010

REPORT ON AN

$$
2.12956
$$

ATRBORNE MAGNETIC ס VLF-EM SURVEY MALLARD TOWNSHIP PROJECT OSWAY TOWNSHIP PROJECT PORCUPINE
MINING DIVISION ONTARIO
for

## PIONEER METALS CORPORATION

by

TERRAQUEST LTD.
Toronto, Canada

$$
\text { November } 8,1989
$$

## TABLE OF CONTENTS

Page

1. INTRODUCTION ..... 1
2. THE PROPERTY ..... 1
3. GEOLOGY ..... 2
4. SURVEY SPECIFICATIONS ..... 2
4.1 Aircraft and Instruments ..... 2
4.2 Lines and Data ..... 3
4.3 Tolerances ..... 4
4.4 Photomosaics ..... 4
5. DATA PROCESSING ..... 4
6. INTERPRETATION ..... 5
6.1 General Approach ..... 5
6.2 Interpretation ..... 6
7. SUMMARY ..... 8
ust of figures
Figure 1 - General Location Map
Figure 2 - Survey Area Map
Figure 3 - Sample Record
Figure 4 - Terraquest Classification of VLF-EM Conductor Axes
LIST OF MAPS IN JACKET
No. A-840-1, Total Magnetic Field
No. A-840.2, Horizontal Magnetic GradientNo. A-840-3, Vertical Magnetic GradientNo. A-840-4, VLF-EM SurveyNo. A-840-5, Interpretation

NOTE: there are two survey areas, the Mallard Township Project (A-840.1) and the Osway Township Project (A-840.2), therefore there are two of each of the above listed maps.

This report describes the specifications and results of a geophysical survey carried out for Pioneer Metals Corporation of 1100-1090 West Pender Street, Vancouver, British Columbia, V6E 2N7 by Terraquest Ltd., 240 Adelaide Street West, Toronto, Canada. The field work was completed on May 23 to 28,1989 and the data processing, interpretation and reporting from September 29 to November 8, 1989.

The purpose of a survey of this type is two-fold. First to prospect directly for anomalously conductive and magnetic areas in the earth's crust which may be caused by, or at least related to, mineral deposits. A second is to use the magnetic and conductivity patterns derived from the survey results to assist in mapping geology, and to indicate the presence of faults, shear zones, folding, alteration zones and other structures potentially favourable to the presence of gold and base-metal concentration. To achieve this purpose the survey area was systematically traversed by an aircraft carrying geophysical instruments along parallel flight lines spaced at even intervals, 100 metres above the terrain surface, and aligned so as to intersect the regional geology in a way to provide the optimum contour patterns of geophysical data.

## 2. THE PROPERTY.

The Mallard Township Project (A-840.1) is located in the southwest quadrant of Mallad Township, in the Poscupine Mining Division of Ontario about 50 kilometres east-southeast of the town of Chapleau and 25 kilometres north of the hamlet of Ramsey. The property can be accessed directly by bush roads leading north from the main haulage road that extends eastwards from route number 667.

The latitude and longitude are 47 degrees 42 minutes, and 82 degrees 18 minutes respectively, and the N.T.S. reference is 410/9. The claim outline is shown in figure 2a.

The Osway Township Project (A-840.2) is located in the south central part of the township at the south end of Opeepeesway Lake, in the Porcupine Mining Division of Ontario about 10 kilometres north of the hamlet of Ramsey. The claims are accessible from the Jerome Mine road.

The latitude and longitude are 47 degrees 36 minutes, and 82 degrees 15 minutes respectively, and the N.T.S. reference is 410/9. The claim outline is shown in figure 2 b .


FIGURE 1. Location Map


## FIGURE 2alSURVEY AREA



FIGURE 2b|SURVEY AREA
(exact clalm locations not certified)

## 3. GEOLOGY

## Map References

1. Map 44g: Opeepeesway Lake Area. scale 1:63,360. ODM 1935
2. Map 1949-2: Township of Osway. scale 1:12,000. ODM 1949
3. Map 2352: Chapleau. scale 1:250,000. ODM 1978
4. Map 2504: Benton and Mallard Townships. scale 1:31,680. OGS 1987

The Mallard Township Project survey block is underlain by northwest trending mafic metavolcanics to the north and intermediate and mafic metavolcanics to the south. Narrow horizons of felsic metavolcanics and conformable gabbroic to dioritic intrusions occur along the northeastern edge of the survey area. Graphite, pyrite, pyrrhotite, chalcopyrite, and sphalerite have been mapped along the eastern edge of the property. Elsewhere in the region, diabase dykes strike to the northwest.

The Osway Township Project survey block is underlain by northwest trending clastic metasediments in the northeastern half of the survey area, and mafic metavolcanics in the southwestern half. Along strike to the southeast, iron formation occurs within the clastic metasediments, and along strike to the northwest iron formation occurs within the mafic metavolcanics. Diabase dykes strike variably from the northwest to north.

## 4. SURVEY SPECIFICATIONS

### 4.1 Aircraft and Instruments

The survey was carried out using a Cessna 206 aircraft, registration C-GUCE, which carries two high sensitivity magnetometers and a VLF electromagnetic detector.

The magnetometers are a high sensitivity, optically pumped cesium vapour magnetometer mounted in wing tip extensions, approximately 5 feet beyond the wing tip with a total separation of 14.3 metres. The specifications of the magnetometers are as follows:

Working range:
20,000-100,000 gammas

$$
\text { Sensitivity: } \quad 0.005 \text { gammas }
$$

Sampling rate:
Model:

Manufacturer: Scintrex, Concord Ontario.
The magnetometer processor is a PMAG 3000 and the data acquisition system is a PDAS 1000, both manufactured by Picodas Group Inc.

The signal to noise ratio of the magnetic response is improved by a real time compensation technique provided by Picodas Limited. The sources of noise are permanent, induced and eddy current effects of the airframe, and the heading effects. The system uses three orthogonal fluxgate magnetometers to measure
the aircraft attitude with respect to the earth's magnetic field vector. A mathematical model is used to solve this interference effect.

The VLF-EM unit uses three orthogonal detector coils to measure (a) the total field strength of the time-varying EM field and (b) the phase between the vertical coil and both the "along line" coil (LINE) and the "cross-line" coil (ORTHO). The LINE coil is tuned to a transmitter station that is ideally positioned at right angles to the flight lines, while the ORTHO coil transmitter should be in line with the flight lines. It's specifications are:

Accuracy: 1\%
Reading Interval: 0.2 second
Model:
Manufacturer: Herz Industries, Toronto, Canada
The VLF sensor is mounted in a plastic tube projected forward from the midsection of the starboard wing.

Other instruments are:

```
* King KRA-10A radar altimeter
* PDAS-1000 data processor with 40 mByte cassette tape and 3 1/2" disk
    recorder manufactured by Picodas Group Inc.
#GPS satellite and Loran-C navigation where possible
* Video tape flight path confirmation, 1/10th second fiducial intervals
    and with electronic attitude compensation
```


### 4.2 Lines and Data

| Line spacing: | 100 metres |
| :--- | :--- |
| Line direction: | 090 degrees |
| Terrain clearance: | 100 m |
| Average ground speed: | $193 \mathrm{~km} / \mathrm{hr}$ |
| Data point interval: |  |
| Magnetic: | 11 metres |
| VLF-EM: | 11 metres |

Tie Line interval: $\quad 2 \mathrm{~km}$
Channel 1 (LINE): NAA Cutler, 24.0 kHz
Channel 2 (ORTHO): NSS Annapolis, 21.4 kHz
Line km over total survey area: 245 line km
Line km over claim groups: Mallard Township Project 93 claims - 186 km Osway Township Project 17 claims - 34 km

### 4.3 Tolerances

Line spacing: Any gaps wider than twice the line spacing and longer than 10 times the line spacing were filled in by a new line.
Terrain clearance: Portions of line which were flow above 125 metres for more than one km were reflown if safety considerations were acceptable.
Diurnal magnetic variation: Less than ten gammas deviation from a smooth background over a period of two minutes or less as seen on the base station


FIGURE 3. SAMPLE OF ANALOG DATA
analogue record.
Manoeuvre noise: nil

### 4.4 Photomosaics

For navigating the aircraft and recovering the flight path, semi-controled mosaics of aerial photographs were made from existing air photos. Each photograph forming the mosaic was adjusted to conform to the NTS map system before the mosaic was assembled.

## 5. DATA PROCESSING

Flight path recovery was carried out in the field usimg a video tape viewer to observe the flight path as recorded by the Geocam video camera system. The flight path recovery was completed daily to enable reflights to be selected where needed for the following day.

The magnetic data was levelled in the standard manner by tying survey lines to the tie lines. The IGRF has not been removed. The total field was contoured by computer using a program provided by Dataplotting Services Inc. To do this the final levelled data set is gridded at a grid cell spacing of $1 / 10$ th of an inch at map scale.

The vertical magnetic gradient is computed from the gridded and contoured total field data using a method of transforming the data set into the frequency domain, applying a transfer function to calculate the gradient, and then transforming back into the spatial domain. The method is described by a number of authors including Grant, 1972 and Spector, 1968. The computer program for this purpose is provided by Paterson, Grant and Watson Ltd, of Toronto.

The VLF data was treated automatically so as to normalize the non conductive background areas to 100 (total field strength) and zero (quadrature). The algorithms to do this were developed by Terraquest and will be provided to anyone interested by application to the company.

All of these dataprocessing calculations and map contouring were carried out by Dataplotting Services Inc, of Toronto.

Grant, F.S. and Spector A., 1970: Statistical Models for Interpreting Aeromagnetic Data; Geophysics, Vol 35
Grant, F.S., 1972: Review of Data Processing and Interpretation Methods in Gravity and Magnetics; Geophysics Vol 37-4
Spector, A., 1968: Spectral Analysis of Aeromagnetic maps; unpublished thesis; University of Toronto.

## 6. INTERPRETATION

### 6.1 General Approach

To satisfy the purpose of the survey as stated in the introduction, the interpretation procedure was carried out on both the magnetic and VLF data. On a local scale the magnetic gradient contour patterns were used to outline geological units which have different magnetic intensity and patterns or "signatures". The delineation of the magnetic units was done initially from the calculated vertical magnetic gradient contour map. These contacts were then adjusted inbetween the flight lines on a local scale, using the measured horizontal gradient vector plot. to provide extra detail. Finally, the interpretation map was compared with the total field magnetic contours to obtain the relative intensity of the magnetic units. Where possible these are related to existing geology to provide a geological identity to the units. On a regional scale the total field contour patterns were used in the same way.

Faults and shear zones are interpreted mainly from lateral displacements of otherwise linear magnetic anomalies but also from long narrow "lows". The direction of regional faulting in the general area is taken into account when selecting faults. Folding is usually seen as curved regional patterns. Alteration zones can show up as anomalously quiet areas, often adjacent to strong, circular anomalies that represent intrusives; Magnetic anomalies that are caused by iron deposits of ore quality are usually obvious owing to their high amplitude, of ten in tens of thousands of gammas.

VLF anomalies are categorized according to whether the phase response is normal, reverse, or no phase at all. The significance of the differing phase responses is not completely understood although in general reverse phase indicates either overburden as the source or a conductor with considerable depth extent, or both. Normal phase response is theoretically caused by surface conductors with limited depth extent. In some cases, a change in the orientation of the conductor appears to affect the sense of the phase response.

Areas showing a smooth VLF-EM response somewhat above background (ie. 110 or so) are likely caused by overburden which is thick enough and conductive enough to saturate at these frequencies. In this case no response from bedrock is seen.

The VLF-EM conductor axes have been identified and evaluated according to the Terraquest classification system (Figure 4). This system correlates the nature and orientation of the conductor axes with stratigraphic, structural and topographic features to obtain an association from which one or more origins may be selected. Alternate associations are indicated in parentheses.


### 6.2 Interpretation

The magnetic and VLF-EM data are shown in contoured format on maps at a scale of $1: 10,000$ in the back pocket. An interpretation map is also provided. The following notes are intended to supplement these maps.

MALLARD TOWNSHIP PROJECT (A-840.1)
The total magnetic field has a relief of approximately 500 gammas and shows several strong anomalies trending to the north-northwest and numerous moderate strength anomalies trending to the northwest. The southern edge of the survey is characterized by uniform and relatively low magnetic responses. The vertical magnetic gradient improves resolution of the strong anomalies and enhances subtle magnetic trends. The measured horizontal magnetic gradient vector plot further improves the resolution of these units, particularly the strong anomalies to the north and those trends that are at a low angle with the flight lines.

The relatively strong north-northwest magnetic units are interpreted to be related to diabase dykes (Unit 11). The interpreted widths may be somewhat exaggerated due to an overwhelming effect commonly associated with strong susceptibilities. The magnetic intensity of these units decreases toward the southeast; this may be related to either a change in composition along the trends or an alteration effect characterized by a loss or replacement of magnetic minerals. It becomes difficult to discriminate the diabase dykes from the metavolcanic stratigraphy in the southeast corner.

Two narrow northest trending units are also interpreted to be related to diabase dykes.

The subtle magnetic trends across the survey area are interpreted as magnetic stratigraphic horizons wihin the mafic (Unit 1) and intermediate (Unit 2) metavolcanics. These subtle magnetic trends may be related to an increase in concentration of magnetic minerals such as magnetite or pyrrhotite, or to more mafic lithologies including hypabyssal metavolcanics. In general the intermediate metavolcanics are associated with weaker response than the mafic metavolcanics as demonstrated along the southern edge of the survey area. Where the gabbro (Unit 5), felsic metavolcanics (Unit 3) and intermediate metavolcanics occur as narrow units it is impossible to discriminate at this scale, their responses from the responses that originate from the undifferentiated mafic metavolcanics.

Numerous northeast trending faults or shear zones have been interpreted from displacements in the magnetic units. A narrow swarm of north-northeast trending structures occur across the central part of the block. A solitary but major north-northwest trending structure has been interpreted from a persistent magnetic low and appears to offset all the other structures.

Numerous VLF-EM conductor axes have been interpreted that couple well with the Cutler transmitter which is orientated at 100 degrees azimuth from the property. Several conductor axes coincide with the edges of swampy areas and
lakes suggesting that conductive, clay-rich overburden is generally restricted to topographic deressions.

Conductor axes that are oblique to or cross-cut magnetic stratigraphy plus the long persistent conductor axes are interpreted to possess structural origins. This type of conductivity may be caused by a) minerals such as sulphides, graphite or gouge within the structure, or b) an ionic effect created by water or porosity either within the structure or along the upper weathered and leached edge. Structures identifed by either magnetic or VLFEM methods bear potential for epithermal mineralization.

Numerous conductor axes coincide with or are parallel to magnetic stratigraphy and therefore possess potential for bedrock stratabound sources. This type of conductivity may originate from disseminated to massive sulphides, graphite or porosity (such as porous flowtops). These warrant further investigation by ground EM or IP methods.

OSWAY TOWNSHIP PROJECT (A-840.2)
The total magnetic field has a relief of aproximately 1,600 gammas and is strongly dominated by a single northwest trending anomaly that runs diagonally across the centre of the survey area. The resolution of this anomaly is improved considerably by the vertical magnetic gradient plot. Several moderate strength magnetic anomalies trend to the north and northeast.

The strong northwest trending magnetic anomaly is interpreted to be derived from an iron formation that occurs at or near the contact between the metasediments (Unit 3) to the north and metavolcanics (Unit 1) to the south. The responses from the iron formation overwhelm and dominate most of the other responses in the survey area. The interpreted width may be exaggerated due to this overwhelming effect.

The subtle northwest trending magnetic anomalies are interpreted to originate from magnetic horizons within the mafic metavolcanics (Unit lm) south of the iron formation, and to magnetic units within the metasediments (Unit 3m) north of the iron formation. These are probably related to lithologies with higher concentrations of magnetite or pyrrhotite or are characterized by a stronger mafic content. The 3 m horizons may represent metavolcanic intercalations within the metasedimentary suite.

The north to northeast trending magnetic anomalies are interpreted to be related to diabase dykes (Unit 7).

Two northwest trending faults have been interpreted from the magnetic data. Others are suspected to exist but are difficult to identify as they would be parallel to the dominant magnetic fabric.

The VLF-EM survey has identified several strong conductor axes that coincide with or are adjacent to the iron formation. It is suggested there are several sources along this trend. Where the conductor axes coincde with the
iron formation the strongest conductivity probably originates from sulphides within the iron formation horizon. Where the conductor axes lie slightly to the south of the iron formation the major source is interpreted to occur along a contact or fault between the clastic metasediments to the north and mafic metavolacnics to the south. Also, in the centre of the survey area, there is a substantial contribution from conductive overburden associated with the edge of the lake.

Three weak conductor axes to the east are interpreted to possess bedrock origins as they are either coincident with or parallel to magnetic stratigraphy. These should be verified and further investigated on the ground using EM or IP methods to improve their resolution.

The remaining conductors coincide with either swamps or lakes and therefore are probably related to surficial conductivity.

## 7. SUMMARY

An airborne combined magnetic and VLF-EM survey has been carried out at 100 metre line intervals with data reading stations at 11 metres along the flight lines. All data is produced on maps at a scale of $1: 10,000$.

The magnetic data has been used to provide relatively detailed delineation of diabase dykes and subtle to strong magnetic horizons within the metavolcanic and metasedimentary units. A high degree of resolution has been achieved from both the calculated vertical magnetic gradient and the measured horizontal magnetic gradient data. The magnetic data has also been used to identify numerous northeast trending faults across the Mallard Township Project area and a few northwest trending structures across both properties. A number of VLF-EM conductor axes were identified on both properties and are interpreted to originate from clayey overburden in topographic depressions, faults or shear zones and stratabound bedrock sources. Potential sites of mineralization occur along structures identified by either magnetic or VLF-



Charles Q. Barrie, MiSc. Geologist

2.8305


| COMPANY: | PIONEER METALS CORPORATION |
| :--- | :--- |
| TOWNSHIP: | MALLARD |
| PROVINCE: | ONTARIO |
| MINING DISTRICT: | PORCUPINE MINING DIVISION |

EXPEND
PREFIX NUMBER DAYS CR.

EXPEND
PREFIX NUMBER DAYS CR.

| P | 1046374 | 80 | P | 1071749 | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1046375 | 80 |  | 1071750 | 80 |
|  | 1046376 | 80 |  | 1071751 | 80 |
|  | 1046377 | 80 |  | 1071752 | 80 |
|  | 1046378 | 80 |  | 1071753 | 80 |
|  | 1046379 | 80 |  | 1071754 | 80 |
|  | 1046380 | 80 |  | 1071755 | 80 |
|  | 1046381 | 80 |  | 1071756 | 80 |
|  | 1046382 | 80 |  | 1071757 | 80 |
|  | 1046383 | 80 |  | 1071758 | 80 |
|  | 1046384 | 80 |  | 1071759 | 80 |
|  | 1046385 | 80 |  | 1071760 | 80 |
|  | 1046386 | 80 |  | 1071761 | 80 |
|  | 1046387 | 80 |  | 1071762 | 80 |
|  | 1046388 | 80 |  | 1071763 | 80 |
|  | 1046389 | 80 |  | 1071764 | 80 |
|  | 1046390 | 80 |  | 1037129 | 80 |
|  | 1046391 | 80 |  | 1037130 | 80 |
|  | 1046392 | 80 |  | 1037131 | 80 |
|  | 1046393 | 80 |  | 1037132. | 80 |
|  | 1046394 | 80 |  | 1037133 | 80 |
|  | 1046395 | 80 |  | 1037134 | 80 |
|  | 1046396 | 80 |  | 1037135 | 80 |
|  | 1046397 | 80 |  | 1037136 | 80 |
|  | 1046398 | 80 |  | 1037137 | 80 |
|  | 1046399 | 80 |  | 1037138 | 80 |
|  | 1046400 | 80 |  | 1037139 | 80 |
|  | 1046401 | 80 |  | 1037140 | 80 |
|  | 1046402 | 80 |  | 1037141 | 80 |
|  | 1046403 | 80 |  | 1037142 | 80 |
|  | 1046404 | 80 |  | 1037143 | 80 |
|  | 1046405 | 80 |  | 1037144 | 80 |
|  | 1046406 | 80 |  | 1037145 | 80 |
|  | 1046407 | 80 |  | 1037146 | 80 |
|  | 1046408 | 80 |  | 1037147 | 80 |
|  |  |  |  | 1037148 | 80 |

FROM:M.R. PORCUPINE MIN.DIU.
TO:MINING LANDS SECTION (V.) Northein Developmen
(Goophysical, Geological, Geochemical and Expendilures)
 Fxpmaditur es" section moy be contermi


Mining Claims Truversed (List in numericmi scquence)

| Ofueimi provitions | Orojumbieal | $\begin{aligned} & \text { Uays noe } \\ & \text { Clalin } \end{aligned}$ |
| :---: | :---: | :---: |
| For lissl survey: | - Eloctramagnetic |  |
| Enier 40 days. (This includes line cutting) | - Maponctornetar |  |
| For each additional surver: using the sime grict: | - Hadiomotrie |  |
|  | - Other |  |
| Emte: $20{ }^{\text {days }}$ (lor asch) | Geologitel |  |
|  | Gaochemical |  |
| Man Uay | Georhysical | $\left\lvert\, \begin{aligned} & \text { Dever pere } \\ & \text { giarm } \end{aligned}\right.$ |
| Complete revarse side aunt enter tatals) here | - Eloctromagnutic |  |
|  | - Mngnotorneter |  |
|  | Radiometric |  |
|  | - Oither |  |
|  | Geplogical |  |
|  | Gnoctimatial |  |
| Arioume Cradis |  | $\begin{aligned} & \text { Davk } p 00 \\ & \text { Claim } \end{aligned}$ |
| Note: Snccial nrovisisms crechts do mots apply to Arborne Surveys. | Electromagnatic | 40 |
|  | Magreiomiotar | 4 |
|  | Rediomatic |  |
|  |  |  |
| Tyme of work ruriur wed | $0) 5(C E T H$ | $\left.\left[L^{4}\right]\right)$ |
| Feriormed our Cielm(s) |  | 4 |
|  |  |  |
|  |  |  |
|  | $\div 15=$ |  |
| instructions |  |  |
| Tutal Dovs Craniss may bu anoprtioned at the cimim holliter's <br>  in colurnis al igls. |  |  |


| Eate |  |
| :--- | :--- |
| November $23 / 89$ | Ricoggog holderor Agon: (B:anatuel |




Certification Verilying Report of Work



Naman mon fostal Addeest of Farson Certilying
J1m Tompking, Pionoer. Metals Corporation, 1100 = 1090 Hent Honder Rireet





DISTRICT OF
SUDBURY
Rildiag jivicha PORCUPINE














