KIDD CREEK MINES LTD.
 REPORT ON GEOPHYSICAL WORK
 IN
 CUNNINGHAM TOWNSHIP
 (CUNNINGHAM 31)
 RUNNING GHOST SOUTH GRID
 NTS 410/10
 CLAIMS: P 641155-P 641175

RECEIVED

APH 171954

MINING LANDS SECTION

SUMMARY AND RECOMMENDATIONS

The survey results are rather disappointing. The conductors that were outlined are either associated with an iron formation and known to contain nothing of economic interest, or are formational features, most likely graphitic zones, in a mafic tuff unit. The only conductor which might normally be recommended for follow-up is zone K because of its magnetic signature; however, the airborne results show that it is the western end of a long trend of multiple, strong formational conductors.

No additional work can be recommended on the basis of the geophysical results.

TABLE OF CONTENTS

pageSUMMARY AND RECOMMENDATIONS i

1. INTRODUCTION 1
1.1 General 1
1.2 Previous Work 1
2. SURVEY RESULTS 3
2.1 Magnetics 3
2.2 VLF 4
2.3 Horizontal Loop 5
REFERENCES 9
3. INTRODUCTION
1.1 General

Geophysical work consisting of magnetic, VLF and dual frequency horizontal loop surveys was carried out on this group of 21 contiguous claims, located in Cunningham, Greenlaw and Blamey Townships (Fig. 1).

The surveys were performed during July, 1983 by the following Kidd Creek employees: M. W. Zang, D. Kujanpaa, R. Daigle and M. Mageau. The crew was based at a camp at the north end of Running Ghost Lake and used a boat to gain access to the grid. The road from Sultan, 10 km to the south, to Peter Lake passes through the western part of the grid.
1.2 Previous Work

Since the early 1900^{\prime} s, several companies as well as numerous individuals have prospected and explored this area. Most of their efforts have been concentrated in north-central Cunningham Township where lead and zinc mineralization occurs in several bands of iron formation. However, there is no record of previous work on this grid.

The bulk of this grid lies within Cunningham Township which has recently been mapped by the Ontario Geological Survey (Siragusa, 1980). Greenlaw Township has been mapped by Donovan (1968) and Blamey Township is in an area mapped by Meen (1942). Most of the grid area is underlain by mafic

BLAMEY Twp.

FIG. I LOCATION OF GRIDS
volcanics, mainly andesite, which have been intruded by gabbro and diorite, particularly in the southwestern part and around Running Ghost Lake. There are several NNW trending diabase dikes. The northeastern part of the grid is underlain by a granite intrusive.

Since Kidd Creek acquired this property, the grid area has been mapped in detail by company geologists. Their results are generally similar to those shown on the government maps except that within the intermediate to mafic volcanics there is a thick unit of well-laminated mafic tuffs which crosses the central part of the grid. Nearly all the conductors detected by the present survey are situated within these tuffs.

This grid lies within the area covered by an OGS-sponsored airborne INPUT and magnetic survey (OGS, 1982; Map 83 546). Figure 2 shows the grid outline, superposed on the combined EM and total field map.

The airborne magnetic features can be explained as follows: the low, uniform magnetic field to the northeast of the grid corresponds to the granitic intrusive; the belt of intense highs, which comes from the north and sweeps across the grid in a southeasterly direction, is produced by gabbroic intrusives; the very strong, linear trend which enters the grid from the south reflects a large diabase dike which apparently terminates near the northern edge of the grid; the high magnetic field strengths southwest of the grid are caused by gabbro; the andesite does not appear to have a

distinctive signature but underlies the areas of relatively flat magnetics.

Most of the INPUT anomalies are strong six-channel responses with conductances in the range of 15 to 30 siemens and, on the basis of medium to large second channel amplitudes, a shallow depth of burial.

2. SURVEY RESULTS

2.1 Magnetics (EDA PPM-350, proton precession magnetometer) The only continuous magnetic trends within this grid are the highs produced by diabase dikes and oxide facies iron formation, respectively labelled ${ }^{\prime \prime} \mathrm{DD}^{\prime \prime}$ and "IF" on the map. The two diabase dikes which strike at approximately 0° are typical of this area. The third, which strikes at 100°, is atypical but its existence is confirmed by several outcrops. It should be noted that several other north-south striking diabase dikes were located by the detailed mapping, but none has any magnetic signature. The iron formation outcrops only at its northern end on Lines 10700E and 10800E, and the extension across Running Ghost Lake is based strictly on interpretation.

Excepting the above features, the magnetic data contain only a limited amount of information that can be used to extend geological units away from the few scattered outcrops. Most of this stems from the fact that the two predominant rock types, gabbro and intermediate to mafic volcanics, do
not have significantly different magnetic susceptibilities. For example, west of Line 9600 E the bedrock is gabbro while to the east it is andesite; however, there is no evidence of this in the magnetic field strengths. Similarly, an extensive area of gabbro just south of Running Ghost Lake on Lines 10500 E to 10900 E is not defined by the magnetics.

The magnetic features within the intermediate to mafic volcanics which underlie most of the grid are mainly isolated highs and lows which show little continuity from line to line. There is no apparent difference in the magnetic signatures of the mafic tuffs and the massive mafic flows.
2.2 VLF (Crone Geophysics RADEM, VLF Transmitter NAA, Cutler, Maine, 17.8 kHz)

In the southern part of the grid there are numerous anomalies (labelled "S" on the map) which arise from surficial sources such as the extensive swamps and bogs in this area as well as transitions from overburden cover to outcrop. Of the anomalies from bedrock sources, B, G and H are spatially associated with an iron formation and A, C, D, E, F, J, K and M lie within the mafic tuff unit. There are also a few instances where on two adjacent lines there are responses which can be lined up to approximately parallel the geological strike and thus may define a short bedrock conductor. None of these have been labelled with a letter because they could equally well be of surficial origin.

The conductors which lie in the mafic tuffs all appear to be formational features, possibly pyritic horizons, and none is consistently magnetic along strike. Conductors A, C, D and J are completely non-magnetic; conductor E has a coincident magnetic high on a few lines, suggesting that pyrrhotite may be present locally; and conductor M has a flanking high on one line but nothing on the next. Conductor K has a coincident magnetic high on the single line where it was detected.

Conductors B, G and H appear to flank an iron formation, but none of them is magnetic except on Line 11200 E where H appears to cut across a magnetic high. It may be that anomaly H reflects a fault or shear rather than a stratigraphic feature. If the interpretation is correct, conductors B and G may join up; furthermore, these conductors appear to lie at the contact between granite to the north and iron formation to the south.
2.3 Horizontal Loop (Apex Parametrics Max Min II, $\mathrm{Tx}-\mathrm{Rx}=80 \mathrm{~m}, 444 \mathrm{~Hz}$ and 1777 Hz)

These results are quite similar to the VLF data except that conductor E consists of several conductive segments separated by sections of low conductivity. There are a number of anomalous in-phase responses which appear to have resulted from either coil misalignment or short cable (there are no quadrature anomalies, and high and low frequency in-phase responses are almost identical) and are marked "SC"
on the maps. Also, the horizontal loop response detected at 10160N/Line l0000E may be spurious because of its unusual shape and the lack of any VLF corroboration. If it is genuine, its source must be small and must have a short strike length in order to account for the shape of the anomaly.

Conductor A is present on only two lines, although there are some uninterpretable anomalous indications on a third line, l0200E. It has a width of 5 to 10 metres, a steep south dip, a depth of burial of approximately 10 metres, and a conductance of 50 siemens on Line 10100E where it has the strongest anomaly.

Conductors B, F and G have poorly or incompletely defined anomalies, and only limited quantitative interpretation is possible. Conductor B has very high conductance on Line 10700 but its conductance decreases greatly on the next line to the east. Conductors F and G, which have approximately equal in-phase and quadrature responses, have conductances of 5 siemens. All three conductors are at a depth of less than 10 metres. Dips are indeterminate.

Conductor C displays remarkably uniform width, in-phase to quadrature ratios and anomaly amplitudes along strike. This zone is 8 to 15 metres wide; steeply dipping, probably to the south; buried at a depth of less than 10 metres; and has a relatively constant conductance of 20 to 30 siemens.

The high conductance values suggest that this may be a graphitic horizon.

Conductor E has two sections with significant conductivity and width, located between Lines 10500E and 10700 E and between Lines 11200 E and 11500 E . In the western section there is minimal conductivity on two lines, but on Line 10700 E the conductance is in the range of 15 to 20 siemens. This section of the zone has an indicated width of nearly 20 metres, a minimal depth of burial (probably less than 15 metres on all three lines; the weak anomalies on Lines 10500 E and 10600 E are due to low conductivity rather than large depth of burial) and a near-vertical dip. The eastern segment is generally narrower, typically less than 10 metres wide, and has conductances in the 10 to 20 siemen range, an indicated depth of burial of 15 to 25 metres, and a steep dip, probably to the south.

Conductor J is a 5 to 10 metres wide zone of low to moderate conductivity (conductance of 10 to 15 siemens), indeterminate dip, and has a depth of burial of 15 to 20 metres.

Conductor K has a 30 siemen conductance, 10 metre width, near-vertical dip and must lie under less than 10 metres of overburden.

Conductor L is only 2 or 3 metres wide and has a conductance of 4 siemens. Both its depth of burial and dip are indeterminate.
Anomaly M is not completely defined so that the only fact that can be deduced is that its source has low to medium conductivity.
Overall, on the basis of the interpreted depths of burial of the various conductors, it is probable that the overburden thickness increases gradually from less than 10 metres around conductor C to nearly 20 metres around conductors E, F and J.

Siragusa, G. M., 1980: Cunningham Township Area, District of Sudbury; Ontario Geological Survey Prelim. Map P. 2339 Geological Ser., Scale 1:15840 or 1 inch to $\frac{1}{4}$ me. Geology 1978.

OGS, 1982: Airborne Electromagnetic and Total Intensity Magnetic Survey, Swayze Area, Isaiah Lake Sheet, District of Sudbury; by Questor Surveys Limited for the Ontario Geological Survey, Map 80546 Geophysical/Geochemical Series, Scale 1:20,000. Survey and Compilation December, 1980, to February, 1981.

Meen, V. B., 1942: Geology of the Cunningham-Garnet Area, Ontario Department of Mines, Vol. 51, Part 7, 1942. Accompanied by Map No. 5lf, scale 1 inch to 1 mile. Donovan, J. F., 1968: Geology of Halcrow-Ridout Lakes Area, Ontario Department of Mines, Geological Report 63. Accompanied by Map 2121 - Tooms and Greenlaw Townships, District of Sudbury, scale 1 inch to $\frac{1}{2}$ mile.

Mining Lands Section
Control Sheet

File Mo 2.6628

$$
\begin{array}{r}
\text { TYPE OF SURVEY } \begin{array}{c}
\text { GEOPHYSICAL } \\
\\
\\
\hline
\end{array} \quad \text { GEOLOGICAL } \\
\\
\hline
\end{array}
$$

MINING LANDS COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 Signature of Assessor

Mr. Bruce Hanley
Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timains, Ontario
P4N 257
Dear Sir:
RE: Notice of Intent dated July 24, 1984.
Geophysical (Electromagnetic, Magnetometer and VLF) Survey on Mining Claims P 641155 et al in the Townships of Cunningham. Blamey Greenlaw.

The assessment work credits as listed with the above mentioned Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

[^0]Ministry of
Natural
Resources

Recorded Holder
KIDD CREEK MINES LTD
Township or Area
CUNNINGHAM, GREENLAW AND BLAMEY TOWNSHIPS

Special credits under section 77 (16) for the following mining claims

10 DAYS CREDIT VLF, MAGNETOMETER

P 641169
5 DAYS CREDIT VLF, MAGNETOMETER
P 641170
No credits have been allowed for the following mining claimsnot sufficiently covered by the survey
Insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 77\{19)-60 828 (83/6)

Ministry of
Natural
Resources
Technical Assessment Work Credits

Recorded Holder	KIDD CREEK MINES LTD
Township or Area	CUNNINGHAM, GREENLAW, BLAMEY TOWNSHIPS

Special credits under section 77 (16) for the following mining claims

20 DAYS CREDIT ELECTROMAGNETIC

P 641159-160 641169

10 DAYS CREDIT ELECTROMAGNETIC

P 641170
No credits have been allowed for the following mining claims
not sufficiently covered by the survey Insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 77(19)-60: 828 ($83 / 6$)
dario
Ministry of
Natural
Resources

19840724
Your File: 92-84
Our File: 2.6628

Mr. Bruce W. Manley
Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
PAN 257
Dear Sir:

Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the other. In approximately fifteen days from the above date, a final letter of approval of these credits will be sent to you. On receipt of the approval letter, you may then change the work entries on the claim record sheets.
For further information, if required, please contact Mr. R.J. Pichette at 416/965-4888.

Yours sincerely,
S.E. wundt

Director
Land Management Branch
Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
MFA 1W3
D. Isherwood:mc

Encls.

```
cc: Kidd Creek Mines Ltd
    357 Bay Street
    Suite 300
    Toronto, Ontario
    M5H 2T7
cc: Mr. G.H. Ferguson
Mining \& Lands Commissioner
Toronto, Ontario
```

Ministry of
Natural
Resources

Notice of Intent
for Technical Reports

19840724
2.6628/92-84

An examination of your survey report indicates that the requirements of The Ontario Mining Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on his record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the "Special Provision-Performance and Coverage" method and you are of the opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted direct to the Land Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued.

Credits Requested per Each Claim in Columns at right

Special Provisions	Geophysical	Davs per Claim
For first survey:	- Electromagnetic	40
includes line cutting)	- Magnetometer	20
For each additional survey: usirig the same grid:	- Radiometric	
Enter 20 days (for each)	. Other V7f	20
	Geological	
	Geochamical	
Man Days	Geophysica:	Davs per Claim
Complete reverse side and enter total(s) here	- Electromagnetic	
	- Magnetometer	
	- Radiometric	
	- Orher	
	Geologicat	
	Geochemical	
Airborne Credits		Days per Claim
Note: Special provisions credits do not apply to Alrborne Surveys.	Electromagnetr	
	Magnetometer	
	Radiometric	

Expenditures (excludes power stripping)

instructions
Total Deve Credits mey be spportioned et the ciaim holder's choice. Enter number of deys credits per claim salected in columns at right.

Mining Claims Traversed (List in numerical sequence)

Approval

Mining Lands Comments

\square To: Geophysics

Comments		
\square Approved	\square Wish to see again with corrections	Date

\square To: Geology - Expenditures

Comments	
\square Approved	\square Wish to see again with corrections

\square To: Geochemistry

| Comments |
| :--- | :--- | :--- |
| |
| \square Approved |

\square To: Mining Lands Section, Room 6462, Whitney Block.
(Tel: 5-1380)
nssra: :

Kpproved Keporis df Hork
sent Dut

Notice of Jntent filed

Approval afler Notice of Intent

Duplicale sent to Resident
Geologisa

Duplicale sent io A.F.R.D. \qquad

Mr. Bruce W. Hanley Mining Recorder Ministry of Natural Resources 60 Wilson Avenue Timmins, Ontario P4N 257

Dear Sir:
We have received reports and maps for a Geophysical (Electromagnetic, Magnetometer, and VLF) Survey submitted under Special Provisions (credit for Performance and Coverage) on Mining Claims $P 641155$ et al in the Townships of Cunningham, Blamey and Greenlau.

This material will be examined and assessed and a statement of assessment work credits will be issued.

Yours sincerely,
S.E. Yundt

Director
Land Management Branch
Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1W8
Phone: (416)965-6918
A. Barr:mc
cc: Kidd Creek Mines Ltd 357 Bay Street Suite 300
Toronto, Ontario
M5H 2 T7

Ministry of Natural Resources

\qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s)	Geophysical
Township or Area	Cunningham Township
Claim Holder(s)	Kidd Creek Mines Ltd.
\qquad	357 Bay St., Suite 300 , Toronto M5H 2T7

Survey Company_Kidd Creek Mines Ltd.

Author of Report J. A. Slankis
Address of Author As above
Covering Dates of Survey_June, 1983 - March, 1984
$\mathrm{km} \quad$ (linecutting to offioe)
Total Miles of Line Cut _ 29.0

MINING CLAIMS TRAVERSED List numerically

GROUND SURVEYS - If more than one survey, specify data for each type of survey
Mag. - 1450, VLF - 1286,
Mag. - 1450, VLF - 1286,
Number of Stations_Horizontal_Nop-788_Number of Readings Horizontal_Lop - 1576
Station interval Mag. \& VLF: 20 m . HL : $40 \& 20 \mathrm{~m}$ __ Line spacing_ 100 metres
Profile scale VLF: $1 \mathrm{~cm}=10^{\circ}, \mathrm{HL}: 1 \mathrm{~cm}=10 \%$
Contour interval 200 nanoteslas

Instrument _ EDA Instruments Inc., PPM-350, proton precession, total field
Accuracy - Scale constant ± 1 nanotes la
Diurnal correction method EDA PPM-400, base station memory magnetometer
Base Station check-in interval (hours)
Base Station location and value At north end of Punning Ghost Lake, 0.5 km north of grid.

Instrument Apex Parametrics, Max Min II
Coil configuration Horizontal Loop
Coil separation 80 metres
Accuracy $\pm 1 \%$
Method:Fixed transmitterShoot back

XIn line
Parallel line
Frequency 444 Hz and 1777 Hz
(specify V.L.F. station)
Parameters measured In-phase and quadrature components of secondary field as percent of transmitted field.

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location
\qquad
Elevation accuracy

Instrument
Method \square Time Domain \square Frequency Domain

Parameters - On time Frequency

- Off time Range \qquad
- Delay time
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode

SELF POTENTIAL

Instrument \qquad Range \qquad
Survey Method \qquad

Corrections made \qquad

RADIOMETRIC

Instrument \qquad
Values measured \qquad
Energy windows (levels) \qquad
Height of instrument Background Count \qquad
Size of detector \qquad
Overburden (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey__ VLF
Instrument ___ Crone Geophysics Ltd., RADEM
Accuracy $\pm 1 \%$
Parameters measured__Dip angle of total field

Additional information (for understanding results) The signal from the VLF transmitter at Cutler, Maine (NAA, 17.8 kHz) was used.

AIRBORNE SURVEYS

Type of survey(s)

Instrument(s)	
Accuracy	(specify for each type of survey)

Aircraft used
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude
Line Spacing
Miles flown over total area \qquad Over claims only

Numbers of claims from which samples taken \qquad

Total Number of Samples
Type of Sample
(Nature of Material)
Average Sample Weight.
Method of Collection \qquad

Soil Horizon Sampled \qquad
Horizon Development \qquad
Sample Depth
Terrain

Drainage Development
Estimated Range of Overburden Thickness \qquad
\qquad
\qquad

SAMPLE PREPARATION
(Includes drying, screening, crushing, adhing)
Mesh size of fraction used for analysis \qquad
\qquad
——_
\qquad

General

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad

[^0]: S.E. Yundt

 Director
 Land Management Branch
 Whitney Block, Room 6643
 Queen's Park
 Joronto, Ontario
 M7A 1 H3
 Phone: (416) 965-6918
 D. Isherwood:sc
 cc: Kidd Creek Mines Limited 357 8ay Street
 Suite 300
 Toronto, Ontario M5H 277
 cc: Mr. G.H. Ferguson cC: Resident Geologist Mining Lands Comissioner Timins, ontario Toronto, Ontario

