

010

CAMECO CORPORATION

HUFFMAN PROJECT

ASSESSMENT REPORT ON 1993 EXPLORATION PROGRAM

2.1593 8

January 20, 1995

SUMMARY

The Huffman property consists of 29 claim units and is located in the west central part of Huffman Township, about 155 kilometres northwest of Sudbury, Ontario. The property was acquired under an option agreement with W.E. Brereton and Elizabeth Kirkwood.

The property is located in the south Swayze greenstone belt, which forms the westernmost extent of the large Abitibi greenstone belt, an Archean supracrustal belt well known for its abundance of base metal and gold deposits. Huffman Township is dominated by a thick sequence of clastic metasediments and a polyphase porphyry intrusion.

The former producing Jerome mine is situated about four kilometres west of the property. During the period 1941-1943, the mine produced 335,060 tons of ore at an average grade of 5.9 g/t (0.17 opt) gold. The deposit consists of quartz-carbonate veins and siliciifed zones that are located along the contact between porphyry and sheared conglomerate. The veins contain pyrite, chalcopyrite, tetrahedrite, galena, sphalerite, molybdenite and native gold.

The Huffman property is predominantly underlain by sheared feldspar porphyry and deformed polymictic conglomerate. The rock units strike at about 110° and dips are vertical to steep south. Several gold-sulphide showings are located in the general vicinity of the sediment-porphyry contact. A quartz-tourmaline vein system hosted by sheared conglomerate persists for a strike length of 350 metres. Widths are sub-economic but grades up to 0.69 opt gold have been returned from surface grab samples. A gold-galena-sphalerite occurrence is hosted by sheared porphyry gives grab sample values up to 5.7 g/t gold. Near the western property boundary, a gold-pyrite showing returned 2.3 g/t gold from a 0.5 metre wide pyritic zone within sheared porphyry.

Work in 1993 consisted of linecutting, magnetic and VLF-EM surveys, geological mapping and prospecting, basal till sampling and limited B-horizon soil sampling. As a result of the mapping, it has been determined that the sediment-porphyry contact is anomalous in gold and this will be a prime target of future exploration. The basal till sampling initially returned a highly anomalous sample (118 gold grains) which was 150 metres down-ice from a gold-pyrite occurrence. Follow-up till sampling failed to substantiate this anomaly. A weakly anomalous Cu-Au zone was detected by the B-horizon soil sampling completed in the western part of the grid.

Based on the results of the 1993 exploration program, it is recommended that the IP survey be completed as planned, and that a program of diamond drilling be implemented to test known geological targets as well as geophysical targets that combine magnetic, VLF and IP data. Basal till sampling may also be an effective tool in the central and eastern parts of the property, where overburden is extensive.

41009SE0005 2.15938 HUFFMAN

		Page
1.0	Intro	duction1
2.0	Prop	erty Location and Access1
3.0	Торо	graphy and Vegetation
4.0	Regio	onal Geology4
5.0	Previ	ous Exploration7
	5.1	History of the Jerome Mine7
	5.2	Exploration History of the Huffman Property8
6.0	1993	Exploration Program12
	6.1	Linecutting12
	6.2	Property Geology12
		6.2.1 Lithologies14
		6.2.2 Structural Geology17
		6.2.3 Mineralization17
	6.3	Geochemistry, Soil and Basal Till Sampling18
	6.4	Ground Geophysical Surveys25
		6.4.1 Introduction25
		6.4.2 Program Execution and Results
7.0	Conc	lusions
8.0	Reco	mmendations
9.0	Refer	rences

APPENDIX A Geochemical Assay Certificates, Whole Rock Data and Bulk Till Data Sheets

APPENDIX B Report on Ground Geophysics - Exsics Exploration Limited

LIST OF FIGURES

Figure 1	Location Map	2
Figure 2	Claim Map	3
Figure 3	Regional Geology	6
Figure 4	Grid Map	13
Figure 5	BedrockGeology	backpocket
Figure 6	Bedrock and Till Sample Location Map	backpocket
Figure 7	B-CHorizon Soil Survey (Brereton, 1992)	backpocket
Figure 8	BHorizon Soil Survey (Cameco)	backpocket
Figure 9	Regional Geophysical Setting	26
Figure 10	Geophysical Interpretation Map	.back pocket

Page

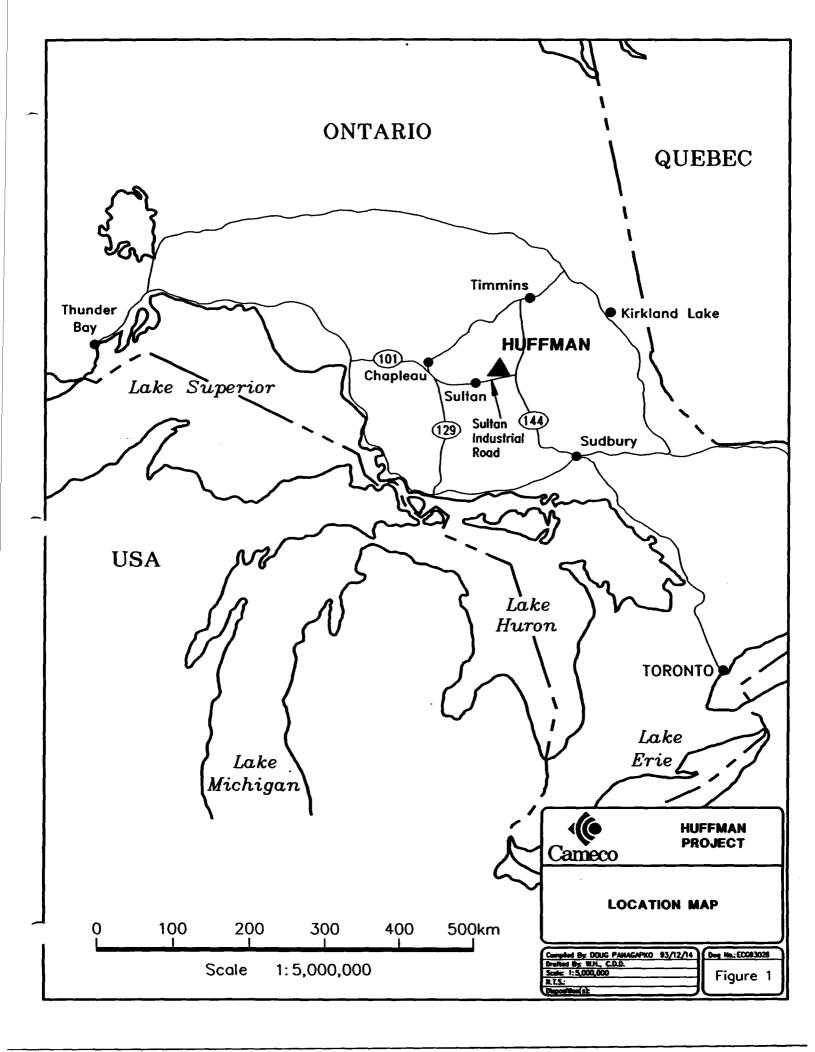
LIST OF TABLES

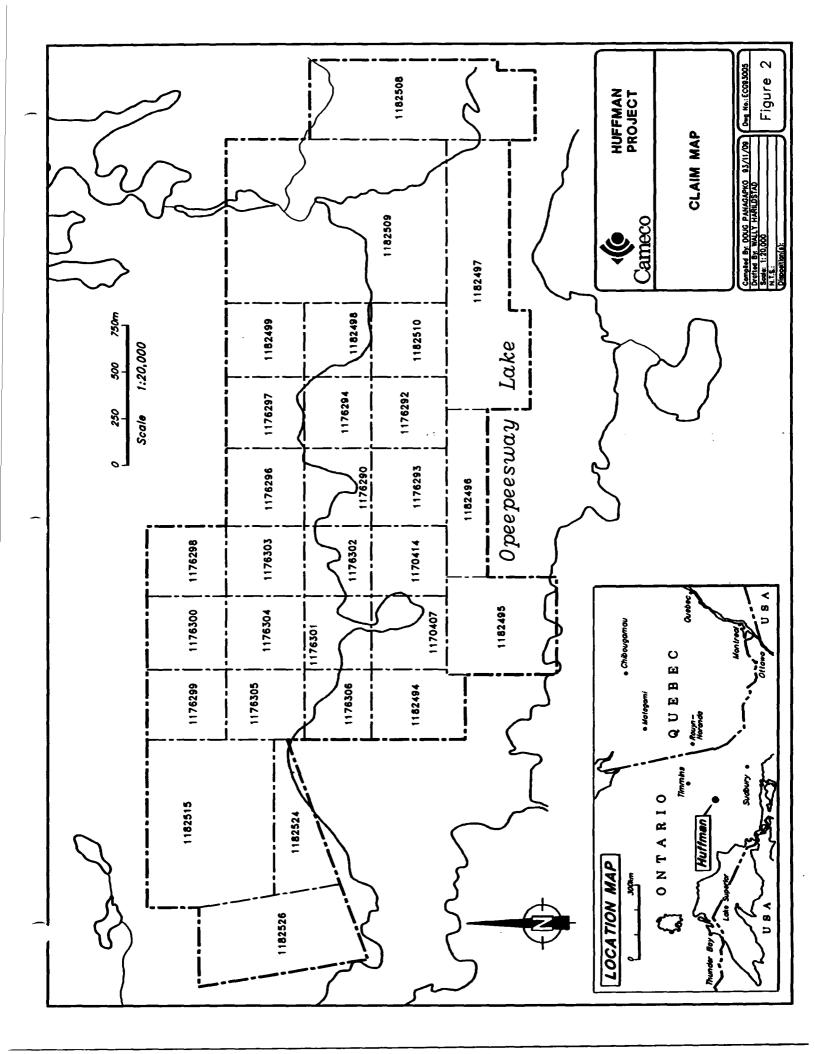
Page

Table 1	Lithogeochemical Samples

<u>1.0</u> Introduction

The Huffman property, was acquired under option from W.E. Brereton and Elizabeth Kirkwood under an agreement which became effective March 1, 1993. Subsequent to signing the agreement, an additional 12 claims comprising 25 claim units were staked bringing the total land position to 29 claim units. The property is situated 155 kilometres northwest of Sudbury, Ontario.


The property was acquired because of its proximity to the past producing Jerome mine and because the geology at Huffman closely resembles the Jerome setting. Gold occurs with quartz veins and sulphides (galena, molybdenite, pyrite) at or near the contact between conglomerate and feldspar porphyry, both of which have been sheared. Previous exploration has focussed on two showings on the property, and other targets, including a gold-copper soil anomaly and EM conductors have not been tested.


This report covers work completed on the property since March 1993, which includes linecutting, ground magnetic and VLF-EM surveys, geological mapping and sampling and bulk till sampling.

2.0 Property Location and Access

The Huffman property consists of 29 unpatented mining claims located in southcentral Huffman Township about 115 kilometres southwest of Timmins and 155 kilometres northwest of Sudbury, Ontario (Figure 1). The claim group comprises an area of approximately 688 hectares. Figure 2 shows the limits of the property and the individual claim units.

There are two different ways to access the property. The first is by exiting the Sultan Industrial Road at a point 43 kilometres west of Highway 144 and proceeding northeast for

12 kilometres to Opeepeesway Lake. The property is three kilometres east of the boat launch. In order to bring heavy equipment onto the property in summer or in winter if the ice conditions are not adequate, the property may be accessed from the north via a network of logging roads running off the Mallard Township road east of the Opeepeesway River. These logging roads are driveable with a four-wheel drive truck to a point about two kilometres north of the property. From there, quad/skidder trails reach the northern boundary of the claim group.

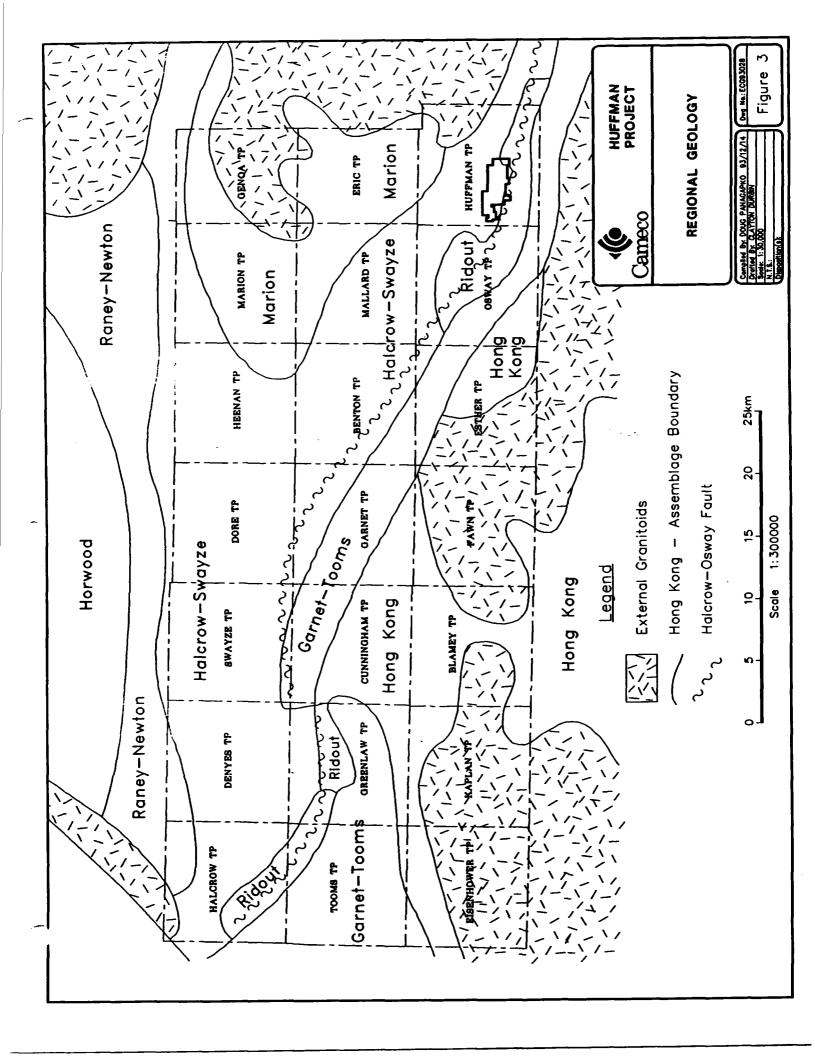
3.0 Topography and Vegetation

The property lies within the Hudson Bay watershed, about 25 kilometres north of the divide between the Great Lakes and Arctic watersheds. Opeepeesway Lake drains north into the Woman-Groundhog River system. The property is largely covered by sand and bouldery till deposits and extensive cedar swamps. Local areas of higher relief can be found near the east end of East Arm (Opeepeesway Lake) and are due to bedrock exposures and esker ridges.

The higher well drained areas are covered by poplar, birch and jack pine, with some large white and red pine scattered across the property. One white pine near line 21W measured 11 ft in circumference. Large wet areas are covered by cedar, black spruce and alders, with lesser tamarack and black ash.

4.0 <u>Regional Geology</u>

The Huffman property is located within the Abitibi Subprovince of the Precambrian Shield, specifically in the southwesternmost part of this extensive greenstone belt. The supracrustal sequence is bounded to the east by the Kenogamissi Batholith, to the south by the Ramsay-


Algoma gneissic complex and to the west by the Kapuskasing granulite terrain. It is referred to as the Swayze greenstone belt.

The Southern part of the Swayze greenstone belt, south of Coppell, Newton and Dale townships, can be broadly subdivided into five main assemblages (after Jackson and Fyon, 1991). These assemblages are: Garnet-Tooms, Hong Kong, Marion, Halcrow-Swayze and Ridout. Of regional significance to the Huffman property are the Garnet-Tooms, Halcrow-Swayze and Ridout assemblages (see Figure 3). These assemblages form an east-southeast trending syncline.

The area south of Opeepeesway Lake is underlain by an east-west striking sequence of massive to foliated mafic (tholeiitic) volcanic flows which form part of the Garnet-Tooms assemblage, and occupy the southern limb of the syncline. North of the lake, the northern limb of the syncline is dominated by mafic volcanic flows and intermediate pyroclastic rocks of the Halcrow-Swayze assemblage.

Overlying these volcanic units and occupying the area of Opeepeesway Lake itself, in the core of the syncline, is an extensive sequence of clastic sedimentary rocks (conglomerate, greywacke) which belong to the Ridout assemblage. The Ridout sediments are thought to be tectonically related to the Temiskaming series of sediments in the Kirkland Lake-Larder Lake area, which are intimately associated with the major gold deposits in the area.

Intermixed within the Ridout sediments, and possibly in part intrusive into them, is a unit known locally as Jerome porphyry, which is intimately associated with gold mineralization in the area. Previous workers have noted the resemblance of the porphyry to subvolcanic intrusive rocks and crystal tuff (Siragusa, 1993). The porphyry underlies much of East Arm of Opeepeesway Lake, from the Little Rice Lake Fault in the east to beyond the Jerome mine in Osway Township to the west.

The Huffman property lies within a regional structural corridor which extends some 80 kilometres across the southern Swayze greenstone belt. This corridor also extends to the east into the Shiningtree area and may in fact be related to the Kirkland Lake Break. Within the corridor, rocks are strongly sheared and folded and have been subjected to extensive carbonatization, sericitization and silicification. One former gold producer (Jerome Mine) as well as several underground prospects and numerous occurrences lie within this deformation corridor. Late in the tectonic history of the area, a series of northwest trending cross faults has disrupted and offset the stratigraphy.

5.0 Previous Exploration

5.1 History of the Jerome Mine

The Jerome mine is situated in eastern Osway Township approximately four kilometres west of the Huffman property. The original discovery at Jerome was made in 1938, when prospector Bert Jerome located mineralized quartz veins while prospecting for Mining Corporation of Canada. Underground work started in 1939 and a 500 ton per day cyanide mill was constructed. Production commenced in September 1941 and the mine operated until August 1943 when it shut down due to a shortage of labour. During this period, 335,060 tons were milled producing 56,878 ounces of gold and 15,104 ounces of silver (0.17 opt gold).

The deposit is located along the southern contact of a lenticular body of granodiorite porphyry and Temiskaming conglomerate. A shear zone along this contact provides the structural site for the gold mineralization. Sediments are often highly altered and locally resemble the porphyry. Abundant hematite is common near the quartz veins. According

to Brown (1948),:

"The vein consists of a bluish coloured, cherty replacement silica along the north side and a later, white quartz-carbonate replacement to the south. Pyrite, chalcopyrite, tetrahedrite, galena, sphalerite, molybdenite and native gold have been recognized."

The ore zone ranged from 5 to 40 feet in width and ore shoots were followed for a strike length of 3,000 ft. The ore shoots, as mined, bottomed out at the 800 ft. level. A reserve estimate, completed by Jerome Gold Mines Corporation in 1983, concludes that there are "total estimated mineable reserves" to the 800 ft. level of 583,068 tons at a grade of 0.203 opt.

5.2 Exploration History of the Huffman Property

Jess-Mac Gold Mines Ltd., 1949-1951 (T-2134)

Work by this company and by M.J. Gaffney consisted of a magnetometer survey and 41 diamond drill holes and was focussed on a mineralized zone located on claims 1176297 and 1176294. Some drilling was completed on claims 1182508 and 1182509. The magnetic survey indicated two "anomalies", possibly magnetic lows, which coincide with two different mineralized areas. The first is a quartz vein uncovered in a series of trenches made by William Smith.

The second anomaly, located about 250 ft south, corresponds to a narrow zone of Pb-Zn mineralization within sheared porphyry that was investigated by a series of diamond drill holes. One hole returned 0.21 opt gold, 4.9% Pb and 3.8% Zn over 4 ft. within altered porphyry.

Worthington Mines Ltd., 1961-1962 (T-2132)

Articles in the Northern Miner indicate that this company completed diamond drilling most likely on the Smith Vein occurrence located north of the Jess-Mac occurrence. This drilling intersected a 10 ft. wide quartz vein that returned 0.24 opt gold over 6.5 ft.

G. Swedlund, 1950 (T-2135)

This individual drilled 3 holes on the point of land on claim 1170407 and reported intersecting both sediments and porphyry. No assays are reported.

Falconbridge Nickel Mines Ltd., 1971 (T-2133)

Falconbridge completed vertical loop EM and magnetometer surveys over much of the property in 1971. Several conductors were located during the survey but no drilling was completed to test them.

<u>Osway Explorations Ltd., 1981-1983 (T-2452)</u>

This company completed ground geophysics, geological mapping and geochemical surveys in 1981. In 1982, work consisted of extensive backhoe trenching and stripping and some diamond drilling (24 holes). The diamond drilling continued in 1983 with an additional 15 holes being drilled. As a result of this work, several gold and base metal showings were investigated, including:

i) Gold-Lead-Zinc showing on 1176304. The showing occurs within sheared and altered porphyry and is associated with a magnetic low. The best grab sample assayed 0.07 opt Au, 5.04 opt Ag, 11.5% Pb and 6.5% Zn but the zone appears to be less than one metre wide in outcrop. Drill hole OS-82-15 returned 0.05 opt Au, 1.17 opt Ag, 1.23% Pb and 0.24% Zn over a two foot core length. The zone has been followed by trenching and drilling about 120 metres to the west.

ii) Gold-Quartz Vein showing on claims 1176299 and 1176300. This showing was extensively evaluated by trenching and diamond drilling. The vein strikes east-west for a distance of at least 350 metres and ranges in width from 0.5 to 4 ft. The vein contains molybdenite, galena, tetrahedrite, chalcopyrite and pyrite. Values up to 0.69 opt Au and 9.13 opt Ag were returned from grab samples. The vein is thought to be similar to the 'blue quartz' veins at the Jerome Mine, however, it occurs in sheared, deformed conglomerate about 100 metres north of the presumed sediment-porphyry contact. The best value from drilling was 0.09 opt Au over 5 ft. Several other drill holes returned weakly anomalous gold values.

Muscocho Explorations Ltd., 1985

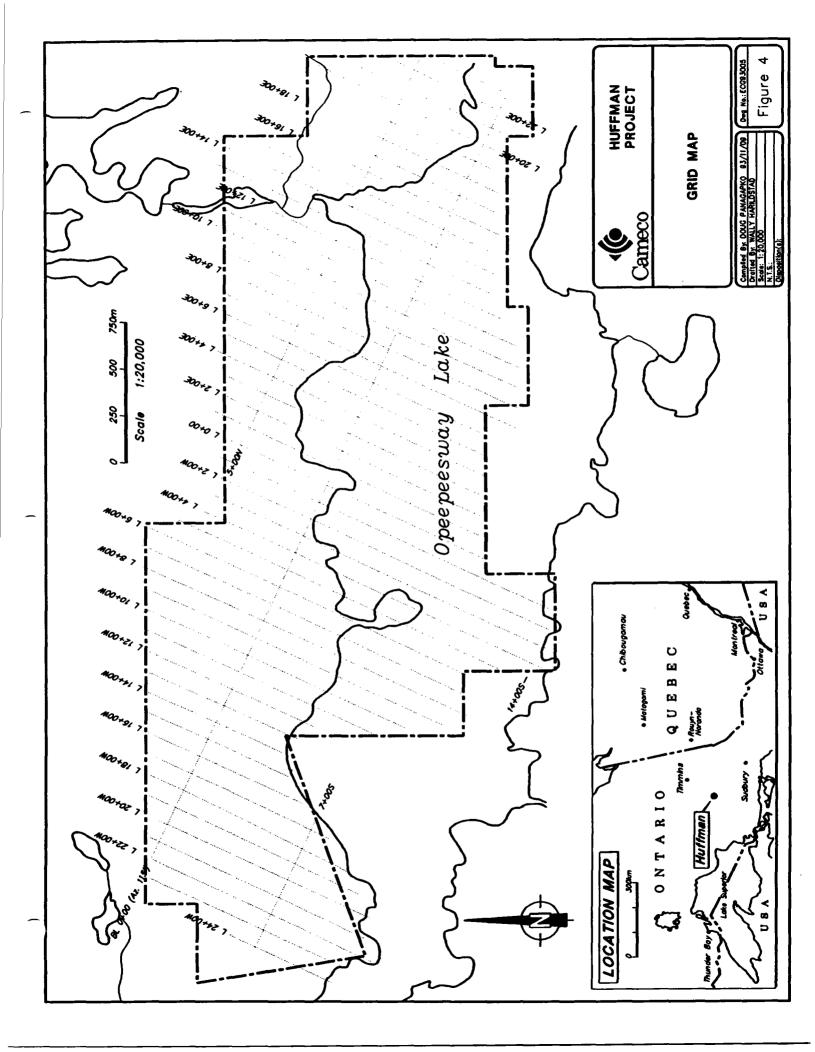
This company completed four drill holes testing various geophysical targets on the

ŧ

property. Two holes tested Osway VLF-EM conductors and the other holes tested the Gaffney (Jess-Mac) showing. No significant results were reported from the drill program.

6.0 1993 Exploration Program

6.1 Linecutting


During the period March 23 - April 5, a grid consisting of 75 kilometres of baselines and gridlines was completed on the Huffman property. In order to maintain some consistency with the 1982 Osway grid, the property was visited prior to commencement of the survey and the old baseline was relocated in the vicinity of line 0+00. The main baseline is oriented at 115° Az and grid lines were turned off at 100 metre intervals. Due to the layout of the claims and topographic considerations, 7+00S and 5+00N tielines were also cut. All grid lines have been chained at 25 metre intervals. Figure 4 shows the layout of the grid on the property. The work was completed by Exsics Exploration Ltd. of Timmins. Metal tags were used on all the pickets so that the pickets will be readable in future years.

6.2 Property Geology

About two weeks was spent on the property during the summer completing a geological survey on the new grid lines. Since the grid was cut during the winter, all pickets were reestablished during the mapping. As well as mapping outcrop exposures along and near the grid lines, old showings were revisited and sampled and trenches and drill collars were relocated where possible.

6.2.1 Lithologies

The property is underlain by five major rock types: 1) medium to coarse grained clastic metasediments (greywacke, conglomerate); 2) massive to foliated feldspar porphyry; 3) intermediate pyroclastics; 4) massive to pillowed andesite, and 5) diabase. Refer to Figure 5 for details of the geology discussed below.

Clastic Metasediments

Conglomerate, and to a lesser extent greywacke and pebbly sandstone, underlie the northern half of the claim group. The conglomerates are polymictic, clast supported and have a finegrained chlorite-rich matrix. Clast lithologies include porphyry, intermediate to mafic volcanic, diorite, chert and magnetite iron formation. The clasts are seldom undeformed and are often highly stretched parallel to the regional foliation. In the northcentral part of the property (claims 1176297, 1176298, 1176300), conglomerate is intermixed with pebbly sandstone to greywacke sub-units which have a similar matrix composition to the conglomerate but contain clasts which do not exceed 10mm.

The strike of the metasediments ranges from 090° to 120°, averaging about 110°. Dips are near vertical to steep south (75-80°). No contact relationship between the metasediments and the porphyry was observed on the property.

The finer grained sedimentary units along the northern limit of the property are hard to distinguish from fine to medium grained volcaniclastic rocks. The rocks are variably sericitic and contain abundant chlorite. What are mapped as fine-grained metasediments during the present survey may in fact be intermediate tuffaceous units.

Feldspar Porphyry

Porphyritic felsic intrusive/tuffaceous rocks underlie the central part of the Huffman property, between the metasediments to the north and the southern shore of East Arm. These rocks are thought to form part of the Jerome Porphyry, which outcrop on the peninsula in Osway Township in the vicinity of the Jerome mine. Both massive and sheared varieties of porphyry are present on the property.

The massive porphyry outcrops between lines 7W and 6E and forms a unit that trends roughly parallel to the porphyry-sediment contact about 150 metres south of the sediments. Several outcrops of massive porphyry also occur on the peninsula in East Arm on claim 1170407. This unit is pink to dark brown, contains 15-20% white feldspar phenocrysts and is generally low in sulphides and carbonate.

The more common porphyritic lithology is a medium to dark green, foliated rock with 10-15% chlorite and abundant feldspar phenocrysts. In outcrop, these porphyritic rocks often resemble sheared felsic to intermediate tuffs. They are often sericitic and occasionally contain 1-2% disseminated pyrite. A thin section evaluation by Brereton (1991) indicates that the rock is made up of albite, quartz, sericite and carbonate with minor pyrite and hematite.

According to Siragusa (1993), the Jerome porphyry is a "reddish-grey syenite comprising tabular, randomly oriented phenocrysts of potassium feldspar and plagioclase, and a finer grained groundmass". He goes on to say that "the Jerome porphyry has high potassium and barium contents and is regarded as a late-tectonic intrusion".

Intermediate Pyroclastics

Medium grained intermediate pyroclastic rocks are abundant in the northeastern part of the property, mainly on claims 1182499, 1182508 and 1182509. In this area, there is an intermixing of intermediate pyroclastics and clastic sediments, mainly conglomerate. The conglomerates have an abundance of volcanic clasts and there may be a gradation or facies change from sediment to volcanic sediment to pyroclastics in the eastern part of the property. The pyroclastic units are generally distinguished from conglomerate by their relative monomictic composition.

The intermediate pyroclastic rocks range from tuff to lapilli tuff with local coarse fragmental subunits. These rocks are chlorite rich, and often contain thin layers of magnetite, especially between 15E and 18E. The finer grained rocks are mapped as tuffs but resemble pebbly sandstone mapped in the north-central part of the property.

Andesite

In the extreme northeast part of the claim group (lines 12E to 21E), massive to pillowed andesitic volcanics have been mapped. These rocks are medium green, fine grained and locally variolitic. The pillowed andesite displays dark green selvages and the pillows are flattened considerably. The rocks are usually foliated and are locally strongly sheared. They are typically low in sulphides and carbonate. These volcanic flows, along with the dacitic pyroclastic units which lie to the south probably belong to a broad group of calc-alkalic volcanics which underlie parts of Huffman, Osway and Mallard townships (Siragusa, 1993).

Diabase

Narrow dikes of massive diabase cut most units on the property. In most cases, the diabase occurs as single outcrops or as narrow dikes within large outcrops. Only locally can the orientation of the dikes be established using outcrop relationships or the magnetic interpretation. The dikes trend at 340°-350°, average 10-20 metres in thickness and can be traced for as much as 1400 metres. The diabase is fine to medium-grained, and displays a massive, equigranular texture. The weathered surface is rusty brown and the unit is usually strongly magnetic.

According to Siragusa, the diabase is made up of "calcic plagioclase (andesine-labradorite) and clinopyroxene, with accessory magnetite, skeletal ilmenite and pyrite." These dikes belong to the regional Matachewan swarm.

6.2.2 Structural Geology

As mentioned previously in the section on Regional Geology, the Huffman property lies within a regional deformation/alteration corridor that passes through the centre of the south Swayze greenstone belt. Evidence for this deformation can be seen in most lithologies mapped on the grid and consists of a strong penetrative foliation as well as local zones of intense shearing.

In the conglomerates, intermediate pyroclastics and pillowed andesites, the deformation is typified by flattened clasts and pillow margins, in a direction parallel to the regional foliation. The most intensely sheared lithology on the property is the porphyry, probably because of its relatively felsic composition.

Foliations trend from 080° to 120° and have either vertical or steep south dips. Across the property, there are numerous high angle (340°-350°) cross faults which have been interpreted from a combination of lithologic correlation and ground magnetic data. The Little Rice Lake fault is a regional structure which can be traced for more than 15 kilometres. Five other cross faults occur on the property. In all but one case, the faults have an interpreted dextral movement. Locally, the faults have been intruded by diabase.

6.2.3 Mineralization

Several gold showings are located on the Huffman property. Gold is associated with pyrite, galena, and sphalerite in a sheared felsic porphyry located at 7+40W/1+00N. Refer to showing i) under Osway Explorations (section 6.2) for further details. Cameco sampling returned up to 5.8 g/t gold from a galena-rich sheared porphyry in an exposed trench. this showing has been drilled and does not have any indicated potential.

The most continuous setting for gold mineralization on the property is within a quartztourmaline vein system hosted by sheared conglomerate between 10+00W and 14+00W(see showing ii under Osway Explorations in section 6.2). Grab samples of quartz returned up to 2.7 g/t gold and sheared conglomerate with local pyrite concentrations gave values up to 3.9 g/t. This vein system has also been extensively explored by drilling and trenching.

At 21+00W/2+50S, a small pit has been blasted in a narrow pyritic zone hosted by sheared porphyry. Consistently anomalous values in the 1.5 to 2.3 g/t range are associated with this zone, which is up to 0.5 metres wide and is only exposed on one outcrop on the edge of a swamp. One drill hole in the vicinity intersected 2.1 g/t Au over 1.5 metres.

At 1+00W/1+30N, a pyritic sheared porphyry returned a value of 930 ppb gold. Several other outcrops in the area returned weakly anomalous values. This area is one of three across the property where sulphides and anomalous gold occur hosted by sheared porphyry within 150 metres of the porphyry-conglomerate contact.

6.3 Geochemistry, Soil and Basal Till Sampling

During the course of the exploration program, numerous lithologic samples were collected for geochemical analysis, some B-to C-horizon soils were collected and basal till sampling was conducted over a small area on the property. The results of this work are discussed below.

Lithologic Sample Analysis

A total of 83'rock samples were collected during the mapping phase. Some of these were sent in for ppb gold analysis while others were submitted for major oxide whole rock

TABLE 1

LITHOGEOCHEMICAL SAMPLES

SAMPLE NUMBER	COORDINATES	ROCK TYPE	GOLD (PPB)
HU93-01	1W/2+30N	quartz vein	45
HU93-02	1W/2+30N	porphyry	220
HU93-03	1W/1+35N	porphyry	930; WR
HU93-04	2W/4+50N	quartz vein	30
HU93-05	2W/2+00N	mass. porph.	WR
HU93-06	2W/1+45N	porphyry	WR
HU93-07	2W/1+45N	porph.+py	175; WR
HU93-08	5W/5+45N	int. tuff	
HU93-09	6W/0+05N	diabase	$(2S_{1}) = 2^{2} + 2^{2}$
HU93-10	6W/2+00N	sil. porph.	26; WR
HU93-11	6W/2+00N	porph.+py	78
HU93-12	7W/0+65N	mass. porph.	47
HU93-13	7+40W/1+00N	sh. porph.+gal	5760
HU93-14	7+40W/1+00N	sh. porph.+gal	954
HU93-15	7+40W/1+00N	sh. porph.+py	2670
HU93-16	8W/6+70N	conglomerate	
HU93-17	9W/6+75N	lapilli tuff	WR
HU93-18	9W/6+35N	greywacke	
HU93-19	9W/5+00S	sh. porph.	WR
HU93-20	10W/1+60N	quartz vein	78
HU93-21	10W/4+25N	conglomerate	
HU93-22	11W/2+00N	py conglomerate	
HU93-23	11W/2+00N	py conglomerate	702
HU93-24	11W/2+00N	quartz vein	912
HU93-25	11W/1+65N	quartz vein	10
HU93-26	12W/2+00N	quartz vein	1920

SAMPLE NUMBER	COORDINATES	ROCK TYPE	GOLD (PPB)
HU93-27	12W/2+00N	py conglomerate	3870
HU93-28	13W/1+60N	quartz vein	2014
HU93-29	13W/1+60N	quartz vein	1050
HU93-30	13W/1+60N	quartz vein	2710
HU93-31	13W/1+60N	sil+py congl.	700
HU93-32	13W/2+00S	sil. porph.	35
HU93-33	4+30W/6+00S	mass. porph.	WR
HU93-34	15W/2+70S	sh. porph.	24
HU93-35	15W/2+20S	conglomerate	34
HU93-36	14W/1+00N	py conglomerate	690
HU93-37	14W/2+00S	sh. porph.	WR
HU93-38	17W/2+25N	diabase	
HU93-39	16W/0+20N	py conglomerate	466
HU93-40	16W/2+85S	sh. porph.+cpy	58
HU93-41	19W/3+10S	sh.porph.+cpy	113
HU93-42	18W/1+00N	lapilli tuff	
HU93-43	18W/3+85S	sh. porph.	43
HU93-44	21W/2+50S	sh. porph.	WR
HU93-45	21W/2+50S	qtz+py zone	610
HU93-46	21W/2+50S	sh. porph.+py	1200
HU93-47	20W/3+40S	sh. porph.+py	119
HU93-48	22W/1+60S	sh. porph.	11; WR
HU93-49	3E/4+75N	sh. porph.	WR
HU93-50	5+40E/2+30S	felsic tuff	90
HU93-51	5+40E/2+30S	felsic tuff	WR
HU93-52	6E/6+00N	lapilli tuff	WR
HU93-53	6E/3+70N	mass. porph.	WR

_

SAMPLE NUMBER	COORDINATES	ROCK TYPE	GOLD (PPB)
HU93-54	3+30E/2+00S	sh. porph. core	223
HU93-55	3+30E/2+00S	sh. porph. core	52
HU93-56	11E/8+90N	int. tuff+py	24
HU93-57	8E/1+50N	sh. porph.+py	62
HU93-58	7E/1+50N	рогрнугу	WR
HU93-59	10E/1+85N	quartz vein	
HU93-60	12E/3+75N	int. tuff	WR
HU93-61	14+20E/5+00N	int. tuff+py	13
HU93-62	15E/6+55N	lapilli tuff	20; WR
HU93-63	-15E/7+15N	fsp porphyry	116; WR
HU93-64	15E/7+15N	int. tuff+mag	
HU93-65	16E/6+80N	sh. int. tuff	
HU93-66	16E/6+55N	int. tuff	
HU93-67	16E/2+40N	qtz felsic tuff	WR
HU93-68	18E/8+75N	andesite	WR
HU93-69	17E/9+15N	andesite + trem.	WR
HU93-70	17E/5+65N	int. tuff	
HU93-71	20E/10+30N	sh. int. tuff	WR
HU93-72	20E/9+50N	quartz vein	5
HU93-73	23E/3+90N	int. tuff	
HU93-74	7+50W/1+30N	sh. porph.+py	259
HU93-75	7+50W/1+30N	quartz vein	10
HU93-76	13+20W/1+50N	congl. + py	97
HU93-77	13+50W/1+30N	quartz vein	930
HU93-78	13+50W/1+30N	congl. + py	100
HU93-79	21W/2+50S	sh. porph.+py	1490
HU93-80	21W/2+50S	sh. porph.+py	2280

.

SAMPLE NUMBER	COORDINATES	ROCK TYPE	GOLD (PPB)
HU93-110	8+60W/0+40N	sh. porph.+py	27
HU93-111	8+60W/0+40N	sh. porph.	WR
HU93-112	21W/2+50S	sh. porph.+py	1200

.

analysis. Figure 6 shows the location of all bedrock and till sample sites. Table 1 presents a listing of all samples collected and gold assay results. Samples submitted for whole rock are designated 'WR' in the ppb Gold column. Assay certificates and major oxide data may be found in Appendix B.

B-C-Horizon Soil Sampling

As part of the earlier exploration on the Huffman property, W.E. Brereton completed a detailed soil survey over the 17 central claims in the claim group (Brereton, 1992). The purpose of this survey was to test the effectiveness of soil geochemistry as an exploration tool on the property.

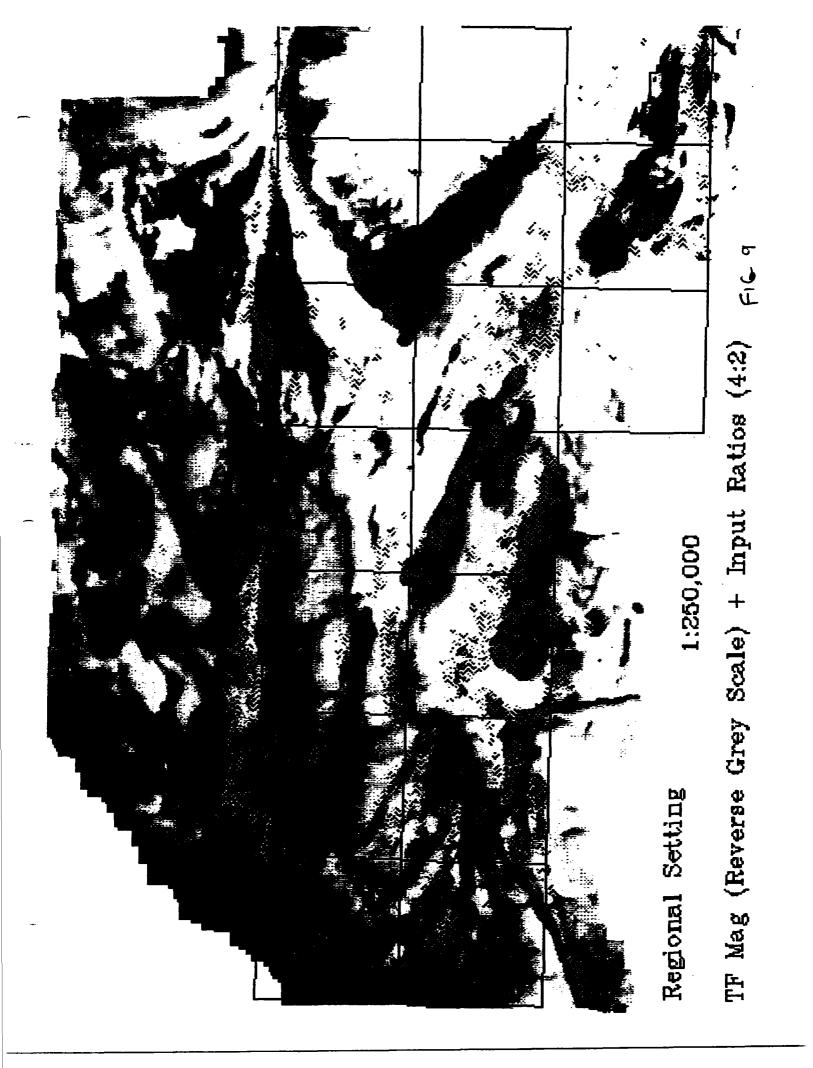
During the survey, a total of 452 samples were collected at 50 ft. intervals along flagged lines spaced about 400 ft apart. Samples were collected at depths ranging from 1-3 ft., depending on soil conditions. The material sampled consisted of C-horizon (weathered till) and also lower B-horizon. The samples were analysed for Au, Cu, Pb, Zn and Ag. The results for Au and Cu are presented on Figure 7.

The survey defined three areas of anomalous gold and copper values and these are shown on the figures mentioned above. Anomaly "A" underlies portions of claims 1176303, 1176304 and 1176305 and is characterized by anomalous Au, Pb and Zn. The highest gold values (130, 140 ppb) occur in this area. This anomaly appears to coincide with the known corridor of precious and base metal mineralization along the porphyry-sediment contact. Anomaly "B" is a Au-Cu-Pb-Zn anomaly that occurs in the vicinity of claims 1176301 and 1176306 and continues to the west under Opeepeesway Lake. Anomaly "C" is a Cu anomaly and corresponds to known disseminated and vein-type Cu mineralization in the feldspar porphyry.

J During 1993, a minor amount of resampling was completed near the anomalous Au values on line 76+65E. At three locations, samples of B-horizon and till were collected and analysed for gold in the minus 80 mesh fraction. At one other site, only the till was sampled. Detailed B-horizon soil sampling was also completed over an area from line 23+00W to 17+00W between 2+00S and 7+00S. This work was completed as a follow-up to the basal till sampling (see next section). Refer to Figure 8 for the location of these sample sites. The resampling of the old soil sites did not duplicate the high values previously detected. The highest value was 25 ppb (Cert. of Analysis 921, sample 92-83), thus neither the B-horizon or till appears to be anomalous in gold. The detailed B-horizon sampling detected weak spot anomalies in both gold and copper, with the highest gold and copper values being 40 ppb and 57 ppm, respectively. No obvious trends can be interpreted from these data.

Basal Till Sampling

In order to see if anomalous gold values occur within the basal till on the property, two samples (HUF93T-070 and -071) were initially collected where good till was located (see Figure 6). The tills occur at a depth of 0.5 to 1 metre and are grey and sandy with abundant porphyry and tuff clasts. Approximately 6-8 kg of till material was collected at each site from a hand dug pit. The samples were sent to Overburden Drilling Management Ltd. in Ottawa where they were processed over shaking tables to concentrate any gold grains. Sample HUF93T-071 contained 118 gold grains, of which 19 were pristine and 91 were modified, indicating relatively short transport distances. The sample is located about 165 metres down-ice from a gold-pyrite occurrence in sheared porphyry, where surface sampling has returned values as high as 2280 ppb Au (See Appendix A for results).


As a follow-up to this sampling, a more extensive program of till sampling was undertaken both up-ice and down-ice of the original anomalous sample. On Figure 6, an additional nine till samples are located. No definitive results were obtained from the follow-up work. The most anomalous sample contained 16 gold grains (15 modified, 1 pristine), and was located 100 metres east of the sample containing 118 grains. Till is present throughout the area and is quite near to surface (< one metre).

6.4 Ground Geophysical Surveys

6.4.1 Introduction

Magnetometer and VLF-EM coverage was obtained over the Huffman project area during the period April 5-10, 1993 by Exsics Exploration Limited under contract number 362. This program was carried out to assist in defining the geological and structural setting of the area prior to the summer mapping program. The surveys were also carried out to delineate areas for further work and locate potential target areas for gold mineralization.

On a regional scale, the area was covered by an extensive aeromagnetic and INPUT survey flown by Questor Surveys for the Ontario Geological Survey in 1981. The regional geophysical setting of the property is shown in Figure 9A. This figure combines grey scale total field magnetics with a ratio of Ch 4-2 INPUT conductors. Figure 9B shows colour TF magnetics and contoured VLF Fraser Filtered data for the property. In the Huffman area, only unprocessed EM data was available and a number of levelling problems are still evident. The Huffman property itself is, however, devoid of any airborne EM responses.

The property is located in the centre of the Halcrow-Osway structural corridor and is underlain by Ridout series metasediments and later feldspar porphyry intrusions. The sediments are magnetic and are bounded along the north eastern edge of the property by a well defined WNW magnetic lineament. Major cross-cutting NNW breaks are interpreted from the regional magnetics along the eastern and western edges of the project area.

6.4.2 Program Execution and Results

Magnetometer and VLF readings for station NAA were obtained every 12.5 m and 25 m respectively on NNE lines spaced 100 m apart. The data was obtained using an EDA Omni Plus field instrument and the magnetic data was diurnally corrected using an Omni IV. In total, 75 km of total field magnetic and VLF coverage was completed. Profile maps and a contoured magnetic map at a scale of 1:5000 are included with the contractor's logistics report in Appendix B.

The interpreted VLF and magnetic trends are presented in Figure 10. The magnetic pattern on first inspection is very noisy and displays a confusing pattern of shallow magnetic trends. This pattern appears to be the result of interfering NNW dike trends and a series of eastwest/west-northwest narrow magnetic units (iron formation?). A lithomagnetic contact is also inferred trending across the centre of the grid, possibly reflecting the contact between the conglomerate and the more magnetic porphyry unit to the south. The northerly lower magnetic region may also reflect a region of alteration (ie. magnetite destruction).

Along the northern edge of the property, the iron formation appears to be associated with the major NNW magnetic lineament. In the central area the dikes/IF have a more eastwest orientation. These features are disjointed and are disrupted by a series of NNW interpreted cross-structures. The cross-structures are related to major faults to the east and west of the property, which have been interpreted from the regional magnetics and they often correspond to interpreted dikes.

Problems with the recorded VLF survey direction have been corrected in the profile map included in Appendix B and the data has been Fraser filtered to assist in defining axes (Figure 10). However, a number of suspect crossovers still exist particularly in the northeast corner. In general the VLF trends are relatively weak. The very weak trends located in the lake appear to be related to lake bottom effects and the complex pattern in the southwest corner of the property is in part the result of surface conductivity (swamp). However, a number of bona fide bedrock trends, generally with an east-west orientation are noted traversing the property. These trends often have a direct magnetic association(IF?) and are highly disjointed, supporting the cross-structures interpreted from the magnetics. It is also worthy to note the stronger VLF response and flanking magnetic low associated with the southern lake shore.

Fixed transmitter vertical loop EM was carried out over the Huffman project area by Falconbridge in 1971 (Tays, 1971). A large number of weak EM trends were delineated. These trends correspond closely to the VLF axes defined by the present program. Although no strong conductors have been identified on the property, the EM trends often have a direct magnetic relationship indicating the presence of weak sulphide mineralization associated with magnetic iron formation.

<u>7.0</u> <u>Conclusions</u>

The Huffman property is underlain primarily by medium to coarse grained clastic sediments and a massive to sheared feldspar porphyry unit. The sediments are predominantly polymictic conglomerate comprised of felsic to intermediate volcanic clasts, iron formation and quartz pebbles. To the south of the sediments is a large area which is underlain by a sheared, chloritic feldspar porphyry. Thin dikes of the porphyry are locally observed to cut the sediments.

The sediment/porphyry contact is offset several times by interpreted northwest trending faults. The penetrative foliation within conglomerate and porphyry strikes at about 110° to 120° with vertical to steep southerly dips.

Gold mineralization is found within narrow quartz-tourmaline veins which are hosted by sheared conglomerate. These veins have previously been drill tested, and contain up to 24 g/t gold. Gold is also found along with galena and minor sphalerite within sheared feldspar porphyry in the vicinity of 7+40W/1+00N. The sulphide zone is less than one metre wide and does not have a significant strike length. Gold values up to 5.7 g/t have been returned from grab samples. This area has also been drill tested.

On line 21+00W at 2+50S, a sulphide zone within sheared porphyry returned up to 2.3 g/t gold from samples containing up to 15% pyrite. The lateral extent of this zone could not be determined due to a lack of outcrop. A drill hole put down to the west of this occurrence intersected 2.1 g/t over 4 feet from an altered porphyry containing pyrite, galena and molybdenite. This sulphide zone, along with at least two others all occur within 150 metres of the porphyry-sediment contact, indicating a possible conduit or localizing force for hydrothermal fluids.

A limited amount of basal till sampling completed on the property has given mixed results. One sample returned 118 gold grains, with the majority being modified to pristine in shape. The highest value in follow-up sampling was 16 grains from a location about 100 metres east of the first anomalous sample. Till is quite common on the property and this technique could be applied in future exploration programs.

The magnetic and VLF results have assisted with the geological understanding of the Huffman project area. A number of target areas are indicated on Figure 10.

Target area A is located at the intersection of a strong, well defined east-west VLF and magnetic trend and a north-westerly trending feature. A NNW cross-structure is also interpreted trending through this area.

Areas B1, B2 and B3 fall on a well defined second cross-cutting NNW oriented break. Target B1 occurs near an interpreted lithologic contact where it is cut by an interpreted N-S fault. B2 represents the intersection between a VLF axis and the same N-S fault. Target B3 comprises a VLF axis that has been offset by the N-S fault.

In the vicinity of target area C, a cross-structure is again indicated and this area is characterized by a distinct break in the VLF and magnetic trends. Area D has a similar setting. The region between C and D is of particular interest and is characterized by a low magnetic signature. It is worthy of note that the circular magnetic low feature located immediately west of the Huffman property observed in the regional magnetics is host to gold mineralization (Jerome mine). The magnetic low on the Huffman property also corresponds to the "circular" western portion of Opeepeesway Lake.

Area E has the most complex geophysical expression. The confused pattern of VLF axes in this area is in part the result of a number of suspect readings. The magnetic pattern indicates a very complex structural setting, partly due to the Little Rice Lake fault which offsets the sediment/porphyry contact by several hundred metres.

These target areas warrant additional attention and an IP/resistivity currently in progress should aid in better defining specific drill targets.

8.0 <u>Recommendations</u>

The following work should be completed as part of the continued exploration of the Huffman project:

1) Complete an induced polarization/resistivity survey over the property, covering the porphyry-conglomerate contact area, to detect any zones of potential disseminated sulphides.

2) Conduct a program of diamond drilling to tset both known mineralized zones as well as drift covered areas that have coincident geophysical targets (utilizing magnetic, VLF an IP data).

3) Based on the results of the above, conduct further basal till sampling down-ice of the porphyry-sediment contact, particularily from 9+00W to 1+00E and 6+00E to 11+00E, in an effort to detect subcropping gold mineralization.

9.0 <u>References</u>

Brereton, W.E.,Report on the Opeepeesway Lake Gold-Base Metals Property,1991Huffman Township, Ontario, MPH Consulting Internal Exploration

Huffman Property - 1993 Exploration Program

Report.

- Brown W.L., 1948 The Jerome Mine, in: Structural Geology of Canadian Ore Deposits, Can. Institute of Mining and Metallurgy, 1948, pp 438-441
- Jackson, S.L. and The Western Abitibi Subprovince in Ontario,
 Fyon, J.A., 1991 in: Geology of Ontario, Ont. Geol. Survey Special Volume 4, Part 1, pp 405-484.
- Siragusa, G.M.,Geology, Geochemistry and Mineralization of the Southern margin1993of the Swayze Belt; Ont. Geol. Survey Open File Report 5844, 144p.
- Tays, R.H., 1971 Report on Magnetometer, Vertical Loop E.M. and Induced Polarization Surveys, Falconbridge Nickel Mines Ltd., Opeepeesway Claim Group, Osway and Huffman Townships, Ontario, Assessment Report T-2133.

CERTIFICATE

I, Douglas Allan Panagapko, of 1064 Moss Street, Sudbury, Ontario, P3A 2H8, do hereby certify that:

I am currently employed as a Project Geologist by Cameco Corporation, 1349 Kelly Lake Road, Unit #6, Sudbury, Ontario, P3E 5P5

I graduated from Carleton University in 1976 with a Bachelor of Science degree (Honours) in Geology, and have been practicing my profession continuously since graduation.

I am a member in good standing of the Prospectors and Developers Association of Canada.

I am directly responsible for the work outlined in this report and was present on the property when the work was being carried out.

Signed at Sudbury, Ontario, this 20th day of January, 1995

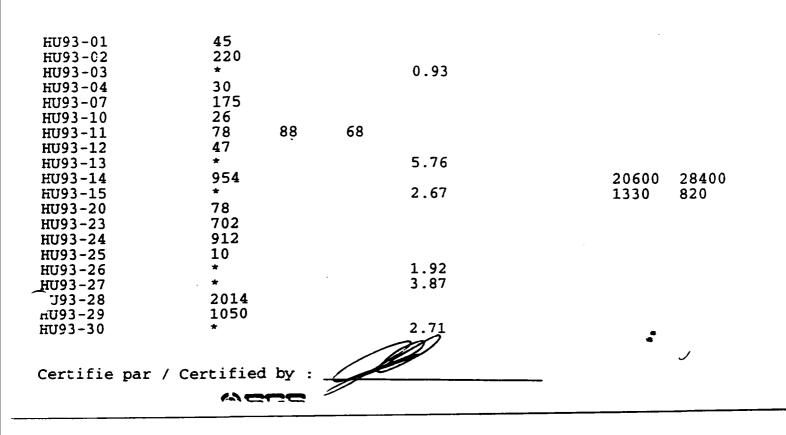
Dorgles A Panapple

Douglas A. Panagapko Project Geologist

APPENDIX A

GEOCHEMICAL ASSAY CERTIFICATES, WHOLE ROCK DATA, AND BULK TILL DATA SHEETS

UNE DIVISION DE / DIVISION OF SGS INC. 150. 13e RUE • RCUYN-NORANDA • QUÉBEC J9X 2H6 TÉL.: (819) 764-9108 FAX : (819) 764-4673


CERTIFICAT D'ANALYSE/CERTIFICATE OF ANALYSIS

Jul 08, 1993

Bon de Commande No/ P.O.	No:
Projet/ Froject No	: GEN 5794
Date Soumis/ Submitted	: Jun 30, 1993
Attention	: DOUG PANAGAFKO

Nom de la Compagnie/Company: Cameco Corp.

No. D'Echantillon	AU	AU CHK	AU CHK	AU	AU CHK AU CH	C PB	ZN
Sample No.	PPB	PPM	PPM	g/ton	g/ton g/ton	PPM	PPM

UNE DIVISION DE / DIVISION OF SGS INC. 150, 13e RUE • ROUYN-NORANDA • QUÉBEC J9X 2H6 TÉL.: (819) 764-9108 FAX : (819) 764-4673

CERTIFICAT D'ANALYSE/CERTIFICATE OF ANALYSIS

Nom de la Compagni			neco Co	rp.			554	
Bon de Commande No Projet/ Project M Date Soumis/ Submi Attention	NO	: GEI : Jui	N 5794 n 30, 1 JG PANA				Jul 08,	1993
No. D'Echantillon Sample No.	AU PPB		AU CHK PPM		AU CHK g/ton		ZN PPM	

HU93-31 HU93-32 HU93-34	700 35 24					
HU93-35	34 *			0.69		
HU93-36	466			0.09		
HU93-39						
HU93-40	58					
HU93-41	113					
HU93-43	43					
HU93-45	*			0.61	0.61	0.61
~" U93-46	*			1.20	1.20	1.20
J93-47	119	131	107			
HU93-48	11					
HU93-50	90					
HU93-54	223					
HU93-55	52					
HU93-56	24					
HU93-57	62					
1022-21	02					

:/

100

*

*

HU93-78

HU93-79

HU93-80

LES LABORATOIRES XRAL LABORATORIES

UNE DIVISION DE / DIVISION OF SGS INC. 150. 13e RUE . ROUYN-NORANDA . QUEBEC J9X 2H6 TEL (819) 764-9108 FAX : (819) 764-4673

CERTIFICAT D'ANALYSE/CERTIFICATE OF ANALYSIS

Nom de la Com			meco Co	rp.			704	
Bon de Comman Projet/ Proje Date Soumis/ Attention	CT NO	: ON : Au	TGENE57 g 04, 1 UG PANA	993			Aug 36, 1	993
No. D'Echanti Sample No.	llon AU PPB	AU CHK PPB	AU CHK PPB	AU g/ton	AU CHK g/ton	AU CHK g/ton		
HU93-61 HU93-64 HU93-65	13 20 116							
HU93-72 HU93-74 HU93-75 HU93-76 HU93-77	<5 259 10 97 *			0.93	0.96	0.89		

1.49

2.28

1.51

2.30

1.47

2.26

	/
Certifie par / Certified by :	1
Membre du Groupe SGS (Société Générale de Surveillance)	

UNE DIVISION DE / DIVISION OF SGS INC. 150. 13e RUE • ROUYN-NORANDA • QUÉBEC J9X 2H6 TÉL. : (819) 764-9108 FAX : (819) 764-4673

CERTIFICAT D'ANALYSE/CERTIFICATE OF ANALYSIS

Nom de la Compagn Bon de Commande N Projet/ Project Date Soumis/ Subm Attention	o/ P.O. No	No: : HU : Se	meco Co FFMAN p 10, 1 DUG PANA	993			918 Sep 16, 199) 3
No. D'Echantillon Sample No.	AU PPB	AU g/ton		AU CHK g/ton		ZN PPM	· ·	
HU93-110 HU93-112	27 *	1.20	1.20	1.20	1400	1020		

Certifie par / Certified by :
Membre du Groupe SGS (Société Générale de Surveillance)

UNE DIVISION DE / DIVISION OF SGS INC. 150, 13e RUE • ROUYN-NORANDA • QUÉBEC J9X 2H6 TÉL. : (819) 764-9108 FAX : (819) 764-4673

CERTIFICAT D'ANALYSE/CERTIFICATE OF ANALYSIS

Nom de la Compag Bon de Commande Projet/ Project Date Soumis/ Sub Attention	NO : ONTGEN	921 Sep 28, 1993
No. D'Echantillo Sample No.	on AU PPB	
92-55-A 92-55-B 92-83-A 92-83-B 92-84-A 92-84-B 92-84-B 92-87-B	19 9 25 25 6 9 6	··· ··

Certifie par / Certified by :

UNE DIVISION DE / DIVISION OF SGS INC. 150. 13e RUE • ROUYN-NORANDA • QUÉBEC J9X 2H6 TÉL. : (819) 764-9108 FAX : (819) 764-4673 .

your ref: HUFFMAN

our ref: 16090/919

CERTIFICAT D'ANALYSE/ASSAY CERTIFICATE

01-Oct-93

CAMECO CORP. 1349 KELLY LAKE ROAD UNIT 6 SUDBURY, ONTARIO P3E 5P5 ATTENTION: DOUG PANAGAPKO

Date soumis/ Submitted: September 8, 1993

No. of samples: 24

No. of pages: 1

ELEMENTS

WRMAJ % WRMIN PPM METHOD

XRF/WR XRF/WR

0.01 10.

DETECTION LIMIT

Certifie par/Certified by: J.J. Landers Genny/Manager

I-BAY ASSAY LABORATORIES 01-Oct-93 REPORT ----- REF. 16090 PAGE 1

	I-EIY ASSAY LARO	EXIJEI25	01-066-92	REPURI	121	. 10090 P	AGE 1					
		IA20 % IRF-F	HGO % XRF-F	13F-F		IRF-F	K20 % XRF-F	CIO % IRF-F	TIC2 % IRF-F	C2203 % X2F-F	HUO X IRF-F	FE233 % IRF-F
	HU93-C3 HU93-C5 HU93-C5 HU93-C7 HU93-1C HU93-17 HU93-13 HU93-33 HU93-37	4.94	2.48 2.17 1.52 1.27	14 6	65.0	.22	3.16 1.97 4.27 3.35 1.31 2.79 3.35 2.90 2.86 4.53 2.25 2.60 3.29 1.67 2.39 1.67 2.00 2.66 4.33 .10 .15 2.35 3.16 .72	1.51	. 410	.02	.04	4.98
	#193-05	6.83	2 17	15 3	64 7	22	1 97	1 51	447	01	04	4.45
	1733-05	6.83 5.20	1 52	15 1	65 1	10	4 27	1 55	446	01	10	2.54
_	1793-07	5.65	1 27	15 3	65 1	21	3 35	1 18	424	62	08	3.21
	8093-10	5.04 5.40 5.03	1.52 1.08 2.08 1.05	11 3	72.8	11	1 31	2 30	223	.03	07	2.79
	2033-17	5 40	1 08	15 3	65 1	20	2 79	1 72	410	.05	.05	4.45
	HUJJ-1: HT03-10	5 03	2.08	14 0	£1 Q	.20	1 25	1 04	. 115	.01	.05	5.60
	2070-17	5.33	1.05	15.3	65 7	. 22	2.35	1 40	420	. 52		4.38
	EU93-37	4.38	1.70	14.8	63.0	.20	2.90	2 75	480	.01	.05	4.61
	EU93-44	2 21	2 86	13.0	57 A	- 22	2.50	E 30	424	.03	.00	4.34
	HU93-48	2.21 5.19	2.00	13.1 14.4	61 6	- 20	2.55	1 23	487	.02	.21 .09 .16	5.26
			3 02	14.8	55 7	. 21	2.25	5.67	586	-02	16	7.49
	EU93-51	5.13 1.67	3.02 .95 4.19	17.7	61.8	18	3 20	04	471	01		2.58
	EU93-52	1 67	4 13	14.6	53.0	10	J.23 73	1 80	774		16	14.0
	EU93-53	6 70	3 88	14.4	62 6	. 10	.15	2 10	490		12	6.07
	EU93-55	5.51	3.88 2.27	15.0	63 2	. 22	2 70	1 63	472	.02	.04	4.32
	HU93-60	5.31	3 55	14.7	63 7	. 22	1 67	2.05	460	.02	.01	4.93
	HU93-62	3.49	3.55	14.8	55 7	- 23	2.00	2.17 A A7	. 109	.03	.11	9.10
	8793-63	4.23	2.39	15.1	53.5	- 17	2.00	2.71	.010	.01	.12	3.53
	HU93-67	3.72	2.39	12.1	71 5	. 25	2.00	1 77		.01	.07	1.75
	HU93-68	2.01	1.05	13.3	11.5	.13	1.33	1.33		.02	.21	13.5
	HU93-69		6.18	13.1	19.0 16 A	.00	.13	12 1	.021	.01	. 41	12.0
	HU93-71	1.57	5.96	14.8	10.7	.08	. 10	12.1	./21	<.01 04	. 23	25.8
	2093-71 2203-111	2.25	4.59	10.6	21.7	.07	21.	2.52	.005	.01	. (5	5.65
	ñ v93-111 Hv93-03	4.92	2.46	14.7	51.5	.10	2.33	0.77	. 323	.02	.09	5.00
	HU93-52	1.68	4 20	14.6	53.0	. 22	.15 2.35 3.16 .72	1.55	. 10	.01	.16	14.0
	1093-32	1.00	7.20	14.0	53.0	. 10	. (2	3.00	. (19		.10	11.0
	SAMPLE	eb PPH 12F-F	SR PPH IRF-F	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X				
		12F-F	IRF-F 319	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	STH % IRF-F 99.4			
		12F-F	IRF-F 319	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	STH % IRF-F 99.4			
	EU93-03 EU93-05 EU93-06	12F-F 111 48	IRF-F 319 548 303	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	STH % IRF-F 99.4 99.5 98.8			
	EU93-03 EU93-05 EU93-06	12F-F 111 48 103	IRF-F 319 548 303	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	STH % IRF-F 99.4 99.5 98.8 98.3			
	EU93-03 EU93-05 EU93-06	12F-F 111 48 103	IRF-F 319 548 303	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	STH % IRF-F 99.4 99.5 98.8 98.3 100.6			
	EU93-03 EU93-05 EU93-06	12F-F 111 48 103	IRF-F 319 548 303	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	STH % IRF-F 99.4 99.5 98.8 98.3 100.6 99.4			
	EU93-03 EU93-05 EU93-05 HU93-06 HU93-07 HU93-10 HU93-17 HU93-19	12F-F 111 48 103 108 47 86 101	IRF-F 319 548 303	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	STH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9	· -		
	EU93-03 EU93-05 EU93-06 HU93-07 HU93-10 HU93-17 EU93-19 EU93-33	12F-F 111 48 103 108 47 86 101	IRF-F 319 548 393 392 422 387 422	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	STH X IRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8	· -		
	EU93-03 EU93-05 EU93-05 HU93-06 HU93-07 HU93-10 HU93-17 HU93-19 HU93-33	12F-F 111 48 103 108 47 26 101 81	XRF-F 319 548 393 392 422 387 422 387 422 355	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH X XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8	· -		
	EU93-03 EU93-05 EU93-05 HU93-07 HU93-10 HU93-17 HU93-17 HU93-33 HU93-37 BU93-37 BU93-44	12F-F 111 48 103 108 47 26 101 81	XRF-F 319 548 393 392 422 387 422 387 422 355	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH X XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8			
	EU93-03 EU93-05 EU93-05 HU93-06 HU93-07 HU93-10 HU93-17 BU93-17 BU93-13 BU93-33 HU93-37 EU93-44 HU93-48	12F-F 111 48 103 108 47 26 101 81	XRF-F 319 548 393 392 422 387 422 387 422 355	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH X XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.4 99.8 99.8 99.8 99.2 100.1			
	EU93-03 EU93-05 EU93-05 HU93-06 HU93-07 HU93-10 HU93-17 HU93-19 HU93-33 HU93-37 EU93-44 HU93-48 HU93-49	12F-F 111 48 103 108 47 26 101 81	XRF-F 319 548 393 392 422 387 422 387 422 355	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH X XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.4 98.9 99.8 99.8 99.8 99.2 100.1 100.2			
	EU93-03 EU93-05 EU93-06 HU93-07 HU93-10 HU93-19 BU93-19 BU93-33 HU93-33 HU93-44 HU93-48 HU93-49 BU93-51	12F-F 111 48 103 108 47 26 101 81	XRF-F 319 548 393 392 422 387 422 387 422 355	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 99.8 99.8 99.8 99.8 99.8 99.8 99.2 100.1 100.2 98.1			
	EU93-03 EU93-05 EU93-05 HU93-07 HU93-10 HU93-17 HU93-19 HU93-33 HU93-37 HU93-44 HU93-44 HU93-48 HU93-49 HU93-51 HU93-52	12F-F 111 48 103 108 47 26 101 81	XRF-F 319 548 393 392 422 387 422 387 422 355	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.8 99.2 100.1 100.2	· -		
	EU93-03 EU93-05 EU93-05 HU93-06 HU93-07 HU93-10 HU93-17 HU93-37 HU93-37 HU93-37 HU93-37 HU93-48 HU93-48 HU93-48 HU93-51 HU93-53	12F-F 111 48 103 108 47 26 101 81	XRF-F 319 548 393 392 422 387 422 387 422 355	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.8 99.2 100.1 100.2			
	EU93-03 EU93-05 EU93-05 HU93-06 HU93-10 HU93-17 HU93-19 HU93-33 HU93-37 HU93-37 HU93-48 HU93-48 HU93-48 HU93-49 HU93-51 HU93-53 HU93-53 HU93-53	12F-F 111 48 103 108 47 26 101 81	IRF-F 319 548 393 392 422 355 1490 387 582 335 700 158 270 685	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % IRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.2 100.1 100.2 98.1 100.2 98.1 100.2 98.1 100.2 98.1			
	EU93-03 EU93-05 EU93-06 HU93-06 HU93-10 HU93-17 HU93-19 EU93-33 HU93-33 HU93-37 EU93-44 HU93-48 HU93-49 HU93-51 HU93-51 HU93-52 HU93-58 HU93-60	12F-F 111 48 103 108 47 26 101 81	IRF-F 319 548 393 392 422 355 1490 387 582 335 700 158 270 685	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 99.8 99.8 99.8 99.8 99.8 99.8 99.8			
-	EU93-03 EU93-05 EU93-05 HU93-06 HU93-10 HU93-17 HU93-17 BU93-17 BU93-37 BU93-37 BU93-37 BU93-44 HU93-44 HU93-48 HU93-49 HU93-51 HU93-52 HU93-53 BU93-53 BU93-58 BU93-62	12F-F 111 48 103 108 47 26 101 81	IRF-F 319 548 393 392 422 355 1490 387 582 335 700 158 270 685	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.8 99.2 100.1 100.2 98.1 100.2 98.1 100.2 98.1 100.2 99.4 91.4 99.5			
-	EU93-03 EU93-05 EU93-05 HU93-06 HU93-07 HU93-10 HU93-17 BU93-17 BU93-17 BU93-33 RU93-37 SU93-44 HU93-48 HU93-48 HU93-49 HU93-51 HU93-52 BU93-53 BU93-53 BU93-53 BU93-62 EU93-63	12F-F 111 48 103 108 47 26 101 81	IRF-F 319 548 393 392 422 355 1490 387 582 335 700 158 270 685	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.8 99.8 99.2 100.1 100.2 98.1 100.2 99.4 98.2 100.6 100.6 100.2 99.4 98.2 100.6 100.6 100.2 99.4 99.5 99.8 99.2 100.1 100.2 99.4 99.5 99.8 99.2 100.1 100.2 99.4 99.5 99.8 99.2 100.1 100.2 99.4 99.5 99.8 99.2 100.1 100.2 99.4 99.5 99.8 99.2 100.1 100.2 99.4 99.5 99.8 99.0 99.0			
-	EU93-03 EU93-05 EU93-05 HU93-06 HU93-10 HU93-17 HU93-19 HU93-37 HU93-37 HU93-37 HU93-48 HU93-48 HU93-48 HU93-51 HU93-53 HU93-53 HU93-53 HU93-62 EU93-63 HU93-67	12F-F 111 48 103 108 47 85 101 81 92 112 69 77 76 28 18 101 46 49 72 104	IRF-F 319 548 393 392 422 387 422 355 1490 387 582 335 700 158 270 685 550 329 370 627	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.2 100.1 100.2 98.1 100.2 98.1 100.2 98.2 100.6 100.6 100.2 99.4 98.2 100.6 100.2 99.4 99.5 100.0 100.0			
-	EU93-03 EU93-05 EU93-06 HU93-06 HU93-10 HU93-17 HU93-19 EU93-33 HU93-37 EU93-48 HU93-48 HU93-48 HU93-51 HU93-51 HU93-52 HU93-53 HU93-58 HU93-60 EU93-67 HU93-67 HU93-68	12F-F 111 48 103 108 47 26 101 81 92 112 69 77 76 28 18 101 46 49 72 104 <10	IRF-F 319 548 393 392 422 387 422 355 1490 387 582 335 700 158 270 685 550 329 370 627 68	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.8 99.8 99.2 100.1 100.2 98.1 100.2 98.1 100.2 98.1 100.2 98.1 100.2 98.1 100.3			
-	EU93-03 EU93-05 HU93-05 HU93-07 HU93-10 HU93-17 HU93-17 HU93-33 HU93-37 HU93-44 HU93-44 HU93-49 HU93-51 HU93-52 HU93-52 HU93-53 HU93-60 EU93-62 EU93-68 HU93-69	12F-F 111 48 103 108 47 26 101 81 92 112 69 77 76 28 18 101 46 49 72 104 40 (10	IRF-F 319 548 393 392 422 387 422 355 1490 387 582 335 700 158 270 685 550 329 370 627 98 81	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.8 99.2 100.1 100.2 98.1 100.2 98.1 100.2 98.1 100.3 100.6			
-	EU93-03 EU93-05 EU93-05 HU93-06 HU93-10 HU93-10 HU93-17 BU93-17 BU93-17 BU93-37 BU93-37 BU93-44 HU93-44 HU93-44 HU93-49 HU93-51 HU93-52 HU93-53 BU93-53 BU93-53 BU93-62 EU93-63 HU93-69 BU93-69 BU93-71	12F-F 111 48 103 108 47 85 101 81 92 112 69 77 76 28 18 101 46 49 72 104 <10 <10 <10 <10 <10 <10 <10 <10	IRF-F 319 548 393 392 422 387 422 355 1490 387 582 335 700 158 270 685 550 329 370 627 98 81 <10	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.2 100.1 100.2 98.1 100.2 99.4 98.2 100.6 100.3 99.0 100.0 100.3 100.4			
-	EU93-03 EU93-05 EU93-05 HU93-05 HU93-10 HU93-17 HU93-17 HU93-37 HU93-37 HU93-37 HU93-48 HU93-48 HU93-48 HU93-48 HU93-51 HU93-53 HU93-53 HU93-53 HU93-53 HU93-63 HU93-67 HU93-67 HU93-69 HU93-71 HU93-111	12F-F 111 48 103 108 47 85 101 81 92 112 69 77 76 28 18 101 46 49 72 104 <10 <10 <10 74	IRF-F 319 548 393 392 422 355 1490 327 582 335 700 158 270 685 550 329 370 627 98 81 <10 533	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.8 99.8 99.8			
_ D	EU93-03 EU93-05 EU93-05 HU93-06 HU93-10 HU93-17 HU93-19 HU93-33 HU93-37 EU93-48 HU93-48 HU93-48 HU93-48 HU93-51 HU93-51 HU93-52 HU93-53 HU93-58 HU93-60 EU93-62 EU93-67 HU93-67 HU93-68 EU93-03	12F-F 1111 48 103 108 47 85 101 81 92 112 69 77 76 28 18 101 46 49 72 104 <10 <10 <10 <10 40 <10 108 108 108 108 108 108 108 1	IRF-F 319 548 393 392 422 355 1490 387 422 355 1490 387 582 335 700 158 270 685 550 329 370 627 98 81 <10 533 334	7 P2H	ZR PPH	UB PPH	BA PPH	LOI X	SUH X XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.8 99.2 100.1 100.2 98.1 100.2 98.1 100.2 98.1 100.6 100.3 99.0 100.0 100.3 100.4 100.2 98.9 99.4			
_ D	EU93-03 EU93-05 EU93-05 HU93-05 HU93-10 HU93-17 HU93-17 HU93-37 HU93-37 HU93-37 HU93-48 HU93-48 HU93-48 HU93-48 HU93-51 HU93-53 HU93-53 HU93-53 HU93-53 HU93-63 HU93-67 HU93-67 HU93-69 HU93-71 HU93-111	12F-F 111 48 103 108 47 85 101 81 92 112 69 77 76 28 18 101 46 49 72 104 <10 <10 <10 74	IRF-F 319 548 393 392 422 355 1490 327 582 335 700 158 270 685 550 329 370 627 98 81 <10 533	7 P2H	ZR PPH	UB PPH	BA PPH XRF-F 1040 877 1140 1040 918 1110 1170 1060	LOI X	SUH % XRF-F 99.4 99.5 98.8 98.3 100.6 99.4 98.9 99.8 99.8 99.8 99.8 99.8 99.8			

.

•

.

U

•••••

Co No No <th< td=""></th<>
Co No No <th< td=""></th<>
Co No No <th< td=""></th<>
Co No No <th< td=""></th<>
Co No No <th< td=""></th<>
W N F Cd B I Ca P La Cf Ha T Ba T <tht< th=""> <tht< th=""> <tht< th=""></tht<></tht<></tht<>
U M Th Sr Cd Sh V Ch P La Cr H H T La A H H K M M K K K M M M M M M M M M M K K K M M K K K M M K K K M M M K K M M K K M M K K M M K K M M K M M K M K K M K K M K K M K K M K K M K K M M K K M M K K M K
U M Th Sr Gd Sb Bi V Ga P La Cr Hg Ba Ti B Ai Ha X X Pan X P
U NI Th Sr Gd Sb Bi V Ga P La Cr Ng Ba Ti B Ai Na X X X X X X X X X X X X X X X X X X
W Th F Cd Sh H V Ca P La Cr Ng Ba TI B AI Nb K X <t< td=""></t<>
5 Cd 8 I V Ca P La Cr Ma R N
- Cd 3b b1 V Ca p La Cr Ng na X pm X x ppm x x x x x ppm x x x ppm x x x ppm x x x ppm x x x x x x x x x x x x x x x x
1 Date Dis V Car Plan X April Dist V Car Plan Fight R K <thk< td=""></thk<>
ei V Ca P La Cr Ng Ba T B Al Na X PPm Al Na X PPm X Na X PPm X Na X PPm X Na Na X Na X Na Na <t< td=""></t<>
V Ca P La Cr Na X ppm
Ca P La Cr Ng a T i B A i Na x
No.
La Cr Ng Ba T i B A i Na X ppm X i Na X ppm 9 29 29 28 48 07 3 1.22 01 0.03 1 10 48 .64 65 .11 5 1.78 .01 0.03 1 9 35 .64 .03 2 1.22 .01 .03 1 9 35 .64 .03 2 1.25 .01 .03 1 9 35 .47 42 .08 3 1.24 .01 .04 1 9 35 .47 42 .08 2 1.25 .01 .03 1
Rd R N B X R N
Ra Ra X Pan X N
A T B A M M A M M A M M K M K K M K
T1 B A1 X B A1 T1 B A1 X B A1 X Dot 3 1.22 0 0 007 3 1.32 0 0 0 011 5 1.32 0 0 0 0 011 5 1.35 0 0 0 0 0 012 2 1.22 0
A A A B A B A A A B A B A B A B A B A B A B B B B
A A X X 3 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X X X X
3x 200000
×× Seese seeses seese sees seese seese seeses

SAMPLE#				Ü	Cameco		JJOL	10C	Corporation		(NO)		PROJECT		HUF	HUFFMAN		FILE	≠#= ⊡	93-	-298	35				Ра	Page	2			
	S E	3 5	<u>ଟ</u> ଅ	5 5	P a V d	포턴	ខត្ត	토 전	• ×		⊃w	NA Mq	t dd	r mg	2 6	ds mq		> w	s x	۳ א	L L L L L	占튭	2 Z Z	25	- ×	8 8	ź×	e ×	× ≩ ⊊	Ppm ppb	
204 4005 204 4505 204 4505 204 4758 204 4758 204 5005		N 0 1 1 0	80nE3	83888		52556	M4440	<u>ទីងខ្លួន</u> ខ្ល	1.58 1.58 2.16 1.70	N8724	~~~~	88888	๛๛๛๛๛	85745	~~~~~	33333	9999 9	****	± 4855	.016 .029 .022 .022 .022	ဆင္စင္ရာ	****	56655 273955	85855 8592 8592 8592 8592 8592 8592 8592	66866	~~~	49 89 49 89	55555	ទទទទទទ		~~~~
194 3258 194 3508 194 4008 194 4008	NN	พพ <i>๛</i> ๛อื	M44M9	85%38		85671	0 M M M 4 M	82885	1.92 1.45 1.59 2.17	5 M M M M M	****	88888	~~~~	50585	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***	ผู่พุฒพาผ	****	55465	.029 .018 .022 .021	68780	ະ. ເສສສສ	1812811	382586	7 8 7 8 8	~~~~~ 99~~~	235	55555	88888		N-MN4
RE 194 4258 194 4508 194 4758 194 5008 194 5258	- ~ ~	58°38	© M IN M IN	86238		08795	ちょうての	5288 32988 141	2.20 2.11 2.10 2.10	<u> </u>	****	88888	~~~~	50857		***	99~99	\$%\$\$\$\$	21635	.050 .036 .033 .033	0@r50	******	853 853 18 18 18 18 18 18 18 18 18 18 18 18 18	2 8 2 <u>6</u> 2	88886	44040 44644	8748934	55555	ទទេទទេទ	- 	44MM4
194 5508 194 5758 194 6008 194 6208 194 6208	-222-	8 N M M N	~~~~	£7223	*****	10 10 10 13 13	40004	18 57 5 5 8	- 1- 20 - 20 - 1- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	80M44	****	88888	5 2 2 2 2	12585	~~~~~~	88888	33333	82¥58	558555 568555	.035 .033 .015 .015 .013	0 0 0 0 0 0	84858	6.5.2.2°	\$5825	80.00	~~~ · · ·	85.55 85.55 85.55	22222	ะรุระะ	• • • • • • • • • • • • • • • • • • • •	~~~~~
194 6758 194 6758 184 3008 184 3258 184 3758		40400	48440	21 28 21 28 21 28 21 20 20 20 20 20 20 20 20 20 20 20 20 20		01 2 0 1 0	~ ~ ~ ~ ~ ~ ~ ~	85 201 85 201 85 85 85 85 85 85 85 85 85 85 85 85 85	. 93 1.52 1.74 1.72	MP404	****	88888	~ M ~ M M	0 7 7 7 8 8 1 7 7 4	~~~~~ ~~~~~	88888 8	๛๛๛๛๛	*2%%%	84385	.039 .033 .033 .016	ဆင်စစစ	≌¤≈≈≈	1, 22, 23	288835	68688	ů∾∡vů .5.55	29852	22222	ខុនខ្លួនខ្ល	- 77777	<u>៷</u> ៳៹៷៷
184 4005 184 4005 184 4505 184 4505 174 3005		rt400	N 4 60 W ►	58883		19735	M W M M W W	152885	1.38 2.24 2.08	៸៴ឨ៰៰៰	****	88888	~~~~	5500X		88888	ผู้พุดคุด	21 88 81 22 24 88 82 23	231183	041 033 041 041	ဆဝဆဆင်	*****	41 20 12 12 12 14	55833 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	~~~~~~ ~~~~~~	952556	55555	82883	-2-2-	mn-fn
11/2 3258 11/2 3508 11/2 3758 11/2 4258	NN-NM	40004	044MN	23252	N	1965 8	094500	201 201 201 201 201 201 201 201 201 201	52. 52. 53. 53.	พุ๛จ๗ผิ	***	****	๛๛๛๛๛	07250	~~~~~	88888	~~~~~	22423	25555	.051 .035 .016 .016	တ တ O + တ တ	48835	58825	27838	208866	4 ⁰ 0 0 0 0	58882 	22222	នួននួននេ		
174 4508 Standard C/AU-S	17~	r 9	37	ہ 125	6.6	5 67	30 2	44 1058	1.08 3.95	41 3	\$ S	<u>ې</u> د	32 2	8 52 1	<.2 8.8	25 14	25 25	16 56	. 09 . 1	007 086	39	16 56 .	.12 .92	83 S.	05 05	39 1.	85 88	5.6	4.0	7 7	N 0

type: Soil. Semples beginning 'RE' are duplicate semp

ABBREVIATIONS

data los

Clast:

Size	of C	last	:
------	------	------	---

- 6: Granules
- P: Pebbles
- C: Cobbles
- BL: Boulder Chips
- BK: Bedrock Chips

≯ Clast Composition:

- V/S: Volcanics and Sediments
- **GR:** Gramitics
- LS: Lizestone
- OT: Other Lithologies (Refer to Footmates)
- TR: Only Trace Present
- NA: NOT APPLICABLE
- OX: Oxidized

Matrix: S/U: Sorted or Unserted

SD:	Sand1	F:	Fine
ST:	Silt I	H:	Medium
CY:	Clay i	C:	Coarse
OR:	Organics		

Y: Fraction Present

- +: Fraction more abundant than normal
- -: Fraction less abundant than normal
- N: Fraction Not Present
- L: Luaps Present

Colour:

B:	Beige	PP: Purple
67:	Grey	PK: Pink
68:	Grey Beige	OC: Ochre
6N:	Green	DOC: Dark Ochre
66:	Grey Green	MCC: Hedium Ochre
	Brown	LOC: Light Ochre
BX:	Black	

SOLD LOS

Number of Grains:

4

1.1

- T: Number Found on Shaking Table
- P: Number Found by Panning

Thickness:

17.20 3 2.20 4

- C: Calculated Thickness of Grain
- H: Actual Heasured Thickness of Grain

-E: Estimated Thickness of Grain

PAGEI

CAMELO DORFORFTION

..

11/03/93

2

÷

OVERBURDEN DRILLING MANAGEMENT LIMITED

GOLD GRAIN SUMMARY SHEET

CAVSISEP.WR1

Sample No.	Nusi	ber of Vi	sible Galo		Non-Mag	Cale	ulated 29	B visiole	Eoia
	Total	Reshaped	Modified		=weignt	Total	Resnaped	Modified	Fristine
553T-co1	5	3	-i		8.2	ĒĞ	:0	43	o
853T-002	ε	- 1	ċ	1	4.8	113	40	+3 0	79
BS3T-003	6	4	Ő	2	10.3	555	544	ě	10
• ∹uF937-070		:		ō	21.0	101	101	ŏ	
-HUF93T-071	113	8	91	19	10.8	\$535		5664	60Ž
GAR937-076	23	16	5	æ	34. ŝ	290	274	14	1
GAR937-077	18	8	4	á	37.6	113	97	ā	ŝ
GAR93T-078	Ξ1	12	7	ž	21.0	23604	23278	13	10
GAR93T-079	11	è	2	0	38.2	33	32	0	0
C03T-001	15	13	2	0	19.0	553	549	6	0
C03T-002	13	12	0	1	9.6	129	127	· 0	3
975464-1	19	15	0	4	33.0	112	24	0	25
5%A937-072	13	10	0	3	23.3	143	144	ů.	3
DGR93T-073	1Ŭ	a	Ũ	. ±	23.7	5:	50) O	2
00R53T-074	5	3	Ũ	Ê	19.4	44	10	້ວ	34
3937-075	9	9	Ó	0	37.9	50	50	ċ	Ĵ

CAVSISEP. WRI

TOTAL # OF SAMPLES IN THIS REFORT =

-

,

.•

OVERBURDEN ORTLLING WINNGENENT LIMITED

LABORATORY BAMPLE LOS

	SAMPLE NG.	WEIGHT	.:K6. W	Ei)		WEIGHT	(ERGMS	GRY)		_			ESC?	ITA	ÛN							ũ.A
•	176.						λ.	i. J6				==== 67				NĤT.	31%					
		table Split	+10 Chifs		table Conc	a. I. Lights	CONC.		200	SI:		*			3/'J	 50	S	7 CY	<u>а</u>	OR	ac	
			······								97S	68	LS	15					SD	CY		
	233T-C01	5.3	1.3	4.0	234.5	224.3	3. 7	ð.2	1.3	ĉ	70	30	Û	NĤ	U	-	÷	÷	796	DEC	¥	
	5537-002	5.9	2.5	3. á	149.8	142.5	7.3	4.3	2.5	Ē	70	30	Û	NĤ	i.	-	÷	÷		ĐũC		TiL
	8537-003	5.2	2.7	3.á	196.0	:83. ö	14.4	10.3	4.1	ĉ	73	23	Û	NA	ü	ï	¥	Ý		XGC		The
	-LF33T-070	8.9	1.9	7.0	388.5	356.7	31. ŝ	21.0	10.5	C	εΞ	33	Û	NA	Ü	Ŷ	Ŧ	Ŷ		XEC		TIL
	HUF937-071	9.2	4.2	5.0	265.7	241.1	24.6	:0.8	13.3	C	29	êð	ð	NĤ	3	÷	-	¥	:CC	30 8	X	TILL
	GAR93T-076	7.1	2.1	5.0	279.1	230.6	48.5	34.8	13.7	ρ	70	30	0	NA	U	Y	Y	Y	XCC	300	Ý	TILL
1	Efir937-077	9.1	2.5	6.6	357.0	307.5	49.5	37.5	11.9	C	90	10	Ũ	M	U	Y	Y	Y	LOC	LOC	N	TILL
ł	sar93t-078	7.1	2.1	5.0	224.7	195.6	29.1	21.0	3.1	ρ	35	15	0	MA	U	?	¥	Y	T.C	HŪC	Ň	TILL
	3-28937-079	8.2	2.0	\$. 2	3ć4.4	273.9	E9.5	38.2	:2.3	C	3 5	15	Ĵ	ъĤ	i,	1	-	Y	LŨĈ	ЖC	N	Tile
	CO3T-001	7.ĉ	2.8	4.4	327.8	302.7	25.1	19.0	6.1	C	100	٥	0	NA	ü	+	Y	Y	EN	5N	Ň	TILL
	CO3T-JO2	7.3	3.1	4. 7	124.6	114.2	10.4	9.6	J.3	ĉ	30	iĴ	Û	XĤ	ü	Y	Y	Y	λŨ	ĂŬ.	7	ī išt
	513464-1	7.5	1.3	6.E	22.3	218.2	34.1	0.ت	1.1	P	70	36	Û	NA	ij	Y	Ÿ	ï	ĿĴĊ		Y	TILL
ł	exa937-072	8.6	2.4	6.2	283.7	242.1	41.6	33.3	8.3	P	9 <u>5</u>	5	Û	ЖÄ	IJ	Y	7	Y	LIC	LCC	1	TILL
1	00R93T-073	9.0	2.3	6.7	75.1	42.6	32.5	25.7	6.8	p	80	20	0	MA	U	Y	Y	Y	LCC	LOC	Y	TILL
1	COR937-074	6.5	2.7	3.9	95.C	61.3	23.7	19.4	¥.3	0	90	10	0	NA	3	¥	Y	Y	LOC	LOC	Y	TILL
i	DCR93T-075	9.8	3.4	6.5	213.8	159.1	54.7	37.9	i6.8	C	7 0	30	0	NA	U	Y	Y	4	LCC	LOC	Y	Tit

אט האור הבידותו בעום

VISIBLE BOLD FROM SHAKING TABLE AND PANNING

CAVELEE . HI		65	•4			Ur:	16E	∵ 1 + 0	aa 145	•				
SAMPLE #			.,		(G44635	X		5)	26133 		10172 		CALC J. 6. SSSAY	
			TER	THICKNESS	7	p	ĩ	2	-				208	REMARKS
					-									
8537-001	Ŷ	·E X	15	3 C			Ē				2			NU SULPHIDES
8001 VVI	•		50		1						:			
		50 X	ĒŨ	10 C			2				ź			
												ā.2	5ĉ	
			:36	: 7 :					i		i			NO SELAHIDES
8531-001	T	- 20 X - 50 X	50 50	13 C 10 C	1			-	•		:			
											2	4. ð	 11ā	
											-			
3937-003	Y			3 C	1						1		•	NO SULPHIDES
			ස		1				1	1	2			
		25 X 50 X		9 C . 15 C		1				L	1			
		125 X			1	-					i			
											,	19.3	535	
-∺JF33T-070	v	76 V	153	A 60		5					1			NO SILCHIDES
	7	is X	120	<i>ce</i> l	-	1								
-											í	21.0		
HLF937-071	¥						9	-		-	ż			ng sulphides sold has been kept separati
			ස		2		22	3	2 6	2	31 29			OULU NOO BEEN AZFT ZEPHINT
			50 75		1		6 . 6	4	Q	1	- 11			
			100				ī	т		•	ī			
		25 X						1			1			
				10 C	-		S	2	-	-	6			
		50 X				1	2	4	Ĵ	1	11			
		50 X 75 X					3 1	1						
			100			1	a	i	1	I	7			
		_75 X					-	Ê	• .		2			
		75 X	~150	- 22 C			1				I			
· -		100 X			· .	•	• •	. .		1	1			
·		125 1				•	1.		-		1			
		125 X 150 X				•	.•	. 1	-,		1			
-		150 X				•		1	-		1			•
				·		:					118	10.8	5535	
CA06 77 434	v	•e v	ʻ 15	. 3 C		2.÷	3				3			NO SULPHIDES
GAR93T-076	3	15 X	15	ن د ا	I	•	40.82							-

						<u></u>				
FAX(604)253-1716	× ×							TIFIED B.C. ASSAYERS		
PHONE (604) 253-3158								.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS		
B.C. V6A IR6	LS ANALYSIS	File # 93-2456 Sudbury ON P3E 5P5	Au** ppb	11 15 12 12	00040 0	800004 800004	501 502	FURNACE.		
852 E. HASTINGS ST. WMCOUVER B.C.	GEOCHEM PRECIOUS METALS	(ON) Road,	SAMPLE#	BS3T-001 BS3T-002 BS3T-003 DOR93T-073 DOR93T-073	DOR93T-075 GAR93T-076 GAR93T-077 GAR93T-078 GAR93T-078 GAR93T-079	CO3T-001 CO3T-002 SWA93T-072 	BT5464-1 STANDARD AU-R	30 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE - SAMPLE TYPE: ROCK PULP DATE REPORT MAILED: Sept 27/95 SIGNED BY.C.		
WTICAL LABORATORIES LTD.	-				-			DATE RECEIVED: SEP 14 1995 DATE RE		
ACME AL	A A	LL						DATE RE	•	

File # 93-2456 bury ON P3E 595 bury ON	GCC COTDOTAtion File 93-2456 Mo - 1349 Kally Lake Road, Subury ON P3E 595 Mo N	CO COTDOLATION (N) File 4 93-245 66 - 1349 Kelly Lake Road, Suchury ON P3E 595 15 Cd V Ca P La Cr Mg Ba Fi Al Na K V 228 cd 7 1.00 .007 17 01 01 .01 01 01 01 01 01 01 01 01 01 01 01 01 0	Dem par par par par par par par par	11 20 7.8 .7 1.1 .8 .1 <td< th=""><th>TO 10 HL WITH DILUTED AQUA REGIA. THIS LEACH R. SB, AU SUBJECT TO LOSS BY VOLATILIZATION </th></td<>	TO 10 HL WITH DILUTED AQUA REGIA. THIS LEACH R. SB, AU SUBJECT TO LOSS BY VOLATILIZATION
	The Secon Corporation (ON) For the first of the food, succession for the first of	Calmeco Corporation (ON) A6 - 139 Kally Lake Road, Su A6 - 139 Kally Lake Road, Su A - 25 + 1, 3 + 1 + 31 + 31 + 4 + 1, 1 + 4 + 1, 1 + 5 + 4 + 1, 1 + 5 + 4 + 1, 1 + 5 + 4 + 1, 1 + 5 + 4 + 1, 1 + 5 + 4 + 1, 1 + 5 + 4 + 1, 1 + 5 + 4 + 1, 1 + 2 + 4 + 1, 1 + 2 + 4 + 1, 1 + 2 + 4 + 1, 1 + 2 + 4 + 1, 1 + 2 + 4 + 1, 1 + 2 + 4 + 1, 1 + 2 + 4 + 1, 1 + 2 + 4 + 1, 1 + 2 + 4 + 1, 1 + 2 + 4 + 2 + 4 + 1, 1 + 2 + 4 + 2 + 4 + 1 + 2 + 4 + 2 + 2 + 2 + 2 + 2 + 4 + 1 + 2 + 2 + 4 + 1 + 2 + 2 + 4 + 1 + 2 + 2 + 4 + 1 + 2 + 2 + 4 + 1 + 2 + 2 + 4 + 1 + 2 + 2 + 4 + 2 + 2 + 2 + 2 + 2 + 2 + 2	93-2456 SPS Na k v 2r Sn v Nb 8e * * yeyn eyn eyn eyn eyn	29 6.62 1.63 1.69 4 161 4 9 1 29 6.53 1.67 1.53 4 142 4 9 2 21 6.44 1.68 1.68 3 150 4 142 5 9 2 21 6.53 1.68 1.68 3 150 2 140 4 1 6 1 21 6.23 1.51 52 151 62 15 6 1 6 1 6 1 6 1 2 15 2 15 2 15 2 15 6 1 1 1 6 1 1 6 1 2 15 1	FUMING AND IS DILUTED TO 10 ML WITH DILU LIFIDE SAMPLES. AS, CR, SB, AU SUBJECT T MALYSIS BY HYDRIDE ICP.

CAMECO CORP.

.

OVERBURDEN DRILLING MANAGEMENT LIMITED

GOLD GRAIN SUMMARY SHEET

CAHU1NOV. WR2

÷

.

Sample			sible Gol		· Non-Mag	Calc	ulated PP	B Visible	Gold
No.			Modified	Pristine	Weight	Total	Reshaped	Modified	Pristine
	<u>з-т</u>		<u> </u>						
080	5	0	3	2	21.7	102	0	32	70
081	0	0	0	0	7.7	0	0	Û	0
082	1	0	0	1	9.9	19	0	0	. 19
083	7	1	3	3	15.1	35	0	16	18
084	16	0	· 15	1	16.1	52	Û	40	12
085	7	3	3	1	28.2	32	27	5	3
086	11	3	3	5	2.9	1069	103	145	821
087	0	0	0	0	7.0	0	0	0	0
088	10	.4	4	5	9.0	151	17	124	10

PAGE 1

CAMECO CORP.

11/14/93

CAHUINOV. WR2 Total # of samples in this report =

16

OVERBURDEN DRILLING MANAGEMENT LIMITED ADDRATORY SAMPLE LOG

•

Laboratory sample lu	
----------------------	--

SAMPLE NO.	WEIGHT	(KG. W	E T)		NEIGHT	(GRAMS	DRY)				DE	SCRI	IPTI	ON							CLASS
NU.						М.	I. CO	C		CLAS	ST				MAT	RIX					
			TABLE			CONC.		N00	SIZE		7			5/l	j SD	ST	CY	COL	DR	OR	
	SPLIT	CHIPS	FEED	CONC	LIGHTS	IOINL	Mag	NAG		V/S	6R	เร	OT					SD	CY		
HUF-93-T												-									
080	8.7	2.5	6.2	334.2	300.5	33.7	21.7	12.0	C	90	10	0	NA	U	Y	Y	Y	NOC	MOC	N	TILL
081	6.8	1.9	4.9	213.5	202.1	11.4	7.7	3.7	C	90	10	0	NA	U	-	+	+	HOC	HOC	N	TILL
062	7.3	1.4	5.9	248.3	233.5	14.8	9.9	4.9	3	95	5	0	NA	U	Y	Y	Y	HOC	HOC	N	TILL
083	7.4	2.3	5.2	303.6	278.6	25.0	15.1	9.9	C	85	15	0	NA	U	Y	Y	Y	DOC	DOC	N	TILL
084	10.3	2.7	7.6	370.2	342.5	27.7	16.1	11.6	C	85	15	0	NÂ	U	Y	Y	Y	HOC	NOC	N	TILL
085	10.5	2.8	7.7	353.4	309.2	44.2	28.2	16.0	C	80	20	0	NA	U	Y	Y	Y	LOC	HOC	N	TILL
086	7.7	1.1	6.6	175.1	169.3	5.8	2.9	2.9	P	90	10	0	NA	IJ	Y	+	Y	LOC	LOC	N	TILL
087	10.4	0.4	10.1	198.4	190.4	8.0	7.0	1.0	P	90	10	0	NA	U	-	Y	+	LOC	LOC	N	TILL
088	9.8	3.5	6.3	186.1	165.7	20.4	9.0	11.4	C	9 5	5	0	NA	U	+	-	Y	HOC	HOC	N	TILL

PAGE 1

CAMECO CORP.

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

CAHUINOV. WR2 NUMBER OF GRAINS														
total # 0	f p rinn	INGS	12		RESHA	PED	MODI	FIED	PRIS	TINE	TOTAL	NON	CALC V.G	i.
SAMPLE #	PANNE Y/N	D Diamet	FR	THICKNESS	 T	 P	T	 P	 T	 P		NAG GNS	assay PPB	REMARKS
	1714			1111010100	•	F	•	F	•			ons.	P78	KCIPHING)
HUF-93-T 080	Y	ъx	ස	5 C				2	1		3			NO SULPHIDES
		50 X	150	20 C					1		1			
		75 X	75	15 C			1				1			
											5	21.7	102	
081	Y	ND VISIB	LE 60	LD										NO SULPHIDES
082	N	ස x	75	10 C					1		1			
												9.9	19	
											-		••	
063	Y	15 X 25 X	15 25	3 C 5 C	1			2	1		2 2			NO SULPHIDES
		25 X	50	8 C					1		1			
		50 X	50	10 C				1		i	2			
											7	15.1	35	
084	Y	15 X	15	3 C			2	1			3			ND SULPHIDES
-		25 X	ස	5 C			5	1			6			
		25 X 50 X	50 50	8 C 10 C			6				6 1			
		JUA	30	10 6					1		1			
											16	16.1	52	
085	¥	15 X	15	3 C			1				1			nd Sulphides
		ය I ස I	25 50	5 C 8 C			1	1	1		2 1			
		ar	75		- 2				1		5			
		50 X		13 C		ľ					1			
											.7	28.2	32	
086	Y	25 X	ස	5 C	1			2	2		5			NO SULPHIDES
		25 X	50	8 C		1					1			
		ස I ස I	75	10 C 15 C		1			1		2			
		50 X	75	13 C				1		1	1			
-		75 X		20 C				•		1	1			
													1.02.0	
											11	2.9	1069	

087 N NO VISIBLE GOLD

.

PAGE 2

CRINECO CORP.

GOLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

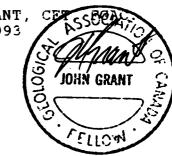
CAHUINOV.			• 2			i	NUMBER	of e	RAINS					
TOTAL # 0		65	12		RESHA	PED	MODIFI	ED		TINE TO			CALC V.	6.
Sample #	Prinied Y/N	DIAMET	ER	THICKNESS	T	=== P	T	p	T	р Р		-	assay PPB	REMARKS
HJF-93- T														
068	Y	15 X	15	3 C					1		1			NO SULPHIDES
		25 X	25	5 C	3		1				4			
		25 X	50	8 C	1			1	1		3			
		25 X	100	13 C				1			1			
		50 X	100	15 C				i			1			
	-									_	10	9) 15	ī

.

11/14/93

		_	_				_			
	: 8	91	2	2 8	~	11	4	11		
	Hg Au.	84	\$	2 2	ę	ŧ	8 8	8		
	-1	19 19	19 1	9 19	12	\$	9 9	5	i	
366 A 10 A	- 1	- 0		 	Ň	~	<u> </u>	3		
	be Sc PPm PPm					-	 ⊽ ⊽	7		
		· · ·	• • •	о N	~	•	v v 10 10	~		
870 - W. S	-			- V			•			
					~	~		_		
	s maa	V V	• • •		v	v	2 0 9 9	4		
	PPM PPM	126		601			9 i 9			
1992	> #	9 N	•	8 8 8 8	â	4	 7 7	8		
	* *	1.64	1.75	1.36	1.61	1.65	1.92			
	z ×		8	2.07	2.14 1.6	2.24	2.05	.06		
	* *	6.40 1 5.75 2		6.20 2.00	05	6.40	6.36 3 6.78 3	6.84 2.08		
	- *	.26 6.40 1.98 .23 5.75 2.03	.24 5.71 1.98	. 59 6. . 59 6.	.26 6.02	9	.25 6.36 2.05 .24 5.78 2.15		1	
15	-	 						6.24		
n	e da Mada	1 660 2 622	5 515	1 515	3 642		7 537 2 556	8 626	ļ	
523	2	.91 .72	8.	6. 10.	. 67	•	Ľ. 2	-		
# N	2 mg	51 53	99		76	72	4 G	8		
03	P Le		=	12	11	1	9 1	16		
oration (ON) File # 93-31 49 Kelly Lake Road, Sudbury ON P3E 595	₽ ¥	190.	14	067	.060	80.	.046 .024	.074		
H A	5 ×	5 5			1.62		1.69	1.46		
	> <u>e</u>	60.1.65 .061 48 1.62 .039	50 1.59	63 1.68 62 1.68	66 1	53 1.78	2 7	74 1		
000	ā	23		33	4	3	33	4		
	Sb B1 ppm ppm	33		33	7	3	22	4		
Cameco Corporation (ON) File # 93-3159 #6 - 1349 Kelly Lake Road, Sudbury ON P3E 5P5	cd Sb ppm ppm		4	•	4.5	4.		4.4	!	
3	-		-	- 0	-	•	• •			
H	r Sr Hope	5 314	593	327	2 307	1 344	2 310 2 316	309		
						-			I	
Sl≉	te As U Au Th X ppm ppm ppm		4	v V 	1	¥ 0	2 3 2 3	2	i	
o	- Wad	1 410	1		1 410	ž	\$; -	1 410		
ğ	re As X ppm	11	4	5 5	Ţ	2	7 7 • •	2		
đ		2.87	2.26	5.13	2.84	2.6	2.40	3.45		
7	ŧ	397			367			412	:	
		N 6		• 1	2	:	•	•		
84886e-640e- 4	NI Co Ppm ppm	2 1		5 3	3	37	6 I	5		
	Ag mqq			• •	ņ			-	•	
	- 6 5	5 9 V		 	ž.	ž.	v v 2 =	5. <.3		
	Cu Pb Zn Ag ppm ppm ppm			n n 9 9	-	10	FI 0 N	23 6		
	b b b b				-			32 2		
	No Da Da Da		i	 V V	~	ei N	61 FL	8 8		
	9 8	VV		VV	V	v	₩ ₩	Ÿ	•	
			8							
		990 50 100	8	KE MUF93T-082 HUF93T-083	997	8	8 8 9 8	8		
	SAMPLEN	HUF93T-060 HUF93T-061	HUF937-082	HUF93T-083	HUF93T-084	HUF937-065	HUF937-086 HUF937-087	HUF93T-088	•	
	S	Ĵ.	Ì	ΞÌ	N	Į.	Ì Ì	Ē		

•


.

	1	<u> </u>			<u> </u>
223-1716 P					÷
					i
lý X		1			
4					
158					1
8-80 5					l
(4) 2					
PHONE(604)253-3158 FAX(6.					
NOHd	me	00-	nr	10- -	
	an Te D	v	• •	• •	••••
20 20	es E E	ннн	HH		нан
V6A 1R6 8 93-315	Se By M	vvv	v	viv	
20 20 20 20 20 20 20 20 20 20 20 20 20 2	рра Вра		N 0	200	
DUVER B.C. CP ANALYB: . File #		10.01	~~	10-10	
ANI ANI Fil	В1 ррт	10 M M	• •	 U40	
AC Sur	as dS	н 8,0/2	~6	-100	mo
		н	໌ຕ	н Г	2
INGS ST. V. DUVER B.C. V6A IR6 OCHEMICAL ICP ANALYBIB OTALION (ON) File # 93-3159 49 Keily Lake Road, Sudbury on P3E 595	As ppm	4401	00	ອເມດ	• • •]
NGS CREI Cat: Kell					
		0 -10	787		ļ
GEC GEC 86 - 13		WWW E		085 085 655	0000
852 E. HAST GEC Beco Cordo #6-15	# 19 1		4.H		<u>L</u> L
852 E. HAST GE Cameco Cord	SAMPLE#	HUF93T-C HUF93T-C HUF93T-C	10 10 10	HUF93 HUF93	641 10
	S.		ZĦ	HHH	HH
ICAL LABORATORIES LTD					
LOL					ļ
BOR					
3					
Li ce					
5					
					•
					ł
		-			·

APPENDIX B

REPORT ON GROUND GEOPHYSICS EXSICS EXPLORATION LIMITED

LOGISTICAL REPORT FOR CAMECO CORPORATION ON THE HUFFMAN PROJECT #362 HUFFMAN TOWNSHIP PORCUFINE MINING DIVISION

PREPARED BY: J.C. GRANT, CER APRIL 1993

TABLE OF CONTENTS

INTRODUCTION	1	
LOCATION AND ACCESS	1	
LINECUTTING PROGRAM	1	
GEOPHYSICAL PROGRAM	1 &	2
BASE MAPS	2	
PERSONNEL	2	
SURVEY PROCEDURE	2	
VLF SURVEY PROCEDURE	3	
MAGNETIC SURVEY PROCEDURE	3	
FIGURE 1 - LOCATION MAP 2 - PROPERTY LOCATION MAP		

APPENDIX A - EDA OMNI PLUS SYSTEM B - EDA OMNI IV BASE

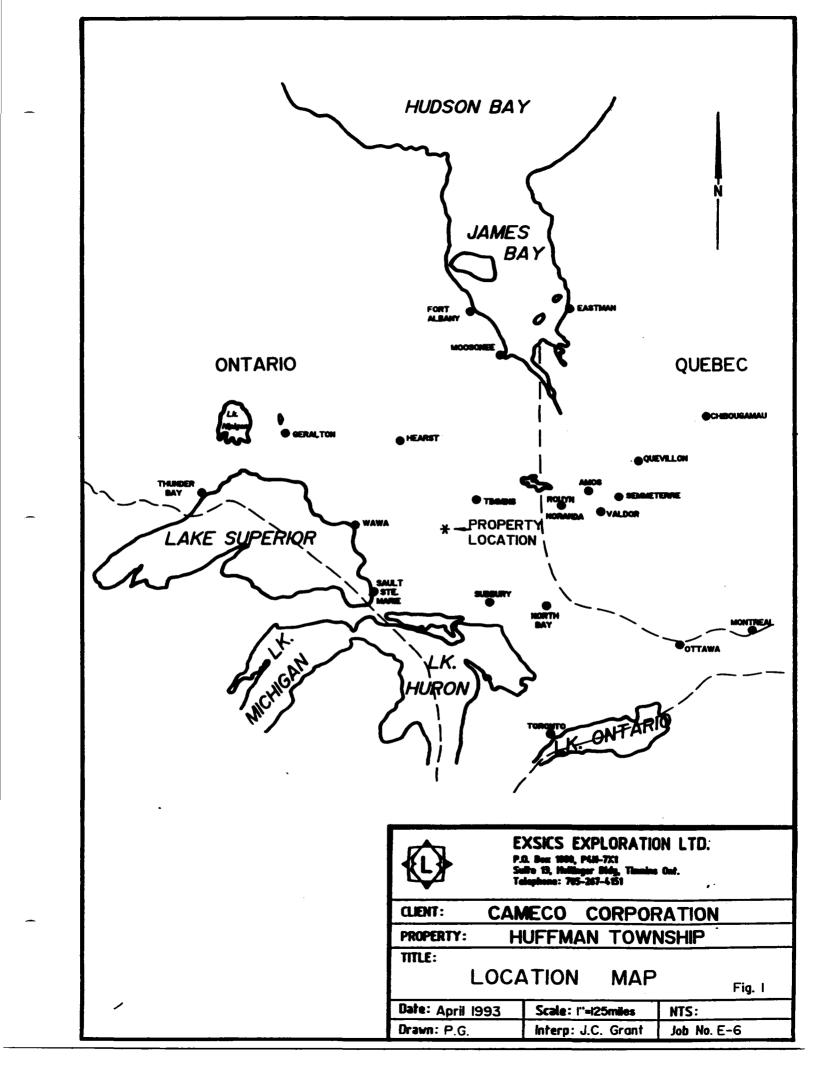
INTRODUCTION

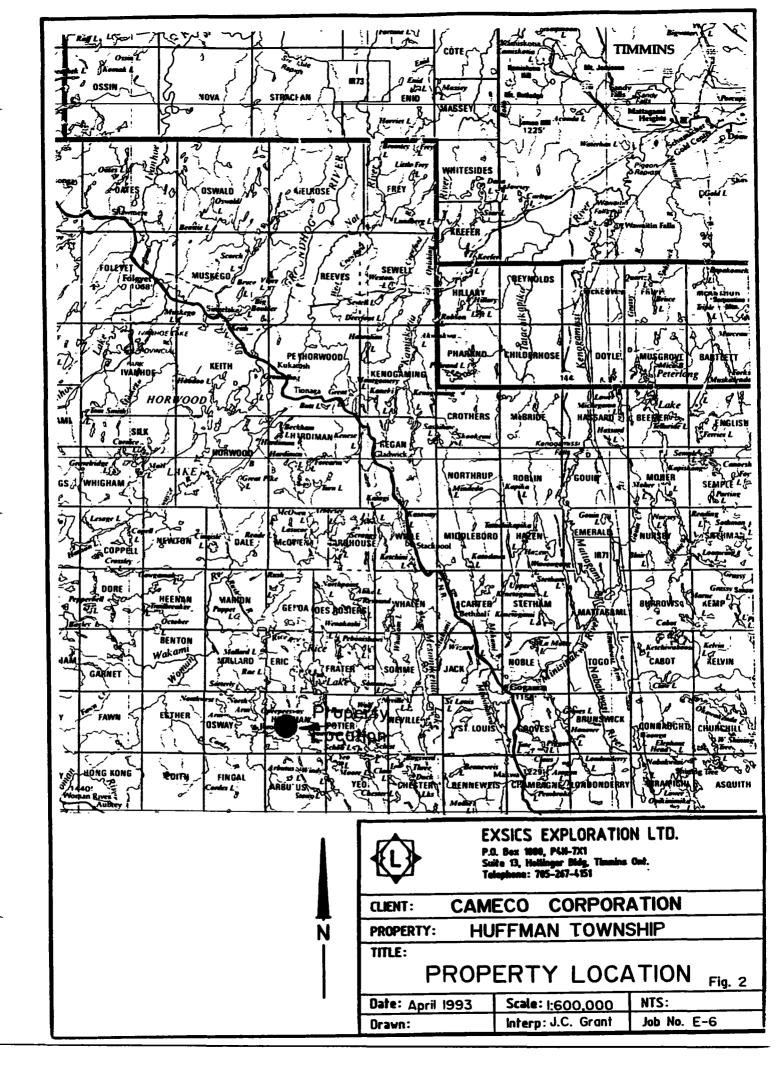
Cameco Corporation retained the services of Exsics Exploration Ltd. to complete a linecutting and Geophysical Program on their Huffman property, project #362. The property is located in the southwestern section of Huffman Township, Porcupine Mining Division, Northeastern Ontario. Refer to figures 1 and 2.

LOCATION AND ACCESS

The Huffman property is located in the southwestern section of Huffman Township and covers the north half of the east arm of Opeepeesway Lake. The western boundary of the property lies approximately 400 meters east of the narrows and the Twnship line between Osway and Huffman Townships. The eastern boundary lies just to the north of the mouth of the Little Rush River.

The entire property is located approximately 1200 meters eastsoutheast of the Jerome Mine site. The Jerome Mine site is approximately 96 Kilometes south-southwest of the City of Timmins. Refer to figure 1.


Access to the property is ideal year round. During the survey period access was by way of Highway 101 west from the City of Timmins to the junction of Highway 144 South. An hour and a half ride south on Highway 144 will bring one to the junction of Highway 667 west. This road, locally called the Sultan highway, is a good gravel road which travels between Highway 144, through the Village of Sultan and on to Highway 129 which leads to Chapleau. Approximately 45 minutes west of the 667 and 144 junction one will encounter the ingress road which leads to the Jerome Mine site. A. 15 Km skidoo ride will bring one to the west section of Opeepeesway Lake and the Mine site. Another 15 minutes by skidoo will provide access to the centre of the cut grid. Refer to figure 2.


LINECUTTING PROGRAM

A total of 75 Km of grid lines were established over the property. A baseline was turned off at a designated starting point and cut at AZ 115 degrees to the east and west limits of the property. Crosslines were then turned off perpendicular to this baseline and cut to the north and south limits of the property. These cross lines were turned off at 100 meter intervals along the baseline and chained with 25 meter intervals. All of the land coverage was chained exactly to the shoreline for future reference. Also, all land pickets have been metal tagged.

GEOPHYSICAL PROGRAM

This program consisted of a total Field Magnetic Survey run in conjunction with an VLF Electromagnetic Survey. The program was competed using the EDA OMNI Plus System and the EDA OMNI IV Base

Station unit. specifications for these units can be found as Appendix A and B of this report.

The Magnetic Survey was completed over all of the cut grid lines. The following parameters were kept constant.

Unit	-EDA OMNI Plus System
Line Spacing	-100 meters
Station Spacing	-12.5 meters
Base Station Unit	-EDA OMNI IV Unit
Recording Interval	-30 seconds
Reference Field	-58,800 gammas
Datum Substract	-57,500 gammas

The VLF-EM Survey was completed on the cross lines only and the following parameters were kept constant.

Unit	-EDA OMNI Plus System						
Line Spacing	-100 meters						
Station Spacing	-25 meters						
TX Station	-Cutler, Main						
TX Frequency	-24.0 KHZ						
TX Orientation	-il0 degrees						
Parameters Measured	-inphase and Quadrature						

BASE MAPS

Both of the surveys were then plotted onto Base maps one for each survey, at a scale of 1:5000.

The corrected magnetic data has been plotted directly to the base map. The in phase and quardrature values have also been plotted directly onto a base map and then profiled at lcm = +/-20%.

Both of these base maps are included in the back pocket of this report.

PERSONNEL

The linecutting crew was supervised by Mario Pilon and consisted of 6 men. The geophysical crew directly responsible for the collection of all field data were John DerWeduwen and Richard Daigle of Timmins. All of the work was done under the supervision of J. C. Grant. All plotting and profiling was completed by P. Gauthier.

SURVEY PROCEDURE

The OMNI PLUS is a portable, microprocessor-based magnetometer/VLF System which is capable of measuring changes or contrasts detected by two different types of geophysical methods: Magnetic and VLF Electromagnetic (Magnetic and Electric). A measurment from both these methods can be read and stored in as little as 4 seconds. The data is both sensitive and highly repeatable.

The unit is a multi-purpose instrument designed to operate as a magnetometer, a combined magnetometer/VLF System or a VLF System.

The primary purpose of the unit is to measure and store the magnetude of the earth's magnetic field independent of it's direction and to measure and record the secondary field components of the primary field from up to three VLF transmitting stations.

VLF SURVEY PROCEDURE

At the beginning of this survey, the operator selected a VLF transmitting station which gives the field lines approximately at right angles to the main strike of the geological structure of the area. The grid is in (ie, the strike should point to the transmitting station). Therefore, the survey lines should be selected approximately along the lines of the primary magnetic field.

Cutler, Maine, operating at 24.0 KHZ, was choosen for the Transmitter station for this grid. The direction was AZ 110 degrees.

Once this frequency was entered into the unit, the survey was ready to begin. Throughout the field survey, the operator monitored the field strength reading at each station.

MAGNETIC SURVEY PROCEDURE

Prior to initializing the OMNI Plus unit, the OMNI IV Base Station unit was set up and programmed.

This base unit was set up at a fixed, convenient location where it could be checked throughout the day.

The base station was tuned to the expected local field of 58,800 gammas. This value would remain constant throughout the survey period. The field unit was also set to the same reference field and at the same location. The base station was also programmed to record and store values at 30 second intervals through out the survey period.

At the end of each survey day the field unit and base unit are coupled together and the data was merged and corrected on a time basis. This corrected data was then dumped and plotted directly onto the base map.

The raw VLF data was then dumped and plotted onto a base map.

APPENDIX A

H

Major Benefits of the OMNI PLUS

 Combined VLF/Magnetometer/Gradiometer System

.....

- No Orientation Required
- Three VLF Magnetic Parameters Recorded
- Automatic Calculation of Fraser Filter
- Calculation of Ellipticity
- Automatic Correction of Primary Field.
 Variations
- Measurement of VLF Electric Field

Specifications* range accommodates new Puerto Rico station at 28.5 kHz Transmitting Stations Measured, Up to 3 stations can be automatically measured at any given grid location within frequency tuning range **Recorded VLF Magnetic** quadrature (or alternately, horizontal amplitude) Standard Memory Capacity 800 combined VLF magnetic and VLF electric measurements as well as gradiometer and magnetometer readings Display Custom designed, ruggedized liquid crystal display with built-in heater and an operating temperature range from -40°C to +55°C. The display contains six numeric digits. decimal point, battery status monitor, signal strength status monitor and function descriptors. memory) **B. Self Test (hardware)** automatic tilt compensation **Operating Environmental** Range - 40°C to + 55°C; 0 – 100% relative humidity; Weatherproof DC battery cartridge or belt; 18V DC disposable battery belt; 12V DC external power source for base station operation only. Weights and Dimensions VLF Electronics Module 1.1 kg, 40 x 150 x 250 mm Lead Acid Battery Cartridge ... 1.8 kg, 235 x 105 x 90 mm Lead Acid Battery Belt 1.8 kg, 540 x 100 x 40 mm isposable Battery Belt 1.2 kg, 540 x 100 x 40 mm *Preliminary

EDA Instruments Inc., 4 Thorncliffe Park Drive, Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR, Cables: Instruments Toronto (416) 425-7800

In USA, EDA instruments Inc., 5151 Ward Road, Wheat Ridge, Colorado U.S.A. 80033 (303) 422-9112

Printed in Canada

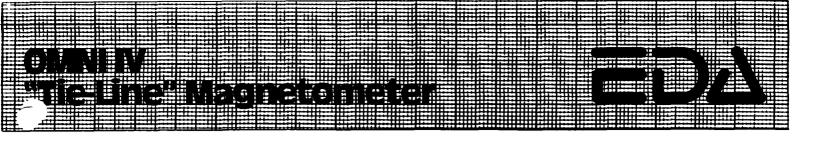
.

.

. .

۲. .

APPENDIX B


.

. . . .

· · ·

:

.

Four Magnetometers in One Self Correcting for Diurnal Variations Reduced Instrumentation Requirements 25% Weight Reduction User Friendly Keypad Operation Universal Computer Interface Comprehensive Software Packages

Specifications

11

1:H

Ħ 211

11

: 11

Ħ

1

-

specifications	
	 18,000 to 110,000 gammas. Roll-over display feature suppresses first significant digit upon exceeding 100,000 gammas.
	 Tuning value is calculated accurately utilizing a specially developed tuning algorithm
Automatic Fine Tuning	\pm 15% relative to ambient field strength of last stored value
Display Resolution	0.1 gamma
Processing Sensitivity	
Statistical Error Resolution	
Absolute Accuracy	
	\pm 2 gamma over total temperature range
Standard Memory Capacity	
Total Field or Gradient	
Tie-Line Points	100 data blocks of sets of readings
	 Custom-designed, ruggedized liquid crystal display with an operating temperature range from -40°C to +55°C. The
	display contains six numeric digits, decimal point, battery
	status monitor, signal decay rate and signal amplitude
1	monitor and function descriptors.
RS 232 Serial I/O Interface	2400 baud, 8 data bits, 2 stop bits, no parity
Gradient Tolerance	6,000 gammas per meter (field proven)
Ter Mode	A. Diagnostic testing (data and programmable memory)
	B. Self Test (hardware)
Su.isor	• Optimized miniature design. Magnetic cleanliness is consistent with the specified absolute accuracy.
Gradient Sensors	0.5 meter sensor separation (standard), normalized to
	gammas/meter. Optional 1.0 meter sensor separation
	available. Horizontal sensors optional.
	Remains flexible in temperature range specified, includes strain-relief connector
	Programmable from 5 seconds up to 60 minutes in 1 second increments
	-40°C to +55°C; 0-100% relative humidity; weatherproof
	Non-magnetic rechargeable sealed lead-acid battery cartridge or belt; rechargeable NiCad or Disposable battery cartridge or belt; or 12V DC power source option for base station operation.
Battery Cartridge/Belt Life	2,000 to 5,000 readings, for sealed lead acid power supply, depending upon ambient temperature and rate of readings
Weights and Dimensions	
	- 2 8 kg, 238 x 150 x 250mm
NiCad or Alkaline Battery Cartridge	
NiCad or Alkaline Battery Belt	•.
Lead-Acid Battery Cartridge	
Lead-Acid Battery Belt	
Sensor	
Gradient Sensor	
(0.5 m separation - standard)	2 1 kg. 56mm diameter x 790mm
Gradient Sensor	
'1.0m separation - optional)	2.2 kg, 56mm diameter x 1300mm
Jard System Complement	Instrument console; sensor; 3-meter cable, aluminum sectional sensor staff, power supply, harness assembly, operations manual.
Base Station Option	
Gradiometer Option	
L	

E D A Instruments Inc. 4 Thorncliffe Park Drive Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR Cable: Instruments Toronto (416) 425 7800 °

Ŧ

11

Ħ

±

Ì

œ₩.

Ħ

In U.S.A. E D A instruments Inc. 5151 Ward Road Wheat Ridge, Colorado U.S.A. 80033 (303) 422 9112

Printed in Canada

P Intario	Ministry of Northern Development and Mines	Report of Work Conducted After Recording Claim Mining Act	Transaction Number W9560.00012
rsonal ir	formation collected on this form	is obtained under the authority of the Mining Act. This informat	ion will be used for correspondence. Questions about

2.1593 8

900

Instructions:	Please type	or print and	submit in	duplicate.
---------------	-------------	--------------	-----------	------------

Sudbury, Ontario, P3E 6A5, telephone (705) 670-7264.

ſ

- Refer to the Mining Act and Regulations for requ Recorder.
 - A separate copy of this form must be completed
 - Technical reports and maps must accompany th
 - A sketch, showing the claims the work is assign. 4100

this collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Developm

Recorded Holder(s) WILLIAM E. BRERET	ON	Client No. 111858
Address SUITE 1800, ISO YORK ST,	TORONTO, ONT, MSH 355	Telephone No. 416-365-0930
Mining Division PORCUPINE	Township/Area HUFFMAN	M or G Plan No. G. 3232
Dates Work From: MAR 23/93	To: 0C7 20	/93

Work Performed (Check One Work Group Only)

	Work Group	Туре	
1	Geotechnical Survey	Linecuting, Magnetics, VLF-EM, Go	logical Mapping, Soils, Tills
	Physical Work, Including Drilling		
Γ	Rehabilitation		PECEIVED
	Other Authorized Work	SECTION 18 ONLY	AFR 1 1595
	Assays		
	Assignment from Reserve		MINING LANUS BHANCH
To	al Assessment Wor	k Claimed on the Attached Statement of Costs \$	36, 569.00 27, 378.

Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

Name	Add	1888
EXSICS EXPLORATION LTD.	Suite 13, 637 ALGONGUIN L	BLVD. E., TINMINE, ONT PAN TXI
DOUG PANAGAPKO- CAMELO GAN.	#6-1349 KELLY LAKE	RO. SUDBURY, ONT P3E SPS
		······································

(attach a schedule if necessary)

Certification of Beneficial Interest * See Note No. 1 on reverse side

I certify that at the time the work was performed, the claims covered in this work	Date	Recorded Holder or Agent (Signature)
report were recorded in the current holder's name or held under a beneficial interest by the current recorded holder.	JAN 2495	Dorges A. Canagge

Certification of Work Report

its completion and annexe	d report is true.		med the work or witnessed same during and/or after
Name and Address of Person DOJGLAS A.	PANAGAPKo, #6	-1349 KELCY LK RO	, SUDBURY, ONT P3E 5P5
Telepone No.	Date	Certified By (Sign	
705-523-4	555 JAN 2	0/95 Dong	Las A. Panagghr.
For Office Use Only		0	
Total Value Cr. Recorded	Date Recorded	Mining/Recorder (unita	LL CENTRY
\$21,378.	Deemed Approval Date	95 Date Approved	JAN 88 MPS
		ØI 1.	C C C C C C C C C C
0241 (03/91)			PORCEPALE MINING DIVISION

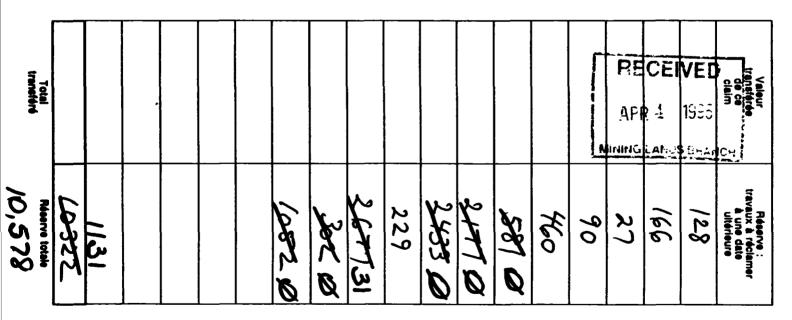
Total Reserve	Total Assigned From	Total Value Work Applied	Total Value Work Done		Total Number of Cleime	0241 (03191)
7446		0089	16247		L 1	
234		400	634	ر 	1176306	
1069		400	1469	-	1176305	
1260		400	1660	_	1176304	
940		400	0461	-	1176363	
320		400	720	<	1176302	
363		400	763	-	. 116301	
493	1	406	\$93		1176300	
1132		400	1532	-	1176299	
493		400	893	1	1176298	
146		400	1341 2	-	1176297	_
53/		400	931 5	1 4	1176296	
902		400	1302	~	1176295	2.
184	APR	400	0 186	1	· 1176294	1
72	15 NDS 1	460 EIV	472		5629 211 ,	59
72	95 Ranč	400	472 0	7	1176292	3
72		400	472	ž I	1170414	ર્ક
72	14	400	472	1 V	P, 1170407	
Accente: Work to be Claimed at Future Date	Value Assigned from this Claim	Applied to this Claim	Value of Assessment Work Done on this Claim	Cialm Units	Ciaim Number (see Note 2)	Work Report Number for Applying Reserve

Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the deletion of credits. Please mark (ν) one of the following:

1. Credits are to be cut back starting with the claim listed last, working backwards.

2. Credits are to be cut back equally over all claims contained in this report of work.

3. Credits are to be cut back as priorized on the attached appendix. MCredits to be cut back first from the reserve. In the event that you have not specified your choice of priority, option one will be implemented.


Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:

I certify that the recorded holder had a beneficial interest in the patentied	Signature	Date
or leased land at the time the work was performed.		

0241 (0 6/9 1)	-										2.	1.	59	3	8		Numéro de rapport sur les travaux exécutés pour l'affectation de la réserve
Nombre total de claima	12		-		1182526	1182524	1182515	× 1182510	~ (182509	1182508	~ 1182499	1 182488	~ 1182497	7622811	~ ۱ <i>(</i> 82495	P. 1182494	Numéro de claim
		-			4		4	11	6	ω	-	(!	υ `	1 1	<i> r</i>	1 ×	Nombre d'unités

Valeur totale dee travaux subcurite	20302	11.131			1852	702	4277	629	yess o	32770	381 0	860	1290	427		528	Valeur des travaux d'évaluation exécutés sur ce claim
Valeur totale den travaux qui e dié attectée 16,800	10000				800	400	/600	400	2400	/200	400	400	1200	400	400	400	Valeur affectée à ce claim

Les crédits que vous réclamez dans le présent rapport peuvent être réduits. Afin de diminuer les conséquences défavorables de telles réductions, veuillez indiquer l'ordre dans lequel vous désirez au'elles soient appliquées à vos claims. Veuillez cocher (~) l'une des options suivantes :

1. Les crédits doivent être réduits en commençant par le dernier claim sur la liste.

2. 🗋 Les crédits doivent être réduits également entre tous les claims figurant dans le présent rapport.

3.
Les crédits doivent être réduits selon l'ordre donné en annexe.

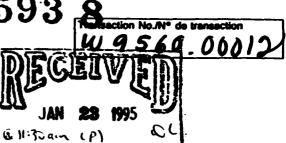
Si vous n'avez pas choisi d'option, la première sera appliquée.

Note 1 : Examples d'Intérêts bénéficiaires : cessions non enregistrées, ententes sur des options, protocoles d'entente, etc. relatifs aux claims.

Note 2: Si des travaux ont été exécutés sur un terrain faisant l'objet de lettres patentes ou d'un bail, veuillez remplir ce qui suit:

Je certifie que le titulaire enregistré possédait un intérêt bénéficiaire sur le terrain faisant l'objet de lettres patentes ou d'un bail, au moment où les travaux ont été exécutés.	Signature	Date
		······································

Ministry of Northern Development and Mines


Ministère du Développement du Nord et des mines

Statement of Case 1593 for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Minings Lands, Ministry of Northerm Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

Les renseignements personnels contenus dans la présente formule sont recueillis en veru de la Loi aux les mines et appriprit à fenir à jour un registre des concessions thérédient Minesellettats d'Alimant aur la collece de ces renseignements au chef-previncial des terraine miniers, ministère du Développement du Nord et des Mines, 159, rue Cedar, 4[®] étage, Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

1. Direct Costs/Coûts directs

Туре	Description	Amount Montant	Totals Total global
Wages Salaires	Labour Main-d'oeuvre	3,323	
	Field Supervision Supervision sur le terrain	5,109	8,432
Contractor's and Consultant's	Type LINECUTTING	15,372	
Fees Droits de	MAGNETIC	4,544	
l'entrepreneur	VLF-EM	2,733	
et de l'experi- conseil	ANAUSIS	3,388-	26,037
Supplies Used Fournitures utilisées	Туре		
Equipment Rental Location de matériel	Туре		
Total Direct Costs Total des coûts directs			34,469

Note: The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject for assessment work all or part of the assessment work submitted.

Filing Discounts

- 1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
- 2. Work filed three, four or five years after completion is claimed at 50% of the above Total Value of Assessment Credit. See calculations below:

Total Value of Assessment Credit	Total Assessment Claimed		
× 0.50 =			

Certification Verifying Statement of Costs

I hereby certify:

that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.

that as _

PROJECT GEOLOGIST I am authorized (Recorded Holder, Agent, Position in Company)

to make this certification

2. Indirect Costs/Coûts indirects
** Note: When claiming Rehabilitation work Indirect costs are not

allowable as assessment work. Pour le remboursement des travaux de réhabilitation, les coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

Туре	Description	Amount Montant	Totals Total global
Transportation Transport	TRUCK	700	
	-]
			1
	PECEIVED		
Food and Lodging Nourriture et hébergement	AFR 1 1995	1,400	2100
Mobilization and Demobilization Mobilisation et démobilisation	MINING LATE SUMANC	• -	
	Sub Total of Indi Total partiel des coût		2,100
	(not greater than 20% of Di (n'excédant pas 20 % des		2,100
Total Value of Asso (Total of Direct and a Indirect costs)		ellis directs	36,569

Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandées dans le présent état des coûts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Remises pour dépôt

- 1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100 % de la valeur totale susmentionnée du crédit d'évaluation.
- Les travaux déposés trois, quatre ou cinq ans après leur achèvement sont remboursés à 50 % de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

Valeur totale du crédit d'évaluation	Evaluation totale demandée	
× 0,50 =		

Attestation de l'état des coûts

J'atteste par la présente :

que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Et qu'à titre de _____je suis autorisé (titulaire enregistré, représentant, poste occupé dans la compegnie)

à faire cette attestation.

Doylas A. Kanagyok JAN 20/95

0212 (04/91)

Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines Geoscience Approvals Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

April 06, 1995

Our File: 2.15938 Transaction **#**: W9560.00012

Telephone:(705)670-5853Fax:(705)670-5863

Mining Recorder Ministry of Northern Development & Mines 60 Wilson Avenue 1st Floor Timmins, Ontario P4N 2S7

Dear Sir:

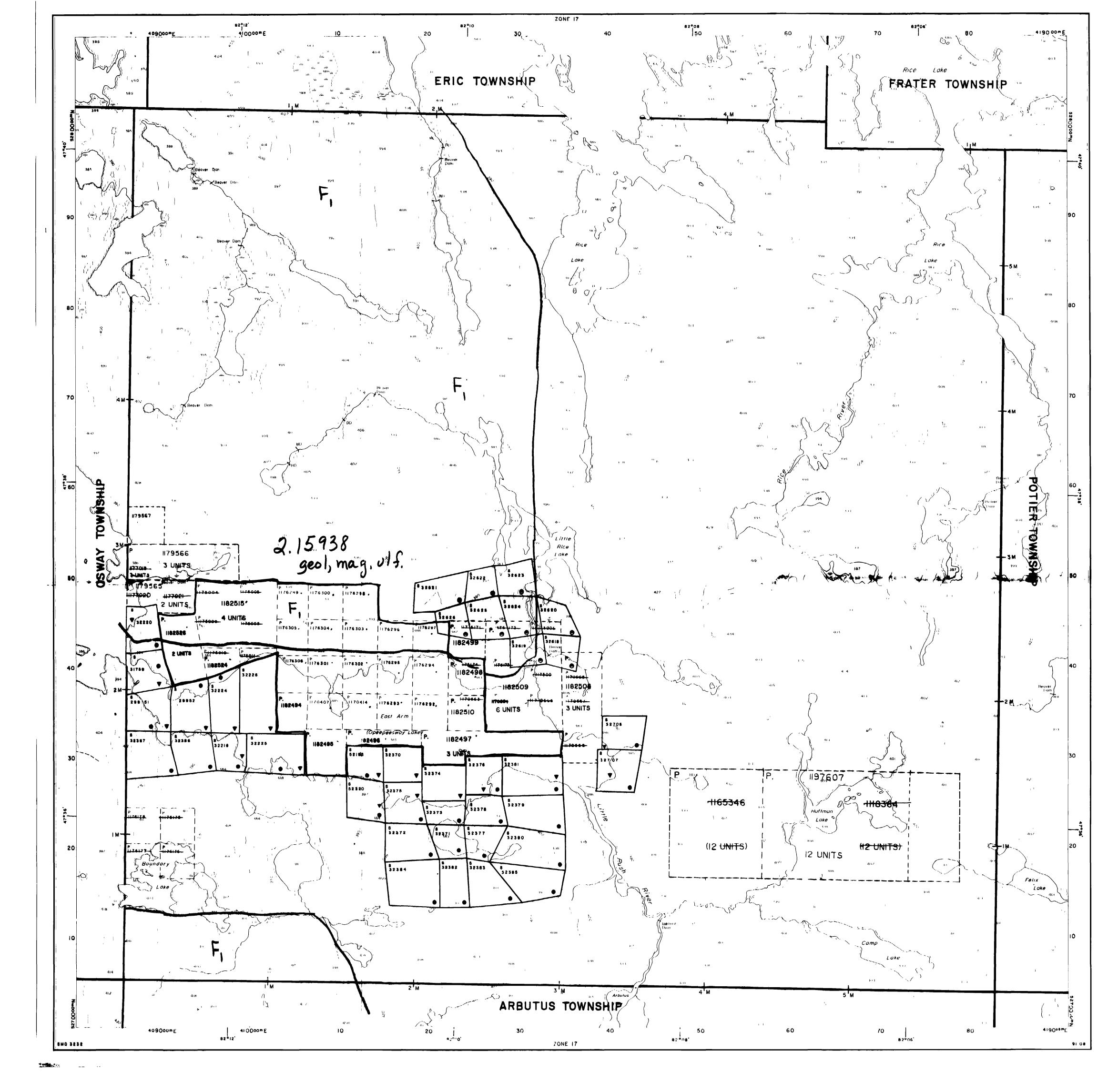
Subject: APPROVAL OF ASSESSMENT WORK CREDITS ON MINING CLAIMS P.1170407 ET AL IN HUFFMAN TOWNSHIP

Assessment work credits have been approved as outlined on the original report of work. The credits have been approved under Section 12, Geology and Section 14, Geophysics, Mining Act Regulations.

The approval date is April 5, 1995.

If you have any questions regarding this correspondence, please contact Lucille Jerome at (705) 670-5855.

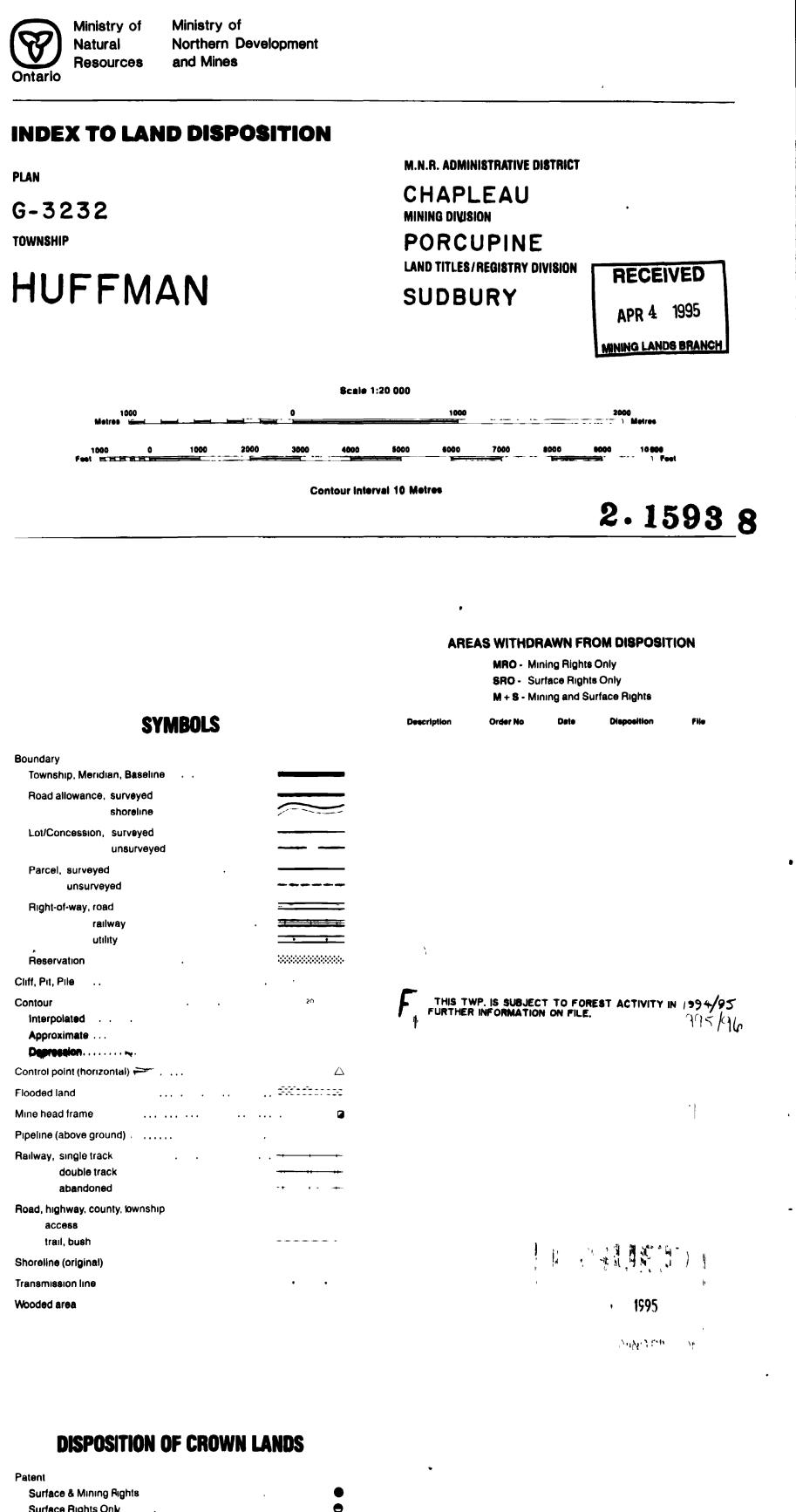
ORIGINAL SIGNED BY:


fon Coshind.

Ron C. Gashinski Senior Manager, Mining Lands Section Mining and Land Management Branch Mines and Minerals Division

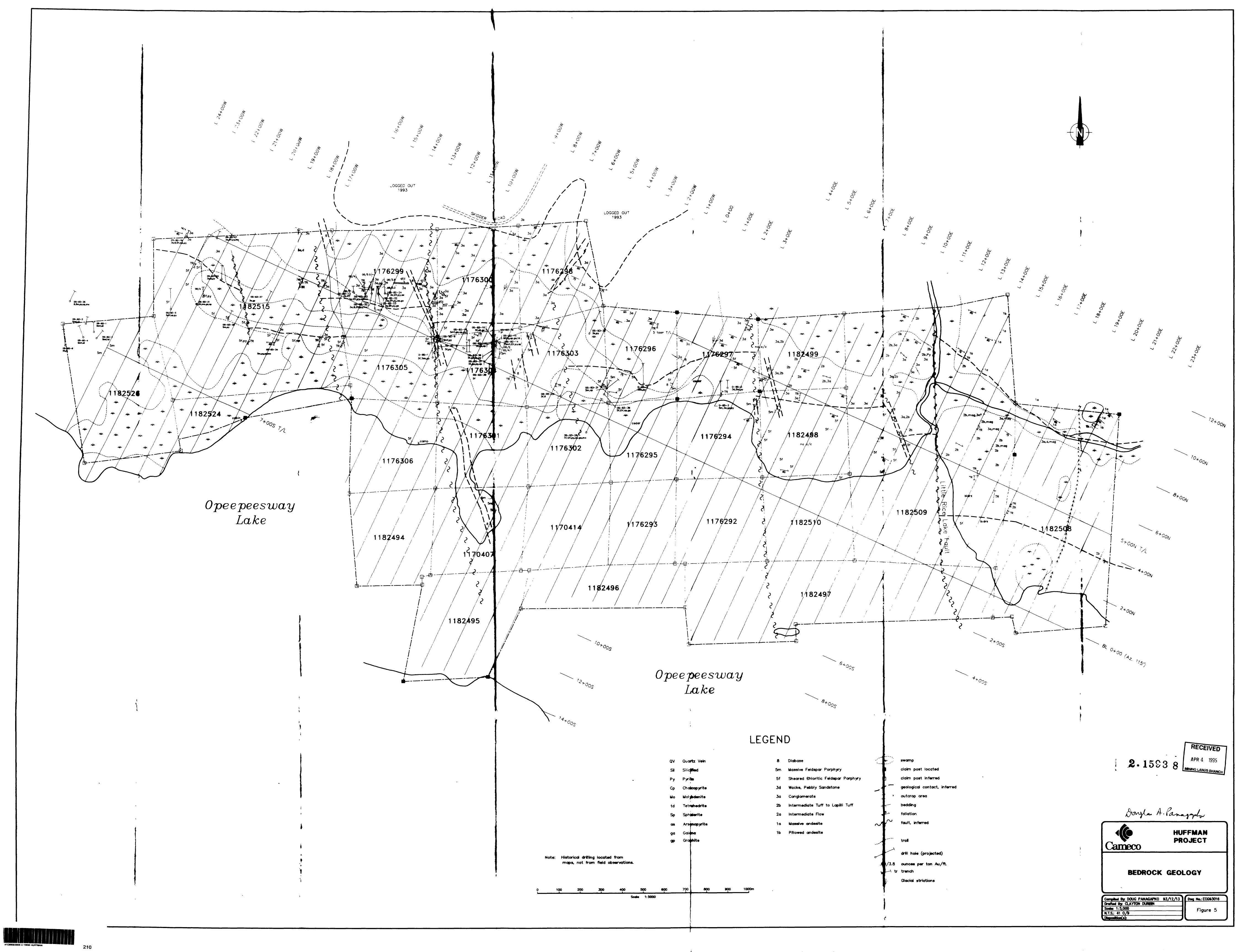
A LJ/jl MEnclosure:

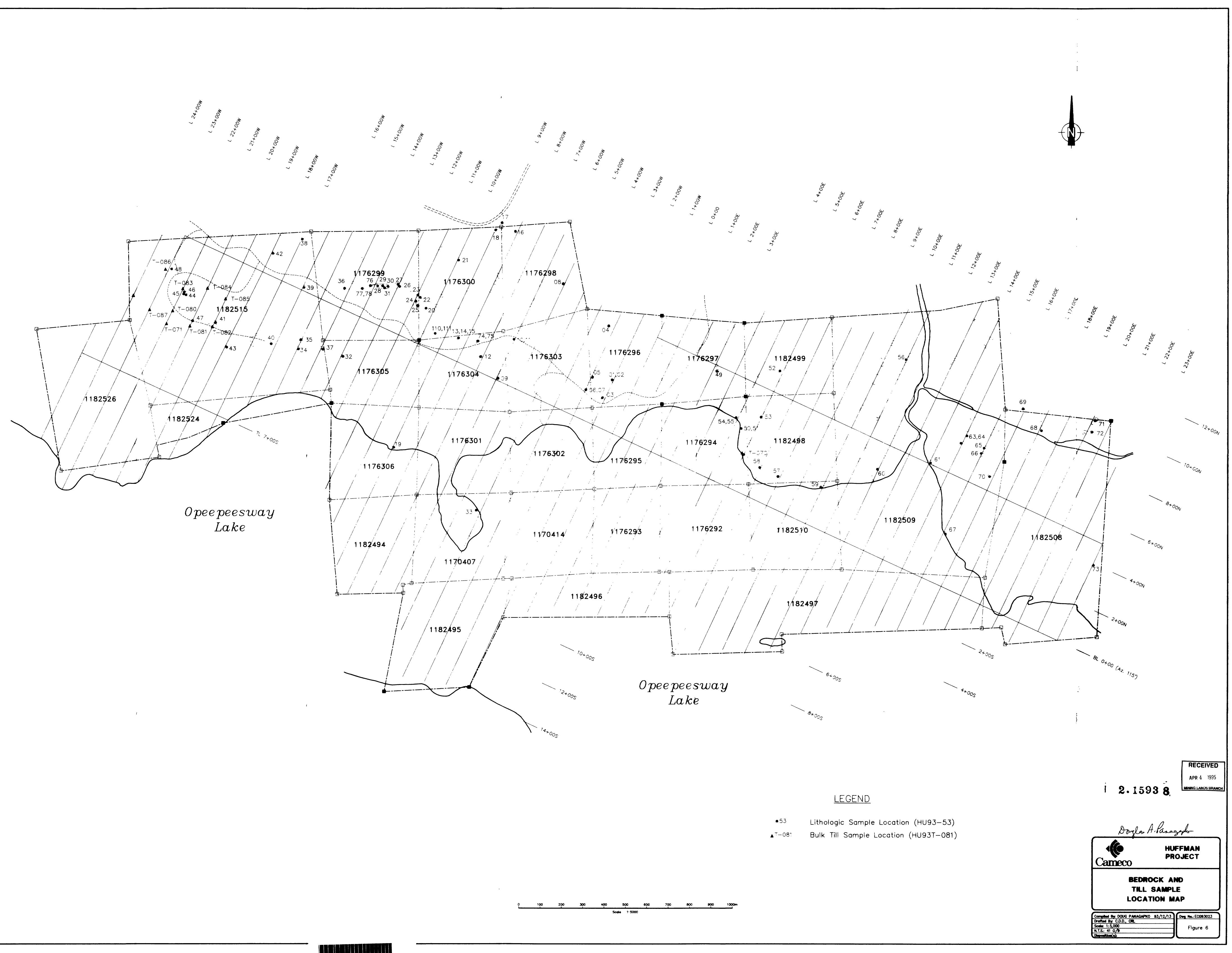
> cc: Resident Geologist Timmins, Ontario


Assessment Files Library Sudbury, Ontario

1 11 - Janie - F

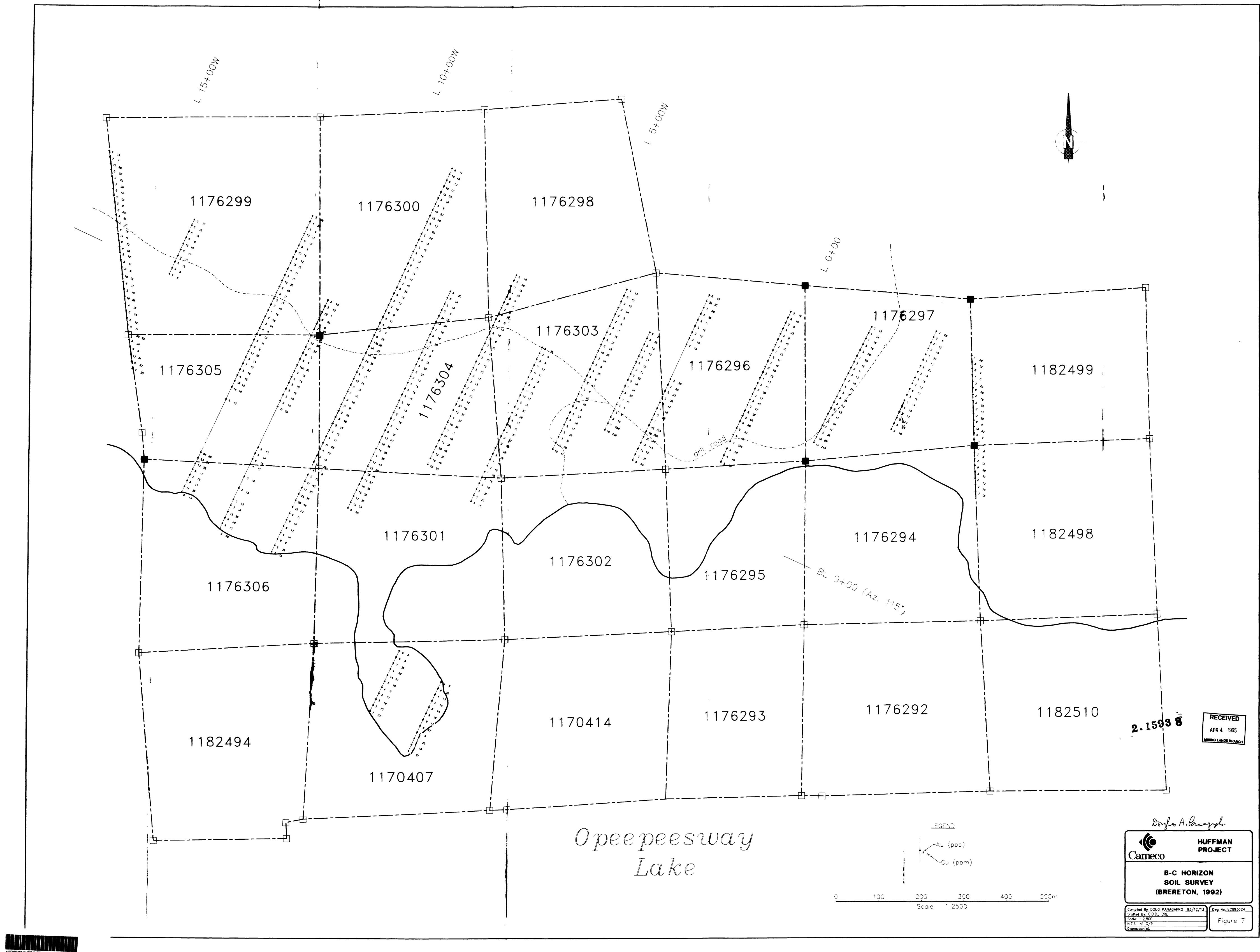
Ŧ

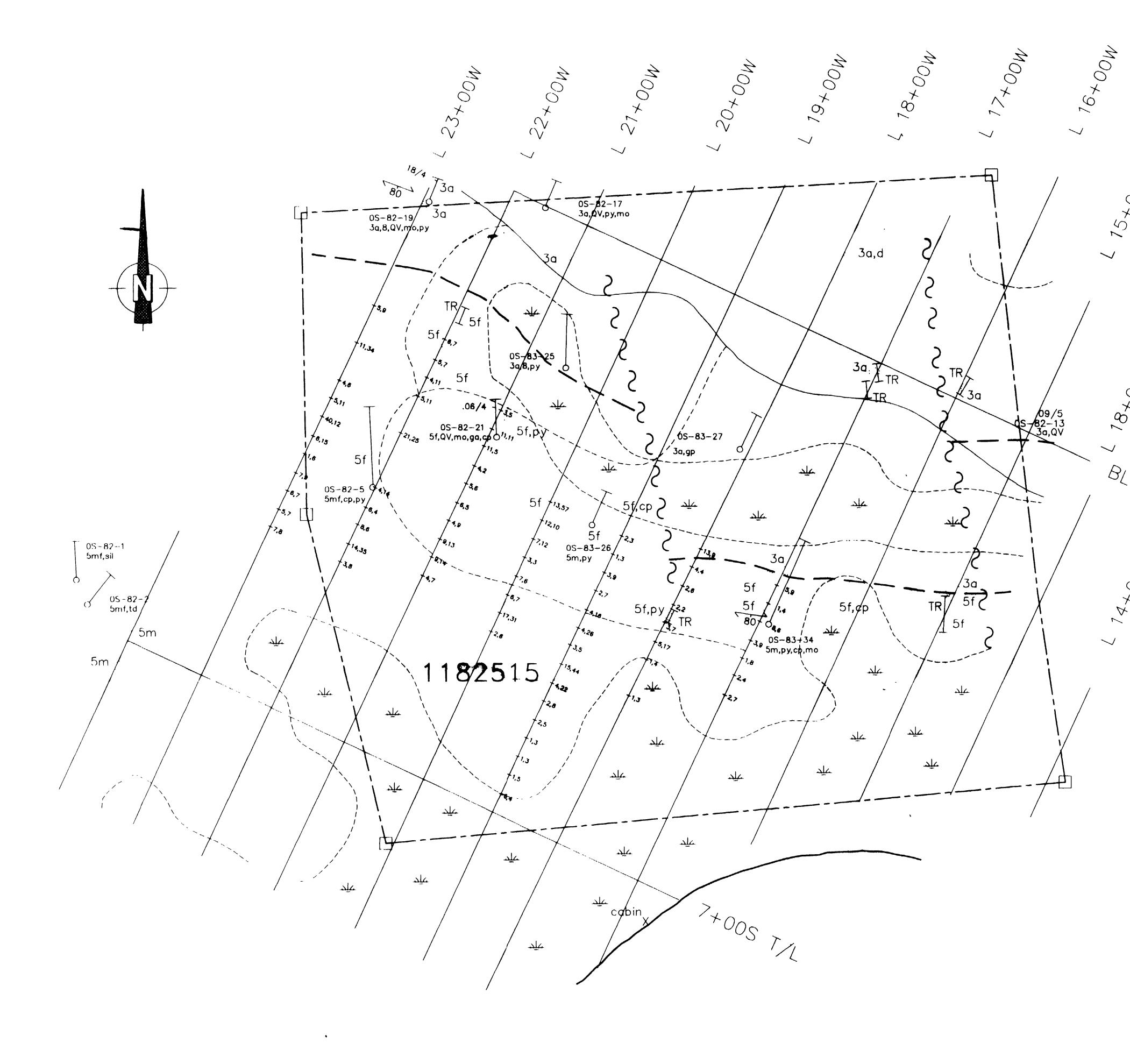

Surface & Mining Rights Surface Rights Only	•
Mining Rights Only	e
Lease Surface & Mining Rights Surface Rights Only Mining Rights Only	
Licence of Occupation	▼
Order-ın-Council	oc
Cancelled	Ø
Reservation	۲
Sand & Gravel	۲


Map base and land disposition drafting by Surveys and Mapping Branch, Ministry of Natural Resources

THE INFORMATION THAT APPEARS ON THIS MAP HAS BEEN COMPILED FROM VARIOUS SOURCES AND ACCURACY IS NOT GUARANTEED THOSE WISHING TO STAKE MIN-ING CLAIMS SHOULD CON-SULT WITH THE MINING RECORDER, MINISTRY OF NORTHERN DEVELOP-MENT AND MINES. FOR AD-DITIONAL INFORMATION ON THE STATUS OF THE LANDS SHOWN HEREON

The disposition of land, location of lot fabric and parcel boundaries on this index was compiled for administrative purposes only


₽-**†**



41009SE0005 2.15938 HUFFMAN 220

53	Litl

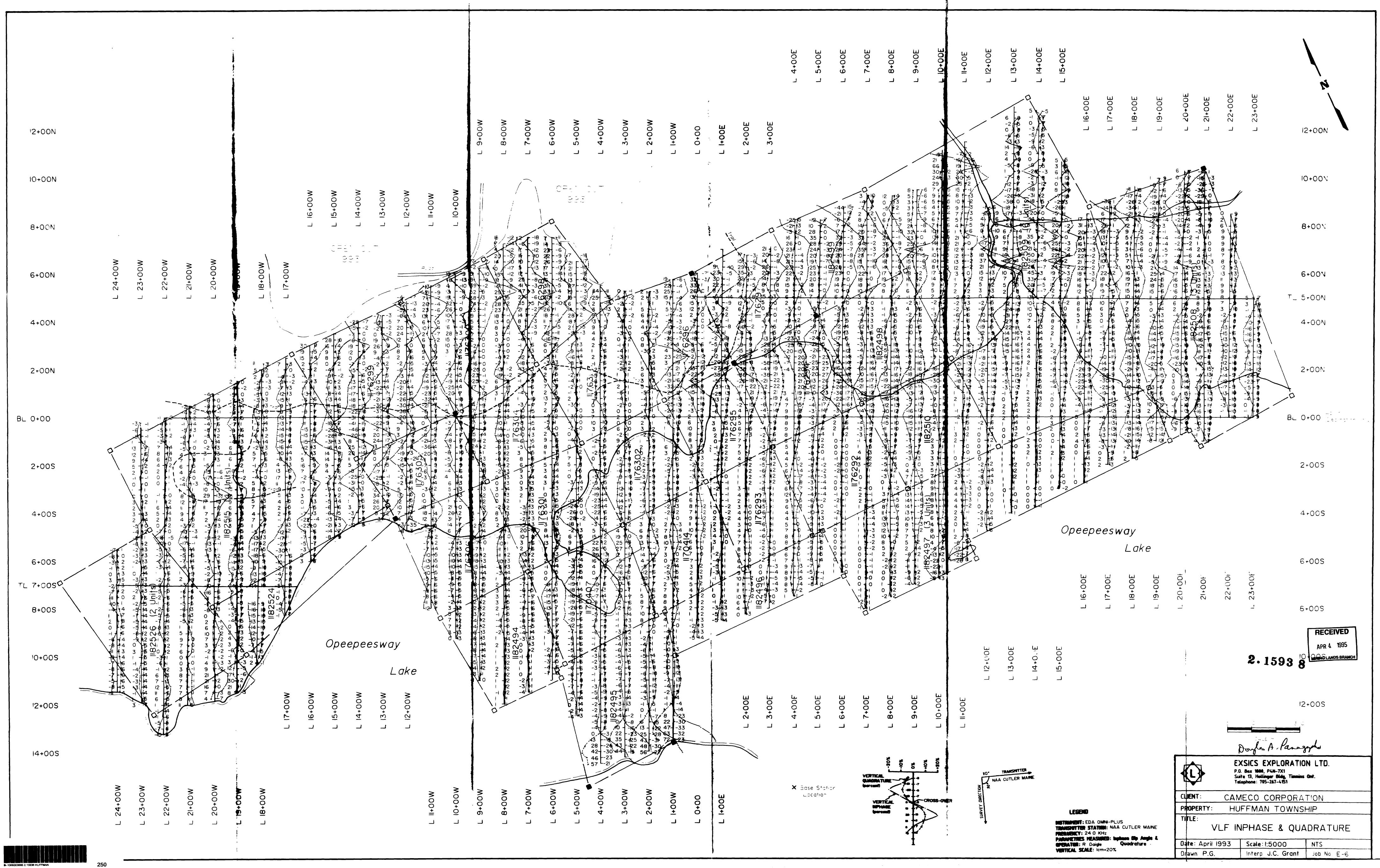
240

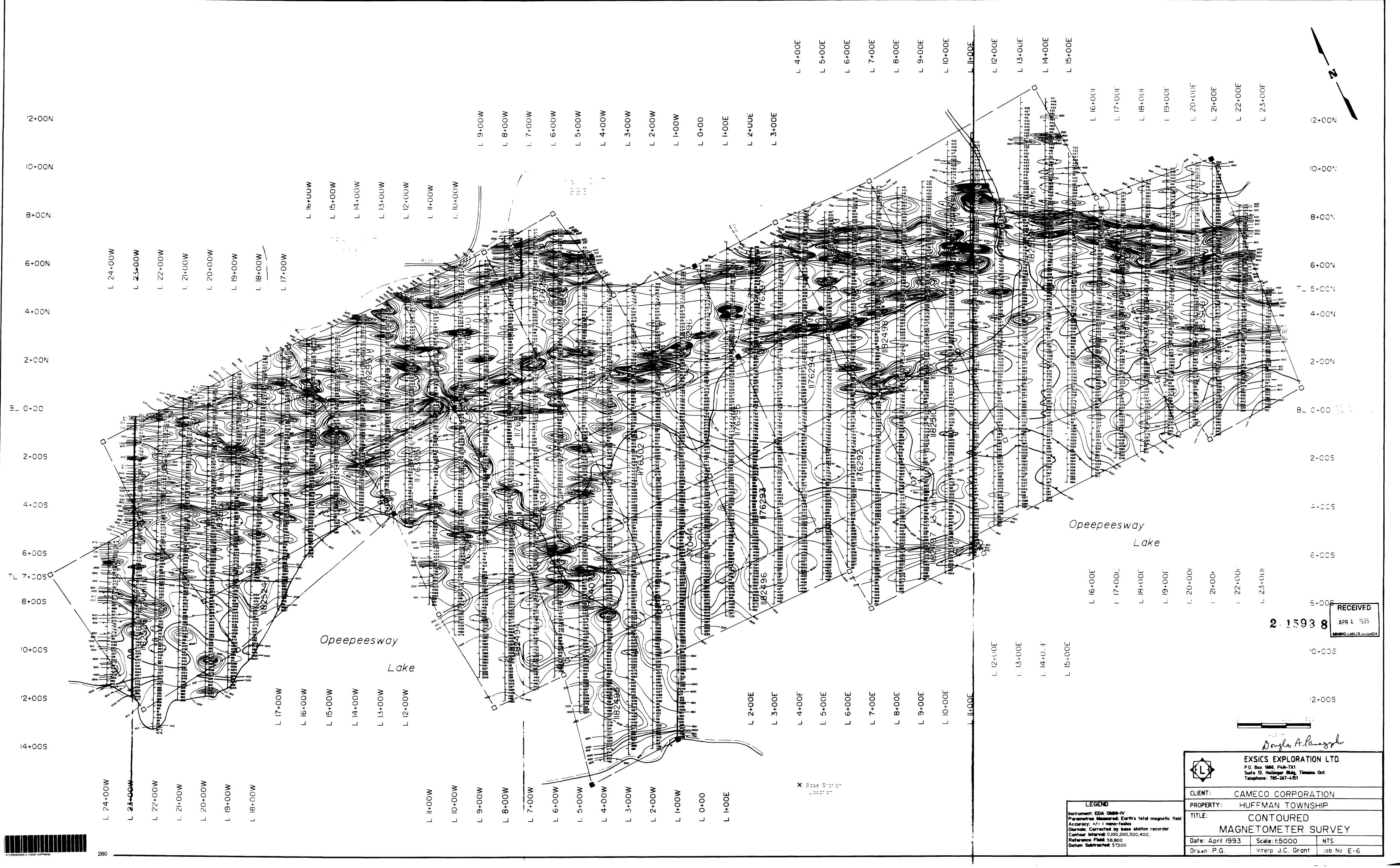
•

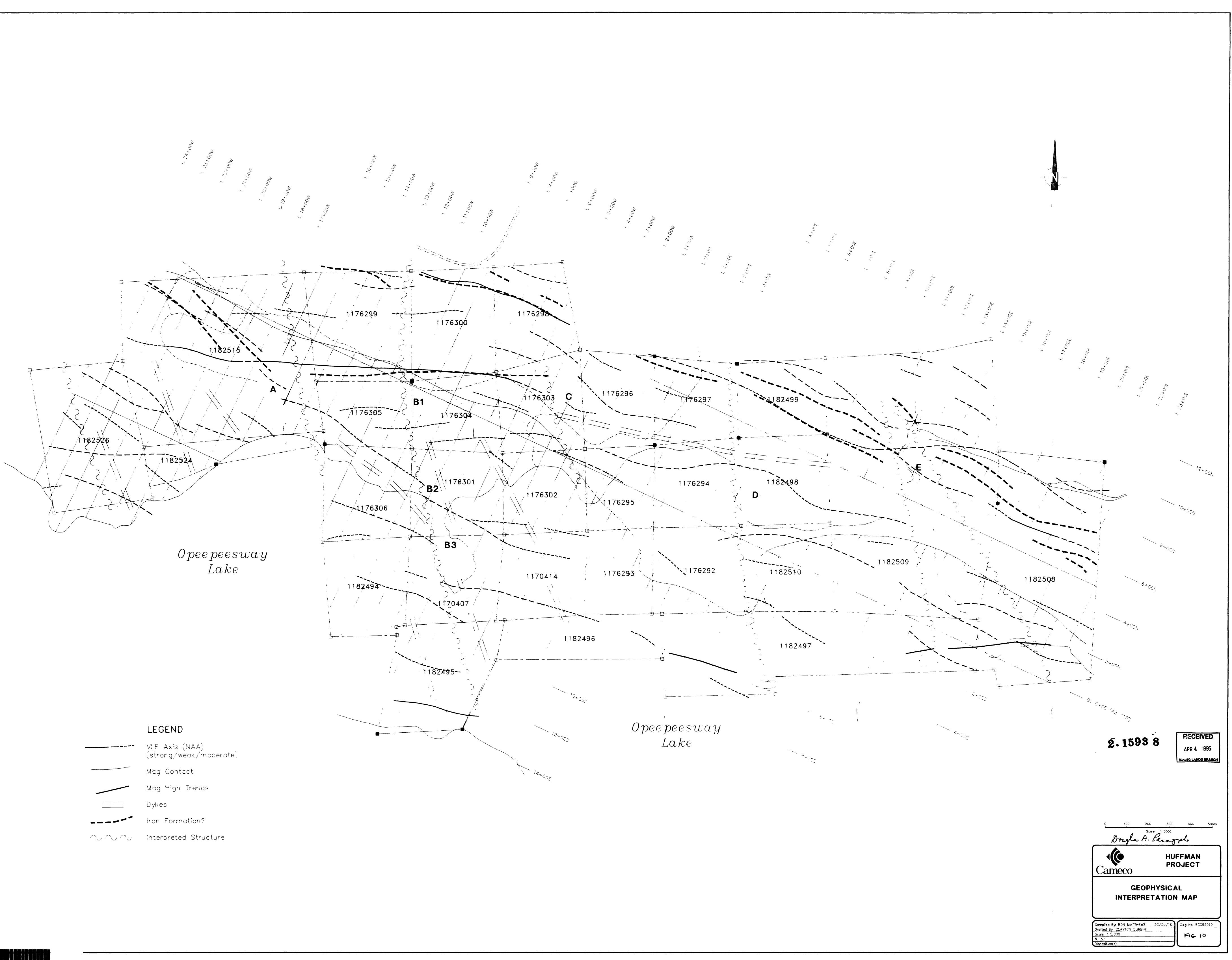
! د

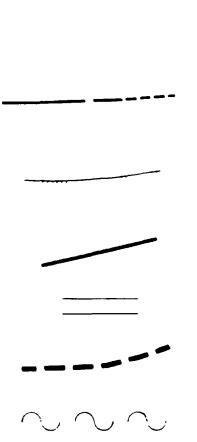
٦

*


.


ņ	100	200		300
		Scale	1: 2500	


75+00W \checkmark 18×00W \checkmark BL 0+00 14×00M \checkmark LEGEND /Au (ppb) −Cu (ppm) NOTE: Geology taken from Figure 5. Dougles A. Panagarka HUFFMAN PROJECT Cameco **B-HORIZON** SOIL SURVEY 400
 Complied By: DOUG PANAGAPKO
 93/12/14
 Dwg No.: ECG93025


 Drafted By: C.D.D., CRL
 Scale: 1:2,500
 Figure 8

 N.T.S.: 41 0/9
 Figure 8
 eposition(s

;