	<100	6	3.0	2	1	<0.5	0.06	<0.5	<0.5	<5	<0.5	278	<10	<20	0.1	0.2	<2	<100	<0.5	<0.5	-0.1
2922	2	<2	<1	140	9	2.0	3	2	<0.5	0.08	<0.5	<0.5	<5	<0.5	263	<10	<20	0.1	0.2	<2	<100	<0.5	<0.5	<0.1
2923	<1	<2	<1	310	4	1.6	5	18	0.7	0.56	2.4	<0.5	< 5	<0.5	5300	<10	22	0.2	2.0	<2	<100	<0.5	2.1	<0.1
2924	<1	<2	4	250	9	1.3	3	9	0.9	0.38	1.3	<0.5	< 5	<0.5	2480	28	<20	0.7	1.3	<2	<100	<0.5	0.7	<0.1
2925	<1	<2	2	360	6	1.9	6	11	1.3	0.39	1.1	<0.5	<5	1.7	2360	<10	<20	0.6	1.4	<2	<100	<0.5	0.9	<0.1
2926	2	<2	2	240	7	1.3	2	7	0.6	0.23	1.1	<0.5	< 5	1.0	1210	<10	<20	0.4	0.8	<2	<100	<0.5	0.7	80.1
2927	2	<2	3	230	6	0.9	3	19	1.0	0.64	2.4	<0.5	<5	<0.5	4600	<10	<20	0.6	2.8	<2	<100	<0.5	1.4	0.3
2628	3	<2	3	220	8	0.7	3	18	0.9	0.37	2.8	<0.5	<5	<0.5	4910	<10	<20	0.8	1.8	<2	<100	<0.5	1.5	0.4
2929 *.	9	<2	2	270	3	0.6	2	19	1.0	0.48	5.0	<0. 5	< 5	<0.5	7410	<10	<20	0.4	3.0	<2	<100	<0.5	2.1	0.4
2930	2	<2	4	260	8	1.1	4	10	0.9	0.31	1.2	<0.5	<5	0.9	1840	23	<20	0.8	1.1	<2	<100	<0.5	0.9	3.1
2931	2	<2	5	190	13	1.2	3	11	0.7	0.37	1.4	<0.5	< 5	<0.5	2120	<10	<20	0.8	1.3	<2	<100	<0.5	:. 0	0.3
2932	2	<2	4	230	7	1.2	3	11	1.2	0.36	1.2	<0.5	<5	0.9	1670	24	<20	1.0	1.4	<2	<100	<0.5	1.2	0.3
2933	2	<2	2	210	5	1.5	4	30	<0.5	0.69	2.8	<0.5	< 5	<0.5	5690	<10	23	0.3	2.4	<2	<100	<0.5	1.1	0.4
2934	<1	<2	1	200	3	0.7	8	29	0.8	1.01	3.5	<0.5	<5	<0.5	9610	<10	21	0.2	3.7	<2	<100	<0.5	1.3	<0.1
2935	1	<2	2	160	5	1.4	4	25	0.6	0.76	2.7	<0. 5	<5	<0.5	6570	<10	23	0.4	2.8	<2	<100	<0.5	1.1	0.3
2936	<1	<2	2	200	7	1.2	3	16	0.5	0.37	1.1	<0.5	<5	<0.5	2140	<10	<20	0.4	1.2	<2	<100	<0.5	0.7	<0.1
2937	<1	<2	4	290	7	1.3	2	13	0.8	0.50	2.1	<0.5	< 5	0.9	3240	<10	<20	0.9	1.9	<2	130	<0.5	1.4	0.3
2938	2	<2	2	180	6	1.6	2	9	0.7	0.27	1.1	<0.5	< 5	<0. 5	1540	<10	<20	0.4	0.9	<2	130	<0.5	0.6	0.3
2939	<1	<	3	230	10	1.5	4	9	0.9	0.32	1.6	<0.5	<5	<0.5	1990	45	<20	0.5	1.1	<2	< 100	<0.5	0.8	0.4
2940	<1	<2	1	160	10	1.3	4	7	0.8	0.31	0.9	<0.5	<5	0.7	1770	<10	<20	0.3	0.9	<2	<100	<0.5	0.5	<0.1
2941	<1	<2	5	120	14	0.8	4	7	1.1	0.30	0.7	<0.5	<5	1.1	760	27	<20	0.3	0.9	<2	<100	<0.5	0.6	<0.1
2942	2	<2	5	150	20	0.9	3	14	1.2	0.46	2.3	<0.5	< 5	<0.5	4390	<10	<20	0.9	1.8	<2	<100	<0.5	1.7	<0.1
2943	<1	<2	3	100	9	0.8	2	8	<0.5	0.42	1.1	<0.5	< 5	<0.5	1450	<10	<20	0.3	1.1	<2	<100	<0.5	0.7	0.2
2944	<1	<2	3	<100	7	1.6	1	4	<0.5	0.14	<0.5	<0.5	<5	<0.5	355	<10	<20	0.4	0.4	<2	<100	<0.5	<0.5	<0.1
2945 \% ${ }^{2}$	8	<2	19	<100	18	<0.3	22	28	0.8	5.26	<0.5	<0.5	< 5	<0.5	1980	<11	<20	0.6	6.9	<2	<100	<0.5	3.2	0.8
2946 ? ?	2	<2	4	<100	10	1.4	1	6	0.5	0.16	<0.5	<0.5	< 5	<0.5	367	<10	<20	0.5	0.5	<2	<100	<0. 5	<0.5	<0.1
2947	<1	<2	3	<100	25	3.0	17	5	0.6	1.00	<0.5	<0.5	<5	<0.5	364	<10	<20	0.4	1.3	<2	<100	<0.5	0.6	0.4
2948	2	<2	1	<100	18	3.1	3	7	<0.5	0.38	<0.5	<0.5	<5	<0.5	772	<10	<20	0.2	2.5	2	<100	<0.5	1.2	0.6

Sample description											
	PPM	PPM	PrM	PPM	PFM	FPM	PPM	PPM	PPM	PPM	9
2911	<1	21	2.0	3	<3	0.3	60.8	<0.2	0.1	$<0,1$	7.010
2912	<1	24	0.8	1	<3	<0.1	<0.2	<0.2	<0.1	<0.1	8.270
2913	<1	43	0.8	<1	<3	<0.1	<0.2	<0.2	<0.1	<0.1	3.540
2914	<1	23	1.6	2	<3	$0 . ?$	<0.2	<0.2	0.1	<0.1	9.810
2915	<1	33	1.6	3	<3	0.2	<0.2	<0.2	0.1	<0.1	7.140
2316	<1	29	1.3	2	<3	0.2	<0.2	<0.2	0.1	<0.1	7.120
2917	$\leqslant 1$	21	2. 4	2	< 3	0.2	<0.2	<0.2	0.1	<0.1	8.020
2918	<1	21	1.0	2	<3	0.1	<0.2	<0.2	<0.1	<0.1	8.390
2519	<1	20	1.4	2	<3	0.2	<0.2	<0.2	<0.1	<0.1	9.660
2920	<1	250	2.3	2	<3	0.2	<0.2	<0.2	<0.1	<0.1	9.110
2921	<1	300	0.9	1	<3	<0.1	<0.2	<0.2	<0.1	<0.1	10.52
2922	<1	280	1,5	2	<3	0.1	<0.2	$<0 . ?$	<0.1	<0.1	9.580
2923	<1	180	4,2	8	<3	0.5	<0.2	<0.2	0.4	<0.1	8.980
2924	<1	120	3.5	6	<3	0.4	<0.2	<0.2	0.3	<0.1	6.930
2925	<1	170	4.1	7	<3	0.4	<0.2	<0.2	0.3	<0.1	8.850
2926	<1	100	2.6	5	<3	0.3	<0.2	<0.2	0.2	<0.1	7.680
2927	<1	52	5.0	9	3	0.5	<0.2	<0.2	0.5	<0.1	13.61
2628	<1	26	6.0	10	4	0.6	<0.2	<0.2	0.5	<0.1	9.110
2929	<1	20	7.5	12	3	0.7	0.2	<0.2	0.6	<0.1	14.56
2930	<1	79	4.1	7	3	0.4	<0.2	<0.2	0.3	<0.1	10.61
2931	<1	70	4.1	8	3	0.5	<0.2	<0.2	0.3	<0.1	11.58
2932	<	88	4.7	9	<3	0.5	<0.2	<0.2	0.3	<0.1	10.56
2933	<1	65	4.4	9	<3	0.5	<0.2	<0.2	0.4	<0.1	9.340
2934	<1	42	5.3	10	<3	0.6	0.2	<0.2	0.5	<0.1	14.49
2935	<1	61	4.6	9	<3	0.6	<0.2	<0.2	0.4	<0.1	12:39
2936	< 1	130	2.4	5	<3	0.3	80.2	60.2	0.2	<0.1	8.770
2937	<1	100	5.9	10	4	0.6	<0.2	<0.2	0.4	<0.1	12.05
2938	<1	180	2.9	5	<3	0.3	<0.2	<0.2	0.2	<0.1	7.200
2939	<1	180	4.6	7	<3	0.4	<0.2	<0.2	0.3	<0.1	7.180
2940	<1	190	3.1	5	<3	0.3	<0.2	<0.2	0.2	<0.1	9.390
2941	<1	130	4.0	6	<3	0.3	<0.2	<0.2	0.2	<0.1	7.300
2942	<1	97	5.3	9	3	0.6	<0.2	<0.2	0.3	<0.1	7.350
2943	<1	66	2.4	5	<3	0.3	<0.2	<0.2	0.3	<0.1	14.83
2944	<1	180	1.2	2	<3	0.2	<0.2	<0.2	0.1	<0.1	14.23
2945	<1	220	35	45	22	4.2	1.0	0.5	1.6	0.2	15.07
2946	<1	190	1.6	3	<3	0.2	<0.2	<0.2	0.1	<0.1	13.78
2947	<1	72	21	29	16	2.2	0.6	0.2	0.9	0.1	15.04
2948	<1	43	29	32	22	3.0	0.8	0.3	1.1	0.2	15.04

Sample description	$\begin{array}{r} \mathrm{AD} \\ \mathrm{PPR} \end{array}$	$\begin{array}{r} \text { AG } \\ \mathrm{PPH} \end{array}$	$\begin{array}{r} \mathrm{AS} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{BA} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{BR} \\ \mathrm{PPM} \end{array}$	CA	$\begin{array}{r} \mathrm{CO} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{CR} \\ \mathrm{PPM} \end{gathered}$	$\underset{\mathrm{ppM}}{\mathrm{co}}$	$F E$	$\begin{gathered} \mathrm{HF} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{HG} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{IR} \\ \mathrm{pPB} \end{array}$	K	$\begin{array}{r} \text { MO } \\ \text { PPM } \end{array}$	$\begin{aligned} & \text { NA } \\ & \text { PFM } \end{aligned}$	$\begin{array}{r} \mathrm{NI} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { RB } \\ \text { PPM } \end{array}$	$\begin{array}{r} 5 \mathrm{~B} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SC} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SE} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SR} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{TA} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { TH } \\ \text { PPM } \end{array}$
2949	0.8	<0.3	0.54	160	4.7	0.62	0.6	1.9	0.08	0.073	<0.05	0.13	<0.1	0.50	<0.05	284	<2	9	0.150	0.21	<0.1	<10	<0.05	0.2
2950	2.1	<0.3	0.38	160	4.5	0.74	0.5	0.9	0.15	0.037	<0.05	<0.05	<0.1	0.30	0.14	217	<2	4	0.170	0.10	<0.1	<10	<0.05	<0.1
2951	0.7	<0.3	0.23	140	2.9	0.73	0.2	0.6	0.08	0.025	0.06	<0.05	<0.1	0.23	<0.05	167	4	2	0.100	0.05	<0.1	<10	<0.05	<0. 1
2952	0.6	<0.3	0.27	120	2.9	0.77	0.3	0.8	0.10	0.025	<0.05	<0.05	<0.1	0.23	<0.05	182	<2	3	0.130	0.09	0.2	<10	20.05	<0.1
2953	0.6	<0.3	0.20	110	2.4	0.80	0.2	0.8	0.09	0.027	0.06	<0.05	<0.1	0.25	<0.05	192	<2	3	0.098	0.69	< 0.1	<10	80.05	<0.1
2956	0.6	<0.3	0.25	120	3.4	0.98	0.3	1.1	0.10	0.032	0.06	0.07	60.1	0.25	0.07	234	<2	3	0.130	0.12	0.2	<0	<0.75	0.1
2957	0.7	<0.3	0.25	110	3.4	0.86	0.3	0.9	0.12	0.027	0.57	<0.05	<0.1	0.25	<0.05	231	7	4	0.120	0.11	-0.1	<10	<0.05	<0.1
2958	0.7	<0.3	0.31	110	5.2	0.83	0.5	0.7	0.11	0.334	0.07	<0.05	<0.1	0.31	0.09	263	<2	3	0.130	0.12	<0.1	<10	<0.05	<0.1
2959	0.6	<0.3	0.31	68	5.6	0.79	0.5	0.8	<0.05	0.035	<0.05	<0.05	<0.1	0.26	0.14	230	<2	3	0.110	0.11	<0.1	<10	<0.05	0.1
2960	0.4	<0.3	0.36	87	5.3	0.72	0.4	0.8	0.14	0.038	0.05	<0.05	<0.1	0.29	<0.05	279	<2	5	0.120	0.11	0.1	<10	0.06	<0.1
2961	0.5	<0.3	0.37	98	5.7	0.80	0.5	1.1	0.22	0.041	0.07	<0.05	<0.1	0.38	0.09	316	<2	6	0.130	0.11	<0. 2	<10	<0.05	<0.1
2962	0.6	<0.3	0.42	100	7.0	0.80	0.7	1.3	0.23	0.045	0.09	<0.05	<0.1	0.42	0.12	374	<2	6	0.150	0.13	0.4	<10	<0.05	<0.1
2963	0.9	<0.3	0.49	58	6.1	0.71	0.6	1.4	0.20	0.056	0.08	0.08	<0.1	0.35	<0.05	312	<2	6	0.150	0.14	0.4	<10	<0.05	<0.1
2965	0.6	<0.3	0.17	110	4.0	1.1	0.4	0.9	0.07	0.025	<0.05	0.12	<0.1	0.57	0.14	138	<2	6	0.120	0.97	<0.1	83	<0.05	<0.1
2966	0.6	<0.3	0.15	63	5.0	0.91	0.5	0.7	0.10	0.019	0.05	<0.05	<0.1	0.46	0.14	129	<2	4	0.083	0.05	<0.1	52	<0.05	0.1

Sample description	$\begin{gathered} \mathrm{u} \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \text { ZN } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { LA } \\ \text { PRM } \end{array}$	$\begin{array}{r} C E \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{ND} \\ \mathrm{ppM} \end{array}$	$\begin{array}{r} S M \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{E} 0 \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { IS } \\ \text { PPM } \end{array}$	YrM	$\begin{array}{r} L U \\ \mathrm{PPM} \end{array}$	Mass 9
2949	0.05	0.13	71	0.71	1.2	<0.5	0.09	<0.05	<0.1	0.038	0.007	5.680
2950	<0.01	0.13	54	0.36	0.6	<0.5	0.05	<0.05	<0.1	0.021	0.004	6.440
2951	<0.01	<0.05	48	0.23	0.3	<0.5	0.03	<0.05	<0.1	0.016	0.003	10.91
2952	<0.01	0.05	48	0.29	0.4	<0.5	0.04	<0.05	<0.1	0.018	0.002	11.86
295.3	0.03	<0.05	46	0.19	0.4	<0.5	0.04	20.05	<0.1	0.015	0.002	13.56
2956	0.04	0.06	51	0.39	0.6	<0.5	0.05	<0.05	<0.1	$0.02:$	0.003	10.34
2957	0.03	<0.05	47	0.36	0.5	-0.5	0.05	e0.05	<0.1	0.023	0.005	8.610
2958	0.05	<0.05	54	0.42	0.7	<0.5	0.05	<0.05	<0.1	0.026	0.004	7.020
2959	<0.01	<0.05	53	0.37	0.6	<0.5	0.05	<0.05	<0.1	0.027	0.003	13.10
2960	0.04	<0.05	53	0.41	0.6	<0.5	0.05	<0.05	<0.1	0.025	0.004	5.960
2961	0.05	<0.05	60	0.41	0.6	<0.5	0.05	<0.05	<0.1	0.025	0.005	7.830
2962	0.04	<0.05	58	0.46	0.8	<0.5	0.06	<0.05	<0.1	0.026	0.005	4.480
2963	0.05	<0.05	110	0.52	0.8	<0.5	0.07	<0.05	<0.1	0.030	0.005	8.150
2965	<0.01	<0.05	96	0.22	0.4	<0.5	0.03	<0.05	<0.1	0.017	0.002	4.140
2966	<0.01	<0.05	63	0.17	<0.3	<0.5	0.02	<0.05	<0.1	0.016	<0.001	4.980

Activation Laboratories Ltd. Work Order: 4523 Report: 4527D

Sample deecription	$\begin{array}{r} \mathrm{AU} \\ \mathrm{PPB} \end{array}$	$\begin{array}{r} A G \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { AS } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{BA} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{BR} \\ \mathrm{PPM} \end{array}$	${ }^{C A}$	$\begin{array}{r} \mathrm{CO} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{CR} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{CS} \\ \mathrm{PPM} \end{array}$	${ }_{8}^{\text {FE }}$	$\begin{gathered} \mathrm{HF} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{HG} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { IR } \\ \mathrm{PPB} \end{array}$	$\begin{array}{r} \text { MO } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{NA} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{NI} \\ \mathrm{PYM} \end{array}$	$\begin{gathered} \mathrm{RE} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{SH} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{sc} \\ \mathrm{pqM} \end{gathered}$	$\begin{array}{r} \text { SE } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{SR} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { TA } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{TH} \\ \mathrm{PQM} \end{array}$	$\underset{\text { PPM }}{\mathrm{U}}$
2954	1	<	<1	120	9	1.6	1	1	<0.5	0.12	<0.5	<0.5	<5	<0.5	38.	-10	<20	0.2	0.2	<2	<100	<0.5	<0.5	<0.1
2955	<1	<2	<1	120	8	2.0	1	2	<0.5	0.12	<0.5	<0.5	< 5	<0.5	39.3	12	<20	0.2	0.1	<2	<100	<0.5	<0.5	<0.1
2967	<1	<2	6	170	34	2.6	7	3	0.6	1.35	<0.5	<0.5	<5	0.7	410	<10	<20	0.4	0.4	<2	240	<0.5	<0.5	0.1
2968	<1	<2	4	120	24	1.7	4	4	<0.5	0.71	<0.5	<0.5	< 5	<0.5	305	$\leqslant 10$	<20	0.4	0.6	<2	170	<0.5	<0.5	<0.1
2970	<1	<2	7	130	31	2.0	6	4	0.8	1.50	<0.5	<0.5	<5	<0.5	514	<20	20	0.5	0.6	<2	260	<0.5	<0.5	0.1

| Sampie description | W
 PPM | ZN
 PPM | LA
 PPM | CE
 PPM | ND
 PPM | SM
 PPM | EU
 PPM | TB
 PPM | YR
 PPM | LU
 PDM | Mass
 g |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2954 | <1 | 120 | 0.6 | <1 | <3 | <0.2 | <0.2 | <0.2 | <0.1 | <0.1 | 15.70 |
| 2955 | <1 | 120 | 0.6 | <1 | <3 | <0.1 | <0.2 | <0.2 | <0.1 | <0.1 | 15.00 |
| 2967 | <1 | 87 | 2.5 | 3 | <3 | 0.3 | <0.2 | <0.2 | 0.1 | <0.1 | 12.52 |
| 2968 | <1 | 55 | 2.8 | 4 | <3 | 0.4 | <0.2 | <0.2 | 0.1 | <0.1 | 24.98 |
| 2970 | <1 | 96 | 2.8 | 4 | <3 | 0.4 | <0.2 | <0.2 | 0.2 | <0.1 | 7.440 |

Sample description	$\begin{array}{r} \mathbf{A}(\mathrm{l} \\ \mathrm{PPF} \end{array}$	$\begin{gathered} A G \\ P P M \end{gathered}$	$\begin{array}{r} \mathrm{AS} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{BA} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{BR} \\ \mathrm{PBH} \end{array}$	$8_{8}^{C A}$	$\begin{array}{r} \mathrm{CO} \\ \mathrm{pDM} \end{array}$	$\begin{array}{r} C R \\ \text { FPM } \end{array}$	$\begin{array}{r} \mathrm{CS} \\ \mathrm{PPM} \end{array}$		$\begin{array}{r} \mathrm{EF} \\ \mathrm{PPM} \end{array}$	$\begin{aligned} & \text { HG } \\ & \text { PPM } \end{aligned}$	$\begin{array}{r} 1 R \\ \mathrm{P}: 9 \end{array}$	$\begin{array}{r} \text { MO } \\ \mathrm{PPM} \end{array}$	$\begin{aligned} & \text { NA } \\ & \text { PrM } \end{aligned}$	$\begin{array}{r} \mathrm{NI} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{RB} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { SB } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{SC} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { SE } \\ \text { HPM } \end{array}$		SR	$\begin{array}{r} \text { TA } \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{TH} \\ \mathrm{PPP} \end{gathered}$
8701	6	<2	1	430	3	2	7	60	1	1.89	9	<1	<5	<2	21300	69	<30	<0.1	9.0	<3	<0.01	<0.05	-1	4.4
8702	<2	<2	1	400	5	2	9	61	2	2.00	9	<1	<5	<2	13800	110	41	0.1	8.2	<3	<0.01	<0.05	<1	5.1
8703	60	<2	1	440	3	2	8	61	<1	2.34	8	<1	<5	3	19300	57	37	<0.1	9.0	<3	<0.01	<0.05	<1	4.0
8704	<2	<2	2	430	6	<1	7	63	<1	2.91	9	<1	<5	<2	18100	$\leqslant 50$	30	<0.1	8.2	<3	<0.01	<0.05	<1	4.2
8705	5	<2	1	370	5	2	9	73	2	3.27	9	$\times 1$	<5	<2	16800	<50	37	<0.1	7.8	<3	<0.01	<0.05	<1	3.9
3706	67	<2	\checkmark	450	7	<1	14	94	<1	3.49	7	<1	<5	<2	22100	<50	<30	<0.1	11	<3	<0.01	0.10	<1	3.9
8707	4	<2	1	470	4	2	6	65	1	2.01	8	<1	<5	<2	18500	58	41	<0.1	7.6	<3	<0.01	<0.05	$\leqslant 1$	4.1
- 8709	6	<2	1	430	9	2	10	76	<1	3.28	6	<1	<5	<2	20400	110	39	0.1	10	<3	<0.01	<0.05	<1	3.2
8709	5	<2	1	370	6	<1	10	83	1	2.81	7	<1	<3	<2	20700	<50	<30	0.1	11	<3	<0.01	<0.05	1	3.5
8710	2	<2	1	360	3	3	14	180	2	3.44	7	<1	<5	<2	24000	<50	<30	0.2	16	<3	<0.01	<0.05	<1	6.0
8711	<2	-2	1	350	5	3	6	63	1	2.41	7	<1	<5	<2	19300	66	35	0.2	8.1	<3	co.01	<0.05	<1	4.3
8712	<2	<2	1	380	4	2	6	60	<1	2.02	8	<1	<5	<2	19100	<50	47	<0.1	8.0	$\checkmark 3$	-0.01	<0.05	<1	4.2
8713	<2	<2	<1	390	4	2	9	110	1	2.79	3	<1	<5	<2	20600	<50	<30	<0.1	10	<3	<0.01	<0.05	<	3.9
8714	<2	<2	1	380	4	2	7	89	2	2.41	8	<1	<5	<2	18800	<50	32	0.2	9.1	<3	<0.01	<0.05	<1	4.1
8715	4	<2	<1	380	7	2	10	88	1	3.25	7	<1	<5	<2	20100	<50	<36	<0.1	11	<3	<0.01	<0.05	<1	3.5
: 8716	4	<2	<1	350	6	1	8	73	<1	2.55	8	<1	<5	$\therefore 7$	18300	<50	37	<0.1	9.9	<3	<0.01	<0.05	<i	3.7
:8717	<2	<2	3	380	5	2	21	98	2	4.37	6	<1	<5	<2	22400	<50	<30	0.1	13	<3	<0.01	<0.05	<1	5.0
3718	<2	<2	2	350	8	1	9	68	<1	2.54	6	<1	<5	<2	18800	<50	-30	<0.1	9.8	<3	<0.0.1	<0.05	<1	3.7
3719 ,	<2	<2	2	410	4	<1	6	49	<1	1.97	7	<1	<5	<2	20800	<50	38	0.1	6.6	<3	<0.01	<0.0)	<1	3.8

Sample description	$\begin{gathered} \mathrm{U} \\ \mathrm{PPM} \end{gathered}$	$\underset{\text { PPM }}{\mathrm{W}}$	$\begin{array}{r} \text { 2N } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { LA } \\ \text { PFM } \end{array}$	$\begin{array}{r} C E \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { MD } \\ \text { PPA } \end{array}$	$\begin{array}{r} \text { SM } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { EU } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \text { TE } \\ \text { PPM } \end{array}$	$\begin{array}{r} Y B \\ \text { FPM } \end{array}$	$\begin{array}{r} \mathrm{LU} \\ \mathrm{PPM} \end{array}$	Mass 9
8701	1.3	<3	<50	22	$4{ }^{-}$	15	3.3	1.0	<0.5	2.72	0.28	40.48
8702	1.0	<3	54	20	52	14	3.1	1.0	<0.5	1.78	0.30	31.34
${ }^{+} 8703$	1.1	<3	<50	15	35	12	2.4	0.8	<0.5	1.50	0.25	34.13
8704	1.3	<3	<50	16	31	13	2.3	0.7	<0.5	1.47	0.25	32.87
8705	<0.5	<3	6.3	15	31	16	2.4	0.7	<0. 5	1.33	0.24	33.72
8706	<0.5	<3	53	19	37	i 7	2.1	2.0	<0.5	2.57	0.27	38.02
-8707	1.7	<3	<50	15	28	$1]$	2.3	0.7	<0.5	1.36	0.23	31.51
8708	<0.5	<3	68	14	31	12	2.7	0.9	<0.5	1.44	0.23	34.71
8709	1.7	<3	67	17	37	12	2.7	0.8	<0.5	1.57	0.25	33.12
8710	1.4	<3	96	21	46	16	3.6	1.2	<0.5	1.99	0.32	32.01
8711	1.5	<3	62	17	34	16	2.4	0.8	<0.5	1.27	0.12	33.76
8712	1.5	<3	<50	16	33	12	2.3	0.8	<0.5	1.34	0.23	32.05
8713	1.1	<3	56	15	31	11	2.4	0.8	<0.5	1.74	0.27	33.81
8714	<0.5	<3	<50	16	35	10	2.5	0.3	<0.5	1.63	0.29	32.08
8715	1.5	<3	77	16	37	11	2.6	0.9	0.6	1.59	0.26	34.66
. 8716	1.5	<3	75	16	33	10	2.3	0.8	<0.5	1.60	0.26	31.02
8717	0.9	<3	98	26	80	16	4.0	1.2	<0.5	1.92	0.30	36.70
8718	0.8	<3	<50	13	31	9	2.1	0.7	<0.5	1.38	0.25	35.84
8719	1.0	<3	<50	14	31	9	2.0	0.8	<0.5	1.19	0.20	40.86

Activation Laboratories Ltd. Wor's Order: 4170 Report: 4164B

mple description	$\begin{array}{r} \mathrm{AU} \\ \mathrm{PPB} \end{array}$	$\begin{array}{r} A G \\ P P M \end{array}$	$\begin{gathered} \text { AS } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \mathrm{BA} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{BR} \\ \mathrm{PPM} \end{array}$	$8^{\text {CA }}$	$\begin{array}{r} C O \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} C R \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{CS} \\ \mathrm{PPM} \end{array}$	FE	$\begin{gathered} \mathrm{HF} \\ \mathrm{PRM} \end{gathered}$	$\begin{array}{r} \text { HG } \\ \text { PPM } \end{array}$	$\begin{array}{r} 1 R \\ \mathrm{PFB} \end{array}$	$\begin{gathered} \mathrm{MO} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{NA} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{NI} \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { RB } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{SB} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} S C \\ P P M \end{array}$	$\begin{array}{r} \mathrm{SE} \\ \mathrm{PPM} \end{array}$			$\begin{array}{r} \text { TA } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{TH} \\ \mathrm{PPM} \end{array}$
; 138	1470	<5	<2	<100	<1	<1	17	<10	4	11.3	5	<1	<5	6	33000	<50	<30	< 0.2	23	<5	<0.01	<0.05	<1	3.3
i1139	4890	<5	2	<100	<1	<1	9	11	<2	2.67	<0.5	<1	<5	240	5840	<50	<30	<0.2	2.7	< 5	<0.01	<0.05	<1	<0.5
11140	112	<5	<2	190	2	<1	30	31	4	6.14	1.0	1	<5	10	14300	<50	<30	<0.2	32	<5	<0.01	<0.05	<1	<6.5
i: 141	19	< 5	<2	160	1	6	31	270	<2	6.47	2.0	<1	<5	<5	16300	<50	< 30	<0.2	24	<5	<0.01	<0.05	<1	<0.5

Sample description	$\begin{gathered} \mathrm{U} \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} W \\ \text { PPM } \end{gathered}$	$\begin{array}{r} 2 \mathrm{~N} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { LA } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{CE} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{ND} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SM} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{EU} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{TB} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { YB } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{LU} \\ \mathrm{PPM} \end{array}$	Mass 9
251138	<0.5	16	339	8	24	11	3.5	1.3	0.9	6.07	1.00	33.87
261139	<0.5	15	<50	<1	<3	<5	0.2	<0.2	<0.5	0.44	0.09	32.71
261140	1.1	< 4	96	6	17	<5	1.3	0.5	<0.5	1.60	0.22	33.36
. 261141	<0.5	<4	102	4	10	<5	1.1	0.5	<0.5	1.72	0.28	34.64

Sample description	$\begin{array}{r} \mathrm{AU} \\ \mathrm{PPB} \end{array}$	$\begin{array}{r} \mathrm{AG} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { AS } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{BA} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{BR} \\ \mathrm{PPM} \end{array}$	${ }^{\mathrm{CA}}$	$\begin{array}{r} \mathrm{CO} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{CR} \\ \mathrm{p}, \mathrm{M} \end{array}$	$\begin{gathered} \mathrm{cs} \\ \mathrm{pPM} \end{gathered}$	FE	$\begin{array}{r} \mathrm{GF} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { BG } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{IR} \\ \mathrm{PPB} \end{array}$	$\begin{array}{r} \text { MO } \\ \text { PPM } \end{array}$	$i^{\text {NA }}$	$\begin{array}{r} \mathrm{NI} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{RB} \\ \mathrm{PRM} \end{array}$	$\begin{array}{r} s B \\ p P M \end{array}$	$\begin{array}{r} S C \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { SE } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{SN} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SR} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { TA } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { TH } \\ \text { PPM } \end{array}$
8729	6	<5	0.9	430	3.2	$\leqslant 1$	7	66	<1	2.21	9	<1	<5	<1	1.85	<20	73	0.2	8.3	<3	<100	<500	<0.5	4.9
8721	<2	<5	<0.5	420	1.9	4	8	71	1	2.00	5	<1	<5	<1	1.85	<20	33	0.2	8.6	<3	<100	<500	1.4	4.4
8722	5	<5	1.4	520	1.6	7	8	74	<1	1.90	5	<1	<5	<1	1.83	<20	40	3.1	8.2	<3	<100	<500	<0.5	4.4
8723	<2	<5	<0.5	390	1.6	5	9	88	<1	2.03	5	<1	<5	<1	1.86	<20	32	0.3	8.7	<3	<100	<500	<0.5	4.4
8724	6	<5	<0.5	490	2.4	5	9	98	<1	2.14	7	<1	<5	2	1.92	<20	<5	0.3	9.5	<3	<100	<500	1.3	4.9
8725	8	<5	1.1	570	<0.	2	13	97	<1	2.55	7	<1	< 5	<1	2.00	<20	56	0.3	11	<3	- 100	<500	<0.5	5.1
8726	<2	<5	1.3	400	6.6	7	8	56	<-	1.61	83	<1	<5	4	1.91	<20	30	1.9	6.5	<5	<100	-500	<0.5	5.5
8727	<2	< 5	0.8	450	1.7	7	8	78	1	1.99	5	<1	<5	<1	1.81	<20	52	0.2	8.2	<3	<100	<500	<0.5	4.6
8728	<2	< 5	<0.5	480	2.0	7	10	80	<1	1.99	5	<1	<5	<1	1.85	110	35	0.3	8.5	< 3	<100	<500	2.2	5.4
8729	<2	<5	<0.5	540	1.8	7	8	81	<1	2.97	6	<1	<5	<1	1.87	<20	c 5	0.2	Q.E	<3	<100	<500	<0.5	4.5
8730	<2	< 5	0.7	490	1.8	5	8	72	<2	2.76	6	<1	<5	<1	1.89	<20	52	0.2	8.3	<3	<100	<500	<0.5	4.0
8731	<2	< 5	<0.5	630	2.1	5	8	84	1	1.85	6	<i	<5	<1	1.93	<20	52	<0.1	8.5	<3	<100	<500	<0.5	4.6
8733	<2	<5	1.0	670	<0.5	$\leqslant 1$	8	85	<1	1.89	8	<1	< 5	3	2.10	<20	58	0.3	9.3	<3	<100	<500	<0.5	5.5
8734	<2	<5	<0.5	560	<0.5	3	7	78	<1	1.82	8	<1	< 5	<1	1.95	<20	67	0.3	9.0	<3	<100	<500	<0.5	5.4
8735	4	<5	<0.5	670	<0.5	3	18	180	2	3.47	6	<1	<5	<1	2.20	<20	<6	<0.1	12	<3	<100	<500	<0.5	5.3
8736	5	<5	0.8	470	1.6	5	8	80	1	1.73	5	<1	< 5	<1	1.78	<20	64	0.3	7.9	<3	<100	< 500	<0.5	3.6
8737	<2	< 5	1.0	540	2.1	6	8	82	<1	1.82	5	<1	<5	<1	1.80	<20	34	0.2	8.1	<3	<100	<500	<0.5	3.9
8738	<2	<5	<0.5	420	1.7	7	8	8 C	<1	1.75	5	<1	<	<1	1.80	<20	56	0.3	8.1	<3	<100	<500	<0.5	4.1
8739	<2	<5	3.7	500	3.4	2	9	77	<1	2.23	7	<1	<5	<1	2.27	<20	<6	0.3	8.7	<3	<100	<500	<0.5	3.9
8740	<2	<5	1.1	600	2.0	2	8	66	2	1.91	5	<1	<5	2	2.17	<20	52	0.3	7.8	<3	<100	<500	<0.5	3.7
8741	2	< 5	1.6	640	3.8	2	12	100	1	2.58	7	<1	<5	<1	2.29	<20	41	0.5	9.4	<3	<100	<500	≤ 0.5	4.7
8742	5	<5	2.0	520	2.6	1	10	82	1	2.41	6	<1	<5	<1	2.25	<20	47	0.6	9.1	<3	<100	<500	<0.5	4.3

Sample description	$\begin{gathered} \mathrm{u} \\ \mathrm{P} P \mathrm{M} \end{gathered}$	$\begin{gathered} W \\ \text { PPM } \end{gathered}$	$\begin{array}{r} 2 \mathrm{~N} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { I.A } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{CE} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \text { ND } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \mathrm{SM} \\ \mathrm{pPM} \end{array}$	$\begin{gathered} \mathrm{EU} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} T B \\ \text { PYM } \end{array}$	$\begin{array}{r} \text { YB } \\ \text { ppM } \end{array}$	$\underset{\text { PFM }}{\text { LU }}$	Mass 9
8720	1.5	<1	63	13	35	12	2.1	0.7	<0.5	1.2	0.22	35.84
8721	1.0	<1	<50	19	43	17	2.9	0.9	<0.5	1.4	0.25	33.77
8722	1.3	<1	< 50	16	37	16	2.5	0.8	<0.5	1.2	0.22	32.18
8723	0.9	<1	53	18	45	17	2.7	0.9	<0.5	1.1	0.22	29.50
8724	<0.5	<1	<50	21	49	21	3.1	0.9	0.5	1.3	0.24	28.78
8725	1.1	<1	56	21	48	20	3.2	1.1	<0.5	1.4	0.26	31.61
8726	4.2	<1	238	17	38	18	3.1	1.1	<0.5	1.1	0.21	0.6140
8727	<0.5	<1	<50	19	46	16	2.7	0.8	<0.5	1.2	0.25	29.79
8728	0.7	<1	<50	20	50	19	2.9	0.9	<0.5	1.3	0.22	26.25
8729	1.2	<1	78	20	47	22	2.9	1.0	<0.5	1.3	0.22	31.00
8730	<0.5	<1	<50	17	40	15	2.7	1.0	<0.5	1.1	0.22	31.96
8731	<0.5	<1	51	18	43	15	2.9	0.9	<0.5	1.3	0.23	25.25
8733	<0.5	<1	<50	21	51	21	3.2	1.0	<0.5	1.4	0.28	25.66
8734	<0.5	<1	<50	21	51	23	3.1	1.0	0.5	1.4	0.26	27.50
8735	<0.5	<1	57	23	53	25	4.2	1.5	0.7	1.7	0.33	30.00
8736	<0.5	$<$	65	16	40	15	2.5	0.8	<0.5	1.1	0.19	29.99
8737	0.8	<1	<50	17	41	17	2.6	0.9	<0.5	1.1	0.20	29.69
8738	0.9	<1	< 0	17	43	15	2.6	0.9	<0.5	1.2	0.22	32.27
8739	<0.5	<1	<50	24	40	16	2.4	0.9	<0.5	1.0	0.20	26.73
8740	<0.5	<1	<50	13	39	10	2.2	0.8	<0.5	0.9	0.20	38.96
8742	1.1	<1	53	15	51	16	2.5	0.9	<0.5	1.1	0.24	28.78
8742	1.0	<1	<50	15	59	14	2.6	1.0	<0.5	1.1	0.21	37.65

Activation Laboratories Ltd. Work Order: 4523 Report: 4527

Sample description	$\begin{array}{r} \mathrm{AU} \\ \mathrm{PPB} \end{array}$	$\begin{gathered} \text { AG } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { PRM } \end{gathered}$	$\begin{aligned} & \mathrm{BA} \\ & \mathrm{PPM} \end{aligned}$	$\begin{array}{r} \mathrm{BR} \\ \mathrm{PPM} \end{array}$	CA	$\begin{gathered} \text { Co } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \mathrm{CR} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{CS} \\ \mathrm{PPM} \end{gathered}$	FE	$\begin{gathered} \mathrm{HF} \\ \mathrm{PPH} \end{gathered}$	$\begin{gathered} \mathrm{HG} \\ \mathrm{Pr} \end{gathered}$	$\begin{array}{r} \mathrm{IR} \\ \mathrm{PPB} \end{array}$	$\begin{array}{r} M O \\ P P M \end{array}$	$\begin{gathered} \mathrm{NA} \\ \mathrm{p} p \mathrm{M} \end{gathered}$	$\begin{array}{r} \mathrm{NI} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{RB} \\ \mathrm{Pi} \mathrm{M} \end{array}$	$\begin{array}{r} \mathrm{SB} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SC} \\ \mathrm{PPM} \end{array}$	SE PPM		${ }^{\text {SR }}$	$\begin{gathered} \mathrm{TA} \\ \mathrm{PIM} \end{gathered}$	TH
8901	<5	<5	<2	-100	<i	4	26	11	<2	12.3	5.7	<1	< 5	<5	11100	<50	<30	0.3	38	<5	<0.02	<0.05	3	<0.5
8902	< 5	<5	<2	260	<1	<	< 5	21	<2	8.89	4.7	<1	< 5	<5	15900	<50	<30	0.3	11	<5	<0.02	<0.05	<1	2.8
8903	2490	< 5	<2	<100	<1	2	10	13	<2	2.30	0.9	<1	<5	< 5	7390	<50	<30	<0.2	2.1	<5	<0.01	<0.05	<1	0.6
9362	<5	<5	<2	720	<1	<1	<5	<10	2	1.09	3.6	<1	<5	<5	10100	<50	130	0.3	3,4	<5	<0.01	<0.05	<1	2.8

Activation Laboratories Ltd. Work Order: 4523 Report: 4527

Sample description	$\begin{gathered} \mathrm{u} \\ \text { PPM } \end{gathered}$	$\begin{gathered} W \\ \text { PPM } \end{gathered}$	$\begin{array}{r} 2 \mathrm{~N} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { LA } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{CE} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { ND } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{SM} \\ \mathrm{PDM} \end{array}$	$\begin{array}{r} \mathrm{EU} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{Tb} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} Y B \\ Y P M \end{array}$	$\begin{array}{r} \text { iU } \\ \text { PFM } \end{array}$	$\begin{array}{r} \text { Mas: } \\ g \end{array}$
8901	<0.5	<4	187	8	28	14	3.7	1.3	<0.5	4.12	1.71	42.28
8902	<0.5	<4	204	12	25	8	1.6	0.7	<0.5	2.67	0.56	33.27
8303	<0.5	<4	<50	2	4	<5	0.5	0.3	<0.5	0.61	0.09	41.69
9362	2.2	<4	<50	7	28	11	2.0	0.6	<0.5	2.61	0.45	31.21

Sample description	$\begin{gathered} \mathrm{AU} \\ \mathrm{PPB} \end{gathered}$	$\begin{array}{r} A G \\ P P M \end{array}$	$\underset{\mathrm{pPM}}{\mathrm{AS}}$	$\begin{array}{r} \mathrm{BA} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{BR} \\ \mathrm{PFM} \end{gathered}$	$C A$	$\begin{gathered} \text { co } \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{CR} \\ \mathrm{PPM} \end{array}$	$\underset{\mathrm{pp}}{\mathrm{cs}}$	$F E$	$\begin{gathered} \mathrm{HF} \\ \mathrm{pPM} \end{gathered}$	$\begin{array}{r} \mathrm{HG} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} 1 \mathrm{R} \\ \mathrm{PPB} \end{array}$	$\begin{array}{r} \text { MO } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { NA } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{NI} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{RB} \\ \mathrm{PPM} \end{array}$	$\underset{\mathrm{pem}}{\mathrm{sB}}$	$\begin{array}{r} \mathrm{SC} \\ \mathrm{PPM} \end{array}$					$\begin{array}{r} \mathrm{TH} \\ \mathrm{gPM} \end{array}$
26142	102	< 5	490	<100	<1	<1	<5	<10	<2	16.6	<0.5	<1	<5	6	<500	<50	630	0.6	0.6	< 5	<0.01	<0.05	<1	<0.5
26143	9	< 5	3	400	<1	<1	<5	14	<2	6.56	4.0	<1	< 5	< 5	15400	<50	77	<0.2	4.7	<5	<0.01	<0.05	<1	2.9
26144	<5	<5	3	<100	<1	<1	6	17	<2	9.58	4.0	<1	< 5	<5	6150	<50	99	<0.2	5.0	< 5	<0.01	<0.05	1	3.2
26145	<5	<5	<2	240	<1	<1	19	26	<2	10.1	4.1	<1	< 5	< 5	7550	<50	40	<0.2	6.1	<5	<0.01	<0.05	2	3.6
25145	10	< 5	8	<100	<1	<1	1.3	15	<2	17.4	<0.5	<1	< 5	<5	<500	130	<30	0.3	1.6	<5	<0.01	<0.05	<1	0.6
2614.	8	<5	65	<100	<1	<1	8	16	2	11.5	1.4	<1	<5	< 5	<500	<50	69	1.4	4.3	<5	<0.01	<0.05	<1	1.1
26148	11	<5	96	$\leqslant 100$	<1	<1	16	18	<2	13.6	0.9	<	<5	< 5	<500	<50	<30	1.0	3.0	5	<0.01	<0.05	<1	1.3
26149	< 5	< 5	9	700	1	<1	6	18	<2	2.58	3.8	<1	<5	< 5	27400	<50	<30	<0.2	7.0	< 5	<0.01	<0.05	<1	2.9
26150	90	<5	<2	260	<1	2	16	48	<2	12.4	3.6	<1	<5	< 5	1880	<50	<30	<0.2	11	< 5	<0.01	<0.05	1	2.5
9351-61	<5	<5	73	270	<1.	<1	< 5	17	<2	23.4	3.8	<1	< 5	6	20300	<50	39	<0.2	4.5	< 5	<0.01	<0.05	<1	2.7
9352-61	<5	<5	<2	130	<1	<1	11	12	<2	14.7	3.1	<1	<5	6	17700	<50	52	<0.2	4.2	<5	<0.01	<0.05	2	3.0
9353-61	< 5	< 5	20	530	<1	<1	6	35	<2	3.43	5.7	<1	<5	< 5	18800	<50	100	0.4	12	<5	<0.01	0.08	<1	5.7
9354-61	< 5	< 5	<2	290	<1	<1	10	33	<2	5.16	7.0	<1	<5	<5	22900	<50	<30	0.3	8.0	< 5	<0.01	<0.05	2	5.7
9355-61	<5	<5	48	360	<1	<1	59	58	<2	12.7	3.9	<1	<5	9	10200	<50	<30	1.1	13	6	<0.01	<0.05	<1	3.2
9356-61	< 5	<	<2	410	<1	<1	<5	29	<2	5.40	5.5	<1	< 5	<5	9420	<50	99	0.2	9.8	<5	<0.01	<0.05	<1	5.2
9357-61	≤ 5	<5	3	230	<1	<1	6	81	<2	4.45	4.3	<1	<5	<5	6890	<50	71	<0.2	9.0	<5	<0.01	<0.05	<1	4.5
9358-61	22	< 5	110	110	<1	<1	24	<10	<2	20.7	3.2	<1	<5	<5	2220	<50	39	2.8	2.7	<5	<0.01	<0.05	1	3.8
9359-61	<5	<	5	<100	<1	<1	<5	14	<2	22.1	<0.5	<1	< 5	<5	<500	<50	<30	0.2	1.0	<5	<0.01	<0.05	<1	0.5
9360-61	3 a	< 5	<2	460	<1	<1	14	13	3	12.1	3.4	<1	<5	<	21000	<50	<30	0.2	4.2	<5	<0.01	0.05	1	2.9
9361-61	<5	< 5	<2	360	<1	6	36	<10	9	9.87	2.2	<1	<5	<5	18100	<50	42	0.3	35	<5	<0.01	<0.05	<1	<0.5

Sample description	$\underset{\text { PPM }}{\substack{2}}$	$\stackrel{\mathbf{w}}{\underset{\mathbf{P P M}}{ }}$	$\begin{array}{r} \mathrm{ZN} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { LA } \\ \text { PPM } \end{array}$	$\underset{\mathrm{pPM}}{\mathrm{CE}}$	$\begin{array}{r} \text { ND } \\ \text { PPM } \end{array}$	$\begin{array}{r} S M \\ \mathrm{SFM} \end{array}$	$\begin{array}{r} \text { EU } \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} T \mathrm{~B} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{YB} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { LU } \\ \text { PPM } \end{array}$	Мавs g
26142	<0.5	< 4	82	3	5	<5	0.7	0.9	<0.5	1.11	0.17	45.64
26143	<0.5	<4	<50	10	19	6	1.2	0.4	<0.5	1.27	0.22	36.82
26144	<0.5	<4	117	7	13	< 5	1.1	0.4	<0.5	0.89	0.16	33.21
26145	<0.5	<4	254	12	23	9	1.4	0.5	<0.5	1.20	0.22	41.22
26146	<0.5	<4	235	5	10	9	0.8	0.5	<0.5	0.58	0.12	46.56
26147	<0.5	<4	397	11	25	11	1.8	1.1	<0.5	1.15	0.25	38.50
26148	<0.5	<4	424	6	14	< 5	0.9	0.7	<0.5	0.84	0.13	41.17
26149	<0.5	<4	<50	12	23	7	1.1	0.4	<0.5	0.91	0.12	37.61
26150	<0.5	<4	595	13	21	6	1.6	0.3	<0.5	1.25	0.22	34.56
9351-61	<0.5	<4	163	12	19	6	1.1	0.3	<0.5	1.05	0.17	37.94
9352-61	<0.5	<4	152	12	26	8	1.6	0.5	<0. 5	1.37	0.29	37.96
9353-61	<0.5	<4	128	28	62	27	4.3	1.3	<0.5	2.05	0.37	29.50
9354-61	<0.5	<4	92	17	28	9	1.9	0.4	<0.5	4.14	0.66	36.01
9355-61	1.5	<4	985	12	30	12	2.1	0.9	<0.5	1.94	0.30	33.87
9356-61	2.4	<4	118	13	29	<5	1.1	0.4	<0.5	1.49	0.31	31.99
9357-61	1.1	<4	106	8	20	6	1.1	0.5	<0.5	1.33	0.24	30.65
9358-61	<0.5	<4	160	27	63	26	3.3	0.9	<0.5	1.38	0.25	41.86
9359-61	0.9	<4	83	4	9	< 5	0.7	0.8	<0.5	0.75	0.10	45.79
9360-61	<0.5	<4	120	15	26	10	1.3	0.2	<0.5	1.17	0.21	35.13
9361-61	1.3	<4	102	4	13	8	2.5	1.1	<0.5	3.72	0.58	39.90

V.L.F. Grid

LItoo E

Sangol lin to weeria Soufl.

Line 25

$$
\begin{aligned}
& \text {-. Dip Angle } 1 \mathrm{~cm}=10^{\circ} \\
& +\cdots \text { Field Strength } 1 \mathrm{~cm}=50 \% \\
& \text { Scale } 1 \mathrm{~cm}=25 \mathrm{mtr} .
\end{aligned}
$$

3
8
7

-10. Dipangle $1 \mathrm{~cm}=10^{\circ}$

$$
\begin{gathered}
\text { +190+ Field strength } 1 \mathrm{~cm}=50 \% \\
\text { Scale icm }=25 \mathrm{~m} \text { etexs }
\end{gathered}
$$

FELIX LAKE

- Dip Anple $1 \mathrm{~cm}=10^{\circ}$
+--+ Field Strenoth $1 \mathrm{~cm}=50 \%$
Scile $1(\mathrm{~m}=25 \mathrm{mts}$
4
0
0
\pm
2
0
+
+

Line 19

Geochemico Somple, Ves

Line 18
.10. Dir Angle $1 \mathrm{~cm}=10^{\circ}$
+...n Field strength $k m=50 \%$
Sole len $=25$ mots.

10. Dip Angle $\operatorname{lcn}=10^{\circ}$
$+\frac{190}{}+$ Field strength $1 \mathrm{~cm}=50 \%$
scale $1 \mathrm{~cm}=25 \mathrm{mts}$

Line $/ 5$
.10. Dip Angle $1 \mathrm{~cm}=10^{\circ}$
$+1,-0^{-+}$Field strength $\mathrm{km}=50 \%$
scale $1 \mathrm{~cm}=50 \mathrm{mts}$.

$$
\begin{aligned}
& \text { Line } 12
\end{aligned}
$$

10. Dipangle $1 \mathrm{~cm}=10^{\circ}$
$+\frac{190}{}+$ Fleld Strength $1 \mathrm{~cm}=50^{\circ}$
sca/c $/ \mathrm{cm}=25 \mathrm{mts}$

$$
\begin{aligned}
& \text { 10. Die arole } 1 \mathrm{~cm}=10^{\circ} \\
& +\frac{100^{+}}{} \text {Fieldstreneth } 1 \mathrm{cos}=50 \% \\
& \\
& \text { sule } 1 \mathrm{~cm}=25 \mathrm{mt}-
\end{aligned}
$$

.1. 0 . 0 Anple $1 \mathrm{~cm}=10^{\circ}$
+-+ Field Stiength icm $=50 \%$
Scule $1 \mathrm{~cm}=25 \mathrm{mts}$.

Symbale
v Voleanies
$T \quad$ Tuffa
$R \quad$ Rhgolite
D Dreite
B Basalt
Sch Schint
sb sabbco
Sr Sranite

Sed Sedimenta
Cgl Conglomerate
Sl
siltitone
8
A
w
Ls
$1 F$ Lean ston Formation, may bocily teppritic

- 26150 Sampletacation

Mrine thagt
Trail, postage or traveras
$V L F$ lime and conductier
Au. Mold thowing

ONTARIO PROSPECTORS ASSISTANCE PROGRAM (OPAP) APPLCATION FOR FUNDING 1992

INSTRUCTIONS: \mathbf{F} form.
Please type or print
Submit completed for
Incentives Office (Mi

Ministry of Northern Development \& Mines MAR 12 1Ys/ 4th Floor, 159 Cedar St., Sudbury, Ontario P3E 6A5
Date of Application $M A R \quad 6,1992$
\qquad First Name(s) EARL

Address \qquad P.O.BOX 116

City CAPREOL \qquad Province \qquad Postal Code \qquad
Telephone (705) 858-2319 $c-3705.5$

Contact Telephone (705) 858-2319
Occupation RETIRED
GEOLOGIST
Briefly state your prospecting or related experience and training (No. of years and type):
37 YEARS GEOLOGICAL AND GEOPHYSICAL MINERAL EXPLORATION IN CANADA.
 IN THE ELLIAT LAKE AND SUDBURY AREA.

Industry References (that can comment on your prospecting ability):

w. G.	+ 6	(613)-477-2624	RETIKELGESLMAIST
Name		Telephone	Occupation
ISAAS	EURNS	(705)-566-2 A23	FROSPECTOR
Name		Telephone	Occupation

Ministry reference (if known, preferably Resident Geologist staff): WILFRED MEYER, PETER GIBLIN
Past performance (List of properties optioned, locations, optionee, year)
OPTIONED NO PROPERTIES

Previous OPAP application(s) Yes $\square \square$
File no(s). OP q/ - 428
Describe your prospecting project - attach separate sheets (See guideline for details)
STRIPPING, PROSPECTING, GEOPHYSICS, MAPFING.
SEE ATTACHED SHEET:
Start date of project $\operatorname{LATE~APRIL}$ Proposed number of working days by applicant 70 DAKS
List other co-owners of the property that are applying for assistance for this project
PRAUEIT PARTNERS - FRED Q. BARNES ©OP 7/-4え7L,BURL/WGTAN, ONTAKI? AND NOKM. FIRTH(OP91-275) BURLINGTON, SNTAKIO

Proposed project area(s) (Twp. or claim map name, latitude and longitude, and Resident Geologist's area)
OPEEPEESWAY LAKE AREA (OSWAY, MALLARD, HUFFMANEERIC TUPS., SURBURY DISTRIET, PORCUPINE MINING DIVISION, TIMMINSI AND POSSIBLY BENTONEFSTHER TWPS. SEE ATTAGHED

APPLICATION FOR FUNDING

PROPOSED BUDGET

The Ministry of Northern Development and Mines may verify all statements related to and made herein this application.

1. I am the person named in the Application for Grant under the Ontario Prospectors Assistance Program.
2. I am ordinarily a resident of Canada.
3. I have complied with all the requirements of the said program.
4. I understand that it is an offence under the Ontario Mineral Exploration Act, 1989, to make a false or misleading statement and that all statements and all other information submitted in support of the said application are true and correct.
5. I will not be employed by the Ministry while in receipt of an OPAP grant.
6. I am not the spouse, child, sibling or parent of a Ministry employee.
7. I am aware that any other Provincial or Federal Government financial assistance received for the said application will be deducted from the amount of incurred "Total Eligible Expenses".
8. I understand that an incomplete application will be rejected and that no revisions will be permitted following receipt.
It is an Offence under subsection 8(1)(A) of the Ontario Mineral Exploration Act, 1989 to knowingly furnish false or misleading information.
Signature of Applicant
 Date \qquad
Name (print) EARL J. LALONDE

Office Use Only:

References checked
Ministry reference verified

The approximate areas in which wark is planned will he aheked in the Poraytine kining otricion's mining Peoorders office in Timmins prisis to extering the Opeppeesway Lake Area.

Opexpentivay Fike Atea
Lecation
1.) Orevay Taunship (G3243), In al (lanal Tawnship (G1171), Huffman Tounship (G3.232), Tic Tounship (M 789), and pornility Sention Tiunstiop ($G .3233$) and ALter Townatip (Ci120), Porwapine Inining 心ivirion.
2.) N.T.S. $-410 / \mathrm{NE}$
3.) Lakitumbe and fongiterde $-47^{\circ}+0^{\circ} \mathrm{N}, 82^{\circ} 13^{\prime} \mathrm{W}$
4) Iniming Pricerders:ogfice - 60 wilton Aue., Trimmins, Qutarii, P4N $2 \leqslant 7$
5) Pesidint Leologist's Cffine - 60 Witan Ave, Timmins, Ontarion, P4N 2.57
2) Prespecting Tougets
 intrusines, dykes and baswes inte basic and intermedie the voleamies and fragmentad, and jobl in shear jones.
H) Avarion fos Ci.P. A. P Prapect
 Anuay anoi Itujfiman Tionshipe, and examinations of atoumioss in Potier, Yeo andi Chester Toursships in 1989 .
 ituffman Tunstip in hate 1991.
i) Properad wok
i) Provpecting, tampling, queligiaal mappingy and attipping of favennaibe cheas.
2.) Depphysies (magnetomatir and VLF surniys), ctetaidert gerejgiani mapping, sampling and strysping (hanai anod michanisail of a favainable anea hosted hate in 1491 by prospecting in A Auffiman Tounship.
3) Wonk is to be comgoleted within the appraximate areas indicated on the attachac tiwnahip plams as followe: E-11, H-1 M-1, O-1, and passibly M-2, B-1 and E-1.
Forourable pround cuill be ataked.

MINING CLAIMS ETC.

RAILWAY AND RIGHT OF WAY

NON-PERENNIAL STREAM
FLOODING OR FLOOOING RIGHTS
SUBDIVISION OR COMPOSITE PLAN
RESERVATIONS
ORIGINAL SHORELINE
MARSH OR MUSKEG
MINES
TRAVERSE MONUMENT

DISPOSITION OF CROWN LAN

TYPE OF DOCUMENT

SYI

PATENT, SURFACE \& MINING RIGHTS SURFACE RIGHTS ONLY
MINING RIGHTS ONLY
LEASE, SURFACE \& MINING RIGHTS
" . SURFACE RIGHTS ONLY
" , MINING RIGHTS ONLY
LICENCE OF OCCUPATION
ORDER-IN.COUNCIL
RESERVATION
CANCELLED
SAND \& GRAVEL

NOTE: MINING RIGHTS IN PARCELS PATENTEOPAIOA TO 1913 , VESTED IN ORIGINAL PATENTEE BY THE ! LANDS ACT, RSS. 1970 , CHAP. 380. SEC. 63. SUE

SCALE: 1 INCH $=40$ CHAINS
feet

Pon

TOWNSHIP

In a Ce aa Tips

MARION
TWP.

Qtevan TMp.

HIG+
OTHI TRA SUR

ONTARIO PROSPECTORS ASSISTANCE PROGRAM（OPP） APPLICATION FOR FUNDING 1992
INSTRUCTIONS：Please read the guidebook before completing form．
Please type or print Submit completed ff Incentives Office（M Ministry of Norther

Date of Application MAR．9， 9 M 92
INCENTIVES
Last Name \qquad $-/ R T / H$ First Name（s） \qquad $1 / O A / 4 A \wedge$ mrs．Ms．
Address 274 JUNIPER ADC

Postal Code ん T 人 2 T3

Ontario Prospectors Licence No．A28158 occupation Phofercion．d Er sinned
Briefly state your prospecting or related experience and training（No．of years and type）：
\qquad
Industry References（that can comment on your prospecting ability）：

Past performance（List of properties optioned，locations，optionee，year）

Previous OPAP applications）Yes Xi \square File no
Describe your prospecting project－attach separate sheets（See guideline for details）
File nos）． $3 \rho ⿻=2$
STRIPPING．PROSPECTING，GEOPHYSICS，MAPPING．SEE ATTACHED SHEET
\qquad
\qquad 60

List other co－owners of the property that are applying for assistance for this project PROJECT PARTNERS－FRED Q BARNES COPQI－42T1，BURLINGTON，ONT． AND EARL J．LALONDE，CAPREOL，ONT（OP I／－428）．
Proposed project areas）（Twp．or claim map name，latitude and longitude，and Resident Geologist＇s area）
OPEEPEESWAY LAKE AREA（SWAY，MALLARD，HUFFMANGERIC TWAS．， SUDBURY DISTRICT，PORCUPINE MINING DIVISION，TIMMINS）AND POSSIBLY BENTON ESTHER TUSPS．SEE ATTACHED

APPLICATION FOR FUNDING

PROPOSED BUDGET

The Ministry of Northern Development and Mines may verify all statements related to and made herein this application.

1. I am the person named in the Application for Grant under the Ontario Prospectors Assistance Program.
2. I am ordinarily a resident of Canada.
3. I have complied with all the requirements of the said program.
4. I understand that it is an offence under the Ontario Mineral Exploration Act, 1989, to make a false or misleading statement and that all statements and all other information submitted in support of the said application are true and correct.
5. I will not be employed by the Ministry while in receipt of an OPAP grant.
6. I am not the spouse, child, sibling or parent of a Ministry employee.
7. I am aware that any other Provincial or Federal Government financial assistance received for the said application will be deducted from the amount of incurred "Total Eligible Expenses".
8. I understand that an incomplete application will be rejected and that no revisions will be permitted following receipt.

It is an Offence under subsection 8(1)(A) of the Ontario Mineral Exploration Act, 1989 to knowingly furnish false or misleading information.
Signature of Applicant

Date \qquad
Name (print) \qquad oRTH

Office Use Only:

References checked
Ministry reference verified
ment and Rehabilitation Branch, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, Toll free 1-800-465-3880.

Opexpentivay Ľhe Area
Leneation
 Huffman Tounship (G3232), Nic Tiunship (M 789), and possility Senton Tounstip ($G .3233$) and Alter Trunatip $(G 1 / 20)$, Paraupine Inining $心$ ivicion.
2) N.T.S. $-410 / N E$
3.) Latitume and fougitude $-47^{\circ} 40^{\circ} \mathrm{N}, 82^{\circ} 13^{\prime} \mathrm{W}$
4) Ihining Paccerder:o Office - 60 wilton Aue., Timmins, Qntanio, P4N $2 \leqslant 7$
5) Pesident Laolejistis Ciffice - 60 Witan Are., Timmins, Quturion, P4N 257
2) Prospecting Tongets

Hed associated with quanty foldgear prophyey intrusiuis, dykes and bosses inte basic and intermedia te voleanies and fragmentald, and gohe im shear jones.
F) Rearon for C.P. A.P Prapect

Filkew- - op to extenscme wonk in the early 1960 is in Qnuay andi tuffiman Tionships, and examinations of stounips in Potier, Jeo and Caster Tioinships in 1989 .

Fillou--xp to foveumable presepuiting resultes in ituffman Tiunstip in late 1991.
-) Properad Wokk
i.) Proapiecting, sampling, geoligical mapping and stryping of favennable cheas.
2) Mephysied (magnetomater and VLF surweys), retaikent gedogicaí mapping, sampling anol strjpping (haná and mishamieakl of a favanable anex hacted hate in 1491 by prospreting in Itaffiman Tounship.
3.) Work is to be completed within the approximate areais inshicated on the attachad Eivanahip plans as followe: E-II, H-1 $M-1, O-1$, and passibly $M-2, B-1$ and $E-1$.
Fuvairable pround witl be stated

MINING CLAIMS ETC.

RAILWAY AND RIGHT OF WAY
UTILITY LINES
NON.PERENNIAL STREAM
FLOODING OR FLOODING RIGHTS
SUBDIVISION OR COMPOSITE PLAN
RESERVATIONS
ORIGINAL SHORELINE
MARSH OR MUSKEG
MINES
TRAVERSE MONUMENT

DISPOSITION OF CROWN LAM

TYPE OF DOCUMENT

PATENT, SURFACE \& MINING RIGHTS \qquad
. SURFACE RIGHTS ONLY.
. MINING RIGHTS ONLY
LEASE, SURFACE \& MINING RIGHTS
"; SURFACE RIGHTS ONLY
" . MINING RIGHTS ONLY.
LICENCE OF OCCUPATION
ORDER-IN.COUNCIL
RESERVATION
CANCELLED
SAND \& GRAVEL
NOTE: MINING RIGHTS IN PARCELS PATENTEOPRIORTO 1913. VESTED IN OAIGINAL PATENTEE BY THE LANDS ACT, AS.O. 1970 , CHAP. 380, SEC. 63, SUE

SCALE: 1 INCH = 40 CHAINS

$$
\begin{aligned}
& \text { Eether } \\
& \text { T ug }
\end{aligned}
$$

In axtiond Tapp 2.2.

ARD TWP.
 Gluay Tup

Suic Inato

ONTARIO PROSPECTORS ASSISTANCE PROGRAM (OPP) APPLICATION FOR FUNDING 1992

INSTRUCTIONS
form.
Please type or prim Submit completed Incentives Office (]

Date of Application 28Februany, 1882
Last Name \qquad
\qquad First Names) FRED Q. Mrs. \square ms. \square Address Ho Earl. I. Lalonde P.O.Bux 116 Caprool, oN
City Capred Province Ontario \qquad Postal Code POMIHO 4/6 335-5731 Bunlington-Thu-Jure
Telephone (705) $858-2317$ Gapred-peridicallyContact Telephone () 705 356-1814 Blind River-affer June.
Ontario Prospectors Licence No. A-51166 Occupation Grelogish
Briefly state your prospecting or related experience and training (No. of years and type):

Industry References (that can comment on your prospecting ability):

D.S. ROBERTSON	$(416)-362-5135$	GEOLOGIST
Name	Telephone	Occupation
J. LANDRY	$(4 / 6)-730-9116$	MINING GEOLOGIST
Name	Telephone	Occupation

Ministry reference (if known, preferably Resident Geologist staff): PETER GIBLIN, WILFRED MEYER
Past performance (List of properties optioned, locations, optionee, year)
Projuch 3-Operpessing dak e (sway, Hatband, thoffinan, Ene
NUMEROUS PROPERTIES AS OPTIONEE. ONE PROPERTY (BASE METALS) AS OFIONOR
Previous OPAP application (s) Yes \square No \square
File nos). OP q/-427
Describe your prospecting project - attach separate sheets (See guideline for details) (SEEACTACHED) Stripping (hand mechanical), prospertingigeciphysies - Mag xV iF, mapping. Start date of project Late April Proposed number of working days by applicant Zodays

List other co-owners of the property that are applying for assistance for this project
Project pantrers-Eanl.J. Lalonde (OPQ/-42E), CAPRESL, ONT. AND NORM FIRTH (OPQ1-275), BURLINGTON, ONT.
Proposed project areas) (Twp. or claim map name, latitude and longitude, and Resident Geologist's area) Opeepeesicidy Luke (osiciay, Mallard, toffinan a Erie Taps, Sadbany Divtivet. Poneapine Mag. Division, Timmins) AND POSSIBLY BENTON EESTHERTIMOS

APPLICATION FOR FUNDING

PROPOSED BUDGET

The Ministry of Northern Development and Mines may verify all statements related to and made herein this application.

1. I am the person named in the Application for Grant under the Ontario Prospectors Assistance Program.
2. I am ordinarily a resident of Canada.
3. I have complied with all the requirements of the said program.
4. I understand that it is an offence under the Ontario Mineral Exploration Act, 1989, to make a false or misleading statement and that all statements and all other information submitted in support of the said application are true and correct.
5. I will not be employed by the Ministry while in receipt of an OPAP grant.
6. I am not the spouse, child, sibling or parent of a Ministry employee.
7. I am aware that any other Provincial or Federal Government financial assistance received for the said application will be deducted from the amount of incurred "Total Eligible Expenses".
8. I understand that an incomplete application will be rejected and that no revisions will be permitted following receipt.
It is an Offence under subsection 8(1)(A) of the Ontario Mineral Exploration Act, 1989 to knowingly furnish false or misleading information.
Signature of Applicant

Name (print) Fred Q. Barres

Office Use Only:

References checked
Ministry reference verified

Personal information collected on this form is obtained under the authority of the Ontario Mineral Exploration Act, 1989, sections 2, 3 and 4 and the Ontario Prospectors Assistance Program Regulation, subsections 3(2) to 3(10) inclusive and section 5 . It will be used for the purpose of a program designated for financial assistance. It may be disclosed for this purpose and I consent to its disclosure for such a purpose. Questions about this collection should be directed to Supervisor, Incentives Office, Mineral Develop- Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, Toll free 1-800-465-3880.

The approximate aries in which wank is planned will be ahacked in the Porappine mining O minion's Mining Provokers office in Timmine prion to entering the Greupeerway Late Area.

Opexpertivay Lahe Atea
Lueation
 Huffman Township (G3232), Thic Tounship (M 789), and porsility Bentón Tounstip ($G .3233$) and Guther Townohip (G1120), Poreupine Inining 心ivision.
2) N.T.S. - $410 / \mathrm{NE}$
3.) Latituike anad fingitude $-47^{\circ} 40^{\prime} \mathrm{N}, 82^{\circ} .13^{\prime} \mathrm{W}$
4) Inining P.ecerder:- Officx - 60 wilton Ave., Timminis, Qntanio, P4N 257
5.) Pesidient Leotajistis Office - 60 Witan Are., Timmins, Qutariv, P4N 257
v) Prespecting Toryets

Leld asseciated with quant foldgion paphlyey intrusinis, dykes and basues inte basic and intermedia te valcamics and frogmentald, and gobl im shear zones.
F) Piveon for (i.P.A.P Prapect

Fillou- - yp to extensure work in the eanly 1960'is in Qruey andi tuffiman Tounskings, and uxaminations of shoumips in Potier, Yee-ndi Cluster Tierzaships in 1989.

Fillour-xp to- foverumable quacepreting resatts in Heffman Tiumstip in hate 1991.
i) Proponed Work
i) Provpecting, sampling, queligieal mapping and stigping of facumalie curas.
2) Jeophysies (magnatomater -and VLF surways), retaikid gedogicai mapping, sampling and stippping (hand and mishamiea() of a favaunbble suen hested hate in 1991 by prospecting in Ituffiman Township.
3) Wonk is to be compoleted within the appraximate areas inolicated on the attached tiwnahip plams as followe: E-11, H-1 M-1, O-1, and passibly M-2, B-1 and E-1.
Frourable grand will be rtacted.

MINING CLAIMS ETC.

RAILWAY AND RIGHT OF WAY

DISPOSITION OF CROWN LAN

TYPE OF DOCUMENT

PATENT, SURFACE \& MINING RIGHTS
" . SURFACE RIGHTS ONLY.
" , MINING RIGHTS ONLY
LEASE, SURFACE \& MINING RIGHTS
";. SURFACE RIGHTS ONLY
" , MINING RIGHTS ONLY

Y...

\qquad

LICENCE OF OCCUPATION
ORDER.IN.COUNCIL
\qquad
\qquad

RESERVATION
CANCELLED
SAND \& GRAVEL
NOTE: MINING RIGHTS IN PARCELS PATENTEDPRIORTO 1913. VESTED IN ORIGINAL PATENTEE YY TME I LANDS. ACT, RSS. 1970 , CHAP. 380, SEC, 63, SUR
SCALE: 1 INCH $=40 \mathrm{CHAINS}$

REFERENCES

areas withorawn from disposition

m.E.C. - MINAGG RIGHTS ONLY
s.r.o. - SUÁface rights only
m. + - - mining and sunface nights

(G)

THE TWP is SJB.IECT TO FOREST ACTIVITIES IN I99. EUPTHER information avallable on fle

Eric Twp.

INDEX TO LAND DISPOSITION

$$
\begin{aligned}
& \text { m.n. . aommssirative istract }
\end{aligned}
$$

PORCUPINE
$\begin{aligned} & \text { Lano triLss feagrary oviw } \\ & \text { SUDBURY }\end{aligned}$

DATE OF ISP: IF
MVN 19 nes

	R E	E F	F	E	R	E	E	N	C		
AREAS WITHDRAWN FROM DISPOSITION											
M.R.O. - MINING RIGHTS ONLY s.R.O. - SURFACE RIGHTS ONLY M.t S. - Mining and surface rights											
	Description	pion	Oris	Didar No.	N.	Dor		D	poution		
(1) THIS TWP IS SUBJECT TO FOREST ACTVITIES Wig FURTHER INFORMATION AVALI AOLE ON FILE.											

