

41010NE0034 2.5403 CUNNINGHAM

010

KIDD CREEK MINES LTD.

GEOPHYSICAL REPORT ON CUNNINGHAM 31

RUNNING GHOST LAKE, PETER LAKE, SKUNK CREEK

AND

DUCK POND GRIDS

PROJECT #75

CUNNINGHAM BASE METALS

N.T.S.: 41-0-10

JANUARY, 1983

RECEIVED

MICHAEL W. ZANG

FED 2 0 1983

MINING LANDS SECTION

SUMMARY AND RECOMMENDATIONS

Geophysical surveys consisting of proton precession magnetometer, horizontal loop electromagnetic and very low frequency electromagnetic traverses were conducted over four properties in Cunningham Township.

Extremely strong electromagnetic anomalies were detected in all four properties, three of which contain magnetite and sulphide iron formations.

Based on the geophysical results, four drill holes have been planned to test the conductors on the Skunk Creek and Duck Pond Properties (Figures 2 and 3). Also a follow up horizontal loop survey is recommended to detail the conductors on the Peter Lake Grid and to complete the EM coverage on the remaining three properties.

i

Ø10C

TABLE OF CONTENTS

	page
SUMMARY AND RECOMMENDATIONS	i
INTRODUCTION	1
Location and Access	. 1
Previous Work	3
GENERAL GEOLOGY	6
PROPERTY GEOLOGY	7
SURVEY DETAILS	9
SURVEY RESULTS	10
REFERENCES	25

LIST OF FIGURES

•

Figure	1	General map showing location of Cunningham 31; 1:50,000
Figure	2	HEM Anomaly and Proposed Drilling in the Skunk Creek
		Area; 1:5,000
Figure	3	HEM Anomalies and Proposed Drilling in the Duck Pond
		Area; 1:5,000
Figure	4	HEM Survey Results, Duck Pond Grid; 444Hz, 1:2,000
Figure	5	HEM Survey Results, Duck Pond Grid; 1777Hz, 1:2,000
Figure	6	Magnetometer Survey Results, Duck Pond Grid; 1:2,000
Figure	7	VLF Survey Results, Duck Pond Grid; 1:2,000
Figure	8	HEM Survey Results, Skunk Creek Grid; 444Hz, 1:2,000
Figure	9	HEM Survey Results, Skunk Creek Grid; 1777Hz, 1:2,000
Figure	10	Magnetometer Survey Results, Skunk Creek Grid;
		1:2,000
Figure	11	VLF Survey Results, Skunk Creek Grid; 1:2,000
Figure	12	HEM Survey Results, Peter Lake Grid; 444Hz; 1:2,000
Figure	13	HEM Survey Results, Peter Lake Grid; 1777Hz;
		1:2,000
Figure	14	Magnetometer Survey Results, Peter Lake Grid; 1:2,000
Figure	15	VLF Survey Results, Peter Lake Grid; 1:2,000
Figure	16	HEM Survey Results, Running Ghost Lake Grid; 444Hz,
		1:2,000

- Figure 17 HEM Survey Results, Running Ghost Lake Grid; 1777Hz, 1:2,000
- Figure 18 Magnetometer Survey Results, Running Ghost Lake Grid; 1:2,000
- Figure 19 VLF Survey Results, Running Ghost Lake Grid; 1:2,000

INTRODUCTION

Proton precession magnetometer, horizontal loop electromagnetic and very low frequency (VLF) electromagnetic surveys were conducted on four properties in the western and eastern parts of Cunningham Township between September 15 - 29, and October 13 - 21, 1982. The field work completed on approximately 91 kilometres of grid is the subject of this report.

Location and Access:

The properties are located and described as follows (Figure 1):

Running Ghost Lake Grid (southern Cunningham/Greenlaw Township boundary)

- 16 unpatented claims P 641172 to P 641187 (inclusive)

Peter Lake Grid (west-central Cunningham Township)
4 leased claims S 116466 to S 116469 (inclusive)
14 unpatented claims P 641194 to P 641207 (inclusive)

Skunk Creek Grid (east-central Cunningham Township)

- 15 unpatented claims P 636223 to P 636229 (inclusive) P 636232, P 636485, P 636486 P 641676 to P 641679 (inclusive) and P 642065

Duck Pond Grid (adjoins Skunk Creek Grid to the South) - 8 unpatented claims P 642133 to P 642140 (inclusive)

Access to the westernmost groups is most easily attained by float equipped, fixed-wing aircraft from Ivanhoe Lake, 61 kilometres to the north. In addition, the Running Ghost and Peter Lake Grids are connected by an old wagon road which originates approximately 20 kilometres to the south in Sultan.

A 4-wheel drive access road from Garnet Lake, 12 kilometres to the east, to the Shunsby base metals prospect in central Cunningham Township, provides access to the Skunk Creek and Duck Pond Grids.

Previous Work:

FRANK R. PLOEGER

Prospecting of the Cunningham Township area in the early 1900's concentrated on the cherty iron formation as possible hosts of iron ore deposits. Emphasis was then switched to gold and finally base metals exploration with the discovery of zinc, lead and copper mineralization in the

sedimentary horizons.

The majority of work to date has been conducted on the M.W. Resources Ltd. property, formerly named Shunsby Gold Mines Limited and Consolidated Shunsby Mines Limited, which lies in the central portion of the Township. In addition to approximately 150 diamond drill holes aggregating 55,529 feet (16925 m, Siragusa, 1980) extensive trenching and and geological, geophysical and stripping qeochemical surveys have been conducted on the property. This work outlined 3 mineralized zones, the largest of which has been traced for 350 feet (105 m) along strike and 1000 feet (300 m) down dip - dips range between 20° and 30° west - and which averages 30 feet (9 m) in width. The mineralization occurs as bands, stringers and veins of sulphides in a sedimentary unit comprised of brecciated chert-magnetite iron formation, argillite, graphitic phyllite and sericite schist. The largest of these zones contains drill indicated reserves of 310,095 tons (Thurston et al, 1977) grading 1.2 percent copper, 1.3 percent zinc and significant lead, silver and cadmium. Previous work on, and in the vicinity of the Kidd Creek claim groups has shown that they are underlain by sedimentary horizons similar to those occurring on the M.W. Resources property.

In 1959-60, the Anaconda Company (Canada) Limited carried out geological, geophysical and diamond drilling

programs on a claim group coincident with the Running Ghost Lake Grid. No assays were reported, however, all drill holes intersected banded magnetite and sulphide iron formation.

Extensive trenching and test-pitting was evident in the area south of Peter Lake. Drilling by R.A. MacGregor in 1965, outlined small continuous sulphide lenses of up to 5% combined zinc/lead over widths of almost 6 m. Α self-potential survey by Geophysical Engineering Services in 1958, demonstrated that conductive sediments Limited underly the area immediately south of Peter Lake.

M.W. stratigraphic sequence of the The Resources property appears to strike southeasterly onto the adjoining Skunk Creek and Duck Pond Grids. In 1954, The American Metal Company Limited carried out geological and geophysical surveys and a limited amount of diamond drilling in an area covering the north part of the Duck Pond Grid. Their surveys and drilling located "limited sulphide mineralization" associated with shear zones and the contact between iron formation and greenstone.

Geophysical surveys and diamond drilling by Dome Exploration (Canada) Limited in 1971 and 1973, concentrated on outlining and testing the ultramafics which intrude the sedimentary-volcanic sequence on the south part of the Duck Pond Grid. The sediments intersected by the drilling comprised variably mineralized banded siliceous iron

formation, tuff and argillite.

Previous government surveys covering the Cunningham Township area include regional mapping by V.B. Meen (1942), detailed township mapping by G. M. Siragusa (1980) and airborne electromagnetic and magnetic surveys by the Ontario Geological Survey (1982). The airborne surveys showed up numerous conductors on all the claim groups.

GENERAL GEOLOGY

FRANK R. PLOEGER

Cunningham Township is underlain by a thick sequence of mafic to intermediate tuffs, pillowed and massive flows and intrusive equivalents. Interbedded with this related sequence are continuous lenses of siliceous magnetite and subordinate sulphide iron formation with associated argillaceous sediments and tuffaceous and felsic tuff, lapilli tuff and agglomerate. Discontinuous sill-like bodies of peridotite and pyroxenite cut the sequence locally. In the southwest corner of Cunningham Township, a plug of biotite-quartz monzonite related quartz-feldspar and porphyry dikes intrude the volcano-sedimentary pile causing local flattening of dips and changes in the strike of the units. North-South trending diabase dikes which are probably of the Matachewan type, represent the latest phase of intrusive activity in the township.

The Isaiah Creek fault has been shown by G.M. Siragusa to cut the granitic plug with an indicated left lateral displacement of approximately 2000 m.

PROPERTY GEOLOGY

FRANK R. PLOEGER

The Running Ghost Lake Grid is underlain mainly by a succession of mafic to intermediate tuffs and flows which separate, and to a lesser extent are interbedded with, two sedimentary horizons. The lowermost horizon, which outcrops east of the lake, comprises a shallow westward-dipping, north-south-striking sequence of chert, greywacke, argillite magnetite with subordinate sulphide iron formation. and Diamond drill holes into the poorly-exposed, upper sedimentary unit intersected graphitic argillite and impure sediments mineralized with bands and stringers of pyrrhotite.

The volcanic-sedimentary pile is intruded by gabbroic, dioritic and ultramafic sills and by the granitic plug on the east boundary.

Geologically, the <u>Peter Lake Grid</u> may be divided into 3 sections. The northern and southern thirds of the property are underlain by mafic and intermediate tuff, massive and pillowed flows, felsic pyroclastics and mafic intrusive rocks. Well fractured siliceous iron formation and associated argillite, mafic and felsic tuff and sulphide iron formation constitute the central sedimentary section of the property. Previous work in fractured and guartz-veined chert and mafic volcanics, approximately 150 m south of the east end of Peter Lake, outlined a 200 m long zinc-lead-rich zone which assayed up to 4.2% zinc and 1.0% lead over 5.6 m.

 $\widehat{\Omega}$

A small tongue of the granitic plug outcrops in the southeast corner of the property.

<u>The Skunk Creek</u> grid is almost entirely underlain by north to northwest-striking mafic to intermediate pillowed and massive flows intruded by concordant to subconcordant gabbroic sills. Many of the sills may in fact be massive flows. Several airborne EM anomalies occur at the contact between a wide gabbroic sill and the intruded mafic flows northeast of Skunk Creek.

The extrusive/intrusive mafic package of the Skunk Creek Grid continues southward onto the adjoining <u>Duck Pond</u> <u>Grid</u>. Overlying this package is a central sedimentary horizon flanked by felsic pyroclastic units. The sediments comprise a northwest-striking, southwest-dipping sequence of fragmented chert, argillite, mafic and felsic tuff and banded magnetitie and sulphide facies of iron formation similar to that at Peter Lake. Mineralization logged in previous drilling and observed in a surface showing includes

banded pyrrhotite and pyrite with minor chalcopyrite and sphalerite; pyrite, chalcopyrite, sphalerite and galena also occur in veins and fracture-fillings. East-west-trending mafic and ultramafic sills intrude the volcanic-sedimentary sequence.

SURVEY DETAILS

On all four Cunningham grids, crosslines were cut at 100 metre intervals with stations established every 20 metres.

Magnetic readings were taken with a Geometrics G816 proton precession magnetometer. This instrument measures the earth's total magnetic field to an accuracy of \pm 1 gamma. Base stations were established at the most convenient tie in points due to the number of rivers and lakes on the grids. A total of 3990 readings were taken along 80 kilometres of line.

The horizontal loop survey was carried out with an Apex Parametrics MaxMin II using a coil separation of 80 metres. Readings were taken every 20 metres at frequencies of 444Hz and 1777Hz. A total of 3750 readings were taken along 75 kilometres of line.

Very low frequency (VLF) readings were taken with a Crone Radem EM receiver. This instrument measures the dip

angle of the magnetic field component in degrees with an accuracy of \pm 1/2 degree. The transmitting stations used in the surveys were:

Freq.

Duck Pond Grid-Seattle, Washington24.8 KHzSkunk Creek Grid-Cutler, Main17.8 KHzPeter Lake Grid-Cutler, Main17.8 KHzRunning Ghost---

Lake Grid - Annapolis, Maryland 21.4 KHz A total of 3990 readings were taken along 80 kilometres of line.

SURVEY RESULTS

Duck Pond Grid

The Duck Pond Grid adjoins the south end of the Skunk Creek Property in east-central Cunningham Township. The property is geophysically dominated by five major northwest trending horizontal loop anomalies and a number of minor satellite anomalies (Figure 4).

Anomalies A, B, C and D are magnetically and geologically identified as being caused by sedimentary iron formations consisting of banded magnetite and sulphide mineralization. Anomalies E, F, G and H are magnetically and geologically identified as being caused by non magnetic sulphide mineralization and argilliceous sediments. Anomaly I does not appear to have a bedrock source. The data for the horizontal loop anomalies is listed as Table 1.

A northwest trending fault running between Line 17300E at 131 + 10 N and Line 17800 E at 125 + 00 N (Ploeger, 1982) is seen as a major break in the magnetic picture. This discontinuity appears to mark the contact between the western sediments and the eastern volcanic sequences. This fault also offsets a large peridotite mass in the southeast corner of the property which gives a moderate to strong magnetic anomaly.

The VLF survey detected most of the EM conductors as well as some of the geologic contacts. An inferred VLF anomaly running under Skunk Creek on Lines 17200 E, 17300 E and 17400 E that was not covered in the horizontal loop survey was tested by a hole drilled in 1954 by American Metal Company Ltd. (AM 304) and intersected "limited sulphide mineralization". This trend continues into the Skunk Creek Property and more will be said about it in the Skunk Creek survey results. Figure 3 depicts the remaining holes previously drilled on the Duck Pond Property as well as the horizontal loop anomalies.

Table 1:	Horizontal Lo	oop Anomalies	A, B, C, D,	E, F,	G, H;	1982, Duck	Pond Grid, 444 1	Hz, 80m coil separation
Line	Anomaly Center	Anomaly Width	Indicated Depth	I.P Max.	O. P Max.	Response Parameter	Conductivity Thickness	Remarks
Anomaly A								
17000E	128+00N	32m	10m	-40	-13	45	160 mhos	Assume Dip 60 ⁰ SW
17100E	126+75N	30m	< 8m	-48	-12	55	200 mhos	۳.
17200E	126+20N	30m	< 8m	-43	-12	50	180 mhos	н
17400E	126+35N	8m	30m	-10	- 7	13	50 mhos	11
Anomaly B								
17100E	129+80N	thin	24m	-15	- 9	15	50 mhos	Assume Dip 60 ⁰ SW
17200E	129+25N	7m	28m	-15	- 6	30	100 mhos	n
17300E	128+40N	46m	20m	-23	-11	30	100 mhos	11
17400E	128+10N	2m	26m	-22	- 6	50	180 mhos	11
	129+32N	4m	18m	-12	-13	6	21 mhos	"
17500N	129+30N	12m	14m	-35	-12	45	160 mhos	U .
17600N	129+00N	74m	8m	-47	-10	70	250 mhos	Definitely multiple conductors
Anomaly C								
17000E	132+40N	4 Om	23m	-19	- 9	28	100 mhos	Assume Dip 60 ⁰ SW
17100E	131+86N	28m	18m	-27	-11	33	120 mhos	"
17200E	130+94N	52m	32m	-13	- 6	40	140 mhos	"
17300E	130+04N	42m	< 8m	-53	-18	45	160 mhos	"
17400E	129+80N	18m	12m	-12	-16	4	14 mhos	
Amonaly D				1	<u> </u>			
17300E	130+94N	2m	22m	-18	-10	18	65 mhos	Assume Dip 60 ⁰ SW
]			
							1	

· · ·

and the second sec

Line	Anomaly Center	Anomaly Width	Indicated Depth	1. P Mox	O. P Max	Response Parameter	Conductivity Thickness	Remarks
Anomaly E				11104.				Keindi Ka
17200E	132+88N	15m	28m	-13	- 7	. 20	70 mhos	Assume Dip 90 ⁰
Anomaly F								
17400E 17500E	131+72N 130+64N	15m 48m	20m < 8m	-17 -51	-11 -15	15 52	50 mhos 180 mhos	Assume Dip 90 ⁰ "
17600E	130+25N	10m	< 8m	-57	-20	45	160 mhos	ų
17700E	129+56N	16m	< 8m	-46	-13	52	180 mhos	"
17800E	129+24N	2 Om	< 8m	-28	-20	12	43 mhos	n
Anomaly G								
17700E	130+64N	thin	20m	-13	-12	7	25 mhos	Assume Dip 90 ⁰
17800E	130+28N	thin	23m	-11	-10	7	25 mhos	н
Anomaly H 18000E	130+00N	24m	25m	-20	- 7	35	, 125 mhos	Assume Dip 90 ⁰
								-

Skunk Creek Grid

The Skunk Creek Grid is situated in east-central Cunningham Township adjoining the east boundary of the M. W. Resources (Shunsby) property. The property is geophysically dominated by one major northwest trending horizontal loop anomaly and two one line anomalies located under Skunk Creek (Figure 8).

Anomaly A is the ground EM representation of an INPUT anomaly east of Skunk Creek. The VLF survey shows this trend continuing south to Line 14500 N and then branching into two VLF anomalies. The magnetometer survey shows conductor A to have a slight magnetic low similar to the eastern conductors, in the Duck Pond Property. The VLF anomaly on Line 14600 N at 170 + 60 E is coincident with a north-south trending magnetic high.

The single horizontal loop anomaly called anomaly B is coincident with and inferred west-northwest trending VLF anomaly running under Skunk Creek. This non magnetic trend may represent a fault rather than the non bedrock anomalies that the other creek bottom responses appear to be; thus Anomaly B may be the EM representation of conductive material remobilized into the fault.

Anomlay C appears to mark the northern extent of the VLF anomaly tested in 1954 by American Metals drill hole (AM304). The drill hole results and the VLF anomaly is

discussed in the Duck Pond survey results.

Data for the horizontal loop anomalies found on the Skunk Creek Grid is listed as Table 2. Figure 2 depicts the horizontal loop anomaly for conductor A.

Peter Lake Grid

The Peter Lake Grid is situated in west-central Cunningham Township at the Greenlaw Township boundary. The property is geophysically dominated by a wide east-west trending highly magnetic zone containing numerous strong horizontal loop anomalies (Figure 12).

Anomalies A, B, C, D, E, F, G and H are all found in this central zone of erratic magnetic highs. This zone has been geologically identified (Ploeger, 1982) as a sequence of cherty sediments containing magnetite and sulphide mineralization. The highly conductive zones detected in the horizontal loop survey represent numerous, closely spaced conductors that give one large anomaly. The VLF survey has been very helpful in separating the individual zones but with so many anomalies, it is difficult to identify separate conductors.

Anomalies I, J and K are found north of the magnetic sediments in an area underlain by mafic to intermediate metavolcanics and intrusives. Anomaly K is the only zone coincident with a slight magnetic high. The data for the

Table 2:	Horizontal Lo	oop Anomalies	A, B, C; 19	82, Sk	unk Cr	eek Grid, 444	Hz, 80m coil a	separation
Line	Anomaly Center	Anomaly Width	Indicated Depth	1. P Max.	O. P Max.	Response Parameter	Conductivity Thickness	Remarks
Anomaly A								
15000N	167+38E	llm	25m	- 8	- 9	2.6	9 mhos	Assume Dip 30 ⁰ SW
14900E	168+28E	7m	22m	-13	-12	3.5	12 mhos	n
14800N	168+77E	12m	19m	-12	-15	2.5	9 mhos	
14700N	169+49N	8m	20m	-20	-12	9	32 mhos	11
Anomaly B								
14300N	168+06E	13m	10m	-49	-12	55	200 mhos	Assume Dip 30 [°] SW
Anomaly C								
13600N	171+67E	13m	20m	-12	-11	8	28 mhos	Assume Dip 30°SW
						1		
			1					
				1			+	
				ļ				
			}					
					ł			
	1	1	1	ł	1]		

-

.

يواد با بيوسوسية بالمحاف المنطقية المتارك الم

horizontal loop anomalies is listed as Table 3.

A minor north-south magnetic trend is found at the west boundary of the grid. This anomaly may represent one of the north-south trending diabase dikes found in the township.

Running Ghost Lake Grid

The Cunningham/Greenlaw Township boundary and Running Ghost Lake roughly divide this grid into two equal halves. The property is geophysically dominated by a wide north-south trending magnetic anomaly just east of Running Ghost Lake. This erratic magnetic zone contains several strong horizontal loop responses (Figure 16).

Anomalies E, F and I are all found in this central zone of erratic magnetic highs. This zone has been geologically identified (Ploeger, 1982) as containing several sedimentary and felsic tuff horizons occurring within a mafic sequence of tuffs and massive and pillowed flows. The conductive component of the sediments is a series of cherty bands containing magnetite and subordinate sulphide iron formation which outcrop on the eastern side of the lake. The two weak north-south trending magnetic anomalies on either side of the lake reflect Matachewan type diabase dikes.

Anomalies A, B, C, D, G and H are all found outside of the highly magnetic zone with only A and D having even a slight magnetic response. Drilling in 1960 by The Anaconda

_	

Anomaly Indicated 1.P O.P Response Conductivity Anomaly 1.1

. .

Horizontal Loop Anomalies A, B, C, D, E, F, G, H, I, J; 1982, Peter Lake Grid, 444 Hz, 80 m coil separat Table 3:

.

LINE	Center	<u>wiath</u>	Deptn	<u>Max.</u>	MOX.	Parameter	INICKNESS	Remarks
Anomaly A 10800E 10900E 11000E	137+73N 137+83N 137+80N	10m 84m 80m	16m 13m 18m	-9 -30 -15	-2 -12 -12	4 30 10	14 mhos 107 mhos 36 mhos	Assume Dip 90 ⁰ Assume Dip 90 ⁰ Assume Dip 90 ⁰
Anomaly B 10400E 10500E	140+05n 140+20n	52m 80m	8m < 8m	-21 - 2	-20 -18	8 1	28 mhos 3 mhos	Assume Dip 90 ⁰ Quadrature Response
Anomaly C 10600E 10700E 10800E 10900E	142+16N 141+94N 142+00N 142+00N	20m 42m Thin 76m	21m 18m 37m <8m	-24 -29 - 9 -50	- 5 - 8 - 4 -16	70 52 25 45	250 mhos 185 mhos 90 mhos 160 mhos	Assume Dip 90 ⁰ Assume Dip 90 ⁰ Assume Dip 90 ⁰ A definite multiple conductor
Anomaly D 10800E 10900E 11000E	143+86N 143+80N 143+17N	16m 24m 104m	16m 16m 9m	-27 -19 -25	-11 -14 -19	32 11 11	114 mhos 39 mhos 39 mhos	Assume Dip 90 ⁰ Assume Dip 90 ⁰ A definite multiple conductor
Anomaly E 11200E 11300E 11400E 11500E 11600E 11700E	141+60N 142+18N 142+72N 142+96N 143+96N 144+37N	185m 140m 256m 234m 104m 68m	< 8m < 8m < 8m < 8m < 8m 2 0m	-43 -55 -51 -55 -40 -10	-17 -16 -17 -22 -16 -11	32 45 42 30 35 6	114 mhos 160 mhos 150 mhos 107 mhos 124 mhos 21 mhos	All responses are of multiple conducto Assume Dip 90° Assume Dip 90° Assume Dip 90° Assume Dip 90° Assume Dip 90° Assume Dip 90°
Anomaly F 11000E 11100E	140+44N 140+40N	28m 98m	21m <8m	-10 -25	-10 -20	7 10	25 mhos 36 mhos ⁻	Assume Dip 90 ⁰ A definite multiple conductor
	1	1	1	1	1	1	1	1

Table 3 Continued.....

Line	Anomaly Center	Anomaly Width	Indicated Depth	I.P Max.	O. P Max.	Response Parameter	Conductivity Thickness	Remarks
Anomaly G 11300E 11400E 11500E 11600E 11700E	140+14N 140+09N 141+00N 141+74N 142+76N	20m 50m Thin 4m 16m	< 8m < 8m 1 0m 8m 2 0m	-50 -35 -30 -25 -19	-18 -19 -16 -20 -10	40 17 20 10 9	142 mhos 60 mhos 71 mhos 36 mhos 32 mhos	Assume Dip 90 ⁰ A definite multiple conductor Assume Dip 90 ⁰ Assume Dip 90 ⁰ Assume Dip 90 ⁰
Anomaly H 11700E	140+90N	Зm	22m	-11	-10	8	28 mhos	Assume Dip 90 ⁰
<u>Anomaly I</u> 10300E 10400E	146+70N 147+08N	8m 6m	26m 16m	3 5	-4 -8	3 3	ll mhos ll mhos	Assume Dip 90 ⁰
Anomaly J 10400E 10600E	145+12N 145+28N	Thin 8m	28m 23m	-12 -16	-7 -9	15 15	53 mhos 53 mhos	Assume Dip 90 ⁰ Assume Dip 90 ⁰
Anomaly K 11300E 11400E 11500E 11600E	150+32N 150+70N 150+90N 151+32N	Thin Thin 4m 8m	30m 21m 16m 14m	-6 -20 -32 -35	-6 -9 -8 -8	7 25 55 60	25 mhos 89 mhos 196 mhos 213 mhos	Assume Dip 90 ⁰ Assume Dip 90 ⁰ Assume Dip 90 ⁰ Assume Dip 90 ⁰
							-	

•

Company Ltd. on conductors A and D intersected graphitic argillite and impure sediments with some stringer pyrrhotite in a sequence of mafic tuffs and flows. The data for the horizontal loop anomalies is listed as Table 4.

The VLF survey detected all of the EM conductors as well as a major discontinuity between Lines 11400 N and 11300 N east of Running Ghost Lake. This anomaly offset may be due to the diabase intrusion in this area of the property.

Michael W. ZANG

Line	Anomaly Center	Anomaly Width	Indicated Depth	I.P Max.	O, P Max.	Response Parameter	Conductivity Thickness	Remarks
Anomaly A 12000N 11900N 11800N 11700N 11600N 11500N	95+30E 95+60E 96+08E 96+23E 96+40E 96+62E	14m Thin 12m 9m 34m 20m	21m 24m •8m 14m 8m 9m	-12 - 2 -35 -23 -36 -36	-11 - 3 -18 -14 -16 -15	8 2 20 14 25 29	28 mhos 7 mhos 71 mhos 50 mhos 89 mhos 103 mhos	Assume Dip 90 ⁰ Assume Dip 90 ⁰
<u>Anomaly B</u> 11700N 11600N	94+80E 95+00E	Thin Thin	Shallow Shallow	-	- 6 - 8	- -	Low Low	Quadrature Respnse Assume Dip 90 ⁰ Assume Dip 90 ⁰
Anomaly C 11400N 11300N 11200N	96+12E 96+20E 96+60E	Thin Thin Thin	20m 13m 15m	-10 - 9 - 4	-11 -13 - 7	6 4 2.5	21 mhos 14 mhos 9 mhos	Assume Dip 90 ⁰ Assume Dip 90 ⁰ Assume Dip 90 ⁰
Anomaly D 11100N 11000N	95+90E 97+10E	Thin 13m	27m 22m	- 7 -13	- 7 -10	7 10	25 mhos 36 mhos	Assume Dip 90 ⁰ Assume Dip 90 ⁰
Anomaly E 11900N 11800N	103+78N 104+08E	Thin 2m	33m 16m	- 6 36	- 5 - 5	9 90	32 mhos 320 mhos	Assume Dip 90 ⁰ Assume Dip 90 ⁰
Anomaly F 11900N 11800N 11700N 11600N 11500N 11400N	102+85E 102+86E 103+20E 103+43E 102+52E 102+80E 102+70E	Thin 50m 150m Thin Thin? Thin? Thin?	38m 12m 22m 12m - 17m 17m	-10 -38 -12 -27 -18 -18 -18	- 3 - 8 -10 -16 - - -13 -13	45 70 9 15 - 11 11	160 mhos 250 mhos 32 mhos 53 mhos High 39 mhos 39 mhos	Assume Dip 90 ⁰ A definite multiple conductor A definite multiple conductor

Table 4 : Horizontal Loop Anomalies A, B, C, D, E, F, G, H, I: 1982 RUNNING GHOST LAKE GRID, 444Hz, 80 m coil separation

•

.

Table 4 Continued.....

Line	Anomaly Center	Anomaly Width	Indicoted Depth	I.P Max.	O. P Max.	Response Parameter	Conductivity Thickness	Remarks
Anomaly G 12100N 12000N	107+05E 106+76E	Thin 7m	8m 19m	- 4 -14	-10 -12	1.6 9	6 mhos 32 mhos	Assume Dip 90 ⁰ Assume Dip 90 ⁰ .
Anomaly H 11700N	105+20E	2m	17m	-10	-12	5	18 mhos	Assume DIP 90 ⁰
Anomaly I 10900N 10800N	106+00E 106+72E	Thin 4m	14m ∢8m	-20 -22	-15 -21	11 7	39 mhos 25 mhos	Assume Dip 90 ⁰ Assum Dip 90 ⁰
<u></u>								
							-	

-

REFERENCES:

Meen, V. B.

1942: Cunningham Garnet Area, District of Sudbury, Ontario; Map No. 51f (to accompany Ont. Dept. of Mines Annual Report Vol. LI, Part 7, 1942), Scale 1:63,360 or 1 inch to 1 mile.

OGS,

1982:Airborne Electromagnetic and Total Intensity Survey, Swayze Area, Magnetic Isaiah Lake Sheet, District of Sudbury: by Questor Surveys Limited for the Ontario Geological Survey, Map 80 546 Geophysical/Geochemical Series, Scale 1:20 000. Survey and Compilation December, 1980, to February 1981.

Ploeger, F.R.

1982: Kidd Creek Mines Ltd. Geological Report on Cunningham 31, Running Ghost Lake, Peter Lake, Skunk Creek and Duck Pond Grids, Cunningham Base Metals Project #75, (N.T.S.: 41-0-10), November. Siragusa, G. M.

,

: 3

1980: Cunningham Township Area, District of Sudbury; Ontario Geological Survey Prelim. Map P. 2339 Geological Ser., Scale 1:15 840 or 1 inch to 1/4 mile. Geology 1978.

Thurston, P.C., Siragusa, G.M., and Sage, R.P.

1977: Geology of the Chapleau Area, Districts of Algoma, Sudbury, and Cochrane; Ontario Div. Mines, GR157, 293p. Accompanied by Maps 2351 and 2352, scale 1:250,000, and Map 2221, Scale 1 inch to 4 miles (1:253,440).

Ministryol Rap	sort of Work	im'	Tur	p.			· · 			
tario	ophysical, Geological, chemical and Expendi	tures)	The Minit	127	41010NE0	034 2	2.5403 CUN	IN INGHAM		q
ype of Survey(s) Geopł	hvsical	, 		ig Act	Towr	nship ((or Area Cunning	ham		
laim Holder(s)							Prospecto	or's Licence No.		
Kidd	Creek Mines Li	mited		Datas	11' + +	- •0		1		-
urvey Company Kidd	Creek Mines Li	mited		LO. 1 QB	(linecutii) 82 0	ng to t 18., j(office) 02_18/3	91 km	Cut	
lame and Address of Author (c	of Geo-Technical report)			108Y WIU,	<u>Чү, р.</u>	hay	Mo.			1
M.W. Zang, Kidd	1 Creek Mines L	imited,	571 Mor	neta Ave., 7	<u>rimmin</u>	.s, C	<u>)ntario</u>	P4N 7H9		
pecial Provisions Credits me	equested	Dave Der	Mining	Claims Traverseo Mining Claim	List in r	nume	rical sequ	ence) Mining Claim	Expend,	1
For first survey	Geophysical	Cialm	Prefix	Number	Days (Cr.	Prefix	Number	Days Cr.	4
Enter 40 days. (This includes line cutting)	Electromagnetic	40	p	641172 /		_	Р	641203		4
	- Magnetometer	40	P-	641173 /		_		641204		4
For each additional survey: using the same grid:	- Radiometric			641174				641205	<u>``</u>	_
Enter 20 days (for each)	- Other			641175				641206	<u>\</u>	
	Geological			641176				641207	T]
	Geochemical			641177				641676	$\overline{\mathbf{N}}$	1
ian Days		·		641178 🔨				641677		1
histructions	Geophysical	Days par Claim		641179		-1		641678		ł
Complete reverse side * and enter total(s) here	- Electromagnetic		l	CA1100		-1		641670	-	1
	- Magnetometer			641180				6410/9	<u>↓`</u>	1
	- Badiometric			641181 🔪	_	_		642065	\rightarrow	-
	- Other			641182 🔨	·	<u>·</u>		642133		_
				641183				642134		
	Geologicai			641184				642135		
· to a sume Overalise	Geochemical	⊥		641185				642136		1
Irborne Greans	Τ	Days per		641186 🔪				642137		1
Note: Special provisions credits do not apply		Claim		641187				6421-38		·
to Airborne Surveys.	Electromagnetic			641104		-		640120	$\forall \mathcal{R} \mathcal{P}$	<u>-</u> L
	Magnetometer			CA1105 \		\neg		042100 CD	4 5 10	12
	Radiometric			641195 -		-	ler A	64214UF.ED	10 0	
kpenditures (excludes powe yoe of Work Performed	er stripping)			641196	_		1,20	636223	C	
/po 01 11010 /		he he		64119/			54	1838224	* ************************************	
informed on Claim(s)	FEB 1 8 19	83		641198 🔪		-1	لا يو ال	636226	_	
				641199		all'	WY	838228		
	WINING LANDS	SECTION	1	641200		Th	P V.	636229		
alculation of Expenditure Days	s Credits	fotal		641201		715	11.0	636485		
Total Expanditures		Credits		641202	17	1	n Pa	636486		
\$				<u></u>	<u></u>	-	Total nu	mber of mining		ן ר
structions Total Days Credits may be an choice, Enter number of day	pportioned at the claim h is credits per claim selecte	iolder's ad		For Office Use			claims co report of	work.	53]
in columns at right.			Total Day Recorder	vs Cr. Date Recorded	1/0	•,	Ministery an	scorder.	> ~	
ate of Report Rer	corded Holder or Agent (S	Signature)	424	Date Approve	d as Reco	rded	Regiagal	Bhan Minike Hecor	der	{
rtification Verifying Repo	rt of Work	<u>2-</u>	L		·			······		1
I hereby certify that I have a	personal and intimate kn	nowledge of 1	the facts set	; forth in the Report	t of Work	annex	ked hereto,	having performed th	he work	1
ame and Postal Address of Per	son Certifying		X80 10po	\$ ltuc,	<u>,</u>					{
Micheal W. Zanç	J, P.O. Box 114	0, 571 1	Moneta	Ave., Timmir	ns, On	tari	LO P4N	7H9		
				Date Certifled	1	~	Certified	by (Signature)		1

2.5403

27

2.5403

1983 09 26

Mining Recorder Ministry of Natural Resources 60 Wilson Avenue Timmins, Ontario P4N 2S7

Dear Sir:

RE: Geophysical (Electromagnetic & Magnetometer) Survey on Mining Claims P 641172 et al in the Cunningham Township

The Geophysical (Electromagnetic & Magnetometer) Survey assessment work credits as listed with my Notice of Intent dated August 25, 1983 have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours very truly,

E.F. Anderson Director Land Management Branch

Whitney Block, Room 6450 Queen's Park Toronto, Ontario M7A 1W3 Phone: 416/965-1380

R. Pichette:sc

cc: Kidd Creek Mines Ltd Timmins, Ontario

cc: Resident Geologist Timmins, Ontario

Ministry of Natural Resources Work Credits	Date 1983 08 25 Work No. 27
Recorded Holder KIDD CREEK MINES LIMITED	
Township of Area CUNNINGHAM TOWNSHIP	
Type of survey and number of Assessment days credit per claim	Mining Claims Assessed
Geophysical	P 641176 to 87 inclusive
Electromagnetic days	641194 to 204 inclusive
Magnatometerdays	641206 641676 to 79 inclusive
Hidginotomoto.	642065
Radiometric days	642133 to 140 inclusive 636224 to 28 inclusive
Induced polarization days	636232
aven	636485-86
Other 00,0	
Section 77 (19) See "Mining Claims Assessed" column	
Geological days	
Geochemical days	
	•
Special provision 🛛 Ground 🖄	
Credits have been reduced because of partial coverage of claims.	
Credits have been reduced because of corrections to work dates and figures of applicant.	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
30 DAYS CREDIT. ELECTROMAGNET	C 20 DAYS CREDIT. MAGNETOMETER
P 636223 、	P 641172 to 75
20 DAYS CREDIT, ELECTROMAGNETI	IC 641207
D 641172 to 75 inclusive P 64	1205 636223
<u>636229</u> <u>64</u>	1207 030229
o credits have been allowed for the following mining come	ч. ч. н. 29-д
L' not sufficiently covered by the survey	chnical data fileo
÷.	
•	

each claim does not exceed the maximum allowed as follows: Geophysical --- 80; Geological --- 40; Geochemical --- 40; Section 77 (19)-828 (83/6)

Ministry of Natural Resources

Jept de / 6/83

Your file: #27 2,5403 Our file:

1983 08 25

Mr. William L. Good Mining Recorder Ministry of Natural Resources 60 Wilson Avenue Timmins, Ontario P4N 2S7

Dear Sir:

Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the other. In approximately fifteen days from the above date, a final letter of approval of these credits will be sent to you. On receipt of the approval letter, you may then change the work entries on the claim record sheets.

For further information, if required, please contact Mr. F.W. Matthews at 416/965-1380.

Yours very truly,

E.F. Anderson

R. Pichette:mc

Ðfrector Land Management Branch

Whitney Block, Room 6450 Queen's Park Toronto, Ontario M7A 1W3 Phone: 416/965-1316

Encls: cc: Kidd Creek Mines Ltd Box 1140 571 Moneta Avenue Timmins, Ontario P4N 7H9

cc: Mr. G.H. Ferguson Mining & Lands Commissioner Toronto, Ontario

Ministry of Natural Resources Notice of Intent for Technical Reports 1983 08 25 2.5403/27

An examination of your survey report indicates that the requirements of The Ontario Mining. Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on his record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the "Special Provision-Performance and Coverage" method and you are of the opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted direct to the Lands Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued.

2.5403

Box 1140 571 Moneta Avenue, Timmins, Ontario P4N 7H9 (705) 267-1188

Kidd Creek Mines Ltd.

Exploration Division

August 15, 1983

Mr. E. F. Anderson, Director Land Management Branch Whitney Block, Room 6450 Queen's Park Toronto, Ontario M7A 1W3

106 1 8 1983

RECEIVED

MINING LANDS SECTION

Dear Sir:

RE: Geophysical (Electromagnetic and Magnetometer) Survey on Mining Claims P 641172 et al in the Cunningham Township

Herein are three plans for the above-described survey. Each copy has been signed quoting file 2.5403.

Yours very truly,

Michael W. Zong

Mike Zang

MZ/srw Encl.

August 5, 1983

Kidd Creek Mines Ltd Box 1140 571 Moneta Avenue Timmins, Ontario P4N 7H9

Attention: M.W. Zang

Dear Sir:

RE: Geophysical (Electromagnetic and Magnetometer) Survey on Mining Claims P 641172 et al in the Cunningham Township

Returned herein are three plans for the above-described survey. Please sign each copy and return them quoting file 2.5403.

For further information, please contact Mr. F.W. Matthews at (416)965-1380.

Yours very truly,

E.F. Anderson Director Land Management Branch

Whitney Block, Room 6450 Queen's Block Toronto, Ontario M7A 1W3 Phone: (416)965-1380

S. Hurst:mc

Encl.

cc: Mining Recorder Timmins, Ontario 2.5403

S Intario	Ministry of Natural Resources	Geotechnical Report Approval		May 24/8	[₽] 3.5403
Min	ing Lands Co	mments			
		-	<u>E </u>	ac has at the	$\overline{\alpha}$ λ
					2
				•	
		:			o.K.
Lo: Com	Geophysics	Mr. Ballow			
	IV e	ed sign	ature or	n one m	ragnetic
	M	up			
	Approved	Wish to see again with co	prrections	Date July 26/03	Signature Las H. Pitch
To:	Geology - Ex	penditures		0 8 /	· /
Com	ments				
	Approved			Date	Signature
	Geochemistry				
Com	ments	, 			
)	
	Approved	Wish to see again with or	prections	Date	Signature
	I-PP-9V8U	Li man to see again with ct			

Mining Recorder Ministry of Nat ral 60 Wilson Avenue Timmins, Ontario P4N 2S7

Dear Sfr:

We have received reports and maps for a Geophysical (Electromagnetic and Magnetometer) Survey submitted under Special Provisions (credit for Performance and Coverage) on Mining Claims P 641172 et al in the Township of Cunningham. 2.5403

This material will be examined and assessed and a statement of assessment work credits will be issued.

Yours very truly,

E.F. Anderson Director Land Management Branch

Whitney Block, Room 6450 Queen's Park Toronto, Ontario M7A 1W3 Phone: 416/965-1380

A. Barr:sc

cc: Kidd Creek Mines Limited Timmins, Ontario Attn: Mr. M.W. Zang.

Kidd Creek Mines Ltd.

Box 1140 571 Moneta Avenue, Timmins, Ontario P4N 7H9 (705) 267-1188

Exploration Division

February 25, 1983

RECEIVED

Mr. E. F. Anderson, Director, Land Management Branch, Whitney Block, Room 6450, Queen's Park, Toronto, Ontario. M7A 1W3. TEB 2 8 1983

MINING LANDS SECTION

Dear Sir:

Re: Cunningham Township

Enclosed please find duplicate copies of a report and maps covering claims in Cunningham Township.

Your prompt attention to this matter would be greatly appreciated.

Yours truly,

KIDD CREEK MINES LTD. EXPLORATION Freen for M.W. Lang

MWZ/mg Encl.

Ministry of Natural Resources

File_

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s)	Geophysical			
Township or Area	Cunningham	***.24 ***,******************************	[MINING CLAIMS TRAVERSED
Claim Holder(s) Kidd	l Creek Mines L		List numerically	
P.0. Box	1140, 571 Mone	ta Ave., Timmins, (nt.	
Survey CompanyKidd	Creek Mines L	imited		(See Attached Schedule)
Author of Report	Zang, Kidd Cr	eek Mines Ltd.		(prenx) (number)
Address of Author	Moneta Avenue,	Timmins, Ontario		
Covering Dates of Survey_	August 1982 -	Feb 1983	[
Total Miles of Line Cut_	91 Km			
SPECIAL PROVISIONS	S	DAYS		
CREDITS REQUESTED	D Geopl	nysical per claim		
	_Elec	tromagnetic 40		
LNIER 40 days (includ	les –Mag	netometer 40		••••••
survey.	-Rad	iometric		1•
ENTER 20 days for eac	ch —Oth	er		
additional survey using	Geolo	gical		
same grid.	Geoch	nemical		
AIRBORNE CREDITS (s	special provision credits of	lo not apply to airborne surveys)	
MagnetometerEle	ectromagnetic	Radiometric	[
	(enter days per clair	n) 		
DATE: Feb. 7, 198	≥ SIGNATURE: ∠	Author of Report or Arent	in the second se	
		· ·		
Res. Geol	Qualifications_			
Previous Surveys				
File No. Type	Date	Claim Holder		
·····				
				TOTAL CLAIMS

OFFICE USE ONLY

GEOPHYSICAL TECHNICAL DATA

/____

-

G	ROUND SURVEYS - If more	than one survey, specify da	ta for each type of survey North 2000								
	Mag HL	3258)							
N	umber of Stations	3990	Number of Readings								
S	ation interval 20m		Line spacing 100m								
Р	ofile scale Horizontal Loo	p, $lcm = 20$ %; VLF, lcr	m = 20m								
0	ontour interval Variable, depending on magnetic relief										
U											
IETIC	Geometrics	C816									
	Instrument	+									
	Accuracy – Scale constant	A number of bace stat:	tong wore get up on each guid and								
AG	Diurnal correction method	During contention method checked every 3-4 hours _ Water obstacles made it									
X	Base Station check-in interval (hours) checked every 3-4 hours. water obstacles made it										
	Base Station location and value	e impossible to either	r systematically loop the base lines or								
	to the together the vari	ous base stations.									
<u>1</u>	Instrument <u>Apex Parame</u>	trics MaxMin II									
<u>VET</u>	Coil configuration Hori	zontal Loop									
AG	Coil separation	etres									
/WC	Accuracy		·····								
IRC	Method:	ixed transmitter 🛛 🗆 S	Shoot back 🖾 In line 🗔 Parallel line								
EC	Frequency 444 Hz and 1	777 Hz									
EI	In-P	hase and Quadrature co	V.L.F. station) omponents of secondary field as percent								
	rarameters measured of transmitted field.										
	Instrument										
X	Scale constant										
VIT	Corrections made										
RA.		¶-₩19-a-mmat									
U	Base station value and location]									
	Elevation accuracy										
	Instrument										
Z	Method 🔲 Time Domain		Frequency Domain								
110	Parameters – On time		Frequency								
X	- Off time		Range								
VIT	– Delay time										
IO II	– Integration time										
D P ESK	Power										
RI	Flectrode array										
<u>j</u> Q,	Fleetrode enging										
H	Electrode spacing										
	Type of electrode										

SELF POTENTIAL

Instrument	Range
Survey Method	
,	
Corrections made	

.

RADIOMETRIC

Instrument	
Values measured	
Energy windows (levels))
Height of instrument	Background Count
Size of detector	
Overburden	
	(type, depth — include outcrop map)
OTHERS (SEISMIC, D	RILL WELL LOGGING ETC.)
Type of survey	VLF Station
Instrument	Crone Geophysics Radem
Accuracy	- 1 ⁰
Parameters measured	Dip of E.M. field
	VLF Stations used N-S Lines: Seattle, Wash. E-W Lines Annapolis
Additional information	Maryland (for understanding results)
	、
AIRRORNE SURVEVS	
$\frac{1}{1}$	
Instrument(s)	
Instrument(s)	(specify for each type of survey)
Accuracy	(specify for each type of survey)
Aircraft used	(~F)
Sensor altitude	
Navigation and flight pa	ath recovery method
	·
Aircraft altitude	Line Spacing
Miles flown over total a	ireaOver claims only

GEOCHEMICAL SURVEY - PROCEDURE RECORD

ς.

Numbers of claims from which samples taken_____

Total Number of Samples	ANALYTICAL METHODS
Type of Sample(Nature of Material) Average Sample Weight Method of Collection	Values expressed in: per cent Values expressed in: p. p. m. values of the contract of p. p. m. values of the contract of p. p. b. Cu, to Pb; Zh, to Ni, Co; Ag, Mo, As,-(circle)
Soil Horizon Sampled	Others
Horizon Development	Field Analysis (tests)
Sample Depth	Extraction Method
Terrain	Analytical Method
	Reagents Used
Drainage Development	Field Laboratory Analysis
Estimated Range of Overburden Thickness	No. (tests)
	Extraction Method
	Analytical Method
	Reagents Used
SAMPLE PREPARATION	Commercial Laboratory (tests)
(includes drying, screening, crusning, asning)	Name of Laboratory
Mesh size of fraction used for analysis	Extraction Method
	Analytical Method
	Reagents Used
General	General

...

-

Kidd Creek Mines Ltd. Box 1140

571 Moneta Avenue, Timmins, Ontario P4N 7H9 (705) 267-1188

Exploration Division

•

SCHEDULE OF MINING CLAIMS FOR WHICH WORK CREDITS ARE REPORTED

Ρ		636223	P -	641185	Ρ	-	642133 🛩
Ρ	-	636224	P -	641186	Ρ	-	642134
Ρ	-	636225	Р -	641187	Ρ	-	642135
Ρ	-	636226			Ρ	-	642136
Ρ	•••	636227	P -	641194	Ρ	-	642137
Ρ	-	636228	P -	641195	P	-	642138
Ρ	-	636229	P -	641196	Ρ	-	642139
			P -	641197	Ρ	-	642140
P _.	-	636232 🗸	P -	641198			
			P -	641199			
Ρ		636485 -	P -	641200			
Ρ	-	636486	P -	641201			
			P -	641202			
Ρ	-	641172 -	P -	641203			
Ρ	-	641173	P -	641204			
Ρ	-	641174	P -	641205			
Ρ	-	641175	P -	641206			
Ρ	-	641176	P -	641207			
Ρ	-	641177		<i>•</i>			
Ρ	-	641178	P -	641676			
Ρ	-	641179	P -	641677			
Ρ	-	641180	P -	641678			
Ρ	-	641181	P -	641679			
Ρ	-	641182		,			
Ρ	-	641183	P -	642065			
Р	-	641184					

_____ <u>___</u>____

·· ·- · ·

истории	CATEA	STRONG VLF ANOMALY	MODERATE VLF ANOMALY	WEAK VLF ANOMALY	INFERREC VLF ANOMALY	LEGEND JIP ANGLE (DEGREES)	W N N L	INSTRUMENT : CRONE RADEM STATION : ANNAPOLIS. 21.4 KHz PROFILE SCALE : DIP ANGLE 1 CM= 20°	SAIC 3 SAIC A	0 40 80 120 160 200 METRES (1:2000)	XIDD URFEX MINES LED. SURVEY	CUNNINGHAM 31 RUNNING GHOST LAKE GRID	M. W. 2 1982	

1 4

. 1

.

and the second second

LEEU MET IL SURVEY MANUET IL SURVEY MANUET IL SURVEY MANUET IL SURVEY SAUNA SI S

-

·····

[

