

010
KIDD CREEK MINES LTD. GEOPHYSICAL REPORT ON CUNNINGHAM 31
RUNNING GHOST LAKE, PETER LAKE, SKUNK CREEK AND
DUCK POND GRIDS
CUNNINGHAM BASE METALS PROJECT \#75
N.T.S.: 41-0-10

SUMMARY AND RECOMMENDATIONS

Geophysical surveys consisting of proton precession magnetometer, horizontal loop electromagnetic and very low frequency electromagnetic traverses were conducted over four properties in Cunningham Township.

Extremely strong electromagnetic anomalies were detected in all four properties, three of which contain magnetite and sulphide iron formations.

Based on the geophysical results, four drill holes have been planned to test the conductors on the Skunk Creek and Duck Pond Properties (Figures 2 and 3). Also a follow up horizontal loop survey is recommended to detail the conductors on the Peter Lake Grid and to complete the $E M$ coverage on the remaining three properties.
page
SUMMARY AND RECOMMENDATIONS i
INTRODUCTION 1
Location and Access 1
Previous Work 3
general geology 6
PROPERTY GEOLOGY 7
SURVEY DETAILS 9
SURVEY RESULTS 10
REFERENCES 25

LIST OF FIGURES

Figure 1 General map showing location of Cunningham 31; 1:50,000 Figure 2 HEM Anomaly and Proposed Drilling in the Skunk Creek Area; 1:5,000

Figure 3 HEM Anomalies and Proposed Drilling in the Duck Pond Area; 1:5,000

Figure 4 HEM Survey Results, Duck Pond Grid; $444 \mathrm{~Hz}, 1: 2,000$
Figure 5 HEM Survey Results, Duck Pond Grid; $1777 \mathrm{~Hz}, 1: 2,000$
Figure 6 Magnetometer Survey Results, Duck Pond Grid; 1:2,000
Figure 7 VLF Survey Results, Duck Pond Grid; 1:2,000
Figure 8 HFM Survey Results, Skunk Creek Grid; $444 \mathrm{~Hz}, 1: 2,000$
Figure 9 HEM Survey Results, Skunk Creek Grid; 1777Hz, 1:2,000
Figure 10 Magnetometer Survey Results, Skunk Creek Grid;
1:2,000
Figure 11 VLF Survey Results, Skunk Creek Grid; 1:2,000
Figure 12 HEM Survey Results, Peter Lake Grid; 444 Hz; 1:2,000
Figure 13 HEM Survey Results, Peter Lake Grid; 1777 Hz ;
1:2,000
Figure 14 Magnetometer Survey Results, Peter Lake Grid; 1:2,000
Figure 15 VLF Survey Results, Peter Lake Grid; 1:2,000
Figure 16 HEM Survey Results, Running Ghost Lake Grid; 444 Hz , 1:2,000

Figure 17 HEM Survey Results, Running Ghost Lake Grid; 1777Hz, 1:2,000

Figure 18 Magnetometer Survey Results, Running Ghost Lake Grid; 1:2,000

Figure 19 VLF Survey Results, Running Ghost Lake Grid; 1:2,000

- 15 unpatented claims P 636223 to $P 636229$ (inclusive)

P 636232, P 636485, P 636486
p 641676 to $P 641679$ (inclusive)
and P 642065

Duck Pond Grid (adjoins Skunk Creek Grid to the South)

- 8 unpatented claims P 642133 to P 642140 (inclusive)

Access to the westernmost groups is most easily attained by float equipped, fixed-wing aircraft from Ivanhoe Lake, 61 kilometres to the north. In addition, the Running Ghost and Peter Lake Grids are connected by an old wagon road which originates approximately 20 kilometres to the south in Sultan.

A 4-wheel drive access road from Garnet Lake, 12 kilometres to the east, to the Shunsby base metals prospect in central Cunningham Township, provides access to the Skunk Creek and Duck Pond Grids.

Previous Work:

FRANK R. PLOEGER
Prospecting of the Cunningham Township area in the early 1900's concentrated on the cherty iron formation as possible hosts of iron ore deposits. Emphasis was then switched to gold and finally base metals exploration with the discovery of zinc, lead and copper mineralization in the
sedimentary horizons.
The majority of work to date has been conducted on the M.W. Resources Ltd, property, formerly named Shunsby Gold Mines Limited and Consolidated Shunsby Mines Limited, which lies in the central portion of the Township. In addition to approximately 150 diamond drill holes aggregating 55,529 feet (16925 m, Siragusa, 1980) extensive trenching and stripping and geological, geophysical and geochemical surveys have been conducted on the property. This work outlined 3 mineralized zones, the largest of which has been traced for 350 feet (105 m) along strike and 1000 feet (300 m) down dip - dips range between 20° and 30° west - and which averages 30 feet (9 m) in width. The mineralization occurs as bands, stringers and veins of sulphides in a sedimentary unit comprised of brecciated chert-magnetite iron formation, argillite, graphitic phyllite and sericite schist. The largest of these zones contains drill indicated reserves of 310,095 tons (Thurston et al, 1977) grading 1.2 percent copper, 1.3 percent zinc and significant lead, silver and cadmium. Previous work on, and in the vicinity of the Kidd Creek claim groups has shown that they are underlain by sedimentary horizons similar to those occurring on the M.W. Resources property.

In 1959-60, the Anaconda Company (Canada) Limited carried out geological, geophysical and diamond drilling
programs on a claim group coincident with the Running Ghost Lake Grid. No assays were reported, however, all drill holes intersected banded magnetite and sulphide iron formation.

Extensive trenching and test-pitting was evident in the area south of Peter Lake. Drilling by R.A. MacGregor in 1965, outlined small continuous sulphide lenses of up to 5% combined zinc/lead over widths of almost 6 m . A self-potential survey by Geophysical Engineering Services Limited in 1958, demonstrated that conductive sediments underly the area immediately south of Peter Lake.

The stratigraphic sequence of the M.W. Resources property appears to strike southeasterly onto the adjoining Skunk Creek and Duck Pond Grids. In 1954, The American Metal Company Limited carried out geological and geophysical surveys and a limited amount of diamond drilling in an area covering the north part of the Duck Pond Grid. Their surveys and drilling located "limited sulphide mineralization" associated with shear zones and the contact between iron formation and greenstone.

Geophysical surveys and diamond drilling by Dome Exploration (Canada) Limited in 1971 and 1973, concentrated on outlining and testing the ultramafics which intrude the sedimentary-volcanic sequence on the south part of the Duck Pond Grid. The sediments intersected by the drilling comprised variably mineralized banded siliceous iron
formation, tuff and argillite.
Previous government surveys covering the Cunningham Township area include regional mapping by V.B. Meen (1942), detailed township mapping by G. M. Siragusa (1980) and airborne electromagnetic and magnetic surveys by the Ontario Geological Survey (1982). The airborne surveys showed up numerous conductors on all the claim groups.

GENERAL GEOLOGY
FRANK R. PLOEGER

Cunningham Township is underlain by a thick sequence of mafic to intermediate tuffs, pillowed and massive flows and related intrusive equivalents. Interbedded with this sequence are continuous lenses of siliceous magnetite and subordinate sulphide iron formation with associated tuffaceous and argillaceous sediments and felsic tuff, lapilli tuff and agglomerate. Discontinuous sill-like bodies of peridotite and pyroxenite cut the sequence locally. In the southwest corner of Cunningham Township, a plug of biotite-quartz monzonite and related quartz-feldspar porphyry dikes intrude the volcano-sedimentary pile causing local flattening of $d i p s$ and changes in the strike of the units. North-South trending diabase dikes which are probably of the Matachewan type, represent the latest phase of intrusive activity in the township.

The Isaiah Creek fault has been shown by G.M. Siragusa to cut the granitic plug with an indicated left lateral displacement of approximately 2000 m .

PROPERTY GEOLOGY
FRANK R. PLOEGER

The Running Ghost Lake Grid is underlain mainly by a succession of mafic to intermediate tuffs and flows which separate, and to a lesser extent are interbedded with, two sedimentary horizons. The lowermost horizon, which outcrops east of the lake, comprises a shallow westward-dipping, north-south-striking sequence of chert, greywacke, argillite and magnetite with subordinate sulphide iron formation. Diamond drill holes into the poorly-exposed, upper sedimentary unit intersected graphitic argillite and impure sediments mineralized with bands and stringers of pyrrhotite.

The volcanic-sedimentary pile is intruded by gabbroic, dioritic and ultramafic sills and by the granitic plug on the east boundary.

Geologically, the Peter Lake Grid may be divided into 3 sections. The northern and southern thirds of the property are underlain by mafic and intermediate tuff, massive and pillowed flows, felsic pyroclastics and mafic intrusive rocks.

Well fractured siliceous iron formation and associated argillite, mafic and felsic tuff and sulphide iron formation constitute the central sedimentary section of the property. Previous work in fractured and quartz-veined chert and mafic volcanics, approximately 150 m south of the east end of Peter Lake, outlined a 200 m long zinc-lead-rich zone which assayed up to $4.2 \% \mathrm{zinc}$ and 1.0% lead over 5.6 m .

A small tongue of the granitic plug outcrops in the southeast corner of the property.

The Skunk Creek grid is almost entirely underlain by north to northwest-striking mafic to intermediate pillowed and massive flows intruded by concordant to subconcordant gabbroic sills. Many of the sills may in fact be massive flows. Several airborne EM anomalies occur at the contact between a wide gabbroic sill and the intruded mafic flows northeast of Skunk Creek.

The extrusive/intrusive mafic package of the skunk Creek Grid continues southward onto the adjoining Duck Pond Grid. Overlying this package is a central sedimentary horizon flanked by felsic pyroclastic units. The sediments comprise a northwest-striking, southwest-dipping sequence of fragmented chert, argillite, mafic and felsic tuff and banded magnetitie and sulphide facies of iron formation similar to that at Peter Lake. Mineralization logged in previous drilling and observed in a surface showing includes
banded pyrrhotite and pyrite with minor chalcopyrite and sphalerite; pyrite, chalcopyrite, sphalerite and galena also occur in veins and fracture-fillings. East-west-trending mafic and ultramafic sills intrude the volcanic-sedimentary sequence.

SURVEY DETAILS

On all four Cunningham grids, crosslines were cut at 100 metre intervals with stations established every 20 metres.

Magnetic readings were taken with a Geometrics G816 proton precession magnetometer. This instrument measures the earth's total magnetic field to an accuracy of ± 1 gamma. Base stations were established at the most convenient tie in points due to the number of rivers and lakes on the grids. A total of 3990 readings were taken along 80 kilometres of line.

The horizontal loop survey was carried out with an Apex Parametrics MaxMin II using a coil separation of 80 metres. Readings were taken every 20 metres at frequencies of 444 Hz and 1777 Hz . A total of 3750 readings were taken along 75 kilometres of line.

Very low frequency (VLF) readings were taken with a Crone Radem EM receiver. This instrument measures the dip
angle of the magnetic field component in degrees with an accuracy of $\pm 1 / 2$ degree. The transmitting stations used in the surveys were:

		Freg.
Duck Pond Grid -	Seattle, Washington	24.8 KHz
Skunk Creek Grid -	Cutler, Main	17.8 KHz
Peter Lake Grid -	Cutler, Main	17.8 KHz
Running Ghost		
Lake Grid		

SURVEY RESULTS

Duck Pond Grid
The Duck Pond Grid adjoins the south end of the Skunk Creek Property in east-central Cunningham Township. The property is geophysically dominated by five major northwest trending horizontal loop anomalies and a number of minor satellite anomalies (Figure 4).

Anomalies A, B, C and D are magnetically and geologically identified as being caused by sedimentary iron formations consisting of banded magnetite and sulphide mineralization. Anomalies E, F, G and H are magnetically and
geologically identified as being caused by non magnetic sulphide mineralization and argilliceous sediments. Anomaly I does not appear to have a bedrock source. The data for the horizontal loop anomalies is listed as Table 1.

A northwest trending fault running between line 17300 E at $131+10 \mathrm{~N}$ and Line 17800 E at $125+00 \mathrm{~N}$ (Ploeger, 1982) is seen as a major break in the magnetic picture. This discontinuity appears to mark the contact between the western sediments and the eastern volcanic sequences. This fault also offsets a large peridotite mass in the southeast corner of the property which gives a moderate to strong magnetic anomaly.

The VLF survey detected most of the EM conductors as well as some of the geologic contacts. An inferred VLF anomaly running under Skunk Creek on Lines 17200 E, 17300 E and 17400 E that was not covered in the horizontal loop survey was tested by a hole drilled in 1954 by American Metal Company Ltd. (AM 304) and intersected "limited sulphide mineralization". This trend continues into the Skunk Creek Property and more will be said about it in the Skunk Creek survey results. Figure 3 depicts the remaining holes previously drilled on the Duck Pond Property as well as the horizontal loop anomalies.

Table 1: Horizontal Loop Anomalies A, B, C, D, E, F, G, H; 1982, Duck Pond Grid, $444 \mathrm{~Hz}, 80 \mathrm{~m}$ coil separation

Continuation of Table: 1 Duck Pond Grid

The Skunk Creek Grid is situated in east-central Cunningham Township adjoining the east boundary of the M. W. Resources (Shunsby) property. The property is geophysically dominated by one major northwest trending horizontal loop anomaly and two one line anomalies located under Skunk Creek (Figure 8).

Anomaly A is the ground $E M$ representation of an INPUT anomaly east of Skunk Creek. The VLF survey shows this trend continuing south to Line 14500 N and then branching into two VLF anomalies. The magnetometer survey shows conductor A to have a slight magnetic low similar to the eastern conductors. in the Duck Pond Property. The VLF anomaly on Line 14600 N at $170+60 \mathrm{E}$ is coincident with a north-south trending magnetic high.

The single horizontal loop anomaly called anomaly B is coincident with and inferred west-northwest trending VLF anomaly running under Skunk Creek. This non magnetic trend may represent a fault rather than the non bedrock anomalies that the other creek bottom responses appear to be; thus Anomaly B may be the $E M$ representation of conductive material remobilized into the fault.

Anomlay C appears to mark the northern extent of the VLF anomaly tested in 1954 by American Metals drill hole (AM304). The drill hole results and the VLF anomaly is
discussed in the Duck Pond survey results.
Data for the horizontal loop anomalies found on the Skunk Creek Grid is listed as Table 2. Figure 2 depicts the horizontal loop anomaly for conductor A.

Peter Lake Grid
The Peter Lake Grid is situated in west-central Cunningham Township at the Greenlaw Township boundary. The property is geophysically dominated by a wide east-west trending highly magnetic zone containing numerous strong horizontal loop anomalies (Figure 12).

Anomalies A, B, C, D, E, F, G and H are all found in this central zone of erratic magnetic highs. This zone has been geologically identified (Ploeger, 1982) as a sequence of cherty sediments containing magnetite and sulphide mineralization. The highly conductive zones detected in the horizontal loop survey represent numerous, closely spaced conductors that give one large anomaly. The VLF survey has been very helpful in separating the individual zones but with so many anomalies, it is difficult to identify separate conductors.

Anomalies I, J and K are found north of the magnetic sediments in an area underlain by mafic to intermediate metavolcanics and intrusives. Anomaly K is the only zone coincident with a slight magnetic high. The data for the

Line	Anomoly Cenfer	$\begin{gathered} \text { Anomaly } \\ \text { Widin } \\ \hline \end{gathered}$	Indicoted Depth	$\begin{aligned} & \text { I. } P \\ & \text { Max. } \end{aligned}$	$\begin{aligned} & \text { O.P } \\ & \text { Max. } \end{aligned}$	Response Parameter	Conductivity Thickness	Remarks
Anomaly A 15000 N 14900 E 14800 N 14700 N	$\begin{aligned} & 167+38 \mathrm{E} \\ & 168+28 \mathrm{E} \\ & 168+77 \mathrm{E} \\ & 169+49 \mathrm{~N} \end{aligned}$	$\begin{array}{r} 11 \mathrm{~m} \\ 7 \mathrm{~m} \\ 12 \mathrm{~m} \\ 8 \mathrm{~m} \end{array}$	$\begin{aligned} & 25 \mathrm{~m} \\ & 22 \mathrm{~m} \\ & 19 \mathrm{~m} \\ & 20 \mathrm{~m} \end{aligned}$	-8 -13 -12 -20	$\left\lvert\, \begin{aligned} & -9 \\ & -12 \\ & -15 \\ & -12 \end{aligned}\right.$	$\begin{aligned} & 2.6 \\ & 3.5 \\ & 2.5 \\ & 9 \end{aligned}$	9 mhos 12 mhos 9 mhos 32 mhos	Assume $\operatorname{Dip} 30^{\circ} \mathrm{SW}$ " $"$ $"$ $"$
$\frac{\text { Anomaly B }}{14300 \mathrm{~N}}$	168+06E	13m	10m	-49	-12	55	200 mhos	Assume Dip $30^{\circ} \mathrm{sw}$
$\frac{\text { Anomaly C }}{13600 \mathrm{~N}}$	$171+67 \mathrm{E}$	13m	20m	-12	-11	8	28 mhos	Assume Dip $30^{\circ} \mathrm{sW}$
							-	

horizontal loop anomalies is listed as Table 3.
A minor north-south magnetic trend is found at the west boundary of the grid. This anomaly may represent one of the north-south trending diabase dikes found in the township.

Running Ghost Lake Grid
The Cunningham/Greenlaw Township boundary and Running Ghost Lake roughly divide this grid into two equal halves. The property is geophysically dominated by a wide north-south trending magnetic anomaly just east of Running Ghost Lake. This erratic magnetic zone contains several strong horizontal loop responses (Figure 16).

Anomalies F, F and I are all found in this central zone of erratic magnetic highs. This zone has been geologically identified (Ploeger, 1982) as containing several sedimentary and felsic tuff horizons occurring within a mafic sequence of tuffs and massive and pillowed flows. The conductive component of the sediments is a series of cherty bands containing magnetite and subordinate sulphide iron formation which outcrop on the eastern side of the lake. The two weak north-south trending magnetic anomalies on either side of the lake reflect Matachewan type diabase dikes.

Anomalies A, B, C, D, G and H are all found outside of the highly magnetic zone with only A and D having even a slight magnetic response. Drilling in 1960 by The Anaconda

Table 3: Horizontal Loop Anomalies A, B, C, D, E, F, G, H, I, J; 1982, Peter Lake Grid, $444 \mathrm{~Hz}, 80 \mathrm{~m}$ coil separat

Table 3 Continued.....

Line	Anomaly Center	Anomaly width	Indicated Depin	I. P Max.	$\begin{aligned} & \text { O.P } \\ & \text { Max. } \end{aligned}$	Response Parameter	Conductivity Thickness	Remorks
Anomaly G 11300 E 11400 E 11500 E 11600 E 11700 E	$\begin{aligned} & 140+14 \mathrm{~N} \\ & 140+09 \mathrm{~N} \\ & 141+00 \mathrm{~N} \\ & 141+74 \mathrm{~N} \\ & 142+76 \mathrm{~N} \end{aligned}$	$\begin{array}{r} 20 \mathrm{~m} \\ 50 \mathrm{~m} \\ \text { Thin } \\ 4 \mathrm{~m} \\ 16 \mathrm{~m} \end{array}$	$\begin{array}{r} 8 \mathrm{~m} \\ 8 \mathrm{~m} \\ 10 \mathrm{~m} \\ 8 \mathrm{~m} \\ 20 \mathrm{~m} \end{array}$	$\begin{aligned} & -50 \\ & -35 \\ & -30 \\ & -25 \\ & -19 \end{aligned}$	$\begin{aligned} & -18 \\ & -19 \\ & -16 \\ & -20 \\ & -10 \end{aligned}$	$\begin{array}{r} 40 \\ 17 \\ 20 \\ 10 \\ 9 \end{array}$	142 mhos 60 mhos 71 mhos 36 mhos 32 mhos	```Assume Dip \(90^{\circ}\) A definite multiple conductor Assume Dip \(90^{\circ}\) Assume Dip \(90^{\circ}\) Assume Dip \(90^{\circ}\)```
$\frac{\text { Anomaly } \mathrm{H}}{11700 \mathrm{E}}$	$140+90 \mathrm{~N}$	3 m	22m	-11	-10	8	28 mhos	Assume Dip 90°
$\begin{aligned} & \frac{\text { Anomaly } I}{10300 \mathrm{E}} \\ & 10400 \mathrm{E} \end{aligned}$	$\begin{aligned} & 146+70 \mathrm{~N} \\ & 147+08 \mathrm{~N} \end{aligned}$	8 m 6 m	$26 m$ $16 m$	-3 -5	-4 -8	3 3	11 mhos 11 mhos	Assume Dip 90°
$\begin{aligned} & \frac{\text { Anomaly J }}{10400 \mathrm{E}} \\ & 10600 \mathrm{E} \end{aligned}$	$\begin{aligned} & 145+12 \mathrm{~N} \\ & 145+28 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { Thin } \\ & 8 \mathrm{~m} \end{aligned}$	$28 m$ $23 m$	$\begin{aligned} & -12 \\ & -16 \end{aligned}$	$\begin{aligned} & -7 \\ & -9 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	53 mhos 53 mhos	Assume Dip 90° Assume Dip 90°
$\frac{\text { Anomaly K K }}{11300 \mathrm{E}}$ 11400 E 11500 E 11600 E	$\begin{aligned} & 150+32 \mathrm{~N} \\ & 150+70 \mathrm{~N} \\ & 150+90 \mathrm{~N} \\ & 151+32 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { Thin } \\ & \text { Thin } \\ & 4 \mathrm{~m} \\ & 8 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~m} \\ & 21 \mathrm{~m} \\ & 16 \mathrm{~m} \\ & 14 \mathrm{~m} \end{aligned}$	$\begin{array}{r} -6 \\ -20 \\ -32 \\ -35 \end{array}$	-6 -9 -8 -8	$\begin{array}{r} 7 \\ 25 \\ 55 \\ 60 \end{array}$	25 mhos 89 mhos 196 mhos 213 mhos	Assume Dip 90° Assume Dip 90° Assume Dip 90° Assume Dip 90°

Company Ltd. on conductors A and D intersected graphitic argillite and impure sediments with some stringer pyrrhotite in a sequence of mafic tuff and flows. The data for the horizontal loop anomalies is listed as Table 4.

The VLF survey detected all of the EM conductors as well as a major discontinuity between Lines 11400 N and 11300 N east of Running Ghost Lake. This anomaly offset may be due to the diabase intrusion in this area of the property.

Table 4: Horizontal Loop Anomalies A, B, C, D, E, F, G, H, I: 1982 RUNNING GHOST LAKE GRID, 444Hz, 80 m coil separa

Table 4 Continued......

Meen, V. B.
1942: Cunningham Garnet Area, District of Sudbury, Ontario; Map No. 5lf (to accompany Ont. Dept. of Mines Annual Report Vol. LI, Part 7, 1942), Scale 1:63,360 or 1 inch to 1 mile.

OGS,
1982:Airborne Electromagnetic and Total Intensity Magnetic Survey, Swayze Area, Isaiah Lake Sheet, District of Sudbury: by Questor Surveys Limited for the Ontario Geological Survey, Map $80 \quad 546$ Geophysical/Geochemical Series, Scale 1:20 000. Survey and Compilation December, 1980, to February 1981.

Ploeger, F.R.
1982: Kidd Creek Mines Ltd. Geological Report on Cunningham 31, Running Ghost Lake, Peter Lake, Skunk Creek and Duck Pond Grids, Cunningham Base Metals Project \#75, (N.T.S.: 41-0-10), November.

Siragusa, G. M.
1980: Cunningham Township Area, District of Sudbury; Ontario Geological Survey Prelim. Map P. 2339 Geological Ser., Scale l:15 840 or 1 inch to $1 / 4$ mile. Geology 1978.

Thurston, P.C., Siragusa, G.M., and Sage, R.P.
1977: Geology of the Chapleau Area, Districts of Algoma, Sudbury, and Cochrane; Ontario Div. Mines, GR157, 293p. Accompanied by Maps 2351 and 2352 , scale $1: 250,000$, and Map 2221, Scale 1 inch to 4 miles (1:253,440).

me and Postal Address of Person Certifying
Micheal W. Zang, P.O. Box 1140, 571 Moneta Ave., Timmins, Ontario P4N 7H9
Date Cortifled Ceitified by (Signatura)

Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timing, Ontario
PAN 257

Dear Sir:

RE: Geophysical (Electromagnetic \& Magnetometer) Survey on Mining Claims P 641172 et al in the Cunningham Township

The Geophysical (Electromagnetic \& Magnetometer) Survey assessment work credits as listed with my Notice of Intent dated August 25, 1983 have been approved as of the above date.

Please inform the recorded holder of these wining claims and so indicate on your records.

Yours very truly,
E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
MFA 1W3
Phone: 416/965-1380
R. Pichette:sc
cc: Kidd Creek Mines Ltd Timanins, Ontario
cC: Resident Geologist
Timing, Ontario

Recorded Holder	KIDD CREEK MINES LIMITED
Township or Ares	CUNNINGHAM TOWNSHIP

Special credits under section 77 (16) for the following mining claims

30 DAYS CREDIT, ELECTROMAGNETIC
P 636223 .
20 DAYS CREDIT, ELECTROMAGNETIC
P 641205 641207

20 DAYS CREDIT, MAGNETOMETER
P 641172 to 75
641205
641207
636223
636229

No credits have been allowed for the following mining claims

Your file:

Our file:
2.5403

Mr. William L. Good
Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
PAN 2S7
Dear Sir:

Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the other. In approximately fifteen days from the above date, a final letter of approval of these credits will be sent to you. On receipt of the approval letter, you may then change the work entries on the claim record sheets.

For further information, if required, please contact
Mr. F.W. Matthews at 416/965-1380.
Yours very truly,

Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
MFA 1W3
Phone: 416/965-1316
R. Pichette:mc

Encis:
cc: Kidd Creek Mines Ltd Box 1140
571 Moneta Avenue Timmins, Ontario PAN 7 H 9

cc: Mr. G.H. Ferguson
Mining \& Lands Commissioner Toronto, Ontario

Ministry of
Natural
Resources

Notice of Intent
for Technical Reports
19830825

2.5403/27

An examination of your survey report indicates that the requirements of The Ontario Mining Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on his record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim.remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the "Special Provision-Performance and Coverage" method and you are of the opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted direct to the Lands Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued.

Kidd Creek Mines Ltd.

August 15, 1983

Mr. E. F. Anderson, Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
RECEIVED
:U6118.1983

MFA 1W3
Dear Sir:
RE: Geophysical (Electromagnetic and Magnetometer) Survey on Mining Claims $P 641172$ et al in the Cunningham Township

Herein are three plans for the above-described survey. Each copy has been signed quoting file 2.5403.

Yours very truly,

Mike Rang
MZ/srw
Encl.

Kidd Creek Mines Ltd

Box 1140
571 Moneta Avenue
Timmins, Ontario
P4N 7 H 9

Attention: M.W. Zang

Dear Sir:
RE: Geophysical (Electromagnetic and Magnetometer) Survey on Mining Claims P64172 et al in the Cunningham Township

Returned herein are three plans for the above-described survey. Please sign each copy and return them quoting file 2.5403.

For further information, please contact Mr. F.W. Matthews at (416)965-1380.

Yours very truly,

E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Queen's Block
Toronto, Ontario
M7A IW3
Phone: (416)965-1380
S. Hurst:mc

Encl.
cc: Mining Recorder Timmins, Ontario

Mining Lands Comments

To: Geophysics Mr. Bondowr.

To: Geology - Expenditures

Comments		
\square Approved	\square Wish to see again with corrections	Date

\square To: Geochemistry

\square To: Mining Lands Section, Room 6462, Whitney Block.
(Tel: 5-1380)

Mining Recorder Ministry of Nat ral
60 Wilison Avenue
Tfmains, Ontario
P4N 257

Dear Sir:

We have received reports and maps for Geophysical (Electromagnetic and Magnetometer) Survey submitted under Special Provisions (credit for Performance and Coverage) on Mining Claims P 641172 et al in the Township of Cunningham.

This material will be examined and assessed and a statement of assessment work credits will be issued.

Yours very truly,
E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
queen's Park
Toronto, Ontario
M7A 1 U3
Phone: 416/965-1380
A. Barr:sc

Cc: Kidd Creek Mines Limited
Timmins, Ontario
Attn: Mr. M.H. Zang.

Kidd Creek Mines Lid.
Box 1140
571 Moneta Avenue,
Timmins, Ontario P4N 7H9

February 25, 1983
RECEIMED

Director, Land Management Branch, Whitney Block, Room 6450, Queen's Park,
Mr. E. F. Anderson,

Toronto, Ontario.
M7A 1W3.
Dear Sir:
Re: Cunningham Township
Enclosed please find duplicate copies of a report and maps covering claims in Cunningham Township.

Your prompt attention to this matter would be greatly appreciated.

```
Yours truly,
```

KIDD CREEK MINES LTD. EXPLORATION

MWZ/mg
Encl.

Ministry of Natural Resources
\qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Geophysical
Township or Area \quad Cunningham
Claim Holder(s) Kidd Creek Mines Ltd.
P.O. Box 1140, 571 Moneta Ave., Timmins, ont,

SPECIAL PROVISIONS	days
CREDITS REQUESTED	Geophysical per claim
ENTER 40 days (includes line cutting) for first survey.	-Electromagnetic 40
	-Magnetometer_40
	-Radiometric
ENTER 20 days for each additional survey using same grid.	-Other
	Geological
	Geochemical

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer \qquad Electromagnetic \qquad Radiometric \qquad

Res. Geol. \qquad Qualifications \qquad
Previous Surveys

File No.	Type	Date	Claim Holder
			\ldots

\qquad

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS -- If more than one survey, specify data for each type of survey

Profile scale Horizontal Loop, $1 \mathrm{~cm}=20 \%$; VLF, $1 \mathrm{~cm}=20 \mathrm{~m}$
Contour interval Variable, depending on magnetic relief

Instrument $\frac{\text { Geometrics G816 }}{\text { Accuracy }- \text { Scale constant } \quad \pm 1 \text { n.t. (gamma) }}$
Diurnal correction method._A number of base stations were set up on each grid and Base Station check-in interval (hours) checked every 3-4 hours. Water obstacles made it Base Station location and value impossible to either systematically loop the base lines or to tiw together the various base stations.

Instrument ___ Apex Parametrics MaxMin II

Instrument
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument
Method \square Time Domain
\square Frequency Domain
Parameters - On time Frequency \qquad

- Off time

Range

- Delay time
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode \qquad

SELF POTENTIAL

\qquad
\qquad

AIRBORNE SURVEYS
Type of survey(s)

Instrument(s)	(specify for each type of survey)
Accuracy_	
Aircraft used	(specify for each type of survey)

Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude \qquad Line Spacing
Miles flown over total area \qquad Over claims only

Numbers of claims from which samples taken

Total Number of Samples
Type of Sample (Nature of Material)
Average Sample Weight \qquad
Method of Collection______

Soil Horizon Sampled
Horizon Development \qquad
Sample Depth
Terrain

Drainage Development
Estimated Range of Overburden Thickness

SAMPIE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis \qquad
\qquad
\qquad
\square

General
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ANALYTICAL METHODS

Values expressed in:	per cent
	p. p. m.
	p.p.b.

Others
Field Analysis (
Extraction Method \qquad
Analytical Method \qquad
Reagents Used
Field Laboratory Analysis
No.
Extraction Method \qquad
Analytical Method \qquad
Reagents Used \qquad
Commercial Laboratory (_____tests)
Name of Laboratory \qquad
Extraction Method \qquad
Analytical Method \qquad
Reagents Used \qquad

General \qquad

Kidd Creek Mines Ltd.

Box 1140
571 Moneta Avenue.
Timmins, Ontario P4N 7H9
(705) 267-1188

SCHEDULE OF MINING CLAIMS FOR WHICH
WORK CREDITS ARE REPORTED

```
P-636223
P - 636224
P - 636225
P - 636226
P - 636227
P - 636228
P - 636229
P. - 636232
P - 636485,
P - 636486
P - 641172-
P - 641173
P - 641174
P - 641175
P - 641176
P - 641177
P - 641178
P - 641179
P - 641180
P - 641181
P - 641182
P - 641183
P - 641184
```

```
P - 641185
```

P - 641185
P - 641186
P - 641186
P - 641187
P - 641187
p - 641194
p - 641194
P - 641195
P - 641195
P - 641196
P - 641196
P - 641197
P - 641197
P - 642140
P - 642140
P - 641198
P - 641198
P - 641199
P - 641199
P - 641200
P - 641200
P - 641201
P - 641201
P - 641202
P - 641202
P - 641203
P - 641203
P - 641204
P - 641204
P - 641205
P - 641205
P - 641206
P - 641206
P - 641207
P - 641207
P - 641676
P - 641676
P - 641677
P - 641677
P - 641678
P - 641678
P - 641679
P - 641679
P - 642065

```
P - 642065
```


Swayze Twp. M. 1150

CUNNINGHAM

DISTRICT OF SUDBURY

PORCUPINE
MINING DIVISION
SCALE: 1-INCH=40 CHAINS
LEGEND

patented land

CROWN LANO SAL
Located land
LICENSE OF OCCUPATION
MINING RIGHTS ONLY
MINING RIGHTS ONLY
SURFACE RIGHTS ONLY
ROADS
IMPROVED ROADS
KING'S HIGH
RAIL WAYS
POWER LIMES
POWER LINES
MARSH OR MUSKEG
MINES
CANCELLED
PATENTED FOR SURFACE RIGHTS ONLY
NOTES
400 Surface Rights Reservation slonz 41.9
shores of all lokes a rivers

DATE OF 1 SSUE
AUG 13 1983
Minisisy of Natural Resources
moranto

PLAN NO. M. 744

MINISTRY OF NATIEAL r+EGURCES
200

\qquad

			뭆				

